sha
null
last_modified
null
library_name
stringclasses
154 values
text
stringlengths
1
900k
metadata
stringlengths
2
348k
pipeline_tag
stringclasses
45 values
id
stringlengths
5
122
tags
sequencelengths
1
1.84k
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
61
embeddings
sequencelengths
768
768
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_sparse_80_percent_cola_1000 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3726 - Accuracy: 0.8441 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 0 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4653 | 0.22 | 50 | 0.5302 | 0.7405 | | 0.5191 | 0.44 | 100 | 0.4846 | 0.7638 | | 0.5233 | 0.66 | 150 | 0.4720 | 0.7701 | | 0.4905 | 0.88 | 200 | 0.4463 | 0.7802 | | 0.3672 | 1.1 | 250 | 0.4354 | 0.7927 | | 0.3929 | 1.32 | 300 | 0.4171 | 0.8028 | | 0.3643 | 1.54 | 350 | 0.4110 | 0.7997 | | 0.324 | 1.76 | 400 | 0.3927 | 0.8231 | | 0.3639 | 1.98 | 450 | 0.4550 | 0.7747 | | 0.3293 | 2.2 | 500 | 0.4191 | 0.8309 | | 0.3072 | 2.42 | 550 | 0.4059 | 0.8184 | | 0.3131 | 2.64 | 600 | 0.3780 | 0.8363 | | 0.3821 | 2.86 | 650 | 0.3804 | 0.8301 | | 0.2741 | 3.08 | 700 | 0.3789 | 0.8394 | | 0.258 | 3.3 | 750 | 0.3984 | 0.8394 | | 0.2316 | 3.52 | 800 | 0.3998 | 0.8363 | | 0.1955 | 3.74 | 850 | 0.3799 | 0.8465 | | 0.2266 | 3.96 | 900 | 0.3750 | 0.8426 | | 0.1476 | 4.18 | 950 | 0.4402 | 0.8332 | | 0.1088 | 4.4 | 1000 | 0.4813 | 0.8316 | | 0.1872 | 4.62 | 1050 | 0.4342 | 0.8410 | | 0.1248 | 4.84 | 1100 | 0.4700 | 0.8472 | | 0.108 | 5.05 | 1150 | 0.4632 | 0.8472 | | 0.1437 | 5.27 | 1200 | 0.6568 | 0.8387 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"tags": ["trl", "sft", "generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "mistral_sparse_80_percent_cola_1000", "results": []}]}
null
thrunlab/mistral_sparse_80_percent_cola_1000
[ "transformers", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T11:41:39+00:00
[]
[]
TAGS #transformers #safetensors #mistral #trl #sft #generated_from_trainer #endpoints_compatible #text-generation-inference #region-us
mistral\_sparse\_80\_percent\_cola\_1000 ======================================== This model is a fine-tuned version of [](URL on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.3726 * Accuracy: 0.8441 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 16 * seed: 0 * distributed\_type: multi-GPU * num\_devices: 2 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 32 * total\_eval\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 0\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #safetensors #mistral #trl #sft #generated_from_trainer #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 0\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 47, 160, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #trl #sft #generated_from_trainer #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 16\n* seed: 0\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.1135762557387352, 0.08778347074985504, -0.0031445277854800224, 0.08652164787054062, 0.17401090264320374, 0.03870680555701256, 0.14843401312828064, 0.08900291472673416, -0.109505794942379, 0.08050365746021271, 0.11867585778236389, 0.10018329322338104, 0.033173441886901855, 0.12397509068250656, -0.02686275728046894, -0.2729329466819763, 0.012753545306622982, 0.014937100000679493, -0.13420513272285461, 0.13187259435653687, 0.07359709590673447, -0.13262921571731567, 0.069464772939682, 0.003215831471607089, -0.17762553691864014, -0.020022492855787277, 0.009880601428449154, -0.055555276572704315, 0.1280188262462616, 0.022230390459299088, 0.13539054989814758, 0.024091189727187157, 0.10505476593971252, -0.185171440243721, 0.0050631375052034855, 0.07502627372741699, 0.011720031499862671, 0.08834749460220337, 0.08886579424142838, -0.010557172819972038, 0.11844218522310257, -0.09358703345060349, 0.05893509089946747, 0.02237997204065323, -0.1259319931268692, -0.24126741290092468, -0.0834343433380127, 0.0733436793088913, 0.08699781447649002, 0.08575259149074554, -0.007299749180674553, 0.1155516728758812, -0.09623293578624725, 0.08328503370285034, 0.2767411470413208, -0.29381513595581055, -0.07385870069265366, 0.011333870701491833, 0.024664057418704033, 0.05792399123311043, -0.10505622625350952, -0.03354206308722496, 0.05089009180665016, 0.034816522151231766, 0.12145443260669708, 0.009658865630626678, 0.01188744232058525, 0.016000226140022278, -0.17034225165843964, -0.0580429881811142, 0.08171886950731277, 0.031225021928548813, -0.036394212394952774, -0.0409005805850029, -0.07941296696662903, -0.21573208272457123, -0.03041379339993, 0.00075868412386626, 0.01595422625541687, -0.05489686504006386, -0.09775379300117493, 0.02945791929960251, -0.08132010698318481, -0.09876629710197449, -0.011137600988149643, 0.20315615832805634, 0.07334262132644653, 0.013757982291281223, -0.018594257533550262, 0.14361010491847992, 0.026701336726546288, -0.14226838946342468, 0.022402575239539146, 0.018962621688842773, -0.048432715237140656, -0.018184183165431023, -0.03408139571547508, 0.01291843131184578, 0.0055689141154289246, 0.1423359364271164, -0.10839000344276428, 0.019706860184669495, 0.05963774770498276, 0.024133799597620964, -0.09269372373819351, 0.1704309582710266, -0.10172875970602036, -0.012079318054020405, -0.012816783972084522, 0.10161648690700531, 0.0308394692838192, -0.010860651731491089, -0.07463636994361877, 0.009830734692513943, 0.12726342678070068, 0.045411303639411926, -0.030397262424230576, 0.04901973158121109, -0.03860623762011528, -0.016061261296272278, 0.051328618079423904, -0.09566360712051392, 0.03247123584151268, 0.028163522481918335, -0.06883345544338226, 0.013880295678973198, 0.0038186858873814344, -0.013644355349242687, -0.014557293616235256, 0.15080542862415314, -0.1102968379855156, 0.007779293227940798, -0.0938769280910492, -0.11522143334150314, 0.013576398603618145, -0.04545846953988075, -0.009206182323396206, -0.0879988744854927, -0.13206890225410461, -0.0046513695269823074, 0.021691014990210533, -0.03618593141436577, -0.050813786685466766, -0.0260600745677948, -0.11181569844484329, 0.025216013193130493, -0.006022714544087648, 0.11170393228530884, -0.05088881030678749, 0.13656647503376007, 0.06074098125100136, 0.06167706474661827, 0.041228998452425, 0.030420467257499695, -0.07872169464826584, 0.05075724795460701, -0.1741512566804886, 0.03776827082037926, -0.0572408027946949, 0.041610896587371826, -0.07917669415473938, -0.14112737774848938, 0.017894258722662926, -0.02528366632759571, 0.10835165530443192, 0.12157992273569107, -0.11173450201749802, -0.09596413373947144, 0.19218343496322632, -0.1104949340224266, -0.09991834312677383, 0.14947740733623505, -0.009116106666624546, -0.07435905933380127, 0.03433667868375778, 0.09918013960123062, 0.09271056205034256, -0.09794127941131592, -0.031585149466991425, -0.031920962035655975, 0.06677161157131195, -0.0054759010672569275, 0.10713585466146469, 0.025576330721378326, -0.016802843660116196, 0.01840476505458355, -0.0627191811800003, 0.06492123752832413, -0.13505177199840546, -0.08486960828304291, -0.051497217267751694, -0.08491179347038269, 0.08615288138389587, 0.06475024670362473, 0.04536253958940506, -0.08386572450399399, -0.114654041826725, 0.05045890063047409, 0.10601227730512619, -0.0690828412771225, 0.016823286190629005, -0.07064176350831985, 0.10340017825365067, -0.0790533646941185, -0.009769681841135025, -0.18442365527153015, -0.08666853606700897, 0.01590876094996929, -0.03156515210866928, -0.010169108398258686, -0.022024795413017273, 0.06690029799938202, 0.12537389993667603, -0.06862076371908188, -0.06514064222574234, -0.08019455522298813, -0.020452575758099556, -0.0946078673005104, -0.21303589642047882, -0.07683710753917694, -0.010428912937641144, 0.11658494919538498, -0.2110701948404312, 0.030787456780672073, 0.006796915549784899, 0.11108585447072983, 0.013647807762026787, -0.026962006464600563, -0.03746014088392258, 0.09417036920785904, -0.035347141325473785, -0.06458891183137894, 0.03854955732822418, -0.002813874278217554, -0.07337362319231033, -0.052774578332901, -0.148057222366333, 0.18965870141983032, 0.11725859344005585, -0.02771514467895031, -0.09700652956962585, 0.025619924068450928, -0.0932956114411354, -0.045380935072898865, -0.051160313189029694, 0.013436897657811642, 0.10912644863128662, 0.002864284673705697, 0.1263597160577774, -0.07285255938768387, -0.042051784694194794, 0.036585237830877304, -0.010779357515275478, -0.0021386316511780024, 0.12544739246368408, 0.09311430901288986, -0.07229281961917877, 0.14080987870693207, 0.11441678553819656, -0.10444414615631104, 0.12182457745075226, -0.056488435715436935, -0.09401993453502655, -0.052542466670274734, 0.01294061727821827, 0.031849898397922516, 0.12614865601062775, -0.09701834619045258, 0.0014725734945386648, 0.01840185560286045, 0.011206317692995071, 0.019500447437167168, -0.2259725034236908, -0.027713803574442863, 0.022489842027425766, -0.05519571155309677, -0.015743782743811607, -0.017844995483756065, 0.025772733613848686, 0.11758371442556381, -0.001051698112860322, -0.04403899610042572, 0.007755406200885773, 0.009620298631489277, -0.07891805469989777, 0.21725083887577057, -0.06699690967798233, -0.12041569501161575, -0.13956306874752045, 0.006231422536075115, -0.05782216414809227, -0.002420526696369052, 0.038140103220939636, -0.09387681633234024, -0.030054692178964615, -0.05102533847093582, 0.05851268023252487, -0.004289526026695967, 0.05060616880655289, 0.015804177150130272, 0.00027310714358463883, 0.07013577967882156, -0.09848416596651077, 0.016063200309872627, -0.027148962020874023, -0.07633136957883835, 0.0470014326274395, 0.08396890014410019, 0.11407629400491714, 0.1644369512796402, -0.013326996006071568, 0.008255664259195328, -0.014211167581379414, 0.19421856105327606, -0.06971237063407898, -0.04687048867344856, 0.12200086563825607, -0.0004716042021755129, 0.06351213157176971, 0.11393648386001587, 0.06408724188804626, -0.06977709382772446, 0.006713974289596081, 0.03551968187093735, -0.02959020622074604, -0.22507244348526, -0.04562918841838837, -0.037127163261175156, 0.025593778118491173, 0.09080144017934799, 0.02171218767762184, -0.011594087816774845, 0.05172731354832649, -0.02756349742412567, 0.056920360773801804, -0.03828474134206772, 0.06952334195375443, 0.05748540535569191, 0.045690540224313736, 0.11802369356155396, -0.03668073192238808, -0.06426988542079926, 0.031204545870423317, -0.045529671013355255, 0.2228475958108902, -0.052714645862579346, 0.11362563073635101, 0.045366495847702026, 0.18956513702869415, 0.017757918685674667, 0.09327111393213272, 0.023682700470089912, -0.03384741395711899, 0.027683334425091743, -0.04907016083598137, -0.030706772580742836, 0.0031908852979540825, -0.013397094793617725, 0.07746993005275726, -0.14896135032176971, 0.027283651754260063, 0.052097171545028687, 0.2724457085132599, 0.054979950189590454, -0.32898736000061035, -0.1320520043373108, -0.0027926734182983637, -0.021517619490623474, -0.022160571068525314, 0.01635517179965973, 0.15111102163791656, -0.09253010153770447, 0.02821073681116104, -0.09124375134706497, 0.06133574992418289, -0.04861913248896599, 0.011667893268167973, 0.09224340319633484, 0.1297350823879242, 0.00006771002517780289, 0.06467121839523315, -0.24550539255142212, 0.2764012813568115, 0.000545476854313165, 0.06688369810581207, -0.04046086594462395, 0.006765895523130894, 0.013429909013211727, 0.052250754088163376, 0.041850149631500244, -0.007299874909222126, -0.05462858825922012, -0.2235686480998993, -0.09436734020709991, 0.013362901285290718, 0.1339813619852066, -0.06163831800222397, 0.13475285470485687, -0.040354982018470764, -0.017684651538729668, 0.049796391278505325, -0.04608463495969772, -0.07144134491682053, -0.06822630017995834, 0.023057708516716957, -0.026486052200198174, 0.010208910331130028, -0.10216356813907623, -0.1297430694103241, -0.09870592504739761, 0.17480245232582092, -0.08637447655200958, -0.036834556609392166, -0.12345768511295319, 0.11851725727319717, 0.1301615685224533, -0.09275054931640625, 0.034772150218486786, 0.006495557259768248, 0.10285884141921997, 0.02017286978662014, -0.057800352573394775, 0.09419496357440948, -0.07628723978996277, -0.23692677915096283, -0.03989063948392868, 0.13648007810115814, 0.029209887608885765, 0.057151634246110916, -0.050728023052215576, 0.013024774380028248, 0.005492119118571281, -0.11138497292995453, 0.023189788684248924, 0.038234643638134, 0.05838881433010101, 0.06580325961112976, -0.03750354424118996, -0.007381398230791092, -0.04765576124191284, -0.02261948771774769, 0.14002135396003723, 0.2822747528553009, -0.09576527029275894, -0.010920007713139057, 0.06550067663192749, -0.038582295179367065, -0.18658500909805298, 0.009809602051973343, 0.08229759335517883, 0.01993275061249733, 0.0031632413156330585, -0.15335163474082947, 0.07064688950777054, 0.10396388173103333, -0.017963256686925888, 0.11087895929813385, -0.3509388566017151, -0.13059687614440918, 0.07186034321784973, 0.15390729904174805, 0.07064339518547058, -0.17877426743507385, -0.038638681173324585, 0.009286259301006794, -0.1265077292919159, 0.10666733235120773, -0.04714225232601166, 0.11255279183387756, -0.03662964329123497, 0.03836117312312126, 0.015571687370538712, -0.07905587553977966, 0.1387055218219757, -0.028566667810082436, 0.08106205612421036, -0.02891932800412178, -0.026014089584350586, 0.10513855516910553, -0.051143646240234375, 0.011038627475500107, -0.03932694345712662, 0.058148179203271866, -0.04190932959318161, -0.027276646345853806, -0.10312497615814209, 0.01607680507004261, -0.055462732911109924, -0.05225778743624687, -0.024622399359941483, 0.0376020148396492, 0.03420618548989296, -0.029940253123641014, 0.10863697528839111, 0.04779425263404846, 0.17655538022518158, 0.08295060694217682, 0.05023426562547684, -0.003196733072400093, -0.08420602232217789, -0.016701234504580498, -0.009791826829314232, 0.06442046910524368, -0.11938755214214325, 0.01899126172065735, 0.14466239511966705, 0.05849043279886246, 0.11434343457221985, 0.08670241385698318, -0.05493677780032158, 0.01513755600899458, 0.0722392201423645, -0.1756800264120102, -0.1489914506673813, -0.024553949013352394, -0.03801713511347771, -0.13971756398677826, 0.07368792593479156, 0.0993882343173027, -0.07735894620418549, -0.016016338020563126, -0.007709483616054058, 0.019500361755490303, -0.04085632041096687, 0.22007113695144653, 0.04391244798898697, 0.08629025518894196, -0.1008554995059967, 0.07165955752134323, 0.05418160557746887, -0.13696089386940002, -0.010276331566274166, 0.08275362849235535, -0.07843245565891266, -0.01799354888498783, 0.054330211132764816, 0.09809215366840363, -0.038214124739170074, -0.035490769892930984, -0.1501036137342453, -0.1304047554731369, 0.08145932108163834, 0.13546516001224518, 0.06671120226383209, 0.05449956655502319, -0.026976682245731354, 0.04271658882498741, -0.14647215604782104, 0.11771438270807266, 0.07486861944198608, 0.08920252323150635, -0.1767294853925705, 0.19447775185108185, 0.003129277378320694, 0.05128036066889763, -0.01362004317343235, 0.032946594059467316, -0.12406112253665924, -0.00040516778244636953, -0.11458450555801392, -0.03294993191957474, -0.048588261008262634, -0.0030800839886069298, -0.008766108192503452, -0.05923054367303848, -0.05781582370400429, 0.028529468923807144, -0.09518959373235703, -0.03864793851971626, 0.0037784262094646692, 0.02912585251033306, -0.12826283276081085, -0.01065513864159584, 0.037069469690322876, -0.10655613243579865, 0.0960630476474762, 0.07328065484762192, 0.044539790600538254, 0.0497952476143837, -0.08814667910337448, 0.015428733080625534, 0.04875718429684639, -0.011347256600856781, 0.054439727216959, -0.12857763469219208, 0.016134612262248993, -0.034202877432107925, 0.033244650810956955, 0.01718238927423954, 0.05005535110831261, -0.1374729424715042, 0.0188971608877182, -0.014642640948295593, -0.04488794133067131, -0.06580864638090134, 0.018742337822914124, 0.0698729008436203, -0.0015883822925388813, 0.15860766172409058, -0.08511205017566681, 0.05214184895157814, -0.22979365289211273, -0.013963266275823116, -0.023065976798534393, -0.08828909695148468, -0.08887576311826706, -0.013806200586259365, 0.07992009073495865, -0.042379751801490784, 0.09106621146202087, -0.036545123904943466, 0.07700737565755844, 0.026135150343179703, -0.03130689263343811, 0.02852042391896248, 0.05442318692803383, 0.18094700574874878, 0.027008056640625, -0.04471777006983757, 0.03293929621577263, 0.027996759861707687, 0.09009167551994324, 0.08420930057764053, 0.20827129483222961, 0.10897614806890488, -0.007080427836626768, 0.07668769359588623, 0.03589573875069618, -0.08980706334114075, -0.19784265756607056, 0.02243235893547535, -0.08607342839241028, 0.09409146010875702, -0.018647098913788795, 0.16750593483448029, 0.1250738501548767, -0.16687291860580444, 0.03270135447382927, -0.02930675446987152, -0.08584671467542648, -0.09768734127283096, -0.036723699420690536, -0.06736311316490173, -0.15629859268665314, 0.017382334917783737, -0.11846363544464111, 0.020308835431933403, 0.10180730372667313, 0.02445327304303646, 0.0038913364987820387, 0.1839224398136139, 0.09736816585063934, 0.04156353324651718, 0.045872919261455536, 0.03800155967473984, -0.014332257211208344, -0.00817087758332491, -0.07617314159870148, 0.010129588656127453, -0.047359950840473175, 0.05485064536333084, -0.04836255684494972, -0.08658023178577423, 0.081631138920784, 0.008533806540071964, -0.09467991441488266, 0.021807340905070305, -0.0003119484172202647, 0.06819871813058853, 0.046028830111026764, 0.00525469658896327, 0.0059190308675169945, -0.03430609032511711, 0.21938320994377136, -0.09181409329175949, -0.06928066164255142, -0.1118098795413971, 0.3081958591938019, 0.015183505602180958, -0.020404702052474022, 0.05337762460112572, -0.07457363605499268, -0.013864702545106411, 0.16999779641628265, 0.16653119027614594, -0.03461180254817009, -0.010575011372566223, 0.02138265036046505, -0.023096133023500443, -0.036992862820625305, 0.09907947480678558, 0.12674874067306519, 0.11759619414806366, -0.0886511579155922, -0.03995819389820099, -0.06413492560386658, -0.018919583410024643, -0.024386422708630562, 0.05864911898970604, 0.015872260555624962, 0.009898802265524864, -0.05343630909919739, 0.05413394421339035, -0.06558038294315338, -0.10617409646511078, 0.0810798779129982, -0.19247287511825562, -0.16979968547821045, -0.01711340807378292, 0.10630042850971222, -0.004698367323726416, 0.07861708849668503, -0.004823561757802963, -0.030564554035663605, 0.08184563368558884, -0.008777156472206116, -0.07399168610572815, -0.08088364452123642, 0.06871264427900314, -0.039972592145204544, 0.1888076364994049, -0.042809631675481796, 0.04946954548358917, 0.13197922706604004, 0.04622700810432434, -0.11927922070026398, 0.036926329135894775, 0.06598813831806183, -0.13392040133476257, 0.01121409423649311, 0.15880338847637177, -0.032271917909383774, 0.06322672218084335, 0.025227662175893784, -0.1317235380411148, 0.0012399139814078808, -0.04579764977097511, -0.02249603345990181, -0.03469672426581383, -0.024243498221039772, -0.02945481613278389, 0.13394393026828766, 0.23386512696743011, -0.04575146362185478, 0.008811878971755505, -0.053014159202575684, 0.023051878437399864, 0.0464024655520916, 0.1289673000574112, -0.009995866566896439, -0.2852703928947449, 0.034527044743299484, 0.019945375621318817, 0.009288991801440716, -0.24115265905857086, -0.08911895751953125, 0.05973643809556961, -0.060069479048252106, -0.1201576218008995, 0.10229742527008057, 0.06979381293058395, 0.0597514882683754, -0.04315268248319626, -0.10930348932743073, -0.08781789243221283, 0.17851616442203522, -0.17339332401752472, -0.0931691899895668 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `en_pipeline_ner_model_2` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `allergy_name`, `cancer`, `chronic_disease`, `treatment` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 94.80 | | `ENTS_P` | 94.71 | | `ENTS_R` | 94.89 | | `TRANSFORMER_LOSS` | 406496.45 | | `NER_LOSS` | 452435.57 |
{"language": ["en"], "tags": ["spacy", "token-classification"]}
token-classification
rame/en_pipeline_ner_model_2
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
2024-02-06T11:43:16+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #en #model-index #region-us
### Label Scheme View label scheme (4 labels for 1 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (4 labels for 1 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #en #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (4 labels for 1 components)", "### Accuracy" ]
[ 21, 16, 5 ]
[ "passage: TAGS\n#spacy #token-classification #en #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (4 labels for 1 components)### Accuracy" ]
[ -0.0629965215921402, 0.1127549558877945, -0.0035688134375959635, 0.020475171506404877, 0.10941386967897415, 0.06543945521116257, 0.2395509034395218, 0.05881859362125397, 0.23315228521823883, 0.050546180456876755, 0.035238079726696014, 0.07008600234985352, 0.045243993401527405, 0.263205349445343, -0.09855789691209793, -0.25912654399871826, 0.08800046890974045, -0.011709385551512241, 0.061339739710092545, 0.13040849566459656, 0.04597558081150055, -0.15077102184295654, 0.06081318482756615, -0.06474439054727554, -0.23377834260463715, 0.019462455064058304, 0.012478584423661232, -0.09941231459379196, 0.07105932384729385, -0.055700480937957764, 0.2166791707277298, 0.03704650700092316, 0.0488293282687664, -0.21853342652320862, 0.006961038336157799, -0.02179640904068947, -0.043409865349531174, 0.07565315812826157, 0.05987602844834328, -0.02151237241923809, -0.08126477897167206, -0.06972235441207886, 0.06890376657247543, 0.047078780829906464, -0.14771313965320587, -0.12832365930080414, -0.021124741062521935, 0.1172269806265831, 0.10345267504453659, -0.07128811627626419, -0.020044108852744102, 0.054196108132600784, -0.09787078201770782, 0.06574584543704987, 0.1409544199705124, -0.31780141592025757, -0.00248851184733212, 0.2135266810655594, -0.05709154158830643, 0.11749033629894257, -0.042847875505685806, 0.13884171843528748, 0.11255859583616257, -0.01418056059628725, -0.021425170823931694, -0.016048626974225044, 0.08750426769256592, 0.0225397739559412, -0.12652936577796936, -0.0755700096487999, 0.5208337306976318, 0.08621324598789215, -0.030275540426373482, -0.11447595059871674, -0.07186107337474823, -0.150767520070076, -0.09402980655431747, -0.04420548304915428, 0.05545538291335106, 0.005052806809544563, 0.12306582182645798, 0.1029614582657814, -0.09189879149198532, -0.04171714186668396, -0.14007526636123657, 0.26023033261299133, 0.002765404526144266, 0.09592457115650177, -0.18221217393875122, 0.011721187271177769, -0.10990888625383377, -0.0701146051287651, 0.03921227902173996, -0.09617437422275543, -0.10228899121284485, -0.046767037361860275, 0.03423115983605385, 0.11132217943668365, 0.07235271483659744, 0.07743702828884125, -0.02171197533607483, 0.05824723839759827, -0.03004535101354122, 0.05682354420423508, 0.15125319361686707, 0.1797948181629181, -0.031689099967479706, -0.028811266645789146, -0.05536315590143204, -0.06843414157629013, 0.03400057554244995, -0.042799871414899826, -0.13218502700328827, 0.026495318859815598, 0.09848130494356155, 0.1085473820567131, -0.08328228443861008, -0.03431198000907898, -0.1288781762123108, -0.06635984778404236, 0.07488603889942169, -0.12038165330886841, 0.019561003893613815, -0.0023647071793675423, -0.005154100712388754, 0.11204953491687775, -0.14458084106445312, -0.02124967612326145, 0.04426572471857071, 0.0018498738063499331, -0.11425764113664627, 0.008885269984602928, -0.014460807666182518, -0.10038325190544128, 0.0019156528869643807, -0.11302948743104935, 0.032213177531957626, -0.03517122194170952, -0.1180223673582077, -0.00859137438237667, -0.028855212032794952, -0.07637713104486465, 0.017950614914298058, -0.02928520366549492, -0.0582575798034668, -0.01633014716207981, 0.02470465749502182, -0.054275911301374435, -0.09066230058670044, -0.013594737276434898, -0.011551475152373314, 0.10902853310108185, -0.05366065353155136, 0.035621024668216705, -0.05428226292133331, 0.08306460082530975, -0.20197319984436035, 0.04508884251117706, -0.0691397562623024, 0.0849027931690216, -0.06024731695652008, -0.07593771815299988, 0.0217578262090683, 0.0010386473732069135, -0.12731923162937164, 0.16644708812236786, -0.20622028410434723, -0.07564926892518997, 0.20652420818805695, -0.18348082900047302, -0.10889304429292679, 0.038103748112916946, -0.004521177150309086, 0.06402774155139923, 0.08456556499004364, 0.1693429946899414, -0.0014997667167335749, -0.10260968655347824, -0.013415055349469185, 0.09594006091356277, -0.05491052567958832, -0.02500947378575802, 0.09379595518112183, 0.0247876588255167, -0.0071521359495818615, 0.04088488593697548, 0.06621330231428146, -0.12745298445224762, -0.07154490053653717, -0.059119563549757004, -0.016269836574792862, 0.021569810807704926, 0.07567098736763, 0.028460077941417694, 0.033695731312036514, -0.05473762005567551, 0.019963817670941353, 0.01055237464606762, 0.053166650235652924, 0.026366740465164185, -0.06747597455978394, -0.046096526086330414, 0.1322956085205078, -0.14790485799312592, -0.06882842630147934, -0.17548711597919464, -0.18087124824523926, 0.05610192194581032, 0.05858113616704941, 0.013782133348286152, 0.168969064950943, 0.010925764217972755, 0.004736734554171562, 0.00934684183448553, -0.02314884401857853, 0.0050194780342280865, 0.07848679274320602, -0.056586142629384995, -0.16833335161209106, -0.05202233046293259, -0.10370951890945435, 0.06763279438018799, -0.03746706619858742, 0.013026319444179535, 0.18849658966064453, 0.06991005688905716, 0.053974367678165436, 0.047983989119529724, 0.05191269516944885, 0.02876236103475094, -0.025574609637260437, -0.044866837561130524, 0.0832766517996788, -0.10133487731218338, -0.052205801010131836, -0.07887792587280273, -0.1253003478050232, 0.10041849315166473, 0.13725978136062622, -0.13619215786457062, -0.04700793698430061, -0.07362968474626541, -0.011995785869657993, 0.005399442743510008, -0.10918592661619186, 0.003282226389274001, -0.07030165195465088, -0.027009248733520508, 0.0362655334174633, -0.08074366301298141, -0.024509768933057785, 0.034440118819475174, -0.027143774554133415, -0.16165883839130402, 0.10482843965291977, -0.026797421276569366, -0.20369654893875122, 0.1561061441898346, 0.25011971592903137, 0.19331912696361542, 0.0965486541390419, -0.038412172347307205, -0.036731258034706116, -0.03808433935046196, -0.012585306540131569, -0.09400312602519989, 0.1799236238002777, -0.1847221851348877, -0.04176001995801926, 0.06102627143263817, 0.048408545553684235, 0.014471020549535751, -0.1940488964319229, 0.0032003303058445454, -0.02705218456685543, -0.042314913123846054, -0.08343712240457535, -0.040769439190626144, 0.022866275161504745, 0.13133691251277924, 0.05275994911789894, -0.18165427446365356, 0.06942607462406158, -0.05328456684947014, -0.058905716985464096, 0.15342184901237488, -0.08790675550699234, -0.2607112228870392, -0.1321117877960205, -0.09695693105459213, -0.08170688897371292, 0.053103383630514145, -0.026049582287669182, -0.1221856102347374, -0.04161803424358368, 0.03181920200586319, -0.03143416717648506, -0.15791521966457367, -0.030441422015428543, -0.02375221997499466, 0.08804883807897568, -0.1463676244020462, -0.03281635791063309, -0.10361362993717194, -0.08881634473800659, 0.08846709877252579, 0.109955795109272, -0.17878031730651855, 0.0656815767288208, 0.30231374502182007, -0.01682211272418499, 0.09849884361028671, -0.007908549159765244, 0.1263122707605362, -0.08478435128927231, 0.03434423357248306, 0.102773517370224, 0.043746642768383026, 0.03921223804354668, 0.2606252133846283, 0.07646768540143967, -0.15783065557479858, -0.04413260892033577, -0.050116196274757385, -0.11250732094049454, -0.1371503621339798, -0.11949079483747482, -0.047457531094551086, 0.0018151853000745177, 0.04173680767416954, 0.021884718909859657, 0.027724772691726685, 0.05979352071881294, 0.032658208161592484, -0.010304611176252365, 0.03817787021398544, 0.047241613268852234, 0.08965195715427399, -0.0770988017320633, 0.09295348823070526, -0.04419315978884697, -0.07711686939001083, 0.07554645836353302, 0.11415284126996994, 0.1947050243616104, 0.19520893692970276, 0.05366821214556694, 0.08315850794315338, -0.008946546353399754, 0.1494431346654892, 0.08043286204338074, 0.1458728164434433, -0.024984760209918022, -0.026519525796175003, -0.0607585683465004, 0.008731319569051266, 0.056777339428663254, -0.007761273067444563, -0.07124421000480652, -0.08041974902153015, -0.07592456787824631, 0.08818446099758148, -0.00402224063873291, 0.2683714032173157, -0.22317084670066833, 0.014325995929539204, 0.1264825314283371, 0.08657713234424591, -0.07659213989973068, 0.08995836973190308, 0.035323332995176315, -0.10990273207426071, 0.0604853518307209, -0.015346257016062737, 0.11201559752225876, -0.1258959174156189, 0.009451201185584068, -0.06256631016731262, -0.046079572290182114, -0.02384765073657036, 0.08621480315923691, -0.057491641491651535, 0.32044050097465515, 0.04048808664083481, -0.05771759897470474, -0.0750327780842781, -0.005863197147846222, 0.008971141651272774, 0.25033485889434814, 0.21518391370773315, 0.042560648173093796, -0.22389960289001465, -0.22780710458755493, -0.024198587983846664, -0.022732695564627647, 0.17322656512260437, -0.05266254395246506, 0.04015713185071945, 0.018581973388791084, 0.0026184506714344025, -0.03398444503545761, 0.02748211845755577, -0.031158771365880966, -0.024752674624323845, 0.03245184198021889, 0.08539164066314697, -0.09668367356061935, -0.007438742555677891, -0.0648895800113678, -0.15202893316745758, 0.13488507270812988, 0.000039352311432594433, -0.11223579943180084, -0.09655392915010452, -0.0024250110145658255, 0.09870228171348572, -0.019588764756917953, -0.025776077061891556, -0.058460723608732224, 0.15039412677288055, 0.013788600452244282, -0.0933091938495636, 0.11571164429187775, -0.035254642367362976, -0.031234735623002052, -0.06324572116136551, 0.16843536496162415, -0.04176986590027809, -0.01776798628270626, 0.06187696382403374, 0.07659410685300827, -0.01941763050854206, -0.11150353401899338, 0.11919628828763962, -0.008797447197139263, 0.03596549853682518, 0.3197479546070099, -0.10335519909858704, -0.13108688592910767, -0.045769188553094864, 0.08548711985349655, 0.11065994203090668, 0.24135228991508484, -0.08199042826890945, 0.07414133846759796, 0.0649099051952362, -0.03023097850382328, -0.17827677726745605, -0.024937152862548828, -0.15955850481987, 0.01741856336593628, -0.017146704718470573, -0.07503925263881683, 0.1552862823009491, 0.024803558364510536, -0.051573943346738815, 0.09173392504453659, -0.2225973904132843, -0.05328788608312607, 0.19856737554073334, 0.0514913946390152, 0.20914073288440704, -0.06807520240545273, -0.11668818444013596, -0.06808353960514069, -0.15781031548976898, 0.1404138207435608, -0.0052726310677826405, 0.10044469684362411, -0.046283286064863205, 0.011080998927354813, 0.03344593569636345, -0.009972160682082176, 0.22414728999137878, 0.148310124874115, 0.09784389287233353, 0.03122054785490036, -0.2104639858007431, 0.19675104320049286, -0.0058021266013383865, -0.00042371219024062157, 0.20054872334003448, 0.010687658563256264, -0.12815424799919128, -0.016542775556445122, -0.005954461172223091, -0.015501609072089195, -0.04893231764435768, -0.05883049964904785, -0.0701221227645874, 0.0001141627217293717, -0.07727264612913132, -0.04350189492106438, 0.2689037322998047, -0.06125463545322418, 0.11141974478960037, 0.16566087305545807, -0.00994335301220417, -0.11518897861242294, -0.04828730225563049, -0.0901980921626091, -0.05266802757978439, 0.03915141522884369, -0.16139285266399384, 0.066569484770298, 0.12071262300014496, 0.04155774787068367, 0.1411033570766449, 0.1386837214231491, -0.00997458677738905, -0.04436216875910759, 0.11771505326032639, -0.12584958970546722, -0.18933643400669098, -0.011268961243331432, -0.24076372385025024, 0.0022895396687090397, 0.08255134522914886, 0.07749264687299728, 0.05936209484934807, -0.022307220846414566, -0.0041417889297008514, 0.04703337699174881, -0.05486549809575081, 0.1034613847732544, 0.01595791056752205, 0.07827631384134293, -0.15172454714775085, 0.13699844479560852, 0.08703044056892395, 0.013172401115298271, -0.08210679888725281, -0.0420709028840065, -0.14441551268100739, -0.05115558207035065, -0.023845545947551727, 0.15950515866279602, -0.08542758226394653, -0.10214386135339737, -0.10904812067747116, -0.17188909649848938, 0.023088429123163223, 0.08269047737121582, 0.14834754168987274, 0.11590097099542618, -0.004692151676863432, -0.10424336045980453, 0.030940840020775795, 0.05541704595088959, -0.04870295897126198, 0.015336776152253151, -0.23243668675422668, 0.036265283823013306, -0.045723311603069305, 0.15013784170150757, -0.11070428788661957, -0.10767367482185364, -0.14166872203350067, 0.01191312912851572, -0.06727086007595062, 0.06404773145914078, -0.04267575964331627, -0.003886967897415161, 0.005926845595240593, 0.0013885372318327427, -0.05697814002633095, -0.030144335702061653, -0.11154347658157349, 0.07291114330291748, 0.016873799264431, 0.14854414761066437, -0.06934715807437897, -0.02116963639855385, 0.08054076135158539, -0.04419983923435211, 0.08169352263212204, 0.05132349953055382, 0.013230439275503159, 0.06169068440794945, -0.14944908022880554, -0.004247208125889301, 0.09361445158720016, 0.010270410217344761, 0.09838543832302094, -0.11955045163631439, -0.013642366975545883, 0.007755297236144543, -0.04987721890211105, 0.09265732020139694, -0.0748722031712532, -0.10122100263834, -0.11670727282762527, -0.13030554354190826, -0.15383975207805634, -0.039526961743831635, 0.034323375672101974, 0.18829602003097534, 0.025508465245366096, -0.0022154683247208595, 0.0513332262635231, 0.03228534013032913, -0.05335259810090065, -0.014638165943324566, -0.05232592672109604, -0.11067420244216919, 0.031031068414449692, -0.023637842386960983, 0.0005815502954646945, -0.026793092489242554, 0.3485758304595947, 0.05282219126820564, 0.053354136645793915, 0.038140468299388885, 0.20703595876693726, -0.03417730703949928, 0.06797732412815094, 0.23084776103496552, 0.07197990268468857, -0.07439960539340973, 0.05358238145709038, 0.04418443143367767, 0.02430056966841221, 0.09576807916164398, 0.1584196239709854, 0.08579255640506744, -0.13004741072654724, 0.06820126622915268, 0.016253408044576645, 0.011560754850506783, -0.042769063264131546, 0.07819271087646484, 0.04387076199054718, 0.03490526229143143, 0.04743292182683945, -0.11616707593202591, 0.09310232102870941, -0.17281126976013184, 0.13978621363639832, -0.010678494349122047, -0.10659872740507126, -0.17630642652511597, -0.07298727333545685, -0.0886601060628891, -0.055643320083618164, -0.0020137052051723003, -0.1350109726190567, -0.05071558430790901, 0.19605986773967743, 0.03203188627958298, 0.0035419228952378035, 0.05091087520122528, -0.22735890746116638, 0.009180239401757717, 0.12131063640117645, 0.017114803194999695, 0.008020675741136074, -0.05659731850028038, -0.000005661779141519219, 0.0037369397468864918, -0.06063679978251457, -0.049753278493881226, -0.03530712425708771, 0.04431638866662979, -0.049765445291996, -0.1677362620830536, -0.07752151042222977, -0.052366290241479874, -0.02451212704181671, -0.02505919337272644, -0.11046893149614334, 0.01935010962188244, -0.032782044261693954, 0.015275309793651104, 0.26599130034446716, -0.05767285078763962, 0.05825309082865715, -0.08375921845436096, 0.22933422029018402, -0.07412087917327881, 0.09794914722442627, 0.052878960967063904, -0.06036042049527168, -0.035458315163850784, 0.10566026717424393, 0.17712073028087616, -0.002159576863050461, -0.009573251940310001, 0.016367843374609947, 0.014418489299714565, 0.07325176894664764, 0.010345609858632088, -0.06422983109951019, 0.11372528225183487, -0.053856220096349716, 0.102349653840065, -0.06338761746883392, -0.0516965426504612, -0.04970796778798103, -0.03875194489955902, 0.1700609028339386, -0.0354299396276474, -0.14562952518463135, 0.19436664879322052, -0.06749464571475983, 0.04221738874912262, 0.2576199769973755, -0.14156299829483032, -0.12716670334339142, -0.014451011084020138, 0.009949753992259502, -0.011572417803108692, 0.07836391776800156, -0.12711673974990845, -0.018864044919610023, 0.0305787343531847, 0.03642116114497185, -0.18777456879615784, -0.08636927604675293, 0.039086274802684784, -0.05210123956203461, 0.051408205181360245, -0.01194563414901495, 0.13094592094421387, 0.0971592590212822, -0.04720478504896164, -0.052861351519823074, 0.04670358821749687, -0.018006794154644012, 0.0607881061732769, -0.016753682866692543, 0.11834561079740524, -0.013787840493023396, -0.11207430064678192, 0.10266590863466263, -0.1306237131357193, -0.025634409859776497, 0.004936677869409323, -0.08454693108797073, -0.02924404665827751, 0.02346663922071457, -0.10185888409614563, 0.09451961517333984, 0.102320596575737, -0.010425235144793987, 0.005212150514125824, 0.014006118290126324, 0.08549170941114426, 0.07867472618818283, -0.05508185550570488, -0.000989940483123064, -0.003619587514549494, -0.029935352504253387, 0.0991506353020668, -0.04162539169192314, -0.20807863771915436, -0.023326775059103966, -0.06252097338438034, 0.04202408716082573, -0.05994424968957901, 0.10578908771276474, 0.13220451772212982, 0.056248076260089874, -0.05582854896783829, -0.2044612020254135, 0.062798872590065, 0.09257486462593079, -0.07080286741256714, -0.06775344163179398 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
mertllc/mms-tts-tur-train
[ "transformers", "safetensors", "vits", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T11:44:41+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #vits #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #vits #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 34, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #vits #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.054659612476825714, 0.21414990723133087, -0.0031807427294552326, 0.026865221560001373, 0.1250888854265213, 0.00032571866177022457, 0.04081440716981888, 0.12862813472747803, -0.02167222462594509, 0.11129128932952881, 0.03218022361397743, 0.09727001935243607, 0.10339263826608658, 0.16586677730083466, 0.03691011667251587, -0.21517004072666168, 0.009132993407547474, -0.09292528033256531, 0.018077509477734566, 0.10867427289485931, 0.13162045180797577, -0.10489460080862045, 0.07603627443313599, -0.03790099918842316, -0.017673974856734276, -0.0003223843814339489, -0.0923151820898056, -0.070840984582901, 0.06550594419240952, 0.06909013539552689, 0.06122942641377449, 0.009997012093663216, 0.10145736485719681, -0.29726552963256836, 0.01687687449157238, 0.08279260247945786, -0.004506718832999468, 0.06148726865649223, 0.0646374449133873, -0.08339887112379074, 0.1029256209731102, -0.08559336513280869, 0.13652671873569489, 0.08214850723743439, -0.06937385350465775, -0.21391066908836365, -0.06977995485067368, 0.0987061932682991, 0.12011658400297165, 0.06274435669183731, -0.02326560579240322, 0.1522950381040573, -0.06972704082727432, 0.012022249400615692, 0.1361677050590515, -0.09713108092546463, -0.05137801170349121, 0.049987345933914185, 0.11240657418966293, 0.10166463255882263, -0.1353231519460678, 0.007596791721880436, 0.04457303136587143, 0.023097742348909378, 0.09194746613502502, 0.020738936960697174, 0.0916183590888977, 0.04564107209444046, -0.13860996067523956, -0.03957565128803253, 0.10889606922864914, 0.03478158637881279, -0.05796414613723755, -0.21188515424728394, -0.0026691502425819635, -0.026535477489233017, -0.023307178169488907, -0.05803702771663666, 0.045833978801965714, -0.03317271173000336, 0.067923404276371, -0.042256616055965424, -0.10016343742609024, -0.03838508576154709, 0.0836847797036171, 0.06997206062078476, 0.013808192685246468, -0.026154542341828346, 0.03861820325255394, 0.11874474585056305, 0.037009406834840775, -0.10824361443519592, -0.0663856491446495, -0.06518013030290604, -0.09711762517690659, -0.04532422870397568, 0.04776853322982788, 0.01869308575987816, 0.030892416834831238, 0.20719914138317108, -0.0024066849146038294, 0.040300752967596054, 0.01544452179223299, 0.00820851232856512, 0.05608583986759186, 0.09020276367664337, -0.057233426719903946, -0.13989022374153137, -0.04616677761077881, 0.08976847678422928, -0.00493787182494998, -0.03551584109663963, -0.04997507110238075, 0.048379965126514435, 0.05169600620865822, 0.1267518699169159, 0.08646857738494873, -0.012898874469101429, -0.05273304134607315, -0.025197435170412064, 0.22986702620983124, -0.14503952860832214, 0.04801303148269653, -0.016220765188336372, -0.026413746178150177, -0.04562145099043846, 0.037146687507629395, 0.02893291600048542, -0.0071297562681138515, 0.09902069717645645, -0.055000074207782745, -0.03897455707192421, -0.10056453198194504, -0.03981734439730644, 0.04000834375619888, -0.0014343701768666506, -0.011925416998565197, -0.07901987433433533, -0.1033727377653122, -0.04151687026023865, 0.0622556135058403, -0.06062569096684456, -0.03672588989138603, 0.014433487318456173, -0.0646335631608963, -0.011868113651871681, -0.0046113538555800915, 0.10713792592287064, -0.03111988678574562, 0.041085705161094666, -0.03385680913925171, 0.05467362701892853, 0.10134078562259674, 0.03396330401301384, -0.0692443996667862, 0.05283360555768013, -0.2253323644399643, 0.0846395194530487, -0.1103181466460228, 0.040045637637376785, -0.1649162620306015, -0.04362662881612778, 0.01545786950737238, 0.01223697792738676, 0.010682502761483192, 0.11813149601221085, -0.18765069544315338, -0.02040630392730236, 0.13456352055072784, -0.09486816823482513, -0.10925174504518509, 0.07470420002937317, -0.04261988773941994, 0.14796192944049835, 0.04623936489224434, -0.017894135788083076, 0.07337126135826111, -0.16546636819839478, -0.06534566730260849, -0.015944186598062515, -0.01140376552939415, 0.13805019855499268, 0.06177884340286255, -0.05833873897790909, 0.06357681751251221, 0.02317901886999607, -0.022351879626512527, -0.04479735344648361, -0.05049646645784378, -0.10716529190540314, -0.006589649710804224, -0.0877491682767868, 0.049144841730594635, -0.008710972033441067, -0.07987060397863388, -0.032660458236932755, -0.18162156641483307, 0.03565994277596474, 0.08912748098373413, 0.006954456213861704, -0.008257697336375713, -0.07709750533103943, 0.012575463391840458, -0.027584582567214966, -0.010441360995173454, -0.16807158291339874, -0.045059818774461746, 0.045085642486810684, -0.1683385670185089, 0.03666726127266884, -0.05383622646331787, 0.057435907423496246, 0.04089425876736641, -0.0608406662940979, -0.012410139665007591, -0.020455263555049896, 0.02037479542195797, -0.03554835915565491, -0.19715940952301025, -0.04920884966850281, -0.033720988780260086, 0.15323609113693237, -0.2512565553188324, 0.03701164573431015, 0.04283377155661583, 0.1445688009262085, -0.004499740432947874, -0.041343484073877335, 0.021006079390645027, -0.05124713480472565, -0.04886976629495621, -0.064845971763134, -0.003489583032205701, -0.029771825298666954, -0.04689984768629074, 0.014419492334127426, -0.17416127026081085, -0.03588438406586647, 0.09719391912221909, 0.1012604832649231, -0.15479636192321777, -0.018018238246440887, -0.046819429844617844, -0.06501296907663345, -0.08719377964735031, -0.0634685754776001, 0.12365260720252991, 0.04887883737683296, 0.044603388756513596, -0.07642911374568939, -0.06516730040311813, 0.02209198847413063, 0.00037755590165033937, -0.03342745080590248, 0.07709765434265137, 0.06420876830816269, -0.09495706856250763, 0.07597044855356216, 0.0879693329334259, 0.07397416979074478, 0.09690815210342407, 0.017737112939357758, -0.10766889899969101, -0.025353191420435905, 0.025884538888931274, 0.02590569481253624, 0.14766225218772888, -0.052133310586214066, 0.03766921907663345, 0.047928281128406525, -0.048178963363170624, 0.018924955278635025, -0.09172655642032623, 0.02477680705487728, 0.03108147345483303, -0.0051895990036427975, 0.04569429159164429, -0.04261132329702377, 0.0015583503991365433, 0.07553404569625854, 0.0439009927213192, 0.054722823202610016, 0.004550157580524683, -0.014615098014473915, -0.09760808199644089, 0.16303586959838867, -0.09686829894781113, -0.2844827473163605, -0.15191766619682312, 0.025421515107154846, 0.038875505328178406, -0.02202117070555687, 0.031196635216474533, -0.0685606598854065, -0.10619828850030899, -0.10253546386957169, -0.0007893215515650809, 0.021664658561348915, -0.07999464124441147, -0.07771245390176773, 0.07423610240221024, 0.04034431278705597, -0.14601534605026245, 0.03843066841363907, 0.05174413323402405, -0.05686575174331665, -0.020990731194615364, 0.08788161724805832, 0.11919383704662323, 0.15064425766468048, -0.01956579089164734, -0.029653063043951988, 0.02179299294948578, 0.18913501501083374, -0.13056331872940063, 0.10870491713285446, 0.1331699639558792, -0.0433298796415329, 0.08741360157728195, 0.17486868798732758, 0.02946310304105282, -0.08184187114238739, 0.04125521704554558, 0.04271497204899788, -0.0446363128721714, -0.2628204822540283, -0.0587831549346447, 0.013565518893301487, -0.07289978116750717, 0.09574431926012039, 0.09441626816987991, 0.13101495802402496, 0.03733300045132637, -0.07704862952232361, -0.042284153401851654, -0.0007691121427342296, 0.11566338688135147, -0.04729871824383736, -0.00864650122821331, 0.08112052828073502, -0.04204992949962616, 0.0042695761658251286, 0.101866215467453, 0.024085933342576027, 0.18680992722511292, 0.02045324817299843, 0.1325864940881729, 0.06266885250806808, 0.07362587004899979, -0.00304698059335351, 0.021530818194150925, 0.04571235924959183, 0.016793522983789444, -0.004352389834821224, -0.10109587758779526, 0.004940509796142578, 0.14031140506267548, 0.044244058430194855, 0.029351718723773956, 0.0023038540966808796, -0.025745723396539688, 0.059172797948122025, 0.16894783079624176, -0.014623390510678291, -0.20305828750133514, -0.07212355732917786, 0.07476779818534851, -0.05524183437228203, -0.12190999835729599, -0.03604535013437271, 0.03974858298897743, -0.17753031849861145, 0.03411399945616722, -0.020660564303398132, 0.09808827936649323, -0.0960298478603363, -0.025731271132826805, 0.017328539863228798, 0.08463997393846512, -0.017630890011787415, 0.09686511754989624, -0.15011048316955566, 0.12523487210273743, 0.03229980170726776, 0.0898485779762268, -0.11468798667192459, 0.08304145932197571, -0.009098101407289505, 0.016468055546283722, 0.18883956968784332, -0.00914006493985653, -0.043279051780700684, -0.0765409916639328, -0.09724772721529007, -0.016675574705004692, 0.12457696348428726, -0.11865599453449249, 0.08336363732814789, -0.006434252485632896, -0.05090279504656792, 0.010499227792024612, -0.11436042934656143, -0.17895425856113434, -0.19684189558029175, 0.061690423637628555, -0.10233647376298904, 0.01922602578997612, -0.1105671152472496, -0.06737665832042694, -0.029828263446688652, 0.2358294576406479, -0.14021140336990356, -0.07348582148551941, -0.1486395299434662, -0.049397800117731094, 0.1688835471868515, -0.039627790451049805, 0.07352027297019958, -0.014237076044082642, 0.21156272292137146, -0.0005727469106204808, -0.0019497170578688383, 0.0662601962685585, -0.09127254039049149, -0.17042554914951324, -0.0796523243188858, 0.1408538520336151, 0.1185344010591507, 0.05187511071562767, -0.00005241960025159642, 0.008437353186309338, -0.01933823712170124, -0.11107131093740463, -0.005973829887807369, 0.13854430615901947, 0.06674695014953613, 0.03547331318259239, -0.05006469413638115, -0.10860110819339752, -0.06920936703681946, -0.058358483016490936, 0.05175930634140968, 0.18184207379817963, -0.1009909063577652, 0.17350798845291138, 0.15878215432167053, -0.07211574912071228, -0.21567314863204956, 0.039191193878650665, 0.04846473038196564, -0.014512532390654087, 0.04614531248807907, -0.1829945594072342, 0.09505120664834976, 0.015141540206968784, -0.052736036479473114, 0.12199369817972183, -0.15728448331356049, -0.15639621019363403, 0.06087431684136391, 0.04970995709300041, -0.23623821139335632, -0.1441342532634735, -0.08822641521692276, -0.06784138828516006, -0.14815589785575867, 0.07915012538433075, -0.019972164183855057, 0.011897586286067963, 0.04091079905629158, 0.013740893453359604, 0.023185279220342636, -0.055776987224817276, 0.18284909427165985, -0.0035617330577224493, 0.014864614233374596, -0.06912479549646378, -0.058035630732774734, 0.0975092425942421, -0.05838471278548241, 0.1184525191783905, -0.003918026573956013, 0.013672815635800362, -0.08212041109800339, -0.05343952775001526, -0.046617619693279266, 0.05752236396074295, -0.08050531893968582, -0.11092408001422882, -0.04487094283103943, 0.08938708156347275, 0.07764840126037598, -0.033286161720752716, -0.010930746793746948, -0.07634644955396652, 0.10063119232654572, 0.19033774733543396, 0.17030654847621918, 0.018113715574145317, -0.07677590847015381, 0.015532949939370155, -0.03924742713570595, 0.04019718989729881, -0.2505480647087097, 0.03877655416727066, 0.0529145747423172, 0.0354921817779541, 0.1059221550822258, -0.02500346675515175, -0.17749741673469543, -0.0438142865896225, 0.06573881208896637, -0.045354213565588, -0.22390563786029816, -0.009726951830089092, 0.09943331032991409, -0.1914641559123993, -0.015451330691576004, 0.02838914282619953, -0.04480560123920441, -0.02868090756237507, 0.0007889526314102113, 0.0600614957511425, 0.015805870294570923, 0.09190283715724945, 0.07423794269561768, 0.09749054163694382, -0.08805927634239197, 0.09811163693666458, 0.10723351687192917, -0.09035424888134003, 0.03553062304854393, 0.06695880740880966, -0.0467107780277729, -0.04594837874174118, 0.05199020728468895, 0.04819667339324951, 0.01212578546255827, -0.0561964213848114, 0.010319532826542854, -0.04872706159949303, 0.04633839800953865, 0.10621411353349686, 0.028242740780115128, -0.03058992512524128, 0.06704547256231308, 0.03252853453159332, -0.1153404489159584, 0.09847725927829742, 0.012868257239460945, 0.03807265684008598, -0.06272068619728088, -0.015808504074811935, 0.04865187034010887, 0.027409857138991356, -0.01764598675072193, -0.025427930057048798, -0.035527609288692474, -0.015147317200899124, -0.15422900021076202, -0.012660279870033264, -0.07294544577598572, 0.007333413697779179, 0.006807927042245865, -0.03955657035112381, -0.0043836915865540504, 0.029364487156271935, -0.07081043720245361, -0.06899864971637726, -0.0017123379511758685, 0.10014908015727997, -0.16123399138450623, 0.0016520773060619831, 0.07378670573234558, -0.10700937360525131, 0.06776659190654755, -0.009028629399836063, 0.006400149781256914, 0.021102426573634148, -0.1615109145641327, 0.05426544323563576, -0.010029333643615246, 0.02013414539396763, 0.032934170216321945, -0.16248436272144318, 0.0024488656781613827, -0.047329291701316833, -0.022390197962522507, -0.004845738876610994, -0.04656189680099487, -0.11974798142910004, 0.07715073227882385, -0.01184067688882351, -0.05094744265079498, -0.01612357795238495, 0.05293868109583855, 0.08231643587350845, -0.03882661834359169, 0.09632368385791779, -0.005011113826185465, 0.05959545075893402, -0.17253276705741882, -0.02932477742433548, -0.0432354174554348, 0.014331330545246601, 0.01743181422352791, -0.009555062279105186, 0.03874485567212105, -0.00935265514999628, 0.22544825077056885, -0.03915993124246597, 0.16461394727230072, 0.055936723947525024, -0.0032888432033360004, 0.0007776605198159814, 0.06758615374565125, 0.05568486079573631, 0.03412187471985817, 0.00899792555719614, 0.02200561948120594, -0.023325180634856224, -0.006471368949860334, -0.1553903967142105, 0.02697177603840828, 0.14716137945652008, 0.0745159387588501, 0.006664956454187632, 0.07025619596242905, -0.1267581284046173, -0.11370917409658432, 0.09592846781015396, -0.02568071521818638, 0.008476621471345425, -0.07835444062948227, 0.12778781354427338, 0.14673273265361786, -0.14686504006385803, 0.06517019122838974, -0.053687721490859985, -0.05600763112306595, -0.09034380316734314, -0.10879118740558624, -0.06126067787408829, -0.04308179020881653, 0.004678911529481411, -0.042684826999902725, 0.055097613483667374, 0.04954573139548302, -0.014461824670433998, 0.004931987728923559, 0.12391652166843414, -0.006120255216956139, 0.001201988779939711, 0.03766126185655594, 0.03769403696060181, 0.024755796417593956, -0.059261444956064224, 0.030717262998223305, 0.021477915346622467, 0.034908585250377655, 0.059853747487068176, 0.037230484187603, -0.045039307326078415, 0.028804119676351547, 0.0020213082898408175, -0.10957802832126617, 0.023749636486172676, -0.012328135780990124, -0.06936221569776535, 0.12969832122325897, 0.03471869230270386, 0.009512413293123245, -0.037131089717149734, 0.23728759586811066, -0.062090300023555756, -0.08014962822198868, -0.12913139164447784, 0.09616934508085251, -0.013530191034078598, 0.057892732322216034, 0.03356536477804184, -0.12210189551115036, 0.0036616562865674496, 0.13605539500713348, 0.11633196473121643, -0.0003361425769980997, 0.012180927209556103, 0.044184453785419464, 0.004239979665726423, -0.06263455748558044, 0.044461920857429504, 0.06619330495595932, 0.12273700535297394, -0.07938622683286667, 0.07410858571529388, 0.00435013510286808, -0.08385829627513885, -0.0399140790104866, 0.1140546128153801, -0.03326992690563202, 0.03303933143615723, -0.041518088430166245, 0.10997304320335388, -0.059399381279945374, -0.3032641112804413, 0.03540288656949997, -0.10066618025302887, -0.1533578634262085, -0.01690032333135605, 0.06605888903141022, -0.02134985849261284, 0.01722477562725544, 0.06963877379894257, -0.058587364852428436, 0.1905425637960434, 0.03258530795574188, -0.07860512286424637, -0.059183377772569656, 0.05133861303329468, -0.0791650041937828, 0.302468478679657, 0.00626079086214304, 0.03169599175453186, 0.10508318990468979, -0.028644336387515068, -0.16361252963542938, 0.02362491562962532, 0.1140698790550232, -0.08390003442764282, 0.08627496659755707, 0.19878266751766205, -0.019539451226592064, 0.11435621976852417, 0.05704843997955322, -0.06186779960989952, 0.0524447038769722, -0.03936922550201416, -0.052163589745759964, -0.09776037186384201, 0.06190723925828934, -0.06178663671016693, 0.15432539582252502, 0.09593082964420319, -0.05059736222028732, -0.006600235588848591, -0.05587591603398323, 0.04507772624492645, 0.018967149779200554, 0.12800532579421997, 0.012484090402722359, -0.17696550488471985, 0.032744914293289185, 0.0010579711524769664, 0.11208613961935043, -0.24666742980480194, -0.08353681117296219, 0.09015431255102158, -0.019416818395256996, -0.05258401483297348, 0.09870866686105728, 0.0722413882613182, 0.04240792989730835, -0.04463369399309158, -0.10492048412561417, -0.019366342574357986, 0.1493324637413025, -0.14043603837490082, -0.014699541963636875 ]
null
null
ml-agents
# **ppo** Agent playing **SnowballTarget** This is a trained model of a **ppo** agent playing **SnowballTarget** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: thisiswooyeol/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]}
reinforcement-learning
thisiswooyeol/ppo-SnowballTarget
[ "ml-agents", "tensorboard", "onnx", "SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget", "region:us" ]
2024-02-06T11:46:51+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
# ppo Agent playing SnowballTarget This is a trained model of a ppo agent playing SnowballTarget using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: thisiswooyeol/ppo-SnowballTarget 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: thisiswooyeol/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n", "# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: thisiswooyeol/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 50, 209 ]
[ "passage: TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: thisiswooyeol/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ -0.04415278881788254, 0.06461185216903687, -0.0035153236240148544, 0.10719630122184753, 0.17571884393692017, -0.018752560019493103, 0.1627386212348938, 0.09824012964963913, 0.13109448552131653, 0.056375328451395035, 0.0804712250828743, 0.09408775717020035, 0.060071904212236404, 0.12746590375900269, 0.0899546667933464, -0.22852569818496704, -0.04583369940519333, -0.1037239283323288, -0.004743387456983328, 0.07441698014736176, 0.04263472557067871, -0.041695576161146164, 0.02844686061143875, 0.057329460978507996, -0.014000886119902134, -0.005156415980309248, -0.07440465688705444, -0.04003865644335747, 0.06207001954317093, -0.030055733397603035, 0.004684764426201582, -0.0442822091281414, 0.09628578275442123, -0.17618976533412933, 0.02452634833753109, 0.0374067984521389, -0.010663800872862339, -0.02684410847723484, 0.15641610324382782, 0.0202807430177927, 0.0958566963672638, -0.117975153028965, 0.08706039190292358, 0.07893669605255127, -0.05362289398908615, -0.004772654734551907, -0.06233615800738335, 0.06445187330245972, 0.20917785167694092, 0.15217402577400208, -0.0036574385594576597, 0.07672984898090363, -0.03576173633337021, 0.0629505142569542, 0.16722586750984192, -0.262911319732666, -0.0690653845667839, 0.17131981253623962, -0.03976252302527428, 0.021021908149123192, -0.024428926408290863, 0.04435279592871666, -0.018756983801722527, 0.023665092885494232, -0.025812311097979546, 0.027716992422938347, 0.2957064211368561, 0.023880107328295708, -0.09634485840797424, -0.07986049354076385, -0.013335902243852615, 0.03865228593349457, -0.048019662499427795, -0.18355704843997955, 0.016810217872262, 0.13162484765052795, 0.008312281221151352, 0.03681619465351105, 0.05630834400653839, 0.01131894625723362, -0.09965575486421585, -0.15442046523094177, -0.038714710623025894, -0.04776671156287193, 0.10503871738910675, 0.11267074197530746, -0.03813757002353668, -0.005503825843334198, 0.041672609746456146, 0.07502559572458267, 0.116518534719944, -0.04615764319896698, -0.04087788239121437, -0.014144012704491615, -0.1512884944677353, -0.017074143514037132, -0.039004866033792496, 0.00655820406973362, 0.0393868051469326, 0.1486063301563263, 0.15404504537582397, 0.026503346860408783, 0.035989828407764435, 0.030328374356031418, 0.006751541048288345, 0.11662690341472626, 0.053548961877822876, -0.02945437654852867, -0.00643065944314003, 0.027597324922680855, 0.056652702391147614, -0.0889245793223381, -0.09795252233743668, 0.04665108770132065, -0.05165217071771622, 0.12704044580459595, 0.17145469784736633, -0.031170334666967392, -0.008725629188120365, -0.03607010096311569, 0.03251463919878006, -0.1452019214630127, 0.07928352802991867, 0.06109917163848877, -0.047015026211738586, -0.07423408329486847, -0.061960525810718536, 0.06411320716142654, -0.07929421961307526, 0.043611593544483185, 0.004106653854250908, 0.08175958693027496, 0.011074158363044262, -0.029904352501034737, 0.05451049283146858, -0.1275060921907425, -0.002818482927978039, -0.1618848443031311, -0.11958497762680054, -0.0817900002002716, 0.03170720860362053, -0.044344525784254074, -0.11208224296569824, -0.11167041957378387, 0.029366564005613327, -0.06963496655225754, 0.03010128065943718, -0.025368567556142807, -0.06649366766214371, -0.030565595254302025, -0.11507321894168854, 0.054874539375305176, 0.17113448679447174, 0.0040519521571695805, -0.03865950554609299, 0.02261286973953247, -0.13184130191802979, 0.1587495356798172, -0.1367996782064438, 0.15455283224582672, -0.07688792049884796, 0.0354778990149498, 0.1137290745973587, -0.014911466278135777, 0.049046143889427185, 0.2025078684091568, -0.1121254712343216, -0.08167468756437302, 0.03534891456365585, -0.0886327400803566, -0.10884371399879456, 0.05590708926320076, 0.018776223063468933, 0.055117227137088776, 0.05519270524382591, 0.21544311940670013, 0.1026606634259224, -0.23227038979530334, 0.030005330219864845, 0.008221585303544998, -0.12694624066352844, 0.0013003655476495624, 0.11982854455709457, -0.07677499949932098, 0.0025789591018110514, -0.04051690548658371, -0.13255800306797028, 0.10874762386083603, -0.012555010616779327, -0.06409952044487, 0.03046969510614872, -0.052489347755908966, -0.04416852816939354, -0.0011674899142235518, 0.039191339164972305, -0.03766370192170143, -0.05383184179663658, -0.024656696245074272, 0.03145841136574745, 0.0012378504034131765, 0.07823002338409424, -0.028019193559885025, 0.1208910197019577, -0.009681403636932373, 0.009616654366254807, -0.10656890273094177, -0.12873513996601105, -0.02218255028128624, 0.02792917750775814, 0.07753696292638779, -0.08609423786401749, 0.10189327597618103, 0.08276205509901047, 0.049494173377752304, -0.08227816224098206, -0.06100859120488167, 0.01721256412565708, -0.11041655391454697, -0.1117597222328186, -0.0672416239976883, -0.06243773177266121, 0.1186928078532219, -0.10194031894207001, 0.06086515635251999, -0.05099901184439659, 0.0986957773566246, -0.01684080809354782, -0.07477959990501404, 0.04092473164200783, -0.010284400545060635, 0.036827459931373596, -0.09412690252065659, 0.10115320235490799, 0.06912152469158173, -0.1396627575159073, 0.03519906848669052, 0.04448533058166504, -0.08966954797506332, 0.12938283383846283, 0.03707936406135559, 0.0012548118829727173, -0.05840581655502319, -0.06717418879270554, 0.0031763799488544464, -0.06456494331359863, 0.026632634922862053, 0.2134663462638855, 0.13678495585918427, 0.0764172375202179, -0.026882866397500038, -0.05756137892603874, -0.030699508264660835, -0.055088724941015244, -0.06572967022657394, 0.1349523961544037, 0.025772176682949066, -0.009117970243096352, 0.03792351484298706, 0.017216242849826813, 0.0949506014585495, 0.12603525817394257, -0.008545135147869587, -0.11329688876867294, 0.015973001718521118, 0.0529458224773407, 0.056442875415086746, 0.00912396889179945, 0.047706808894872665, -0.02012971229851246, -0.017565567046403885, -0.06129457801580429, -0.014745672233402729, -0.10548713803291321, -0.06587857007980347, 0.06528747081756592, -0.009582552127540112, -0.0012127677910029888, -0.07679817080497742, -0.046698197722435, 0.027046840637922287, 0.0975872203707695, -0.004802968353033066, 0.03864244371652603, -0.036652371287345886, -0.12787006795406342, 0.042586930096149445, -0.08318394422531128, -0.23112325370311737, -0.11663809418678284, -0.05237623676657677, -0.07314169406890869, 0.0228598453104496, 0.07895666360855103, -0.19458861649036407, -0.000054737800383009017, -0.0912947878241539, 0.008721749298274517, -0.0039034660439938307, -0.03413429111242294, 0.1476420909166336, 0.0952056348323822, -0.020662613213062286, -0.0654960423707962, 0.01364574022591114, 0.020741485059261322, -0.06923777610063553, -0.009688214398920536, 0.08051186800003052, 0.10018100589513779, 0.06278037279844284, 0.07120440155267715, 0.05748341232538223, -0.025132067501544952, 0.16377615928649902, -0.06251095980405807, 0.028349561616778374, 0.0595417357981205, -0.009630003944039345, 0.07735125720500946, 0.008192424662411213, 0.029647689312696457, 0.0023323195055127144, 0.0039422158151865005, 0.011350858956575394, -0.07678064703941345, -0.2001965045928955, -0.07640602439641953, 0.004386613145470619, 0.1753862202167511, 0.15924948453903198, 0.09179503470659256, -0.10451281815767288, 0.021798744797706604, 0.008360115811228752, -0.1071784719824791, 0.1085347980260849, 0.12856292724609375, -0.07384354621171951, -0.014864559285342693, 0.03454035148024559, -0.03715958073735237, 0.054738953709602356, 0.057534728199243546, -0.04090017080307007, 0.08766864985227585, 0.02420252561569214, -0.016344569623470306, -0.031107235699892044, -0.060996510088443756, -0.06311404705047607, 0.13386544585227966, 0.07755718380212784, 0.017405936494469643, 0.019557027146220207, -0.06823596358299255, -0.07229185104370117, 0.13788868486881256, 0.1644544005393982, -0.0746709331870079, -0.05577384680509567, 0.11543465405702591, 0.057855576276779175, 0.18921878933906555, -0.007461084518581629, -0.10859911888837814, -0.06794723123311996, 0.0003699528460856527, -0.11050625890493393, 0.013585733249783516, 0.033935319632291794, -0.014139083214104176, -0.15817011892795563, 0.0570119209587574, 0.007681168615818024, 0.11271975189447403, 0.030162760987877846, -0.023655448108911514, 0.04914189130067825, 0.007762603461742401, -0.0320935994386673, 0.04879205673933029, -0.1562177687883377, 0.029835913330316544, -0.0056795282289385796, 0.09446392953395844, -0.06218628212809563, 0.01892472431063652, 0.08628110587596893, -0.03842628002166748, 0.1723509281873703, 0.04791734367609024, -0.03914261609315872, -0.1355307698249817, -0.1703343689441681, -0.05865223705768585, -0.019652044400572777, -0.11646585166454315, 0.07346702367067337, 0.04021617770195007, -0.020967071875929832, -0.09885998070240021, 0.020755982026457787, -0.04168609157204628, -0.12173132598400116, -0.04391588643193245, -0.08815858513116837, 0.06707258522510529, -0.058061618357896805, -0.0710040032863617, -0.08760941028594971, 0.17870457470417023, 0.08060505986213684, -0.09790139645338058, -0.1231597512960434, 0.0170573852956295, -0.06089261919260025, -0.0331956222653389, 0.062294166535139084, 0.02319374866783619, 0.1095384731888771, -0.11178166419267654, -0.05605442449450493, -0.03201534226536751, -0.11002417653799057, -0.09427428990602493, 0.03604352846741676, 0.1675480306148529, 0.049993302673101425, 0.09080134332180023, -0.014030832797288895, 0.10128890722990036, -0.009577188640832901, -0.0724523738026619, 0.12770752608776093, 0.09708444029092789, -0.03882072493433952, 0.05251356214284897, 0.03603125363588333, 0.06058530509471893, -0.13410116732120514, -0.022119082510471344, 0.211402028799057, 0.27656304836273193, -0.06785103678703308, 0.1959541290998459, 0.007575697265565395, -0.048011891543865204, -0.1605655401945114, -0.05113028362393379, 0.015919750556349754, -0.05032974109053612, 0.10089603811502457, -0.19246934354305267, 0.09971529990434647, 0.008525583893060684, -0.010211720131337643, 0.04607060179114342, -0.14389914274215698, -0.08244428038597107, 0.014878305606544018, 0.0894056037068367, -0.06158493831753731, -0.10476561635732651, -0.07546770572662354, 0.019131585955619812, -0.06946028023958206, 0.02720686048269272, -0.09378080070018768, 0.049267448484897614, 0.017568735405802727, 0.03943819925189018, 0.06806560605764389, -0.056431155651807785, 0.1300857812166214, -0.027518099173903465, -0.06123989447951317, -0.06765193492174149, 0.02794981189072132, -0.02455199509859085, -0.09141694009304047, 0.04721558466553688, -0.006984813138842583, -0.02638903819024563, -0.19227854907512665, -0.052084196358919144, 0.013075944036245346, 0.03721490874886513, -0.03920097276568413, -0.07642189413309097, -0.015818871557712555, 0.06003573536872864, 0.08997289836406708, 0.027323072776198387, 0.12798014283180237, -0.003797267097979784, -0.009866636246442795, 0.06543760001659393, 0.04557038098573685, 0.04181862995028496, -0.13583575189113617, -0.07014084607362747, -0.06629583239555359, -0.003959201741963625, -0.05437866598367691, -0.016744069755077362, 0.05306762456893921, 0.059607602655887604, -0.012214919552206993, 0.05754387751221657, -0.08302754908800125, -0.017666522413492203, 0.027571920305490494, -0.09708454459905624, -0.12289395183324814, -0.09487178921699524, -0.10340998321771622, 0.023548321798443794, -0.08655174821615219, 0.08736702054738998, -0.04772929102182388, 0.006476032081991434, 0.009331476874649525, 0.038802217692136765, -0.008143572136759758, 0.02981140837073326, 0.021119486540555954, 0.035570304840803146, -0.06866305321455002, 0.12288188934326172, 0.011160535737872124, -0.04844961315393448, 0.0506025068461895, 0.18935003876686096, -0.05484260991215706, -0.0745362937450409, -0.058906421065330505, 0.08374836295843124, 0.025338586419820786, -0.025676148012280464, -0.04140834882855415, -0.04707522317767143, 0.11530540138483047, -0.15865077078342438, 0.00854768231511116, -0.11814646422863007, 0.014678478240966797, 0.05468326434493065, -0.05501926317811012, 0.06326495856046677, -0.024848317727446556, -0.06383918225765228, -0.1419619768857956, 0.07457802444696426, 0.02457103319466114, 0.09858767688274384, -0.012156743556261063, -0.02735407091677189, -0.14322111010551453, 0.029218195006251335, 0.0009498714352957904, 0.00974354613572359, -0.17353470623493195, 0.0180426687002182, -0.002675275783985853, 0.025047993287444115, 0.03572091832756996, 0.06302481144666672, -0.04237213358283043, -0.09359249472618103, -0.05382322147488594, 0.056857530027627945, -0.08407974988222122, -0.028187433257699013, -0.02777066081762314, -0.0811934620141983, 0.051748812198638916, 0.08343733847141266, -0.023278767243027687, -0.049682680517435074, -0.05946914106607437, 0.01709076389670372, -0.02153482660651207, -0.04919586330652237, 0.04772906005382538, -0.12575846910476685, 0.017704950645565987, -0.0642736554145813, -0.1097848117351532, 0.03498661518096924, 0.12311800569295883, -0.06749384850263596, 0.056921813637018204, 0.05622561648488045, -0.08827725052833557, -0.07462264597415924, -0.00878103170543909, 0.0743774026632309, 0.050518255680799484, 0.1142682135105133, -0.08209912478923798, 0.20431016385555267, -0.10477598011493683, -0.02842966467142105, 0.015851203352212906, 0.06359761208295822, 0.03891286253929138, -0.09438679367303848, 0.036992233246564865, -0.016886532306671143, 0.05443016439676285, 0.06338455528020859, 0.03443915396928787, 0.05279547721147537, 0.03489461541175842, 0.13824424147605896, 0.014044388197362423, 0.08389879763126373, -0.007934372872114182, 0.019802432507276535, 0.1132386326789856, -0.004553461913019419, 0.07088517397642136, -0.07553122937679291, 0.06041646748781204, 0.05613227188587189, 0.08306492865085602, 0.07634177803993225, 0.061779893934726715, -0.10504495352506638, -0.17521421611309052, -0.05391205474734306, 0.033700574189424515, 0.02994348295032978, -0.04747368395328522, 0.1738206297159195, 0.13683073222637177, -0.2057291567325592, 0.01440284214913845, 0.00011470273602753878, 0.044457774609327316, -0.07057309150695801, -0.08662610501050949, 0.009988615289330482, -0.1341533660888672, 0.10097550600767136, -0.016525793820619583, -0.0002463901764713228, -0.03440361097455025, 0.005054297391325235, 0.03283611312508583, 0.04322034493088722, -0.03568023070693016, 0.006884475238621235, 0.04723105952143669, -0.038904059678316116, 0.004221040289849043, -0.011447623372077942, -0.07964042574167252, -0.03811004385352135, -0.06846659630537033, -0.022669469937682152, 0.027502277866005898, 0.0025688873138278723, 0.061677612364292145, 0.0029149975161999464, -0.062174372375011444, 0.07853592932224274, 0.0026771733537316322, 0.015684347599744797, 0.1942264437675476, 0.10033413022756577, -0.043461695313453674, -0.04777693375945091, 0.21136993169784546, -0.037808388471603394, -0.06929122656583786, -0.07829838991165161, 0.12257080525159836, -0.04391205310821533, -0.04455455392599106, -0.04433129355311394, -0.17394928634166718, -0.05400377884507179, 0.1715656816959381, 0.12671434879302979, -0.021570459008216858, 0.007606536149978638, -0.0668286457657814, 0.00572110153734684, 0.03049354813992977, 0.08427643030881882, 0.0673416256904602, 0.05944502353668213, -0.09762643277645111, -0.008992236107587814, -0.07246141135692596, -0.10251414030790329, -0.1924566775560379, 0.05518176779150963, 0.027388840913772583, -0.028425108641386032, -0.02022923156619072, 0.12313191592693329, -0.11864640563726425, -0.0887637585401535, 0.11309991776943207, -0.039779506623744965, -0.07104680687189102, 0.000025134364477708004, 0.027698799967765808, 0.0054114158265292645, 0.12045043706893921, 0.08444337546825409, 0.03658975660800934, 0.022084062919020653, -0.018930984660983086, -0.09437157958745956, 0.03695906698703766, 0.032940033823251724, -0.14313724637031555, 0.2297593206167221, -0.02155766263604164, 0.0009630353306420147, 0.09273215383291245, 0.07221294939517975, -0.1851544976234436, 0.008163691498339176, 0.04844413325190544, -0.1737782210111618, 0.015937451273202896, 0.09002616256475449, -0.043422430753707886, 0.003138156607747078, 0.058920033276081085, -0.04502515122294426, 0.011945433914661407, 0.19672855734825134, 0.039161961525678635, -0.03295869380235672, 0.07745353132486343, -0.14243841171264648, 0.09776601940393448, 0.08938229084014893, -0.06041400134563446, 0.00019796006381511688, -0.032617080956697464, 0.00840821210294962, -0.005679318215698004, -0.016029493883252144, -0.02572857029736042, -0.11477615684270859, -0.021751215681433678, -0.04952213168144226, 0.024538619443774223, -0.21607525646686554, -0.1317441314458847, -0.05169820785522461, -0.08116654306650162, -0.043540019541978836, 0.08559828996658325, 0.07851623743772507, -0.05308724194765091, 0.013131828978657722, -0.11640308052301407, 0.02844354137778282, 0.155105322599411, -0.07279072701931, -0.010046633891761303 ]
null
null
null
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
{"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
ramsi-k/Reinforce-CartPole
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
2024-02-06T11:46:58+00:00
[]
[]
TAGS #CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
# Reinforce Agent playing CartPole-v1 This is a trained model of a Reinforce agent playing CartPole-v1 . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
[ "# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ "TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n", "# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 39, 54 ]
[ "passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 0.007526164408773184, -0.12498430907726288, -0.0013541718944907188, 0.09601131081581116, 0.11848696321249008, -0.04186001420021057, 0.11405468732118607, 0.05624859035015106, 0.09539441019296646, 0.04239490255713463, 0.13636724650859833, 0.06906966865062714, -0.004102868959307671, 0.12412862479686737, 0.09840741008520126, -0.26058563590049744, 0.07420794665813446, -0.04403980076313019, -0.009944677352905273, 0.10139261186122894, 0.07836852967739105, -0.08325441926717758, 0.051592715084552765, 0.00009572553972247988, -0.044259943068027496, 0.0321260429918766, 0.013628939166665077, -0.053157225251197815, 0.1606452465057373, -0.07313758134841919, 0.10494591295719147, -0.03843724727630615, 0.14574295282363892, -0.1126825287938118, 0.04758213832974434, 0.05111503228545189, -0.04548581689596176, 0.03848232328891754, -0.12538743019104004, -0.06033875793218613, 0.026815801858901978, -0.015865681692957878, 0.12249194830656052, 0.03647647053003311, -0.1777559220790863, -0.13461355865001678, -0.0165896974503994, 0.12325166910886765, 0.1627800315618515, 0.00512364786118269, 0.014270431362092495, 0.16791965067386627, -0.1761058121919632, 0.025937072932720184, 0.11400806158781052, -0.37275227904319763, -0.00034436015994288027, 0.2240462601184845, 0.06164427846670151, 0.1252165287733078, -0.12646614015102386, 0.010440526530146599, 0.07403992861509323, 0.04368630796670914, 0.049784936010837555, -0.015430688858032227, -0.12260042130947113, 0.08455035835504532, -0.1383819431066513, -0.058066487312316895, 0.1495426446199417, -0.019741326570510864, -0.009476418606936932, -0.016515808179974556, -0.009238536469638348, -0.050979889929294586, -0.03430935740470886, -0.11778499186038971, 0.10755524039268494, 0.04975730925798416, 0.0038771627005189657, -0.04602450504899025, -0.05612579360604286, -0.09815777093172073, -0.03123871050775051, 0.0372777059674263, -0.013706400990486145, 0.01091629359871149, 0.027692900970578194, 0.09935613721609116, -0.13446329534053802, 0.01825822703540325, -0.028096558526158333, -0.028040969744324684, -0.1316804438829422, -0.11984307318925858, -0.026084421202540398, 0.004223645199090242, 0.03029833547770977, 0.20433813333511353, 0.020139509811997414, 0.059011414647102356, -0.0022708347532898188, 0.09776382148265839, 0.029780851677060127, 0.13517548143863678, -0.04466623440384865, 0.19488364458084106, 0.07711011171340942, 0.05364556983113289, 0.03204274922609329, -0.05344729498028755, -0.19369827210903168, 0.04861246794462204, 0.06659778952598572, 0.08274952322244644, -0.1178959533572197, 0.0059632807970047, -0.10316018015146255, 0.0028950648847967386, -0.10474003106355667, -0.0642905905842781, -0.02892979420721531, 0.031841445714235306, -0.10535725951194763, 0.028785312548279762, 0.025052599608898163, 0.04140377417206764, 0.0676041767001152, -0.12253966927528381, -0.07404746115207672, -0.021733485162258148, -0.12817098200321198, -0.09923440217971802, 0.08802318572998047, -0.026199497282505035, -0.005110981408506632, -0.1253623217344284, -0.2661486268043518, -0.05670225992798805, 0.06396034359931946, -0.03231031447649002, -0.08589376509189606, -0.1633463054895401, 0.026403428986668587, -0.07700273394584656, 0.05221332609653473, 0.04776721075177193, -0.03665859252214432, 0.02023705095052719, -0.07958202809095383, 0.12739010155200958, 0.049698662012815475, 0.00541001046076417, -0.09916839748620987, 0.07882837951183319, -0.3034103214740753, -0.02581131085753441, -0.15228183567523956, 0.0772043839097023, -0.07893010973930359, 0.01308529730886221, 0.05044940114021301, 0.043790437281131744, -0.016942394897341728, 0.16269747912883759, -0.17043575644493103, -0.05301272124052048, 0.026445282623171806, -0.09261117875576019, -0.09916394203901291, 0.07275339215993881, -0.06339669227600098, 0.21263530850410461, 0.08751397579908371, 0.17006252706050873, -0.011036526411771774, -0.16256992518901825, 0.1207515075802803, 0.07522942125797272, -0.1639646589756012, 0.004287737421691418, 0.061784300953149796, -0.0016935690073296428, 0.02746843732893467, -0.01872866041958332, -0.07289361208677292, 0.06302516162395477, -0.07825060933828354, 0.022581040859222412, 0.06258945167064667, -0.09531243145465851, 0.23986859619617462, -0.005434412509202957, 0.0862451046705246, -0.025957979261875153, -0.09802921861410141, 0.00908072479069233, 0.07164718210697174, -0.0014321404742076993, 0.01703714393079281, -0.14553219079971313, 0.23044352233409882, -0.07965081930160522, 0.011176814325153828, -0.11607582122087479, -0.1256982982158661, 0.011873425915837288, 0.13336114585399628, 0.059921663254499435, 0.16569606959819794, 0.09518871456384659, -0.032197169959545135, 0.017584815621376038, -0.0023385772947221994, -0.09040450304746628, 0.01580043137073517, -0.0021571461111307144, -0.12167251110076904, -0.07353103160858154, -0.08134473115205765, 0.12585052847862244, -0.20988115668296814, 0.015492538921535015, 0.04099845886230469, 0.008103687316179276, 0.04467369243502617, 0.023746047168970108, -0.013269703835248947, -0.00007021807687124237, 0.03244573250412941, -0.10098352283239365, 0.12937165796756744, 0.013381263241171837, 0.014676140621304512, -0.006365173030644655, -0.05572463944554329, 0.03720450773835182, 0.040439579635858536, -0.11237845569849014, -0.11330515146255493, -0.009658765979111195, -0.0015364213613793254, 0.02637762948870659, -0.022321155294775963, 0.052120618522167206, 0.27587956190109253, 0.05387469753623009, 0.10401033610105515, -0.05769326910376549, 0.015315087512135506, -0.015322818420827389, -0.07135670632123947, 0.06358719617128372, 0.025013601407408714, 0.08050397783517838, -0.03531401976943016, 0.03759452700614929, 0.1675453782081604, -0.015888912603259087, 0.11127935349941254, -0.06545067578554153, -0.03844274953007698, -0.043109722435474396, 0.05627678707242012, 0.015021559782326221, 0.04564907029271126, 0.0000015355876712419558, -0.08444724231958389, -0.03503387048840523, -0.03988509997725487, -0.010637006722390652, -0.12273643165826797, -0.00499896751716733, 0.01265440508723259, -0.021940499544143677, 0.04488934203982353, 0.07375624030828476, -0.04849626496434212, 0.025821007788181305, 0.06070821359753609, -0.10193055868148804, 0.08957115560770035, 0.015067169442772865, -0.06946801394224167, 0.13769419491291046, -0.07484805583953857, -0.045293889939785004, -0.1025395318865776, -0.1568877100944519, 0.09384927153587341, 0.06704871356487274, -0.05427970737218857, -0.1503879576921463, -0.0016851738328114152, -0.008973666466772556, 0.09206123650074005, -0.006399387493729591, -0.12621140480041504, 0.01989075168967247, 0.08295059949159622, -0.05633419007062912, -0.09804849326610565, -0.0075809285044670105, -0.05280788615345955, -0.17707788944244385, -0.03888550028204918, -0.06398582458496094, -0.06734282523393631, 0.23586803674697876, 0.02017230913043022, 0.08274748176336288, -0.044721852988004684, 0.04250151664018631, -0.012231717817485332, 0.0006326579605229199, 0.10689259320497513, -0.09043551236391068, -0.017900818958878517, -0.001320177922025323, -0.024820495396852493, -0.07327181100845337, 0.029733488336205482, -0.04272191599011421, -0.08249637484550476, -0.1415451467037201, -0.04993678629398346, -0.011005163192749023, 0.10754310339689255, 0.07337497919797897, 0.0048001972027122974, -0.11733713001012802, 0.062058478593826294, 0.13692134618759155, 0.031207585707306862, 0.004062763415277004, 0.028157465159893036, 0.14977529644966125, -0.10706274956464767, -0.022463621571660042, -0.038119975477457047, -0.054863203316926956, 0.004114252515137196, 0.016883620992302895, 0.08840765058994293, 0.1410384476184845, 0.11468084901571274, 0.047563645988702774, 0.0464191697537899, 0.06561273336410522, 0.1694946140050888, 0.059157438576221466, -0.10448314249515533, -0.044678982347249985, -0.0040070898830890656, -0.10903503000736237, 0.057307638227939606, 0.16030821204185486, 0.06326017528772354, -0.14463356137275696, 0.021787412464618683, -0.038982175290584564, 0.13649246096611023, 0.020638149231672287, -0.2677258849143982, -0.008139112964272499, 0.023630544543266296, -0.0010347915813326836, -0.012379839085042477, 0.10821118950843811, -0.040134772658348083, -0.233198344707489, -0.12299054861068726, 0.010077533312141895, 0.031144635751843452, -0.1509784311056137, 0.015542911365628242, -0.14036494493484497, 0.08027976751327515, -0.007007129956036806, 0.07418135553598404, -0.025149788707494736, 0.15060245990753174, -0.028731435537338257, 0.01628703810274601, -0.07902143895626068, -0.047717493027448654, 0.09898673743009567, -0.0046631391160190105, 0.1931537538766861, 0.005480166990309954, -0.023713182657957077, -0.12098433077335358, -0.05229806900024414, -0.04967813938856125, 0.010598190128803253, -0.05373382940888405, 0.0765683576464653, -0.02441473677754402, -0.0039579677395522594, -0.010900177992880344, 0.08942947536706924, -0.05291692912578583, 0.03636563941836357, -0.11246588081121445, -0.05034820735454559, 0.14550213515758514, -0.09163831174373627, -0.10174685716629028, -0.16205860674381256, 0.14137998223304749, 0.15070600807666779, 0.058216437697410583, -0.04001476243138313, 0.03867831453680992, -0.019183965399861336, -0.024241572245955467, 0.07880574464797974, 0.009653856977820396, 0.1324782371520996, -0.08983246237039566, 0.014327390119433403, 0.14589735865592957, -0.05275948345661163, 0.016191845759749413, -0.02304735779762268, 0.12202176451683044, 0.04650457948446274, 0.06189403310418129, 0.018547222018241882, 0.06655703485012054, 0.06466961652040482, -0.02262885868549347, 0.08456692099571228, 0.030712679028511047, -0.18644161522388458, 0.058530256152153015, -0.09805119782686234, 0.22581584751605988, 0.05066308751702309, 0.06047345697879791, 0.2993181645870209, 0.21986234188079834, -0.05372472479939461, 0.1669820249080658, 0.044286344200372696, -0.05891284719109535, -0.21245966851711273, -0.03684934973716736, -0.030655447393655777, 0.09436552971601486, 0.15607263147830963, -0.0981721356511116, -0.04201313853263855, -0.00972361396998167, -0.032264553010463715, 0.020120708271861076, -0.24663487076759338, -0.01734781451523304, 0.14379777014255524, 0.10629188269376755, 0.2451348900794983, -0.006132842972874641, 0.023609744384884834, 0.049030207097530365, 0.018605992197990417, -0.02483358606696129, -0.21013511717319489, 0.09079083055257797, 0.006071676965802908, 0.04935038834810257, 0.022885039448738098, -0.006052911281585693, 0.04500092566013336, -0.073696069419384, 0.08904470503330231, -0.08561883866786957, -0.08341272175312042, 0.2185351401567459, -0.03945168852806091, -0.00661163916811347, 0.12917985022068024, -0.011526807211339474, -0.1097102016210556, -0.015364703722298145, 0.027403371408581734, 0.030678823590278625, -0.030246863141655922, -0.03609466925263405, 0.024012766778469086, 0.10202405601739883, -0.04282205551862717, 0.04565315693616867, 0.10240072011947632, -0.020902957767248154, 0.15945613384246826, 0.13205459713935852, 0.10420060157775879, 0.002927543595433235, -0.06464727967977524, 0.014349685050547123, -0.055471502244472504, 0.02962767891585827, -0.17038846015930176, -0.0070191239938139915, 0.055695805698633194, 0.04772466421127319, 0.0945243164896965, 0.11333164572715759, -0.127106174826622, 0.0300484336912632, 0.028996523469686508, -0.06286120414733887, -0.06029998138546944, -0.002275418024510145, -0.016458535566926003, -0.008173024281859398, -0.09947093576192856, 0.07884971052408218, -0.10555081814527512, -0.03306307643651962, 0.05025126785039902, -0.0607193186879158, -0.12852220237255096, -0.010904680006206036, 0.1252979338169098, 0.061709314584732056, -0.05078592896461487, 0.14939077198505402, 0.06109785661101341, -0.08055379986763, 0.037185851484537125, 0.027442200109362602, -0.08008874952793121, -0.10198270529508591, -0.0004569833690766245, 0.31761088967323303, 0.06076094135642052, -0.0329466350376606, -0.11946453154087067, -0.15002015233039856, 0.04840146750211716, 0.1035679280757904, 0.12359631806612015, 0.011757869273424149, -0.05322748050093651, 0.02236519381403923, -0.05275069922208786, 0.03814244270324707, 0.06910209357738495, -0.03928454965353012, -0.13761694729328156, 0.0077122850343585014, 0.026647454127669334, 0.10174071043729782, -0.06771174818277359, -0.09184598177671432, -0.18085066974163055, 0.09208621084690094, -0.03432070091366768, -0.10890032351016998, 0.027215104550123215, -0.017406610772013664, 0.014248576015233994, 0.07639352232217789, -0.047281619161367416, 0.01244808267802, -0.1517520695924759, 0.07082249224185944, 0.05706808716058731, 0.08926787972450256, 0.000014311663107946515, -0.054843269288539886, 0.07618319988250732, -0.05763502046465874, 0.06680037826299667, -0.053477559238672256, 0.005539732985198498, 0.10781200975179672, -0.23264040052890778, -0.021164139732718468, 0.009476077742874622, -0.04681631922721863, 0.08765807747840881, -0.19047698378562927, 0.024190550670027733, -0.08897756040096283, -0.024605726823210716, 0.01802127994596958, -0.1086471825838089, -0.04306677728891373, 0.08475461602210999, 0.037119291722774506, -0.031288959085941315, -0.04612116143107414, -0.019314980134367943, -0.0914498046040535, 0.053634315729141235, 0.07442525774240494, -0.0687926784157753, 0.08314394950866699, -0.05507456883788109, 0.00841207429766655, -0.052043743431568146, 0.06760627031326294, -0.012366239912807941, -0.12672528624534607, -0.02123171091079712, -0.044928714632987976, 0.11662110686302185, -0.023402327671647072, 0.022080281749367714, 0.014599837362766266, 0.0323631577193737, -0.012065601535141468, 0.05028461292386055, 0.1019197478890419, 0.05136820673942566, 0.014879679307341576, 0.02292765863239765, 0.055746350437402725, 0.0757644772529602, -0.1134679913520813, 0.06457309424877167, -0.02098844014108181, -0.08620109409093857, 0.1013324111700058, 0.06909440457820892, 0.037490107119083405, 0.15593400597572327, 0.22674402594566345, 0.10539932548999786, -0.03564648702740669, -0.03126971051096916, 0.12967991828918457, 0.17799612879753113, -0.07682197540998459, 0.015780627727508545, -0.0020607721526175737, -0.017265556380152702, -0.09849067777395248, -0.13722245395183563, -0.060460351407527924, -0.2453264594078064, 0.1078341007232666, -0.03288164362311363, -0.04169659689068794, 0.128489688038826, 0.027952738106250763, 0.03724630922079086, 0.08183616399765015, -0.12909026443958282, -0.013460557907819748, 0.07749562710523605, -0.08914026618003845, -0.033571500331163406, -0.17521262168884277, -0.06771576404571533, -0.08741120994091034, -0.15989220142364502, -0.06844990700483322, 0.029948782175779343, 0.035394806414842606, 0.010386589914560318, -0.039711855351924896, -0.01962728053331375, 0.011063394136726856, -0.0025537724141031504, -0.04985455423593521, -0.01753084547817707, 0.021317757666110992, -0.11333847790956497, -0.024336790665984154, 0.16320326924324036, -0.03297848999500275, -0.18396754562854767, -0.0405106395483017, 0.2157316505908966, 0.025046708062291145, 0.0590171180665493, -0.073721744120121, -0.016323629766702652, 0.021523483097553253, 0.20813441276550293, 0.10171995311975479, -0.10821312665939331, 0.015457749366760254, -0.03655189648270607, 0.0013793212128803134, -0.061893612146377563, 0.10775819420814514, 0.06519263982772827, -0.07549984753131866, -0.17567221820354462, -0.04389495030045509, -0.08628730475902557, 0.03370477631688118, -0.14383791387081146, -0.03786516562104225, 0.1168690100312233, 0.004516853019595146, -0.053927481174468994, 0.07883694022893906, -0.17713546752929688, 0.03441957011818886, -0.04880853369832039, -0.13215437531471252, -0.09491758048534393, -0.10123858600854874, 0.0027463934384286404, 0.08913854509592056, 0.15567956864833832, -0.06151591241359711, -0.07471925020217896, -0.009579092264175415, -0.028091613203287125, -0.052700337022542953, -0.07900123298168182, 0.059512585401535034, 0.0007560851518064737, 0.16147300601005554, -0.07439453154802322, 0.09558981657028198, 0.09099138528108597, -0.021246420219540596, -0.00915549136698246, 0.032866667956113815, -0.003863809397444129, -0.07436864078044891, -0.04970616102218628, 0.02312966249883175, 0.027639856562018394, 0.10846075415611267, -0.030836544930934906, -0.1934703141450882, 0.11230092495679855, 0.09140218049287796, -0.04296138137578964, -0.046487610787153244, 0.05351927503943443, -0.07097935676574707, 0.1252279132604599, 0.03444884717464447, -0.02163051813840866, 0.013762647286057472, -0.06370721012353897, 0.08370721340179443, 0.11594565212726593, -0.048265840858221054, -0.08278503268957138, -0.06164652109146118, 0.012770666740834713, 0.02961382456123829, -0.13650155067443848, -0.21160630881786346, -0.10802312940359116, -0.1383298933506012, 0.004740108735859394, -0.04703504592180252, 0.08498300611972809, 0.12991970777511597, 0.09780163317918777, -0.011416295543313026, -0.004867587238550186, 0.018085451796650887, 0.13192623853683472, -0.11232008039951324, -0.08192373812198639 ]
null
null
diffusers
# DreamBooth - ThomasEgense/andreas_model15 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of andreasegense person using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
{"license": "creativeml-openrail-m", "tags": ["stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers", "dreambooth"], "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "a photo of andreasegense person", "inference": true}
text-to-image
ThomasEgense/andreas_model15
[ "diffusers", "tensorboard", "safetensors", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "dreambooth", "base_model:runwayml/stable-diffusion-v1-5", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-06T11:48:09+00:00
[]
[]
TAGS #diffusers #tensorboard #safetensors #stable-diffusion #stable-diffusion-diffusers #text-to-image #dreambooth #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
# DreamBooth - ThomasEgense/andreas_model15 This is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of andreasegense person using DreamBooth. You can find some example images in the following. DreamBooth for the text encoder was enabled: False.
[ "# DreamBooth - ThomasEgense/andreas_model15\n\nThis is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of andreasegense person using DreamBooth.\nYou can find some example images in the following. \n\n\n\nDreamBooth for the text encoder was enabled: False." ]
[ "TAGS\n#diffusers #tensorboard #safetensors #stable-diffusion #stable-diffusion-diffusers #text-to-image #dreambooth #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "# DreamBooth - ThomasEgense/andreas_model15\n\nThis is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of andreasegense person using DreamBooth.\nYou can find some example images in the following. \n\n\n\nDreamBooth for the text encoder was enabled: False." ]
[ 99, 85 ]
[ "passage: TAGS\n#diffusers #tensorboard #safetensors #stable-diffusion #stable-diffusion-diffusers #text-to-image #dreambooth #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n# DreamBooth - ThomasEgense/andreas_model15\n\nThis is a dreambooth model derived from runwayml/stable-diffusion-v1-5. The weights were trained on a photo of andreasegense person using DreamBooth.\nYou can find some example images in the following. \n\n\n\nDreamBooth for the text encoder was enabled: False." ]
[ -0.0724518671631813, 0.1558174341917038, -0.003451314754784107, 0.06641817837953568, 0.10898163169622421, 0.002397978911176324, 0.17792443931102753, 0.03328562155365944, 0.009902025572955608, 0.048055943101644516, 0.13977843523025513, -0.04775812104344368, -0.00880363117903471, 0.10854640603065491, 0.036059536039829254, -0.16782332956790924, -0.007494711317121983, 0.0332050696015358, -0.05636124312877655, 0.04769957810640335, 0.03808251768350601, -0.08558256924152374, 0.10780845582485199, -0.020995814353227615, -0.17270688712596893, 0.05247614160180092, 0.0000890740702743642, -0.015916060656309128, 0.08812368661165237, 0.05612006410956383, 0.1074306070804596, 0.06719831377267838, 0.04166969284415245, -0.13672474026679993, 0.026596488431096077, 0.0342770554125309, -0.018730390816926956, 0.057398512959480286, -0.052924565970897675, -0.030000699684023857, 0.029818031936883926, -0.008375220000743866, 0.08123628795146942, 0.03821337968111038, -0.06877658516168594, -0.026298759505152702, 0.04879904165863991, 0.07405100762844086, 0.05841021239757538, 0.07196640223264694, -0.017189621925354004, 0.03912556543946266, 0.04607943445444107, 0.09318576753139496, 0.23412755131721497, -0.1913403421640396, -0.06566313654184341, 0.30910617113113403, 0.028918948024511337, -0.004792714491486549, -0.029921406880021095, 0.05843799561262131, 0.07421133667230606, 0.04053002968430519, 0.1021977886557579, -0.0773395448923111, 0.008545128628611565, -0.0975504145026207, -0.06884857267141342, 0.040501173585653305, 0.08134068548679352, 0.006953037343919277, -0.05322395637631416, -0.14276562631130219, -0.07145869731903076, 0.1290728598833084, 0.0063958922401070595, -0.05395493656396866, -0.0005508293979801238, -0.008360796608030796, -0.0514381043612957, -0.0628725066781044, -0.07386010140180588, -0.0816146656870842, 0.028388261795043945, 0.06049555912613869, -0.03502729535102844, 0.0026731009129434824, -0.05444633588194847, 0.15431679785251617, -0.07908325642347336, -0.1369599997997284, 0.029060957953333855, -0.07910580933094025, -0.0059736864641308784, 0.056128162890672684, 0.0016912376740947366, -0.20087748765945435, 0.04369477927684784, -0.026318179443478584, 0.09792579710483551, -0.00223101326264441, 0.0400313101708889, 0.046464018523693085, -0.004300210624933243, 0.02612508274614811, -0.0005685744108632207, -0.07877658307552338, -0.015467599034309387, 0.00965252798050642, 0.017620958387851715, -0.041293006390333176, -0.09582716226577759, 0.009190292097628117, -0.06157660111784935, 0.03174351900815964, -0.037580639123916626, 0.004078170284628868, -0.07236321270465851, -0.02632978931069374, 0.05406106635928154, -0.023047374561429024, 0.010613013990223408, -0.04339543357491493, -0.024983910843729973, 0.008634429425001144, 0.20070534944534302, -0.020138753578066826, -0.03669052943587303, 0.09672931581735611, -0.11127962172031403, 0.01670638844370842, -0.012490931898355484, -0.10593216121196747, -0.003453880315646529, -0.2044476717710495, 0.03963637724518776, -0.13085786998271942, -0.1340029537677765, -0.03589843586087227, 0.06350127607584, -0.008000067435204983, -0.01548018492758274, -0.10947519540786743, -0.07725843787193298, -0.01967913843691349, 0.046100255101919174, -0.05515878275036812, 0.034931112080812454, 0.015714773908257484, -0.020436489954590797, 0.11647166311740875, -0.02709317021071911, -0.023031940683722496, -0.1026717871427536, 0.024042818695306778, -0.0936608612537384, 0.08931224793195724, -0.04791853204369545, 0.11192993074655533, -0.04775582626461983, -0.05540948361158371, 0.025964265689253807, 0.014275161549448967, 0.03138124570250511, 0.1668478399515152, -0.1915799230337143, -0.07398807257413864, 0.2036108821630478, -0.15179894864559174, -0.12501420080661774, 0.014072871766984463, -0.033109843730926514, 0.15584047138690948, 0.07265692204236984, 0.10072071850299835, 0.10760310292243958, -0.27154892683029175, 0.026768097653985023, -0.05839554965496063, -0.061833035200834274, -0.02193799428641796, -0.013414828106760979, 0.04908233508467674, -0.008596759289503098, 0.006939735729247332, -0.07139064371585846, 0.08254698663949966, -0.05127740278840065, -0.039402466267347336, -0.020401744171977043, -0.08694200217723846, 0.0377492681145668, 0.002924874424934387, 0.025461163371801376, -0.02510932646691799, -0.022087063640356064, 0.10536598414182663, 0.008138778619468212, -0.08716226369142532, -0.0014542262069880962, -0.04373040422797203, -0.052822042256593704, -0.030481738969683647, -0.023422664031386375, -0.08821281790733337, -0.056466296315193176, 0.021694248542189598, 0.06873638927936554, 0.007735776714980602, 0.03928752988576889, 0.08187457919120789, 0.10306445509195328, -0.027034906670451164, -0.05234917253255844, 0.023417839780449867, 0.009084577672183514, -0.009971589781343937, -0.14539670944213867, 0.04388734698295593, -0.1042044535279274, -0.002406967803835869, -0.21497130393981934, 0.07160165160894394, -0.0031218351796269417, 0.1882089525461197, 0.11427076160907745, -0.05824606120586395, 0.05620161071419716, 0.044365279376506805, -0.02187148481607437, -0.1063970997929573, 0.011028197593986988, -0.0010472167050465941, -0.14377601444721222, 0.09414862841367722, -0.1225525289773941, 0.13790258765220642, 0.07824048399925232, 0.07090774178504944, -0.05752681568264961, -0.0035908417776226997, -0.010899912565946579, -0.02015543170273304, -0.08985992521047592, 0.008931769989430904, 0.11597387492656708, 0.008311535231769085, 0.1537199169397354, -0.0075166597962379456, 0.01730111613869667, 0.07170458137989044, -0.03493751212954521, -0.06570518016815186, 0.07035695016384125, -0.06903937458992004, 0.022530212998390198, 0.01982424594461918, 0.04275456815958023, -0.02045918069779873, 0.19611945748329163, 0.017886653542518616, 0.021015657112002373, -0.07573727518320084, -0.01602434553205967, 0.012369629926979542, 0.15230825543403625, -0.07964329421520233, -0.018859660252928734, -0.03234867751598358, -0.031062735244631767, -0.008144666440784931, -0.10654160380363464, -0.043777503073215485, 0.08143709599971771, -0.03685077652335167, 0.1335417926311493, 0.02416682429611683, -0.1503545343875885, 0.01737096719443798, -0.08840999007225037, -0.04845989868044853, 0.0188584141433239, -0.02605920098721981, -0.08392544835805893, 0.15195141732692719, -0.03340507671236992, -0.22857268154621124, -0.14528073370456696, -0.03182174265384674, -0.0005620039300993085, 0.019459227100014687, 0.05782938376069069, -0.04951534792780876, -0.04393116384744644, -0.10111011564731598, 0.06759142130613327, 0.06362637132406235, 0.04401237517595291, 0.07716484367847443, -0.009236359037458897, 0.0345541350543499, -0.06365957856178284, 0.019548526033759117, -0.04666559398174286, 0.06373424082994461, 0.04449170082807541, -0.018028177320957184, 0.09975356608629227, 0.14038138091564178, -0.012823682278394699, -0.0015446925535798073, 0.0011993406806141138, 0.28015151619911194, -0.0007301584701053798, 0.07968639582395554, 0.1456301361322403, 0.06282714754343033, 0.05656684190034866, 0.12874336540699005, 0.057314272969961166, -0.05218511074781418, 0.10270313173532486, -0.008515425026416779, -0.1180339977145195, -0.08052464574575424, -0.08846857398748398, 0.03246810659766197, 0.009247411973774433, 0.11581519991159439, 0.03372535482048988, 0.1133514791727066, 0.11952447146177292, 0.09358910471200943, 0.06211036443710327, 0.04515158012509346, 0.08607596904039383, 0.03415106236934662, -0.06384425610303879, 0.018420513719320297, -0.05181208997964859, -0.07930353283882141, 0.053144801408052444, -0.0576888807117939, 0.1233578771352768, -0.059770893305540085, -0.04849313199520111, 0.03987767919898033, -0.016956252977252007, 0.09583991765975952, 0.09867214411497116, -0.017230845987796783, -0.0454629585146904, -0.009973058477044106, -0.09728391468524933, 0.06746722012758255, 0.09133414924144745, -0.04849914461374283, 0.007764343172311783, -0.02327381633222103, 0.10893947631120682, -0.016735821962356567, 0.03586496785283089, 0.13339374959468842, -0.25310754776000977, -0.06565064191818237, -0.00912849698215723, 0.04376077279448509, -0.05461009964346886, 0.002147734398022294, 0.3404131829738617, -0.024494867771863937, 0.043390147387981415, -0.06969412416219711, 0.054376304149627686, 0.05612822249531746, -0.004868445452302694, -0.08570040017366409, 0.039199959486722946, -0.042909469455480576, -0.0010960557265207171, -0.26565003395080566, 0.06394269317388535, -0.020591596141457558, 0.08748596161603928, 0.003622401272878051, -0.0027465762104839087, 0.005501608829945326, 0.11447408050298691, 0.16566118597984314, 0.017654968425631523, 0.10125990211963654, -0.010082824155688286, -0.12259261310100555, -0.010786582715809345, 0.0029965487774461508, -0.022356215864419937, 0.04275941848754883, 0.10591203719377518, -0.0243037361651659, 0.0166332870721817, 0.01206694170832634, -0.19539208710193634, -0.05151282995939255, -0.04584650322794914, 0.11834406107664108, 0.0855589509010315, -0.05958578363060951, -0.08574305474758148, 0.0776737630367279, 0.07036476582288742, -0.2046390324831009, -0.0666719302535057, -0.09500601887702942, -0.016323456540703773, 0.030675994232296944, -0.043027475476264954, 0.06878961622714996, 0.01330787967890501, 0.12082119286060333, -0.12181028723716736, -0.08697448670864105, 0.04697265103459358, -0.0915500670671463, -0.11161612719297409, -0.12104432284832001, 0.039510324597358704, 0.04247090965509415, -0.012513326480984688, -0.0038683139719069004, -0.02698298543691635, -0.00721119437366724, -0.07145871967077255, 0.09096863865852356, 0.14962886273860931, -0.14422790706157684, 0.038728877902030945, 0.016000201925635338, -0.09343299269676208, -0.0539059117436409, 0.034233883023262024, 0.07738020271062851, 0.2060704380273819, -0.09153400361537933, 0.08617863059043884, 0.16491937637329102, -0.10623684525489807, -0.21234196424484253, -0.04353836923837662, 0.013587439432740211, 0.03774312883615494, 0.03726887330412865, -0.1985001266002655, 0.17813962697982788, 0.0036233137361705303, -0.002398974495008588, 0.0604788102209568, -0.3336305320262909, -0.12373275309801102, 0.021849947050213814, 0.18572251498699188, 0.2558896541595459, -0.05017964541912079, -0.05477651208639145, -0.012715959921479225, -0.16545173525810242, 0.1888650804758072, -0.04485512897372246, 0.06060932204127312, -0.029459012672305107, -0.02021312154829502, 0.013079429045319557, -0.03774738684296608, 0.08247970044612885, 0.021438809111714363, 0.07382727414369583, -0.05512221157550812, -0.027821412310004234, 0.1550939381122589, -0.05657321959733963, 0.08096145838499069, -0.06198369339108467, 0.04923306778073311, -0.03932178393006325, -0.03295415639877319, -0.012164277955889702, 0.01636018604040146, -0.044015903025865555, -0.12699182331562042, -0.029534032568335533, 0.03932974860072136, 0.06741536408662796, 0.008496242575347424, -0.07213079929351807, -0.025721218436956406, -0.02372065931558609, 0.17558163404464722, 0.001094180392101407, -0.05299514904618263, -0.08866118639707565, -0.01031798031181097, -0.05157692730426788, 0.12386681139469147, -0.16420000791549683, -0.005711475387215614, 0.14700797200202942, 0.06896670907735825, 0.12437080591917038, 0.039675965905189514, -0.079240582883358, 0.04636001214385033, 0.08144938200712204, -0.15738095343112946, -0.0516456738114357, -0.06632223725318909, -0.07143019139766693, 0.03208066523075104, -0.013044798746705055, 0.164397731423378, -0.11440111696720123, 0.04148871824145317, -0.027028096839785576, 0.0027193266432732344, -0.03425346314907074, 0.11528780311346054, 0.005779370199888945, 0.05756634846329689, -0.03887993097305298, 0.06536983698606491, 0.0011627874337136745, -0.11341498047113419, 0.013703265227377415, 0.07170771062374115, -0.09224818646907806, -0.005460998043417931, -0.06118030101060867, 0.23693332076072693, -0.15537765622138977, -0.03918711096048355, -0.11831536889076233, -0.10324666649103165, 0.017122287303209305, 0.17200419306755066, 0.04983440786600113, 0.06364525109529495, -0.04839150607585907, -0.05386011302471161, -0.06816773861646652, 0.06506162136793137, 0.06476499885320663, 0.08358775079250336, -0.23659300804138184, 0.016611360013484955, 0.034593358635902405, 0.0021391704212874174, -0.07178126275539398, -0.050912365317344666, -0.07627690583467484, -0.00791806261986494, 0.022035561501979828, 0.10665304958820343, -0.04361337795853615, -0.0316472202539444, -0.015426221303641796, 0.011177197098731995, 0.0060724434442818165, 0.06331811845302582, -0.00468998309224844, 0.017984727397561073, 0.0021183821372687817, -0.01620134711265564, -0.057996127754449844, -0.061393313109874725, -0.00624567735940218, -0.05708193778991699, 0.06665907800197601, -0.08392476290464401, -0.10874001681804657, -0.027229314669966698, -0.2290887087583542, 0.042141154408454895, 0.1435052752494812, -0.04504609480500221, -0.008369838818907738, -0.008547423407435417, -0.057661473751068115, -0.03382791206240654, 0.02852851338684559, -0.006230476778000593, 0.025141596794128418, -0.07937147468328476, -0.038052748888731, 0.023317448794841766, 0.011884955689311028, -0.08391974121332169, 0.03440062701702118, 0.12531772255897522, 0.09206432104110718, 0.15244998037815094, -0.14112916588783264, 0.10351023823022842, -0.1209496557712555, -0.00925622321665287, 0.04639853909611702, -0.03029831498861313, 0.009388086386024952, 0.0025190007872879505, -0.023815343156456947, -0.017784632742404938, 0.09325939416885376, 0.04035790264606476, -0.1621876358985901, -0.0005212467513047159, -0.06841082125902176, -0.045235615223646164, 0.012162264436483383, 0.19554798305034637, -0.0024803676642477512, -0.016723571345210075, -0.07741700112819672, 0.08184244483709335, 0.12546515464782715, 0.26143714785575867, 0.04696222394704819, -0.0031557229813188314, 0.07860607653856277, 0.12117215245962143, 0.039896611124277115, 0.1050683781504631, -0.045566655695438385, 0.08844713121652603, -0.05399418994784355, 0.12386894226074219, -0.05029933527112007, -0.054068583995103836, 0.07387808710336685, -0.04430675879120827, -0.02789122425019741, 0.09016517549753189, -0.06998444348573685, -0.043945327401161194, -0.10565412789583206, -0.04992416501045227, -0.1340017169713974, -0.0023743323981761932, -0.09561243653297424, -0.03498123213648796, 0.021887294948101044, 0.01776476390659809, 0.020719438791275024, 0.13974447548389435, 0.005708636716008186, -0.004072359297424555, 0.1174229234457016, -0.02965470403432846, -0.06243378669023514, 0.0028851786628365517, 0.0620885007083416, 0.031198885291814804, 0.08199607580900192, -0.036307282745838165, 0.046559471637010574, 0.04467820003628731, 0.03848310559988022, 0.050204936414957047, -0.07426993548870087, -0.00886630266904831, 0.014305724762380123, -0.06166206672787666, 0.10623326152563095, 0.09596016258001328, -0.03859752416610718, -0.03238040953874588, 0.15060515701770782, -0.046976346522569656, -0.09413760900497437, -0.14132826030254364, 0.10839290916919708, -0.04440383240580559, 0.08593561500310898, -0.04812832549214363, -0.08516516536474228, -0.01593816466629505, 0.11041256785392761, 0.12836839258670807, 0.026714976876974106, 0.027172017842531204, -0.06444469839334488, -0.007903508841991425, -0.04589717835187912, 0.05356396362185478, -0.0005768868140876293, 0.22676387429237366, -0.07155479490756989, 0.030468104407191277, -0.07720835506916046, -0.1293572634458542, -0.0301701407879591, -0.14982634782791138, 0.041703980416059494, 0.0014054126804694533, -0.0786261186003685, 0.06774844229221344, -0.16711732745170593, -0.0480460524559021, 0.24215365946292877, -0.13369987905025482, -0.0033530371729284525, -0.0588994175195694, 0.08478774130344391, 0.03870466724038124, 0.06881691515445709, -0.05475863069295883, 0.024896079674363136, 0.1016601026058197, -0.026750773191452026, -0.1254076212644577, -0.015506904572248459, -0.05612652003765106, -0.24525809288024902, 0.19870774447917938, -0.020628251135349274, 0.017880480736494064, 0.03828125447034836, -0.0022564013488590717, -0.09026768058538437, 0.05412166193127632, -0.06534143537282944, 0.024130625650286674, -0.07775337994098663, 0.14159750938415527, -0.0038577455561608076, 0.13178813457489014, -0.019756736233830452, -0.15251004695892334, -0.03022632747888565, 0.09621007740497589, -0.04053137078881264, -0.11113304644823074, -0.010851887986063957, -0.01079037506133318, 0.08645717054605484, 0.06997061520814896, -0.04744185879826546, 0.02063923515379429, 0.015536894090473652, 0.016662022098898888, -0.0008297302410937846, 0.012434247881174088, 0.05709601566195488, -0.08625509589910507, 0.02323736995458603, -0.027716251090168953, 0.0012970793759450316, -0.28355732560157776, -0.08455289900302887, -0.13655473291873932, -0.014257295057177544, 0.015450985170900822, 0.06335809826850891, 0.20010556280612946, 0.0721135064959526, 0.0026223130989819765, -0.1387803554534912, 0.016309892758727074, 0.09496739506721497, -0.014215824194252491, -0.12204919755458832 ]
null
null
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "236.31 +/- 45.06", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
sxqib/ppo-LunarLander-v2
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-06T11:49:09+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 39, 41, 17 ]
[ "passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.03942384943366051, 0.04900386184453964, -0.005304091144353151, 0.026427261531352997, 0.107408307492733, -0.026511888951063156, 0.11188238859176636, 0.0814051404595375, 0.10722193866968155, 0.04762078449130058, 0.08338645845651627, 0.06030960753560066, 0.05080918222665787, 0.2571701407432556, 0.04754156619310379, -0.22987541556358337, 0.036159250885248184, -0.04869936779141426, 0.12395193427801132, 0.07178173214197159, -0.0038484656251966953, -0.06485428661108017, 0.020415637642145157, -0.013290755450725555, 0.05367108806967735, 0.04282612353563309, -0.01716216839849949, -0.08207534998655319, 0.07169748842716217, -0.06345846503973007, 0.06986866891384125, 0.07677983492612839, 0.13218913972377777, -0.17832116782665253, 0.029566360637545586, 0.02571309357881546, -0.07189024239778519, 0.01342033501714468, 0.008019951172173023, 0.05120139941573143, 0.17303818464279175, 0.019879888743162155, 0.07844575494527817, -0.0025605305563658476, -0.15412317216396332, -0.018950799480080605, 0.0436202734708786, 0.12546207010746002, 0.08808347582817078, 0.04605821147561073, 0.01970590092241764, 0.17503218352794647, -0.054352790117263794, -0.028833400458097458, 0.21759237349033356, -0.2881564497947693, -0.031460098922252655, 0.321048766374588, 0.06997483223676682, 0.09725230932235718, -0.07540661096572876, -0.03619609400629997, 0.007783263456076384, -0.013137873262166977, -0.028666524216532707, -0.07447073608636856, 0.17313385009765625, 0.05152064561843872, -0.05057951435446739, -0.09541505575180054, 0.16948209702968597, 0.006921638268977404, 0.0018855923553928733, -0.019282981753349304, 0.009060598909854889, 0.07402525842189789, -0.016097044572234154, -0.07255112379789352, 0.057438433170318604, 0.05330665782094002, 0.019649166613817215, -0.1435653269290924, -0.10762494057416916, -0.022740179672837257, -0.008012006990611553, 0.17786912620067596, -0.009255532175302505, 0.042902372777462006, 0.003065188182517886, 0.10384012013673782, -0.12480384111404419, -0.03354184702038765, -0.0454259067773819, -0.07565800100564957, -0.0223417766392231, -0.02058211714029312, -0.03580251708626747, 0.07184842973947525, 0.11971849203109741, 0.027368178591132164, 0.09350208193063736, 0.047715865075588226, -0.03206788748502731, 0.06343851238489151, 0.05555703118443489, 0.14222665131092072, 0.05807621404528618, 0.012854371219873428, 0.13179877400398254, 0.055213116109371185, 0.033023182302713394, -0.0613492950797081, -0.18252409994602203, 0.07489913702011108, -0.07031869143247604, 0.007941240444779396, 0.12051256000995636, -0.04480670019984245, -0.1183447614312172, -0.037500523030757904, -0.017392054200172424, -0.06224250793457031, -0.025395862758159637, 0.0547584593296051, -0.02883218228816986, -0.03973718360066414, 0.0011496668448671699, 0.09384800493717194, 0.00953749567270279, -0.1752052903175354, 0.03303423151373863, -0.025042934343218803, -0.10782608389854431, 0.009975161403417587, 0.0022444494534283876, 0.03394931182265282, 0.04408763721585274, -0.11822668462991714, -0.30899152159690857, -0.07652641832828522, 0.05490870401263237, -0.06516939401626587, -0.18425025045871735, -0.13193942606449127, 0.02454492449760437, -0.09037084132432938, -0.044885024428367615, -0.12759265303611755, -0.028549788519740105, 0.01743689924478531, 0.011519349180161953, 0.10758619755506516, -0.0106219332665205, -0.012188062071800232, -0.1571401208639145, 0.008273907005786896, -0.20951123535633087, 0.0890483483672142, -0.019150104373693466, 0.037884220480918884, -0.032381169497966766, -0.07404014468193054, 0.030707746744155884, 0.052499737590551376, -0.01474119070917368, 0.13510210812091827, -0.15592676401138306, -0.03691192343831062, -0.007996266707777977, -0.13611900806427002, -0.04786273464560509, -0.10358831286430359, -0.04357128217816353, 0.13354332745075226, 0.018664736300706863, 0.15356586873531342, -0.08709818124771118, -0.0722038671374321, 0.20489206910133362, -0.010411538183689117, -0.12820468842983246, -0.076752208173275, 0.10165707021951675, 0.021510310471057892, -0.056606587022542953, -0.02523270808160305, -0.1839766949415207, -0.0152357779443264, -0.04550420492887497, -0.047039128839969635, 0.01796751655638218, -0.010888241231441498, 0.13837894797325134, 0.08494598418474197, 0.05018039792776108, -0.06086122244596481, -0.006730288732796907, 0.10779471695423126, 0.08823856711387634, 0.008680110797286034, 0.023406028747558594, -0.05774238705635071, 0.09552932530641556, -0.04003755748271942, -0.0142367510125041, -0.08283266425132751, -0.036246106028556824, -0.026256313547492027, 0.17507147789001465, 0.09440762549638748, 0.2257927656173706, 0.09567736834287643, 0.039160262793302536, 0.031270865350961685, -0.13181598484516144, -0.1425403207540512, -0.0017254541162401438, 0.09020978957414627, -0.14270411431789398, -0.04119925573468208, -0.08974775671958923, -0.17768175899982452, -0.12202505767345428, 0.0006432619411498308, -0.17960017919540405, 0.06390921026468277, 0.05408334732055664, -0.035177867859601974, 0.03272094577550888, 0.13032332062721252, -0.011533179320394993, -0.03967514634132385, 0.0831870287656784, 0.0379033200442791, -0.041234664618968964, -0.021742934361100197, 0.11885567009449005, 0.15673065185546875, 0.13124459981918335, -0.03511447086930275, 0.004914294462651014, 0.07076404243707657, -0.02309088408946991, 0.06539414077997208, 0.0558244064450264, 0.20973342657089233, 0.188301220536232, 0.038996949791908264, 0.008822928182780743, -0.07048165798187256, 0.0855446457862854, -0.0742373839020729, -0.14302679896354675, -0.05579735338687897, 0.08729292452335358, 0.016605578362941742, 0.023469142615795135, 0.08711627870798111, 0.024545932188630104, 0.09132762253284454, 0.15968108177185059, 0.01990218088030815, -0.09659269452095032, -0.050218869000673294, 0.01175848301500082, 0.027713103219866753, 0.04794301092624664, -0.04514073207974434, -0.00937939714640379, 0.017020760104060173, -0.10303554683923721, 0.031789086759090424, -0.1413339376449585, -0.1358717679977417, 0.044326696544885635, 0.003906996920704842, 0.010907664895057678, 0.02786896750330925, -0.0038291432429105043, 0.019039705395698547, 0.04351753741502762, -0.06975466758012772, 0.047416772693395615, -0.024745507165789604, -0.020031947642564774, 0.03340689837932587, -0.057257164269685745, -0.205775648355484, -0.17696654796600342, 0.00013708483311347663, -0.09910997003316879, 0.10194740444421768, 0.018308809027075768, -0.12373185902833939, 0.047737859189510345, -0.05822649225592613, 0.027574289590120316, -0.01875593699514866, -0.049130141735076904, 0.10507171601057053, 0.1525275856256485, -0.016146350651979446, 0.018018173053860664, -0.04865182936191559, -0.10157987475395203, -0.19632206857204437, 0.0691583976149559, 0.04680244252085686, 0.014610917307436466, 0.10669491440057755, 0.018072687089443207, 0.02367905154824257, -0.007674071006476879, -0.016521066427230835, -0.011659215204417706, -0.08781040459871292, 0.31909599900245667, 0.04510033503174782, -0.025173069909214973, 0.02041010931134224, -0.0043001663871109486, -0.028083480894565582, 0.03263787180185318, -0.0985708013176918, -0.07548979669809341, -0.08774089068174362, -0.04367410019040108, -0.09784720093011856, 0.053299110382795334, 0.05916472524404526, 0.003188040340319276, -0.07727594673633575, 0.04221395403146744, 0.11369874328374863, -0.0923808291554451, -0.07137343287467957, 0.07477962225675583, 0.0972946360707283, -0.07331304252147675, 0.00012658814375754446, 0.00874367356300354, 0.023951783776283264, 0.037102166563272476, 0.06778035312891006, -0.03966575115919113, 0.08589404821395874, -0.19917890429496765, 0.0372927263379097, 0.106058269739151, 0.023754918947815895, 0.0638108178973198, 0.07643651217222214, -0.1058402881026268, -0.008500572293996811, -0.032518330961465836, -0.21341575682163239, 0.1668180525302887, 0.1355515867471695, 0.06788124144077301, -0.025637222453951836, -0.00461410591378808, -0.0649740919470787, 0.05773647129535675, 0.02723747305572033, -0.14758841693401337, 0.004883295856416225, 0.06064270809292793, 0.026899009943008423, 0.01614922471344471, 0.07971042394638062, 0.014697225764393806, -0.1801026314496994, -0.014406266622245312, 0.10730406641960144, 0.002390873385593295, 0.0053148469887673855, -0.03175045922398567, -0.1755964607000351, 0.0751047357916832, 0.004285442177206278, 0.07233936339616776, -0.1676585078239441, 0.14297930896282196, -0.10089799761772156, 0.07726949453353882, -0.004285062663257122, -0.021311495453119278, 0.02507244050502777, -0.0541163794696331, 0.15163759887218475, 0.01058570109307766, -0.021810131147503853, -0.1200498715043068, -0.1717042326927185, -0.019227758049964905, -0.11788936704397202, -0.11679866164922714, 0.050424277782440186, 0.062185097485780716, 0.04923136904835701, -0.061147067695856094, 0.1518532931804657, -0.047422297298908234, 0.060713399201631546, -0.06893875449895859, -0.06755045056343079, 0.03764858841896057, -0.12588608264923096, -0.08176055550575256, 0.05573027580976486, 0.19166934490203857, 0.15833087265491486, -0.02816431224346161, -0.03472423925995827, -0.047419581562280655, -0.006212298292666674, -0.007802055217325687, 0.0275666993111372, 0.023223137483000755, 0.07315318286418915, -0.07681374251842499, -0.11649256944656372, 0.033787861466407776, -0.06713802367448807, -0.055589709430933, -0.015439179725944996, 0.1513158082962036, 0.04671623185276985, 0.07720734924077988, -0.018946662545204163, 0.03887668624520302, -0.001724981120787561, -0.056474871933460236, 0.16197094321250916, 0.03885216265916824, -0.05193585529923439, 0.06837689876556396, 0.053174007683992386, 0.043745119124650955, 0.03011113777756691, -0.026783017441630363, 0.206032395362854, 0.1980147808790207, 0.014206883497536182, 0.2175983190536499, 0.03177616000175476, -0.03772832080721855, -0.1300560086965561, -0.065880686044693, -0.006372632458806038, 0.03559038043022156, 0.08070417493581772, -0.18207235634326935, -0.015011128038167953, -0.05689644813537598, -0.034518610686063766, -0.15059494972229004, -0.28553900122642517, -0.05957856774330139, 0.20075850188732147, 0.14706264436244965, 0.27519428730010986, -0.10432573407888412, 0.035197313874959946, 0.02663275972008705, -0.04912831634283066, -0.006501141935586929, 0.00018665487004909664, 0.10268618166446686, -0.15421873331069946, 0.1176437959074974, 0.08486983180046082, -0.019002694636583328, 0.01058861706405878, -0.1619086116552353, 0.00936629343777895, -0.12191236019134521, 0.05354422330856323, 0.1400289237499237, -0.048128653317689896, -0.054873593151569366, 0.14033560454845428, -0.024562934413552284, -0.22685599327087402, -0.04648222774267197, -0.043600670993328094, -0.010640020482242107, 0.026607351377606392, -0.1013401448726654, 0.04101909324526787, 0.1330099105834961, 0.009380043484270573, 0.1147187277674675, 0.11749245226383209, -0.052566803991794586, 0.10792597383260727, 0.2257719188928604, -0.018785694614052773, 0.04689010605216026, -0.12743118405342102, -0.0012336712097749114, -0.028270328417420387, 0.013657891191542149, -0.09504974633455276, -0.09938385337591171, 0.02366873063147068, 0.02872389927506447, 0.009118586778640747, 0.0921793207526207, -0.029922157526016235, 0.0759170651435852, 0.06817561388015747, -0.13014446198940277, -0.16288450360298157, 0.015828335657715797, -0.007344507612287998, 0.08354310691356659, 0.00027861111448146403, 0.08878035843372345, -0.11932205408811569, -0.018093237653374672, -0.03153328225016594, -0.03319635987281799, -0.130486860871315, -0.07138993591070175, 0.06156524643301964, 0.028095467016100883, -0.06602972000837326, 0.1398407518863678, 0.026440169662237167, 0.15942534804344177, 0.049197953194379807, 0.012499804608523846, 0.07227300107479095, -0.05345509201288223, 0.1283530443906784, 0.13818155229091644, -0.00868943240493536, -0.05460423603653908, -0.1013643890619278, -0.10236792266368866, 0.08925779908895493, -0.05773641914129257, 0.07476430386304855, -0.14885357022285461, -0.06675903499126434, 0.015772046521306038, 0.016141414642333984, -0.09562095999717712, 0.02571965754032135, -0.01625603251159191, -0.18119946122169495, 0.056570518761873245, -0.048285093158483505, 0.0440407395362854, -0.06347788125276566, -0.1110161691904068, -0.17226378619670868, 0.06091433763504028, 0.08593481779098511, -0.053876690566539764, -0.12229149043560028, 0.011023230850696564, -0.00012518465518951416, -0.06341652572154999, -0.05023367330431938, 0.09722746908664703, -0.11020902544260025, 0.031452205032110214, -0.012567701749503613, 0.08853451162576675, -0.03510405123233795, -0.011538895778357983, 0.044220831245183945, -0.08039166033267975, -0.009481523185968399, 0.03534642979502678, -0.026372017338871956, -0.04127239063382149, -0.2689029574394226, 0.0036654395516961813, 0.0341104120016098, 0.02497158572077751, 0.07856601476669312, 0.011906822212040424, 0.021174922585487366, 0.03993808850646019, -0.15396519005298615, -0.013395369984209538, 0.14574195444583893, -0.07689505815505981, -0.022186370566487312, 0.05703273415565491, -0.09054436534643173, 0.013882770203053951, -0.030287226662039757, 0.1345842480659485, 0.023923413828015327, 0.06404478847980499, -0.0851147472858429, 0.10106813907623291, -0.1451139897108078, -0.04998219385743141, -0.01244612317532301, 0.09761348366737366, 0.07019034773111343, -0.10272270441055298, 0.014697125181555748, 0.04210108891129494, 0.19416837394237518, 0.016384804621338844, -0.0356343574821949, -0.03396720811724663, 0.004015897400677204, 0.22076453268527985, 0.03044266067445278, 0.10457023978233337, 0.07281364500522614, -0.026583973318338394, 0.12624378502368927, 0.09929762035608292, 0.11280370503664017, -0.055645186454057693, 0.13904185593128204, 0.04667386785149574, 0.038641396909952164, 0.0614289753139019, 0.06836545467376709, 0.09098632633686066, -0.0008288522367365658, 0.1138714924454689, 0.013811973854899406, -0.02422109805047512, -0.021335409954190254, 0.17759373784065247, 0.10501719266176224, -0.14769648015499115, 0.029047364369034767, -0.01258957851678133, 0.039933037012815475, -0.014194529503583908, -0.15634691715240479, -0.07240267097949982, -0.3315149247646332, 0.1226184144616127, -0.07119352370500565, 0.019930170848965645, 0.007913772016763687, -0.037425633519887924, -0.03296699747443199, -0.04477746784687042, 0.13151589035987854, -0.013641550205647945, -0.006079165264964104, -0.04815853759646416, -0.015360191464424133, -0.11607866734266281, -0.11200575530529022, -0.013207737356424332, -0.13671602308750153, -0.010119039565324783, 0.05595948174595833, 0.003977729007601738, 0.01821410097181797, -0.03142618387937546, 0.0024383175186812878, 0.06541839241981506, -0.05751744285225868, 0.056182678788900375, 0.12097269296646118, 0.08766137808561325, -0.1058853268623352, 0.031048951670527458, 0.2011747509241104, 0.04359564557671547, -0.12483977526426315, 0.01449228823184967, 0.1819491684436798, 0.004885740112513304, 0.017068125307559967, -0.006097703706473112, -0.0540788508951664, -0.07554277032613754, 0.1251034289598465, 0.08296554535627365, -0.09985227137804031, 0.015833314508199692, -0.0726347416639328, -0.01594804972410202, -0.06374675035476685, 0.10130585730075836, 0.09538925439119339, 0.04440245032310486, -0.10621760785579681, -0.08487539738416672, -0.10891728103160858, 0.040588874369859695, -0.08629853278398514, -0.07311757653951645, 0.09629398584365845, -0.07057105004787445, -0.07029950618743896, 0.025521177798509598, -0.17978744208812714, -0.009467960335314274, 0.1711762249469757, -0.24654000997543335, -0.0916430801153183, -0.10857923328876495, 0.14477859437465668, 0.016497576609253883, 0.1013975441455841, -0.006207061931490898, -0.007889035157859325, -0.20577777922153473, 0.024890204891562462, -0.05293011665344238, -0.02073732763528824, 0.07814782857894897, -0.09476397186517715, 0.22629831731319427, -0.08276885002851486, 0.020940175279974937, 0.012659613974392414, 0.0870661810040474, -0.030675338581204414, 0.09283176809549332, -0.03660329803824425, -0.12576518952846527, -0.03620953485369682, 0.03001813031733036, 0.013904244638979435, 0.10071761906147003, 0.09772487729787827, -0.03414725139737129, 0.03389119729399681, 0.09747414290904999, 0.04172342270612717, -0.023843804374337196, 0.0360250361263752, -0.17077107727527618, 0.02182629331946373, -0.018498148769140244, -0.06935930997133255, 0.03687669709324837, -0.06603235751390457, 0.1639697551727295, 0.04022442549467087, 0.0670473501086235, -0.036152735352516174, 0.0073931049555540085, -0.014454689808189869, -0.013775371946394444, -0.026180334389209747, -0.17259705066680908, -0.10422050207853317, -0.1347656100988388, -0.012701659463346004, -0.034971047192811966, 0.04591470584273338, 0.023234914988279343, -0.0003200018545612693, -0.014577031135559082, -0.12090865522623062, 0.04360328987240791, 0.11146783083677292, -0.04631396010518074, -0.026193076744675636 ]
null
null
spacy
| Feature | Description | | --- | --- | | **Name** | `en_pipeline_ner_model_3` | | **Version** | `0.0.0` | | **spaCy** | `>=3.7.2,<3.8.0` | | **Default Pipeline** | `transformer`, `ner` | | **Components** | `transformer`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | n/a | | **License** | n/a | | **Author** | [n/a]() | ### Label Scheme <details> <summary>View label scheme (4 labels for 1 components)</summary> | Component | Labels | | --- | --- | | **`ner`** | `allergy_name`, `cancer`, `chronic_disease`, `treatment` | </details> ### Accuracy | Type | Score | | --- | --- | | `ENTS_F` | 90.63 | | `ENTS_P` | 90.80 | | `ENTS_R` | 90.45 | | `TRANSFORMER_LOSS` | 204799.74 | | `NER_LOSS` | 235128.43 |
{"language": ["en"], "tags": ["spacy", "token-classification"]}
token-classification
rame/en_pipeline_ner_model_3
[ "spacy", "token-classification", "en", "model-index", "region:us" ]
2024-02-06T11:52:38+00:00
[]
[ "en" ]
TAGS #spacy #token-classification #en #model-index #region-us
### Label Scheme View label scheme (4 labels for 1 components) ### Accuracy
[ "### Label Scheme\n\n\n\nView label scheme (4 labels for 1 components)", "### Accuracy" ]
[ "TAGS\n#spacy #token-classification #en #model-index #region-us \n", "### Label Scheme\n\n\n\nView label scheme (4 labels for 1 components)", "### Accuracy" ]
[ 21, 16, 5 ]
[ "passage: TAGS\n#spacy #token-classification #en #model-index #region-us \n### Label Scheme\n\n\n\nView label scheme (4 labels for 1 components)### Accuracy" ]
[ -0.0629965215921402, 0.1127549558877945, -0.0035688134375959635, 0.020475171506404877, 0.10941386967897415, 0.06543945521116257, 0.2395509034395218, 0.05881859362125397, 0.23315228521823883, 0.050546180456876755, 0.035238079726696014, 0.07008600234985352, 0.045243993401527405, 0.263205349445343, -0.09855789691209793, -0.25912654399871826, 0.08800046890974045, -0.011709385551512241, 0.061339739710092545, 0.13040849566459656, 0.04597558081150055, -0.15077102184295654, 0.06081318482756615, -0.06474439054727554, -0.23377834260463715, 0.019462455064058304, 0.012478584423661232, -0.09941231459379196, 0.07105932384729385, -0.055700480937957764, 0.2166791707277298, 0.03704650700092316, 0.0488293282687664, -0.21853342652320862, 0.006961038336157799, -0.02179640904068947, -0.043409865349531174, 0.07565315812826157, 0.05987602844834328, -0.02151237241923809, -0.08126477897167206, -0.06972235441207886, 0.06890376657247543, 0.047078780829906464, -0.14771313965320587, -0.12832365930080414, -0.021124741062521935, 0.1172269806265831, 0.10345267504453659, -0.07128811627626419, -0.020044108852744102, 0.054196108132600784, -0.09787078201770782, 0.06574584543704987, 0.1409544199705124, -0.31780141592025757, -0.00248851184733212, 0.2135266810655594, -0.05709154158830643, 0.11749033629894257, -0.042847875505685806, 0.13884171843528748, 0.11255859583616257, -0.01418056059628725, -0.021425170823931694, -0.016048626974225044, 0.08750426769256592, 0.0225397739559412, -0.12652936577796936, -0.0755700096487999, 0.5208337306976318, 0.08621324598789215, -0.030275540426373482, -0.11447595059871674, -0.07186107337474823, -0.150767520070076, -0.09402980655431747, -0.04420548304915428, 0.05545538291335106, 0.005052806809544563, 0.12306582182645798, 0.1029614582657814, -0.09189879149198532, -0.04171714186668396, -0.14007526636123657, 0.26023033261299133, 0.002765404526144266, 0.09592457115650177, -0.18221217393875122, 0.011721187271177769, -0.10990888625383377, -0.0701146051287651, 0.03921227902173996, -0.09617437422275543, -0.10228899121284485, -0.046767037361860275, 0.03423115983605385, 0.11132217943668365, 0.07235271483659744, 0.07743702828884125, -0.02171197533607483, 0.05824723839759827, -0.03004535101354122, 0.05682354420423508, 0.15125319361686707, 0.1797948181629181, -0.031689099967479706, -0.028811266645789146, -0.05536315590143204, -0.06843414157629013, 0.03400057554244995, -0.042799871414899826, -0.13218502700328827, 0.026495318859815598, 0.09848130494356155, 0.1085473820567131, -0.08328228443861008, -0.03431198000907898, -0.1288781762123108, -0.06635984778404236, 0.07488603889942169, -0.12038165330886841, 0.019561003893613815, -0.0023647071793675423, -0.005154100712388754, 0.11204953491687775, -0.14458084106445312, -0.02124967612326145, 0.04426572471857071, 0.0018498738063499331, -0.11425764113664627, 0.008885269984602928, -0.014460807666182518, -0.10038325190544128, 0.0019156528869643807, -0.11302948743104935, 0.032213177531957626, -0.03517122194170952, -0.1180223673582077, -0.00859137438237667, -0.028855212032794952, -0.07637713104486465, 0.017950614914298058, -0.02928520366549492, -0.0582575798034668, -0.01633014716207981, 0.02470465749502182, -0.054275911301374435, -0.09066230058670044, -0.013594737276434898, -0.011551475152373314, 0.10902853310108185, -0.05366065353155136, 0.035621024668216705, -0.05428226292133331, 0.08306460082530975, -0.20197319984436035, 0.04508884251117706, -0.0691397562623024, 0.0849027931690216, -0.06024731695652008, -0.07593771815299988, 0.0217578262090683, 0.0010386473732069135, -0.12731923162937164, 0.16644708812236786, -0.20622028410434723, -0.07564926892518997, 0.20652420818805695, -0.18348082900047302, -0.10889304429292679, 0.038103748112916946, -0.004521177150309086, 0.06402774155139923, 0.08456556499004364, 0.1693429946899414, -0.0014997667167335749, -0.10260968655347824, -0.013415055349469185, 0.09594006091356277, -0.05491052567958832, -0.02500947378575802, 0.09379595518112183, 0.0247876588255167, -0.0071521359495818615, 0.04088488593697548, 0.06621330231428146, -0.12745298445224762, -0.07154490053653717, -0.059119563549757004, -0.016269836574792862, 0.021569810807704926, 0.07567098736763, 0.028460077941417694, 0.033695731312036514, -0.05473762005567551, 0.019963817670941353, 0.01055237464606762, 0.053166650235652924, 0.026366740465164185, -0.06747597455978394, -0.046096526086330414, 0.1322956085205078, -0.14790485799312592, -0.06882842630147934, -0.17548711597919464, -0.18087124824523926, 0.05610192194581032, 0.05858113616704941, 0.013782133348286152, 0.168969064950943, 0.010925764217972755, 0.004736734554171562, 0.00934684183448553, -0.02314884401857853, 0.0050194780342280865, 0.07848679274320602, -0.056586142629384995, -0.16833335161209106, -0.05202233046293259, -0.10370951890945435, 0.06763279438018799, -0.03746706619858742, 0.013026319444179535, 0.18849658966064453, 0.06991005688905716, 0.053974367678165436, 0.047983989119529724, 0.05191269516944885, 0.02876236103475094, -0.025574609637260437, -0.044866837561130524, 0.0832766517996788, -0.10133487731218338, -0.052205801010131836, -0.07887792587280273, -0.1253003478050232, 0.10041849315166473, 0.13725978136062622, -0.13619215786457062, -0.04700793698430061, -0.07362968474626541, -0.011995785869657993, 0.005399442743510008, -0.10918592661619186, 0.003282226389274001, -0.07030165195465088, -0.027009248733520508, 0.0362655334174633, -0.08074366301298141, -0.024509768933057785, 0.034440118819475174, -0.027143774554133415, -0.16165883839130402, 0.10482843965291977, -0.026797421276569366, -0.20369654893875122, 0.1561061441898346, 0.25011971592903137, 0.19331912696361542, 0.0965486541390419, -0.038412172347307205, -0.036731258034706116, -0.03808433935046196, -0.012585306540131569, -0.09400312602519989, 0.1799236238002777, -0.1847221851348877, -0.04176001995801926, 0.06102627143263817, 0.048408545553684235, 0.014471020549535751, -0.1940488964319229, 0.0032003303058445454, -0.02705218456685543, -0.042314913123846054, -0.08343712240457535, -0.040769439190626144, 0.022866275161504745, 0.13133691251277924, 0.05275994911789894, -0.18165427446365356, 0.06942607462406158, -0.05328456684947014, -0.058905716985464096, 0.15342184901237488, -0.08790675550699234, -0.2607112228870392, -0.1321117877960205, -0.09695693105459213, -0.08170688897371292, 0.053103383630514145, -0.026049582287669182, -0.1221856102347374, -0.04161803424358368, 0.03181920200586319, -0.03143416717648506, -0.15791521966457367, -0.030441422015428543, -0.02375221997499466, 0.08804883807897568, -0.1463676244020462, -0.03281635791063309, -0.10361362993717194, -0.08881634473800659, 0.08846709877252579, 0.109955795109272, -0.17878031730651855, 0.0656815767288208, 0.30231374502182007, -0.01682211272418499, 0.09849884361028671, -0.007908549159765244, 0.1263122707605362, -0.08478435128927231, 0.03434423357248306, 0.102773517370224, 0.043746642768383026, 0.03921223804354668, 0.2606252133846283, 0.07646768540143967, -0.15783065557479858, -0.04413260892033577, -0.050116196274757385, -0.11250732094049454, -0.1371503621339798, -0.11949079483747482, -0.047457531094551086, 0.0018151853000745177, 0.04173680767416954, 0.021884718909859657, 0.027724772691726685, 0.05979352071881294, 0.032658208161592484, -0.010304611176252365, 0.03817787021398544, 0.047241613268852234, 0.08965195715427399, -0.0770988017320633, 0.09295348823070526, -0.04419315978884697, -0.07711686939001083, 0.07554645836353302, 0.11415284126996994, 0.1947050243616104, 0.19520893692970276, 0.05366821214556694, 0.08315850794315338, -0.008946546353399754, 0.1494431346654892, 0.08043286204338074, 0.1458728164434433, -0.024984760209918022, -0.026519525796175003, -0.0607585683465004, 0.008731319569051266, 0.056777339428663254, -0.007761273067444563, -0.07124421000480652, -0.08041974902153015, -0.07592456787824631, 0.08818446099758148, -0.00402224063873291, 0.2683714032173157, -0.22317084670066833, 0.014325995929539204, 0.1264825314283371, 0.08657713234424591, -0.07659213989973068, 0.08995836973190308, 0.035323332995176315, -0.10990273207426071, 0.0604853518307209, -0.015346257016062737, 0.11201559752225876, -0.1258959174156189, 0.009451201185584068, -0.06256631016731262, -0.046079572290182114, -0.02384765073657036, 0.08621480315923691, -0.057491641491651535, 0.32044050097465515, 0.04048808664083481, -0.05771759897470474, -0.0750327780842781, -0.005863197147846222, 0.008971141651272774, 0.25033485889434814, 0.21518391370773315, 0.042560648173093796, -0.22389960289001465, -0.22780710458755493, -0.024198587983846664, -0.022732695564627647, 0.17322656512260437, -0.05266254395246506, 0.04015713185071945, 0.018581973388791084, 0.0026184506714344025, -0.03398444503545761, 0.02748211845755577, -0.031158771365880966, -0.024752674624323845, 0.03245184198021889, 0.08539164066314697, -0.09668367356061935, -0.007438742555677891, -0.0648895800113678, -0.15202893316745758, 0.13488507270812988, 0.000039352311432594433, -0.11223579943180084, -0.09655392915010452, -0.0024250110145658255, 0.09870228171348572, -0.019588764756917953, -0.025776077061891556, -0.058460723608732224, 0.15039412677288055, 0.013788600452244282, -0.0933091938495636, 0.11571164429187775, -0.035254642367362976, -0.031234735623002052, -0.06324572116136551, 0.16843536496162415, -0.04176986590027809, -0.01776798628270626, 0.06187696382403374, 0.07659410685300827, -0.01941763050854206, -0.11150353401899338, 0.11919628828763962, -0.008797447197139263, 0.03596549853682518, 0.3197479546070099, -0.10335519909858704, -0.13108688592910767, -0.045769188553094864, 0.08548711985349655, 0.11065994203090668, 0.24135228991508484, -0.08199042826890945, 0.07414133846759796, 0.0649099051952362, -0.03023097850382328, -0.17827677726745605, -0.024937152862548828, -0.15955850481987, 0.01741856336593628, -0.017146704718470573, -0.07503925263881683, 0.1552862823009491, 0.024803558364510536, -0.051573943346738815, 0.09173392504453659, -0.2225973904132843, -0.05328788608312607, 0.19856737554073334, 0.0514913946390152, 0.20914073288440704, -0.06807520240545273, -0.11668818444013596, -0.06808353960514069, -0.15781031548976898, 0.1404138207435608, -0.0052726310677826405, 0.10044469684362411, -0.046283286064863205, 0.011080998927354813, 0.03344593569636345, -0.009972160682082176, 0.22414728999137878, 0.148310124874115, 0.09784389287233353, 0.03122054785490036, -0.2104639858007431, 0.19675104320049286, -0.0058021266013383865, -0.00042371219024062157, 0.20054872334003448, 0.010687658563256264, -0.12815424799919128, -0.016542775556445122, -0.005954461172223091, -0.015501609072089195, -0.04893231764435768, -0.05883049964904785, -0.0701221227645874, 0.0001141627217293717, -0.07727264612913132, -0.04350189492106438, 0.2689037322998047, -0.06125463545322418, 0.11141974478960037, 0.16566087305545807, -0.00994335301220417, -0.11518897861242294, -0.04828730225563049, -0.0901980921626091, -0.05266802757978439, 0.03915141522884369, -0.16139285266399384, 0.066569484770298, 0.12071262300014496, 0.04155774787068367, 0.1411033570766449, 0.1386837214231491, -0.00997458677738905, -0.04436216875910759, 0.11771505326032639, -0.12584958970546722, -0.18933643400669098, -0.011268961243331432, -0.24076372385025024, 0.0022895396687090397, 0.08255134522914886, 0.07749264687299728, 0.05936209484934807, -0.022307220846414566, -0.0041417889297008514, 0.04703337699174881, -0.05486549809575081, 0.1034613847732544, 0.01595791056752205, 0.07827631384134293, -0.15172454714775085, 0.13699844479560852, 0.08703044056892395, 0.013172401115298271, -0.08210679888725281, -0.0420709028840065, -0.14441551268100739, -0.05115558207035065, -0.023845545947551727, 0.15950515866279602, -0.08542758226394653, -0.10214386135339737, -0.10904812067747116, -0.17188909649848938, 0.023088429123163223, 0.08269047737121582, 0.14834754168987274, 0.11590097099542618, -0.004692151676863432, -0.10424336045980453, 0.030940840020775795, 0.05541704595088959, -0.04870295897126198, 0.015336776152253151, -0.23243668675422668, 0.036265283823013306, -0.045723311603069305, 0.15013784170150757, -0.11070428788661957, -0.10767367482185364, -0.14166872203350067, 0.01191312912851572, -0.06727086007595062, 0.06404773145914078, -0.04267575964331627, -0.003886967897415161, 0.005926845595240593, 0.0013885372318327427, -0.05697814002633095, -0.030144335702061653, -0.11154347658157349, 0.07291114330291748, 0.016873799264431, 0.14854414761066437, -0.06934715807437897, -0.02116963639855385, 0.08054076135158539, -0.04419983923435211, 0.08169352263212204, 0.05132349953055382, 0.013230439275503159, 0.06169068440794945, -0.14944908022880554, -0.004247208125889301, 0.09361445158720016, 0.010270410217344761, 0.09838543832302094, -0.11955045163631439, -0.013642366975545883, 0.007755297236144543, -0.04987721890211105, 0.09265732020139694, -0.0748722031712532, -0.10122100263834, -0.11670727282762527, -0.13030554354190826, -0.15383975207805634, -0.039526961743831635, 0.034323375672101974, 0.18829602003097534, 0.025508465245366096, -0.0022154683247208595, 0.0513332262635231, 0.03228534013032913, -0.05335259810090065, -0.014638165943324566, -0.05232592672109604, -0.11067420244216919, 0.031031068414449692, -0.023637842386960983, 0.0005815502954646945, -0.026793092489242554, 0.3485758304595947, 0.05282219126820564, 0.053354136645793915, 0.038140468299388885, 0.20703595876693726, -0.03417730703949928, 0.06797732412815094, 0.23084776103496552, 0.07197990268468857, -0.07439960539340973, 0.05358238145709038, 0.04418443143367767, 0.02430056966841221, 0.09576807916164398, 0.1584196239709854, 0.08579255640506744, -0.13004741072654724, 0.06820126622915268, 0.016253408044576645, 0.011560754850506783, -0.042769063264131546, 0.07819271087646484, 0.04387076199054718, 0.03490526229143143, 0.04743292182683945, -0.11616707593202591, 0.09310232102870941, -0.17281126976013184, 0.13978621363639832, -0.010678494349122047, -0.10659872740507126, -0.17630642652511597, -0.07298727333545685, -0.0886601060628891, -0.055643320083618164, -0.0020137052051723003, -0.1350109726190567, -0.05071558430790901, 0.19605986773967743, 0.03203188627958298, 0.0035419228952378035, 0.05091087520122528, -0.22735890746116638, 0.009180239401757717, 0.12131063640117645, 0.017114803194999695, 0.008020675741136074, -0.05659731850028038, -0.000005661779141519219, 0.0037369397468864918, -0.06063679978251457, -0.049753278493881226, -0.03530712425708771, 0.04431638866662979, -0.049765445291996, -0.1677362620830536, -0.07752151042222977, -0.052366290241479874, -0.02451212704181671, -0.02505919337272644, -0.11046893149614334, 0.01935010962188244, -0.032782044261693954, 0.015275309793651104, 0.26599130034446716, -0.05767285078763962, 0.05825309082865715, -0.08375921845436096, 0.22933422029018402, -0.07412087917327881, 0.09794914722442627, 0.052878960967063904, -0.06036042049527168, -0.035458315163850784, 0.10566026717424393, 0.17712073028087616, -0.002159576863050461, -0.009573251940310001, 0.016367843374609947, 0.014418489299714565, 0.07325176894664764, 0.010345609858632088, -0.06422983109951019, 0.11372528225183487, -0.053856220096349716, 0.102349653840065, -0.06338761746883392, -0.0516965426504612, -0.04970796778798103, -0.03875194489955902, 0.1700609028339386, -0.0354299396276474, -0.14562952518463135, 0.19436664879322052, -0.06749464571475983, 0.04221738874912262, 0.2576199769973755, -0.14156299829483032, -0.12716670334339142, -0.014451011084020138, 0.009949753992259502, -0.011572417803108692, 0.07836391776800156, -0.12711673974990845, -0.018864044919610023, 0.0305787343531847, 0.03642116114497185, -0.18777456879615784, -0.08636927604675293, 0.039086274802684784, -0.05210123956203461, 0.051408205181360245, -0.01194563414901495, 0.13094592094421387, 0.0971592590212822, -0.04720478504896164, -0.052861351519823074, 0.04670358821749687, -0.018006794154644012, 0.0607881061732769, -0.016753682866692543, 0.11834561079740524, -0.013787840493023396, -0.11207430064678192, 0.10266590863466263, -0.1306237131357193, -0.025634409859776497, 0.004936677869409323, -0.08454693108797073, -0.02924404665827751, 0.02346663922071457, -0.10185888409614563, 0.09451961517333984, 0.102320596575737, -0.010425235144793987, 0.005212150514125824, 0.014006118290126324, 0.08549170941114426, 0.07867472618818283, -0.05508185550570488, -0.000989940483123064, -0.003619587514549494, -0.029935352504253387, 0.0991506353020668, -0.04162539169192314, -0.20807863771915436, -0.023326775059103966, -0.06252097338438034, 0.04202408716082573, -0.05994424968957901, 0.10578908771276474, 0.13220451772212982, 0.056248076260089874, -0.05582854896783829, -0.2044612020254135, 0.062798872590065, 0.09257486462593079, -0.07080286741256714, -0.06775344163179398 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
crazyjeannot/mistradventures
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
2024-02-06T11:55:00+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 59, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.04788382723927498, 0.16171279549598694, -0.005352917592972517, 0.02136841043829918, 0.09686184674501419, 0.015111604705452919, 0.07137951999902725, 0.10955451428890228, -0.020038405433297157, 0.11244286596775055, 0.03330032527446747, 0.09441220015287399, 0.11357662081718445, 0.14772894978523254, -0.003575492650270462, -0.232261523604393, 0.05006932094693184, -0.1246371790766716, -0.03666049614548683, 0.11627218872308731, 0.15057805180549622, -0.10109459608793259, 0.0756460502743721, -0.030913641676306725, -0.009812407195568085, -0.033390406519174576, -0.05693698301911354, -0.04944330081343651, 0.05103539675474167, 0.07355327904224396, 0.06860782206058502, 0.004711335990577936, 0.09396199136972427, -0.2655787467956543, 0.020426444709300995, 0.07093948125839233, -0.0019974696915596724, 0.07591848820447922, 0.05331665277481079, -0.07516877353191376, 0.09268398582935333, -0.050851862877607346, 0.14750060439109802, 0.07999978214502335, -0.09178632497787476, -0.1916678249835968, -0.08780492842197418, 0.1011761948466301, 0.18467943370342255, 0.04421152547001839, -0.023150887340307236, 0.10070723295211792, -0.08664919435977936, 0.011689732782542706, 0.05446745082736015, -0.06747105717658997, -0.052418507635593414, 0.06491605937480927, 0.0793420672416687, 0.0767722949385643, -0.12429667264223099, -0.02174406498670578, 0.008611103519797325, 0.00887030828744173, 0.0814518854022026, 0.02427673526108265, 0.15523891150951385, 0.04025983437895775, -0.12765221297740936, -0.04938573017716408, 0.1069699227809906, 0.04103906825184822, -0.04726257547736168, -0.25091874599456787, -0.02940361201763153, -0.025307154282927513, -0.0306085217744112, -0.03984487056732178, 0.04118539020419121, -0.006947068031877279, 0.08044755458831787, -0.00699204858392477, -0.07604070007801056, -0.03760726749897003, 0.06074252352118492, 0.061373963952064514, 0.026066971942782402, -0.012132911942899227, 0.010845172218978405, 0.11657512187957764, 0.10491005331277847, -0.12471938878297806, -0.05219554528594017, -0.06468912214040756, -0.07947935909032822, -0.043697141110897064, 0.03412042558193207, 0.041996799409389496, 0.0503966324031353, 0.24876368045806885, 0.013237204402685165, 0.05510834604501724, 0.03997663035988808, 0.009734313935041428, 0.06435027718544006, 0.11203338205814362, -0.06008143350481987, -0.09627178311347961, -0.027062542736530304, 0.09033986181020737, 0.010054918937385082, -0.04071144387125969, -0.05739009380340576, 0.0623612105846405, 0.0185408778488636, 0.11882077902555466, 0.08993595838546753, 0.0032226061448454857, -0.07099147886037827, -0.06380297243595123, 0.1967260092496872, -0.16188356280326843, 0.047058627009391785, 0.0354633666574955, -0.038969624787569046, -0.0023125922307372093, 0.007358122151345015, 0.025436079129576683, -0.01989656314253807, 0.09119832515716553, -0.05659566447138786, -0.040517594665288925, -0.10913336277008057, -0.03569170460104942, 0.032513219863176346, 0.010858619585633278, -0.03217906504869461, -0.030786113813519478, -0.08418484032154083, -0.06755144894123077, 0.09449765086174011, -0.07364831864833832, -0.053648900240659714, -0.01785014383494854, -0.07429704070091248, 0.025341181084513664, 0.02034521847963333, 0.07678651064634323, -0.019926751032471657, 0.04245077818632126, -0.05644877254962921, 0.059700917452573776, 0.10742949694395065, 0.033078111708164215, -0.05497613549232483, 0.06192035973072052, -0.24182282388210297, 0.10019542276859283, -0.06878995895385742, 0.05493709444999695, -0.1513376086950302, -0.0262905303388834, 0.049252137541770935, 0.0076136840507388115, -0.010768214240670204, 0.13709646463394165, -0.21793904900550842, -0.028675777837634087, 0.16038778424263, -0.09573561698198318, -0.07581635564565659, 0.061356328427791595, -0.053495727479457855, 0.10603067278862, 0.041206974536180496, -0.0253668911755085, 0.06327881664037704, -0.1329721212387085, 0.0035808775573968887, -0.045546747744083405, -0.018045976758003235, 0.16059941053390503, 0.07648856192827225, -0.06927888095378876, 0.07070852816104889, 0.024078376591205597, -0.026113634929060936, -0.046159777790308, -0.018227294087409973, -0.1095207929611206, 0.010817212983965874, -0.060132887214422226, 0.02282119169831276, -0.025257518514990807, -0.09224134683609009, -0.028882192447781563, -0.17473143339157104, -0.01543671078979969, 0.0841502845287323, -0.008552714250981808, -0.019770942628383636, -0.11773128807544708, 0.014404429122805595, 0.038445498794317245, 0.0027449382469058037, -0.13180501759052277, -0.050576433539390564, 0.027280667796730995, -0.1619797945022583, 0.03360215947031975, -0.051585033535957336, 0.05001852661371231, 0.0318891666829586, -0.03249809890985489, -0.028068941086530685, 0.022396177053451538, 0.005391599610447884, -0.013861955143511295, -0.24684561789035797, -0.02524387463927269, -0.022996457293629646, 0.16599495708942413, -0.21521428227424622, 0.03807735815644264, 0.0733959823846817, 0.1517697423696518, 0.009051989763975143, -0.03698690980672836, 0.0017559787956997752, -0.07388318330049515, -0.03124045953154564, -0.05945143476128578, -0.007037308998405933, -0.03604515269398689, -0.05787331610918045, 0.047536347061395645, -0.16902238130569458, -0.02949199639260769, 0.10039274394512177, 0.06592373549938202, -0.13678009808063507, -0.022425442934036255, -0.034927621483802795, -0.04287220165133476, -0.05416050925850868, -0.05881212651729584, 0.10532104223966599, 0.05762924998998642, 0.04464157670736313, -0.0650712326169014, -0.07518194615840912, 0.00088359450455755, -0.020143218338489532, -0.023713968694210052, 0.09234753251075745, 0.07105407863855362, -0.126350998878479, 0.09208080917596817, 0.10551702976226807, 0.08511383831501007, 0.09815585613250732, -0.024149423465132713, -0.08191148191690445, -0.050659939646720886, 0.02379353903234005, 0.01600629836320877, 0.13259312510490417, -0.010838953778147697, 0.05292908474802971, 0.04124988242983818, -0.013232617639005184, 0.009245194494724274, -0.0925365537405014, 0.03198198601603508, 0.03315291553735733, -0.018429066985845566, 0.039537809789180756, -0.03881950303912163, 0.020082874223589897, 0.08976095914840698, 0.047349054366350174, 0.039120472967624664, 0.014505230821669102, -0.046636730432510376, -0.11192648112773895, 0.16611367464065552, -0.12793833017349243, -0.23291675746440887, -0.14571763575077057, 0.003718912834301591, 0.03641049191355705, -0.010390745475888252, 0.002204331336542964, -0.06504169851541519, -0.11800546944141388, -0.09107901155948639, 0.010856508277356625, 0.049631036818027496, -0.08566083759069443, -0.05643118917942047, 0.05523066222667694, 0.039479292929172516, -0.14542964100837708, 0.01921185478568077, 0.04928894340991974, -0.09167466312646866, -0.008233107626438141, 0.08074086904525757, 0.06674882769584656, 0.18043169379234314, 0.013242475688457489, -0.022343328222632408, 0.032658565789461136, 0.21998950839042664, -0.1353374421596527, 0.1128942146897316, 0.14020681381225586, -0.09332811832427979, 0.08355985581874847, 0.20060832798480988, 0.04187845438718796, -0.10058243572711945, 0.03296395763754845, 0.017997587099671364, -0.030420765280723572, -0.24256370961666107, -0.07092253863811493, -0.00026266687200404704, -0.0599735751748085, 0.07366035133600235, 0.08954169601202011, 0.09123681485652924, 0.01494339108467102, -0.0955287516117096, -0.080891452729702, 0.056770894676446915, 0.10385555773973465, 0.019311824813485146, -0.012641520239412785, 0.09103459119796753, -0.03278684988617897, 0.016931859776377678, 0.0904497355222702, 0.0008944828878156841, 0.17511117458343506, 0.058405566960573196, 0.18374158442020416, 0.0765325129032135, 0.07154922187328339, 0.015365427359938622, 0.009895091876387596, 0.017764348536729813, 0.02660132572054863, -0.0053646075539290905, -0.08453443646430969, -0.014433449134230614, 0.11945675313472748, 0.07353336364030838, 0.017197363078594208, 0.016192223876714706, -0.04000629484653473, 0.08344162255525589, 0.17407093942165375, -0.003780076280236244, -0.18052507936954498, -0.06431038677692413, 0.08350689709186554, -0.09346359968185425, -0.10017222911119461, -0.02494942955672741, 0.030767329037189484, -0.17044265568256378, 0.0249007735401392, -0.016930779442191124, 0.11206945031881332, -0.13528640568256378, -0.019095007330179214, 0.06340263038873672, 0.07177523523569107, -0.0006523873889818788, 0.058229442685842514, -0.16294988989830017, 0.10450614243745804, 0.012098570354282856, 0.06693841516971588, -0.09612328559160233, 0.09953869134187698, -0.005955029278993607, -0.010155374184250832, 0.1313311606645584, 0.009115277789533138, -0.07581817358732224, -0.07944932579994202, -0.09122282266616821, -0.009041238576173782, 0.126266211271286, -0.14647246897220612, 0.08482405543327332, -0.03597019985318184, -0.0416097566485405, 0.002930275397375226, -0.10596253722906113, -0.12220548838376999, -0.18631164729595184, 0.055513981729745865, -0.13507777452468872, 0.03854088857769966, -0.10657316446304321, -0.035541050136089325, -0.030116569250822067, 0.18516884744167328, -0.22976601123809814, -0.06906338781118393, -0.15047605335712433, -0.09873856604099274, 0.14586862921714783, -0.050321947783231735, 0.08481817692518234, -0.00589280528947711, 0.1804574877023697, 0.02166794426739216, -0.021489109843969345, 0.09810362011194229, -0.09247367084026337, -0.19692669808864594, -0.08017813414335251, 0.15722282230854034, 0.13640479743480682, 0.036161039024591446, -0.003470085794106126, 0.038310710340738297, -0.019128555431962013, -0.12300188839435577, 0.021808674558997154, 0.17748361825942993, 0.06226111575961113, 0.02378440462052822, -0.025610120967030525, -0.11692396551370621, -0.06900777667760849, -0.03363456577062607, 0.030739158391952515, 0.1859661191701889, -0.07158373296260834, 0.18602654337882996, 0.14774003624916077, -0.058341678231954575, -0.19670341908931732, 0.009590700268745422, 0.0356709361076355, 0.0062993373721838, 0.03402268886566162, -0.20171645283699036, 0.08260589838027954, -0.0000703737823641859, -0.05092230439186096, 0.12990811467170715, -0.1724688857793808, -0.15031461417675018, 0.07340911030769348, 0.036582015454769135, -0.191009521484375, -0.11979404836893082, -0.08877003937959671, -0.05305791646242142, -0.18255825340747833, 0.10235996544361115, 0.03505839407444, 0.007234846707433462, 0.033568330109119415, 0.030296791344881058, 0.016846131533384323, -0.03902881219983101, 0.19317437708377838, -0.025881100445985794, 0.03175598382949829, -0.08486942201852798, -0.0721178725361824, 0.04698624834418297, -0.05440608412027359, 0.07560842484235764, -0.02850610576570034, 0.010811456479132175, -0.10112031549215317, -0.04238447546958923, -0.02994711697101593, 0.014171373099088669, -0.09643256664276123, -0.0892103835940361, -0.04899745434522629, 0.09385206550359726, 0.09383191168308258, -0.03679990395903587, -0.033308759331703186, -0.0708332359790802, 0.04319954290986061, 0.1834612935781479, 0.1771630197763443, 0.04282272979617119, -0.07718019932508469, -0.004353965632617474, -0.012391943484544754, 0.04512987285852432, -0.216888889670372, 0.0646008849143982, 0.04998873919248581, 0.017488451674580574, 0.119838647544384, -0.02023271657526493, -0.15518377721309662, -0.06958208978176117, 0.06293158233165741, -0.05947147309780121, -0.19729353487491608, 0.005153949372470379, 0.05639190226793289, -0.16896353662014008, -0.04793788120150566, 0.04407742992043495, -0.004272493068128824, -0.04013913497328758, 0.019694777205586433, 0.08993566036224365, 0.003983452916145325, 0.06979537010192871, 0.057179566472768784, 0.08297405391931534, -0.10303977131843567, 0.07298099994659424, 0.08502772450447083, -0.07904176414012909, 0.02611508034169674, 0.09225213527679443, -0.05959508195519447, -0.03061521053314209, 0.024558385834097862, 0.08217264711856842, 0.011403042823076248, -0.04143837094306946, 0.011890463531017303, -0.10493540018796921, 0.061552610248327255, 0.0872589722275734, 0.033055905252695084, 0.014960144646465778, 0.0323425829410553, 0.04615075886249542, -0.06838563084602356, 0.12262481451034546, 0.028603000566363335, 0.01619773730635643, -0.039672788232564926, -0.04883408173918724, 0.023656455799937248, -0.03148266673088074, -0.006783190183341503, -0.034929223358631134, -0.07470342516899109, -0.017337948083877563, -0.16813358664512634, -0.015706919133663177, -0.04851626604795456, 0.01141374558210373, 0.030727919191122055, -0.039717670530080795, 0.008398020640015602, 0.007660517003387213, -0.0750393494963646, -0.06366884708404541, -0.022168075665831566, 0.09360232949256897, -0.16274383664131165, 0.0231650248169899, 0.08795329183340073, -0.12010334432125092, 0.093709796667099, 0.017991894856095314, -0.005580618511885405, 0.030415862798690796, -0.15203481912612915, 0.03863019123673439, -0.030480829998850822, 0.014001374132931232, 0.0430658757686615, -0.2246030569076538, -0.00014216898125596344, -0.03392428159713745, -0.06211007013916969, -0.008089113049209118, -0.03614491969347, -0.11279971152544022, 0.10460628569126129, 0.00755698699504137, -0.09058507531881332, -0.031222015619277954, 0.03175928816199303, 0.08461960405111313, -0.023131132125854492, 0.15904083847999573, -0.003058732021600008, 0.07367146760225296, -0.16738978028297424, -0.019550222903490067, -0.009911867789924145, 0.019858263432979584, -0.021036015823483467, -0.013049607165157795, 0.039891984313726425, -0.023009097203612328, 0.1832437962293625, -0.02614782750606537, 0.02115444466471672, 0.06662114709615707, 0.031309690326452255, -0.027116473764181137, 0.10507345199584961, 0.05415768921375275, 0.02187212184071541, 0.019098330289125443, 0.0009401091956533492, -0.04275880753993988, -0.026286903768777847, -0.20222914218902588, 0.06478860974311829, 0.14196400344371796, 0.09015882015228271, -0.019612208008766174, 0.082443006336689, -0.09847161918878555, -0.11266232281923294, 0.12008036673069, -0.05389230325818062, -0.005624994169920683, -0.06746947765350342, 0.1300724893808365, 0.1476544737815857, -0.19186675548553467, 0.07097877562046051, -0.06951600313186646, -0.049371387809515, -0.11596925556659698, -0.19563089311122894, -0.0579688623547554, -0.05182981118559837, -0.01601085439324379, -0.04734842851758003, 0.07465895265340805, 0.05611773207783699, 0.007687699515372515, -0.0008743742946535349, 0.06143457442522049, -0.025334985926747322, -0.00020855919865425676, 0.026871640235185623, 0.06543756276369095, 0.01277367677539587, -0.028740158304572105, 0.017883067950606346, -0.009029596112668514, 0.04200661554932594, 0.06335420906543732, 0.04628584161400795, -0.029481444507837296, 0.015326657332479954, -0.04012451693415642, -0.10723566263914108, 0.0419759564101696, -0.027193402871489525, -0.08225540816783905, 0.14785805344581604, 0.02399633452296257, 0.009130166843533516, -0.019807780161499977, 0.24066896736621857, -0.07349257171154022, -0.09820521622896194, -0.1490466147661209, 0.10572494566440582, -0.04344555735588074, 0.06301548331975937, 0.046267855912446976, -0.10314686596393585, 0.017511071637272835, 0.12181373685598373, 0.1645330935716629, -0.0424080528318882, 0.020746879279613495, 0.0270154420286417, 0.0042765699326992035, -0.03603396192193031, 0.05116730183362961, 0.06923956423997879, 0.15690730512142181, -0.04900969937443733, 0.09728439897298813, -0.0028536769095808268, -0.09575258195400238, -0.03706898167729378, 0.11544451117515564, -0.015991076827049255, 0.016934793442487717, -0.05673288553953171, 0.11960674822330475, -0.06204056739807129, -0.23141460120677948, 0.059825554490089417, -0.0669918954372406, -0.136424258351326, -0.021505871787667274, 0.08302503079175949, -0.012656555511057377, 0.027061283588409424, 0.07233231514692307, -0.07476846873760223, 0.1983826905488968, 0.036584943532943726, -0.05408371239900589, -0.05269603058695793, 0.08472228795289993, -0.10221095383167267, 0.2712222933769226, 0.01703515276312828, 0.05113283172249794, 0.10301852226257324, -0.012269208207726479, -0.13325491547584534, 0.021790657192468643, 0.09555859118700027, -0.09376159310340881, 0.04151248186826706, 0.19850991666316986, 0.00041501864325255156, 0.12115148454904556, 0.08070485293865204, -0.07617492228746414, 0.04874774441123009, -0.09502684324979782, -0.07229389250278473, -0.08947079628705978, 0.09731078147888184, -0.07675671577453613, 0.14196333289146423, 0.13027575612068176, -0.05282389745116234, 0.009622754529118538, -0.02872757986187935, 0.046359382569789886, 0.0037509698886424303, 0.1005694642663002, 0.008517593145370483, -0.18598082661628723, 0.021583275869488716, 0.013244304805994034, 0.10594569146633148, -0.1648784875869751, -0.09909144788980484, 0.03998237103223801, 0.0028793413657695055, -0.06011311709880829, 0.12933798134326935, 0.060960717499256134, 0.04498228803277016, -0.0423818863928318, -0.02333086170256138, -0.009747753851115704, 0.13612231612205505, -0.10099201649427414, 0.0027629989199340343 ]
null
null
transformers
# Quyen <img src="quyen.webp" width="512" height="512" alt="Quyen"> # Model Description Quyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions: - **Quyen-SE (0.5B)** - **Quyen-Mini (1.8B)** - **Quyen (4B)** - **Quyen-Plus (7B)** - **Quyen-Pro (14B)** - **Quyen-Pro-Max (72B)** All models were trained with SFT and DPO using the following dataset: - *OpenHermes-2.5* by **Teknium** - *Capyabara* by **LDJ** - *distilabel-intel-orca-dpo-pairs* by **argilla** - *orca_dpo_pairs* by **Intel** - and Private Data by **Ontocord** & **BEE-spoke-data** # Prompt Template - All Quyen models use ChatML as the default template: ``` <|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Hello world.<|im_end|> <|im_start|>assistant ``` - You can also use `apply_chat_template`: ```python messages = [ {"role": "system", "content": "You are a sentient, superintelligent artificial general intelligence, here to teach and assist me."}, {"role": "user", "content": "Hello world."} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` # Benchmarks: - Coming Soon! We will update the benchmarks later # Acknowledgement - We're incredibly grateful to **Tensoic** and **Ontocord** for their generous support with compute and data preparation.
{"language": ["en"], "license": "other", "library_name": "transformers", "datasets": ["teknium/OpenHermes-2.5", "LDJnr/Capybara", "Intel/orca_dpo_pairs", "argilla/distilabel-intel-orca-dpo-pairs"]}
null
vilm/Quyen-SE-v0.1-GGUF
[ "transformers", "gguf", "en", "dataset:teknium/OpenHermes-2.5", "dataset:LDJnr/Capybara", "dataset:Intel/orca_dpo_pairs", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "license:other", "endpoints_compatible", "region:us" ]
2024-02-06T11:55:19+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #dataset-teknium/OpenHermes-2.5 #dataset-LDJnr/Capybara #dataset-Intel/orca_dpo_pairs #dataset-argilla/distilabel-intel-orca-dpo-pairs #license-other #endpoints_compatible #region-us
# Quyen <img src="URL" width="512" height="512" alt="Quyen"> # Model Description Quyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions: - Quyen-SE (0.5B) - Quyen-Mini (1.8B) - Quyen (4B) - Quyen-Plus (7B) - Quyen-Pro (14B) - Quyen-Pro-Max (72B) All models were trained with SFT and DPO using the following dataset: - *OpenHermes-2.5* by Teknium - *Capyabara* by LDJ - *distilabel-intel-orca-dpo-pairs* by argilla - *orca_dpo_pairs* by Intel - and Private Data by Ontocord & BEE-spoke-data # Prompt Template - All Quyen models use ChatML as the default template: - You can also use 'apply_chat_template': # Benchmarks: - Coming Soon! We will update the benchmarks later # Acknowledgement - We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation.
[ "# Quyen\n<img src=\"URL\" width=\"512\" height=\"512\" alt=\"Quyen\">", "# Model Description\nQuyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions:\n\n- Quyen-SE (0.5B)\n- Quyen-Mini (1.8B)\n- Quyen (4B)\n- Quyen-Plus (7B)\n- Quyen-Pro (14B)\n- Quyen-Pro-Max (72B)\n\nAll models were trained with SFT and DPO using the following dataset:\n\n- *OpenHermes-2.5* by Teknium\n- *Capyabara* by LDJ\n- *distilabel-intel-orca-dpo-pairs* by argilla\n- *orca_dpo_pairs* by Intel\n- and Private Data by Ontocord & BEE-spoke-data", "# Prompt Template\n- All Quyen models use ChatML as the default template:\n\n\n\n- You can also use 'apply_chat_template':", "# Benchmarks:\n\n- Coming Soon! We will update the benchmarks later", "# Acknowledgement\n- We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation." ]
[ "TAGS\n#transformers #gguf #en #dataset-teknium/OpenHermes-2.5 #dataset-LDJnr/Capybara #dataset-Intel/orca_dpo_pairs #dataset-argilla/distilabel-intel-orca-dpo-pairs #license-other #endpoints_compatible #region-us \n", "# Quyen\n<img src=\"URL\" width=\"512\" height=\"512\" alt=\"Quyen\">", "# Model Description\nQuyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions:\n\n- Quyen-SE (0.5B)\n- Quyen-Mini (1.8B)\n- Quyen (4B)\n- Quyen-Plus (7B)\n- Quyen-Pro (14B)\n- Quyen-Pro-Max (72B)\n\nAll models were trained with SFT and DPO using the following dataset:\n\n- *OpenHermes-2.5* by Teknium\n- *Capyabara* by LDJ\n- *distilabel-intel-orca-dpo-pairs* by argilla\n- *orca_dpo_pairs* by Intel\n- and Private Data by Ontocord & BEE-spoke-data", "# Prompt Template\n- All Quyen models use ChatML as the default template:\n\n\n\n- You can also use 'apply_chat_template':", "# Benchmarks:\n\n- Coming Soon! We will update the benchmarks later", "# Acknowledgement\n- We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation." ]
[ 86, 27, 167, 33, 18, 31 ]
[ "passage: TAGS\n#transformers #gguf #en #dataset-teknium/OpenHermes-2.5 #dataset-LDJnr/Capybara #dataset-Intel/orca_dpo_pairs #dataset-argilla/distilabel-intel-orca-dpo-pairs #license-other #endpoints_compatible #region-us \n# Quyen\n<img src=\"URL\" width=\"512\" height=\"512\" alt=\"Quyen\"># Model Description\nQuyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions:\n\n- Quyen-SE (0.5B)\n- Quyen-Mini (1.8B)\n- Quyen (4B)\n- Quyen-Plus (7B)\n- Quyen-Pro (14B)\n- Quyen-Pro-Max (72B)\n\nAll models were trained with SFT and DPO using the following dataset:\n\n- *OpenHermes-2.5* by Teknium\n- *Capyabara* by LDJ\n- *distilabel-intel-orca-dpo-pairs* by argilla\n- *orca_dpo_pairs* by Intel\n- and Private Data by Ontocord & BEE-spoke-data# Prompt Template\n- All Quyen models use ChatML as the default template:\n\n\n\n- You can also use 'apply_chat_template':# Benchmarks:\n\n- Coming Soon! We will update the benchmarks later# Acknowledgement\n- We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation." ]
[ -0.08241596817970276, 0.17704914510250092, -0.005115823820233345, 0.054202403873205185, 0.08191234618425369, 0.027829596772789955, 0.13450995087623596, 0.14404238760471344, 0.09382212162017822, 0.024123258888721466, -0.027554595842957497, 0.08816935122013092, 0.10143426060676575, 0.08653288334608078, -0.03833650425076485, -0.22907765209674835, 0.022974522784352303, -0.04337107017636299, -0.07243666052818298, 0.048438381403684616, 0.08493779599666595, -0.03868303820490837, 0.08002032339572906, -0.002390362322330475, -0.04258319362998009, -0.04906371980905533, -0.03994647040963173, -0.05558367818593979, 0.10323192924261093, 0.049231499433517456, 0.06840138882398605, 0.05292508006095886, 0.020774969831109047, -0.20465146005153656, 0.036949798464775085, 0.017969006672501564, 0.009362658485770226, 0.05341649800539017, 0.0634971484541893, 0.03142356500029564, 0.03977608680725098, -0.026056664064526558, -0.008614745922386646, 0.03864794969558716, -0.07364128530025482, -0.1432935744524002, -0.14917518198490143, 0.000294844969175756, 0.06303980201482773, 0.010726256296038628, 0.01257536094635725, 0.12021616101264954, -0.021879930049180984, 0.014460205100476742, 0.10910627245903015, -0.28992173075675964, -0.05649101734161377, 0.06788551807403564, 0.06326276808977127, 0.037448711693286896, -0.07041046023368835, -0.0343715101480484, -0.0011932600755244493, 0.05501973256468773, -0.004159764852374792, -0.04138375073671341, 0.034263480454683304, -0.025746090337634087, -0.08300238102674484, 0.007697196677327156, 0.16187240183353424, 0.018105320632457733, -0.04718604311347008, -0.10543636977672577, -0.05528343841433525, 0.03675153851509094, -0.021381800994277, -0.045366596430540085, 0.022942449897527695, -0.01733294129371643, 0.04371338710188866, -0.051947031170129776, -0.09210672974586487, 0.018283870071172714, -0.036810584366321564, 0.04527071490883827, 0.047353487461805344, 0.023844365030527115, -0.07118111103773117, 0.03648730367422104, -0.04148034751415253, -0.07646043598651886, -0.08460193127393723, -0.15056882798671722, -0.07595515996217728, -0.045154232531785965, -0.008266876451671124, -0.04869196191430092, 0.15393534302711487, 0.2029474824666977, 0.007046973332762718, 0.05257083848118782, 0.020208237692713737, -0.045426059514284134, 0.04380594938993454, 0.07746673375368118, -0.02966717630624771, -0.11745826154947281, 0.04071582853794098, 0.0002810619480442256, -0.027748173102736473, -0.001601836527697742, -0.04133254662156105, 0.008485506288707256, -0.08584926277399063, 0.03522634878754616, 0.1010245829820633, 0.03843998163938522, -0.00016862609481904656, -0.10033022612333298, 0.24435043334960938, -0.08769360184669495, -0.007520397659391165, 0.0021234690211713314, -0.028065381571650505, 0.010625649243593216, -0.04058653861284256, 0.04789526388049126, -0.014423167333006859, -0.008146259002387524, -0.010828766971826553, -0.05823429301381111, -0.03370235860347748, -0.01872624270617962, 0.04746297374367714, 0.00563754653558135, -0.02268546260893345, -0.13803426921367645, -0.014958005398511887, -0.008053727447986603, 0.06083222106099129, -0.034222207963466644, -0.04475631192326546, 0.03906112536787987, -0.04396308213472366, -0.017977233976125717, -0.014631245285272598, -0.016755474731326103, -0.05411424860358238, -0.005889630876481533, 0.028445348143577576, 0.02401777356863022, -0.10299807786941528, 0.038701802492141724, -0.030226726084947586, 0.05392752215266228, -0.1475636065006256, 0.12852755188941956, -0.09084001183509827, 0.01683516800403595, -0.1044430136680603, -0.015562236309051514, 0.006436609197407961, -0.06369651108980179, 0.02216469869017601, 0.12031763792037964, -0.18424956500530243, 0.0008291446720249951, 0.24188566207885742, -0.10211645811796188, -0.10207367688417435, 0.0836123451590538, -0.004284481052309275, -0.040952593088150024, 0.024539893493056297, 0.11121833324432373, 0.23925291001796722, -0.10789503157138824, -0.0929478108882904, -0.03690730035305023, 0.0694771260023117, -0.058260299265384674, 0.07567410171031952, 0.021390067413449287, 0.06409772485494614, 0.043696753680706024, -0.03550591692328453, 0.012067093513906002, -0.004460887983441353, -0.06745374947786331, -0.04328180477023125, -0.06426037102937698, 0.005815625656396151, -0.056594368070364, -0.03910912573337555, 0.01760503649711609, 0.03335732966661453, -0.019344978034496307, 0.11623521894216537, -0.01780158467590809, -0.015314625576138496, -0.1512223780155182, 0.09963805973529816, 0.03238927572965622, 0.020250853151082993, -0.10662460327148438, -0.13406558334827423, 0.08814816921949387, -0.16925817728042603, 0.023425886407494545, 0.05892546847462654, 0.039804477244615555, 0.04489467665553093, -0.015618403442203999, 0.014358190819621086, 0.0017543371068313718, -0.004719902761280537, 0.013056538999080658, -0.10491770505905151, -0.05594053491950035, -0.06072906404733658, 0.18044301867485046, -0.10167668014764786, 0.02261943556368351, 0.008348854258656502, 0.12435939162969589, 0.07136468589305878, -0.017210161313414574, 0.004708246327936649, 0.027654379606246948, 0.019487496465444565, -0.036378778517246246, -0.0035834808368235826, 0.03625870496034622, -0.05030972883105278, 0.08444802463054657, -0.09784500300884247, -0.08822253346443176, 0.05597715824842453, 0.08471211791038513, 0.0441555418074131, -0.06954461336135864, -0.07291582226753235, -0.053830839693546295, 0.019088583067059517, 0.004229357466101646, 0.13335035741329193, 0.06006662920117378, 0.03856484964489937, -0.07011665403842926, -0.013388090766966343, 0.01575738936662674, -0.022834058851003647, -0.014758246950805187, 0.038934849202632904, 0.12043652683496475, -0.08580347150564194, -0.010679688304662704, 0.12471969425678253, 0.06106320023536682, 0.043712593615055084, -0.006405763328075409, -0.031169624999165535, -0.05103795975446701, 0.04254986718297005, 0.00618509529158473, 0.09332283586263657, -0.002828348893672228, 0.054318737238645554, 0.05965059995651245, 0.012544910423457623, 0.03963380679488182, -0.08014263212680817, 0.03201013058423996, -0.025502517819404602, -0.05948091670870781, 0.0036276821047067642, 0.014221299439668655, 0.02403154969215393, 0.05132260173559189, 0.016199862584471703, 0.03506600484251976, 0.028450101613998413, -0.02837951108813286, -0.051795896142721176, 0.09671992063522339, -0.12279609590768814, -0.19963225722312927, -0.14018766582012177, -0.11858129501342773, -0.09962455928325653, -0.009556918404996395, 0.04767255485057831, -0.04682767763733864, -0.047191884368658066, -0.01686401106417179, 0.021234124898910522, 0.08540137112140656, -0.053933847695589066, -0.033127520233392715, 0.0422472320497036, 0.05546629801392555, -0.08622017502784729, 0.01005023904144764, 0.012596234679222107, -0.10402458161115646, 0.08880980312824249, 0.005309234373271465, 0.04317294433712959, 0.034346386790275574, 0.013486063107848167, -0.04155591130256653, -0.010851351544260979, 0.26639074087142944, -0.0506381094455719, 0.08327928930521011, 0.1838780790567398, 0.026278385892510414, 0.08807969093322754, 0.21431474387645721, 0.05606831610202789, -0.05752544850111008, -0.018218936398625374, 0.0699121505022049, -0.012401261366903782, -0.3115815818309784, -0.06868534535169601, -0.05305670574307442, -0.005214734934270382, -0.012419546954333782, 0.07116840034723282, 0.02451052889227867, 0.08516693860292435, -0.07007773220539093, -0.0017609498463571072, 0.0017930760513991117, 0.05233985185623169, 0.12325511872768402, 0.04513584077358246, 0.04336918517947197, -0.04285123944282532, 0.013242682442069054, 0.11604632437229156, 0.16691215336322784, 0.20420107245445251, 0.03127991408109665, 0.10407627373933792, 0.0706987977027893, 0.207412987947464, 0.01712275855243206, -0.018567806109786034, 0.022552451118826866, 0.03227968513965607, 0.012523631565272808, -0.07222183793783188, -0.05959600955247879, 0.01625845953822136, 0.043821364641189575, -0.07381048053503036, 0.0005725399241782725, 0.09865844249725342, 0.027975035831332207, 0.2889106571674347, 0.020233845338225365, -0.10557883232831955, -0.04279773682355881, 0.01821688376367092, -0.06144505366683006, -0.0426069051027298, 0.017034318298101425, 0.09044087678194046, -0.1128825694322586, 0.07813624292612076, -0.05938553810119629, 0.08928870409727097, -0.15085075795650482, -0.009352874010801315, 0.09701502323150635, 0.0804106816649437, 0.055478472262620926, 0.03741033375263214, -0.1927531361579895, 0.14301957190036774, 0.01153501681983471, 0.012639941647648811, -0.04905383288860321, 0.07084374129772186, 0.016040081158280373, -0.033939462155103683, 0.03815900534391403, 0.020456165075302124, -0.1655920445919037, -0.023892434313893318, -0.12663142383098602, 0.0894237607717514, 0.07597852498292923, -0.08333862572908401, 0.10190830379724503, -0.050472091883420944, -0.02169138193130493, -0.05549709498882294, 0.03438656032085419, -0.11146543174982071, -0.14633727073669434, 0.10109435766935349, 0.047066692262887955, -0.010023443028330803, -0.058333706110715866, -0.0035571178887039423, -0.13095566630363464, 0.052765846252441406, -0.0885683000087738, -0.0838993489742279, -0.07182624936103821, -0.08168557286262512, 0.14303278923034668, -0.0664927139878273, 0.006201982498168945, -0.023980187252163887, 0.0897810235619545, 0.009252618998289108, -0.1016683503985405, -0.011838562786579132, -0.08294370025396347, -0.11452499032020569, -0.02400120161473751, 0.09432800114154816, 0.025637095794081688, 0.007162803318351507, 0.034940578043460846, -0.01875189319252968, -0.0038035293109714985, -0.09836413711309433, -0.041553303599357605, 0.10357347130775452, -0.0010327143827453256, 0.03309422731399536, -0.11225760728120804, -0.11793653666973114, -0.11822111904621124, 0.0014852792955935001, 0.016757618635892868, 0.2136375606060028, -0.04518335312604904, 0.12434062361717224, 0.11394590139389038, -0.0678911805152893, -0.11614397913217545, -0.07606751471757889, 0.06107373163104057, -0.03718484193086624, 0.0008627994102425873, -0.24030891060829163, 0.13089820742607117, 0.09257525950670242, -0.029591701924800873, 0.023252833634614944, -0.2067413330078125, -0.06853623688220978, -0.02414323389530182, 0.003207946429029107, -0.014263908378779888, -0.08721692115068436, -0.09505797177553177, -0.032070718705654144, -0.17680880427360535, 0.11796322464942932, -0.03007618896663189, 0.08488939702510834, 0.009758231230080128, 0.10347788780927658, 0.02424505352973938, -0.009312797337770462, 0.15800067782402039, 0.008715951815247536, 0.0024662145879119635, -0.07575114071369171, 0.051098182797431946, -0.019256647676229477, -0.0865151584148407, 0.003370290622115135, 0.0014271148247644305, 0.04140980914235115, -0.13050764799118042, -0.016678839921951294, -0.02181030809879303, 0.04349769651889801, -0.014995569363236427, -0.013876502402126789, -0.010481263510882854, 0.05755825713276863, 0.07159941643476486, 0.023757176473736763, -0.03433099761605263, -0.028949245810508728, 0.03311064839363098, 0.06108498573303223, 0.10212326049804688, -0.06016748026013374, -0.02016100101172924, -0.07748381793498993, 0.0017400016076862812, 0.005968110635876656, -0.011511104181408882, 0.06806117296218872, 0.1066201850771904, -0.02780047617852688, 0.0429064966738224, -0.0017028372967615724, -0.06971851736307144, 0.04399111121892929, 0.07818123698234558, -0.12828530371189117, -0.23412030935287476, 0.01252909004688263, 0.138489231467247, -0.09356674551963806, 0.06843234598636627, 0.18950824439525604, 0.03461794555187225, -0.04202612489461899, 0.016540182754397392, 0.04304691031575203, -0.019856378436088562, 0.07559946179389954, -0.02131710760295391, 0.009110678918659687, -0.10890913009643555, 0.05639263242483139, 0.11841265112161636, -0.06515998393297195, -0.022997887805104256, 0.08857689797878265, -0.06910122185945511, -0.07733882963657379, -0.06972035765647888, 0.023418858647346497, -0.051342688500881195, -0.07303622364997864, 0.02338344231247902, -0.04500037804245949, -0.004576331470161676, 0.06545556336641312, 0.014300958253443241, 0.04842321574687958, 0.0806935653090477, 0.00031221238896250725, -0.08824770897626877, 0.07843630760908127, -0.040014591068029404, 0.04705232009291649, -0.12553159892559052, -0.07583460956811905, -0.02828647568821907, 0.08064588159322739, -0.001742006978020072, -0.008393446914851665, -0.04047372564673424, -0.07198265194892883, -0.18042625486850739, 0.0839739739894867, -0.08773598074913025, 0.07115688920021057, 0.004376295488327742, -0.015690520405769348, -0.03725161403417587, -0.0023731824476271868, -0.07649145275354385, -0.025133969262242317, -0.05420948565006256, 0.11009913682937622, -0.14724762737751007, 0.0012375597143545747, 0.059791188687086105, -0.06001647561788559, 0.14508242905139923, 0.0336434431374073, -0.06011578440666199, -0.003127067117020488, 0.0035036997869610786, -0.01222183182835579, -0.05104536563158035, 0.10121192038059235, 0.056858960539102554, -0.11240363866090775, 0.009996742941439152, 0.015381714329123497, -0.05085635557770729, -0.01516815647482872, 0.07450099289417267, -0.11584896594285965, -0.0314539335668087, -0.015070977620780468, -0.06152841076254845, -0.013237904757261276, -0.007040270604193211, 0.09673471748828888, 0.009053109213709831, 0.07955413311719894, -0.0145075349137187, 0.03516872227191925, -0.13256317377090454, -0.025315890088677406, 0.0014439605874940753, 0.004485465586185455, -0.027168236672878265, -0.03265722095966339, 0.05264929309487343, 0.01993723399937153, 0.13312150537967682, -0.04193384200334549, 0.06775148212909698, -0.006613265722990036, -0.08820730447769165, -0.052845027297735214, 0.023099076002836227, 0.1372942328453064, 0.05187849700450897, -0.010623016394674778, 0.0421052947640419, -0.012264695018529892, -0.09167814254760742, 0.03580370545387268, 0.11109509319067001, 0.2328713983297348, 0.12679333984851837, -0.006819752510637045, 0.12411529570817947, -0.03637218102812767, -0.047449011355638504, 0.04944223910570145, -0.05435720458626747, 0.07107033580541611, -0.07843425869941711, 0.0851907804608345, 0.024070126935839653, -0.1542349010705948, 0.05494750291109085, -0.05213843658566475, -0.03421837463974953, -0.08429410308599472, -0.10596223920583725, -0.0807747021317482, -0.08672847598791122, -0.024954112246632576, -0.12488957494497299, -0.018379710614681244, 0.059492409229278564, 0.014041431248188019, -0.0462997741997242, 0.05212491378188133, -0.051641855388879776, -0.0197734497487545, 0.05131949856877327, 0.026835361495614052, 0.027124641463160515, 0.024597404524683952, -0.04111402481794357, 0.021261490881443024, 0.11612506210803986, 0.008048728108406067, 0.048244304955005646, 0.04689142107963562, 0.035622090101242065, -0.08253145217895508, -0.06426530331373215, 0.0020954562351107597, -0.005119883455336094, -0.02080199494957924, 0.08184769749641418, 0.041877079755067825, -0.02007703296840191, 0.016828395426273346, 0.221194326877594, -0.021165695041418076, -0.07431882619857788, -0.21880890429019928, 0.06542686372995377, -0.06769536435604095, -0.0014478685334324837, 0.025014767423272133, -0.06211712956428528, -0.032998085021972656, 0.1399465948343277, 0.17340317368507385, -0.038494110107421875, -0.012253183871507645, 0.04506656154990196, 0.006874479353427887, -0.05526340380311012, 0.1308419555425644, 0.06942156702280045, 0.18003951013088226, -0.00534792011603713, -0.03142224997282028, 0.021878190338611603, 0.05216270685195923, -0.0675194263458252, 0.09643951058387756, -0.05853044614195824, -0.03806279972195625, -0.012934587895870209, 0.11425376683473587, -0.11061606556177139, -0.14471641182899475, -0.01764051988720894, -0.07524852454662323, -0.15347826480865479, -0.027810219675302505, 0.07139234244823456, 0.029088499024510384, 0.027159763500094414, -0.003883250756189227, -0.03387387469410896, 0.2789854109287262, -0.014482018537819386, -0.041938986629247665, -0.002742263488471508, 0.10929696261882782, -0.03589166700839996, 0.16480275988578796, 0.013247150927782059, 0.07234005630016327, 0.09624138474464417, 0.010956378653645515, -0.16076651215553284, -0.027053801342844963, 0.06752904504537582, -0.1468294858932495, 0.008389963768422604, 0.09194505214691162, -0.011189359240233898, 0.07708672434091568, 0.10826843231916428, -0.01607423461973667, -0.015678800642490387, 0.04290756583213806, 0.0489739328622818, -0.07021696865558624, 0.10854464769363403, -0.1128375381231308, 0.11316053569316864, 0.1564047485589981, -0.04611745849251747, 0.032297033816576004, -0.03350384905934334, 0.049889881163835526, 0.0029359685722738504, 0.04426666349172592, -0.07480607181787491, -0.20871344208717346, -0.00511335302144289, -0.04353155195713043, 0.0866110771894455, -0.1165713518857956, -0.06817077845335007, 0.0330418199300766, -0.0012268655700609088, -0.020321698859333992, 0.13532480597496033, 0.07682805508375168, 0.011480361223220825, -0.058042146265506744, -0.02356351725757122, -0.0650835782289505, 0.10330601781606674, -0.12620407342910767, -0.059224922209978104 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # longformer-full_labels This model is a fine-tuned version of [allenai/longformer-base-4096](https://huggingface.co/allenai/longformer-base-4096) on the fancy_dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.4559 - B-claim: {'precision': 0.563573883161512, 'recall': 0.592057761732852, 'f1-score': 0.5774647887323944, 'support': 277.0} - B-majorclaim: {'precision': 0.6783216783216783, 'recall': 0.6879432624113475, 'f1-score': 0.6830985915492958, 'support': 141.0} - B-premise: {'precision': 0.7318840579710145, 'recall': 0.7878315132605305, 'f1-score': 0.7588279489105937, 'support': 641.0} - I-claim: {'precision': 0.6229029905178701, 'recall': 0.6280951213532728, 'f1-score': 0.6254882812499999, 'support': 4079.0} - I-majorclaim: {'precision': 0.7749520153550864, 'recall': 0.7912787849093582, 'f1-score': 0.7830303030303031, 'support': 2041.0} - I-premise: {'precision': 0.8733350519893444, 'recall': 0.8872108249672632, 'f1-score': 0.880218257405162, 'support': 11455.0} - O: {'precision': 0.9358730868059435, 'recall': 0.9031805929919138, 'f1-score': 0.9192362558981674, 'support': 9275.0} - Accuracy: 0.8414 - Macro avg: {'precision': 0.7401203948746357, 'recall': 0.753942551660934, 'f1-score': 0.7467663466822738, 'support': 27909.0} - Weighted avg: {'precision': 0.8430135535405677, 'recall': 0.8414131642122613, 'f1-score': 0.8420592397747768, 'support': 27909.0} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | B-claim | B-majorclaim | B-premise | I-claim | I-majorclaim | I-premise | O | Accuracy | Macro avg | Weighted avg | |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------:|:--------:|:--------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------------------:| | No log | 1.0 | 41 | 0.7149 | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.78, 'recall': 0.12168486739469579, 'f1-score': 0.2105263157894737, 'support': 641.0} | {'precision': 0.4322602280348759, 'recall': 0.3160088256925717, 'f1-score': 0.3651040929046877, 'support': 4079.0} | {'precision': 0.655011655011655, 'recall': 0.13767760901518863, 'f1-score': 0.22753036437246962, 'support': 2041.0} | {'precision': 0.7739614243323442, 'recall': 0.9107813182016586, 'f1-score': 0.8368157208742731, 'support': 11455.0} | {'precision': 0.7714782927276058, 'recall': 0.9081401617250674, 'f1-score': 0.8342494923983559, 'support': 9275.0} | 0.7347 | {'precision': 0.4875302285866402, 'recall': 0.34204182600416894, 'f1-score': 0.3534608551913228, 'support': 27909.0} | {'precision': 0.7030433744959903, 'recall': 0.7346734028449604, 'f1-score': 0.6955456863976865, 'support': 27909.0} | | No log | 2.0 | 82 | 0.5225 | {'precision': 1.0, 'recall': 0.0036101083032490976, 'f1-score': 0.007194244604316546, 'support': 277.0} | {'precision': 0.0, 'recall': 0.0, 'f1-score': 0.0, 'support': 141.0} | {'precision': 0.5974178403755869, 'recall': 0.7940717628705148, 'f1-score': 0.6818486269256531, 'support': 641.0} | {'precision': 0.5878859857482185, 'recall': 0.48541309144398137, 'f1-score': 0.5317577548005908, 'support': 4079.0} | {'precision': 0.5713286713286714, 'recall': 0.8005879470847623, 'f1-score': 0.6668026933278923, 'support': 2041.0} | {'precision': 0.8568883610451307, 'recall': 0.8817983413356613, 'f1-score': 0.8691649098653358, 'support': 11455.0} | {'precision': 0.9103982300884956, 'recall': 0.8873315363881401, 'f1-score': 0.8987168987168986, 'support': 9275.0} | 0.8046 | {'precision': 0.6462741555123005, 'recall': 0.550401826775187, 'f1-score': 0.522212161177241, 'support': 27909.0} | {'precision': 0.8056044053736185, 'recall': 0.8045791680103193, 'f1-score': 0.79762532633327, 'support': 27909.0} | | No log | 3.0 | 123 | 0.4772 | {'precision': 0.3696682464454976, 'recall': 0.2815884476534296, 'f1-score': 0.31967213114754095, 'support': 277.0} | {'precision': 0.5, 'recall': 0.03546099290780142, 'f1-score': 0.06622516556291391, 'support': 141.0} | {'precision': 0.6328502415458938, 'recall': 0.8174726989079563, 'f1-score': 0.7134104833219878, 'support': 641.0} | {'precision': 0.5862304021813224, 'recall': 0.42167197842608484, 'f1-score': 0.4905176101525738, 'support': 4079.0} | {'precision': 0.6843537414965987, 'recall': 0.739343459088682, 'f1-score': 0.7107866227037213, 'support': 2041.0} | {'precision': 0.8163045153336416, 'recall': 0.9248363160192056, 'f1-score': 0.8671878197519748, 'support': 11455.0} | {'precision': 0.9360631362232643, 'recall': 0.8823719676549865, 'f1-score': 0.9084249084249083, 'support': 9275.0} | 0.8103 | {'precision': 0.6464957547466027, 'recall': 0.5861065515225923, 'f1-score': 0.5823178201522315, 'support': 27909.0} | {'precision': 0.802583708395361, 'recall': 0.8102762549715146, 'f1-score': 0.8013901385980212, 'support': 27909.0} | | No log | 4.0 | 164 | 0.4488 | {'precision': 0.5658914728682171, 'recall': 0.5270758122743683, 'f1-score': 0.5457943925233645, 'support': 277.0} | {'precision': 0.7016129032258065, 'recall': 0.6170212765957447, 'f1-score': 0.6566037735849056, 'support': 141.0} | {'precision': 0.7223021582733813, 'recall': 0.7831513260530422, 'f1-score': 0.7514970059880239, 'support': 641.0} | {'precision': 0.617513973915358, 'recall': 0.5687668546212307, 'f1-score': 0.5921388463501787, 'support': 4079.0} | {'precision': 0.7118130679359584, 'recall': 0.8059774620284175, 'f1-score': 0.7559742647058824, 'support': 2041.0} | {'precision': 0.8770072042357434, 'recall': 0.8820602357049323, 'f1-score': 0.879526462395543, 'support': 11455.0} | {'precision': 0.9192902737206534, 'recall': 0.9161185983827493, 'f1-score': 0.917701695647478, 'support': 9275.0} | 0.8349 | {'precision': 0.7307758648821598, 'recall': 0.7285959379514979, 'f1-score': 0.7284623487421966, 'support': 27909.0} | {'precision': 0.8335253798176255, 'recall': 0.8348919703321509, 'f1-score': 0.8337959956301249, 'support': 27909.0} | | No log | 5.0 | 205 | 0.4640 | {'precision': 0.5582191780821918, 'recall': 0.5884476534296029, 'f1-score': 0.5729349736379613, 'support': 277.0} | {'precision': 0.6554054054054054, 'recall': 0.6879432624113475, 'f1-score': 0.6712802768166091, 'support': 141.0} | {'precision': 0.7219858156028369, 'recall': 0.7940717628705148, 'f1-score': 0.7563150074294205, 'support': 641.0} | {'precision': 0.5917790343627665, 'recall': 0.6670752635449865, 'f1-score': 0.6271752909991932, 'support': 4079.0} | {'precision': 0.7194337194337195, 'recall': 0.821656050955414, 'f1-score': 0.7671546203110705, 'support': 2041.0} | {'precision': 0.8933563260119805, 'recall': 0.85927542557835, 'f1-score': 0.8759845147510346, 'support': 11455.0} | {'precision': 0.9400022683452421, 'recall': 0.8935849056603774, 'f1-score': 0.9162060579261552, 'support': 9275.0} | 0.8348 | {'precision': 0.7257402496063061, 'recall': 0.7588649034929419, 'f1-score': 0.7410072488387778, 'support': 27909.0} | {'precision': 0.8435981381701836, 'recall': 0.834784478125336, 'f1-score': 0.8382376947318038, 'support': 27909.0} | | No log | 6.0 | 246 | 0.4562 | {'precision': 0.5625, 'recall': 0.5848375451263538, 'f1-score': 0.5734513274336284, 'support': 277.0} | {'precision': 0.6535947712418301, 'recall': 0.7092198581560284, 'f1-score': 0.6802721088435374, 'support': 141.0} | {'precision': 0.7414561664190193, 'recall': 0.7784711388455539, 'f1-score': 0.7595129375951294, 'support': 641.0} | {'precision': 0.6142331288343559, 'recall': 0.6136307918607502, 'f1-score': 0.6139318126073093, 'support': 4079.0} | {'precision': 0.7353071144498453, 'recall': 0.8152866242038217, 'f1-score': 0.7732342007434945, 'support': 2041.0} | {'precision': 0.8750758560901604, 'recall': 0.8811872544740288, 'f1-score': 0.8781209221400609, 'support': 11455.0} | {'precision': 0.937457969065232, 'recall': 0.9017789757412399, 'f1-score': 0.9192724075397045, 'support': 9275.0} | 0.8379 | {'precision': 0.7313750008714918, 'recall': 0.7549160269153967, 'f1-score': 0.7425422452718379, 'support': 27909.0} | {'precision': 0.8401726365373169, 'recall': 0.8379375828585761, 'f1-score': 0.838766626838381, 'support': 27909.0} | | No log | 7.0 | 287 | 0.4559 | {'precision': 0.563573883161512, 'recall': 0.592057761732852, 'f1-score': 0.5774647887323944, 'support': 277.0} | {'precision': 0.6783216783216783, 'recall': 0.6879432624113475, 'f1-score': 0.6830985915492958, 'support': 141.0} | {'precision': 0.7318840579710145, 'recall': 0.7878315132605305, 'f1-score': 0.7588279489105937, 'support': 641.0} | {'precision': 0.6229029905178701, 'recall': 0.6280951213532728, 'f1-score': 0.6254882812499999, 'support': 4079.0} | {'precision': 0.7749520153550864, 'recall': 0.7912787849093582, 'f1-score': 0.7830303030303031, 'support': 2041.0} | {'precision': 0.8733350519893444, 'recall': 0.8872108249672632, 'f1-score': 0.880218257405162, 'support': 11455.0} | {'precision': 0.9358730868059435, 'recall': 0.9031805929919138, 'f1-score': 0.9192362558981674, 'support': 9275.0} | 0.8414 | {'precision': 0.7401203948746357, 'recall': 0.753942551660934, 'f1-score': 0.7467663466822738, 'support': 27909.0} | {'precision': 0.8430135535405677, 'recall': 0.8414131642122613, 'f1-score': 0.8420592397747768, 'support': 27909.0} | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["fancy_dataset"], "metrics": ["accuracy"], "base_model": "allenai/longformer-base-4096", "model-index": [{"name": "longformer-full_labels", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "fancy_dataset", "type": "fancy_dataset", "config": "full_labels", "split": "test", "args": "full_labels"}, "metrics": [{"type": "accuracy", "value": 0.8414131642122613, "name": "Accuracy"}]}]}]}
token-classification
Theoreticallyhugo/longformer-full_labels
[ "transformers", "safetensors", "longformer", "token-classification", "generated_from_trainer", "dataset:fancy_dataset", "base_model:allenai/longformer-base-4096", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:00:08+00:00
[]
[]
TAGS #transformers #safetensors #longformer #token-classification #generated_from_trainer #dataset-fancy_dataset #base_model-allenai/longformer-base-4096 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
longformer-full\_labels ======================= This model is a fine-tuned version of allenai/longformer-base-4096 on the fancy\_dataset dataset. It achieves the following results on the evaluation set: * Loss: 0.4559 * B-claim: {'precision': 0.563573883161512, 'recall': 0.592057761732852, 'f1-score': 0.5774647887323944, 'support': 277.0} * B-majorclaim: {'precision': 0.6783216783216783, 'recall': 0.6879432624113475, 'f1-score': 0.6830985915492958, 'support': 141.0} * B-premise: {'precision': 0.7318840579710145, 'recall': 0.7878315132605305, 'f1-score': 0.7588279489105937, 'support': 641.0} * I-claim: {'precision': 0.6229029905178701, 'recall': 0.6280951213532728, 'f1-score': 0.6254882812499999, 'support': 4079.0} * I-majorclaim: {'precision': 0.7749520153550864, 'recall': 0.7912787849093582, 'f1-score': 0.7830303030303031, 'support': 2041.0} * I-premise: {'precision': 0.8733350519893444, 'recall': 0.8872108249672632, 'f1-score': 0.880218257405162, 'support': 11455.0} * O: {'precision': 0.9358730868059435, 'recall': 0.9031805929919138, 'f1-score': 0.9192362558981674, 'support': 9275.0} * Accuracy: 0.8414 * Macro avg: {'precision': 0.7401203948746357, 'recall': 0.753942551660934, 'f1-score': 0.7467663466822738, 'support': 27909.0} * Weighted avg: {'precision': 0.8430135535405677, 'recall': 0.8414131642122613, 'f1-score': 0.8420592397747768, 'support': 27909.0} Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 7 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.2.0+cu121 * Datasets 2.17.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #longformer #token-classification #generated_from_trainer #dataset-fancy_dataset #base_model-allenai/longformer-base-4096 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ 81, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #longformer #token-classification #generated_from_trainer #dataset-fancy_dataset #base_model-allenai/longformer-base-4096 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2" ]
[ -0.120241180062294, 0.13668285310268402, -0.0009501512395218015, 0.1436006873846054, 0.14020074903964996, 0.004525096155703068, 0.14373353123664856, 0.10744357854127884, -0.08074736595153809, 0.04952644929289818, 0.14386332035064697, 0.08751612901687622, 0.01760598085820675, 0.15146388113498688, -0.0757569670677185, -0.20092511177062988, 0.03326480835676193, 0.016271432861685753, -0.02558053284883499, 0.12412802129983902, 0.11336418241262436, -0.13255593180656433, 0.11160825937986374, 0.017820559442043304, -0.15841259062290192, -0.023348603397607803, 0.025713715702295303, -0.06581965833902359, 0.11608182638883591, 0.011370746418833733, 0.0909031480550766, 0.013728457503020763, 0.06792853027582169, -0.15028488636016846, 0.004809852223843336, 0.036625854671001434, 0.01324706431478262, 0.0787615180015564, 0.036175962537527084, -0.0029730850365012884, 0.011739352717995644, -0.0861796885728836, 0.05491085723042488, 0.019208353012800217, -0.13015243411064148, -0.23265376687049866, -0.10257408022880554, 0.0442744642496109, 0.08550296723842621, 0.092041976749897, 0.002439853036776185, 0.13314484059810638, -0.06553735584020615, 0.06043344736099243, 0.19212046265602112, -0.31260421872138977, -0.05604582279920578, 0.02160441130399704, 0.02355050854384899, 0.07709352672100067, -0.11337637901306152, -0.03758290410041809, 0.04758378490805626, 0.024912480264902115, 0.16613617539405823, -0.01780320145189762, -0.01940814219415188, 0.004690453875809908, -0.1205756664276123, -0.03111165016889572, 0.1797654628753662, 0.08568281680345535, -0.058931585401296616, -0.07564433664083481, -0.04412294924259186, -0.14745159447193146, -0.03721087425947189, -0.01761559024453163, 0.0443602055311203, -0.02116803638637066, -0.04634683206677437, -0.009887320920825005, -0.10621018707752228, -0.06600187718868256, -0.0535842664539814, 0.14351490139961243, 0.025900142267346382, 0.011584427207708359, -0.015551799908280373, 0.08000627905130386, -0.02952622063457966, -0.15278303623199463, -0.006215763743966818, 0.01959681324660778, 0.030919430777430534, -0.05678056925535202, -0.056123215705156326, -0.03887011110782623, 0.026404231786727905, 0.1326456218957901, -0.05249829962849617, 0.011712415143847466, 0.026657573878765106, 0.028812801465392113, -0.12036430090665817, 0.17109479010105133, -0.04906526952981949, -0.08530987799167633, 0.06398642063140869, 0.11207499355077744, 0.07381835579872131, 0.005440452601760626, -0.11067338287830353, -0.00045130145736038685, 0.12543636560440063, 0.01039147935807705, -0.05118517577648163, 0.04658178985118866, -0.08215764164924622, -0.02501324564218521, 0.07818232476711273, -0.08831969648599625, 0.018159940838813782, 0.004642178770154715, -0.08753838390111923, -0.10833927243947983, -0.007408561650663614, 0.030089929699897766, 0.01623193733394146, 0.054022036492824554, -0.09666981548070908, -0.00729027483612299, -0.06835931539535522, -0.09675335884094238, 0.007744386792182922, -0.05134870857000351, 0.046890128403902054, -0.1052120104432106, -0.20635582506656647, -0.011697959154844284, 0.03402326628565788, -0.028874853625893593, -0.056658804416656494, -0.05266104266047478, -0.06815577298402786, 0.008442162536084652, -0.008015434257686138, 0.055869560688734055, -0.08094193786382675, 0.08367834985256195, 0.059650976210832596, 0.06682946532964706, -0.0517873615026474, 0.043477777391672134, -0.1307930052280426, 0.04631583020091057, -0.1511801779270172, 0.014652729034423828, -0.016625866293907166, 0.0926264300942421, -0.09749951213598251, -0.09389357268810272, 0.023038284853100777, -0.024033036082983017, 0.05712142586708069, 0.09918582439422607, -0.11726135015487671, -0.04122243821620941, 0.14376568794250488, -0.08783098310232162, -0.20048822462558746, 0.13396331667900085, -0.0428377129137516, 0.06682660430669785, 0.06264302134513855, 0.15794172883033752, 0.12503881752490997, -0.043858110904693604, -0.006732902955263853, -0.027251020073890686, 0.05504780635237694, -0.07503834366798401, 0.1169755831360817, 0.010612322017550468, 0.0010598377557471395, 0.017496943473815918, -0.07231193780899048, 0.06492232531309128, -0.06035960093140602, -0.09599009156227112, -0.03738586604595184, -0.12624207139015198, 0.05482124909758568, 0.03038734197616577, 0.07953020930290222, -0.10888306796550751, -0.06469705700874329, 0.027880117297172546, 0.09666434675455093, -0.04844189062714577, 0.003276203293353319, -0.09245213121175766, 0.09831801056861877, -0.08289886265993118, -0.038344383239746094, -0.12578146159648895, -0.05292623117566109, 0.023041585460305214, -0.001057007466442883, -0.022129161283373833, -0.03958514332771301, 0.07796454429626465, 0.08197274059057236, -0.053089678287506104, -0.06675902009010315, -0.016757911071181297, 0.012218530289828777, -0.10933995246887207, -0.16481633484363556, -0.03355136886239052, -0.019821777939796448, 0.19117788970470428, -0.223521888256073, 0.0444808155298233, -0.019381992518901825, 0.06724489480257034, 0.04585355520248413, -0.009829193353652954, -0.02461347170174122, 0.04034886509180069, -0.033555880188941956, -0.06713919341564178, 0.04982380568981171, 0.027869146317243576, -0.10644911229610443, -0.026874544098973274, -0.1547054499387741, 0.2119908183813095, 0.1171155795454979, -0.011138105764985085, -0.048239853233098984, -0.013193028047680855, -0.02444368042051792, -0.04335177317261696, -0.03953203558921814, 0.012461812235414982, 0.09757120907306671, -0.0008519974071532488, 0.1625383496284485, -0.0900493785738945, -0.016494469717144966, 0.014464675448834896, -0.04690634831786156, 0.013354985974729061, 0.09687008708715439, -0.004741243086755276, -0.15620826184749603, 0.15771564841270447, 0.19621872901916504, -0.08062401413917542, 0.10972811281681061, -0.04188962280750275, -0.059035204350948334, -0.03735269606113434, 0.011365462094545364, 0.013613077811896801, 0.11211521178483963, -0.08017611503601074, 0.01552414707839489, 0.02913042902946472, 0.031033089384436607, -0.015154858119785786, -0.19000601768493652, -0.03646067529916763, 0.05329049006104469, -0.038787662982940674, -0.002890718635171652, -0.02351098135113716, 0.004162952769547701, 0.08265559375286102, 0.03346313163638115, -0.101955346763134, 0.07089274376630783, -0.0029625771567225456, -0.07945895195007324, 0.196186363697052, -0.073233462870121, -0.14844200015068054, -0.15378160774707794, -0.057367924600839615, -0.07642102241516113, 0.03139679133892059, 0.057710979133844376, -0.048319049179553986, -0.034578822553157806, -0.11871437728404999, -0.008147451095283031, 0.0335739329457283, 0.02198016084730625, 0.009668179787695408, -0.0026081723626703024, 0.09693797677755356, -0.08656500279903412, -0.016241366043686867, -0.012849433347582817, -0.017291242256760597, 0.0292767696082592, 0.04483093321323395, 0.10139305144548416, 0.10015706717967987, -0.009787492454051971, -0.01159606222063303, -0.01680642180144787, 0.24207495152950287, -0.05871296674013138, -0.031638868153095245, 0.19183099269866943, -0.00883771013468504, 0.0471113920211792, 0.14739570021629333, 0.05041362717747688, -0.09466711431741714, 0.02863098308444023, -0.0022906563244760036, -0.011975613422691822, -0.15002001821994781, -0.038898300379514694, -0.04752962663769722, -0.009009696543216705, 0.1106620654463768, 0.016236765310168266, 0.008116068318486214, 0.07959755510091782, 0.012269463390111923, 0.05790222808718681, -0.02330903522670269, 0.079993836581707, 0.11214347928762436, 0.059920087456703186, 0.1171555370092392, -0.02681511640548706, -0.0419410839676857, 0.03903321921825409, -0.00009260702790925279, 0.1728525608778, -0.020118210464715958, 0.2018793374300003, 0.022222254425287247, 0.21079348027706146, 0.004179602023214102, 0.056873295456171036, 0.003594897221773863, -0.04707241430878639, -0.003363425610587001, -0.0378103107213974, -0.06364580988883972, 0.03983872011303902, -0.07921372354030609, 0.12135594338178635, -0.12289005517959595, 0.04317418858408928, 0.04500652849674225, 0.2740308344364166, 0.06802702695131302, -0.3943268656730652, -0.12867794930934906, 0.022101838141679764, -0.01965923048555851, -0.047844428569078445, 0.006573915481567383, 0.11744457483291626, -0.07672890275716782, 0.020009931176900864, -0.06144445762038231, 0.06829475611448288, -0.02946949191391468, 0.03474346548318863, 0.051877498626708984, 0.08193086087703705, -0.0014259424060583115, 0.07082868367433548, -0.2483367770910263, 0.24703852832317352, 0.017060965299606323, 0.08219236135482788, -0.06233039125800133, -0.00455827172845602, 0.0324709452688694, 0.07790539413690567, 0.0781187117099762, -0.010674039833247662, -0.015245643444359303, -0.19172058999538422, -0.10353166610002518, 0.022344280034303665, 0.050088800489902496, -0.06666675955057144, 0.10363133251667023, -0.0539613701403141, 0.007510779425501823, 0.061128873378038406, 0.0037012712564319372, -0.018155597150325775, -0.08481702953577042, -0.020520059391856194, 0.07364826649427414, 0.049678556621074677, -0.0941825583577156, -0.07500116527080536, -0.07636071741580963, 0.1596056967973709, 0.02051742747426033, -0.03397997468709946, -0.10164381563663483, 0.06141367182135582, 0.054527826607227325, -0.09104751795530319, 0.05243527889251709, 0.007437045220285654, 0.09428254514932632, 0.05734473094344139, -0.026337673887610435, 0.11243695765733719, -0.07398870587348938, -0.1692468523979187, -0.04634995386004448, 0.1094653457403183, 0.011104004457592964, 0.040606096386909485, 0.019831933081150055, 0.024919426068663597, -0.052850253880023956, -0.06406067311763763, 0.0003519533493090421, -0.013940566219389439, 0.07881961762905121, 0.010772923938930035, -0.018084285780787468, 0.01691955327987671, -0.04316252842545509, -0.03781157359480858, 0.18365366756916046, 0.29995107650756836, -0.0826210230588913, 0.007231632713228464, 0.03580518811941147, -0.00894178356975317, -0.16521476209163666, 0.03156677633523941, 0.0182654932141304, 0.020151855424046516, 0.06371177732944489, -0.10744091868400574, 0.1358097344636917, 0.1069759875535965, -0.03488672897219658, 0.058780018240213394, -0.27620330452919006, -0.1184181496500969, 0.12370720505714417, 0.14135558903217316, 0.15264689922332764, -0.13188916444778442, -0.032748036086559296, -0.036799050867557526, -0.13571888208389282, 0.09524111449718475, -0.08505568653345108, 0.09695655107498169, -0.03401578962802887, 0.04450741037726402, 0.01519941259175539, -0.0530419796705246, 0.15566220879554749, -0.026713596656918526, 0.104572594165802, -0.06411958485841751, 0.010248967446386814, 0.06712157279253006, -0.08145222067832947, 0.05878426134586334, -0.11822392791509628, 0.047153349965810776, -0.0965106338262558, -0.02615603245794773, -0.06687275320291519, 0.02253600023686886, -0.021334242075681686, -0.053464509546756744, -0.03258943557739258, 0.04561925306916237, 0.06281580775976181, -0.007149939890950918, 0.15613773465156555, 0.04558491334319115, 0.10461325198411942, 0.10440364480018616, 0.08584660291671753, -0.08976873010396957, -0.04238411784172058, -0.015817562118172646, -0.02322930097579956, 0.06312239915132523, -0.10735675692558289, 0.0558457113802433, 0.10331164300441742, 0.00519385514780879, 0.13785503804683685, 0.06221098452806473, -0.0012249965220689774, 0.014151737093925476, 0.0764022022485733, -0.15003123879432678, -0.12818190455436707, -0.019520511850714684, -0.007716703228652477, -0.16803689301013947, 0.025004414841532707, 0.11777304112911224, -0.06987853348255157, -0.010513894259929657, -0.01914067193865776, 0.03430522605776787, -0.04523951932787895, 0.1671130210161209, 0.05215802788734436, 0.05009578913450241, -0.08591089397668839, 0.07108558714389801, 0.06770598143339157, -0.056188423186540604, -0.004705469589680433, 0.02065621316432953, -0.10078667104244232, -0.046676766127347946, 0.0468045212328434, 0.12186186015605927, -0.054339636117219925, -0.06048179417848587, -0.14889207482337952, -0.10097888112068176, 0.03133793920278549, 0.10259733349084854, 0.10592462122440338, 0.024563265964388847, -0.007810438051819801, -0.022769343107938766, -0.10156145691871643, 0.11487468332052231, 0.04281450808048248, 0.08518601208925247, -0.17452016472816467, 0.10720527172088623, -0.03181874752044678, 0.023225773125886917, -0.01221668254584074, 0.03965155407786369, -0.09698264300823212, -0.008028882555663586, -0.1392587125301361, 0.002782055176794529, -0.05049289017915726, 0.018763283267617226, -0.003365607000887394, -0.05067898705601692, -0.05494499206542969, 0.022701045498251915, -0.08987037092447281, -0.03452436998486519, 0.0387108214199543, 0.07087839394807816, -0.12345556914806366, -0.04063547030091286, 0.03657775744795799, -0.07305410504341125, 0.08109299093484879, 0.0319836363196373, 0.03987615555524826, 0.009734070859849453, -0.10638976842164993, 0.017499813809990883, 0.05543464422225952, 0.00767884124070406, 0.05118881165981293, -0.12291417270898819, -0.0063994815573096275, 0.022001056000590324, -0.012494723312556744, 0.026576528325676918, 0.09569253772497177, -0.12855446338653564, -0.010534376837313175, -0.015762915834784508, -0.01181165874004364, -0.06783465296030045, 0.001706541865132749, 0.07935433834791183, -0.006607509683817625, 0.23233024775981903, -0.06671053916215897, -0.00002753703847702127, -0.1877141147851944, -0.0013321122387424111, -0.035384293645620346, -0.11427079886198044, -0.14139749109745026, -0.037490084767341614, 0.050568077713251114, -0.03727273270487785, 0.09454300999641418, -0.009566521272063255, 0.010467955842614174, 0.03352471441030502, 0.015347679145634174, 0.06898532062768936, 0.028766827657818794, 0.2227337509393692, 0.023344796150922775, -0.04437173157930374, 0.09277740865945816, 0.03641384467482567, 0.10576741397380829, 0.11771878600120544, 0.14580337703227997, 0.18987980484962463, -0.0399252288043499, 0.08946917206048965, 0.01709573157131672, -0.03127724304795265, -0.17184953391551971, 0.05159208923578262, -0.04740157350897789, 0.07984763383865356, 0.0036563610192388296, 0.18540413677692413, 0.09114828705787659, -0.17386750876903534, 0.007332375273108482, -0.06543843448162079, -0.06475827842950821, -0.08381138741970062, -0.05799441784620285, -0.11008095741271973, -0.14094562828540802, -0.009533285163342953, -0.10731057822704315, -0.009450593963265419, 0.13674303889274597, -0.011706110090017319, -0.029252884909510612, 0.16996747255325317, -0.0031224535778164864, 0.024355009198188782, 0.027480147778987885, -0.011751490645110607, -0.027875207364559174, -0.04294978454709053, -0.0921730175614357, 0.00879562646150589, -0.033763788640499115, 0.048241909593343735, -0.06690423935651779, -0.016441253945231438, 0.02772824838757515, -0.02515268512070179, -0.11887479573488235, 0.01130856852978468, 0.01127710659056902, 0.04674393683671951, 0.036548394709825516, 0.02933969907462597, 0.02689051628112793, 0.004923392552882433, 0.27395355701446533, -0.07095620036125183, -0.04653293266892433, -0.11832766234874725, 0.19632509350776672, 0.031930480152368546, -0.02074434421956539, 0.018333978950977325, -0.10321491211652756, 0.0389145128428936, 0.17950335144996643, 0.15033423900604248, -0.11398792266845703, 0.01020658016204834, -0.03891381248831749, -0.02620275691151619, -0.04668622836470604, 0.06430628895759583, 0.11050516366958618, -0.022206831723451614, -0.07929910719394684, -0.019198082387447357, -0.05682104080915451, -0.013633796013891697, -0.06079960614442825, 0.07255072891712189, 0.0014522604178637266, 0.0354766771197319, -0.048215437680482864, 0.03989190235733986, -0.005526405293494463, -0.0762828066945076, 0.04762663692235947, -0.19392648339271545, -0.16518743336200714, -0.035734888166189194, 0.07770409435033798, 0.005145035684108734, 0.0554061233997345, -0.01632668264210224, 0.01265195943415165, 0.020369980484247208, -0.026136282831430435, -0.05060914531350136, -0.09211965650320053, 0.09983263164758682, -0.04509451985359192, 0.2501789927482605, -0.030870860442519188, 0.0250308346003294, 0.12888213992118835, 0.033404383808374405, -0.13085539638996124, 0.08417564630508423, 0.045504938811063766, -0.044524963945150375, 0.05811069905757904, 0.08881320059299469, -0.029146181419491768, 0.1324063092470169, 0.05852465331554413, -0.1429891586303711, -0.018322182819247246, -0.04474937543272972, -0.051486819982528687, -0.05208836495876312, -0.06724723428487778, -0.03559081628918648, 0.15205194056034088, 0.16913622617721558, -0.07104471325874329, -0.020773841068148613, -0.036387812346220016, 0.04367423430085182, 0.08955409377813339, 0.026788121089339256, -0.04049575701355934, -0.2360270619392395, 0.020446186885237694, 0.05273965001106262, -0.005185096990317106, -0.26949524879455566, -0.10093572735786438, -0.014051590114831924, -0.05433566868305206, -0.07343533635139465, 0.08243103325366974, 0.11281496286392212, 0.03915322944521904, -0.07152481377124786, -0.028421882539987564, -0.09239287674427032, 0.14411816000938416, -0.12221681326627731, -0.12154107540845871 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llama_questioner_DPO_noSFT__intermediate_EOS This model is a fine-tuned version of [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2620 - Rewards/chosen: -3.4440 - Rewards/rejected: -9.5499 - Rewards/accuracies: 0.8885 - Rewards/margins: 6.1059 - Logps/rejected: -172.2747 - Logps/chosen: -126.3119 - Logits/rejected: -0.1549 - Logits/chosen: -0.2189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.3319 | 1.0 | 956 | 0.2620 | -3.4440 | -9.5499 | 0.8885 | 6.1059 | -172.2747 | -126.3119 | -0.1549 | -0.2189 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.15.0 - Tokenizers 0.15.0
{"library_name": "peft", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "meta-llama/Llama-2-7b-chat-hf", "model-index": [{"name": "llama_questioner_DPO_noSFT__intermediate_EOS", "results": []}]}
null
mazzaqq/llama_questioner_DPO_noSFT__intermediate_eos
[ "peft", "safetensors", "trl", "dpo", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-chat-hf", "region:us" ]
2024-02-06T12:01:10+00:00
[]
[]
TAGS #peft #safetensors #trl #dpo #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us
llama\_questioner\_DPO\_noSFT\_\_intermediate\_EOS ================================================== This model is a fine-tuned version of meta-llama/Llama-2-7b-chat-hf on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.2620 * Rewards/chosen: -3.4440 * Rewards/rejected: -9.5499 * Rewards/accuracies: 0.8885 * Rewards/margins: 6.1059 * Logps/rejected: -172.2747 * Logps/chosen: -126.3119 * Logits/rejected: -0.1549 * Logits/chosen: -0.2189 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 4 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 1 ### Training results ### Framework versions * PEFT 0.7.1 * Transformers 4.36.2 * Pytorch 2.1.2 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#peft #safetensors #trl #dpo #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 47, 144, 4, 36 ]
[ "passage: TAGS\n#peft #safetensors #trl #dpo #generated_from_trainer #base_model-meta-llama/Llama-2-7b-chat-hf #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.12916281819343567, 0.07392964512109756, -0.0029901962261646986, 0.09480233490467072, 0.1360197216272354, 0.00814580637961626, 0.11700741201639175, 0.12778472900390625, -0.12691551446914673, 0.08203292638063431, 0.11960148066282272, 0.09867014735937119, 0.03978561609983444, 0.2144346535205841, -0.05821109563112259, -0.2595474123954773, 0.021539948880672455, -0.017482109367847443, -0.08787336200475693, 0.11916456371545792, 0.08407017588615417, -0.13035817444324493, 0.08158900588750839, -0.023584526032209396, -0.17365658283233643, -0.0028531381394714117, -0.016293786466121674, -0.03691114857792854, 0.10958810150623322, -0.005870973691344261, 0.1293400377035141, 0.044701118022203445, 0.10819754004478455, -0.18316015601158142, 0.007792307995259762, 0.08238701522350311, 0.021247053518891335, 0.08585904538631439, 0.07485464960336685, -0.017570864409208298, 0.10038672387599945, -0.10510840266942978, 0.06788898259401321, 0.017114905640482903, -0.14700885117053986, -0.2769482135772705, -0.11295174062252045, 0.04717056453227997, 0.10372599214315414, 0.07044940441846848, -0.016370704397559166, 0.16320115327835083, -0.061994437128305435, 0.0848991721868515, 0.3064214885234833, -0.27716249227523804, -0.07440853863954544, 0.05179190635681152, 0.0025672693736851215, 0.09222584962844849, -0.1065848171710968, -0.022031376138329506, 0.06253046542406082, 0.03486177325248718, 0.11631658673286438, -0.004158171359449625, -0.021898178383708, -0.003032495966181159, -0.14690425992012024, -0.030722038820385933, 0.1316974014043808, 0.04073607176542282, -0.03885645046830177, -0.020845966413617134, -0.07275024056434631, -0.2170199304819107, -0.042521681636571884, -0.02601088583469391, 0.057661022990942, -0.06151442602276802, -0.076715849339962, 0.02779916487634182, -0.07154179364442825, -0.08881328999996185, -0.007542822510004044, 0.17580944299697876, 0.059426117688417435, 0.0161870326846838, -0.024422412738204002, 0.12704092264175415, -0.023434333503246307, -0.1630188226699829, -0.013673052191734314, 0.008189527317881584, -0.036866720765829086, -0.05529271066188812, -0.049666035920381546, -0.019004248082637787, 0.01610395684838295, 0.149766743183136, -0.14638406038284302, 0.07295119762420654, -0.0005585113540291786, 0.01764032617211342, -0.07116193324327469, 0.12659239768981934, -0.07650024443864822, 0.007840103469789028, -0.008643465116620064, 0.09983452409505844, 0.025455646216869354, -0.0019455498550087214, -0.07018589228391647, 0.042417675256729126, 0.11358021944761276, 0.03451715037226677, -0.05976209416985512, 0.03670486807823181, -0.04169211909174919, -0.01703578606247902, 0.056085530668497086, -0.11652866005897522, 0.036369819194078445, 0.020863467827439308, -0.09294050186872482, -0.03370044752955437, 0.002896400634199381, 0.010780679062008858, 0.006549193989485502, 0.12659303843975067, -0.08885543048381805, 0.02760252356529236, -0.07587742060422897, -0.11225645244121552, 0.01046903058886528, -0.06594954431056976, -0.001771741546690464, -0.09408574551343918, -0.14689640700817108, -0.03531237691640854, 0.04007737338542938, -0.06885741651058197, -0.022818902507424355, -0.06218956783413887, -0.10395760089159012, 0.011276881210505962, -0.014978758990764618, 0.1058216318488121, -0.07713517546653748, 0.10973510146141052, 0.03186419978737831, 0.0704447478055954, -0.024085048586130142, 0.029729152098298073, -0.08032079041004181, 0.04815232753753662, -0.27070239186286926, 0.04632854089140892, -0.062193188816308975, 0.06022516265511513, -0.1031554788351059, -0.10055436939001083, -0.015183677896857262, -0.029981359839439392, 0.11379269510507584, 0.14183717966079712, -0.1826193481683731, -0.05941709503531456, 0.2152470499277115, -0.1028715968132019, -0.12335716187953949, 0.11091762036085129, -0.04153791069984436, 0.0015804240247234702, 0.05841711163520813, 0.20314674079418182, 0.04377444460988045, -0.13870275020599365, -0.017551342025399208, -0.06211084499955177, 0.08138736337423325, -0.010362214408814907, 0.07635565847158432, -0.009533902630209923, 0.030841458588838577, 0.008284829556941986, -0.027408642694354057, 0.03413809463381767, -0.11966903507709503, -0.07416591793298721, -0.03412807360291481, -0.09084544330835342, 0.03590208292007446, 0.055764470249414444, 0.05663265660405159, -0.12450346350669861, -0.08458933979272842, 0.04894627258181572, 0.10933390259742737, -0.05798032134771347, 0.03309651091694832, -0.05714680999517441, 0.09280296415090561, -0.0538213737308979, -0.02189306914806366, -0.17960014939308167, -0.06957237422466278, 0.024571506306529045, 0.016519345343112946, -0.011634753085672855, -0.04487275704741478, 0.08972156792879105, 0.0895104929804802, -0.0765652060508728, -0.03502460569143295, -0.06447732448577881, -0.0035856927279382944, -0.11940325796604156, -0.2411545068025589, -0.04110779985785484, -0.04130423814058304, 0.13397285342216492, -0.211748868227005, 0.02678259089589119, 0.01885511912405491, 0.1374054104089737, 0.03918986767530441, -0.04826783388853073, -0.02082260698080063, 0.06089269369840622, -0.01788029819726944, -0.08341802656650543, 0.02868754416704178, -0.0014655477134510875, -0.05292826145887375, -0.037168748676776886, -0.13953937590122223, 0.1510993391275406, 0.12160792946815491, 0.001991945318877697, -0.12023308873176575, -0.026199979707598686, -0.07736746221780777, -0.033682018518447876, -0.06651922315359116, 0.029157167300581932, 0.12014980614185333, 0.009392689913511276, 0.12691520154476166, -0.10162299126386642, -0.04318588227033615, 0.03814316540956497, -0.02893105521798134, 0.024068549275398254, 0.11578398942947388, 0.06216384470462799, -0.09813763201236725, 0.13580675423145294, 0.1301378607749939, -0.05257052183151245, 0.11763935536146164, -0.06325874477624893, -0.09374088793992996, -0.03442120552062988, 0.0251484252512455, 0.010118863545358181, 0.15693674981594086, -0.025273876264691353, 0.015667159110307693, 0.006592843681573868, 0.03909315913915634, 0.007162547204643488, -0.19950537383556366, -0.03163566440343857, 0.024836106225848198, -0.057768914848566055, -0.03395434468984604, -0.032230623066425323, 0.02473137155175209, 0.12602004408836365, 0.011179621331393719, -0.08063208311796188, -0.009249772876501083, 0.010539673268795013, -0.06998289376497269, 0.20724153518676758, -0.08940067142248154, -0.08607467263936996, -0.04605481028556824, -0.0017827668925747275, -0.04569626972079277, 0.0023389749694615602, 0.05320751294493675, -0.10332935303449631, -0.01867538131773472, -0.10268229991197586, -0.011098860763013363, 0.014955185353755951, 0.0448797307908535, 0.028642432764172554, -0.002940785139799118, 0.07860225439071655, -0.09390294551849365, -0.00447096535935998, -0.05803503468632698, -0.021697308868169785, 0.047515030950307846, 0.030881782993674278, 0.09687379747629166, 0.1537998765707016, -0.008833061903715134, 0.04490234702825546, -0.03291391208767891, 0.21122588217258453, -0.07953997701406479, -0.03110624849796295, 0.065249964594841, 0.007848373614251614, 0.06279503554105759, 0.14392544329166412, 0.05280230566859245, -0.12067454308271408, 0.016190482303500175, 0.04993328079581261, -0.042153310030698776, -0.20438799262046814, -0.041951894760131836, -0.02165854163467884, 0.001830707653425634, 0.09303522855043411, 0.03428705036640167, -0.005711166188120842, 0.032409194856882095, 0.0020553977228701115, 0.006326508708298206, -0.009010647423565388, 0.07153032720088959, -0.0041834646835923195, 0.05297572538256645, 0.110990509390831, -0.03345172852277756, -0.0413898229598999, 0.0355086550116539, -0.01690724305808544, 0.21932916343212128, -0.037896350026130676, 0.0662272721529007, 0.037469878792762756, 0.17654870450496674, -0.02698269672691822, 0.07162000238895416, 0.02184470370411873, -0.04443689435720444, 0.0020141401328146458, -0.06274419277906418, -0.010903701186180115, 0.0335000604391098, -0.03826944902539253, 0.04516248032450676, -0.1365056037902832, 0.022524144500494003, 0.06604113429784775, 0.2968127131462097, 0.08120932430028915, -0.35413023829460144, -0.06715884804725647, -0.0028115054592490196, 0.007562239188700914, -0.021264787763357162, 0.01199364010244608, 0.12691660225391388, -0.059972863644361496, 0.07681462913751602, -0.062534861266613, 0.07302015274763107, -0.025147024542093277, 0.021054308861494064, 0.055659420788288116, 0.09946317225694656, -0.031836967915296555, 0.028405020013451576, -0.24231155216693878, 0.2960760295391083, 0.024044934660196304, 0.07550978660583496, -0.03577735275030136, -0.01192582305520773, 0.016683096066117287, 0.06042002886533737, 0.06751199811697006, -0.006033368408679962, -0.08339402079582214, -0.20511466264724731, -0.11412299424409866, 0.027005568146705627, 0.13609741628170013, -0.044737767428159714, 0.11738654226064682, 0.0042493753135204315, -0.004802265204489231, 0.05065441131591797, -0.054453928023576736, -0.09647972136735916, -0.030008988454937935, 0.0072386907413601875, 0.0032736812718212605, -0.018033813685178757, -0.07529012858867645, -0.10787057131528854, -0.08351583778858185, 0.14725863933563232, 0.026831183582544327, -0.04744242504239082, -0.13652878999710083, 0.09206636995077133, 0.1036834567785263, -0.07288249582052231, 0.0183525662869215, 0.031877320259809494, 0.07233156263828278, 0.026897167786955833, -0.04928036034107208, 0.13574278354644775, -0.05277162045240402, -0.21092073619365692, -0.05128975212574005, 0.13309410214424133, 0.0693233534693718, 0.049660906195640564, -0.020099347457289696, 0.03133876249194145, 0.029871001839637756, -0.0855550542473793, 0.05100662261247635, 0.0001818257587729022, 0.08150218427181244, 0.04353170469403267, -0.017641058191657066, 0.05864918231964111, -0.06415904313325882, -0.013158421032130718, 0.10703615099191666, 0.35059183835983276, -0.08592715859413147, 0.023558637127280235, 0.032866109162569046, -0.04082604870200157, -0.16908124089241028, 0.04549608752131462, 0.08521236479282379, -0.010195821523666382, 0.036490850150585175, -0.16113780438899994, 0.05759989842772484, 0.11961101740598679, -0.031382426619529724, 0.109103724360466, -0.32654616236686707, -0.1313122659921646, 0.10158562660217285, 0.13140009343624115, 0.07042723894119263, -0.17467495799064636, -0.03046269901096821, -0.00626537436619401, -0.1037173941731453, 0.08494213223457336, -0.1537480503320694, 0.10047597438097, -0.01730337180197239, 0.0383090041577816, 0.028420036658644676, -0.05335110053420067, 0.14341971278190613, 0.016244210302829742, 0.11380615085363388, -0.0439876951277256, 0.02060553804039955, 0.047650013118982315, -0.07881598174571991, 0.036796942353248596, -0.036504827439785004, 0.04605519026517868, -0.07224351912736893, -0.004435908515006304, -0.09491802006959915, 0.01404599379748106, -0.033405520021915436, -0.05726035311818123, -0.054060693830251694, 0.03596365079283714, 0.05790213122963905, -0.016738882288336754, 0.16329291462898254, 0.012304808013141155, 0.1810423582792282, 0.14539556205272675, 0.041510168462991714, -0.05954276770353317, -0.022273527458310127, 0.022148635238409042, -0.014824257232248783, 0.04819202050566673, -0.16196641325950623, 0.04217458888888359, 0.138678178191185, 0.031482208520174026, 0.1061021238565445, 0.07342401891946793, -0.07283204048871994, 0.004251111764460802, 0.06691689044237137, -0.17042019963264465, -0.09883711487054825, 0.012035949155688286, -0.007370111998170614, -0.12294212728738785, 0.08445129543542862, 0.12233094125986099, -0.06977749615907669, -0.011362003162503242, -0.008013198152184486, 0.038430120795965195, -0.04767438396811485, 0.23886188864707947, 0.05957038700580597, 0.06459372490644455, -0.10881723463535309, 0.10141505300998688, 0.041934333741664886, -0.06966638565063477, 0.04406202211976051, 0.09240128844976425, -0.08170343190431595, -0.010007008910179138, 0.09426449984312057, 0.1486586034297943, -0.02365095540881157, -0.03664805740118027, -0.16549904644489288, -0.12016411125659943, 0.07818902283906937, 0.1632167249917984, 0.07085904479026794, 0.024415530264377594, 0.01405654102563858, 0.018250515684485435, -0.14509068429470062, 0.09088467806577682, 0.06762336939573288, 0.09189113229513168, -0.14485836029052734, 0.15524007380008698, -0.01945578306913376, 0.038254618644714355, -0.02378188446164131, 0.03153238818049431, -0.13477520644664764, 0.020410457625985146, -0.11642446368932724, -0.03213207796216011, -0.03711649030447006, -0.013123458251357079, -0.004088545683771372, -0.055027689784765244, -0.054169829934835434, 0.015679026022553444, -0.12529832124710083, -0.029311569407582283, 0.009247377514839172, 0.015131928957998753, -0.1445913314819336, -0.03844671696424484, 0.01112126000225544, -0.08949735015630722, 0.084618479013443, 0.06782254576683044, 0.032859206199645996, 0.03759757801890373, -0.09926731139421463, 0.008923396468162537, 0.06762132793664932, -0.03125007823109627, 0.07545297592878342, -0.11600352823734283, -0.028018934652209282, -0.028452370315790176, 0.046908535063266754, 0.029128670692443848, 0.09050443768501282, -0.1263030767440796, 0.012489702552556992, -0.03643256798386574, -0.053606778383255005, -0.03720593824982643, 0.020408734679222107, 0.07110467553138733, 0.027819257229566574, 0.1268872320652008, -0.08599958568811417, 0.027935542166233063, -0.2277468591928482, -0.029078621417284012, -0.00581436138600111, -0.08240731060504913, -0.049587417393922806, -0.004971807822585106, 0.09901819378137589, -0.06038914620876312, 0.08681032806634903, -0.0037196374032646418, 0.058945927768945694, 0.04290793836116791, -0.0712951198220253, 0.013888941146433353, 0.05010463669896126, 0.15387073159217834, 0.025774456560611725, -0.049213893711566925, 0.07723750919103622, 0.04433233663439751, 0.11558971554040909, 0.10567190498113632, 0.25181782245635986, 0.1391741931438446, 0.011113418266177177, 0.08439163863658905, 0.036547400057315826, -0.11576270312070847, -0.13142800331115723, 0.04793965816497803, -0.051802858710289, 0.0920988917350769, -0.012827270664274693, 0.1514998823404312, 0.11180706322193146, -0.17744670808315277, 0.01596209779381752, -0.05361812561750412, -0.09101593494415283, -0.12231093645095825, -0.0019649744499474764, -0.08633676171302795, -0.18740516901016235, 0.003967572469264269, -0.11874794214963913, 0.030932562425732613, 0.11922204494476318, 0.02115773968398571, 0.033493947237730026, 0.17368946969509125, 0.048273518681526184, 0.03484634682536125, 0.052292026579380035, 0.02284126915037632, -0.021426590159535408, -0.03468281403183937, -0.10045316070318222, 0.02955840341746807, -0.02755291387438774, 0.03503752872347832, -0.048769742250442505, -0.05797966942191124, 0.060515083372592926, 0.010389361530542374, -0.1091483011841774, 0.024506142362952232, 0.02303001843392849, 0.06128164753317833, 0.030210645869374275, 0.0255022794008255, 0.006713502574712038, -0.025296326726675034, 0.23626171052455902, -0.08206772804260254, -0.03351018205285072, -0.11960963159799576, 0.2835630476474762, 0.047996435314416885, -0.0010048452531918883, 0.031475748866796494, -0.10803623497486115, -0.021837839856743813, 0.13461370766162872, 0.17678849399089813, -0.06424804031848907, -0.0030532239470630884, -0.03466319292783737, -0.01125243492424488, -0.03509772941470146, 0.09948185831308365, 0.1199951097369194, 0.012776819989085197, -0.09074445813894272, -0.020843567326664925, -0.042403001338243484, -0.023427646607160568, -0.04105305299162865, 0.04084935411810875, 0.031729429960250854, 0.020397979766130447, -0.055478230118751526, 0.07921329140663147, -0.04627320170402527, -0.11495909094810486, 0.07262860238552094, -0.2085556536912918, -0.17294642329216003, -0.020948665216565132, 0.03989960625767708, -0.0013520370703190565, 0.07286735624074936, -0.029522711411118507, -0.02347653917968273, 0.10269586741924286, -0.027225922793149948, -0.059047881513834, -0.15275445580482483, 0.07181267440319061, -0.1390664428472519, 0.21348664164543152, -0.03843260556459427, 0.036538805812597275, 0.11906557530164719, 0.025684520602226257, -0.10713144391775131, 0.040409963577985764, 0.06146273389458656, -0.09128725528717041, -0.009326474741101265, 0.14568859338760376, -0.056087836623191833, 0.08118244260549545, 0.049483612179756165, -0.13031375408172607, -0.016641229391098022, -0.04132326319813728, -0.027608852833509445, -0.049092140048742294, -0.040943507105112076, -0.04950257018208504, 0.12261105328798294, 0.1980651617050171, -0.04879656806588173, 0.052467625588178635, -0.054200734943151474, 0.034915991127491, 0.0612935908138752, 0.03811751678586006, -0.027611976489424706, -0.28281369805336, 0.035965695977211, 0.10181377083063126, -0.008512626402080059, -0.22692175209522247, -0.0728669986128807, 0.03159688413143158, -0.06063113734126091, -0.07764167338609695, 0.10165220499038696, 0.04387233033776283, 0.058990877121686935, -0.06481719762086868, -0.0894680917263031, -0.0734267607331276, 0.17783357203006744, -0.15676294267177582, -0.0943765714764595 ]
null
null
diffusers
### Lighting-MacQueen-car Dreambooth model trained by RAJ23M54 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 23M54 Sample pictures of this concept: ![0](https://huggingface.co/RAJ23M54/lighting-macqueen-car/resolve/main/sample_images/lmc_car.jpg)
{"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]}
text-to-image
RAJ23M54/lighting-macqueen-car
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-06T12:01:45+00:00
[]
[]
TAGS #diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
### Lighting-MacQueen-car Dreambooth model trained by RAJ23M54 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 23M54 Sample pictures of this concept: !0
[ "### Lighting-MacQueen-car Dreambooth model trained by RAJ23M54 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 23M54\n\nSample pictures of this concept:\n\n !0" ]
[ "TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "### Lighting-MacQueen-car Dreambooth model trained by RAJ23M54 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 23M54\n\nSample pictures of this concept:\n\n !0" ]
[ 73, 56 ]
[ "passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### Lighting-MacQueen-car Dreambooth model trained by RAJ23M54 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 23M54\n\nSample pictures of this concept:\n\n !0" ]
[ -0.11613774299621582, 0.10561889410018921, -0.0020706269424408674, 0.05152793601155281, 0.053271546959877014, -0.025406144559383392, 0.2050701230764389, -0.01071389950811863, -0.04767958074808121, -0.002355841686949134, 0.14258714020252228, 0.07557982951402664, -0.0012981161708012223, 0.12049411237239838, -0.03383459150791168, -0.1276058405637741, 0.02017921954393387, 0.06785821169614792, -0.022528434172272682, 0.09035136550664902, 0.07142699509859085, -0.06895178556442261, 0.1314566284418106, -0.03298642486333847, -0.2126251757144928, -0.0037704140413552523, -0.023571893572807312, -0.07123486697673798, 0.08493616431951523, 0.06827793270349503, 0.05212751775979996, 0.12046407908201218, 0.04284554347395897, -0.02207331545650959, 0.03847624361515045, -0.004786910023540258, -0.042727090418338776, 0.05344172194600105, 0.03477010130882263, 0.07842578738927841, 0.1310170441865921, 0.09721239656209946, -0.01048304419964552, 0.05036492273211479, -0.09249377250671387, 0.017172574996948242, 0.008345714770257473, 0.0831652507185936, 0.09087499976158142, 0.09032388031482697, 0.008161579258739948, 0.14626064896583557, 0.03509780019521713, 0.1269027441740036, 0.14091229438781738, -0.24916668236255646, -0.1007031574845314, 0.1843918114900589, 0.08978062123060226, 0.005653562489897013, -0.0732923373579979, 0.09328582882881165, 0.09650267660617828, -0.004916113335639238, 0.06998010724782944, -0.07154358178377151, 0.009672612883150578, -0.0701068788766861, -0.09714237600564957, 0.006858432199805975, 0.20448699593544006, 0.039548128843307495, -0.0351828932762146, -0.05574651062488556, -0.11453807353973389, 0.003829600289463997, -0.050517965108156204, -0.01566511020064354, -0.08039991557598114, 0.00438349973410368, -0.08667997270822525, -0.06208336725831032, -0.12372201681137085, -0.07260356843471527, -0.008637158200144768, 0.197841078042984, 0.004826558753848076, 0.06356006115674973, -0.13697783648967743, 0.09270766377449036, 0.04705483093857765, -0.1523834764957428, 0.016378460451960564, -0.10973101109266281, 0.04951085150241852, 0.0595528706908226, 0.056807029992341995, -0.0657786875963211, 0.042715318500995636, 0.01898324489593506, 0.06554177403450012, -0.02756986767053604, 0.04102830961346626, 0.08288943022489548, 0.009943997487425804, -0.029065893962979317, -0.0540657639503479, -0.08701480180025101, 0.018962519243359566, -0.07388386130332947, 0.030281392857432365, -0.04094362631440163, -0.08058945089578629, -0.005022275727242231, -0.07355810701847076, 0.04593553766608238, 0.01620262674987316, 0.07046300917863846, -0.004770996514707804, -0.03337891027331352, 0.20493219792842865, 0.0565083809196949, -0.009171070531010628, -0.03669881075620651, 0.04090036079287529, -0.003748964285477996, 0.08028251677751541, -0.029458532109856606, 0.021735073998570442, 0.03856657072901726, -0.08060333877801895, -0.05730711296200752, -0.049322132021188736, -0.01822984404861927, 0.014573288150131702, -0.11038079112768173, 0.046822868287563324, -0.18620188534259796, -0.100070521235466, 0.07947004586458206, 0.0606883205473423, -0.016500329598784447, -0.05045751482248306, -0.0584547221660614, -0.10442569106817245, 0.02065929025411606, -0.009931311011314392, -0.03423947095870972, 0.005053969100117683, 0.044681381434202194, 0.062441788613796234, 0.06966234743595123, -0.23533637821674347, 0.002976770279929042, -0.07502532005310059, 0.04260939732193947, -0.03490151837468147, 0.001989901065826416, -0.028890598565340042, 0.06091352179646492, 0.03516991063952446, -0.011274471879005432, 0.018271172419190407, 0.0001912345614982769, 0.02132878080010414, 0.18387866020202637, -0.1028476431965828, -0.020293181762099266, 0.11020985245704651, -0.1336364895105362, -0.17411677539348602, 0.0722307339310646, 0.01758989877998829, 0.08707618713378906, 0.030709801241755486, 0.02866232395172119, 0.0945417582988739, -0.16254635155200958, -0.02284315600991249, 0.015656353905797005, -0.1497240662574768, -0.18492504954338074, 0.014624013565480709, 0.16157376766204834, -0.12058433145284653, 0.016331009566783905, -0.04501251503825188, 0.10495829582214355, -0.10449618846178055, -0.04095667600631714, -0.031438618898391724, -0.07957576960325241, 0.009453307837247849, -0.0032868478447198868, 0.00807387474924326, -0.03209320828318596, 0.007033493369817734, -0.11423347145318985, 0.043212562799453735, -0.01897720992565155, -0.029421823099255562, -0.13882921636104584, 0.021353965625166893, -0.101776123046875, 0.004797762725502253, 0.00712855439633131, -0.08165283501148224, 0.0342414565384388, 0.11000251024961472, -0.014192430302500725, 0.0937616154551506, 0.0562799870967865, 0.11002890765666962, -0.03150126338005066, -0.078074149787426, 0.06648831069469452, 0.00949088018387556, -0.021833151578903198, -0.1722186952829361, 0.074500672519207, -0.05525261163711548, -0.05431394651532173, -0.1342799812555313, 0.02254738286137581, 0.019514037296175957, 0.10922437906265259, 0.06548812985420227, -0.017465267330408096, 0.01691463030874729, -0.006803058087825775, -0.06354542076587677, -0.00704820454120636, 0.03969205543398857, 0.043175797909498215, -0.052529409527778625, 0.1753920018672943, -0.12395524978637695, 0.21137045323848724, 0.09648288041353226, -0.08009786158800125, -0.019878162071108818, 0.08106660097837448, -0.07586262375116348, 0.006551120895892382, -0.025134140625596046, 0.03486991301178932, -0.017203882336616516, -0.03275415673851967, 0.12254376709461212, -0.03302468731999397, -0.02718319371342659, 0.09875429421663284, -0.00420941598713398, -0.047571104019880295, 0.09142591804265976, 0.11372271180152893, -0.13145597279071808, 0.11830073595046997, 0.09543228894472122, 0.012063499540090561, 0.1486673653125763, 0.04535622522234917, 0.019922010600566864, -0.07737009972333908, 0.056220892816782, 0.0346907377243042, 0.2686883509159088, -0.11811066418886185, 0.024629846215248108, 0.000514213286805898, -0.04635530337691307, 0.0340670570731163, -0.07980706542730331, -0.07594696432352066, -0.0016712110955268145, -0.011254002340137959, 0.09930028021335602, 0.09915321320295334, -0.12805843353271484, 0.06301839649677277, -0.08366324752569199, -0.13496243953704834, 0.05857415124773979, 0.0008243090705946088, -0.050070688128471375, 0.061842963099479675, -0.029181258752942085, -0.2535002529621124, -0.18240220844745636, -0.057951539754867554, -0.08402586728334427, -0.003115700790658593, 0.060628268867731094, -0.029307769611477852, -0.0440346859395504, -0.05627453699707985, -0.01712825521826744, -0.029732828959822655, 0.04070719704031944, -0.025841450318694115, 0.016693122684955597, -0.034639131277799606, -0.059159375727176666, 0.02571852132678032, -0.013892148621380329, 0.0345635823905468, 0.11261425167322159, 0.010144410654902458, 0.1684887558221817, 0.06964349746704102, -0.005821112543344498, -0.012847564183175564, 0.026160823181271553, 0.23275591433048248, -0.06531543284654617, 0.08475447446107864, 0.10320402681827545, 0.04358963668346405, 0.0347759835422039, 0.18464870750904083, 0.046816080808639526, -0.08455171436071396, 0.040871959179639816, -0.06548682600259781, -0.10197632014751434, -0.09976968914270401, -0.07940422743558884, -0.057814933359622955, 0.12083039432764053, -0.009786280803382397, 0.07867299020290375, 0.08210770785808563, 0.16514155268669128, -0.007649493403732777, 0.019781803712248802, -0.06359507143497467, 0.12591668963432312, 0.013377807103097439, -0.03015337511897087, 0.02358640916645527, -0.0955817699432373, -0.0845806747674942, 0.0880599394440651, -0.0014508023159578443, 0.11474787443876266, 0.03748679533600807, 0.046266451478004456, 0.08735617250204086, 0.15209642052650452, 0.16034984588623047, 0.0847504734992981, -0.00609460286796093, -0.06524122506380081, 0.007030594162642956, -0.0855691209435463, 0.06991619616746902, 0.032062750309705734, -0.11905651539564133, -0.003914020024240017, 0.05270617455244064, 0.05290919169783592, -0.03246474638581276, 0.11385898292064667, 0.10387933254241943, -0.28465890884399414, 0.023963922634720802, -0.008463484235107899, 0.045627642422914505, -0.10918129980564117, 0.026381654664874077, 0.23575884103775024, -0.007872185669839382, 0.05186843127012253, -0.07550869137048721, 0.07925069332122803, 0.009482170455157757, 0.010017411783337593, -0.04606330767273903, -0.006619578693062067, -0.020656749606132507, 0.035943519324064255, -0.23122195899486542, 0.18856015801429749, -0.0018309109145775437, 0.06646019965410233, 0.005323996767401695, -0.058359719812870026, -0.03793619945645332, 0.1879541277885437, 0.16738450527191162, 0.012271231971681118, 0.06623871624469757, -0.04257103428244591, -0.09017336368560791, 0.04727282375097275, 0.05117051675915718, 0.037787001579999924, 0.03454713895916939, 0.05645303428173065, -0.05397367849946022, 0.017987575381994247, 0.0348493754863739, -0.20183901488780975, -0.10776495933532715, 0.0006715296767652035, 0.2266741842031479, 0.04619533196091652, -0.029877055436372757, 0.015877235680818558, 0.0084170987829566, 0.11151669174432755, -0.17390476167201996, -0.05150562524795532, -0.08843246102333069, -0.12463857978582382, -0.01352598425000906, -0.04270737245678902, 0.02456202358007431, -0.06835829466581345, 0.1042722687125206, -0.05148511007428169, -0.11301951855421066, 0.043318409472703934, -0.15582169592380524, -0.09103994816541672, -0.0983472466468811, 0.058166760951280594, 0.046758051961660385, -0.01574059948325157, 0.0063180625438690186, -0.05013967305421829, -0.031553998589515686, -0.10696335881948471, 0.014076770283281803, 0.05315575376152992, -0.10376128554344177, -0.09755644202232361, -0.001795580261386931, -0.030139721930027008, -0.012602675706148148, -0.04520345479249954, 0.05409154295921326, 0.22908620536327362, -0.06545761227607727, 0.05003250762820244, 0.21853385865688324, -0.039766356348991394, -0.20443475246429443, -0.11749894917011261, -0.08481394499540329, -0.017979664728045464, -0.02584712952375412, -0.09517128020524979, 0.12113403528928757, -0.01368679665029049, -0.05759504437446594, 0.13015040755271912, -0.2530267834663391, -0.04127548635005951, 0.05448273569345474, 0.15242506563663483, 0.2793315052986145, -0.13011686503887177, -0.04470270127058029, -0.050388067960739136, -0.1596144586801529, 0.1823430210351944, 0.031976502388715744, 0.06450052559375763, -0.07621688395738602, 0.028681447729468346, -0.021170077845454216, -0.04044658690690994, 0.0640202984213829, -0.07414709031581879, 0.08626796305179596, -0.06037014350295067, 0.03012804128229618, 0.2017381638288498, 0.001931202132254839, 0.0436939001083374, -0.11580449342727661, 0.06536213308572769, -0.02766416221857071, -0.022335181012749672, -0.028493333607912064, 0.03198029845952988, -0.06593847274780273, -0.12224216014146805, -0.039473358541727066, -0.022282492369413376, -0.0294907558709383, 0.015499946661293507, -0.018154896795749664, 0.027926122769713402, -0.027816930785775185, 0.11271481215953827, 0.06118190661072731, -0.057038649916648865, -0.029496554285287857, -0.07226686924695969, -0.05533517152070999, 0.15854227542877197, -0.022726235911250114, -0.02256055548787117, 0.0917462632060051, 0.0007025991217233241, 0.0384184755384922, 0.050400059670209885, -0.037061549723148346, 0.026511846110224724, 0.12356135994195938, -0.18031224608421326, -0.1325472891330719, -0.07078403979539871, 0.22531281411647797, 0.09690063446760178, 0.15563218295574188, 0.11709438264369965, -0.12589488923549652, 0.027464402839541435, -0.04229222983121872, -0.015069568529725075, -0.020972630009055138, 0.031452476978302, -0.004403187893331051, 0.06233469769358635, -0.08045080304145813, 0.033093828707933426, -0.027037926018238068, -0.05565432831645012, -0.06148255243897438, 0.10057301819324493, -0.09934502094984055, -0.0697617307305336, 0.05567384883761406, 0.1818019300699234, -0.18193450570106506, -0.07520376890897751, -0.046976394951343536, -0.05906961113214493, 0.05131291225552559, 0.14201512932777405, 0.011171828024089336, 0.054272640496492386, 0.016850342974066734, 0.005525612272322178, -0.10063561797142029, 0.04211746156215668, -0.0690355971455574, 0.1386767327785492, -0.24192000925540924, -0.09798885136842728, -0.012344114482402802, 0.0325651653110981, -0.0932181254029274, -0.01821178011596203, -0.07202518731355667, 0.030802378430962563, -0.0017662099562585354, 0.061845578253269196, -0.09161616861820221, -0.042462605983018875, -0.03841235861182213, -0.004664722364395857, -0.06343104690313339, 0.018393969163298607, -0.015287426300346851, 0.02730495110154152, 0.05380595102906227, -0.014595075510442257, -0.060331955552101135, -0.00044391589472070336, -0.021656131371855736, -0.06281347572803497, 0.0932135283946991, -0.0437370203435421, -0.09819043427705765, -0.03271237760782242, -0.2103399634361267, -0.029951460659503937, 0.07057307660579681, 0.011447696015238762, 0.0339217483997345, 0.10867120325565338, -0.003939989488571882, 0.031149279326200485, 0.04791827127337456, -0.018925819545984268, 0.055953871458768845, -0.10851622372865677, 0.0011848516296595335, -0.022962026298046112, -0.037544503808021545, -0.07668239623308182, -0.022672349587082863, 0.05255522206425667, 0.021323299035429955, 0.13637104630470276, -0.08645150810480118, 0.03066936694085598, -0.025552015751600266, 0.033525947481393814, 0.08373455703258514, -0.08226796239614487, -0.00935433804988861, -0.025895697996020317, -0.024997347965836525, 0.017343174666166306, 0.09361763298511505, -0.054685886949300766, -0.23271428048610687, -0.005805986933410168, -0.09718217700719833, -0.05689361318945885, -0.03537622094154358, 0.26716235280036926, 0.06570816785097122, -0.010604786686599255, -0.09056571125984192, 0.10005031526088715, 0.06212298944592476, 0.06912637501955032, -0.018436331301927567, 0.07122515141963959, 0.00914983544498682, 0.06703326106071472, 0.08100983500480652, 0.009205272421240807, -0.07160787284374237, -0.012672233395278454, -0.13261942565441132, 0.10881099104881287, -0.03462127968668938, 0.04709605127573013, 0.18350936472415924, 0.0214134082198143, -0.016072608530521393, 0.08229702711105347, -0.014947205781936646, -0.03979749605059624, -0.20920370519161224, -0.07986044883728027, -0.13633599877357483, 0.043287068605422974, -0.04371483996510506, -0.04432700201869011, -0.040797989815473557, 0.06527340412139893, -0.06786585599184036, 0.0875730812549591, 0.101518914103508, 0.006568895187228918, 0.07617534697055817, 0.0014117745449766517, -0.04049810394644737, 0.006623320281505585, 0.05385471135377884, -0.014860822819173336, 0.028234871104359627, -0.018651556223630905, 0.07684895396232605, -0.022654572501778603, 0.08357668668031693, 0.054342031478881836, -0.07387266308069229, -0.023538699373602867, -0.013095416128635406, 0.027814317494630814, 0.08063964545726776, 0.006984567269682884, 0.0050112465396523476, 0.029370076954364777, 0.12196255475282669, -0.0035806428641080856, -0.05417805537581444, -0.059072017669677734, 0.025843624025583267, -0.12232761830091476, 0.087079718708992, -0.05582914501428604, -0.008200354874134064, -0.07367665320634842, 0.22716236114501953, 0.18421241641044617, -0.041175179183483124, 0.008390401490032673, -0.05230633169412613, 0.011088681407272816, -0.08782511204481125, 0.07667011022567749, 0.017665892839431763, 0.3091169595718384, -0.06300946325063705, -0.07396095246076584, -0.10714982450008392, -0.027479123324155807, -0.0038250694051384926, -0.08240031450986862, 0.010459874756634235, -0.031512726098299026, -0.10888274013996124, 0.0730765238404274, -0.18566538393497467, 0.0057574003003537655, 0.07568538188934326, 0.006795926485210657, 0.009222540073096752, -0.03056550957262516, 0.10743687301874161, 0.03693978860974312, 0.03897743672132492, -0.0746951624751091, 0.03126233071088791, 0.009684433229267597, 0.0045209117233753204, -0.11673702299594879, 0.03682656213641167, 0.014881495386362076, -0.16261936724185944, 0.20650218427181244, -0.020376194268465042, 0.040546488016843796, 0.07441981136798859, -0.050405267626047134, -0.1571984738111496, 0.10095414519309998, -0.023906556889414787, -0.11605928093194962, -0.017909592017531395, 0.11626286059617996, 0.025854194536805153, 0.07857263833284378, -0.027439001947641373, -0.08038926869630814, -0.030817924067378044, 0.06675481796264648, 0.044824086129665375, -0.10320588946342468, 0.04353240877389908, -0.006260101217776537, 0.09115847200155258, -0.008385811932384968, -0.027574613690376282, -0.030769111588597298, -0.03195624798536301, 0.060588184744119644, 0.0246370080858469, -0.06288404762744904, 0.07879514247179031, -0.13697725534439087, -0.015082952566444874, 0.04868432134389877, 0.0409565307199955, -0.20446068048477173, -0.006191324442625046, -0.1532953977584839, -0.008356748148798943, -0.05151151120662689, -0.0080700209364295, 0.22968941926956177, 0.020937751978635788, -0.009277917444705963, -0.13054484128952026, -0.04448508471250534, 0.03068116120994091, -0.03832006826996803, -0.1448158323764801 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
snowfly/code-search-net-tokenizer
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T12:04:19+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.08389580249786377, 0.19830818474292755, -0.0013316317927092314, 0.02313883788883686, 0.11396584659814835, 0.01961737498641014, 0.053626976907253265, 0.14538456499576569, 0.0060051376931369305, 0.10656800121068954, 0.066679947078228, 0.09131570905447006, 0.09678101539611816, 0.20042605698108673, 0.04371999576687813, -0.17659740149974823, 0.010636410675942898, -0.06930278241634369, -0.010073255747556686, 0.11651819199323654, 0.141214057803154, -0.10151198506355286, 0.07627976685762405, -0.03319970890879631, -0.02870541252195835, -0.0070160143077373505, -0.07769215852022171, -0.05755697935819626, 0.07573003321886063, 0.054863471537828445, 0.04207949340343475, -0.0008347301045432687, 0.08447454124689102, -0.2674994468688965, 0.013753628358244896, 0.07452993094921112, 0.010659529827535152, 0.05990942195057869, 0.07833302766084671, -0.04036625102162361, 0.12881849706172943, -0.06320446729660034, 0.13035163283348083, 0.0906217098236084, -0.0681561604142189, -0.24378153681755066, -0.08239314705133438, 0.06505522131919861, 0.12533815205097198, 0.07694927603006363, -0.02823091857135296, 0.16422191262245178, -0.07247646898031235, 0.019290022552013397, 0.09481704235076904, -0.1151006743311882, -0.060644298791885376, 0.08318385481834412, 0.14101974666118622, 0.10340547561645508, -0.1255619376897812, -0.012289565056562424, 0.04275871813297272, 0.045979104936122894, 0.07389909774065018, 0.011339850723743439, 0.1143413558602333, 0.05629947781562805, -0.13526225090026855, -0.05700986459851265, 0.14547574520111084, 0.023872992023825645, -0.057064127177000046, -0.2138909548521042, -0.002902575535699725, -0.07730814069509506, -0.011685127392411232, -0.06846728920936584, 0.0291305985301733, -0.01194276288151741, 0.060226380825042725, -0.0496203787624836, -0.09797755628824234, -0.046314824372529984, 0.1015089675784111, 0.054820988327264786, 0.011354796588420868, -0.01489334274083376, 0.03576440364122391, 0.13432876765727997, 0.04213530570268631, -0.10012737661600113, -0.07065672427415848, -0.0701170489192009, -0.09620913118124008, -0.03947552293539047, 0.04272124543786049, 0.020167991518974304, 0.042202774435281754, 0.2283228635787964, 0.024096308276057243, 0.05459817871451378, 0.029667891561985016, 0.0026177873369306326, 0.03211980313062668, 0.1073630079627037, -0.041210614144802094, -0.188126802444458, -0.03292805701494217, 0.0931866466999054, -0.009821015410125256, -0.028658604249358177, -0.033444397151470184, 0.035014089196920395, 0.08379437029361725, 0.11821532249450684, 0.08875755965709686, -0.012828069739043713, -0.037612639367580414, -0.03493109717965126, 0.2115669697523117, -0.14141373336315155, 0.045799970626831055, -0.022097334265708923, -0.018195297569036484, -0.06905751675367355, 0.030103791505098343, 0.01831657998263836, -0.003142025787383318, 0.06966056674718857, -0.061253178864717484, -0.05794486775994301, -0.11518853157758713, -0.045523155480623245, 0.04711875319480896, -0.024105608463287354, -0.024469668045639992, -0.07765042781829834, -0.11219723522663116, -0.06417357176542282, 0.06612563133239746, -0.04156653955578804, -0.03974827378988266, 0.005308232270181179, -0.07131324708461761, 0.008387917652726173, 0.008993842639029026, 0.12122467905282974, -0.030063031241297722, 0.05833350867033005, -0.002476902212947607, 0.05916252359747887, 0.10643328726291656, 0.03227818012237549, -0.08492200076580048, 0.057466037571430206, -0.20633617043495178, 0.08371785283088684, -0.11420095711946487, 0.034276340156793594, -0.17048145830631256, -0.024183684960007668, 0.008447963744401932, 0.023597201332449913, 0.023726604878902435, 0.1338067352771759, -0.2097422182559967, -0.016196569427847862, 0.14133213460445404, -0.09649793803691864, -0.12422871589660645, 0.07990546524524689, -0.03459475561976433, 0.1747698187828064, 0.038475677371025085, -0.019652999937534332, 0.09909367561340332, -0.15559963881969452, -0.05852397903800011, -0.026064254343509674, -0.008927824907004833, 0.08823978155851364, 0.07542291283607483, -0.05844951793551445, 0.02285866066813469, 0.02562655322253704, -0.04727208614349365, -0.0268824752420187, -0.05256075784564018, -0.10127434879541397, -0.023140445351600647, -0.09642518311738968, 0.026515161618590355, 0.000058677000197349116, -0.07310442626476288, -0.028560271486639977, -0.17347893118858337, -0.02563360333442688, 0.10103316605091095, 0.004820956848561764, -0.007559072691947222, -0.08540112525224686, 0.022149885073304176, -0.05362366884946823, -0.006164622958749533, -0.16996455192565918, -0.03558015450835228, 0.051895126700401306, -0.14917676150798798, 0.015460150316357613, -0.07327745854854584, 0.07047311216592789, 0.02098717913031578, -0.05859505757689476, -0.03108096309006214, 0.0007694467785768211, 0.004292082041501999, -0.06229274719953537, -0.1903683841228485, -0.058886781334877014, -0.041500482708215714, 0.15720732510089874, -0.24841000139713287, 0.0300158578902483, 0.03247617185115814, 0.13185922801494598, 0.007058668415993452, -0.06344027817249298, 0.02096918225288391, -0.04676475748419762, -0.050621338188648224, -0.06898977607488632, -0.009901339188218117, -0.014539826661348343, -0.031393732875585556, 0.012980648316442966, -0.14970256388187408, -0.060514215379953384, 0.09452559798955917, 0.11224991828203201, -0.14555825293064117, 0.00204002158716321, -0.0460561066865921, -0.07002599537372589, -0.07487804442644119, -0.0761631652712822, 0.07739497721195221, 0.044650159776210785, 0.049250341951847076, -0.06317461282014847, -0.06234706938266754, 0.023210179060697556, 0.005524294450879097, -0.019023682922124863, 0.0948529988527298, 0.074309803545475, -0.09122881293296814, 0.07973480224609375, 0.08461450785398483, 0.04414684325456619, 0.086973637342453, 0.005991141777485609, -0.11396963149309158, -0.03062884695827961, 0.037754856050014496, 0.024159027263522148, 0.15351562201976776, -0.08692087233066559, 0.030462130904197693, 0.052177220582962036, -0.03854219615459442, 0.03157065063714981, -0.0923321321606636, 0.025362705811858177, 0.021495236083865166, -0.006555700208991766, 0.05864228308200836, -0.018769768998026848, -0.01403577346354723, 0.06336429715156555, 0.05677810311317444, 0.044270504266023636, 0.02595379762351513, -0.02093072421848774, -0.1278371512889862, 0.16537296772003174, -0.09028079360723495, -0.2540280222892761, -0.17074446380138397, 0.015454737469553947, 0.03706491366028786, -0.021728800609707832, 0.039588842540979385, -0.06286025792360306, -0.10237989574670792, -0.09417891502380371, 0.0029635571409016848, 0.023925531655550003, -0.058347854763269424, -0.0817074254155159, 0.060779985040426254, 0.04047083482146263, -0.13689260184764862, 0.0349188968539238, 0.06170675903558731, -0.03042641654610634, 0.0018567070364952087, 0.07321398705244064, 0.12743599712848663, 0.14838241040706635, -0.006730219814926386, -0.012446845881640911, 0.035035960376262665, 0.229813352227211, -0.1490442156791687, 0.10630457103252411, 0.14053207635879517, -0.021705523133277893, 0.06635113060474396, 0.1461038440465927, 0.023231739178299904, -0.07546708732843399, 0.04147516191005707, 0.04027445614337921, -0.04228919371962547, -0.2589097023010254, -0.05694316700100899, -0.00946022942662239, -0.07043391466140747, 0.09718906134366989, 0.09238530695438385, 0.11972260475158691, 0.0337289460003376, -0.05568677559494972, -0.025771914049983025, -0.003401360474526882, 0.114128477871418, -0.027640055865049362, -0.004564122296869755, 0.07965842634439468, -0.05878787487745285, 0.011684526689350605, 0.09941446036100388, 0.019347423687577248, 0.17601320147514343, 0.02533329278230667, 0.10681075602769852, 0.06725578010082245, 0.09347675740718842, -0.0015635732561349869, 0.034774236381053925, 0.05337131395936012, 0.022044572979211807, 0.010453542694449425, -0.09408048540353775, -0.012431944720447063, 0.13713060319423676, 0.019816776737570763, 0.009031654335558414, 0.008926562033593655, -0.01010479498654604, 0.03131420537829399, 0.20501568913459778, 0.0009575071162544191, -0.22537250816822052, -0.09500737488269806, 0.059459153562784195, -0.06931101530790329, -0.143676295876503, -0.02094252221286297, 0.030270220711827278, -0.17292405664920807, 0.016790566965937614, -0.0316389761865139, 0.09112390875816345, -0.07145322859287262, -0.028050832450389862, 0.06891903281211853, 0.07569212466478348, -0.012108199298381805, 0.07973295450210571, -0.19069278240203857, 0.12254468351602554, 0.03037673607468605, 0.08605273067951202, -0.11708726733922958, 0.07849059253931046, -0.0019813794642686844, -0.014807495288550854, 0.17999744415283203, -0.014062200672924519, -0.0586031936109066, -0.08878950774669647, -0.08704045414924622, -0.011727320961654186, 0.10361312329769135, -0.09322915226221085, 0.09586969763040543, -0.02775636687874794, -0.03705112263560295, 0.012418309226632118, -0.10469507426023483, -0.1636953055858612, -0.18679304420948029, 0.06244563311338425, -0.07802703976631165, 0.012347841635346413, -0.11227322369813919, -0.06334327906370163, -0.01575082167983055, 0.23160123825073242, -0.16648635268211365, -0.07049825042486191, -0.1498587429523468, -0.03997112438082695, 0.17463743686676025, -0.042160745710134506, 0.06849376112222672, -0.021383514627814293, 0.1873992383480072, -0.008081548847258091, -0.013158116489648819, 0.06569221615791321, -0.09637628495693207, -0.16879262030124664, -0.05748843029141426, 0.14160962402820587, 0.10863390564918518, 0.05731578543782234, -0.0038195757661014795, 0.013171887956559658, -0.03383830562233925, -0.09896382689476013, 0.013824623078107834, 0.13817466795444489, 0.0034514935687184334, 0.00682973163202405, -0.03995988517999649, -0.07027145475149155, -0.05825701728463173, -0.07912654429674149, 0.057147104293107986, 0.187900573015213, -0.09512355923652649, 0.1602867990732193, 0.12431421875953674, -0.06468851119279861, -0.2306901067495346, 0.03996593505144119, 0.04701630026102066, 0.007666614837944508, 0.022401191294193268, -0.19138796627521515, 0.09788824617862701, 0.0009011493530124426, -0.06807263940572739, 0.14616990089416504, -0.16564498841762543, -0.1461436152458191, 0.08002161979675293, 0.025075770914554596, -0.22560662031173706, -0.14821304380893707, -0.1037549376487732, -0.03735695406794548, -0.13707835972309113, 0.048581719398498535, 0.02614329755306244, 0.019834673032164574, 0.025222565978765488, 0.005338077899068594, 0.029657263308763504, -0.07272187620401382, 0.1870686560869217, -0.020297454670071602, 0.0072362530045211315, -0.050640691071748734, -0.04617878794670105, 0.09227550774812698, -0.06150037795305252, 0.11741586774587631, 0.018679620698094368, 0.018796883523464203, -0.1431548148393631, -0.049209367483854294, -0.060803934931755066, 0.04456847906112671, -0.07284719496965408, -0.09393193572759628, -0.04137463867664337, 0.08888561278581619, 0.07211937010288239, -0.032792408019304276, -0.0027768779546022415, -0.07569456845521927, 0.09405932575464249, 0.184477761387825, 0.17357055842876434, 0.009977072477340698, -0.07020942866802216, 0.024555526673793793, -0.042279548943042755, 0.03349342197179794, -0.24652716517448425, 0.03456863760948181, 0.066053606569767, 0.03803660348057747, 0.08509242534637451, -0.016836483031511307, -0.1781480610370636, -0.04086102172732353, 0.08498652279376984, -0.06206206604838371, -0.19876568019390106, -0.02703288197517395, 0.08424776047468185, -0.20383712649345398, -0.032998621463775635, 0.041543323546648026, -0.03834589570760727, -0.02396267279982567, -0.002415500348433852, 0.06396626681089401, -0.008327016606926918, 0.12156640738248825, 0.06747189164161682, 0.10266115516424179, -0.09284433722496033, 0.08920657634735107, 0.10416955500841141, -0.09140542894601822, 0.03545991703867912, 0.10264154523611069, -0.05670900270342827, -0.04460543021559715, 0.033935222774744034, 0.05925208330154419, -0.028357384726405144, -0.06409841030836105, -0.000502707262057811, -0.0359574519097805, 0.04993389546871185, 0.08058220148086548, 0.036113787442445755, -0.01202210783958435, 0.06544706225395203, 0.028145326301455498, -0.11693570017814636, 0.10949387401342392, 0.04405685141682625, 0.04509059712290764, -0.07182393968105316, -0.012280966155230999, 0.015999672934412956, 0.032540347427129745, -0.019734015688300133, -0.014576527290046215, -0.03146412968635559, -0.007561005651950836, -0.1553635597229004, -0.02064543403685093, -0.06516171246767044, 0.006067827809602022, 0.022207623347640038, -0.03830232471227646, -0.012014663778245449, 0.01381110493093729, -0.07979435473680496, -0.07571027427911758, -0.01700955256819725, 0.08539021760225296, -0.1381402313709259, 0.006627439055591822, 0.07182712107896805, -0.10980239510536194, 0.07347989827394485, -0.0048679932951927185, 0.017079560086131096, 0.010923396795988083, -0.11654401570558548, 0.04386281594634056, -0.005810429807752371, 0.01551580335944891, 0.022556742653250694, -0.171111062169075, 0.011553828604519367, -0.038553636521101, -0.03114982508122921, 0.011926400475203991, -0.025060230866074562, -0.11875922232866287, 0.08676479011774063, -0.028097305446863174, -0.037512701004743576, -0.03292486071586609, 0.06296087801456451, 0.08736220002174377, -0.011740099638700485, 0.09667140990495682, -0.025766119360923767, 0.04818311333656311, -0.1756584197282791, -0.01910574547946453, -0.050167568027973175, 0.02537350542843342, -0.01759655587375164, -0.0070639788173139095, 0.055272240191698074, -0.004191063344478607, 0.20991376042366028, -0.03921036794781685, 0.1548677533864975, 0.05199402943253517, -0.009925156831741333, 0.010884369723498821, 0.05032730847597122, 0.06423956155776978, 0.031145188957452774, 0.00853167474269867, 0.04660189896821976, -0.004552975296974182, -0.020357951521873474, -0.13699717819690704, 0.02791593410074711, 0.16117429733276367, 0.061918217688798904, 0.0392887257039547, 0.03704594820737839, -0.1422400325536728, -0.09538721293210983, 0.10306388139724731, -0.0331864058971405, 0.014331420883536339, -0.08317886292934418, 0.17621558904647827, 0.12328410148620605, -0.1574767529964447, 0.0577850341796875, -0.07234696298837662, -0.05066767707467079, -0.1024852767586708, -0.11832084506750107, -0.06293155997991562, -0.06027044355869293, -0.004747506696730852, -0.042489297688007355, 0.05734556168317795, 0.026751231402158737, -0.003270963439717889, -0.006759525276720524, 0.12665949761867523, -0.0249644722789526, -0.004145825747400522, 0.04152364656329155, 0.0326087586581707, 0.019319625571370125, -0.05872373282909393, 0.017997145652770996, 0.018602589145302773, 0.022180357947945595, 0.06835069507360458, 0.0260987039655447, -0.059317342936992645, 0.044286735355854034, 0.00319746439345181, -0.11313364654779434, 0.018146557733416557, -0.00002245741598017048, -0.05020225793123245, 0.13557326793670654, 0.04076748713850975, 0.01548024732619524, -0.029270920902490616, 0.24342355132102966, -0.07199113070964813, -0.08681939542293549, -0.13965600728988647, 0.11511493474245071, -0.023563209921121597, 0.03755274787545204, 0.016542524099349976, -0.12659503519535065, 0.011511262506246567, 0.18531471490859985, 0.12824349105358124, 0.012459068559110165, -0.007656481582671404, 0.05736639350652695, -0.0007639875984750688, -0.05985576659440994, 0.05051197111606598, 0.0664999932050705, 0.16097788512706757, -0.09069112688302994, 0.0652846097946167, -0.008405503816902637, -0.0831485390663147, -0.027498632669448853, 0.11705785244703293, -0.022675158455967903, 0.02148384228348732, -0.03778035193681717, 0.11204422265291214, -0.052532415837049484, -0.2719486355781555, 0.02952493168413639, -0.09503202140331268, -0.13993041217327118, -0.02591860294342041, 0.041448429226875305, -0.03349510580301285, 0.01577647216618061, 0.06254769116640091, -0.045389387756586075, 0.18837277591228485, 0.025987716391682625, -0.08679025620222092, -0.07755549252033234, 0.05874146893620491, -0.08695939928293228, 0.2789687216281891, 0.003863075515255332, 0.04782010242342949, 0.12108923494815826, -0.03053574077785015, -0.18664880096912384, 0.014769754372537136, 0.11989909410476685, -0.09114406257867813, 0.07780203968286514, 0.18139931559562683, -0.005561648402363062, 0.12649618089199066, 0.04705416411161423, -0.03877115994691849, 0.03976387158036232, -0.02721380814909935, -0.03821522742509842, -0.12209630757570267, 0.05661242455244064, -0.0612691193819046, 0.15957388281822205, 0.1158948540687561, -0.05964287370443344, 0.001120698289014399, -0.06126941740512848, 0.06300627440214157, 0.014774397015571594, 0.12115653604269028, 0.018452486023306847, -0.2023056596517563, 0.05087360367178917, -0.03283824771642685, 0.08166342973709106, -0.254973828792572, -0.08186668157577515, 0.07622263580560684, -0.019022729247808456, -0.04275642707943916, 0.12311509251594543, 0.06101066991686821, 0.03676839917898178, -0.03853875398635864, -0.08537755906581879, -0.01412904355674982, 0.15376435220241547, -0.14123432338237762, -0.029574336484074593 ]
null
null
diffusers
### My-Pet-Cat Dreambooth model trained by riteshjha01 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 23IT30 Sample pictures of this concept: ![0](https://huggingface.co/riteshjha01/my-pet-cat/resolve/main/sample_images/afk_(1).jpg)
{"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]}
text-to-image
riteshjha01/my-pet-cat
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-06T12:06:07+00:00
[]
[]
TAGS #diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
### My-Pet-Cat Dreambooth model trained by riteshjha01 following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 23IT30 Sample pictures of this concept: !0.jpg)
[ "### My-Pet-Cat Dreambooth model trained by riteshjha01 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 23IT30\n\nSample pictures of this concept:\n\n !0.jpg)" ]
[ "TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "### My-Pet-Cat Dreambooth model trained by riteshjha01 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 23IT30\n\nSample pictures of this concept:\n\n !0.jpg)" ]
[ 73, 57 ]
[ "passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-Pet-Cat Dreambooth model trained by riteshjha01 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 23IT30\n\nSample pictures of this concept:\n\n !0.jpg)" ]
[ -0.09799862653017044, 0.16014985740184784, -0.0013001132756471634, 0.001497008022852242, 0.0742148607969284, -0.019195416942238808, 0.15433746576309204, 0.00487506203353405, 0.06173648312687874, 0.03271935507655144, 0.1305796355009079, 0.07245589792728424, 0.031979601830244064, 0.16516290605068207, -0.002412808360531926, -0.1095661073923111, 0.06650515645742416, 0.09296876937150955, 0.03772978112101555, 0.07299637794494629, 0.07404109835624695, -0.07436379790306091, 0.12539049983024597, -0.011415605433285236, -0.1531006544828415, -0.016794513911008835, -0.055960673838853836, -0.02295530028641224, 0.04384157806634903, 0.002842128276824951, 0.07646166533231735, 0.12797588109970093, 0.051468443125486374, -0.028944067656993866, 0.040585871785879135, 0.02567972242832184, -0.05584928020834923, 0.04876566678285599, 0.06252346187829971, 0.02282569371163845, 0.11916089802980423, 0.0635867714881897, -0.05045636370778084, 0.05122522637248039, -0.042523398995399475, -0.03507373854517937, 0.03768032416701317, 0.10057663172483444, 0.12442715466022491, 0.08800584077835083, 0.0072163124568760395, 0.10023806244134903, 0.04439235478639603, 0.1265411227941513, 0.1621047407388687, -0.24611914157867432, -0.11046745628118515, 0.19855600595474243, 0.08460516482591629, 0.041593894362449646, -0.05550394952297211, 0.08920232206583023, 0.10437936335802078, -0.028713921085000038, 0.049925658851861954, -0.052713796496391296, 0.08674143999814987, -0.10749808698892593, -0.11355145275592804, 0.024832846596837044, 0.20750585198402405, 0.06472691893577576, -0.028444286435842514, -0.018148211762309074, -0.10752193629741669, 0.0013682580320164561, -0.06440246105194092, -0.013934154994785786, -0.054872117936611176, 0.025545313954353333, -0.012192079797387123, -0.0281105637550354, -0.1291763335466385, -0.07243476808071136, 0.005548600573092699, 0.08250138908624649, 0.003440229222178459, 0.05564255639910698, -0.10506701469421387, 0.09939152747392654, 0.0068092504516243935, -0.11408544331789017, -0.00545526435598731, -0.09259587526321411, 0.03953941538929939, 0.05144476890563965, 0.040853437036275864, -0.046024613082408905, 0.06696611642837524, -0.013513893820345402, 0.08418820798397064, -0.002260105451568961, 0.043906696140766144, 0.07733900845050812, 0.01315092109143734, -0.07327929884195328, -0.10088077932596207, -0.12628653645515442, -0.00853451807051897, -0.040473390370607376, -0.011543515138328075, -0.04001443460583687, -0.08423183858394623, 0.02415243349969387, -0.050166498869657516, 0.023791031911969185, 0.03811411187052727, 0.06995753198862076, 0.0037651248276233673, -0.028149602934718132, 0.2017575204372406, 0.05961187183856964, -0.014538231305778027, -0.013921946287155151, 0.020946620032191277, 0.06587585061788559, 0.07119056582450867, -0.034737247973680496, 0.00440061092376709, 0.00413781963288784, -0.09905523806810379, -0.04491499811410904, -0.05902884900569916, -0.03963053226470947, -0.00855378806591034, -0.14743541181087494, 0.02790302224457264, -0.1711394488811493, -0.08891663700342178, 0.057219650596380234, 0.0768037661910057, -0.03454899042844772, -0.03162006661295891, -0.05487535148859024, -0.08534495532512665, 0.02225361578166485, -0.004320309031754732, -0.031657177954912186, -0.024309344589710236, 0.04551849514245987, -0.010628159157931805, 0.12306846678256989, -0.23624975979328156, 0.010569539852440357, -0.05757609009742737, 0.028156936168670654, 0.021242190152406693, -0.0153659014031291, -0.04590805619955063, 0.09995552897453308, -0.01372682023793459, -0.03304107487201691, -0.031651753932237625, -0.017496656626462936, 0.014680283144116402, 0.1425289511680603, -0.08844851702451706, 0.027272799983620644, 0.1392495334148407, -0.12602485716342926, -0.18323436379432678, 0.09075962007045746, 0.05380910634994507, 0.1410178244113922, 0.06686709076166153, 0.09707548469305038, 0.13092660903930664, -0.18690244853496552, -0.030711034312844276, 0.04909868538379669, -0.11802861094474792, -0.17223797738552094, -0.01039192359894514, 0.15130263566970825, -0.07592938095331192, 0.004948012996464968, -0.0781310573220253, 0.08039502054452896, -0.0951562374830246, -0.0233981441706419, -0.030202580615878105, -0.1410900205373764, -0.03649076819419861, 0.014209151268005371, 0.009817272424697876, -0.015520756132900715, 0.015474356710910797, -0.14252838492393494, 0.0477885827422142, -0.052232999354600906, -0.00766568910330534, -0.11803864687681198, 0.0840114951133728, -0.05390706658363342, 0.01103122252970934, -0.02439749427139759, -0.04195315018296242, 0.0326836034655571, 0.11981628090143204, -0.010456332936882973, 0.16973839700222015, 0.051107972860336304, 0.055112965404987335, -0.001787926652468741, -0.07698891311883926, 0.11938697844743729, 0.029944153502583504, -0.04543442279100418, -0.1507280170917511, 0.0851457342505455, -0.06120868772268295, -0.026774346828460693, -0.14637979865074158, 0.04596951603889465, 0.055656012147665024, 0.11779697984457016, 0.023741213604807854, -0.010259712114930153, 0.011895863339304924, -0.040365248918533325, -0.06940491497516632, -0.018296299502253532, 0.07290395349264145, 0.035701651126146317, -0.06861568987369537, 0.14556966722011566, -0.12404168397188187, 0.16450369358062744, 0.09570024907588959, -0.03588778153061867, -0.02752646617591381, 0.09674865752458572, -0.05502074584364891, 0.0038468472193926573, 0.02253948710858822, -0.019863108173012733, -0.09544062614440918, -0.049775630235672, 0.11468610912561417, -0.06632598489522934, 0.005319004878401756, 0.075913205742836, -0.030944835394620895, -0.029468277469277382, 0.07410343736410141, 0.08392719179391861, -0.194386824965477, 0.12175467610359192, 0.1447025090456009, 0.010264258831739426, 0.18858890235424042, 0.0738593116402626, -0.011538354679942131, -0.051928285509347916, 0.07365002483129501, 0.015209827572107315, 0.23664061725139618, -0.10097765922546387, 0.03979351371526718, 0.020939847454428673, -0.02863275445997715, 0.04224013537168503, -0.113154336810112, -0.05288096144795418, -0.020702460780739784, -0.024224063381552696, 0.06551207602024078, 0.0751371756196022, -0.12614652514457703, 0.09591462463140488, -0.09362058341503143, -0.15672877430915833, 0.025730712339282036, -0.012457785196602345, -0.06210141256451607, 0.07807634025812149, -0.046839483082294464, -0.24511615931987762, -0.12018069624900818, -0.09971775114536285, -0.02716550976037979, -0.004330937750637531, 0.06086456775665283, -0.02655116654932499, -0.044860776513814926, -0.09373044967651367, -0.11827981472015381, -0.08550640195608139, 0.0386902391910553, 0.04984361678361893, 0.02335859276354313, -0.014948615804314613, -0.05177438259124756, 0.02502756379544735, -0.026677710935473442, -0.00452317064628005, 0.11156583577394485, -0.022065022960305214, 0.1733008623123169, 0.11077386885881424, -0.01027987152338028, -0.013504174537956715, 0.01419861987233162, 0.23443703353405, -0.056674517691135406, 0.11750219762325287, 0.09090209007263184, 0.04395560547709465, 0.08483855426311493, 0.17293983697891235, 0.03767610341310501, -0.10374977439641953, 0.05329624563455582, -0.07115588337182999, -0.12153550237417221, -0.07984467595815659, -0.0696193054318428, -0.06605526804924011, 0.14602865278720856, 0.00914646778255701, 0.06170709803700447, 0.10715615749359131, 0.1594894826412201, -0.01760544627904892, -0.05206730216741562, -0.04317110404372215, 0.11029668152332306, -0.058423884212970734, -0.04284312576055527, 0.0440700463950634, -0.10354944318532944, -0.03132767975330353, 0.08113943785429001, 0.028439393267035484, 0.15243583917617798, 0.04727775976061821, 0.02899171970784664, 0.07397779822349548, 0.1625535488128662, 0.1312606930732727, 0.13167808949947357, -0.05093102902173996, -0.06547723710536957, -0.022506628185510635, -0.06731604784727097, 0.11469214409589767, 0.06656734645366669, -0.056673988699913025, -0.0448993481695652, 0.06975501030683517, 0.017009122297167778, -0.0326213613152504, 0.10050396621227264, 0.11226195842027664, -0.2773906886577606, 0.013021816499531269, -0.004895207472145557, 0.057389385998249054, -0.08737008273601532, 0.0024890382774174213, 0.22169579565525055, 0.0028858112636953592, 0.07705157995223999, -0.031181441619992256, 0.08170957118272781, 0.08636176586151123, 0.005398302339017391, -0.04373428225517273, -0.004431022796779871, -0.01697288081049919, 0.054328303784132004, -0.18468888103961945, 0.1707305759191513, -0.01671459712088108, 0.03783591836690903, -0.011310825124382973, -0.0608905553817749, -0.03356006368994713, 0.2085096389055252, 0.1699926108121872, 0.010078366845846176, -0.026329228654503822, -0.06224511191248894, -0.0957280769944191, 0.027502408251166344, 0.06939765065908432, 0.0019744106102734804, 0.04403024539351463, 0.06916049867868423, -0.04515136405825615, 0.012082112021744251, 0.030710482969880104, -0.17990821599960327, -0.12155032157897949, 0.01912369392812252, 0.22331158816814423, 0.044089216738939285, -0.013696986250579357, 0.031069641932845116, -0.040630362927913666, 0.09945792704820633, -0.25583505630493164, -0.05859248340129852, -0.062006037682294846, -0.11166555434465408, -0.01979099214076996, -0.03821970894932747, 0.027902379631996155, -0.08368951082229614, 0.0675802081823349, -0.03549790754914284, -0.11724555492401123, 0.016784580424427986, -0.1843370795249939, -0.09032019227743149, -0.11927926540374756, 0.03315496817231178, 0.06439761817455292, -0.009711315855383873, 0.02823087014257908, -0.06804222613573074, -0.050150394439697266, -0.098942831158638, -0.008039725013077259, 0.06442750990390778, -0.09681745618581772, -0.08201109617948532, -0.054275207221508026, -0.08305462449789047, -0.05451568216085434, -0.03959691897034645, 0.041269153356552124, 0.20765134692192078, -0.08797480911016464, 0.062477823346853256, 0.20905742049217224, -0.03271004930138588, -0.23851174116134644, -0.12065061926841736, -0.06359554827213287, -0.039054129272699356, 0.0007523634121753275, -0.10608609020709991, 0.1401459276676178, -0.005761778447777033, -0.059865374118089676, 0.2087571769952774, -0.21550984680652618, -0.041236862540245056, 0.033336348831653595, 0.12982289493083954, 0.29923442006111145, -0.14547960460186005, -0.02032463438808918, -0.01822775788605213, -0.1470981389284134, 0.23521527647972107, 0.019942039623856544, 0.06280078738927841, -0.04717669636011124, 0.005070804618299007, -0.02718742936849594, -0.028547577559947968, 0.10323198139667511, -0.049486830830574036, 0.04426054283976555, -0.08103882521390915, 0.08897891640663147, 0.16367216408252716, -0.020992489531636238, 0.03688434511423111, -0.12751340866088867, 0.025584915652871132, -0.07235778123140335, -0.008634903468191624, -0.04248189926147461, 0.014790733344852924, -0.04231877997517586, -0.10453567653894424, -0.09953439235687256, 0.02016538195312023, 0.01904509961605072, 0.027452033013105392, -0.02633597142994404, -0.0016619220841675997, -0.0032224548049271107, 0.17834560573101044, 0.04705004394054413, -0.11825117468833923, 0.011302633211016655, -0.08756455034017563, -0.06096701696515083, 0.14494331181049347, -0.0314670130610466, -0.026303131133317947, 0.10367225855588913, 0.001020629657432437, 0.01409412082284689, 0.037323884665966034, -0.04621090739965439, 0.013764061033725739, 0.14306046068668365, -0.14745835959911346, -0.16966013610363007, -0.01667819544672966, 0.20065400004386902, 0.06583033502101898, 0.11472179740667343, 0.10881991684436798, -0.09427779912948608, 0.042337607592344284, -0.040339693427085876, 0.011574086733162403, -0.013344556093215942, 0.04130563139915466, -0.016179224476218224, 0.0561104454100132, -0.06612685322761536, 0.005871383473277092, -0.021406419575214386, -0.07149475067853928, -0.05149409547448158, 0.028998451307415962, -0.1105487048625946, -0.07756337523460388, 0.03399451822042465, 0.09417678415775299, -0.13380660116672516, -0.08430102467536926, -0.03848583251237869, -0.0638989582657814, 0.03625659644603729, 0.12759803235530853, 0.017654091119766235, 0.029538463801145554, 0.04841816797852516, 0.0013361626770347357, -0.07481605559587479, 0.022486530244350433, -0.02966686338186264, 0.10623630881309509, -0.23132656514644623, -0.08239039033651352, 0.012354176491498947, 0.026774216443300247, -0.08197327703237534, -0.02017904818058014, -0.0664559006690979, 0.006293625570833683, 0.020244747400283813, 0.07457379996776581, -0.12314185500144958, -0.06813926249742508, -0.01997414045035839, -0.007298677694052458, -0.061837539076805115, 0.014030746184289455, -0.04222137853503227, 0.05287458747625351, 0.04065242409706116, 0.015021121129393578, -0.024329211562871933, 0.0021990640088915825, -0.01109550055116415, -0.04425538703799248, 0.05934647470712662, -0.041628796607255936, -0.11625230312347412, -0.034391917288303375, -0.27088844776153564, -0.005468939431011677, 0.07193618267774582, 0.029317069798707962, -0.0029261643067002296, 0.11268299072980881, -0.011725285090506077, 0.0318576879799366, 0.04468245059251785, -0.02757704257965088, 0.030570093542337418, -0.09164963662624359, -0.016536492854356766, -0.06458599865436554, 0.0012891931692138314, -0.05182604119181633, -0.024586645886301994, 0.09141626209020615, 0.03773842379450798, 0.13667313754558563, -0.07333387434482574, 0.04090256616473198, -0.042245518416166306, 0.02792385034263134, 0.08630557358264923, -0.06390959024429321, 0.042243827134370804, -0.061730533838272095, -0.019577547907829285, 0.011775343678891659, 0.07875235378742218, -0.0703728199005127, -0.23341703414916992, -0.018479077145457268, -0.10250134021043777, -0.037694014608860016, -0.03733232989907265, 0.2810889780521393, 0.020998207852244377, 0.010672241449356079, -0.11778973788022995, 0.05722556635737419, 0.07421199232339859, 0.11695390194654465, 0.029727071523666382, 0.06768883019685745, 0.02258741855621338, 0.0941755399107933, 0.03998546674847603, 0.021070996299386024, -0.05776593089103699, 0.03628161549568176, -0.14567837119102478, 0.12636831402778625, -0.010979742743074894, 0.0676635354757309, 0.1833653450012207, 0.0012449831701815128, -0.03176789730787277, 0.06729834526777267, -0.01830299384891987, -0.04159991443157196, -0.20753461122512817, -0.05954388529062271, -0.14600759744644165, 0.009235154837369919, -0.03900334984064102, -0.011016354896128178, -0.017838384956121445, 0.06316415965557098, -0.054250676184892654, 0.08992043137550354, 0.05110248923301697, -0.0008359894854947925, 0.08953364193439484, 0.004662038758397102, -0.05874235928058624, 0.03799308091402054, 0.01607281155884266, 0.0022629271261394024, 0.02657477557659149, -0.0066693490371108055, 0.06258624792098999, 0.0049182092770934105, 0.05363176390528679, 0.04147041216492653, -0.060798387974500656, -0.03793412819504738, -0.0049146246165037155, -0.001202998450025916, 0.1288328617811203, 0.009667471051216125, -0.02075166441500187, 0.0030467237811535597, 0.06776365637779236, -0.020385749638080597, -0.009913141839206219, -0.06240474060177803, 0.11250913143157959, -0.13463182747364044, 0.062372706830501556, -0.02728208154439926, -0.012946330942213535, -0.07367336004972458, 0.2644483149051666, 0.12057144939899445, -0.08267766237258911, 0.00669408543035388, -0.09585963189601898, 0.01681416854262352, -0.07127181440591812, 0.09109212458133698, 0.043879471719264984, 0.2823103666305542, -0.02787063643336296, -0.04672497510910034, -0.11789554357528687, -0.01843452639877796, -0.08449416607618332, -0.12836439907550812, 0.017643975093960762, -0.03280884772539139, -0.11456738412380219, 0.08935346454381943, -0.1778048872947693, -0.041694533079862595, 0.10254013538360596, 0.01726963184773922, 0.010365039110183716, -0.01268102042376995, 0.10236624628305435, 0.004988439381122589, 0.028198381885886192, -0.1212078183889389, 0.053498730063438416, 0.03964228555560112, -0.03318706899881363, -0.09019339084625244, 0.05377577617764473, -0.013410237617790699, -0.2319989651441574, 0.2079484462738037, -0.014973195269703865, -0.00916353426873684, 0.07603917270898819, -0.058519478887319565, -0.1466130018234253, 0.10262575000524521, -0.021855806931853294, -0.05295906588435173, -0.017414245754480362, 0.13395147025585175, -0.0022543102968484163, 0.04188602417707443, 0.002556410850957036, -0.0980253517627716, -0.032289307564496994, 0.09790197014808655, 0.03918604552745819, -0.09325950592756271, 0.06420277059078217, -0.035058263689279556, 0.09912563115358353, -0.005819803569465876, -0.054467830806970596, -0.04183455556631088, -0.006011709570884705, 0.03416018933057785, -0.010745682753622532, -0.07207898050546646, 0.04933451488614082, -0.1658066064119339, -0.03741944581270218, -0.014271093532443047, 0.05532403290271759, -0.15130621194839478, 0.002698380034416914, -0.16230769455432892, 0.0029855326283723116, -0.05260559543967247, 0.015036497265100479, 0.1940065175294876, 0.006010136101394892, 0.003841830650344491, -0.10124226659536362, -0.03509463369846344, 0.05232075974345207, -0.009429735131561756, -0.13985228538513184 ]
null
null
transformers
# TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios We present **TableLLM**, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: [TableLLM-7B](https://huggingface.co/KAKA22/TableLLM-7b) and [TableLLM-13B](https://huggingface.co/KAKA22/TableLLM-13b), which are fine-tuned based on CodeLlama-7B and 13B. TableLLM generates either a code solution or a direct text answer to handle tabular data manipulation tasks based on different scenarios. Code generation is used for handling spreadsheet-embedded tabular data, which often involves the insert, delete, update, query, merge, and plot operations of tables. Text generation is used for handling document-embedded tabular data, which often involves the query operation of short tables. ## Evaluation Results We evaluate the code solution generation ability of TableLLM on three benchmarks: WikiSQL, Spider and Self-created table operation benchmark. The text answer generation ability is tested on four benchmarks: WikiTableQuestion (WikiTQ), TAT-QA, FeTaQA and OTTQA. The evaluation result is shown below: | Model | WikiTQ | TAT-QA | FeTaQA | OTTQA | WikiSQL | Spider | Self-created | Average | | :------------------- | :----: | :----: | :----: | :-----: | :-----: | :----: | :----------: | :-----: | | TaPEX | 38.5 | – | – | – | 83.9 | 15.0 | / | 45.8 | | TaPas | 31.5 | – | – | – | 74.2 | 23.1 | / | 42.92 | | TableLlama | 24.0 | 22.2 | 20.5 | 6.4 | 43.7 | 9.0 | / | 20.7 | | GPT3.5 | 58.5 |<ins>72.1</ins>| 71.2 | 60.8 | 81.7 | 67.4 | 77.1 | 69.8 | | GPT4 |**74.1**|**77.1**|**78.4**|**69.5** | 84.0 | 69.5 | 77.8 | **75.8**| | Llama2-Chat (13B) | 48.8 | 49.6 | 67.7 | 61.5 | – | – | – | 56.9 | | CodeLlama (13B) | 43.4 | 47.2 | 57.2 | 49.7 | 38.3 | 21.9 | 47.6 | 43.6 | | Deepseek-Coder (33B) | 6.5 | 11.0 | 7.1 | 7.4 | 72.5 | 58.4 | 73.9 | 33.8 | | StructGPT (GPT3.5) | 52.5 | 27.5 | 11.8 | 14.0 | 67.8 |**84.8**| / | 48.9 | | Binder (GPT3.5) | 61.6 | 12.8 | 6.8 | 5.1 | 78.6 | 52.6 | / | 42.5 | | DATER (GPT3.5) | 53.4 | 28.4 | 18.3 | 13.0 | 58.2 | 26.5 | / | 37.0 | | TableLLM-7B (Ours) | 58.8 | 66.9 | 72.6 |<ins>63.1</ins>|<ins>86.6</ins>| 82.6 |<ins>78.8</ins>| 72.8 | | TableLLM-13B (Ours) |<ins>62.4</ins>| 68.2 |<ins>74.5</ins>| 62.5 | **90.7**|<ins>83.4</ins>| **80.8** |<ins>74.7</ins>| ## Prompt Template The prompts we used for generating code solutions and text answers are introduced below. ### Code Solution The prompt template for the insert, delete, update, query, and plot operations on a single table. ``` [INST]Below are the first few lines of a CSV file. You need to write a Python program to solve the provided question. Header and first few lines of CSV file: {csv_data} Question: {question}[/INST] ``` The prompt template for the merge operation on two tables. ``` [INST]Below are the first few lines two CSV file. You need to write a Python program to solve the provided question. Header and first few lines of CSV file 1: {csv_data1} Header and first few lines of CSV file 2: {csv_data2} Question: {question}[/INST] ``` The csv_data field is filled with the first few lines of your provided table file. Below is an example: ``` Sex,Length,Diameter,Height,Whole weight,Shucked weight,Viscera weight,Shell weight,Rings M,0.455,0.365,0.095,0.514,0.2245,0.101,0.15,15 M,0.35,0.265,0.09,0.2255,0.0995,0.0485,0.07,7 F,0.53,0.42,0.135,0.677,0.2565,0.1415,0.21,9 M,0.44,0.365,0.125,0.516,0.2155,0.114,0.155,10 I,0.33,0.255,0.08,0.205,0.0895,0.0395,0.055,7 ``` ### Text Answer The prompt template for direct text answer generation on short tables. ```` [INST]Offer a thorough and accurate solution that directly addresses the Question outlined in the [Question]. ### [Table Text] {table_descriptions} ### [Table] ``` {table_in_csv} ``` ### [Question] {question} ### [Solution][INST/] ```` For more details about how to use TableLLM, please refer to our GitHub page: <https://github.com/TableLLM/TableLLM>
{"license": "llama2"}
text-generation
KAKA22/TableLLM-7b
[ "transformers", "safetensors", "llama", "text-generation", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:07:20+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios =================================================================================== We present TableLLM, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: TableLLM-7B and TableLLM-13B, which are fine-tuned based on CodeLlama-7B and 13B. TableLLM generates either a code solution or a direct text answer to handle tabular data manipulation tasks based on different scenarios. Code generation is used for handling spreadsheet-embedded tabular data, which often involves the insert, delete, update, query, merge, and plot operations of tables. Text generation is used for handling document-embedded tabular data, which often involves the query operation of short tables. Evaluation Results ------------------ We evaluate the code solution generation ability of TableLLM on three benchmarks: WikiSQL, Spider and Self-created table operation benchmark. The text answer generation ability is tested on four benchmarks: WikiTableQuestion (WikiTQ), TAT-QA, FeTaQA and OTTQA. The evaluation result is shown below: Prompt Template --------------- The prompts we used for generating code solutions and text answers are introduced below. ### Code Solution The prompt template for the insert, delete, update, query, and plot operations on a single table. The prompt template for the merge operation on two tables. The csv\_data field is filled with the first few lines of your provided table file. Below is an example: ### Text Answer The prompt template for direct text answer generation on short tables. {table\_in\_csv} ' For more details about how to use TableLLM, please refer to our GitHub page: <URL
[ "### Code Solution\n\n\nThe prompt template for the insert, delete, update, query, and plot operations on a single table.\n\n\nThe prompt template for the merge operation on two tables.\n\n\nThe csv\\_data field is filled with the first few lines of your provided table file. Below is an example:", "### Text Answer\n\n\nThe prompt template for direct text answer generation on short tables.\n\n\n{table\\_in\\_csv}\n'\n\n\nFor more details about how to use TableLLM, please refer to our GitHub page: <URL" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Code Solution\n\n\nThe prompt template for the insert, delete, update, query, and plot operations on a single table.\n\n\nThe prompt template for the merge operation on two tables.\n\n\nThe csv\\_data field is filled with the first few lines of your provided table file. Below is an example:", "### Text Answer\n\n\nThe prompt template for direct text answer generation on short tables.\n\n\n{table\\_in\\_csv}\n'\n\n\nFor more details about how to use TableLLM, please refer to our GitHub page: <URL" ]
[ 54, 65, 50 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Code Solution\n\n\nThe prompt template for the insert, delete, update, query, and plot operations on a single table.\n\n\nThe prompt template for the merge operation on two tables.\n\n\nThe csv\\_data field is filled with the first few lines of your provided table file. Below is an example:### Text Answer\n\n\nThe prompt template for direct text answer generation on short tables.\n\n\n{table\\_in\\_csv}\n'\n\n\nFor more details about how to use TableLLM, please refer to our GitHub page: <URL" ]
[ -0.07512728869915009, -0.033301305025815964, -0.0010302996961399913, 0.023038040846586227, 0.12484432011842728, -0.03612452372908592, 0.1375710368156433, 0.09673413634300232, -0.0183035247027874, 0.05092178285121918, 0.10616890341043472, 0.16556547582149506, 0.0032617629040032625, 0.10330012440681458, -0.08708378672599792, -0.10272008180618286, 0.019998596981167793, 0.019957160577178, -0.04679970443248749, 0.07817726582288742, 0.09665790945291519, -0.0773843377828598, 0.08738371729850769, 0.012425028719007969, -0.07514429092407227, 0.012242047116160393, 0.029208635911345482, -0.018469102680683136, 0.09042546153068542, 0.09207000583410263, 0.018254077062010765, 0.06190046668052673, 0.033462539315223694, -0.17499284446239471, 0.046253807842731476, 0.025736115872859955, -0.004617528058588505, 0.029815655201673508, -0.02593504823744297, -0.06319348514080048, 0.05047092214226723, -0.07221328467130661, -0.013319041579961777, 0.075869120657444, -0.08370592445135117, 0.06079728528857231, -0.11562469601631165, 0.10710060596466064, 0.16992466151714325, 0.06597191840410233, 0.05386612191796303, 0.08539355546236038, 0.015055469237267971, 0.09101815521717072, 0.19199076294898987, -0.22428016364574432, -0.0051373993046581745, 0.09376642107963562, 0.09312893450260162, -0.046738531440496445, -0.007434297353029251, 0.12520454823970795, 0.048497702926397324, -0.04960739240050316, 0.04847041517496109, -0.08478593826293945, -0.17585954070091248, -0.008798536844551563, -0.09396343678236008, -0.06604032963514328, 0.21948319673538208, -0.05370444059371948, -0.03479953110218048, -0.08821308612823486, -0.07205268740653992, -0.00352146802470088, -0.04717087373137474, -0.010032473132014275, 0.0128057561814785, 0.05496266856789589, 0.05437757819890976, -0.1789538711309433, -0.14106965065002441, -0.08144459873437881, -0.07185245305299759, 0.09523957222700119, -0.000003036024963876116, 0.032908692955970764, -0.12479514628648758, 0.10830236971378326, 0.026788877323269844, -0.07365503162145615, -0.02793237194418907, 0.02899436093866825, 0.00390067626722157, -0.03541528433561325, -0.05419870838522911, -0.14932182431221008, 0.12454598397016525, 0.14764198660850525, 0.024659866467118263, 0.0023851455189287663, -0.0564526729285717, 0.06716783344745636, -0.034473203122615814, 0.08141874521970749, -0.018542040139436722, 0.018148820847272873, 0.17849567532539368, -0.01216940302401781, 0.10605522990226746, -0.022396665066480637, -0.16371260583400726, -0.04094191640615463, -0.028835507109761238, 0.1474774032831192, 0.06161785498261452, 0.09317611157894135, -0.02726716734468937, 0.011957379058003426, 0.11110302805900574, -0.15075595676898956, 0.0515950508415699, 0.017079802230000496, 0.03559422120451927, -0.0634164959192276, 0.12615106999874115, 0.021524332463741302, -0.05873255804181099, -0.0951906368136406, -0.048789627850055695, 0.021039189770817757, -0.08358193188905716, -0.04443635046482086, 0.05278730392456055, -0.040595948696136475, -0.036923378705978394, -0.08485140651464462, -0.2564355432987213, -0.00011439171066740528, 0.035223089158535004, -0.006937738042324781, 0.01270655170083046, -0.020842058584094048, 0.030217807739973068, -0.022759074345231056, -0.0013194765197113156, -0.00765588553622365, -0.022932754829525948, 0.05704324319958687, 0.009045136161148548, 0.05502576008439064, -0.12369677424430847, -0.0039001191034913063, -0.0625515729188919, 0.08827202022075653, -0.09225666522979736, 0.07270786166191101, -0.0025862478651106358, 0.08054008334875107, -0.07803460210561752, 0.046948809176683426, 0.0024250003043562174, 0.019814269617199898, 0.012485465034842491, 0.1770571917295456, -0.1065240129828453, 0.009967664256691933, 0.14519654214382172, -0.11571557819843292, -0.17281295359134674, 0.06844988465309143, -0.0022757486440241337, 0.16259372234344482, 0.08193785697221756, 0.017359528690576553, 0.1521950364112854, -0.08775516599416733, 0.057682786136865616, 0.04660671204328537, -0.11040351539850235, -0.11845118552446365, 0.010783735662698746, -0.0005811990704387426, -0.14117123186588287, 0.040894705802202225, -0.030171208083629608, 0.0003257152857258916, 0.006200506817549467, -0.04645274579524994, -0.06356536597013474, -0.026345374062657356, -0.07446426898241043, -0.049418915063142776, -0.006376710720360279, -0.03394967317581177, 0.021451741456985474, 0.05640513822436333, 0.022894399240612984, -0.05170191079378128, 0.038678765296936035, -0.07051028311252594, 0.08999727666378021, -0.12982390820980072, 0.02736189402639866, -0.09809832274913788, -0.12980307638645172, -0.05675208941102028, 0.11124759167432785, 0.05082198604941368, 0.004962307866662741, 0.033606138080358505, 0.011965993791818619, 0.016380013898015022, 0.04372569918632507, 0.16739137470722198, 0.002921255072578788, -0.061163581907749176, -0.09354141354560852, -0.01419978216290474, -0.048509009182453156, 0.12024402618408203, -0.07471020519733429, 0.07056501507759094, 0.04004039987921715, 0.05986117944121361, -0.024451546370983124, 0.008945374749600887, 0.07536999136209488, -0.02741885930299759, -0.06149877607822418, -0.0142367547377944, 0.05643148347735405, 0.05521693453192711, -0.08928260207176208, 0.0996016263961792, -0.17075219750404358, 0.01715129241347313, 0.10337156802415848, -0.02416309155523777, -0.026772670447826385, -0.16116578876972198, -0.005545072723180056, 0.00895036943256855, -0.08231326192617416, -0.05823899433016777, 0.011356867849826813, 0.025579078122973442, 0.14513655006885529, -0.06283527612686157, -0.06409616023302078, 0.00447173323482275, -0.09046077728271484, -0.031100748106837273, 0.04460548609495163, 0.18298371136188507, -0.13682487607002258, 0.08869249373674393, 0.02883906662464142, 0.03519397974014282, 0.0850040391087532, 0.01032576709985733, -0.006171513348817825, -0.04162010923027992, 0.10076677799224854, 0.03428686782717705, 0.01394579466432333, -0.07534864544868469, -0.012707901187241077, 0.03450343757867813, -0.04788757488131523, 0.056977059692144394, -0.18707701563835144, -0.008541925810277462, 0.03550352901220322, -0.0802062600851059, 0.05898738279938698, 0.058876726776361465, -0.010689379647374153, 0.05698895454406738, -0.02545352280139923, 0.018889745697379112, 0.05895348638296127, 0.004305750597268343, -0.12463296949863434, 0.1345071941614151, -0.1008860245347023, -0.26056015491485596, -0.19071082770824432, -0.0849108025431633, -0.10076712816953659, 0.06560638546943665, 0.09445050358772278, -0.017208462581038475, -0.07570800930261612, -0.13146157562732697, 0.030075492337346077, 0.029039693996310234, -0.02002037689089775, 0.01862093061208725, 0.04424143210053444, -0.012951098382472992, -0.15568076074123383, -0.02608545497059822, 0.049340903759002686, -0.06319771707057953, 0.06631883978843689, -0.05093470215797424, 0.1270700842142105, 0.14305247366428375, -0.014056911692023277, 0.047754835337400436, -0.03313979506492615, 0.0828246995806694, -0.01923462748527527, 0.056105032563209534, 0.21149149537086487, -0.054826222360134125, 0.02520710602402687, 0.10918251425027847, 0.0222848542034626, -0.09696204960346222, 0.023810459300875664, -0.03220748528838158, -0.09694332629442215, -0.12317988276481628, -0.09593012183904648, -0.09447318315505981, -0.013887363485991955, -0.0047518182545900345, 0.06363918632268906, 0.04045470058917999, 0.08508200198411942, -0.06069517508149147, 0.032139673829078674, 0.06155431643128395, 0.09597858041524887, 0.19984616339206696, -0.014778733253479004, 0.047363970428705215, -0.11119924485683441, -0.04239009693264961, 0.07014565914869308, 0.08409963548183441, 0.06834743916988373, 0.044893719255924225, 0.12501023709774017, 0.09624233096837997, -0.02749730832874775, -0.0031026301439851522, 0.15287579596042633, -0.0629747211933136, -0.003627672092989087, 0.01010227296501398, -0.06566142290830612, -0.0648694559931755, 0.014018822461366653, -0.09574760496616364, -0.023533964529633522, -0.06524573266506195, 0.07286696881055832, 0.07834748178720474, 0.16757333278656006, 0.04202768951654434, -0.2332376390695572, -0.02270485833287239, 0.057558346539735794, 0.02110191620886326, -0.04635901376605034, 0.004910020157694817, 0.017013845965266228, -0.057363416999578476, 0.06282553821802139, -0.014771045185625553, 0.11765405535697937, -0.04136154428124428, 0.0022508660331368446, -0.07316113263368607, 0.024989893659949303, -0.02136092074215412, 0.11470656096935272, -0.14697083830833435, 0.11178737133741379, 0.06945355981588364, 0.013135293498635292, -0.09716594964265823, 0.03951011225581169, -0.013121607713401318, 0.171988382935524, 0.0776207372546196, -0.02922363393008709, -0.007659898139536381, -0.14600208401679993, -0.05533943697810173, 0.0309758298099041, 0.04951031878590584, -0.05565435811877251, 0.10719960182905197, -0.07627151906490326, -0.040484800934791565, 0.005558652803301811, 0.02265816740691662, -0.052251461893320084, -0.20181351900100708, 0.03419347479939461, 0.09028574079275131, 0.02536785788834095, -0.047124531120061874, 0.03058258257806301, -0.00042555705294944346, 0.24282704293727875, -0.07556470483541489, -0.06151249632239342, -0.12488456070423126, -0.03911859542131424, 0.03738517314195633, -0.04856124147772789, 0.058726001530885696, -0.031047604978084564, 0.09798607975244522, -0.08557713031768799, -0.10456892848014832, 0.07488663494586945, -0.10472000390291214, -0.07954482734203339, -0.012520832009613514, 0.1872360110282898, -0.09376756846904755, -0.04535624757409096, 0.0954592302441597, 0.02479858696460724, -0.043476853519678116, -0.12591519951820374, -0.029262930154800415, 0.13484607636928558, 0.10661368817090988, 0.04713090509176254, -0.13848155736923218, -0.016646351665258408, 0.05655990168452263, -0.03695344552397728, 0.2102256566286087, 0.22653479874134064, -0.02163197472691536, 0.09704860299825668, 0.0024632534477859735, -0.08752177655696869, -0.240916445851326, -0.046338945627212524, -0.12919677793979645, -0.02732906863093376, -0.03232131898403168, -0.0158399511128664, 0.0647771805524826, 0.003781774314120412, -0.03467812016606331, 0.13929511606693268, -0.2527850270271301, -0.10702937096357346, 0.0572279654443264, 0.05921594426035881, 0.23264002799987793, -0.16599245369434357, -0.060437846928834915, -0.11587227135896683, -0.1731092929840088, 0.1033160611987114, -0.1519998013973236, 0.06725330650806427, -0.004774859175086021, 0.0010001392802223563, 0.021193688735365868, -0.08243092894554138, 0.06671453267335892, -0.08736875653266907, 0.05521557107567787, -0.0633447915315628, 0.003652083920314908, 0.17332078516483307, -0.068177729845047, 0.1771758794784546, -0.14718396961688995, 0.034650374203920364, -0.05311266705393791, -0.05370151624083519, 0.012677072547376156, 0.08703627437353134, -0.041548702865839005, -0.033637288957834244, -0.0704587996006012, -0.07146712392568588, 0.004653833340853453, -0.012595421634614468, 0.09065992385149002, -0.08169176429510117, 0.05524177476763725, 0.18571670353412628, 0.16750876605510712, -0.09271138906478882, -0.010065410286188126, 0.017783937975764275, -0.053580012172460556, 0.02114427275955677, -0.07480861246585846, 0.09546414017677307, 0.004682238679379225, 0.011027015745639801, 0.1208261251449585, 0.055129848420619965, 0.04381917417049408, 0.030777959153056145, 0.08494918048381805, -0.13016639649868011, -0.1533001810312271, -0.008180675096809864, 0.05042712762951851, -0.04618491977453232, 0.09081622213125229, 0.1619858592748642, -0.008589773438870907, -0.023009901866316795, 0.013861323706805706, 0.07331147789955139, -0.023803092539310455, 0.033823687583208084, 0.040568575263023376, 0.016316508874297142, -0.0876569002866745, 0.009974920190870762, 0.058086030185222626, -0.03749723732471466, 0.00742883188650012, 0.08890345692634583, -0.1277688443660736, -0.10943698137998581, 0.05282276123762131, 0.15155784785747528, -0.13406437635421753, -0.04047534987330437, -0.11506777256727219, -0.06621720641851425, 0.004605577327311039, 0.15054017305374146, 0.01563778519630432, 0.029086338356137276, 0.02154768630862236, 0.008375970646739006, -0.08933275192975998, 0.09832417964935303, -0.00028279545949772, 0.05629407986998558, -0.07231014966964722, 0.09422395378351212, -0.031669121235609055, 0.04678812250494957, -0.05211978033185005, -0.006984439212828875, -0.08350439369678497, 0.018794724717736244, -0.18940819799900055, 0.031195851042866707, -0.14860263466835022, -0.029186293482780457, 0.04452083632349968, 0.027640774846076965, -0.015781279653310776, 0.023184265941381454, -0.03647470846772194, -0.014784918166697025, -0.062127478420734406, 0.030934352427721024, -0.16064035892486572, -0.02787022478878498, 0.05591432377696037, -0.035142067819833755, 0.08003576844930649, -0.0034909085370600224, -0.06644012033939362, -0.02181766927242279, -0.1519525945186615, -0.02397957257926464, 0.09044277667999268, -0.000023840731955715455, 0.011448261328041553, -0.04128364473581314, 0.016919946298003197, 0.09491854161024094, 0.007241813465952873, 0.0035908413119614124, 0.07649951428174973, -0.07027056813240051, 0.035748597234487534, -0.04303064942359924, -0.05095681548118591, -0.013723134994506836, -0.018448615446686745, 0.01936747319996357, 0.02041858434677124, 0.12941910326480865, -0.07595657557249069, 0.03965849429368973, -0.0962187871336937, -0.010873752646148205, 0.006695235148072243, -0.0566413514316082, -0.14731481671333313, -0.058148257434368134, 0.026538513600826263, -0.032833147794008255, 0.20713244378566742, 0.06314827501773834, 0.020361730828881264, 0.01082076970487833, 0.05665723234415054, 0.17203836143016815, 0.0003849288623314351, 0.19162505865097046, 0.0100678326562047, 0.04790853336453438, -0.07542526721954346, 0.04723767191171646, 0.06881619244813919, -0.1719389110803604, 0.1642831265926361, -0.006070857867598534, -0.05275733396410942, 0.06731550395488739, 0.0395205058157444, -0.01598624512553215, -0.08368701487779617, -0.17524313926696777, -0.03358732536435127, 0.04841318726539612, -0.05109687149524689, -0.03535442799329758, 0.2235347330570221, -0.07898904383182526, 0.04150531440973282, 0.03292076662182808, -0.011088365688920021, -0.14072827994823456, -0.22014650702476501, -0.08921055495738983, -0.1268450766801834, -0.013232623226940632, -0.08507415652275085, 0.0006002132431603968, -0.10606812685728073, 0.010398737154901028, 0.03572547808289528, 0.17035791277885437, 0.010404466651380062, -0.01840526983141899, -0.07751791924238205, 0.006065547466278076, 0.05318940430879593, -0.013118487782776356, 0.035321153700351715, 0.03449281305074692, -0.08202798664569855, 0.033943042159080505, 0.08605671674013138, 0.10795632004737854, 0.05083498731255531, -0.11297930032014847, -0.04966190084815025, -0.05571998655796051, 0.03976026549935341, 0.03285020589828491, 0.06625813990831375, 0.03834272921085358, -0.040719471871852875, 0.024508396163582802, 0.11325375735759735, -0.05373154208064079, -0.16723185777664185, -0.05931340157985687, 0.2028525322675705, 0.0021470452193170786, 0.046077195554971695, -0.04549557343125343, -0.06119057163596153, 0.03646409884095192, 0.2897937297821045, 0.21822866797447205, -0.03777715191245079, 0.053808651864528656, -0.06361115723848343, 0.023483766242861748, 0.06001996994018555, 0.07407193630933762, 0.05261136591434479, 0.25806039571762085, -0.011169261299073696, -0.06331455707550049, -0.0015724928816780448, -0.04298738017678261, -0.11586987972259521, 0.047867368906736374, -0.06907977908849716, -0.032287657260894775, 0.04996819794178009, 0.08983566612005234, -0.03865368291735649, -0.05073852837085724, -0.03283361345529556, -0.004651584662497044, -0.01167199108749628, -0.015915585681796074, 0.059615861624479294, -0.06084609031677246, 0.009685484692454338, -0.01295244786888361, -0.01607225462794304, 0.12194493412971497, -0.005624428391456604, -0.21017800271511078, 0.010327857919037342, 0.058720000088214874, -0.0015801229747012258, 0.09957563132047653, -0.007810708601027727, 0.012467347085475922, 0.046124719083309174, -0.02178485505282879, -0.10782434791326523, 0.11374738812446594, 0.026641028001904488, -0.03335627168416977, 0.10778404027223587, -0.05144582316279411, -0.02460315264761448, -0.040275439620018005, 0.037094976752996445, -0.0911250114440918, 0.05301067978143692, 0.05817293003201485, -0.005951263010501862, -0.12080129235982895, 0.018698371946811676, -0.09570589661598206, 0.12001030892133713, 0.05507984757423401, -0.03617359325289726, 0.0475328303873539, -0.02720602974295616, 0.06567706167697906, 0.01969735696911812, 0.026350408792495728, -0.04112870618700981, -0.13758011162281036, 0.005643964279443026, 0.033034369349479675, 0.01876157894730568, -0.20031820237636566, -0.06712561845779419, -0.057533979415893555, -0.03302256390452385, -0.07489513605833054, 0.09652659296989441, 0.21457481384277344, 0.030408399179577827, -0.04018498957157135, -0.11974118649959564, 0.03390069305896759, 0.09082207828760147, -0.10837164521217346, -0.07969101518392563 ]
null
null
transformers
# Telugu-Llama2-7B-v0-Instruct This model is based on [Telugu-Llama2-7B-v0-Base](https://huggingface.co/Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Base) and hase been finetuned on instruction datasets: 1. [yahma_alpaca_cleaned_telugu_filtered_and_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized) 2. [teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized](https://huggingface.co/datasets/Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized) # Input Text Format ``` ### Instruction: {instruction} ### Input: {input} ## Response: {response} ``` # Usage ## With Romanized Telugu ```python3 import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right") model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) instruction = "Krindi samaacharam prakaram google app eppudu release ayyindi?" input ="Google News is a news aggregator service developed by Google. It presents a continuous flow of links to articles organized from thousands of publishers and magazines. Google News is available as an app on Android, iOS, and the Web. Google released a beta version in September 2002 and the official app in January 2006." text = f"""Instruction: {instruction} \nInput: {input} \nResponse:""" encodings = tokenizer(text, padding=True, return_tensors="pt") encodings = encodings.to(device) with torch.inference_mode(): outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500) output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True) ``` ### Sample Output: ``` 1. September 2002 Google released a beta version of Google News. 2. January 2006 Google released the official version of Google News. ``` ## With Native Telugu ```python3 import torch from transformers import AutoTokenizer, AutoModelForCausalLM device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') model_name = "Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="right") model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device) instruction = "కింది వచనాన్ని సంగ్రహించండి" input="గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ. ఇది వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది. గూగుల్ వార్తలు Android, iOS మరియు వెబ్‌లో యాప్‌గా అందుబాటులో ఉన్నాయి. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్‌ను మరియు జనవరి 2006లో అధికారిక యాప్‌ను విడుదల చేసింది." text = f"""Instruction: {instruction} \nInput: {input} \nResponse:""" encodings = tokenizer(text, padding=True, return_tensors="pt") encodings = encodings.to(device) with torch.inference_mode(): outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=500) output = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True) ``` ### Sample Output: 1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది. 2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది. # Developers: The model is a collaborative effort by [Ravi Theja](https://twitter.com/ravithejads) and [Ramsri Goutham](https://twitter.com/ramsri_goutham). Feel free to DM either of us if you have any questions. # Note: The model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly.
{"language": ["te", "en"], "license": "llama2", "datasets": ["Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized", "Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized"]}
text-generation
Telugu-LLM-Labs/Telugu-Llama2-7B-v0-Instruct
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "te", "en", "dataset:Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized", "dataset:Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:07:42+00:00
[]
[ "te", "en" ]
TAGS #transformers #pytorch #llama #text-generation #conversational #te #en #dataset-Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized #dataset-Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Telugu-Llama2-7B-v0-Instruct This model is based on Telugu-Llama2-7B-v0-Base and hase been finetuned on instruction datasets: 1. yahma_alpaca_cleaned_telugu_filtered_and_romanized 2. teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized # Input Text Format # Usage ## With Romanized Telugu ### Sample Output: ## With Native Telugu ### Sample Output: 1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది. 2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది. # Developers: The model is a collaborative effort by Ravi Theja and Ramsri Goutham. Feel free to DM either of us if you have any questions. # Note: The model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly.
[ "# Telugu-Llama2-7B-v0-Instruct\n\n\nThis model is based on Telugu-Llama2-7B-v0-Base and hase been finetuned on instruction datasets:\n 1. yahma_alpaca_cleaned_telugu_filtered_and_romanized\n 2. teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized", "# Input Text Format", "# Usage", "## With Romanized Telugu", "### Sample Output:", "## With Native Telugu", "### Sample Output:\n\n1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది.\n2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది.", "# Developers:\n\nThe model is a collaborative effort by Ravi Theja and Ramsri Goutham. Feel free to DM either of us if you have any questions.", "# Note:\n\nThe model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly." ]
[ "TAGS\n#transformers #pytorch #llama #text-generation #conversational #te #en #dataset-Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized #dataset-Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Telugu-Llama2-7B-v0-Instruct\n\n\nThis model is based on Telugu-Llama2-7B-v0-Base and hase been finetuned on instruction datasets:\n 1. yahma_alpaca_cleaned_telugu_filtered_and_romanized\n 2. teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized", "# Input Text Format", "# Usage", "## With Romanized Telugu", "### Sample Output:", "## With Native Telugu", "### Sample Output:\n\n1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది.\n2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది.", "# Developers:\n\nThe model is a collaborative effort by Ravi Theja and Ramsri Goutham. Feel free to DM either of us if you have any questions.", "# Note:\n\nThe model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly." ]
[ 128, 91, 5, 3, 5, 7, 5, 79, 35, 38 ]
[ "passage: TAGS\n#transformers #pytorch #llama #text-generation #conversational #te #en #dataset-Telugu-LLM-Labs/yahma_alpaca_cleaned_telugu_filtered_and_romanized #dataset-Telugu-LLM-Labs/teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Telugu-Llama2-7B-v0-Instruct\n\n\nThis model is based on Telugu-Llama2-7B-v0-Base and hase been finetuned on instruction datasets:\n 1. yahma_alpaca_cleaned_telugu_filtered_and_romanized\n 2. teknium_GPTeacher_general_instruct_telugu_filtered_and_romanized# Input Text Format# Usage## With Romanized Telugu### Sample Output:## With Native Telugu### Sample Output:\n\n1. గూగుల్ వార్తలు అనేది గూగుల్ ద్వారా అభివృద్ధి చేయబడిన వార్తా అగ్రిగేటర్ సేవ, వేలకొద్దీ ప్రచురణకర్తలు మరియు మ్యాగజైన్‌ల నుండి నిర్వహించబడిన కథనాలకు నిరంతర లింక్‌లను అందిస్తుంది.\n2. గూగుల్ సెప్టెంబరు 2002లో బీటా వెర్షన్ మరియు జనవరి 2006లో అధికారిక యాప్ ను విడుదల చేసింది.# Developers:\n\nThe model is a collaborative effort by Ravi Theja and Ramsri Goutham. Feel free to DM either of us if you have any questions.# Note:\n\nThe model is quite sensitive to parameters and inputs and is not yet ready for production. It remains in the experimental phase, and we recommend using it accordingly." ]
[ -0.09125734120607376, 0.13620798289775848, -0.008014041930437088, 0.055991031229496, 0.017705414444208145, 0.011899665929377079, 0.09146182984113693, 0.09007076174020767, 0.0637388527393341, 0.05951835960149765, 0.0311901792883873, 0.07713668793439865, 0.012125388719141483, 0.11932787299156189, -0.044459268450737, -0.14259302616119385, 0.0007020425982773304, -0.018166881054639816, -0.01134352758526802, 0.08945325762033463, 0.11464586108922958, -0.04685597121715546, 0.05511777102947235, 0.010584507137537003, -0.02826366014778614, -0.07131609320640564, 0.0037805510219186544, -0.003632292151451111, 0.032067447900772095, 0.01733476296067238, 0.03875153139233589, 0.06239805370569229, 0.0020708651281893253, -0.10528432577848434, 0.026968590915203094, -0.019357267767190933, 0.006654518656432629, 0.04178841412067413, 0.05832827091217041, 0.060917023569345474, 0.19705171883106232, 0.00781169394031167, 0.01805719919502735, 0.04931054264307022, -0.10710331052541733, -0.008737289346754551, -0.005786682479083538, -0.013380319811403751, 0.043340157717466354, 0.056775521486997604, -0.044236354529857635, 0.1887585073709488, -0.02378295175731182, 0.065782830119133, -0.07251329720020294, -0.11402208358049393, -0.08540065586566925, 0.07987183332443237, 0.00949395727366209, 0.033218979835510254, -0.043992891907691956, 0.013662326149642467, 0.06614656746387482, -0.024639880284667015, -0.017431559041142464, -0.058162517845630646, 0.05537230521440506, -0.024557363241910934, -0.10262161493301392, 0.021189725026488304, 0.2650022804737091, -0.00569072924554348, -0.03045269101858139, -0.11250877380371094, -0.0865921899676323, 0.06285032629966736, 0.012978273443877697, -0.038419317454099655, -0.013496301136910915, 0.037663549184799194, 0.11428099870681763, -0.01263990718871355, -0.07026609778404236, -0.036307524889707565, 0.0028477536980062723, 0.1270664930343628, 0.01695684902369976, 0.03350434824824333, -0.08634679019451141, 0.07798495143651962, -0.01023499108850956, -0.10270727425813675, -0.00451156310737133, -0.11136092245578766, -0.012819248251616955, -0.040457382798194885, -0.0352458618581295, -0.0009090864914469421, 0.10658404231071472, 0.10314376652240753, -0.0026520907413214445, 0.015989361330866814, 0.04506359621882439, -0.03835354000329971, 0.14689944684505463, 0.01815219596028328, -0.10073936730623245, -0.01953873224556446, 0.0607757605612278, 0.05490065738558769, 0.047714490443468094, 0.022379837930202484, 0.013585500419139862, -0.012286734767258167, -0.0041491445153951645, 0.04251306131482124, 0.043304719030857086, 0.10334979742765427, -0.0668359026312828, -0.08677706867456436, 0.02459648624062538, -0.09516915678977966, -0.047400664538145065, 0.013833442702889442, -0.05318528041243553, 0.04223328083753586, -0.015013881027698517, -0.017361633479595184, -0.007017713971436024, -0.10266498476266861, -0.08718736469745636, -0.022213997319340706, -0.08907749503850937, -0.014325511641800404, -0.029596498236060143, -0.06046724319458008, 0.029079074040055275, -0.09750647842884064, -0.13640384376049042, -0.05397596210241318, 0.10058055818080902, -0.09546872228384018, -0.04476957395672798, -0.015448817983269691, 0.020571259781718254, 0.020008575171232224, -0.028312334790825844, -0.01825273036956787, -0.048578061163425446, 0.025214944034814835, 0.0651339590549469, 0.05830826610326767, 0.020362837240099907, 0.00996347051113844, -0.08497045189142227, 0.07203499972820282, 0.03496867045760155, 0.07012048363685608, -0.08735836297273636, 0.019441699609160423, -0.08944092690944672, -0.017535600811243057, 0.005746650043874979, -0.017912013456225395, 0.04281901195645332, 0.1520726978778839, -0.1961650252342224, 0.04913036525249481, 0.08292980492115021, -0.11063773930072784, -0.1648913025856018, 0.09365803003311157, -0.010996504686772823, 0.2351427525281906, 0.04917523264884949, 0.054251231253147125, 0.10181434452533722, -0.11221343278884888, -0.021148623898625374, 0.0014239682350307703, 0.03161896392703056, 0.10043409466743469, 0.050681695342063904, 0.06441902369260788, -0.04918810725212097, 0.06840614229440689, -0.08022475987672806, -0.006319236941635609, -0.052413344383239746, -0.0817171186208725, -0.024481449276208878, -0.06708001345396042, 0.018497884273529053, 0.012116100639104843, 0.031245818361639977, 0.012392597272992134, -0.06176347658038139, -0.0993248000741005, 0.15406887233257294, -0.0017141508869826794, -0.03607402741909027, -0.15235556662082672, 0.15349073708057404, -0.03154386579990387, -0.001171293668448925, -0.13625583052635193, 0.010036763735115528, 0.04910300672054291, 0.004576291888952255, 0.04792029410600662, 0.09174557030200958, 0.017520722001791, 0.0012926214840263128, -0.003230929607525468, 0.003861415898427367, -0.004068436566740274, 0.023365871980786324, -0.015920057892799377, -0.1189265251159668, 0.046040572226047516, -0.06680193543434143, 0.20848552882671356, -0.131576806306839, 0.0010301470756530762, 0.042938243597745895, 0.0697241798043251, 0.012981157749891281, -0.021825077012181282, 0.08808670938014984, -0.04038181155920029, -0.017558448016643524, -0.025828354060649872, 0.038586992770433426, 0.010279029607772827, -0.025334341451525688, -0.03186844661831856, -0.0335189551115036, -0.01905704289674759, 0.027994226664304733, -0.04015460982918739, -0.03327415511012077, 0.016841674223542213, -0.019318053498864174, 0.0022185975685715675, 0.0552041158080101, 0.04234993830323219, 0.12775640189647675, 0.03665856644511223, 0.028274713084101677, -0.05454292148351669, 0.013995704241096973, -0.01960964873433113, -0.09403490275144577, 0.009476792998611927, 0.03827304765582085, 0.1441708207130432, -0.15045391023159027, 0.021979017183184624, 0.06439812481403351, -0.012753605842590332, 0.15838298201560974, -0.02720601111650467, -0.0704444870352745, -0.08482799679040909, -0.006304336711764336, -0.017599018290638924, 0.04734747111797333, -0.15071621537208557, 0.00014749706315342337, 0.05194016546010971, -0.04532551392912865, 0.04966240003705025, -0.037342943251132965, 0.01604156754910946, -0.016998255625367165, 0.016980409622192383, 0.021596893668174744, 0.09702758491039276, -0.06427370756864548, 0.08042386919260025, -0.04744628071784973, 0.010086222551763058, -0.025071529671549797, -0.04610240086913109, -0.059346508234739304, 0.09553824365139008, -0.06346768140792847, -0.12474039196968079, -0.06749077886343002, 0.008806991390883923, -0.09744586795568466, 0.01012500748038292, -0.02326052635908127, -0.042419690638780594, -0.08880124986171722, -0.05103322118520737, 0.010406117886304855, 0.04382363334298134, -0.07150836288928986, 0.0013897162862122059, 0.05674408748745918, 0.06251230835914612, -0.12104401737451553, -0.010395187884569168, -0.0025508003309369087, -0.07714046537876129, 0.120445117354393, -0.04177836328744888, 0.02929607778787613, 0.0878741666674614, 0.04646764695644379, -0.002085341140627861, 0.039547745138406754, 0.24465006589889526, -0.061586178839206696, 0.05285155400633812, 0.18084865808486938, 0.06187797710299492, 0.01345400232821703, 0.1607690304517746, 0.03695560246706009, -0.15515559911727905, 0.057440824806690216, -0.023254698142409325, 0.0060804556123912334, -0.17144741117954254, -0.13036519289016724, -0.05456948280334473, -0.06120927259325981, 0.0212395042181015, 0.013481726869940758, -0.005834532901644707, 0.11949136108160019, -0.03052627481520176, 0.011369287967681885, -0.023345954716205597, 0.04467853531241417, 0.11372793465852737, -0.023762015625834465, 0.04692715033888817, -0.003350351471453905, 0.014639634639024734, 0.0956294983625412, -0.013549492694437504, 0.12514053285121918, -0.0032451783772557974, 0.1400456428527832, 0.09178274124860764, 0.11885957419872284, 0.019385941326618195, 0.03179120272397995, 0.015039798803627491, 0.029702849686145782, -0.026928329840302467, -0.07071814686059952, -0.16129645705223083, 0.07111230492591858, 0.014697648584842682, -0.0688008964061737, 0.03870338946580887, 0.08949563652276993, 0.05855704843997955, 0.0600418746471405, 0.037687357515096664, -0.19847917556762695, -0.047603655606508255, 0.06462346762418747, -0.00046407640911638737, -0.08592309057712555, 0.010023809969425201, 0.010088378563523293, -0.04867975413799286, -0.0006231325678527355, -0.03228535130620003, 0.06932274997234344, -0.08165373653173447, -0.003600886557251215, -0.06881625205278397, -0.006604690104722977, 0.03330638259649277, 0.08858545124530792, -0.0916568785905838, 0.17421527206897736, -0.005148019641637802, 0.038844913244247437, -0.04003288224339485, 0.023311572149395943, 0.02459157444536686, 0.09234659373760223, 0.08183867484331131, 0.008253752253949642, 0.0731205940246582, -0.04687979817390442, -0.12180328369140625, 0.02803848683834076, 0.02667536959052086, -0.0684363842010498, 0.0885683223605156, -0.025120915845036507, 0.03948826342821121, -0.03468511253595352, 0.02156819775700569, -0.15384253859519958, -0.0670742392539978, 0.1186893880367279, -0.04881603270769119, -0.005263153929263353, -0.021986426785588264, -0.051164817065000534, -0.0244829710572958, 0.10242222994565964, -0.056428249925374985, -0.1013985276222229, -0.07699277997016907, -0.012153634801506996, 0.13216805458068848, -0.07259874045848846, -0.013696903362870216, -0.026078376919031143, 0.028597211465239525, 0.04866189882159233, -0.0248577781021595, 0.04783780872821808, -0.07666471600532532, -0.07041110843420029, -0.05127536877989769, 0.04475196450948715, 0.03829941526055336, -0.0035555437207221985, 0.035026244819164276, 0.009790267795324326, -0.05656689777970314, -0.10884560644626617, -0.03435906395316124, 0.15043571591377258, 0.018027469515800476, -0.008956937119364738, -0.06367857754230499, -0.0011395259061828256, -0.055901072919368744, -0.050107069313526154, 0.02381959930062294, 0.1585165560245514, -0.005853147711604834, 0.0755065307021141, 0.10393890738487244, -0.06516808271408081, -0.14608362317085266, -0.07252924144268036, 0.06716301292181015, 0.02858157642185688, -0.0040267277508974075, -0.16031263768672943, 0.08408748358488083, -0.006834270898252726, -0.018919391557574272, -0.017738476395606995, -0.04769989475607872, -0.0965702161192894, 0.08792176842689514, 0.0476481094956398, 0.08745551854372025, -0.11483419686555862, -0.05280784144997597, -0.00019139469077344984, -0.11005427688360214, 0.04108419269323349, -0.03771347925066948, 0.04381459578871727, -0.01810581423342228, 0.07528485357761383, 0.05194006860256195, -0.0400545597076416, 0.1673048585653305, -0.02175755240023136, 0.04820169508457184, -0.08949270099401474, -0.0676988959312439, 0.0521102137863636, -0.01864495314657688, 0.12981869280338287, 0.10313968360424042, 0.06975266337394714, -0.11699960380792618, -0.06177849322557449, -0.012031422927975655, 0.024912746623158455, -0.006553766783326864, -0.0930228903889656, -0.014582638628780842, 0.11269643157720566, 0.03881027549505234, 0.002404263708740473, -0.0275531318038702, -0.028724245727062225, -0.05627768486738205, 0.21449482440948486, 0.17599256336688995, -0.011447856202721596, 0.006508036982268095, 0.022059228271245956, 0.0436072014272213, 0.0714898556470871, -0.06574922800064087, 0.016938284039497375, 0.0605696476995945, 0.034395135939121246, 0.0917418971657753, -0.036814332008361816, -0.02448410727083683, 0.003235186915844679, 0.06446688622236252, -0.08756602555513382, -0.11762197315692902, -0.02845168672502041, 0.007743262220174074, -0.05346977338194847, -0.00811198353767395, 0.11246167868375778, -0.021498356014490128, 0.001278857234865427, -0.025329293683171272, 0.05307654291391373, -0.005548252258449793, 0.08954748511314392, 0.004717973992228508, 0.0036512112710624933, -0.0404740534722805, 0.025702614337205887, 0.08695274591445923, -0.004602209664881229, 0.0004064991371706128, -0.08982521295547485, -0.11362968385219574, -0.07779134064912796, -0.045482244342565536, 0.03210574761033058, 0.02043186128139496, -0.01603073626756668, -0.04093458130955696, 0.02104439213871956, -0.052923545241355896, 0.001141467597335577, 0.053391627967357635, 0.047750938683748245, -0.08439122140407562, -0.0031214654445648193, -0.030668310821056366, 0.056593313813209534, 0.09505143016576767, -0.0024526992347091436, -0.09733983129262924, -0.01922624558210373, -0.002567368559539318, 0.005663016345351934, -0.0764022171497345, -0.055698346346616745, -0.03498249128460884, -0.00030298589263111353, -0.1431429535150528, 0.0852147787809372, -0.12142964452505112, 0.01020224578678608, 0.032054949551820755, -0.03256905451416969, -0.052888184785842896, -0.00118455255869776, -0.05369765684008598, 0.0500296913087368, -0.006398972123861313, 0.13314121961593628, -0.03786841034889221, -0.010330853052437305, 0.0652395486831665, -0.07462887465953827, 0.07520733028650284, 0.047255512326955795, -0.04568053409457207, 0.008802575059235096, -0.07816964387893677, 0.03479277715086937, -0.041873540729284286, 0.10553418844938278, 0.008015787228941917, -0.216102734208107, -0.0038133433554321527, 0.04028245061635971, -0.025659630075097084, -0.03682199865579605, 0.05135803297162056, -0.06629472970962524, 0.05488148704171181, 0.02665858343243599, -0.051769789308309555, -0.07458492368459702, 0.004270486067980528, -0.0009325625724159181, 0.07412151992321014, 0.1259031593799591, -0.01974290981888771, -0.0029649417847394943, -0.10043048113584518, 0.0148005997762084, 0.012635031715035439, 0.042040348052978516, -0.0444374643266201, -0.06243525445461273, 0.05618582293391228, -0.062236204743385315, 0.19773750007152557, 0.032597001641988754, -0.06134438514709473, -0.031185859814286232, -0.017458666115999222, 0.04417625442147255, -0.022889023646712303, 0.11177125573158264, 0.05799113214015961, 0.08418195694684982, -0.054056935012340546, -0.037287332117557526, -0.046002842485904694, 0.023108454421162605, 0.0025990577414631844, 0.06402768939733505, 0.009326181374490261, -0.025366440415382385, 0.026822863146662712, -0.007353336084634066, 0.02636169269680977, 0.041799914091825485, -0.07336416840553284, 0.0024182153865695, -0.05394778773188591, 0.06301987171173096, 0.12176620215177536, -0.06992090493440628, 0.05049717053771019, -0.08210387080907822, -0.08566955476999283, -0.07328019291162491, -0.21428805589675903, -0.09782998263835907, -0.08297450840473175, 0.04260830581188202, -0.1262027472257614, -0.01657961867749691, 0.016985898837447166, 0.034631840884685516, -0.05953897163271904, 0.1181601881980896, -0.06402077525854111, -0.06400054693222046, 0.04235189035534859, 0.005573513451963663, -0.04812593385577202, -0.07607071846723557, 0.014762810431420803, -0.09659936279058456, 0.04133634269237518, 0.010465933941304684, 0.03647894039750099, -0.02821541391313076, -0.05950711667537689, -0.014719651080667973, -0.035700663924217224, -0.05865548178553581, 0.0022500022314488888, -0.05737893655896187, 0.09364204108715057, 0.023564420640468597, -0.01188491191715002, 0.013192997314035892, 0.1286247819662094, -0.012521433643996716, -0.07637681812047958, -0.13749893009662628, 0.11859908699989319, -0.057613667100667953, 0.022616226226091385, 0.09067041426897049, -0.03200832009315491, 0.02620401233434677, 0.14311830699443817, 0.17876838147640228, -0.10568374395370483, -0.019746921956539154, -0.014200239442288876, 0.029331427067518234, -0.10447612404823303, 0.10289298743009567, -0.019742846488952637, 0.11266950517892838, -0.030104467645287514, 0.000059318765124771744, -0.060314856469631195, 0.014464407227933407, -0.01825295388698578, 0.0014096712693572044, -0.0024895835667848587, -0.01563413068652153, -0.08252128958702087, 0.09957113862037659, -0.09403295814990997, -0.1428036242723465, -0.034017112106084824, -0.026409976184368134, -0.1078091710805893, -0.040051817893981934, -0.0900382399559021, -0.0023509273305535316, 0.08068358153104782, -0.05229366943240166, -0.027571549639105797, 0.09830382466316223, 0.019016828387975693, -0.03406013920903206, 0.05846184864640236, 0.17999553680419922, -0.03941918909549713, 0.11675847321748734, 0.007751775905489922, 0.13501915335655212, 0.06694533675909042, -0.027565980330109596, -0.07421783357858658, 0.13308674097061157, 0.07662083208560944, -0.055189162492752075, 0.03266078606247902, 0.07586991041898727, -0.008668235503137112, 0.07799816876649857, 0.09214882552623749, 0.0072137038223445415, 0.016075901687145233, 0.14719370007514954, 0.033598434180021286, -0.1358254998922348, 0.12650209665298462, -0.11631447076797485, 0.19115835428237915, 0.0866391584277153, -0.07048719376325607, -0.037146225571632385, -0.07245802134275436, 0.12559397518634796, -0.020731208845973015, 0.02280053310096264, -0.035936884582042694, -0.16831666231155396, -0.010698897764086723, 0.06956488639116287, 0.07580245286226273, -0.11113235354423523, -0.02875002659857273, 0.030911758542060852, 0.03432031348347664, 0.002658235374838114, 0.09731050580739975, 0.04879892244935036, 0.01787296123802662, -0.03272584080696106, -0.018016131594777107, -0.024636821821331978, 0.061652254313230515, -0.11030492931604385, -0.08000253885984421 ]
null
null
setfit
# SetFit with firqaaa/indo-sentence-bert-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [firqaaa/indo-sentence-bert-base](https://huggingface.co/firqaaa/indo-sentence-bert-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negatif | <ul><li>'orang aneh berkaki delapan tidak akan bergabung dengan jajaran film monster\\/fiksi ilmiah hebat yang kita sukai ...'</li><li>"Terlepas dari latar Hawaii, hiasan fiksi ilmiah, dan beberapa momen slapstick yang gaduh, plot dasar `` lilo '' bisa saja diambil dari naskah kuno Shirley Temple yang berlumuran air mata."</li><li>'ini adalah film yang sangat tidak aman dalam kemampuannya untuk menggairahkan sehingga menghasilkan bukan hanya satu tapi dua badai petir palsu untuk menggarisbawahi aksinya.'</li></ul> | | positif | <ul><li>'plot dari comeback curlers sebenarnya tidak terlalu menarik, tapi yang aku suka dari pria dengan sapu dan yang spesial adalah bagaimana filmnya mengetahui apa yang unik dan nyentrik dari orang Kanada.'</li><li>'sebuah studi psikologis yang dingin, merenung, namun bergema secara diam-diam mengenai ketegangan dan ketidakbahagiaan dalam rumah tangga.'</li><li>'seperti yang biasa mereka katakan di film-film fiksi ilmiah tahun 1950-an, tanda-tanda adalah penghormatan terhadap hadiah Shyamalan, yang sedemikian rupa sehingga kita akan terus mengawasi langit untuk proyek berikutnya.'</li></ul> | | sangat negatif | <ul><li>"benar-benar transparan adalah serangan tanpa henti dari naskah tersebut berupa lelucon-lelucon seks memalukan yang berbau penulisan ulang naskah yang dirancang untuk membuat film tersebut mendapat peringkat `` lebih keren '' pg-13."</li><li>'bagaikan latihan improvisasi yang buruk, karakter-karakter yang ditulis secara dangkal mengoceh dengan membosankan tentang kehidupan, cinta, dan seni yang sedang mereka perjuangkan untuk ciptakan.'</li><li>'dari semua Halloween, ini yang paling tidak menarik secara visual.'</li></ul> | | netral | <ul><li>'film ini tidak menghormati hukum, kebenaran politik, atau kesopanan umum, namun menampilkan sesuatu yang lebih penting: rasa hormat terhadap orang-orang yang cacat dan gila.'</li><li>'tertahan oleh kekhidmatannya sendiri.'</li><li>'lebih banyak pertunjukan vaudeville daripada narasi yang dibangun dengan baik, namun dalam hal ini tidak menyinggung dan sebenarnya agak manis.'</li></ul> | | sangat positif | <ul><li>'hawn dan sarandon membentuk ikatan akting yang menjadikan banger bersaudara studi karakter yang menarik sambil tertawa.'</li><li>'isabelle huppert unggul sebagai mika yang penuh teka-teki dan anna mouglais adalah bakat muda baru yang menakjubkan dalam salah satu misteri psikologis chabrol yang paling intens.'</li><li>'williams menciptakan gambaran menakjubkan seperti sopir taksi tentang seorang pria yang tertatih-tatih di ambang kewarasan.'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.4249 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("firqaaa/indo-setfit-bert-base-p2") # Run inference preds = model("itu curang.") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 1 | 15.7676 | 46 | | Label | Training Sample Count | |:---------------|:----------------------| | sangat negatif | 500 | | negatif | 500 | | netral | 500 | | positif | 500 | | sangat positif | 500 | ### Training Hyperparameters - batch_size: (128, 128) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:---------:|:-------------:|:---------------:| | 0.0000 | 1 | 0.3367 | - | | 0.0013 | 50 | 0.3139 | - | | 0.0026 | 100 | 0.3005 | - | | 0.0038 | 150 | 0.2627 | - | | 0.0051 | 200 | 0.2701 | - | | 0.0064 | 250 | 0.2647 | - | | 0.0077 | 300 | 0.2646 | - | | 0.0090 | 350 | 0.2494 | - | | 0.0102 | 400 | 0.2356 | - | | 0.0115 | 450 | 0.2093 | - | | 0.0128 | 500 | 0.2187 | - | | 0.0141 | 550 | 0.2131 | - | | 0.0154 | 600 | 0.2288 | - | | 0.0166 | 650 | 0.1996 | - | | 0.0179 | 700 | 0.1825 | - | | 0.0192 | 750 | 0.1887 | - | | 0.0205 | 800 | 0.1809 | - | | 0.0218 | 850 | 0.1756 | - | | 0.0230 | 900 | 0.155 | - | | 0.0243 | 950 | 0.1462 | - | | 0.0256 | 1000 | 0.1455 | - | | 0.0269 | 1050 | 0.1547 | - | | 0.0282 | 1100 | 0.0863 | - | | 0.0294 | 1150 | 0.1362 | - | | 0.0307 | 1200 | 0.1096 | - | | 0.0320 | 1250 | 0.0898 | - | | 0.0333 | 1300 | 0.1202 | - | | 0.0346 | 1350 | 0.0916 | - | | 0.0358 | 1400 | 0.0918 | - | | 0.0371 | 1450 | 0.1022 | - | | 0.0384 | 1500 | 0.0518 | - | | 0.0397 | 1550 | 0.0587 | - | | 0.0410 | 1600 | 0.0526 | - | | 0.0422 | 1650 | 0.0461 | - | | 0.0435 | 1700 | 0.0617 | - | | 0.0448 | 1750 | 0.0426 | - | | 0.0461 | 1800 | 0.0347 | - | | 0.0474 | 1850 | 0.0255 | - | | 0.0486 | 1900 | 0.0349 | - | | 0.0499 | 1950 | 0.0121 | - | | 0.0512 | 2000 | 0.0164 | - | | 0.0525 | 2050 | 0.0077 | - | | 0.0538 | 2100 | 0.0084 | - | | 0.0550 | 2150 | 0.006 | - | | 0.0563 | 2200 | 0.0143 | - | | 0.0576 | 2250 | 0.0123 | - | | 0.0589 | 2300 | 0.0154 | - | | 0.0602 | 2350 | 0.0108 | - | | 0.0614 | 2400 | 0.0041 | - | | 0.0627 | 2450 | 0.0048 | - | | 0.0640 | 2500 | 0.0103 | - | | 0.0653 | 2550 | 0.0099 | - | | 0.0666 | 2600 | 0.026 | - | | 0.0678 | 2650 | 0.0095 | - | | 0.0691 | 2700 | 0.0091 | - | | 0.0704 | 2750 | 0.0041 | - | | 0.0717 | 2800 | 0.005 | - | | 0.0730 | 2850 | 0.0024 | - | | 0.0742 | 2900 | 0.0013 | - | | 0.0755 | 2950 | 0.0067 | - | | 0.0768 | 3000 | 0.0009 | - | | 0.0781 | 3050 | 0.0042 | - | | 0.0794 | 3100 | 0.0039 | - | | 0.0806 | 3150 | 0.0023 | - | | 0.0819 | 3200 | 0.0032 | - | | 0.0832 | 3250 | 0.0071 | - | | 0.0845 | 3300 | 0.013 | - | | 0.0858 | 3350 | 0.015 | - | | 0.0870 | 3400 | 0.0013 | - | | 0.0883 | 3450 | 0.0012 | - | | 0.0896 | 3500 | 0.0017 | - | | 0.0909 | 3550 | 0.002 | - | | 0.0922 | 3600 | 0.0247 | - | | 0.0934 | 3650 | 0.0044 | - | | 0.0947 | 3700 | 0.0004 | - | | 0.0960 | 3750 | 0.0031 | - | | 0.0973 | 3800 | 0.0235 | - | | 0.0986 | 3850 | 0.0017 | - | | 0.0998 | 3900 | 0.001 | - | | 0.1011 | 3950 | 0.0065 | - | | 0.1024 | 4000 | 0.0043 | - | | 0.1037 | 4050 | 0.0051 | - | | 0.1050 | 4100 | 0.0009 | - | | 0.1062 | 4150 | 0.0006 | - | | 0.1075 | 4200 | 0.0081 | - | | 0.1088 | 4250 | 0.0005 | - | | 0.1101 | 4300 | 0.0155 | - | | 0.1114 | 4350 | 0.0091 | - | | 0.1126 | 4400 | 0.0187 | - | | 0.1139 | 4450 | 0.0011 | - | | 0.1152 | 4500 | 0.0037 | - | | 0.1165 | 4550 | 0.0033 | - | | 0.1178 | 4600 | 0.0006 | - | | 0.1190 | 4650 | 0.0024 | - | | 0.1203 | 4700 | 0.0008 | - | | 0.1216 | 4750 | 0.0007 | - | | 0.1229 | 4800 | 0.0012 | - | | 0.1242 | 4850 | 0.0113 | - | | 0.1254 | 4900 | 0.0004 | - | | 0.1267 | 4950 | 0.0059 | - | | 0.1280 | 5000 | 0.0004 | - | | 0.1293 | 5050 | 0.001 | - | | 0.1306 | 5100 | 0.0001 | - | | 0.1318 | 5150 | 0.002 | - | | 0.1331 | 5200 | 0.0006 | - | | 0.1344 | 5250 | 0.0007 | - | | 0.1357 | 5300 | 0.0026 | - | | 0.1370 | 5350 | 0.0079 | - | | 0.1382 | 5400 | 0.001 | - | | 0.1395 | 5450 | 0.0065 | - | | 0.1408 | 5500 | 0.0009 | - | | 0.1421 | 5550 | 0.0008 | - | | 0.1434 | 5600 | 0.0003 | - | | 0.1446 | 5650 | 0.0002 | - | | 0.1459 | 5700 | 0.0001 | - | | 0.1472 | 5750 | 0.0027 | - | | 0.1485 | 5800 | 0.0002 | - | | 0.1498 | 5850 | 0.0002 | - | | 0.1510 | 5900 | 0.0003 | - | | 0.1523 | 5950 | 0.0001 | - | | 0.1536 | 6000 | 0.0061 | - | | 0.1549 | 6050 | 0.0066 | - | | 0.1562 | 6100 | 0.0015 | - | | 0.1574 | 6150 | 0.016 | - | | 0.1587 | 6200 | 0.0009 | - | | 0.1600 | 6250 | 0.0062 | - | | 0.1613 | 6300 | 0.0002 | - | | 0.1626 | 6350 | 0.0002 | - | | 0.1638 | 6400 | 0.0002 | - | | 0.1651 | 6450 | 0.0153 | - | | 0.1664 | 6500 | 0.0031 | - | | 0.1677 | 6550 | 0.0003 | - | | 0.1690 | 6600 | 0.0009 | - | | 0.1702 | 6650 | 0.0043 | - | | 0.1715 | 6700 | 0.0007 | - | | 0.1728 | 6750 | 0.0002 | - | | 0.1741 | 6800 | 0.0001 | - | | 0.1754 | 6850 | 0.0003 | - | | 0.1766 | 6900 | 0.0013 | - | | 0.1779 | 6950 | 0.0003 | - | | 0.1792 | 7000 | 0.0002 | - | | 0.1805 | 7050 | 0.0001 | - | | 0.1818 | 7100 | 0.0001 | - | | 0.1830 | 7150 | 0.0001 | - | | 0.1843 | 7200 | 0.0001 | - | | 0.1856 | 7250 | 0.0003 | - | | 0.1869 | 7300 | 0.0001 | - | | 0.1882 | 7350 | 0.0002 | - | | 0.1894 | 7400 | 0.0012 | - | | 0.1907 | 7450 | 0.0001 | - | | 0.1920 | 7500 | 0.0002 | - | | 0.1933 | 7550 | 0.0002 | - | | 0.1946 | 7600 | 0.0003 | - | | 0.1958 | 7650 | 0.0014 | - | | 0.1971 | 7700 | 0.0093 | - | | 0.1984 | 7750 | 0.0001 | - | | 0.1997 | 7800 | 0.0005 | - | | 0.2010 | 7850 | 0.0001 | - | | 0.2022 | 7900 | 0.0001 | - | | 0.2035 | 7950 | 0.0058 | - | | 0.2048 | 8000 | 0.0002 | - | | 0.2061 | 8050 | 0.0001 | - | | 0.2074 | 8100 | 0.0002 | - | | 0.2086 | 8150 | 0.0003 | - | | 0.2099 | 8200 | 0.0003 | - | | 0.2112 | 8250 | 0.0068 | - | | 0.2125 | 8300 | 0.0004 | - | | 0.2138 | 8350 | 0.0002 | - | | 0.2150 | 8400 | 0.0001 | - | | 0.2163 | 8450 | 0.0002 | - | | 0.2176 | 8500 | 0.0001 | - | | 0.2189 | 8550 | 0.0002 | - | | 0.2202 | 8600 | 0.0001 | - | | 0.2214 | 8650 | 0.0001 | - | | 0.2227 | 8700 | 0.0001 | - | | 0.2240 | 8750 | 0.0001 | - | | 0.2253 | 8800 | 0.0001 | - | | 0.2266 | 8850 | 0.0006 | - | | 0.2278 | 8900 | 0.0 | - | | 0.2291 | 8950 | 0.0 | - | | 0.2304 | 9000 | 0.0001 | - | | 0.2317 | 9050 | 0.0 | - | | 0.2330 | 9100 | 0.0001 | - | | 0.2342 | 9150 | 0.0 | - | | 0.2355 | 9200 | 0.0001 | - | | 0.2368 | 9250 | 0.0 | - | | 0.2381 | 9300 | 0.0001 | - | | 0.2394 | 9350 | 0.0001 | - | | 0.2406 | 9400 | 0.0 | - | | 0.2419 | 9450 | 0.0 | - | | 0.2432 | 9500 | 0.0001 | - | | 0.2445 | 9550 | 0.0 | - | | 0.2458 | 9600 | 0.0001 | - | | 0.2470 | 9650 | 0.0001 | - | | 0.2483 | 9700 | 0.003 | - | | 0.2496 | 9750 | 0.0077 | - | | 0.2509 | 9800 | 0.0099 | - | | 0.2522 | 9850 | 0.0223 | - | | 0.2534 | 9900 | 0.0002 | - | | 0.2547 | 9950 | 0.0001 | - | | 0.2560 | 10000 | 0.003 | - | | 0.2573 | 10050 | 0.0118 | - | | 0.2586 | 10100 | 0.0002 | - | | 0.2598 | 10150 | 0.0022 | - | | 0.2611 | 10200 | 0.0001 | - | | 0.2624 | 10250 | 0.0077 | - | | 0.2637 | 10300 | 0.0003 | - | | 0.2650 | 10350 | 0.0 | - | | 0.2662 | 10400 | 0.0074 | - | | 0.2675 | 10450 | 0.0072 | - | | 0.2688 | 10500 | 0.0001 | - | | 0.2701 | 10550 | 0.008 | - | | 0.2714 | 10600 | 0.0001 | - | | 0.2726 | 10650 | 0.0001 | - | | 0.2739 | 10700 | 0.0 | - | | 0.2752 | 10750 | 0.0001 | - | | 0.2765 | 10800 | 0.0074 | - | | 0.2778 | 10850 | 0.0001 | - | | 0.2790 | 10900 | 0.0001 | - | | 0.2803 | 10950 | 0.0003 | - | | 0.2816 | 11000 | 0.0004 | - | | 0.2829 | 11050 | 0.0078 | - | | 0.2842 | 11100 | 0.0 | - | | 0.2854 | 11150 | 0.0001 | - | | 0.2867 | 11200 | 0.0001 | - | | 0.2880 | 11250 | 0.0001 | - | | 0.2893 | 11300 | 0.0 | - | | 0.2906 | 11350 | 0.0001 | - | | 0.2918 | 11400 | 0.0001 | - | | 0.2931 | 11450 | 0.0004 | - | | 0.2944 | 11500 | 0.0002 | - | | 0.2957 | 11550 | 0.0 | - | | 0.2970 | 11600 | 0.0 | - | | 0.2982 | 11650 | 0.0078 | - | | 0.2995 | 11700 | 0.0 | - | | 0.3008 | 11750 | 0.0005 | - | | 0.3021 | 11800 | 0.0001 | - | | 0.3034 | 11850 | 0.0 | - | | 0.3046 | 11900 | 0.0 | - | | 0.3059 | 11950 | 0.0 | - | | 0.3072 | 12000 | 0.0006 | - | | 0.3085 | 12050 | 0.0078 | - | | 0.3098 | 12100 | 0.0001 | - | | 0.3110 | 12150 | 0.0 | - | | 0.3123 | 12200 | 0.0 | - | | 0.3136 | 12250 | 0.0 | - | | 0.3149 | 12300 | 0.0 | - | | 0.3162 | 12350 | 0.0 | - | | 0.3174 | 12400 | 0.0 | - | | 0.3187 | 12450 | 0.0 | - | | 0.3200 | 12500 | 0.0 | - | | 0.3213 | 12550 | 0.0002 | - | | 0.3226 | 12600 | 0.0 | - | | 0.3238 | 12650 | 0.0003 | - | | 0.3251 | 12700 | 0.0001 | - | | 0.3264 | 12750 | 0.0001 | - | | 0.3277 | 12800 | 0.0 | - | | 0.3290 | 12850 | 0.0001 | - | | 0.3302 | 12900 | 0.0001 | - | | 0.3315 | 12950 | 0.0001 | - | | 0.3328 | 13000 | 0.0 | - | | 0.3341 | 13050 | 0.0 | - | | 0.3354 | 13100 | 0.0 | - | | 0.3366 | 13150 | 0.0 | - | | 0.3379 | 13200 | 0.0 | - | | 0.3392 | 13250 | 0.0 | - | | 0.3405 | 13300 | 0.0 | - | | 0.3418 | 13350 | 0.0 | - | | 0.3430 | 13400 | 0.0 | - | | 0.3443 | 13450 | 0.0 | - | | 0.3456 | 13500 | 0.0 | - | | 0.3469 | 13550 | 0.0005 | - | | 0.3482 | 13600 | 0.0 | - | | 0.3494 | 13650 | 0.0 | - | | 0.3507 | 13700 | 0.0 | - | | 0.3520 | 13750 | 0.0 | - | | 0.3533 | 13800 | 0.0011 | - | | 0.3546 | 13850 | 0.0001 | - | | 0.3558 | 13900 | 0.0079 | - | | 0.3571 | 13950 | 0.0001 | - | | 0.3584 | 14000 | 0.0 | - | | 0.3597 | 14050 | 0.0 | - | | 0.3610 | 14100 | 0.0 | - | | 0.3622 | 14150 | 0.0 | - | | 0.3635 | 14200 | 0.0074 | - | | 0.3648 | 14250 | 0.0 | - | | 0.3661 | 14300 | 0.0 | - | | 0.3674 | 14350 | 0.0001 | - | | 0.3686 | 14400 | 0.0 | - | | 0.3699 | 14450 | 0.0001 | - | | 0.3712 | 14500 | 0.0 | - | | 0.3725 | 14550 | 0.0 | - | | 0.3738 | 14600 | 0.0 | - | | 0.3750 | 14650 | 0.0002 | - | | 0.3763 | 14700 | 0.0001 | - | | 0.3776 | 14750 | 0.0 | - | | 0.3789 | 14800 | 0.0001 | - | | 0.3802 | 14850 | 0.0 | - | | 0.3814 | 14900 | 0.0001 | - | | 0.3827 | 14950 | 0.0 | - | | 0.3840 | 15000 | 0.0 | - | | 0.3853 | 15050 | 0.0 | - | | 0.3866 | 15100 | 0.0 | - | | 0.3878 | 15150 | 0.0 | - | | 0.3891 | 15200 | 0.0 | - | | 0.3904 | 15250 | 0.0 | - | | 0.3917 | 15300 | 0.0001 | - | | 0.3930 | 15350 | 0.0 | - | | 0.3942 | 15400 | 0.0 | - | | 0.3955 | 15450 | 0.0 | - | | 0.3968 | 15500 | 0.0 | - | | 0.3981 | 15550 | 0.0 | - | | 0.3994 | 15600 | 0.0 | - | | 0.4006 | 15650 | 0.0 | - | | 0.4019 | 15700 | 0.0 | - | | 0.4032 | 15750 | 0.0001 | - | | 0.4045 | 15800 | 0.0 | - | | 0.4058 | 15850 | 0.0 | - | | 0.4070 | 15900 | 0.0 | - | | 0.4083 | 15950 | 0.0 | - | | 0.4096 | 16000 | 0.0 | - | | 0.4109 | 16050 | 0.0 | - | | 0.4122 | 16100 | 0.0 | - | | 0.4134 | 16150 | 0.0 | - | | 0.4147 | 16200 | 0.0 | - | | 0.4160 | 16250 | 0.0003 | - | | 0.4173 | 16300 | 0.0 | - | | 0.4186 | 16350 | 0.0 | - | | 0.4198 | 16400 | 0.0 | - | | 0.4211 | 16450 | 0.0 | - | | 0.4224 | 16500 | 0.0 | - | | 0.4237 | 16550 | 0.0 | - | | 0.4250 | 16600 | 0.0 | - | | 0.4262 | 16650 | 0.0 | - | | 0.4275 | 16700 | 0.0 | - | | 0.4288 | 16750 | 0.0 | - | | 0.4301 | 16800 | 0.0 | - | | 0.4314 | 16850 | 0.0 | - | | 0.4326 | 16900 | 0.0 | - | | 0.4339 | 16950 | 0.0 | - | | 0.4352 | 17000 | 0.0 | - | | 0.4365 | 17050 | 0.0 | - | | 0.4378 | 17100 | 0.0 | - | | 0.4390 | 17150 | 0.0 | - | | 0.4403 | 17200 | 0.0 | - | | 0.4416 | 17250 | 0.0 | - | | 0.4429 | 17300 | 0.0 | - | | 0.4442 | 17350 | 0.0 | - | | 0.4454 | 17400 | 0.0 | - | | 0.4467 | 17450 | 0.0 | - | | 0.4480 | 17500 | 0.0016 | - | | 0.4493 | 17550 | 0.0 | - | | 0.4506 | 17600 | 0.0 | - | | 0.4518 | 17650 | 0.0 | - | | 0.4531 | 17700 | 0.0 | - | | 0.4544 | 17750 | 0.0 | - | | 0.4557 | 17800 | 0.0 | - | | 0.4570 | 17850 | 0.0 | - | | 0.4582 | 17900 | 0.0 | - | | 0.4595 | 17950 | 0.0068 | - | | 0.4608 | 18000 | 0.0001 | - | | 0.4621 | 18050 | 0.0001 | - | | 0.4634 | 18100 | 0.0001 | - | | 0.4646 | 18150 | 0.0001 | - | | 0.4659 | 18200 | 0.0001 | - | | 0.4672 | 18250 | 0.0 | - | | 0.4685 | 18300 | 0.0 | - | | 0.4698 | 18350 | 0.0001 | - | | 0.4710 | 18400 | 0.0 | - | | 0.4723 | 18450 | 0.0 | - | | 0.4736 | 18500 | 0.0 | - | | 0.4749 | 18550 | 0.0 | - | | 0.4762 | 18600 | 0.0 | - | | 0.4774 | 18650 | 0.0 | - | | 0.4787 | 18700 | 0.0 | - | | 0.4800 | 18750 | 0.0 | - | | 0.4813 | 18800 | 0.0 | - | | 0.4826 | 18850 | 0.0 | - | | 0.4838 | 18900 | 0.0 | - | | 0.4851 | 18950 | 0.0 | - | | 0.4864 | 19000 | 0.0 | - | | 0.4877 | 19050 | 0.0 | - | | 0.4890 | 19100 | 0.0 | - | | 0.4902 | 19150 | 0.0 | - | | 0.4915 | 19200 | 0.0 | - | | 0.4928 | 19250 | 0.0 | - | | 0.4941 | 19300 | 0.0 | - | | 0.4954 | 19350 | 0.0 | - | | 0.4966 | 19400 | 0.0 | - | | 0.4979 | 19450 | 0.0 | - | | 0.4992 | 19500 | 0.0 | - | | 0.5005 | 19550 | 0.0 | - | | 0.5018 | 19600 | 0.0 | - | | 0.5030 | 19650 | 0.0 | - | | 0.5043 | 19700 | 0.0 | - | | 0.5056 | 19750 | 0.0 | - | | 0.5069 | 19800 | 0.0 | - | | 0.5082 | 19850 | 0.0 | - | | 0.5094 | 19900 | 0.0 | - | | 0.5107 | 19950 | 0.0 | - | | 0.5120 | 20000 | 0.0 | - | | 0.5133 | 20050 | 0.0 | - | | 0.5146 | 20100 | 0.0 | - | | 0.5158 | 20150 | 0.0 | - | | 0.5171 | 20200 | 0.0 | - | | 0.5184 | 20250 | 0.0 | - | | 0.5197 | 20300 | 0.0 | - | | 0.5210 | 20350 | 0.0 | - | | 0.5222 | 20400 | 0.0 | - | | 0.5235 | 20450 | 0.0 | - | | 0.5248 | 20500 | 0.0 | - | | 0.5261 | 20550 | 0.0 | - | | 0.5274 | 20600 | 0.0 | - | | 0.5286 | 20650 | 0.0 | - | | 0.5299 | 20700 | 0.0 | - | | 0.5312 | 20750 | 0.0 | - | | 0.5325 | 20800 | 0.0 | - | | 0.5338 | 20850 | 0.0 | - | | 0.5350 | 20900 | 0.0 | - | | 0.5363 | 20950 | 0.0 | - | | 0.5376 | 21000 | 0.0 | - | | 0.5389 | 21050 | 0.0 | - | | 0.5402 | 21100 | 0.0 | - | | 0.5414 | 21150 | 0.0 | - | | 0.5427 | 21200 | 0.0 | - | | 0.5440 | 21250 | 0.0 | - | | 0.5453 | 21300 | 0.0 | - | | 0.5466 | 21350 | 0.0 | - | | 0.5478 | 21400 | 0.0 | - | | 0.5491 | 21450 | 0.0 | - | | 0.5504 | 21500 | 0.0 | - | | 0.5517 | 21550 | 0.0 | - | | 0.5530 | 21600 | 0.0 | - | | 0.5542 | 21650 | 0.0 | - | | 0.5555 | 21700 | 0.0 | - | | 0.5568 | 21750 | 0.0 | - | | 0.5581 | 21800 | 0.0 | - | | 0.5594 | 21850 | 0.0 | - | | 0.5606 | 21900 | 0.0 | - | | 0.5619 | 21950 | 0.0 | - | | 0.5632 | 22000 | 0.0 | - | | 0.5645 | 22050 | 0.0 | - | | 0.5658 | 22100 | 0.0 | - | | 0.5670 | 22150 | 0.0 | - | | 0.5683 | 22200 | 0.0 | - | | 0.5696 | 22250 | 0.0 | - | | 0.5709 | 22300 | 0.0 | - | | 0.5722 | 22350 | 0.0 | - | | 0.5734 | 22400 | 0.0 | - | | 0.5747 | 22450 | 0.0 | - | | 0.5760 | 22500 | 0.0 | - | | 0.5773 | 22550 | 0.0 | - | | 0.5786 | 22600 | 0.0 | - | | 0.5798 | 22650 | 0.0 | - | | 0.5811 | 22700 | 0.0 | - | | 0.5824 | 22750 | 0.0 | - | | 0.5837 | 22800 | 0.0 | - | | 0.5850 | 22850 | 0.0 | - | | 0.5862 | 22900 | 0.0 | - | | 0.5875 | 22950 | 0.0 | - | | 0.5888 | 23000 | 0.0 | - | | 0.5901 | 23050 | 0.0 | - | | 0.5914 | 23100 | 0.0 | - | | 0.5926 | 23150 | 0.0 | - | | 0.5939 | 23200 | 0.0 | - | | 0.5952 | 23250 | 0.0 | - | | 0.5965 | 23300 | 0.0 | - | | 0.5978 | 23350 | 0.0 | - | | 0.5990 | 23400 | 0.0 | - | | 0.6003 | 23450 | 0.0 | - | | 0.6016 | 23500 | 0.0 | - | | 0.6029 | 23550 | 0.0 | - | | 0.6042 | 23600 | 0.0 | - | | 0.6054 | 23650 | 0.0 | - | | 0.6067 | 23700 | 0.0 | - | | 0.6080 | 23750 | 0.0 | - | | 0.6093 | 23800 | 0.0 | - | | 0.6106 | 23850 | 0.0 | - | | 0.6118 | 23900 | 0.0 | - | | 0.6131 | 23950 | 0.0 | - | | 0.6144 | 24000 | 0.0 | - | | 0.6157 | 24050 | 0.0 | - | | 0.6170 | 24100 | 0.0 | - | | 0.6182 | 24150 | 0.0 | - | | 0.6195 | 24200 | 0.0 | - | | 0.6208 | 24250 | 0.0 | - | | 0.6221 | 24300 | 0.0 | - | | 0.6234 | 24350 | 0.0 | - | | 0.6246 | 24400 | 0.0 | - | | 0.6259 | 24450 | 0.0 | - | | 0.6272 | 24500 | 0.0 | - | | 0.6285 | 24550 | 0.0 | - | | 0.6298 | 24600 | 0.0 | - | | 0.6310 | 24650 | 0.0 | - | | 0.6323 | 24700 | 0.0 | - | | 0.6336 | 24750 | 0.0 | - | | 0.6349 | 24800 | 0.0 | - | | 0.6362 | 24850 | 0.0 | - | | 0.6374 | 24900 | 0.0 | - | | 0.6387 | 24950 | 0.0 | - | | 0.6400 | 25000 | 0.0 | - | | 0.6413 | 25050 | 0.0 | - | | 0.6426 | 25100 | 0.0 | - | | 0.6438 | 25150 | 0.0 | - | | 0.6451 | 25200 | 0.0 | - | | 0.6464 | 25250 | 0.0 | - | | 0.6477 | 25300 | 0.0 | - | | 0.6490 | 25350 | 0.0 | - | | 0.6502 | 25400 | 0.0 | - | | 0.6515 | 25450 | 0.0 | - | | 0.6528 | 25500 | 0.0 | - | | 0.6541 | 25550 | 0.0 | - | | 0.6554 | 25600 | 0.0 | - | | 0.6566 | 25650 | 0.0 | - | | 0.6579 | 25700 | 0.0 | - | | 0.6592 | 25750 | 0.0 | - | | 0.6605 | 25800 | 0.0 | - | | 0.6618 | 25850 | 0.0 | - | | 0.6630 | 25900 | 0.0 | - | | 0.6643 | 25950 | 0.0 | - | | 0.6656 | 26000 | 0.0 | - | | 0.6669 | 26050 | 0.0 | - | | 0.6682 | 26100 | 0.0 | - | | 0.6694 | 26150 | 0.0 | - | | 0.6707 | 26200 | 0.0 | - | | 0.6720 | 26250 | 0.0 | - | | 0.6733 | 26300 | 0.0 | - | | 0.6746 | 26350 | 0.0 | - | | 0.6758 | 26400 | 0.0 | - | | 0.6771 | 26450 | 0.0 | - | | 0.6784 | 26500 | 0.0 | - | | 0.6797 | 26550 | 0.0 | - | | 0.6810 | 26600 | 0.0 | - | | 0.6822 | 26650 | 0.0 | - | | 0.6835 | 26700 | 0.0 | - | | 0.6848 | 26750 | 0.0 | - | | 0.6861 | 26800 | 0.0 | - | | 0.6874 | 26850 | 0.0 | - | | 0.6886 | 26900 | 0.0 | - | | 0.6899 | 26950 | 0.0 | - | | 0.6912 | 27000 | 0.0 | - | | 0.6925 | 27050 | 0.0 | - | | 0.6938 | 27100 | 0.0 | - | | 0.6950 | 27150 | 0.0 | - | | 0.6963 | 27200 | 0.0 | - | | 0.6976 | 27250 | 0.0 | - | | 0.6989 | 27300 | 0.0 | - | | 0.7002 | 27350 | 0.0 | - | | 0.7014 | 27400 | 0.0 | - | | 0.7027 | 27450 | 0.0 | - | | 0.7040 | 27500 | 0.0 | - | | 0.7053 | 27550 | 0.0 | - | | 0.7066 | 27600 | 0.0 | - | | 0.7078 | 27650 | 0.0 | - | | 0.7091 | 27700 | 0.0 | - | | 0.7104 | 27750 | 0.0 | - | | 0.7117 | 27800 | 0.0 | - | | 0.7130 | 27850 | 0.0 | - | | 0.7142 | 27900 | 0.0 | - | | 0.7155 | 27950 | 0.0 | - | | 0.7168 | 28000 | 0.0 | - | | 0.7181 | 28050 | 0.0 | - | | 0.7194 | 28100 | 0.0 | - | | 0.7206 | 28150 | 0.0 | - | | 0.7219 | 28200 | 0.0 | - | | 0.7232 | 28250 | 0.0 | - | | 0.7245 | 28300 | 0.0 | - | | 0.7258 | 28350 | 0.0 | - | | 0.7270 | 28400 | 0.0 | - | | 0.7283 | 28450 | 0.0 | - | | 0.7296 | 28500 | 0.0 | - | | 0.7309 | 28550 | 0.0 | - | | 0.7322 | 28600 | 0.0 | - | | 0.7334 | 28650 | 0.0 | - | | 0.7347 | 28700 | 0.0 | - | | 0.7360 | 28750 | 0.0 | - | | 0.7373 | 28800 | 0.0 | - | | 0.7386 | 28850 | 0.0 | - | | 0.7398 | 28900 | 0.0 | - | | 0.7411 | 28950 | 0.0 | - | | 0.7424 | 29000 | 0.0 | - | | 0.7437 | 29050 | 0.0 | - | | 0.7450 | 29100 | 0.0 | - | | 0.7462 | 29150 | 0.0 | - | | 0.7475 | 29200 | 0.0 | - | | 0.7488 | 29250 | 0.0 | - | | 0.7501 | 29300 | 0.0 | - | | 0.7514 | 29350 | 0.0 | - | | 0.7526 | 29400 | 0.0 | - | | 0.7539 | 29450 | 0.0 | - | | 0.7552 | 29500 | 0.0 | - | | 0.7565 | 29550 | 0.0 | - | | 0.7578 | 29600 | 0.0 | - | | 0.7590 | 29650 | 0.0 | - | | 0.7603 | 29700 | 0.0 | - | | 0.7616 | 29750 | 0.0 | - | | 0.7629 | 29800 | 0.0 | - | | 0.7642 | 29850 | 0.0 | - | | 0.7654 | 29900 | 0.0 | - | | 0.7667 | 29950 | 0.0 | - | | 0.7680 | 30000 | 0.0 | - | | 0.7693 | 30050 | 0.0 | - | | 0.7706 | 30100 | 0.0 | - | | 0.7718 | 30150 | 0.0 | - | | 0.7731 | 30200 | 0.0 | - | | 0.7744 | 30250 | 0.0 | - | | 0.7757 | 30300 | 0.0 | - | | 0.7770 | 30350 | 0.0 | - | | 0.7782 | 30400 | 0.0 | - | | 0.7795 | 30450 | 0.0 | - | | 0.7808 | 30500 | 0.0 | - | | 0.7821 | 30550 | 0.0 | - | | 0.7833 | 30600 | 0.0 | - | | 0.7846 | 30650 | 0.0 | - | | 0.7859 | 30700 | 0.0 | - | | 0.7872 | 30750 | 0.0 | - | | 0.7885 | 30800 | 0.0 | - | | 0.7897 | 30850 | 0.0 | - | | 0.7910 | 30900 | 0.0 | - | | 0.7923 | 30950 | 0.0 | - | | 0.7936 | 31000 | 0.0 | - | | 0.7949 | 31050 | 0.0 | - | | 0.7961 | 31100 | 0.0 | - | | 0.7974 | 31150 | 0.0 | - | | 0.7987 | 31200 | 0.0 | - | | 0.8000 | 31250 | 0.0 | - | | 0.8013 | 31300 | 0.0 | - | | 0.8025 | 31350 | 0.0 | - | | 0.8038 | 31400 | 0.0 | - | | 0.8051 | 31450 | 0.0 | - | | 0.8064 | 31500 | 0.0 | - | | 0.8077 | 31550 | 0.0 | - | | 0.8089 | 31600 | 0.0 | - | | 0.8102 | 31650 | 0.0 | - | | 0.8115 | 31700 | 0.0 | - | | 0.8128 | 31750 | 0.0 | - | | 0.8141 | 31800 | 0.0 | - | | 0.8153 | 31850 | 0.0 | - | | 0.8166 | 31900 | 0.0 | - | | 0.8179 | 31950 | 0.0 | - | | 0.8192 | 32000 | 0.0 | - | | 0.8205 | 32050 | 0.0 | - | | 0.8217 | 32100 | 0.0 | - | | 0.8230 | 32150 | 0.0 | - | | 0.8243 | 32200 | 0.0 | - | | 0.8256 | 32250 | 0.0 | - | | 0.8269 | 32300 | 0.0 | - | | 0.8281 | 32350 | 0.0 | - | | 0.8294 | 32400 | 0.0 | - | | 0.8307 | 32450 | 0.0 | - | | 0.8320 | 32500 | 0.0 | - | | 0.8333 | 32550 | 0.0 | - | | 0.8345 | 32600 | 0.0 | - | | 0.8358 | 32650 | 0.0 | - | | 0.8371 | 32700 | 0.0 | - | | 0.8384 | 32750 | 0.0 | - | | 0.8397 | 32800 | 0.0 | - | | 0.8409 | 32850 | 0.0 | - | | 0.8422 | 32900 | 0.0 | - | | 0.8435 | 32950 | 0.0 | - | | 0.8448 | 33000 | 0.0 | - | | 0.8461 | 33050 | 0.0 | - | | 0.8473 | 33100 | 0.0 | - | | 0.8486 | 33150 | 0.0 | - | | 0.8499 | 33200 | 0.0 | - | | 0.8512 | 33250 | 0.0 | - | | 0.8525 | 33300 | 0.0 | - | | 0.8537 | 33350 | 0.0 | - | | 0.8550 | 33400 | 0.0 | - | | 0.8563 | 33450 | 0.0 | - | | 0.8576 | 33500 | 0.0 | - | | 0.8589 | 33550 | 0.0 | - | | 0.8601 | 33600 | 0.0 | - | | 0.8614 | 33650 | 0.0 | - | | 0.8627 | 33700 | 0.0 | - | | 0.8640 | 33750 | 0.0 | - | | 0.8653 | 33800 | 0.0 | - | | 0.8665 | 33850 | 0.0 | - | | 0.8678 | 33900 | 0.0 | - | | 0.8691 | 33950 | 0.0 | - | | 0.8704 | 34000 | 0.0 | - | | 0.8717 | 34050 | 0.0 | - | | 0.8729 | 34100 | 0.0 | - | | 0.8742 | 34150 | 0.0 | - | | 0.8755 | 34200 | 0.0 | - | | 0.8768 | 34250 | 0.0 | - | | 0.8781 | 34300 | 0.0 | - | | 0.8793 | 34350 | 0.0 | - | | 0.8806 | 34400 | 0.0 | - | | 0.8819 | 34450 | 0.0 | - | | 0.8832 | 34500 | 0.0 | - | | 0.8845 | 34550 | 0.0 | - | | 0.8857 | 34600 | 0.0 | - | | 0.8870 | 34650 | 0.0 | - | | 0.8883 | 34700 | 0.0 | - | | 0.8896 | 34750 | 0.0 | - | | 0.8909 | 34800 | 0.0 | - | | 0.8921 | 34850 | 0.0 | - | | 0.8934 | 34900 | 0.0 | - | | 0.8947 | 34950 | 0.0 | - | | 0.8960 | 35000 | 0.0 | - | | 0.8973 | 35050 | 0.0 | - | | 0.8985 | 35100 | 0.0 | - | | 0.8998 | 35150 | 0.0 | - | | 0.9011 | 35200 | 0.0 | - | | 0.9024 | 35250 | 0.0 | - | | 0.9037 | 35300 | 0.0 | - | | 0.9049 | 35350 | 0.0 | - | | 0.9062 | 35400 | 0.0 | - | | 0.9075 | 35450 | 0.0 | - | | 0.9088 | 35500 | 0.0 | - | | 0.9101 | 35550 | 0.0 | - | | 0.9113 | 35600 | 0.0 | - | | 0.9126 | 35650 | 0.0 | - | | 0.9139 | 35700 | 0.0 | - | | 0.9152 | 35750 | 0.0 | - | | 0.9165 | 35800 | 0.0 | - | | 0.9177 | 35850 | 0.0 | - | | 0.9190 | 35900 | 0.0 | - | | 0.9203 | 35950 | 0.0 | - | | 0.9216 | 36000 | 0.0 | - | | 0.9229 | 36050 | 0.0 | - | | 0.9241 | 36100 | 0.0 | - | | 0.9254 | 36150 | 0.0 | - | | 0.9267 | 36200 | 0.0 | - | | 0.9280 | 36250 | 0.0 | - | | 0.9293 | 36300 | 0.0 | - | | 0.9305 | 36350 | 0.0 | - | | 0.9318 | 36400 | 0.0 | - | | 0.9331 | 36450 | 0.0 | - | | 0.9344 | 36500 | 0.0 | - | | 0.9357 | 36550 | 0.0 | - | | 0.9369 | 36600 | 0.0 | - | | 0.9382 | 36650 | 0.0 | - | | 0.9395 | 36700 | 0.0 | - | | 0.9408 | 36750 | 0.0 | - | | 0.9421 | 36800 | 0.0 | - | | 0.9433 | 36850 | 0.0 | - | | 0.9446 | 36900 | 0.0 | - | | 0.9459 | 36950 | 0.0 | - | | 0.9472 | 37000 | 0.0 | - | | 0.9485 | 37050 | 0.0 | - | | 0.9497 | 37100 | 0.0 | - | | 0.9510 | 37150 | 0.0 | - | | 0.9523 | 37200 | 0.0 | - | | 0.9536 | 37250 | 0.0 | - | | 0.9549 | 37300 | 0.0 | - | | 0.9561 | 37350 | 0.0 | - | | 0.9574 | 37400 | 0.0 | - | | 0.9587 | 37450 | 0.0 | - | | 0.9600 | 37500 | 0.0 | - | | 0.9613 | 37550 | 0.0 | - | | 0.9625 | 37600 | 0.0 | - | | 0.9638 | 37650 | 0.0 | - | | 0.9651 | 37700 | 0.0 | - | | 0.9664 | 37750 | 0.0 | - | | 0.9677 | 37800 | 0.0 | - | | 0.9689 | 37850 | 0.0 | - | | 0.9702 | 37900 | 0.0 | - | | 0.9715 | 37950 | 0.0 | - | | 0.9728 | 38000 | 0.0 | - | | 0.9741 | 38050 | 0.0 | - | | 0.9753 | 38100 | 0.0 | - | | 0.9766 | 38150 | 0.0 | - | | 0.9779 | 38200 | 0.0 | - | | 0.9792 | 38250 | 0.0 | - | | 0.9805 | 38300 | 0.0 | - | | 0.9817 | 38350 | 0.0 | - | | 0.9830 | 38400 | 0.0 | - | | 0.9843 | 38450 | 0.0 | - | | 0.9856 | 38500 | 0.0 | - | | 0.9869 | 38550 | 0.0 | - | | 0.9881 | 38600 | 0.0 | - | | 0.9894 | 38650 | 0.0 | - | | 0.9907 | 38700 | 0.0 | - | | 0.9920 | 38750 | 0.0 | - | | 0.9933 | 38800 | 0.0 | - | | 0.9945 | 38850 | 0.0 | - | | 0.9958 | 38900 | 0.0 | - | | 0.9971 | 38950 | 0.0 | - | | 0.9984 | 39000 | 0.0 | - | | 0.9997 | 39050 | 0.0 | - | | **1.0** | **39063** | **-** | **0.4016** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.2.2 - Transformers: 4.36.2 - PyTorch: 2.1.2+cu121 - Datasets: 2.16.1 - Tokenizers: 0.15.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"library_name": "setfit", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "metrics": ["accuracy"], "widget": [{"text": "aku hanya menyukai setiap menit film ini."}, {"text": "bioskop orang dalam kondisi terbaiknya."}, {"text": "bukan untuk orang yang mudah tersinggung atau mudah tersinggung, ini adalah pemeriksaan yang berani dan berkepanjangan terhadap budaya yang diidolakan, kebencian terhadap diri sendiri, dan politik seksual."}, {"text": "itu curang."}, {"text": "Meskipun penduduk setempat akan senang melihat situs-situs Cleveland, seluruh dunia akan menikmati komedi bertempo cepat dengan keunikan yang mungkin membuat iri para coen bersaudara yang telah memenangkan penghargaan."}], "pipeline_tag": "text-classification", "inference": true, "base_model": "firqaaa/indo-sentence-bert-base", "model-index": [{"name": "SetFit with firqaaa/indo-sentence-bert-base", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.4248868778280543, "name": "Accuracy"}]}]}]}
text-classification
firqaaa/indo-setfit-bert-base-p2
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:firqaaa/indo-sentence-bert-base", "model-index", "region:us" ]
2024-02-06T12:08:27+00:00
[ "2209.11055" ]
[]
TAGS #setfit #safetensors #bert #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-firqaaa/indo-sentence-bert-base #model-index #region-us
SetFit with firqaaa/indo-sentence-bert-base =========================================== This is a SetFit model that can be used for Text Classification. This SetFit model uses firqaaa/indo-sentence-bert-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a Sentence Transformer with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. Model Details ------------- ### Model Description * Model Type: SetFit * Sentence Transformer body: firqaaa/indo-sentence-bert-base * Classification head: a LogisticRegression instance * Maximum Sequence Length: 512 tokens * Number of Classes: 5 classes ### Model Sources * Repository: SetFit on GitHub * Paper: Efficient Few-Shot Learning Without Prompts * Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts ### Model Labels Evaluation ---------- ### Metrics Uses ---- ### Direct Use for Inference First install the SetFit library: Then you can load this model and run inference. Training Details ---------------- ### Training Set Metrics ### Training Hyperparameters * batch\_size: (128, 128) * num\_epochs: (1, 1) * max\_steps: -1 * sampling\_strategy: oversampling * body\_learning\_rate: (2e-05, 1e-05) * head\_learning\_rate: 0.01 * loss: CosineSimilarityLoss * distance\_metric: cosine\_distance * margin: 0.25 * end\_to\_end: False * use\_amp: False * warmup\_proportion: 0.1 * seed: 42 * eval\_max\_steps: -1 * load\_best\_model\_at\_end: True ### Training Results * The bold row denotes the saved checkpoint. ### Framework Versions * Python: 3.10.13 * SetFit: 1.0.3 * Sentence Transformers: 2.2.2 * Transformers: 4.36.2 * PyTorch: 2.1.2+cu121 * Datasets: 2.16.1 * Tokenizers: 0.15.0 ### BibTeX
[ "### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: firqaaa/indo-sentence-bert-base\n* Classification head: a LogisticRegression instance\n* Maximum Sequence Length: 512 tokens\n* Number of Classes: 5 classes", "### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts", "### Model Labels\n\n\n\nEvaluation\n----------", "### Metrics\n\n\n\nUses\n----", "### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------", "### Training Set Metrics", "### Training Hyperparameters\n\n\n* batch\\_size: (128, 128)\n* num\\_epochs: (1, 1)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* body\\_learning\\_rate: (2e-05, 1e-05)\n* head\\_learning\\_rate: 0.01\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: True", "### Training Results\n\n\n\n* The bold row denotes the saved checkpoint.", "### Framework Versions\n\n\n* Python: 3.10.13\n* SetFit: 1.0.3\n* Sentence Transformers: 2.2.2\n* Transformers: 4.36.2\n* PyTorch: 2.1.2+cu121\n* Datasets: 2.16.1\n* Tokenizers: 0.15.0", "### BibTeX" ]
[ "TAGS\n#setfit #safetensors #bert #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-firqaaa/indo-sentence-bert-base #model-index #region-us \n", "### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: firqaaa/indo-sentence-bert-base\n* Classification head: a LogisticRegression instance\n* Maximum Sequence Length: 512 tokens\n* Number of Classes: 5 classes", "### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts", "### Model Labels\n\n\n\nEvaluation\n----------", "### Metrics\n\n\n\nUses\n----", "### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------", "### Training Set Metrics", "### Training Hyperparameters\n\n\n* batch\\_size: (128, 128)\n* num\\_epochs: (1, 1)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* body\\_learning\\_rate: (2e-05, 1e-05)\n* head\\_learning\\_rate: 0.01\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: True", "### Training Results\n\n\n\n* The bold row denotes the saved checkpoint.", "### Framework Versions\n\n\n* Python: 3.10.13\n* SetFit: 1.0.3\n* Sentence Transformers: 2.2.2\n* Transformers: 4.36.2\n* PyTorch: 2.1.2+cu121\n* Datasets: 2.16.1\n* Tokenizers: 0.15.0", "### BibTeX" ]
[ 67, 61, 52, 8, 8, 31, 7, 168, 19, 58, 6 ]
[ "passage: TAGS\n#setfit #safetensors #bert #sentence-transformers #text-classification #generated_from_setfit_trainer #arxiv-2209.11055 #base_model-firqaaa/indo-sentence-bert-base #model-index #region-us \n### Model Description\n\n\n* Model Type: SetFit\n* Sentence Transformer body: firqaaa/indo-sentence-bert-base\n* Classification head: a LogisticRegression instance\n* Maximum Sequence Length: 512 tokens\n* Number of Classes: 5 classes### Model Sources\n\n\n* Repository: SetFit on GitHub\n* Paper: Efficient Few-Shot Learning Without Prompts\n* Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts### Model Labels\n\n\n\nEvaluation\n----------### Metrics\n\n\n\nUses\n----### Direct Use for Inference\n\n\nFirst install the SetFit library:\n\n\nThen you can load this model and run inference.\n\n\nTraining Details\n----------------### Training Set Metrics### Training Hyperparameters\n\n\n* batch\\_size: (128, 128)\n* num\\_epochs: (1, 1)\n* max\\_steps: -1\n* sampling\\_strategy: oversampling\n* body\\_learning\\_rate: (2e-05, 1e-05)\n* head\\_learning\\_rate: 0.01\n* loss: CosineSimilarityLoss\n* distance\\_metric: cosine\\_distance\n* margin: 0.25\n* end\\_to\\_end: False\n* use\\_amp: False\n* warmup\\_proportion: 0.1\n* seed: 42\n* eval\\_max\\_steps: -1\n* load\\_best\\_model\\_at\\_end: True### Training Results\n\n\n\n* The bold row denotes the saved checkpoint.### Framework Versions\n\n\n* Python: 3.10.13\n* SetFit: 1.0.3\n* Sentence Transformers: 2.2.2\n* Transformers: 4.36.2\n* PyTorch: 2.1.2+cu121\n* Datasets: 2.16.1\n* Tokenizers: 0.15.0### BibTeX" ]
[ -0.08602339774370193, 0.14783209562301636, -0.00588257284834981, 0.07278191298246384, 0.11209728568792343, 0.06313598155975342, 0.059707242995500565, 0.1437292993068695, -0.04484766349196434, 0.1442548930644989, 0.05878530442714691, 0.09286069124937057, 0.11244424432516098, 0.1853611320257187, -0.0023631672374904156, -0.29161661863327026, 0.027010511606931686, -0.11100601404905319, -0.04906957224011421, 0.09169721603393555, 0.09973656386137009, -0.07731946557760239, 0.05183570086956024, -0.04963649809360504, -0.04230644553899765, -0.021380167454481125, -0.03744575008749962, -0.025150354951620102, 0.018171338364481926, 0.040778517723083496, 0.02872689627110958, -0.008160942234098911, 0.0680697113275528, -0.31086260080337524, 0.012085642665624619, 0.06991729140281677, -0.005387174431234598, 0.07904756814241409, 0.1011507660150528, -0.045767027884721756, 0.06627952307462692, -0.10321538895368576, 0.08825065195560455, 0.03417849540710449, -0.14305947721004486, -0.16375774145126343, -0.08338530361652374, 0.11661902070045471, 0.14648860692977905, 0.06356970965862274, -0.0591810941696167, 0.025964785367250443, -0.04924340918660164, 0.06190197542309761, 0.1649940460920334, -0.22924956679344177, -0.07808662205934525, 0.02511858195066452, 0.029635608196258545, 0.030508052557706833, -0.10965187102556229, -0.038872525095939636, -0.001234340714290738, 0.04102044552564621, 0.05468124523758888, 0.011629329062998295, 0.06983090937137604, -0.005636176560074091, -0.10380908846855164, -0.047869205474853516, 0.040108419954776764, 0.050954557955265045, -0.021466292440891266, -0.16615444421768188, 0.005385048221796751, -0.13281576335430145, -0.057274531573057175, 0.006220846902579069, 0.009544780477881432, -0.004766848869621754, -0.023679345846176147, 0.024610308930277824, -0.03241696581244469, -0.032133448868989944, 0.06083989143371582, 0.006519413087517023, 0.05724232643842697, -0.045847974717617035, 0.037776995450258255, 0.08900798112154007, 0.007731238845735788, -0.17892278730869293, -0.02722172811627388, -0.019568558782339096, -0.09458106011152267, -0.03077484481036663, 0.011659950017929077, 0.06642027944326401, 0.06646640598773956, 0.21420548856258392, -0.07956267893314362, 0.11596023291349411, -0.011012380942702293, 0.015415317378938198, -0.01809464767575264, 0.06946840137243271, -0.07681479305028915, -0.12498798966407776, -0.06558044254779816, 0.09335608780384064, -0.02279595471918583, -0.017318179830908775, -0.007895520888268948, 0.04907933250069618, 0.08436449617147446, 0.06832882016897202, 0.03752385824918747, 0.039396412670612335, -0.08948738127946854, -0.03731948137283325, 0.05015485733747482, -0.14797230064868927, 0.053437136113643646, 0.055946171283721924, -0.08037440478801727, -0.08785946667194366, 0.031363558024168015, -0.010028621181845665, -0.06335378438234329, 0.0952940359711647, -0.05321867763996124, 0.0031170803122222424, -0.08095255494117737, -0.08987123519182205, 0.04393362998962402, -0.04417251795530319, -0.032510679215192795, -0.03923710435628891, -0.09493909031152725, -0.11036457866430283, 0.07042118906974792, -0.12082293629646301, -0.05452214926481247, -0.09909623116254807, -0.11585353314876556, 0.05317072570323944, 0.008404522202908993, 0.09864397346973419, -0.04779491201043129, 0.05549672618508339, -0.008946080692112446, 0.06003669276833534, 0.14531812071800232, 0.04282643646001816, -0.03844369575381279, 0.07012726366519928, -0.18052524328231812, 0.12261801213026047, -0.09851275384426117, 0.05105344578623772, -0.1644866019487381, -0.055417802184820175, -0.01901339553296566, 0.015987446531653404, 0.08881047368049622, 0.1280941516160965, -0.2073199301958084, -0.03945789113640785, 0.24623587727546692, -0.07021897286176682, -0.10751987993717194, 0.07425592839717865, -0.03922393545508385, 0.05519348755478859, 0.03177184984087944, 0.11643221229314804, 0.11802799999713898, -0.0819203183054924, -0.009322287514805794, -0.10322894155979156, 0.06860566884279251, 0.16370636224746704, 0.03972811624407768, -0.0434366874396801, 0.06886687129735947, 0.01639787293970585, -0.006599851418286562, -0.008788177743554115, -0.06493037194013596, -0.0805717185139656, 0.011614604853093624, -0.06066496670246124, 0.0024209776893258095, 0.036320097744464874, -0.013987896032631397, -0.06285755336284637, -0.1365017592906952, 0.014052275568246841, 0.056910719722509384, -0.03972733020782471, 0.006960505619645119, -0.07926511764526367, 0.0006939341546967626, 0.0660172775387764, 0.010031885467469692, -0.18090303242206573, -0.04124852642416954, 0.027045829221606255, -0.02240693010389805, 0.055022891610860825, -0.07462629675865173, 0.06512157618999481, 0.03687111660838127, -0.06891325116157532, -0.048684559762477875, 0.025620929896831512, 0.013227089308202267, -0.06276833266019821, -0.23961420357227325, -0.02496877685189247, -0.0255960151553154, 0.1922438144683838, -0.23935924470424652, 0.03815573453903198, -0.021114373579621315, 0.15244118869304657, 0.01966828480362892, -0.06070541590452194, 0.012637263163924217, 0.005134454928338528, 0.0016497209435328841, -0.08239524811506271, 0.016142044216394424, -0.006199232768267393, -0.0399116687476635, -0.03548955172300339, -0.1907719224691391, -0.039108023047447205, 0.08948922157287598, 0.031592968851327896, -0.18345674872398376, -0.08421171456575394, -0.024633372202515602, -0.055708687752485275, -0.06748940050601959, -0.03274626284837723, 0.15985718369483948, 0.029956383630633354, 0.07119021564722061, -0.03606677055358887, -0.06535698473453522, -0.0029681578744202852, -0.00592453870922327, -0.014009380713105202, 0.16959911584854126, -0.004995421506464481, -0.1416344791650772, 0.10669229924678802, 0.037660736590623856, 0.006994143128395081, 0.10362577438354492, -0.04602322727441788, -0.07195962220430374, -0.07776323705911636, 0.055622924119234085, 0.05845120921730995, 0.06796173751354218, -0.04340715706348419, 0.019508279860019684, 0.02709401398897171, 0.017216254025697708, 0.004154689610004425, -0.09527669101953506, 0.0105117317289114, 0.01676069013774395, -0.047652993351221085, 0.033363163471221924, -0.04381757974624634, 0.026558931916952133, 0.07947684824466705, 0.03351487219333649, 0.043483663350343704, -0.01955811306834221, -0.056971557438373566, -0.1129089891910553, 0.18373748660087585, -0.12590008974075317, -0.17000804841518402, -0.08131327480077744, 0.00433076499029994, 0.025387652218341827, -0.04390916973352432, 0.015632133930921555, -0.06592129915952682, -0.05020122230052948, -0.10853739082813263, 0.0318913459777832, 0.055589720606803894, -0.043508220463991165, -0.03536079823970795, 0.04031020775437355, 0.08148697763681412, -0.08818327635526657, 0.013888342306017876, 0.018393872305750847, -0.03661205619573593, 0.018595606088638306, 0.021260984241962433, 0.026589084416627884, 0.12862209975719452, 0.06775736808776855, 0.02600191719830036, -0.00459293881431222, 0.24033984541893005, -0.10258853435516357, 0.05939720198512077, 0.05256295204162598, -0.018509872257709503, 0.07066532969474792, 0.22590932250022888, 0.02555777318775654, -0.08088316023349762, 0.053681809455156326, 0.06264294683933258, -0.008755610324442387, -0.20260405540466309, -0.007965492084622383, -0.04178576543927193, 0.02448558434844017, 0.1351412832736969, 0.0356547087430954, 0.04627762734889984, 0.030522381886839867, -0.05402303487062454, -0.05064106732606888, 0.10216108709573746, 0.07988319545984268, -0.00644229631870985, 0.04273000732064247, 0.08381280303001404, -0.011219857260584831, 0.02430947683751583, 0.03494347259402275, -0.018003152683377266, 0.17685076594352722, -0.013637363910675049, 0.12705740332603455, 0.07073529809713364, 0.13841353356838226, -0.035197172313928604, 0.031223958358168602, -0.018431635573506355, 0.0327690914273262, 0.023675749078392982, -0.06061840429902077, -0.0022422203328460455, 0.05916221812367439, 0.022793777287006378, 0.017724404111504555, -0.06625906378030777, 0.0007793883560225368, 0.0918557345867157, 0.1754414290189743, 0.09678378701210022, -0.2285500466823578, -0.05527656152844429, 0.05110440403223038, -0.08528350293636322, -0.06414807587862015, -0.01985037699341774, 0.07344547659158707, -0.1195477619767189, 0.057885050773620605, -0.06134484335780144, 0.09119818359613419, -0.05223722383379936, 0.00009017984120873734, 0.06485991179943085, 0.10786440968513489, -0.006899925414472818, 0.03851192072033882, -0.2069658637046814, 0.16430139541625977, -0.00009776577644515783, 0.08162324130535126, -0.0534580796957016, 0.0459243543446064, 0.041640184819698334, -0.09292017668485641, 0.11400197446346283, -0.013022326864302158, -0.14726509153842926, -0.13791465759277344, -0.0808887630701065, -0.025206059217453003, 0.12942737340927124, -0.13339203596115112, 0.11200963705778122, -0.00860646553337574, -0.037625834345817566, 0.006953319068998098, -0.03881673887372017, -0.14427542686462402, -0.13117845356464386, 0.025081485509872437, -0.08631804585456848, 0.07196561247110367, -0.07090716063976288, -0.03008590079843998, -0.048619385808706284, 0.15992885828018188, -0.1915840059518814, -0.05543874204158783, -0.1457618772983551, 0.1055239662528038, 0.17210492491722107, -0.09236550331115723, 0.05033404752612114, 0.024495093151926994, 0.11187195032835007, 0.030260948464274406, -0.019674178212881088, 0.11530206352472305, -0.06156447157263756, -0.21901321411132812, -0.05002899095416069, 0.16347633302211761, 0.09870759397745132, 0.07141289860010147, 0.0008558899280615151, 0.052282631397247314, 0.01920865848660469, -0.08385080844163895, 0.03344808518886566, 0.061805132776498795, 0.07885508239269257, 0.03819407895207405, -0.06734930723905563, -0.0567917563021183, -0.11021542549133301, -0.010554587468504906, 0.0794227346777916, 0.21583054959774017, -0.07871468365192413, 0.08523573726415634, 0.0357440747320652, -0.08399345725774765, -0.18123136460781097, -0.004241133574396372, 0.10376529395580292, 0.01854734681546688, 0.04263605177402496, -0.19792231917381287, 0.08075154572725296, 0.07178341597318649, -0.00917207170277834, 0.08805597573518753, -0.27975136041641235, -0.14516118168830872, 0.06693808734416962, 0.055331237614154816, -0.1777455359697342, -0.16519121825695038, -0.08487837761640549, -0.009336445480585098, -0.11066458374261856, 0.11351490765810013, -0.05270559340715408, 0.06984999030828476, 0.04006151109933853, -0.005982268135994673, 0.03241879120469093, -0.029611025005578995, 0.15018002688884735, 0.014929717406630516, 0.055224012583494186, -0.08044903725385666, -0.037460312247276306, -0.05494672432541847, -0.08341136574745178, 0.05788319185376167, -0.061832912266254425, 0.022942831739783287, -0.11115463823080063, -0.016128389164805412, -0.08513452112674713, -0.017491759732365608, -0.1072816550731659, -0.020789599046111107, -0.018764734268188477, 0.12466862797737122, 0.10678572952747345, -0.0020708765368908644, 0.0720963180065155, -0.061865270137786865, 0.13192740082740784, 0.1671469360589981, 0.11118826270103455, 0.09573634713888168, -0.058801040053367615, 0.01803276315331459, -0.00011638998694252223, -0.008669308386743069, -0.1777726709842682, 0.05594383925199509, 0.11301108449697495, 0.008453061804175377, 0.17347510159015656, 0.017575351521372795, -0.1151747852563858, -0.040049511939287186, 0.0842955932021141, -0.05637961998581886, -0.09677062928676605, 0.02962315082550049, 0.047183629125356674, -0.17993587255477905, -0.08175455778837204, 0.08568822592496872, -0.023452457040548325, -0.024815643206238747, 0.03295965865254402, 0.116334468126297, -0.01538398303091526, 0.19038182497024536, 0.03829456493258476, 0.07472052425146103, -0.08474218100309372, 0.11426302045583725, 0.07673175632953644, -0.056831471621990204, 0.05077556148171425, 0.19992943108081818, -0.06038552522659302, -0.04807582125067711, 0.04002794250845909, 0.10226830095052719, 0.06968625634908676, -0.008893877267837524, -0.021547315642237663, -0.12459372729063034, 0.07233578711748123, 0.10972633212804794, 0.003947498742491007, 0.009515573270618916, 0.03319390118122101, 0.028246577829122543, -0.07153403759002686, 0.1433529555797577, 0.15100663900375366, 0.04444606229662895, -0.04044687747955322, 0.11935849487781525, -0.00397357577458024, -0.04516148567199707, 0.01280634943395853, 0.01029376219958067, -0.16049852967262268, -0.00548031460493803, -0.0829419419169426, 0.031063448637723923, -0.10127833485603333, -0.01668447256088257, 0.011414434760808945, -0.025309821590781212, -0.003965252079069614, -0.011439686641097069, -0.07783392071723938, -0.10471262782812119, -0.04271502420306206, 0.09339036792516708, -0.12817494571208954, -0.03125668317079544, 0.054934486746788025, -0.11472711712121964, 0.08834853023290634, 0.030453644692897797, 0.011566498316824436, 0.022517498582601547, -0.11900148540735245, 0.02346336655318737, -0.017305349931120872, -0.0267791785299778, 0.035085756331682205, -0.2136712372303009, -0.003006261307746172, -0.09797526150941849, -0.02860686182975769, 0.023226775228977203, 0.010474784299731255, -0.12591540813446045, 0.049252986907958984, -0.05726579576730728, -0.054075803607702255, -0.06950269639492035, 0.042990293353796005, 0.09553170204162598, -0.034174222499132156, 0.12217492610216141, -0.0725715234875679, 0.08555181324481964, -0.2178252637386322, -0.008890441618859768, 0.0163443461060524, -0.03134589269757271, 0.020864836871623993, -0.019782809540629387, 0.11121968924999237, -0.050822775810956955, 0.027999278157949448, -0.04165744036436081, -0.019291460514068604, 0.04846249520778656, -0.06977753341197968, -0.02628057636320591, 0.10213740915060043, 0.05771411955356598, 0.033804554492235184, -0.04735919460654259, -0.011578484438359737, -0.006653899792581797, 0.009321787394583225, -0.007603941485285759, 0.1561254858970642, 0.17722640931606293, 0.07028063386678696, 0.04047822579741478, 0.05167928710579872, -0.13403043150901794, -0.023649167269468307, 0.20778222382068634, -0.06495139002799988, 0.04767538607120514, -0.053863272070884705, 0.09402353316545486, 0.07440349459648132, -0.24049513041973114, 0.07692793756723404, -0.07909302413463593, -0.10790698975324631, -0.05234463885426521, -0.1539374738931656, -0.07843983918428421, -0.058041613548994064, -0.011898375116288662, -0.1225631907582283, 0.045830629765987396, 0.11632682383060455, 0.01944323256611824, 0.03151410073041916, 0.09536027908325195, -0.012144128791987896, -0.0040602427907288074, 0.10587359964847565, 0.05129103735089302, 0.012831875123083591, -0.015812570229172707, -0.03624005615711212, -0.014178107492625713, 0.054518695920705795, 0.06954709440469742, 0.016995618119835854, -0.017369519919157028, 0.03316396474838257, -0.01835658773779869, -0.1209295243024826, 0.037135444581508636, -0.030916852876544, -0.0075769065879285336, 0.14227278530597687, 0.06242597848176956, -0.009729219600558281, -0.013811246491968632, 0.22641684114933014, -0.08204139024019241, -0.089084193110466, -0.1898219734430313, 0.13066688179969788, 0.015794450417160988, 0.004753564950078726, 0.006191285792738199, -0.11910398304462433, 0.007191186770796776, 0.13847678899765015, 0.1766556054353714, -0.04328731447458267, 0.007040546275675297, 0.0446019172668457, 0.003114632098004222, 0.008117235265672207, 0.04204198345541954, 0.09573761373758316, 0.08923648297786713, -0.060033924877643585, 0.0535784475505352, 0.01685262843966484, -0.1077006384730339, -0.08223934471607208, 0.08554577827453613, 0.0232339296489954, 0.03637409210205078, -0.037506796419620514, 0.14449162781238556, -0.12167730182409286, -0.18984611332416534, 0.053907521069049835, -0.14632698893547058, -0.17393024265766144, -0.05891509726643562, 0.01330407615751028, 0.04066826030611992, 0.06035245209932327, 0.054854582995176315, -0.014726598747074604, 0.10853894799947739, 0.024441717192530632, 0.007035413291305304, -0.07310499995946884, 0.03807568550109863, -0.0693601444363594, 0.21185685694217682, -0.013352958485484123, -0.011170687153935432, 0.1362026184797287, -0.016878562048077583, -0.09357418864965439, 0.0004289845528546721, 0.09861838817596436, -0.07250519841909409, 0.05665511265397072, 0.18011517822742462, -0.033161092549562454, 0.08436649292707443, 0.10152395069599152, -0.09423163533210754, 0.00929622445255518, -0.06618478894233704, -0.040106359869241714, -0.08139955252408981, 0.05555177852511406, -0.03312097489833832, 0.13987092673778534, 0.22677233815193176, -0.07317862659692764, 0.0035426467657089233, -0.030469221994280815, -0.004061487969011068, -0.02291342243552208, 0.10859695822000504, -0.04110516235232353, -0.21211494505405426, 0.04327605664730072, 0.026419591158628464, 0.08323255181312561, -0.220221146941185, -0.09347319602966309, 0.06557396799325943, -0.02368643507361412, -0.09015092998743057, 0.15875676274299622, 0.08483017235994339, 0.01893709972500801, -0.045349620282649994, -0.12291822582483292, -0.005233882460743189, 0.19194521009922028, -0.09556864202022552, -0.04983240365982056 ]
null
null
transformers
# AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.9 베이스 모델 : 42dot/42dot_LLM-SFT-1.3B 학습 데이터 : 자체 제작한 Open Orca 스타일 데이터셋 약 48,000건 (중복 제거 및 데이터 분포 조정) 학습 방법 : Full finetuning epoch : 3 ## ko-lm-evaluation-harness(5-shot) |kobest_boolq|kobest_copa|kobest_hellaswag|pawsx_ko| |--|--|--|--| |0.52065527065527|0.721|0.466|0.5475| ## Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.0.0 - Tokenizers 0.15.0
{"license": "cc-by-nc-4.0"}
text-generation
mu0gum/AIFT-42dot_LLM-SFT-1.3B-ao-instruct-all-v0.9
[ "transformers", "safetensors", "llama", "text-generation", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:08:42+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
AIFT-42dot-LLM-PLM-1.3B-ao-instruct-all-v0.9 ============================================ 베이스 모델 : 42dot/42dot\_LLM-SFT-1.3B 학습 데이터 : 자체 제작한 Open Orca 스타일 데이터셋 약 48,000건 (중복 제거 및 데이터 분포 조정) 학습 방법 : Full finetuning epoch : 3 ko-lm-evaluation-harness(5-shot) -------------------------------- Framework versions ------------------ * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.0.0 * Tokenizers 0.15.0
[]
[ "TAGS\n#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 58 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.018598100170493126, 0.04576653614640236, -0.004772544838488102, -0.00019243551651015878, 0.09803470224142075, -0.009231745265424252, 0.19215108454227448, 0.08693429082632065, -0.024934960529208183, -0.010802163742482662, 0.16796031594276428, 0.20608462393283844, -0.02564150281250477, 0.05554555356502533, -0.1126324012875557, -0.14046494662761688, 0.06594690680503845, 0.017319926992058754, 0.026816125959157944, 0.08320864289999008, 0.09362509846687317, -0.05210784077644348, 0.07731316983699799, -0.050186887383461, -0.13062182068824768, 0.02513301558792591, 0.0786486268043518, -0.1378239095211029, 0.0984945297241211, 0.0678495243191719, 0.11836424469947815, 0.09230595827102661, -0.018977859988808632, -0.20999641716480255, 0.016381900757551193, 0.0024822240229696035, -0.09548687934875488, 0.04197961837053299, 0.065461665391922, -0.029142610728740692, 0.06751897186040878, 0.020185502246022224, -0.02713230438530445, 0.07796615362167358, -0.11220115423202515, -0.009199639782309532, -0.05987686663866043, 0.0008496680529788136, 0.11472947150468826, 0.08975796401500702, 0.01355074904859066, 0.11519689112901688, -0.05935866758227348, 0.08785244822502136, 0.0822203978896141, -0.36572572588920593, 0.025613388046622276, 0.15135248005390167, 0.08294078707695007, 0.04392879456281662, -0.04139186441898346, 0.11215522885322571, 0.08222288638353348, -0.028521917760372162, 0.06674893200397491, -0.07482951879501343, -0.06624459475278854, 0.04119296744465828, -0.05684594810009003, -0.0224158875644207, 0.23869183659553528, -0.03648490458726883, 0.016389669850468636, -0.06172437593340874, -0.05230797454714775, -0.013025063090026379, -0.01902826316654682, 0.0458935983479023, -0.0008697350858710706, 0.09070311486721039, 0.020383067429065704, -0.013924437575042248, -0.14666853845119476, -0.027652429416775703, -0.1741352677345276, 0.11912473291158676, -0.010235736146569252, 0.03175007179379463, -0.12131519615650177, 0.05062822997570038, 0.004697117023169994, -0.09430572390556335, -0.01730005256831646, -0.059811655431985855, 0.08472347259521484, -0.02648126520216465, -0.04967185854911804, -0.0338541679084301, 0.1282012164592743, 0.12720966339111328, -0.01422620564699173, 0.002646899549290538, -0.11677773296833038, 0.09915255755186081, -0.04354500025510788, 0.011750378645956516, 0.0187817569822073, 0.01319042220711708, 0.11221517622470856, -0.0820169746875763, 0.08812914043664932, -0.04273245111107826, -0.15685294568538666, -0.011520028114318848, -0.006282662507146597, 0.14942660927772522, -0.0036420663818717003, 0.07857009768486023, -0.036141276359558105, 0.06450369954109192, 0.12288809567689896, -0.0735381618142128, 0.002590891206637025, -0.0032971117179840803, 0.06709019094705582, 0.015248983167111874, 0.03783499822020531, 0.03583638370037079, -0.04333166033029556, 0.07134097814559937, -0.07736941426992416, -0.035586003214120865, -0.039867956191301346, -0.06285206973552704, 0.0793951079249382, -0.049966000020504, 0.036658454686403275, -0.19483773410320282, -0.18084366619586945, 0.02389456331729889, -0.009650565683841705, -0.014782462269067764, -0.016292179003357887, -0.021682707592844963, -0.054303061217069626, 0.03198776766657829, -0.0801759585738182, -0.0711478516459465, -0.0832759439945221, 0.08382703363895416, -0.02020202949643135, 0.04067452996969223, -0.15442010760307312, 0.023668447509407997, -0.0982431098818779, 0.022945517674088478, -0.04645010083913803, 0.019229985773563385, -0.04988782852888107, 0.1675536334514618, -0.042458757758140564, 0.003402339294552803, -0.05020728334784508, 0.053430356085300446, -0.032191816717386246, 0.18297161161899567, -0.11150699853897095, -0.03664756193757057, 0.18310387432575226, -0.12729811668395996, -0.21532373130321503, 0.07738630473613739, 0.0067518167197704315, 0.03351747244596481, 0.099713034927845, 0.14166420698165894, 0.04129723832011223, -0.08414367586374283, 0.017394494265317917, 0.1098807230591774, -0.061748094856739044, -0.1626255214214325, 0.006033075042068958, -0.018554747104644775, -0.15160058438777924, 0.028024815022945404, 0.029500208795070648, 0.05104374513030052, -0.012439814396202564, -0.057865388691425323, -0.06545622646808624, -0.043591272085905075, -0.023775942623615265, -0.03607342019677162, 0.05449777469038963, -0.0941295325756073, -0.004470455925911665, -0.009137924760580063, -0.0014770877314731479, -0.0240805484354496, 0.0397297702729702, -0.08997252583503723, 0.07098909467458725, -0.05044323578476906, 0.047026317566633224, -0.08735032379627228, -0.10792001336812973, -0.004453466739505529, 0.0953640267252922, 0.01913350634276867, -0.0029972007032483816, 0.029227497056126595, 0.008889204822480679, -0.027615105733275414, 0.005461844149976969, 0.1822105050086975, 0.03053486905992031, -0.04678235575556755, -0.11110125482082367, 0.09510453790426254, -0.04076266661286354, 0.026219703257083893, -0.13996794819831848, 0.021926479414105415, 0.09969735890626907, 0.07160250842571259, -0.00039123118040151894, 0.07165807485580444, -0.01898210495710373, 0.0308940839022398, -0.09095273166894913, 0.01610459014773369, 0.08981383591890335, 0.019544973969459534, -0.12777280807495117, 0.22400327026844025, -0.21121296286582947, 0.2524110972881317, 0.20600442588329315, -0.20355452597141266, 0.02317488193511963, -0.079915352165699, 0.02839692495763302, 0.0032658956479281187, 0.013765744864940643, -0.046007562428712845, -0.009740957990288734, -0.024700399488210678, 0.17697638273239136, -0.07281725108623505, -0.01666092872619629, 0.006259601097553968, -0.05320149287581444, -0.04825786501169205, 0.051243092864751816, 0.136129230260849, -0.14722292125225067, 0.16979634761810303, 0.2818247675895691, -0.0003537516458891332, 0.11213971674442291, -0.03140794485807419, 0.001854491769336164, 0.024073757231235504, 0.04020090401172638, 0.03732174262404442, -0.031127456575632095, -0.03867147117853165, 0.0006169763510115445, 0.053250156342983246, 0.005881639663130045, 0.05544472113251686, -0.15701515972614288, -0.07182437926530838, -0.011166928336024284, -0.04816080629825592, -0.02321820892393589, 0.06074359640479088, -0.01453700102865696, 0.11429528146982193, -0.056246135383844376, -0.07617467641830444, 0.1275453120470047, -0.015475023537874222, -0.11453940719366074, 0.18757620453834534, -0.13768532872200012, -0.24634815752506256, -0.21564981341362, -0.1444118767976761, -0.04876270145177841, 0.0628308430314064, 0.10593923181295395, -0.04242387041449547, -0.08407232910394669, -0.09125827252864838, -0.03571420535445213, -0.01709623634815216, 0.013238828629255295, -0.02673126384615898, 0.07750898599624634, -0.03220783546566963, -0.10965986549854279, -0.036360740661621094, 0.03876812011003494, -0.06819792091846466, 0.11401668936014175, -0.08461691439151764, 0.11810804158449173, 0.15744134783744812, 0.021671278402209282, -0.009393454529345036, -0.062025949358940125, 0.10838370025157928, -0.05905415862798691, -0.021621640771627426, 0.1974829137325287, -0.050683945417404175, 0.04734934866428375, 0.15601304173469543, 0.034523382782936096, -0.11246829479932785, 0.05061022564768791, -0.058702897280454636, -0.102999746799469, -0.23458166420459747, -0.10165058821439743, -0.09088785946369171, 0.07659073173999786, 0.041165802627801895, 0.07119696587324142, 0.15701036155223846, 0.08364911377429962, -0.02745014987885952, 0.023174084722995758, 0.0715169757604599, 0.0979711264371872, 0.27314090728759766, -0.010106288827955723, 0.12911555171012878, -0.11734677851200104, -0.07545876502990723, 0.07519235461950302, 0.0909929946064949, 0.1057448759675026, 0.1282493770122528, 0.11185965687036514, 0.05344085395336151, 0.07608748972415924, 0.14796961843967438, 0.12483048439025879, 0.040222276002168655, -0.029631510376930237, -0.003645034506917, -0.05761029198765755, -0.00023095165670383722, 0.05670841783285141, -0.10563431680202484, -0.13687850534915924, -0.02621145360171795, -0.08280135691165924, 0.07002724707126617, 0.09946353733539581, 0.044085655361413956, -0.26081031560897827, 0.0499446727335453, 0.11277081817388535, 0.014095248654484749, -0.06901482492685318, 0.10689429193735123, 0.015749504789710045, -0.022592201828956604, 0.11742567270994186, -0.03257140517234802, 0.0948498472571373, -0.026453137397766113, 0.05627652257680893, -0.04898276552557945, -0.07180874794721603, 0.0021222431678324938, 0.10061854124069214, -0.29983189702033997, 0.1838657557964325, 0.033411603420972824, 0.00527204992249608, -0.06094096601009369, -0.008392714895308018, 0.007372574415057898, 0.21790073812007904, 0.14452306926250458, -0.03177953511476517, -0.14660915732383728, -0.08884940296411514, -0.04560299590229988, 0.022180035710334778, 0.11413727700710297, 0.0031109799165278673, 0.017208337783813477, -0.04515274986624718, -0.011683914810419083, 0.028219211846590042, -0.047019749879837036, -0.04851669818162918, -0.16606833040714264, 0.039311666041612625, 0.16645056009292603, 0.10624819248914719, -0.04311135411262512, 0.009267980232834816, -0.1606573909521103, 0.18426698446273804, -0.19546328485012054, -0.04787100479006767, -0.09983696788549423, -0.14221957325935364, 0.025169625878334045, -0.019592419266700745, 0.07032410055398941, -0.048908255994319916, 0.04643638804554939, -0.07862430810928345, -0.18338358402252197, 0.10967117547988892, -0.11377891153097153, -0.04451403021812439, -0.0351666621863842, 0.13799534738063812, -0.12315574288368225, -0.016380801796913147, 0.05233611539006233, 0.037841178476810455, -0.04430747032165527, -0.11481945961713791, -0.01187913678586483, 0.011263889260590076, 0.04625999554991722, 0.005390515085309744, -0.14288559556007385, -0.07099563628435135, 0.003945738542824984, -0.0758911743760109, 0.22352145612239838, 0.2805436849594116, -0.06153944879770279, 0.12982036173343658, 0.17769093811511993, -0.12080777436494827, -0.34609344601631165, -0.08622385561466217, -0.19815689325332642, -0.04969025030732155, -0.003007542109116912, -0.10264207422733307, 0.09539809077978134, 0.06066688895225525, -0.055249352008104324, 0.1447049081325531, -0.1969834566116333, -0.11728637665510178, 0.12292273342609406, 0.02547139674425125, 0.30514687299728394, -0.1852174699306488, -0.10075163096189499, -0.13252465426921844, -0.07993540167808533, 0.1562579721212387, -0.10632150620222092, 0.08556825667619705, 0.01090763695538044, 0.012927365489304066, 0.00638682022690773, -0.047858383506536484, 0.11719193309545517, -0.04105420783162117, 0.0813470333814621, -0.12201350182294846, 0.03552987426519394, 0.09128956496715546, -0.021195173263549805, 0.046986546367406845, -0.18122462928295135, 0.011859966441988945, -0.02532948926091194, -0.04141309857368469, 0.0007200849358923733, 0.08306120336055756, -0.004290719050914049, -0.04075026512145996, -0.03533121198415756, -0.06751350313425064, 0.010285931639373302, -0.030807267874479294, 0.2470920979976654, -0.06764927506446838, 0.1374695748090744, 0.1843917965888977, 0.1718084216117859, -0.1039099395275116, 0.10427592694759369, -0.010197103023529053, -0.10420403629541397, 0.07524542510509491, -0.14164771139621735, 0.06329544633626938, 0.0920838713645935, -0.04867801442742348, 0.06915224343538284, 0.09034542739391327, 0.03616128861904144, -0.004545547533780336, 0.1759139895439148, -0.19007575511932373, -0.0091652637347579, -0.030733250081539154, 0.0618671216070652, 0.06831244379281998, 0.07624046504497528, 0.18147696554660797, -0.02498559281229973, 0.03280257061123848, 0.014346477575600147, 0.027433576062321663, -0.04627867788076401, 0.05118221417069435, 0.020680135115981102, 0.014554123394191265, -0.10982322692871094, 0.10008160024881363, 0.014405042864382267, -0.11485125124454498, 0.004836422856897116, 0.08666109293699265, -0.1427166759967804, -0.12026243656873703, -0.04647919908165932, 0.08919169008731842, -0.1921895146369934, -0.10434358566999435, -0.05414319038391113, -0.17641346156597137, 0.037193089723587036, 0.2377339005470276, 0.044957879930734634, 0.08880451321601868, 0.03550275042653084, -0.05552699416875839, -0.06489650160074234, 0.03904573991894722, -0.10084763169288635, 0.05568595603108406, -0.12019163370132446, 0.009195288643240929, -0.0266634002327919, 0.042854782193899155, -0.08401023596525192, 0.02124948240816593, -0.13176420331001282, 0.026530113071203232, -0.13343264162540436, 0.022236905992031097, -0.08908219635486603, -0.01712159626185894, 0.007770827505737543, 0.007202369160950184, -0.047726429998874664, -0.028183603659272194, -0.07910101115703583, 0.013479023240506649, -0.038050055503845215, 0.05764954537153244, -0.09287701547145844, -0.05033868923783302, 0.03900847211480141, -0.038443248718976974, 0.09439825266599655, 0.012599416077136993, -0.08194892853498459, 0.08914085477590561, -0.22447355091571808, -0.01978803612291813, 0.13369464874267578, 0.015381013043224812, -0.007693483028560877, 0.03908101096749306, 0.004880896303802729, 0.136310875415802, -0.019133443012833595, 0.05930917337536812, -0.02119656838476658, -0.10835939645767212, -0.01640353351831436, -0.04797521233558655, -0.09455931931734085, -0.0263216532766819, -0.0649963989853859, 0.11189261078834534, -0.025637395679950714, 0.18449869751930237, -0.08100482821464539, 0.02088012918829918, -0.02283366024494171, 0.024991055950522423, -0.01050450000911951, -0.17402081191539764, -0.1324767768383026, -0.06283675134181976, 0.003801369806751609, -0.008918979205191135, 0.29559317231178284, 0.0016270404448732734, -0.06552344560623169, 0.08135063201189041, 0.030953649431467056, 0.029654840007424355, 0.038594041019678116, 0.32324132323265076, 0.09253807365894318, -0.014094964601099491, -0.13366004824638367, 0.03211488947272301, 0.041591476649045944, -0.09136633574962616, 0.05532173812389374, 0.07916964590549469, -0.0767030343413353, 0.10467337816953659, 0.07082735002040863, -0.020625974982976913, -0.012518021278083324, -0.05115821957588196, -0.059978093951940536, 0.0638461634516716, -0.009424963034689426, 0.03738702833652496, 0.20577387511730194, -0.029264602810144424, -0.02031792514026165, -0.03621094673871994, -0.038562364876270294, -0.1907726675271988, -0.13859345018863678, -0.11081112921237946, -0.11833874881267548, 0.027049602940678596, -0.08594916015863419, 0.0349901020526886, 0.0692722499370575, 0.04848137125372887, -0.039203252643346786, 0.08794284611940384, -0.028513815253973007, -0.03946380317211151, 0.05037098005414009, -0.026584936305880547, 0.031997762620449066, -0.019457217305898666, -0.062095873057842255, -0.04701634496450424, -0.0722271129488945, -0.03988366946578026, 0.06982007622718811, 0.036087483167648315, 0.07403715699911118, -0.13518886268138885, -0.07514194399118423, -0.03815904259681702, 0.08015181124210358, -0.0027177133597433567, 0.14380952715873718, 0.007449907250702381, -0.049359604716300964, 0.0777355507016182, 0.14577113091945648, -0.05659928545355797, -0.11118029057979584, -0.020117873325943947, 0.18758423626422882, 0.013735251501202583, 0.10742262005805969, -0.043193962424993515, -0.009998529218137264, 0.013530006632208824, 0.3298338055610657, 0.24874113500118256, -0.07177788764238358, 0.03326085954904556, -0.06792211532592773, 0.0340045765042305, 0.06526158004999161, 0.13531792163848877, 0.07609576731920242, 0.2278445065021515, -0.04166838526725769, -0.05430809408426285, -0.02129395119845867, 0.034798912703990936, -0.13006772100925446, 0.0716385692358017, -0.029123233631253242, -0.060952115803956985, -0.03249827399849892, 0.10276437550783157, -0.1374688744544983, 0.10597784072160721, 0.005890509579330683, -0.07874052226543427, 0.01859649270772934, 0.002398149110376835, 0.12740598618984222, -0.043197307735681534, 0.013193855062127113, -0.057479437440633774, -0.07087736576795578, -0.0011047966545447707, -0.01661156676709652, -0.18088319897651672, 0.030870283022522926, -0.0019212872721254826, 0.019597778096795082, 0.08099543303251266, 0.008102437481284142, 0.06869116425514221, 0.08074445277452469, 0.029337486252188683, -0.08153863251209259, 0.15735986828804016, 0.014404362067580223, -0.08904794603586197, 0.06600657850503922, -0.046800754964351654, -0.02866125851869583, 0.04501991346478462, 0.048605047166347504, -0.0720905140042305, 0.07167491316795349, -0.01207533199340105, -0.10541541129350662, -0.03782951831817627, -0.011661567725241184, -0.07333800196647644, 0.09051863104104996, 0.016697091981768608, -0.0222385935485363, -0.00769528653472662, -0.023523306474089622, 0.015414741821587086, -0.011843587271869183, -0.13587059080600739, -0.0072977906093001366, -0.11418243497610092, -0.03839293494820595, 0.15671782195568085, 0.03576979786157608, -0.2559889256954193, 0.007155545521527529, -0.09395914524793625, 0.04089592397212982, -0.19774369895458221, 0.057117071002721786, 0.20591406524181366, -0.006402778904885054, -0.0380830392241478, -0.17396093904972076, 0.054110314697027206, 0.05316425859928131, -0.06359418481588364, -0.11940696090459824 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinyllama-v1-training-2.0 This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "model-index": [{"name": "tinyllama-v1-training-2.0", "results": []}]}
null
newbie-geek/tinyllama-v1-training-2.0
[ "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "region:us" ]
2024-02-06T12:09:01+00:00
[]
[]
TAGS #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us
# tinyllama-v1-training-2.0 This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# tinyllama-v1-training-2.0\n\nThis model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us \n", "# tinyllama-v1-training-2.0\n\nThis model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 58, 44, 6, 12, 8, 3, 125, 4, 33 ]
[ "passage: TAGS\n#tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us \n# tinyllama-v1-training-2.0\n\nThis model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.07549737393856049, 0.07463303208351135, -0.003994671627879143, 0.08863832801580429, 0.11719121038913727, 0.01034936960786581, 0.12709049880504608, 0.15791276097297668, -0.09709916263818741, 0.06894905120134354, 0.01940109394490719, 0.019213490188121796, 0.060278065502643585, 0.12317386269569397, -0.030103757977485657, -0.2428014576435089, 0.008048851042985916, -0.023762017488479614, -0.06843860447406769, 0.10043101757764816, 0.11439716070890427, -0.10536876320838928, 0.05574842169880867, 0.03401225060224533, -0.11660650372505188, -0.009217733517289162, -0.004205158445984125, -0.05980687588453293, 0.10147187858819962, -0.036153145134449005, 0.1273718923330307, 0.013182472437620163, 0.1323637068271637, -0.19917570054531097, -0.002190062077715993, 0.09957238286733627, 0.05173509195446968, 0.08753539621829987, 0.06889574974775314, -0.008626864291727543, 0.05115592107176781, -0.13883425295352936, 0.11197692900896072, 0.013263000175356865, -0.09543687850236893, -0.17411597073078156, -0.11111769080162048, 0.035210780799388885, 0.10675053298473358, 0.07965414971113205, 0.017716415226459503, 0.14954231679439545, -0.09962336719036102, 0.060639623552560806, 0.25285112857818604, -0.247931569814682, -0.0713433027267456, 0.08010757714509964, 0.057405874133110046, 0.06806347519159317, -0.10670041292905807, -0.03880041465163231, 0.026634834706783295, 0.020883522927761078, 0.09177259355783463, -0.0018954480765387416, -0.086241215467453, -0.025982143357396126, -0.11611655354499817, -0.036295533180236816, 0.09032375365495682, 0.019516749307513237, -0.03932501748204231, -0.10012970119714737, -0.06400921195745468, -0.12904700636863708, -0.04257358983159065, -0.055925093591213226, 0.06185825541615486, -0.024650851264595985, -0.06511098891496658, -0.046063825488090515, -0.09897011518478394, -0.04777172952890396, 0.019705787301063538, 0.08217990398406982, 0.02168671041727066, 0.02016413025557995, -0.06341010332107544, 0.11045896261930466, 0.017664264887571335, -0.14322857558727264, -0.007532674819231033, 0.01334258820861578, -0.052860211580991745, -0.0688706561923027, -0.05459011718630791, -0.034932252019643784, -0.006528284400701523, 0.1485692262649536, -0.056436002254486084, 0.06140819191932678, -0.03612210601568222, 0.010981273837387562, -0.06489204615354538, 0.1343657672405243, -0.013564367778599262, -0.01556091196835041, 0.0183239858597517, 0.12963581085205078, 0.04502158612012863, -0.00704304501414299, -0.06748636066913605, -0.012714138254523277, 0.09207218140363693, 0.06847778707742691, -0.03453534096479416, 0.004440039396286011, -0.04831148684024811, -0.036554884165525436, 0.03023800067603588, -0.1317836344242096, 0.059851180762052536, 0.0007656106608919799, -0.06841821223497391, -0.023604920133948326, 0.002367166569456458, 0.04030684381723404, -0.007503519766032696, 0.12286940217018127, -0.06799092143774033, 0.028768962249159813, -0.078827403485775, -0.04009890556335449, 0.032511431723833084, -0.06019362434744835, -0.027506649494171143, -0.05815776064991951, -0.1843290627002716, -0.03483137488365173, 0.05513595789670944, -0.07351178675889969, -0.030203573405742645, -0.022301673889160156, -0.08127900213003159, 0.02361701801419258, -0.00361761380918324, 0.12464018911123276, -0.04603264480829239, 0.07820186764001846, -0.023040028288960457, 0.042332470417022705, 0.07281972467899323, 0.0226436834782362, -0.11748563498258591, 0.024496786296367645, -0.18429921567440033, 0.054599978029727936, -0.049243658781051636, 0.017568176612257957, -0.11152824014425278, -0.07639031857252121, -0.03751111403107643, -0.041120823472738266, 0.058398790657520294, 0.09697210043668747, -0.20282013714313507, -0.029263412579894066, 0.18694254755973816, -0.1387781947851181, -0.06980711966753006, 0.08956996351480484, -0.05157913267612457, 0.05254260078072548, 0.062285155057907104, 0.18862108886241913, 0.08903767168521881, -0.14666986465454102, -0.02006949856877327, -0.033655986189842224, 0.06641678512096405, 0.04228400066494942, 0.06300592422485352, -0.020219774916768074, 0.09120916575193405, -0.005750703159719706, -0.05971367657184601, -0.009739791974425316, -0.05559304356575012, -0.0862722173333168, -0.07716518640518188, -0.06502895057201385, 0.049110718071460724, 0.04088408872485161, 0.037288691848516464, -0.08606492727994919, -0.10798884183168411, 0.0872834250330925, 0.13396912813186646, -0.04875761643052101, 0.03606627881526947, -0.0899045318365097, 0.01992788352072239, -0.03222328796982765, -0.04925309866666794, -0.18837781250476837, -0.07559038698673248, 0.0552016980946064, -0.07953047007322311, -0.0027463319711387157, 0.023719463497400284, 0.07748640328645706, 0.04476533830165863, -0.06513147801160812, -0.01224659662693739, -0.09912971407175064, -0.0021419033873826265, -0.0873403325676918, -0.1849108636379242, -0.046324945986270905, -0.03436718508601189, 0.17003484070301056, -0.19558079540729523, 0.011228318326175213, 0.04372227564454079, 0.17325963079929352, 0.06715907901525497, -0.05484804883599281, -0.01534030307084322, 0.03557692840695381, 0.01040648389607668, -0.10801302641630173, 0.05209013447165489, 0.016978871077299118, -0.03312733769416809, -0.024497684091329575, -0.1339825689792633, 0.0018367515876889229, 0.10250555723905563, 0.06134858354926109, -0.07263702154159546, 0.0008258777670562267, -0.07136134058237076, -0.03716307878494263, -0.08815065771341324, -0.00271018547937274, 0.15793488919734955, 0.03282404690980911, 0.11959265172481537, -0.09040398895740509, -0.08011285215616226, 0.005059546325355768, -0.010290362872183323, 0.012890966609120369, 0.04645846039056778, 0.041128017008304596, -0.0829012468457222, 0.08193334937095642, 0.11209997534751892, -0.043119385838508606, 0.10783915221691132, -0.07171811163425446, -0.08986639231443405, -0.030727846547961235, 0.003553579328581691, 0.021390074864029884, 0.11316404491662979, -0.03593452647328377, 0.024052336812019348, 0.01714681275188923, 0.04035649448633194, 0.02317647635936737, -0.19932106137275696, -0.004948918242007494, 0.035921305418014526, -0.052247848361730576, 0.042477406561374664, -0.02304106578230858, 0.04802284017205238, 0.09143451601266861, 0.014497995376586914, -0.017465658485889435, 0.010473637841641903, -0.02579689957201481, -0.08059369772672653, 0.14762236177921295, -0.08948525786399841, -0.16772039234638214, -0.08598247170448303, 0.0416068471968174, 0.006207050755620003, -0.02087380178272724, 0.015695229172706604, -0.08947059512138367, -0.03500312939286232, -0.11250130087137222, -0.05778970569372177, -0.0045275441370904446, -0.0065490854904055595, 0.06472744047641754, 0.04467111453413963, 0.09178774058818817, -0.1314241737127304, 0.0059310635551810265, -0.02136385440826416, -0.09204031527042389, 0.003044592449441552, 0.06773369014263153, 0.0437440387904644, 0.13937799632549286, -0.03477350249886513, 0.013823075219988823, -0.04048009216785431, 0.18246935307979584, -0.08964014798402786, 0.01405711006373167, 0.16189181804656982, -0.0010965290712192655, 0.07004594057798386, 0.14215360581874847, 0.03695441037416458, -0.07623683661222458, 0.015108500607311726, 0.06094645336270332, -0.01996713876724243, -0.23257896304130554, -0.04367514327168465, -0.010240443982183933, -0.03316762298345566, 0.10629117488861084, 0.043466415256261826, 0.013869413174688816, 0.03302135691046715, -0.019325023517012596, 0.007841036655008793, 0.010930069722235203, 0.08075662702322006, 0.08195075392723083, 0.06000635400414467, 0.10832621157169342, -0.014318065717816353, -0.032151419669389725, 0.05785633623600006, 0.007152062840759754, 0.23935940861701965, -0.015040874481201172, 0.09872143715620041, 0.0273810513317585, 0.1070081815123558, -0.002517336281016469, 0.03026849590241909, -0.006816957611590624, -0.01724664308130741, 0.0026649744249880314, -0.0737365260720253, -0.0251009501516819, 0.026557454839348793, -0.05840026214718819, 0.050916146486997604, -0.07804828882217407, 0.033752672374248505, 0.029807526618242264, 0.2750411927700043, 0.05968766659498215, -0.2418314814567566, -0.05702861770987511, 0.022852478548884392, -0.0436701662838459, -0.016871821135282516, -0.0019338807323947549, 0.1287175714969635, -0.13091881573200226, 0.046630971133708954, -0.09537918120622635, 0.0693022683262825, -0.053892962634563446, -0.007574913557618856, 0.06162793189287186, 0.07859643548727036, 0.012636643834412098, 0.050992414355278015, -0.18519088625907898, 0.20426277816295624, 0.016790077090263367, 0.12044956535100937, -0.05652862414717674, 0.03967330604791641, 0.027663003653287888, 0.02641143649816513, 0.09145020693540573, -0.0076976860873401165, -0.09845677018165588, -0.16297505795955658, -0.11596577614545822, 0.025363793596625328, 0.12139791250228882, -0.03979874402284622, 0.09063871949911118, -0.06911695003509521, -0.0017387090483680367, 0.04709341749548912, -0.09013139456510544, -0.15281818807125092, -0.10743219405412674, 0.028124136850237846, 0.02310701459646225, -0.05084289610385895, -0.11046840995550156, -0.10482542216777802, 0.003973403945565224, 0.14912432432174683, 0.038590941578149796, -0.04384055361151695, -0.1293552666902542, 0.05563399940729141, 0.14165917038917542, -0.04281388968229294, 0.042791061103343964, 0.03490742668509483, 0.1472836583852768, 0.024033652618527412, -0.07105747610330582, 0.03355831280350685, -0.07142962515354156, -0.2046986073255539, -0.07334579527378082, 0.16141216456890106, 0.034431640058755875, 0.057526595890522, 0.01313291396945715, 0.049507152289152145, 0.029556870460510254, -0.06621032953262329, 0.00586190028116107, 0.07182565331459045, 0.06676694005727768, 0.012323979288339615, -0.061387863010168076, 0.011523163877427578, -0.03753991425037384, -0.029297489672899246, 0.1110617071390152, 0.2140199989080429, -0.08428726345300674, 0.10729843378067017, 0.03286255896091461, -0.06127016991376877, -0.1540498584508896, 0.05125768110156059, 0.11392438411712646, -0.0054566035978496075, 0.0812448263168335, -0.15064382553100586, 0.11156074702739716, 0.11513365805149078, -0.04464644193649292, 0.059388417750597, -0.3685320019721985, -0.12966641783714294, 0.01979917474091053, 0.08794909715652466, 0.0029843957163393497, -0.1254565715789795, -0.04958358407020569, -0.0034670806489884853, -0.10577908158302307, 0.12569613754749298, -0.11165542155504227, 0.09879917651414871, -0.00445546954870224, 0.056747667491436005, 0.02833198383450508, -0.041053276509046555, 0.1266709417104721, -0.006212303414940834, 0.07760094106197357, -0.04431741312146187, -0.012548529542982578, 0.10858569294214249, -0.06914740055799484, 0.012503890320658684, -0.017897555604577065, 0.0540740005671978, -0.11081980913877487, -0.003557800082489848, -0.07075835019350052, 0.033461522310972214, -0.05078757181763649, -0.06059348210692406, -0.06647126376628876, 0.06857969611883163, 0.07055366039276123, -0.02838568389415741, 0.05885613337159157, 0.03280537575483322, 0.12018581479787827, 0.11536648124456406, 0.0823739543557167, -0.03345581144094467, -0.08112717419862747, -0.00031309123733080924, -0.013307835906744003, 0.03913272172212601, -0.120835080742836, 0.04326030611991882, 0.09964817762374878, 0.03848074749112129, 0.11279689520597458, 0.03319555148482323, -0.05810362473130226, 0.0025893186684697866, 0.046701494604349136, -0.09303386509418488, -0.09984251856803894, 0.01350956130772829, 0.04556940123438835, -0.1394735425710678, -0.012308036908507347, 0.1266353726387024, -0.04563054442405701, -0.027271021157503128, 0.005771575029939413, 0.027795029804110527, 0.00007391230610664934, 0.17061764001846313, 0.021000856533646584, 0.064256452023983, -0.07344522327184677, 0.12183722853660583, 0.09333346039056778, -0.09763960540294647, 0.023025203496217728, 0.07285808026790619, -0.09279555082321167, -0.003846021369099617, 0.07139439880847931, 0.11897775530815125, 0.026630360633134842, -0.03614836558699608, -0.10700130462646484, -0.07932373881340027, 0.03369525820016861, 0.10117870569229126, 0.05208852142095566, 0.009201143868267536, -0.021821754053235054, 0.03874076157808304, -0.13282741606235504, 0.11025609076023102, 0.04648976773023605, 0.06835784763097763, -0.1353447139263153, 0.13834185898303986, 0.02201254852116108, -0.005521089304238558, -0.0018288693390786648, 0.037383195012807846, -0.05237220600247383, -0.021745312958955765, -0.058749325573444366, 0.031539544463157654, -0.01627090387046337, -0.015368089079856873, -0.0048822094686329365, -0.03776872903108597, -0.041845377534627914, 0.03412570059299469, -0.06789299100637436, -0.061938606202602386, -0.022465649992227554, 0.03883691877126694, -0.13495202362537384, -0.010238641873002052, 0.04489021375775337, -0.09802646934986115, 0.06763600558042526, 0.03882622718811035, 0.04231324791908264, 0.01307872124016285, -0.11199769377708435, -0.021888216957449913, 0.034070100635290146, 0.015853846445679665, 0.04573482647538185, -0.12961234152317047, -0.008562625385820866, -0.022201431915163994, 0.027070095762610435, 0.02255595102906227, 0.07562130689620972, -0.14211571216583252, -0.002661698265001178, -0.0395532064139843, -0.06745908409357071, -0.03482396900653839, 0.007350059226155281, 0.10880985856056213, 0.013100254349410534, 0.16371147334575653, -0.08313862234354019, 0.07001062482595444, -0.2400185763835907, -0.02682512067258358, -0.0062463898211717606, -0.01685032993555069, -0.0843169093132019, -0.0035636317916214466, 0.058568160980939865, -0.05654006823897362, 0.07181142270565033, 0.026145370677113533, 0.09658291190862656, 0.05576881766319275, -0.0792829841375351, -0.007581623736768961, 0.03191227465867996, 0.16564132273197174, 0.07544948160648346, -0.030550841242074966, 0.10362134873867035, -0.04972700774669647, 0.05898774042725563, 0.0036843838170170784, 0.19579561054706573, 0.18471282720565796, -0.005390646867454052, 0.05762571841478348, 0.04777178540825844, -0.09832464903593063, -0.17659682035446167, 0.10945869237184525, -0.03324460610747337, 0.07558698207139969, -0.049962081015110016, 0.2067788988351822, 0.11922075599431992, -0.19032645225524902, 0.048822253942489624, -0.06526680290699005, -0.0709957629442215, -0.1154998391866684, -0.04634976387023926, -0.0937364473938942, -0.12845003604888916, 0.004705918487161398, -0.10654489696025848, 0.053984176367521286, 0.11581702530384064, -0.006926500704139471, 0.0180500578135252, 0.13718439638614655, -0.052204929292201996, 0.02453748881816864, 0.051062993705272675, 0.039864543825387955, 0.01822739839553833, -0.04251614958047867, -0.07756438851356506, 0.01350411120802164, 0.027355827391147614, 0.06971963495016098, -0.03755823150277138, 0.016767660155892372, 0.00950192753225565, 0.0026883773971349, -0.08011020720005035, 0.0448649562895298, -0.005417604465037584, 0.05493176728487015, 0.018324391916394234, 0.057767875492572784, 0.03478552773594856, -0.037462569773197174, 0.30445146560668945, -0.07088396698236465, -0.09115266799926758, -0.12072406709194183, 0.14929118752479553, 0.015885014086961746, -0.018507029861211777, 0.05140043422579765, -0.13267286121845245, -0.028784476220607758, 0.1622420847415924, 0.12743714451789856, -0.04382419213652611, -0.002007091883569956, -0.006376320496201515, -0.02062755636870861, -0.059499748051166534, 0.09825079143047333, 0.07690132409334183, 0.020409565418958664, -0.06974654644727707, -0.02129063382744789, -0.002595101483166218, -0.03966383635997772, -0.08433530479669571, 0.06827269494533539, -0.019120890647172928, 0.02185763604938984, -0.03496851772069931, 0.0747915655374527, 0.06034533679485321, -0.15644541382789612, 0.08013727515935898, -0.23022620379924774, -0.17981421947479248, 0.013603354804217815, 0.1028575450181961, -0.038968104869127274, 0.05976169556379318, -0.010032863356173038, -0.024491293355822563, 0.08418870717287064, -0.01793270744383335, -0.036759085953235626, -0.10004577040672302, 0.06878665089607239, -0.10875648260116577, 0.2553636133670807, -0.00702968705445528, 0.05239615589380264, 0.09194502234458923, 0.038014598190784454, -0.1398729830980301, 0.006436225026845932, 0.07273367792367935, -0.081511490046978, 0.004296628292649984, 0.17790578305721283, -0.05056178197264671, 0.08486093580722809, 0.07582534849643707, -0.1559390425682068, -0.0024292930029332638, 0.014685401692986488, -0.011919010430574417, -0.07301420718431473, -0.023709233850240707, -0.06287091970443726, 0.1439305543899536, 0.19248367846012115, -0.03846680372953415, 0.024096127599477768, -0.05262090265750885, 0.02033623494207859, 0.05874505266547203, 0.07713328301906586, -0.03135967627167702, -0.21562308073043823, 0.03159048408269882, 0.07080623507499695, 0.02167077176272869, -0.1977357417345047, -0.11460106074810028, 0.07353134453296661, -0.07178939878940582, -0.09324182569980621, 0.09838958829641342, 0.0358349084854126, 0.035473018884658813, -0.01541671808809042, -0.09508915990591049, -0.034612540155649185, 0.15085169672966003, -0.1656855344772339, -0.04727090150117874 ]
null
null
stable-baselines3
# **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.19 +/- 0.12", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
Facepalm0/a2c-PandaReachDense-v3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-06T12:09:02+00:00
[]
[]
TAGS #stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# A2C Agent playing PandaReachDense-v3 This is a trained model of a A2C agent playing PandaReachDense-v3 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 41, 45, 17 ]
[ "passage: TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.028780510649085045, 0.06549051403999329, -0.004174588713794947, 0.028733979910612106, 0.12748076021671295, -0.010029550641775131, 0.16130082309246063, 0.07903143763542175, 0.052706290036439896, -0.055043965578079224, 0.09157051891088486, -0.079488605260849, 0.04699381813406944, 0.3393711447715759, 0.029525093734264374, -0.186785027384758, 0.08573613315820694, 0.015584449283778667, 0.018966808915138245, 0.09867662936449051, 0.03466832637786865, -0.08736564218997955, 0.04568251967430115, 0.03800429776310921, -0.07686931639909744, -0.04319252818822861, -0.03975098207592964, -0.06744661927223206, 0.10361767560243607, -0.044310007244348526, 0.1670169234275818, -0.03489987552165985, 0.10219604521989822, -0.12577489018440247, 0.031373992562294006, -0.04813149571418762, -0.05141052231192589, 0.002818689215928316, -0.011371237225830555, 0.05937984213232994, 0.04167760908603668, 0.05197896435856819, 0.07366002351045609, 0.04871916025876999, -0.08704962581396103, -0.11396265029907227, -0.006845315918326378, 0.07931416481733322, 0.17974808812141418, 0.04054044932126999, -0.02474738284945488, 0.09696658700704575, -0.11350683122873306, 0.01657135598361492, -0.019304286688566208, -0.4018571078777313, 0.006876560393720865, 0.15550047159194946, 0.04677277058362961, 0.010903568007051945, -0.0061170910485088825, -0.004642391111701727, 0.02805398777127266, -0.037410516291856766, 0.08670840412378311, -0.09000635892152786, 0.06153826415538788, -0.019131680950522423, -0.04113767296075821, -0.01751464419066906, 0.2419518232345581, 0.01633240468800068, -0.08024721592664719, -0.07922019064426422, 0.009968155063688755, -0.028026137501001358, -0.0877801775932312, -0.06134319305419922, 0.07644549012184143, 0.057131536304950714, 0.10696670413017273, -0.030399860814213753, -0.058683689683675766, -0.04541248828172684, 0.08352918922901154, -0.03953780233860016, -0.017566127702593803, -0.01754307933151722, -0.06739802658557892, -0.003707833355292678, 0.015629740431904793, -0.06615205854177475, -0.015486059710383415, -0.044966671615839005, -0.1556774228811264, -0.009128551930189133, -0.0599384643137455, 0.03310214728116989, 0.10073909163475037, 0.13065455853939056, 0.06838785856962204, 0.09685135632753372, -0.08001106232404709, 0.0389438234269619, 0.06625691801309586, 0.09461154788732529, -0.044509198516607285, -0.011874453164637089, 0.14630302786827087, 0.10327376425266266, 0.09657767415046692, -0.09182082861661911, -0.12403369694948196, 0.04173071309924126, 0.10965418070554733, 0.03382069617509842, 0.0046537998132407665, 0.04452834278345108, -0.14144757390022278, 0.023916395381093025, 0.0006972529226914048, -0.045244041830301285, -0.03088594414293766, 0.06111180782318115, -0.04433412477374077, 0.02348744124174118, -0.012718633748590946, 0.10830001533031464, 0.10152670741081238, -0.023899899795651436, -0.052799396216869354, -0.04201658070087433, -0.0440504252910614, -0.05507666990160942, 0.04012975096702576, 0.01289378758519888, 0.04624854028224945, -0.1184653639793396, -0.13997629284858704, 0.051258668303489685, 0.019622454419732094, -0.026321161538362503, -0.13472233712673187, -0.09338399767875671, -0.03747362270951271, -0.011210841126739979, 0.0030350966844707727, -0.19588395953178406, -0.02434816211462021, -0.03428230062127113, 0.13725687563419342, 0.10810749977827072, -0.06433141976594925, -0.06369391083717346, -0.12834231555461884, 0.06795675307512283, -0.23485252261161804, 0.038750845938920975, -0.09932064265012741, 0.12411006540060043, 0.007471752353012562, 0.023616313934326172, 0.1410844624042511, 0.02330038882791996, 0.004575210623443127, 0.1702503114938736, -0.18833371996879578, -0.046672217547893524, 0.17527204751968384, -0.0857074186205864, -0.17703735828399658, 0.05021136254072189, -0.02124672941863537, -0.013779462315142155, 0.06350992619991302, 0.09937554597854614, -0.01727774553000927, -0.17061583697795868, 0.02558896690607071, -0.0014508399181067944, -0.05959303304553032, 0.021542999893426895, 0.12072649598121643, 0.08040176331996918, -0.027203790843486786, -0.0016989230643957853, -0.15452547371387482, 0.09701786935329437, -0.023543400689959526, -0.08447092026472092, 0.022736359387636185, -0.10411997884511948, 0.10016260296106339, -0.015677137300372124, 0.10591494292020798, -0.02265925332903862, -0.018805475905537605, -0.032891299575567245, 0.10408006608486176, -0.0068649593740701675, 0.039593957364559174, -0.17728297412395477, 0.1326225996017456, 0.02176543138921261, 0.046730607748031616, -0.10109715908765793, -0.10202061384916306, 0.06674831360578537, 0.15375585854053497, 0.05606463924050331, 0.03833417221903801, 0.07328703999519348, 0.03443831577897072, -0.0030986627098172903, -0.1205538883805275, -0.12789975106716156, 0.019881807267665863, 0.06068658083677292, -0.08039596676826477, -0.05172275751829147, -0.10460081696510315, 0.21138279139995575, -0.10705634206533432, 0.012047823518514633, -0.09333895146846771, 0.010153836570680141, 0.08388294279575348, 0.01348812971264124, 0.08132237941026688, 0.02585482969880104, -0.04426883906126022, 0.009419471956789494, 0.0882885605096817, 0.044275086373090744, -0.1379590630531311, 0.03784618154168129, 0.024114131927490234, 0.23272188007831573, 0.15174852311611176, -0.016499420627951622, -0.055556558072566986, 0.006534850224852562, 0.03740030899643898, 0.03533044084906578, 0.034956689924001694, 0.06951800733804703, 0.1090264692902565, 0.07713755965232849, 0.1276414394378662, -0.05066131055355072, 0.17763042449951172, -0.006530070677399635, -0.14888496696949005, 0.02993084490299225, -0.07033783197402954, 0.0941668227314949, -0.06030277907848358, 0.048379335552453995, 0.05410725995898247, 0.0304675605148077, 0.08504439890384674, -0.00693494314327836, 0.022639812901616096, -0.04341154545545578, 0.04943868890404701, 0.06790532171726227, 0.06545940041542053, 0.06452376395463943, -0.007423467002809048, 0.015456308610737324, -0.05288444459438324, -0.0518295019865036, -0.10519610345363617, -0.12370408326387405, 0.037892695516347885, -0.015912096947431564, -0.04463989660143852, -0.01629551686346531, -0.07266248762607574, 0.050321705639362335, 0.05250744894146919, -0.07199236750602722, 0.028561361134052277, -0.007090074475854635, -0.09633425623178482, 0.1130511462688446, -0.14269201457500458, -0.31355980038642883, -0.02000165916979313, -0.13154496252536774, -0.02077566273510456, 0.15819574892520905, -0.057956792414188385, -0.1681092083454132, 0.03305667266249657, -0.02401961199939251, -0.09238096326589584, 0.04225420579314232, -0.018061356619000435, 0.10221174359321594, 0.0857708528637886, 0.043082691729068756, 0.00862243864685297, -0.01184127852320671, -0.03903079405426979, -0.08788500726222992, 0.07608162611722946, -0.06721128523349762, 0.1173204705119133, 0.13519366085529327, 0.04123268276453018, -0.015909500420093536, -0.02043113484978676, 0.06215733662247658, 0.012027861550450325, -0.036599598824977875, 0.13453175127506256, -0.03608042374253273, -0.00864011887460947, 0.04470202699303627, 0.008029532618820667, -0.10533943772315979, 0.09432658553123474, -0.05022074654698372, -0.06974482536315918, -0.017500806599855423, -0.08790571242570877, -0.09950723499059677, 0.18995612859725952, 0.0490412712097168, 0.007856572046875954, -0.05151839926838875, 0.036120012402534485, 0.07772433012723923, 0.044773608446121216, 0.007161281071603298, 0.03985898196697235, -0.005716364365071058, -0.013170693069696426, 0.05278664082288742, -0.023887991905212402, 0.009960537776350975, -0.007844919338822365, 0.13077811896800995, -0.015673788264393806, 0.10317149013280869, 0.0030158995650708675, 0.008619097992777824, 0.08018261194229126, 0.12394148856401443, 0.08064290136098862, 0.019240466877818108, -0.11554506421089172, -0.04732639715075493, -0.030522609129548073, -0.18181301653385162, 0.11669926345348358, 0.10738886147737503, 0.05268440023064613, -0.05564067140221596, 0.22832486033439636, 0.0012100599706172943, 0.10802210867404938, 0.03496129810810089, -0.17664514482021332, 0.024751557037234306, 0.03574612736701965, 0.050895314663648605, 0.007034227252006531, 0.062039270997047424, -0.09453237801790237, -0.1839483082294464, 0.03968557342886925, 0.018860090523958206, 0.05523261800408363, -0.018427258357405663, 0.018512532114982605, -0.12044285237789154, -0.05746040865778923, 0.02161633037030697, 0.02076297253370285, -0.3029120862483978, 0.06816349923610687, -0.04133946821093559, 0.07392577081918716, 0.009542034938931465, 0.01343793235719204, 0.06604447960853577, 0.01652485318481922, 0.1375029981136322, -0.017935138195753098, 0.1707022786140442, -0.1572514772415161, -0.16084668040275574, 0.025680551305413246, -0.059293005615472794, 0.07245437800884247, 0.082563117146492, 0.017692390829324722, 0.0069250138476490974, -0.00047057756455615163, 0.20794180035591125, -0.13032017648220062, -0.0346711240708828, -0.035274047404527664, 0.019543148577213287, 0.022580156102776527, -0.03844551369547844, -0.021310672163963318, 0.06112392246723175, 0.1489492505788803, 0.07546767592430115, -0.02780069410800934, -0.04611911624670029, -0.03938353434205055, -0.09507237374782562, -0.044778671115636826, 0.10472412407398224, -0.07841785997152328, 0.10144548118114471, -0.07513871043920517, -0.04432075098156929, 0.11707907915115356, -0.09250949323177338, -0.053160861134529114, -0.07627046853303909, 0.05462219938635826, 0.008296831510961056, 0.13374868035316467, 0.03642493113875389, 0.02114485390484333, 0.10089845955371857, -0.05001259222626686, 0.08662480860948563, 0.03777577355504036, -0.03541218861937523, 0.03517242521047592, -0.05375073477625847, -0.04829130321741104, -0.010828596539795399, 0.03814345970749855, 0.24244728684425354, 0.302570104598999, -0.012830551713705063, 0.1897524893283844, 0.09193363785743713, 0.029696941375732422, -0.16292639076709747, -0.1200476586818695, 0.05548451840877533, 0.059938978403806686, 0.06154406815767288, -0.2788083851337433, 0.057189684361219406, -0.053967077285051346, -0.08999616652727127, -0.06829255819320679, -0.08560561388731003, -0.07613074034452438, 0.088682159781456, 0.08794322609901428, 0.09100460261106491, -0.12551987171173096, 0.015924450010061264, -0.012671655975282192, -0.1664767563343048, 0.12128932029008865, -0.039350032806396484, 0.07007917016744614, -0.025050386786460876, -0.06438229978084564, 0.025165842846035957, -0.02775278501212597, 0.04424511641263962, -0.1206880658864975, 0.0005293674184940755, -0.04527926817536354, -0.03749620169401169, 0.1088484600186348, 0.020565982908010483, -0.0028168195858597755, -0.09558401256799698, -0.011945599690079689, -0.3103867173194885, 0.01988539844751358, 0.02114551141858101, -0.039148375391960144, -0.0012507046340033412, -0.08678091317415237, -0.042053963989019394, 0.10508828610181808, 0.03930897265672684, 0.08641290664672852, 0.15335260331630707, -0.005581455305218697, -0.021082017570734024, 0.17506572604179382, 0.05701295658946037, -0.014002309180796146, 0.10069113969802856, -0.06732672452926636, -0.06576105207204819, 0.04418903961777687, -0.1016126498579979, -0.005435575265437365, 0.005642053205519915, -0.007821558974683285, 0.07107745110988617, 0.09962856024503708, -0.03340476378798485, 0.18194207549095154, 0.09798844903707504, -0.15048468112945557, 0.0030947427731007338, 0.052597809582948685, -0.032650984823703766, 0.04424609988927841, -0.04443032294511795, 0.05541829764842987, -0.07521786540746689, -0.03790169581770897, 0.02031708136200905, -0.01010141521692276, -0.07618512213230133, 0.00011962707503698766, 0.03176301345229149, 0.029956085607409477, -0.08340912312269211, 0.14036758244037628, 0.016359949484467506, 0.0652431845664978, 0.11902019381523132, 0.019259776920080185, -0.10460162162780762, -0.014167122542858124, -0.02339506521821022, 0.2028627097606659, -0.007937151938676834, -0.018536100164055824, -0.11391238868236542, -0.12847240269184113, 0.018047582358121872, -0.10348039865493774, 0.10282431542873383, -0.052032727748155594, -0.06570395082235336, -0.03704213351011276, -0.05561172217130661, 0.031932998448610306, 0.017090078443288803, -0.015642894431948662, -0.16111870110034943, -0.04170334339141846, 0.06846143305301666, 0.039452772587537766, -0.06145704537630081, -0.06289087235927582, -0.16302458941936493, 0.03506235405802727, -0.1278870701789856, 0.0010145133128389716, -0.047339316457509995, -0.05002537742257118, -0.05195476487278938, 0.01521157007664442, -0.0177876316010952, 0.008817745372653008, -0.05148332938551903, 0.03292781487107277, 0.011250603944063187, 0.0014076961670070887, -0.06952075660228729, -0.04419080913066864, 0.032172493636608124, -0.04430563375353813, 0.0661356970667839, 0.04131564497947693, -0.005653871223330498, 0.021474739536643028, -0.07005896419286728, -0.10248169302940369, 0.10313672572374344, -0.014939527027308941, 0.050572704523801804, -0.0603681318461895, -0.012018447741866112, 0.007195405196398497, -0.07569561898708344, -0.007751014549285173, 0.24328774213790894, -0.010914106853306293, -0.05394120141863823, -0.07426224648952484, -0.036970075219869614, -0.09100507944822311, -0.0004900419735349715, 0.1948854625225067, 0.05477539822459221, 0.14600017666816711, -0.0532439760863781, 0.08785777539014816, -0.06481330841779709, -0.01534446980804205, -0.08259234577417374, 0.030320849269628525, -0.157977893948555, -0.08130980283021927, -0.028043894097208977, -0.03728124126791954, 0.13441862165927887, -0.19242097437381744, 0.0032852457370609045, -0.010904400609433651, -0.04910553991794586, 0.11381126195192337, 0.0557032972574234, 0.24474471807479858, 0.1050342544913292, -0.035265225917100906, 0.10503548383712769, 0.12215624749660492, 0.0929517149925232, -0.03347417712211609, 0.058777112513780594, -0.05078745633363724, -0.0868106484413147, 0.09736774861812592, 0.012061800807714462, 0.036776214838027954, -0.08157306164503098, 0.022900743409991264, -0.10047483444213867, 0.002025678288191557, 0.02005080319941044, 0.2473200410604477, 0.1967000812292099, -0.09632564336061478, -0.012216159142553806, -0.05708231031894684, -0.032561756670475006, -0.04091155156493187, -0.002459051087498665, -0.07821618020534515, -0.21873407065868378, 0.051539067178964615, -0.0930585265159607, -0.07632365822792053, -0.06189138814806938, -0.04064059257507324, -0.02870149537920952, 0.046939339488744736, 0.03212931379675865, 0.04136762022972107, 0.05070297420024872, -0.0371626541018486, -0.09345480799674988, 0.06879863888025284, -0.11172787100076675, -0.042014576494693756, -0.03408866748213768, 0.014045859687030315, 0.032319605350494385, -0.07429610192775726, 0.07487598061561584, -0.012149554677307606, -0.07710553705692291, 0.036456044763326645, -0.03482281416654587, 0.02153356932103634, 0.07482071220874786, 0.04184282198548317, -0.09644174575805664, 0.015602846629917622, 0.18867559731006622, 0.020273970440030098, 0.008802177384495735, -0.14742465317249298, 0.2000039666891098, -0.02619965374469757, 0.07266447693109512, -0.03337041288614273, -0.015141828916966915, -0.10115411877632141, 0.19129611551761627, 0.11998134851455688, -0.24376079440116882, 0.024953339248895645, -0.12912821769714355, 0.022151969373226166, -0.13376696407794952, 0.20840151607990265, 0.05465596541762352, 0.10847201198339462, -0.06020665541291237, -0.02479162998497486, -0.1493310034275055, -0.09408020973205566, -0.08478302508592606, -0.0414455346763134, 0.10249399393796921, 0.0031611735466867685, -0.05072701349854469, -0.00887248944491148, -0.1566619724035263, 0.10201162099838257, -0.048264030367136, -0.11855816096067429, -0.0679796114563942, -0.059141192585229874, -0.06102965027093887, 0.11088541150093079, 0.11637356877326965, -0.01684124954044819, 0.024554423987865448, -0.07280154526233673, -0.012559473514556885, 0.011003518477082253, 0.005383014678955078, 0.0626269057393074, -0.04783647879958153, 0.1594477891921997, -0.021524829789996147, 0.0008918871753849089, 0.04285505786538124, 0.05263057351112366, -0.07584847509860992, 0.06380704790353775, 0.02512199431657791, 0.028178859502077103, -0.006920731160789728, 0.059795111417770386, -0.0196672473102808, 0.08964395523071289, 0.08038042485713959, -0.007235884666442871, 0.09868589043617249, -0.03191833570599556, 0.006547331809997559, -0.057698819786310196, 0.06932510435581207, -0.12982366979122162, 0.05436630919575691, 0.043436627835035324, -0.10945180803537369, 0.03841061517596245, 0.02560393325984478, 0.11603125184774399, 0.058632634580135345, -0.040632184594869614, -0.10494323819875717, -0.13799439370632172, 0.023235952481627464, 0.058803655207157135, -0.06312531977891922, -0.13800419867038727, -0.052970461547374725, -0.2062724232673645, 0.04198472201824188, -0.07393307238817215, 0.06842854619026184, 0.045238204300403595, 0.01849091611802578, -0.05578908324241638, -0.06200101599097252, 0.01771395653486252, 0.13669656217098236, -0.06059794872999191, -0.13932769000530243 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
msalnikov/Mintaka-Mistral-7B-Instruct-v0.2
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:09:21+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 60, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.04571164771914482, 0.1637648642063141, -0.005522117950022221, 0.017756497487425804, 0.09821303188800812, 0.01318030059337616, 0.06541220843791962, 0.1127115860581398, -0.017605241388082504, 0.1127321794629097, 0.030432263389229774, 0.09820804744958878, 0.1134178638458252, 0.14702944457530975, -0.003594378475099802, -0.22472713887691498, 0.052083637565374374, -0.12124937027692795, -0.03241228312253952, 0.1181139275431633, 0.14941681921482086, -0.09871039539575577, 0.07234785705804825, -0.030714161694049835, -0.01334790326654911, -0.03167412802577019, -0.05947697162628174, -0.045681875199079514, 0.046136777848005295, 0.0657167062163353, 0.06853367388248444, 0.007354621775448322, 0.08972878009080887, -0.2669793367385864, 0.019881360232830048, 0.06918594241142273, -0.0025153355672955513, 0.07059336453676224, 0.06344282627105713, -0.07033728063106537, 0.10271385312080383, -0.051166124641895294, 0.1467856466770172, 0.08377711474895477, -0.09116126596927643, -0.18892322480678558, -0.08764564990997314, 0.0990586131811142, 0.17651304602622986, 0.04750865325331688, -0.024397386237978935, 0.09895956516265869, -0.0878119245171547, 0.015860557556152344, 0.052259236574172974, -0.07261253148317337, -0.05407591536641121, 0.061004482209682465, 0.07816638052463531, 0.06616047024726868, -0.12551534175872803, -0.02998468652367592, 0.005221198312938213, 0.011705057695508003, 0.07518111169338226, 0.01836656779050827, 0.15222862362861633, 0.03479425609111786, -0.12653809785842896, -0.04834689199924469, 0.0983143299818039, 0.03359128534793854, -0.043975554406642914, -0.247073233127594, -0.031072303652763367, -0.026882093399763107, -0.030029185116291046, -0.038772210478782654, 0.04153512790799141, -0.006745535880327225, 0.08434242010116577, -0.0040448750369250774, -0.07344388216733932, -0.03874153643846512, 0.06087949126958847, 0.0669754296541214, 0.029331250116229057, -0.013996441848576069, 0.010876164771616459, 0.11490162461996078, 0.10806918889284134, -0.12199585139751434, -0.05589085817337036, -0.06492951512336731, -0.08786392956972122, -0.04284887760877609, 0.033410828560590744, 0.03509693965315819, 0.05435176193714142, 0.2536843419075012, 0.009815474040806293, 0.06126174330711365, 0.03745805472135544, 0.007310505956411362, 0.059651583433151245, 0.10812553018331528, -0.05987109988927841, -0.10409316420555115, -0.02881651371717453, 0.08857584744691849, 0.006609630770981312, -0.03354408219456673, -0.05052083358168602, 0.05901389569044113, 0.021856583654880524, 0.11749778687953949, 0.08884359151124954, 0.00984770804643631, -0.07126569002866745, -0.06146538630127907, 0.19450126588344574, -0.16384615004062653, 0.04264351725578308, 0.03702449053525925, -0.039683789014816284, -0.0003956064465455711, 0.011445282027125359, 0.01843930408358574, -0.023893611505627632, 0.09238249063491821, -0.05498874559998512, -0.04001082479953766, -0.1106586754322052, -0.0339570976793766, 0.034455835819244385, 0.010122774168848991, -0.03529255837202072, -0.03252722695469856, -0.08346389979124069, -0.07506290078163147, 0.09339368343353271, -0.07379438728094101, -0.04854428768157959, -0.018830472603440285, -0.0752616599202156, 0.02326788194477558, 0.02032634988427162, 0.07736726850271225, -0.023358777165412903, 0.04288764297962189, -0.054010841995477676, 0.05824148654937744, 0.11001134663820267, 0.035365406423807144, -0.05824809893965721, 0.06025301292538643, -0.2382364422082901, 0.09637492895126343, -0.07412451505661011, 0.05830197036266327, -0.15449334681034088, -0.02627694234251976, 0.04870045557618141, 0.0076532382518053055, -0.009597796015441418, 0.13436771929264069, -0.21578943729400635, -0.026375943794846535, 0.16865074634552002, -0.10160042345523834, -0.06946627050638199, 0.05867103114724159, -0.049256108701229095, 0.10817171633243561, 0.03891118988394737, -0.025492025539278984, 0.06244310364127159, -0.12527504563331604, 0.007147894706577063, -0.04992884770035744, -0.016554534435272217, 0.1592475026845932, 0.07294736802577972, -0.07235062122344971, 0.07110220938920975, 0.025814544409513474, -0.027441376820206642, -0.04532165080308914, -0.016039686277508736, -0.10585595667362213, 0.014911207370460033, -0.061168964952230453, 0.01876060478389263, -0.020111115649342537, -0.08977947384119034, -0.028080428019165993, -0.1748371720314026, -0.026230180636048317, 0.085477814078331, -0.007464459165930748, -0.018854627385735512, -0.11770102381706238, 0.008567224256694317, 0.044854406267404556, 0.006109896115958691, -0.13499478995800018, -0.04764661565423012, 0.027907660230994225, -0.16220368444919586, 0.033779170364141464, -0.05184612050652504, 0.05056280270218849, 0.026674345135688782, -0.029802238568663597, -0.025906935334205627, 0.022987615317106247, 0.006545235402882099, -0.011514187790453434, -0.24465326964855194, -0.026841215789318085, -0.026506783440709114, 0.166712686419487, -0.20777921378612518, 0.03577128052711487, 0.08057375997304916, 0.15318496525287628, 0.011457439512014389, -0.04087435454130173, 0.005527274217456579, -0.06868630647659302, -0.025992877781391144, -0.05823420733213425, -0.002480053110048175, -0.03337050974369049, -0.04843711107969284, 0.04469521716237068, -0.1662919819355011, -0.03491327911615372, 0.09593124687671661, 0.06427760422229767, -0.13986408710479736, -0.023568401113152504, -0.03526119887828827, -0.049809779971838, -0.047768235206604004, -0.06002878025174141, 0.11181395500898361, 0.058611296117305756, 0.04419868439435959, -0.059296321123838425, -0.07637067884206772, -0.0028071242850273848, -0.014342374168336391, -0.01986078731715679, 0.097631074488163, 0.06816094368696213, -0.1381729394197464, 0.09227006882429123, 0.09810956567525864, 0.07738673686981201, 0.09273158758878708, -0.02444581687450409, -0.08119411021471024, -0.0471174530684948, 0.03257923200726509, 0.018235107883810997, 0.1276484578847885, -0.027872784063220024, 0.04268912971019745, 0.0421174094080925, -0.018595336005091667, 0.013991083949804306, -0.08597505837678909, 0.033884208649396896, 0.02703946642577648, -0.0159194003790617, 0.04745442420244217, -0.037611253559589386, 0.024539871141314507, 0.08754327148199081, 0.04615016281604767, 0.033831849694252014, 0.015717241913080215, -0.05243339762091637, -0.10873834043741226, 0.1642032116651535, -0.12759798765182495, -0.22238075733184814, -0.13922695815563202, 0.003997850697487593, 0.036267586052417755, -0.01646288111805916, 0.002834152430295944, -0.060960907489061356, -0.12132686376571655, -0.08726011961698532, 0.015815909951925278, 0.050406474620103836, -0.0912260189652443, -0.060087788850069046, 0.056193675845861435, 0.037736181169748306, -0.14546552300453186, 0.01776101253926754, 0.04850281774997711, -0.09700650721788406, -0.004754792433232069, 0.07885372638702393, 0.06784981489181519, 0.17673011124134064, 0.018112216144800186, -0.021776698529720306, 0.031116241589188576, 0.20988549292087555, -0.13491620123386383, 0.11005933582782745, 0.13349974155426025, -0.09236859530210495, 0.08153878152370453, 0.20252206921577454, 0.04006611555814743, -0.09986240416765213, 0.032548144459724426, 0.02142537757754326, -0.027797512710094452, -0.2441972941160202, -0.07161470502614975, -0.004515932407230139, -0.06051458790898323, 0.07499068230390549, 0.09190185368061066, 0.08272628486156464, 0.011750337667763233, -0.09449771046638489, -0.08492138236761093, 0.06362129002809525, 0.10420511662960052, 0.02181125245988369, -0.009744768962264061, 0.09036174416542053, -0.03286943957209587, 0.01948373205959797, 0.08554471284151077, 0.0038120283279567957, 0.18320275843143463, 0.051725953817367554, 0.19073979556560516, 0.07944851368665695, 0.06951095163822174, 0.012023290619254112, 0.011227634735405445, 0.018135491758584976, 0.03228217363357544, -0.003646562807261944, -0.08350840210914612, -0.02080707624554634, 0.1153142973780632, 0.0672341138124466, 0.012952476739883423, 0.01729460060596466, -0.04021955281496048, 0.08128432929515839, 0.18377035856246948, -0.0093126455321908, -0.177269846200943, -0.06024068966507912, 0.07718996703624725, -0.09723462164402008, -0.09738315641880035, -0.01454379502683878, 0.030975129455327988, -0.1702532023191452, 0.025819219648838043, -0.023134231567382812, 0.11114585399627686, -0.13745717704296112, -0.020040949806571007, 0.07143081724643707, 0.07336213439702988, 0.004178736824542284, 0.055973317474126816, -0.16574905812740326, 0.1074945405125618, 0.007851972244679928, 0.06788748502731323, -0.0949488952755928, 0.10003086179494858, -0.002759356750175357, -0.016956903040409088, 0.13766175508499146, 0.003847390878945589, -0.0742180123925209, -0.07706846296787262, -0.08544620126485825, -0.010016623884439468, 0.12665624916553497, -0.13990990817546844, 0.08602021634578705, -0.03789570555090904, -0.04160536453127861, -0.0009961887262761593, -0.09994571655988693, -0.11771732568740845, -0.18694964051246643, 0.060274846851825714, -0.13818500936031342, 0.030693015083670616, -0.1080726683139801, -0.033236145973205566, -0.03044886700809002, 0.18898600339889526, -0.23496590554714203, -0.07289838045835495, -0.14654842019081116, -0.10314314812421799, 0.14515270292758942, -0.05135014280676842, 0.0824703797698021, -0.007518251892179251, 0.16955603659152985, 0.01909777894616127, -0.024870775640010834, 0.09702518582344055, -0.09090493619441986, -0.19369281828403473, -0.07736486196517944, 0.1553725302219391, 0.13563397526741028, 0.03274888917803764, -0.0031351360958069563, 0.03731042891740799, -0.016484085470438004, -0.119691863656044, 0.016338739544153214, 0.17828133702278137, 0.06005066633224487, 0.02449444867670536, -0.025351086631417274, -0.12034450471401215, -0.07065033912658691, -0.028268499299883842, 0.030481377616524696, 0.1794593334197998, -0.06955225765705109, 0.18364831805229187, 0.147920161485672, -0.05845186114311218, -0.20284810662269592, 0.01105605997145176, 0.03317207098007202, -0.00011460785754024982, 0.025185899809002876, -0.19945523142814636, 0.08448769152164459, 0.004838644526898861, -0.0498092919588089, 0.1281348466873169, -0.17351724207401276, -0.14425379037857056, 0.07726620137691498, 0.03829115256667137, -0.1926836371421814, -0.12892304360866547, -0.09138946235179901, -0.04540696740150452, -0.18867050111293793, 0.09461917728185654, 0.031194355338811874, 0.009373899549245834, 0.030387504026293755, 0.030604345723986626, 0.01938873715698719, -0.04181704297661781, 0.1860174536705017, -0.023930367082357407, 0.028327496722340584, -0.08596936613321304, -0.07190530747175217, 0.0391114242374897, -0.05227291211485863, 0.07252339273691177, -0.023452037945389748, 0.00719826715067029, -0.09769386798143387, -0.04156304895877838, -0.03843177855014801, 0.01581472158432007, -0.09648153930902481, -0.08523351699113846, -0.04445706307888031, 0.09780744463205338, 0.09553340077400208, -0.03473082184791565, -0.024805041030049324, -0.07508285343647003, 0.04805302992463112, 0.19605006277561188, 0.17889533936977386, 0.03904116898775101, -0.07846304774284363, -0.0033101453445851803, -0.010484009049832821, 0.04490501061081886, -0.20383046567440033, 0.06269704550504684, 0.05393069609999657, 0.019165942445397377, 0.11697915196418762, -0.01937638409435749, -0.15321338176727295, -0.07137971371412277, 0.062210626900196075, -0.05747547000646591, -0.19925202429294586, 0.008424095809459686, 0.062047190964221954, -0.16446428000926971, -0.045800499618053436, 0.046785544604063034, -0.004990153945982456, -0.03839265555143356, 0.022938871756196022, 0.09231305122375488, 0.0029900665394961834, 0.07426668703556061, 0.052022483199834824, 0.0835016593337059, -0.1060708537697792, 0.07922257483005524, 0.08730976283550262, -0.08381073921918869, 0.022620677947998047, 0.10530175268650055, -0.061487648636102676, -0.03560204058885574, 0.017662353813648224, 0.08361397683620453, 0.018624287098646164, -0.03893670439720154, 0.014383325353264809, -0.1065717563033104, 0.059272702783346176, 0.08645539730787277, 0.03302672877907753, 0.01618802361190319, 0.034192394465208054, 0.04655340686440468, -0.06840039044618607, 0.122025266289711, 0.032824426889419556, 0.017204686999320984, -0.035474274307489395, -0.04102595895528793, 0.01851540431380272, -0.03368416428565979, -0.005532157141715288, -0.03097093477845192, -0.07835554331541061, -0.015077406540513039, -0.16520504653453827, -0.009829589165747166, -0.05936548113822937, 0.012285472825169563, 0.031714752316474915, -0.034721489995718, 0.008415459655225277, 0.009580436162650585, -0.07713334262371063, -0.06541574746370316, -0.01965213567018509, 0.0961783304810524, -0.1606777459383011, 0.022340767085552216, 0.08350874483585358, -0.12098895758390427, 0.09293801337480545, 0.01664864458143711, -0.00869405921548605, 0.02654755860567093, -0.1516905426979065, 0.03389517217874527, -0.03324367105960846, 0.009356614202260971, 0.04251125827431679, -0.2180858999490738, -0.0012979574967175722, -0.034122150391340256, -0.06511902064085007, -0.008563618175685406, -0.035606082528829575, -0.1133907288312912, 0.10431582480669022, 0.007158213295042515, -0.08918852359056473, -0.031932637095451355, 0.02896781638264656, 0.08660420775413513, -0.02103978954255581, 0.1533614844083786, -0.008595003746449947, 0.07452014833688736, -0.16158120334148407, -0.019116591662168503, -0.0044966633431613445, 0.021838920190930367, -0.020337330177426338, -0.011089952662587166, 0.043057333678007126, -0.02310733124613762, 0.1769370436668396, -0.034001484513282776, 0.02080564945936203, 0.06879838556051254, 0.02382824197411537, -0.03270673379302025, 0.10420172661542892, 0.04176081717014313, 0.020029285922646523, 0.016749408096075058, 0.0014026050921529531, -0.04661702737212181, -0.03435906395316124, -0.1965997964143753, 0.07266207784414291, 0.15759599208831787, 0.09697116911411285, -0.019108884036540985, 0.07821404188871384, -0.0993313267827034, -0.10917975008487701, 0.12915705144405365, -0.04755320027470589, -0.004375945311039686, -0.07154709100723267, 0.13273866474628448, 0.14712604880332947, -0.18722544610500336, 0.07334931939840317, -0.07133730500936508, -0.04749078303575516, -0.10922681540250778, -0.194550022482872, -0.05630992352962494, -0.049111537635326385, -0.015855323523283005, -0.04727233946323395, 0.07431400567293167, 0.05443255603313446, 0.007043207995593548, -0.0018872307846322656, 0.06250270456075668, -0.02979675866663456, -0.004455813206732273, 0.033084239810705185, 0.06524696946144104, 0.012280851602554321, -0.028982065618038177, 0.017169395461678505, -0.009704679250717163, 0.04565926641225815, 0.06593092530965805, 0.0490880124270916, -0.02946917712688446, 0.01301988959312439, -0.040264759212732315, -0.10370729863643646, 0.044506072998046875, -0.02268853597342968, -0.081757090985775, 0.15341326594352722, 0.023376943543553352, 0.008703592233359814, -0.018961627036333084, 0.23797030746936798, -0.07337556779384613, -0.09915944188833237, -0.14910556375980377, 0.10603363811969757, -0.037726908922195435, 0.05897798761725426, 0.04798928648233414, -0.10144850611686707, 0.018896711990237236, 0.1251462697982788, 0.16306589543819427, -0.03724272549152374, 0.020064668729901314, 0.030806828290224075, 0.005520908627659082, -0.035788439214229584, 0.04845234379172325, 0.06755134463310242, 0.16263099014759064, -0.046816933900117874, 0.09447267651557922, 0.0011601726291701198, -0.09597980976104736, -0.03777771443128586, 0.10832508653402328, -0.014584118500351906, 0.018404638394713402, -0.059979453682899475, 0.11911186575889587, -0.06456011533737183, -0.2371375411748886, 0.062140509486198425, -0.06866546720266342, -0.13664314150810242, -0.023452885448932648, 0.08483598381280899, -0.011404541321098804, 0.028394777327775955, 0.07356005162000656, -0.07185159623622894, 0.20126941800117493, 0.03666449710726738, -0.05399559810757637, -0.054549336433410645, 0.0827551931142807, -0.09896446764469147, 0.27000707387924194, 0.015913790091872215, 0.048061735928058624, 0.1041264757514, -0.008932216092944145, -0.13759581744670868, 0.019727399572730064, 0.0954047441482544, -0.10358903557062149, 0.041838936507701874, 0.19829733669757843, -0.0014832824235782027, 0.1230277270078659, 0.07854447513818741, -0.07668869197368622, 0.0473078191280365, -0.08185897022485733, -0.06852826476097107, -0.0918748751282692, 0.10061057657003403, -0.07712632417678833, 0.14169210195541382, 0.13906599581241608, -0.05018797889351845, 0.011615060269832611, -0.031394075602293015, 0.04402702674269676, 0.0006254917825572193, 0.10420145094394684, 0.002576707163825631, -0.18477243185043335, 0.02472778968513012, 0.006634650751948357, 0.10846512019634247, -0.15925930440425873, -0.09642539173364639, 0.03936212509870529, 0.004935122560709715, -0.06595125794410706, 0.1294470727443695, 0.055943287909030914, 0.043614063411951065, -0.039108045399188995, -0.036952149122953415, -0.006302761845290661, 0.13504701852798462, -0.1053730770945549, 0.002390247769653797 ]
null
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.8.2
{"library_name": "peft", "base_model": "distilbert-base-uncased"}
null
myrtotsok/distilbert-base-uncased-EO-intent-classifier
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:distilbert-base-uncased", "region:us" ]
2024-02-06T12:13:37+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-distilbert-base-uncased #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.8.2
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.8.2" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-distilbert-base-uncased #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.8.2" ]
[ 37, 6, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4, 11 ]
[ "passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-distilbert-base-uncased #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2" ]
[ -0.10642906278371811, 0.20181091129779816, -0.003171114018186927, 0.033168528228998184, 0.09507043659687042, 0.018274547532200813, 0.0548069141805172, 0.12401581555604935, -0.02576358988881111, 0.11059535294771194, 0.06784230470657349, 0.09757009148597717, 0.10680077970027924, 0.21522867679595947, 0.004188282415270805, -0.20135881006717682, 0.029488584026694298, -0.09623736888170242, -0.005728109274059534, 0.12338162213563919, 0.1446412056684494, -0.0965484008193016, 0.07644246518611908, -0.018765466287732124, -0.007993046194314957, -0.033950090408325195, -0.07159552723169327, -0.02987894043326378, 0.04008631780743599, 0.04581599682569504, 0.05809962376952171, -0.0012055233819410205, 0.08583899587392807, -0.2676727771759033, 0.018071815371513367, 0.048218052834272385, -0.004933010786771774, 0.08598033338785172, 0.0956650972366333, -0.04368448629975319, 0.12286529690027237, -0.030787982046604156, 0.13996219635009766, 0.07888324558734894, -0.09355264902114868, -0.22597786784172058, -0.06760435551404953, 0.08847375959157944, 0.1777222603559494, 0.0742378681898117, -0.043942589312791824, 0.1265953928232193, -0.09065576642751694, 0.01613544300198555, 0.03740571439266205, -0.0929981991648674, -0.06976311653852463, 0.05096256360411644, 0.09874420613050461, 0.05627178028225899, -0.1344534009695053, -0.032968513667583466, 0.02470528893172741, 0.03357512503862381, 0.07723342627286911, 0.01369174662977457, 0.14301244914531708, 0.026139944791793823, -0.14684896171092987, -0.04074263200163841, 0.13414272665977478, 0.025651592761278152, -0.037009015679359436, -0.22616367042064667, 0.001814338262192905, -0.08017637580633163, -0.028750164434313774, -0.04971989989280701, 0.03853200376033783, 0.0029731655959039927, 0.10280165821313858, -0.026546383276581764, -0.08775345981121063, -0.009961317293345928, 0.09306603670120239, 0.05569102242588997, 0.02626071870326996, -0.019990984350442886, 0.008630656637251377, 0.12437444180250168, 0.054166510701179504, -0.13398972153663635, -0.05857621505856514, -0.07376765459775925, -0.04550224542617798, -0.04124477878212929, 0.04204322770237923, 0.044466860592365265, 0.05738210305571556, 0.2576381266117096, -0.03644370660185814, 0.05703691393136978, 0.0596281923353672, 0.018833592534065247, 0.0472378134727478, 0.09365973621606827, -0.05900712311267853, -0.1525956392288208, -0.013918329030275345, 0.10035113245248795, -0.004647709894925356, -0.02401573956012726, -0.0494675450026989, 0.050216738134622574, 0.03544064238667488, 0.10974179953336716, 0.09615515917539597, -0.0095453392714262, -0.07998356223106384, -0.053605325520038605, 0.20630496740341187, -0.1527041792869568, 0.04354526475071907, 0.024091683328151703, -0.01412655133754015, -0.04285199195146561, 0.011706131510436535, 0.016496645286679268, -0.02628028765320778, 0.09919089078903198, -0.06705133616924286, -0.03821440413594246, -0.11722107976675034, -0.026658009737730026, 0.031214091926813126, 0.009157467633485794, -0.030611516907811165, -0.03185737505555153, -0.06425211578607559, -0.09366980940103531, 0.10185589641332626, -0.0650702565908432, -0.05653331056237221, -0.03296969085931778, -0.08926854282617569, 0.021729907020926476, 0.026849959045648575, 0.08576913177967072, -0.025727059692144394, 0.04190802574157715, -0.011936672031879425, 0.06443411856889725, 0.08272659033536911, 0.03619356080889702, -0.07585514336824417, 0.06300991028547287, -0.19955949485301971, 0.08603131771087646, -0.08530089259147644, 0.028519131243228912, -0.15569865703582764, -0.015457026660442352, 0.006219884380698204, 0.022141801193356514, 0.03013981692492962, 0.1637963056564331, -0.20503884553909302, -0.035227734595537186, 0.15803740918636322, -0.10652005672454834, -0.11522184312343597, 0.039880555123090744, -0.04733574762940407, 0.1566607654094696, 0.021941838786005974, -0.00487925112247467, 0.09630709886550903, -0.1443040668964386, -0.025752970948815346, -0.02009568363428116, 0.001914201071485877, 0.10872694104909897, 0.08676699548959732, -0.08572939038276672, 0.027229517698287964, 0.015939727425575256, -0.05102347955107689, -0.029240470379590988, -0.04859967529773712, -0.10939077287912369, 0.007263127714395523, -0.079475536942482, 0.030086075887084007, -0.005909802857786417, -0.08101890981197357, -0.009804660454392433, -0.16427598893642426, -0.03456432744860649, 0.08188574761152267, 0.00747819896787405, -0.019764477387070656, -0.09755316376686096, 0.04408193379640579, -0.02614981308579445, -0.01907314918935299, -0.14950354397296906, -0.027902739122509956, 0.019898978993296623, -0.13543881475925446, 0.007094955071806908, -0.11675848066806793, 0.06520438194274902, 0.014599197544157505, -0.062338750809431076, -0.037288911640644073, -0.007358398754149675, 0.007872704416513443, -0.04671763256192207, -0.24220377206802368, -0.021076196804642677, -0.05476876720786095, 0.15700682997703552, -0.22456955909729004, 0.037365518510341644, 0.045232389122247696, 0.13221098482608795, 0.005514335352927446, -0.06407103687524796, 0.02784157358109951, -0.06464418023824692, -0.026861868798732758, -0.0737764984369278, -0.005808154586702585, -0.008678353391587734, -0.04358883574604988, 0.012248056009411812, -0.12053409963846207, -0.03639956936240196, 0.09942010045051575, 0.07044975459575653, -0.16162219643592834, -0.014850337989628315, -0.04183679446578026, -0.06100412830710411, -0.08166158199310303, -0.058178532868623734, 0.10895554721355438, 0.05198004096746445, 0.03864916041493416, -0.07245050370693207, -0.06819936633110046, 0.0075453962199389935, -0.02320593222975731, -0.02202790230512619, 0.11418948322534561, 0.07309940457344055, -0.11027286946773529, 0.10010849684476852, 0.07652165740728378, 0.03515646606683731, 0.08239977061748505, -0.02678629755973816, -0.10437919199466705, -0.02855013683438301, 0.0463380329310894, 0.015202938579022884, 0.15928642451763153, -0.06543345004320145, 0.052446555346250534, 0.044500190764665604, -0.03994492441415787, 0.04484312981367111, -0.09580379724502563, 0.010570613667368889, 0.008401244878768921, -0.013894101604819298, 0.01667194627225399, -0.022627925500273705, 0.009187576361000538, 0.08390801399946213, 0.05048397555947304, 0.038144368678331375, 0.026827530935406685, -0.03007824905216694, -0.12985895574092865, 0.18505901098251343, -0.1016729325056076, -0.24209021031856537, -0.15743498504161835, 0.06099282205104828, 0.0526563860476017, -0.016789134591817856, 0.021255699917674065, -0.05717365816235542, -0.10565439611673355, -0.08066041022539139, 0.0010020467452704906, 0.03207382187247276, -0.06029132008552551, -0.06816478818655014, 0.04478493332862854, 0.04737280681729317, -0.11628124117851257, 0.03611146658658981, 0.05645821616053581, -0.019917409867048264, 0.003947316203266382, 0.06104859709739685, 0.08649703115224838, 0.182611882686615, -0.0047232541255652905, -0.004901324398815632, 0.051133863627910614, 0.27613022923469543, -0.15885530412197113, 0.11113601922988892, 0.12105506658554077, -0.0699654296040535, 0.08003305643796921, 0.19354072213172913, 0.03655140474438667, -0.10087426751852036, 0.028004499152302742, 0.029024390503764153, -0.025858208537101746, -0.2630731761455536, -0.05187566950917244, -0.014416852965950966, -0.09166327118873596, 0.08017607033252716, 0.08952198177576065, 0.07505054026842117, 0.03694932162761688, -0.07088851928710938, -0.08914481103420258, 0.033991169184446335, 0.1004045382142067, -0.0189445149153471, 0.006192458793520927, 0.08409976959228516, -0.03308767452836037, 0.010179681703448296, 0.09776579588651657, -0.013416835106909275, 0.1659850925207138, 0.05307795852422714, 0.10575005412101746, 0.08123847097158432, 0.09194865822792053, -0.0030521738808602095, 0.025425586849451065, 0.014852665364742279, 0.022970914840698242, 0.013684424571692944, -0.08595077693462372, 0.0265091173350811, 0.11126265674829483, 0.039719607681035995, 0.03057960234582424, 0.014281084761023521, -0.04110376909375191, 0.05357813835144043, 0.17614562809467316, 0.014110242016613483, -0.20053185522556305, -0.07908113300800323, 0.06329239904880524, -0.07660087943077087, -0.1350620537996292, -0.014431549236178398, 0.03233424201607704, -0.16602414846420288, 0.025147894397377968, -0.04198816418647766, 0.09968524426221848, -0.08545852452516556, -0.03743759170174599, 0.09898914396762848, 0.0673462525010109, -0.023448187857866287, 0.05633781850337982, -0.192208930850029, 0.1246662512421608, 0.026139097288250923, 0.07037107646465302, -0.08278626203536987, 0.10046146810054779, 0.003525923006236553, 0.0008880468085408211, 0.1684543639421463, 0.002426974242553115, -0.060202792286872864, -0.06756467372179031, -0.09487012028694153, -0.013955187052488327, 0.0997828021645546, -0.13705089688301086, 0.06798042356967926, -0.01893150806427002, -0.028213167563080788, -0.0034978510811924934, -0.08678130060434341, -0.12728479504585266, -0.17321138083934784, 0.05607593059539795, -0.10304364562034607, 0.028876353055238724, -0.09206569939851761, -0.06289347261190414, 0.0017774669686332345, 0.17642326653003693, -0.21257634460926056, -0.09932458400726318, -0.14930382370948792, -0.08951093256473541, 0.15978512167930603, -0.044670723378658295, 0.08392763137817383, 0.000303533801343292, 0.16396617889404297, 0.013470211997628212, -0.012546534650027752, 0.10013853013515472, -0.09062289446592331, -0.19480407238006592, -0.05909644439816475, 0.16589365899562836, 0.1354351043701172, 0.03513338789343834, -0.01588025502860546, 0.02839021570980549, -0.04839238151907921, -0.11908963322639465, 0.024318436160683632, 0.14612165093421936, 0.06674274802207947, -0.00725489342585206, -0.033324845135211945, -0.10260003060102463, -0.06469228118658066, -0.04279598221182823, -0.002154805464670062, 0.18825852870941162, -0.07703451067209244, 0.16391661763191223, 0.11808646470308304, -0.05770591273903847, -0.21169929206371307, 0.04458777979016304, 0.05300869420170784, 0.014094795100390911, 0.04111030697822571, -0.19710838794708252, 0.08404745906591415, -0.0017245206981897354, -0.07244667410850525, 0.16619612276554108, -0.16870605945587158, -0.14085087180137634, 0.10117438435554504, 0.03114011324942112, -0.22067849338054657, -0.14122693240642548, -0.1030457466840744, -0.019498469308018684, -0.1135801300406456, 0.05505586788058281, 0.0011491802288219333, 0.011233721859753132, 0.026457449421286583, 0.013132721185684204, 0.02590205706655979, -0.04565008357167244, 0.20431210100650787, -0.02519236132502556, 0.009899839758872986, -0.05058844015002251, -0.08598287403583527, 0.02816963568329811, -0.047415487468242645, 0.09917830675840378, -0.0009602390346117318, 0.027781784534454346, -0.15344946086406708, -0.04022228345274925, -0.05285254493355751, 0.030747495591640472, -0.09488335251808167, -0.08714389055967331, -0.04619597643613815, 0.09410252422094345, 0.09447035938501358, -0.0279371477663517, 0.0028538312762975693, -0.0883597731590271, 0.07145485281944275, 0.20429152250289917, 0.18860343098640442, 0.07022745907306671, -0.06833101063966751, 0.020405905321240425, -0.03194950520992279, 0.04832802712917328, -0.23060695827007294, 0.04042166471481323, 0.057441458106040955, 0.02129385992884636, 0.08746905624866486, -0.011377048678696156, -0.15438617765903473, -0.07062256336212158, 0.0838589072227478, -0.05263335257768631, -0.16711686551570892, -0.025505101308226585, 0.028858793899416924, -0.20579379796981812, -0.04168994352221489, 0.02395344339311123, -0.02091827057301998, -0.037643495947122574, 0.02366614155471325, 0.0806458443403244, -0.018014954403042793, 0.10664575546979904, 0.08484898507595062, 0.09207899123430252, -0.10365059226751328, 0.07925679534673691, 0.07567957043647766, -0.045056380331516266, 0.026203760877251625, 0.11080143600702286, -0.049182258546352386, -0.03500420227646828, 0.07797082513570786, 0.09406089037656784, 0.029206477105617523, -0.051267821341753006, 0.011694391258060932, -0.05797962471842766, 0.06059711053967476, 0.10830764472484589, 0.02886979468166828, -0.00306878169067204, 0.05455809459090233, 0.03247230872511864, -0.09169252961874008, 0.11120402812957764, 0.060298267751932144, 0.01843075081706047, -0.04709484055638313, -0.03897586092352867, -0.006432607304304838, -0.017549943178892136, -0.02004108764231205, -0.00587001908570528, -0.09334774315357208, -0.008737697266042233, -0.09352020174264908, 0.02361086942255497, -0.07188036292791367, 0.010243745520710945, 0.02993376925587654, -0.05136583372950554, 0.003300947602838278, 0.00476469099521637, -0.07243837416172028, -0.04924301430583, -0.012973274104297161, 0.08386819064617157, -0.1333766132593155, 0.037369515746831894, 0.07378730922937393, -0.10521970689296722, 0.07364775985479355, -0.004519398789852858, 0.007868115790188313, 0.009385052137076855, -0.16200314462184906, 0.054981131106615067, -0.022758493199944496, -0.011731067672371864, 0.018162621185183525, -0.20100273191928864, -0.006914528086781502, -0.046346016228199005, -0.05719956010580063, 0.010202295146882534, -0.021600326523184776, -0.12367706745862961, 0.09591557830572128, -0.0010163950501009822, -0.06549273431301117, -0.018042253330349922, 0.03968352451920509, 0.10166357457637787, -0.025083132088184357, 0.13947436213493347, -0.028695717453956604, 0.07440628111362457, -0.17282968759536743, -0.009410020895302296, -0.013914361596107483, 0.03843492642045021, -0.025610219687223434, -0.023908289149403572, 0.0583910197019577, -0.0208873450756073, 0.17975354194641113, -0.01842864230275154, 0.07182954996824265, 0.05609835684299469, 0.01097019575536251, 0.00924734864383936, 0.08512815833091736, 0.05836591124534607, 0.002651509130373597, -0.0042807296849787235, 0.02488364651799202, -0.00937538780272007, -0.04169873520731926, -0.16244567930698395, 0.06580482423305511, 0.15236368775367737, 0.04796876013278961, 0.019513467326760292, 0.0301175806671381, -0.11302530020475388, -0.08041750639677048, 0.12689939141273499, -0.017520330846309662, -0.03338957577943802, -0.06816631555557251, 0.16909082233905792, 0.13617077469825745, -0.19893859326839447, 0.07581183314323425, -0.05424055457115173, -0.051029350608587265, -0.1339346021413803, -0.16724322736263275, -0.06132332980632782, -0.05156884714961052, -0.019458789378404617, -0.06648175418376923, 0.05232573673129082, 0.05664524808526039, 0.0025247661396861076, -0.014862428419291973, 0.10935600101947784, 0.005979019682854414, -0.024891825392842293, 0.05238298699259758, 0.06437598913908005, 0.032309357076883316, -0.09079143404960632, 0.008805512450635433, -0.001956923631951213, 0.01747080497443676, 0.06574554741382599, 0.01852973736822605, -0.052905768156051636, 0.017456458881497383, -0.020005786791443825, -0.11628905683755875, 0.04215237870812416, -0.013834195211529732, -0.04320378601551056, 0.14896385371685028, 0.0318441204726696, 0.007261664140969515, -0.02166076935827732, 0.23041598498821259, -0.07907618582248688, -0.07141468673944473, -0.15150022506713867, 0.07867314666509628, -0.06301809847354889, 0.03739922121167183, 0.030651435256004333, -0.11934886872768402, 0.015458629466593266, 0.15953953564167023, 0.13266761600971222, -0.012197006493806839, 0.011580032296478748, 0.0423787496984005, 0.005344280041754246, -0.03349979966878891, 0.021332580596208572, 0.05015050619840622, 0.1465596705675125, -0.06804472208023071, 0.06185370311141014, -0.009571387432515621, -0.0812913179397583, -0.021178606897592545, 0.104805126786232, -0.0016033141873776913, 0.0013996053021401167, -0.07416566461324692, 0.141665518283844, -0.08238261938095093, -0.2250383496284485, 0.06490501016378403, -0.07149378955364227, -0.14715908467769623, -0.048434432595968246, 0.025999682024121284, -0.013792021200060844, 0.010316209867596626, 0.07630991190671921, -0.052785634994506836, 0.17691689729690552, 0.04301740974187851, -0.04898673668503761, -0.08491872996091843, 0.05603376775979996, -0.14289546012878418, 0.27955886721611023, 0.021621407940983772, 0.042600829154253006, 0.10175727307796478, -0.016937239095568657, -0.1379525512456894, 0.012532075867056847, 0.10621775686740875, -0.06731253117322922, 0.05799940973520279, 0.17275801301002502, 0.0013690071646124125, 0.13053593039512634, 0.05946798250079155, -0.05745365470647812, 0.03824097663164139, -0.09482350945472717, -0.05388513579964638, -0.10701262205839157, 0.08242552727460861, -0.08393267542123795, 0.1611090451478958, 0.12774698436260223, -0.06627994030714035, -0.0048686182126402855, -0.02002224512398243, 0.08361531049013138, 0.008528433740139008, 0.1187901496887207, 0.014217148534953594, -0.18475468456745148, 0.03394443914294243, 0.010290835984051228, 0.10374479740858078, -0.20123466849327087, -0.059548329561948776, 0.04558917135000229, -0.01629858836531639, -0.07929091155529022, 0.12256954610347748, 0.04238631948828697, 0.034747932106256485, -0.0424092672765255, -0.05730847641825676, 0.009246394969522953, 0.14366647601127625, -0.1078328788280487, -0.004935360047966242 ]
null
null
transformers
# Kubernetes-bad Chargen-v2 Exl2 quant of [kubernetes-bad/chargen-v2](https://huggingface.co/kubernetes-bad/chargen-v2) >CharGen is a model that helps you to write characters for role playing with. > >It produces character description based on your input prompt, step-by-step, in a dialogue format. ### Instructions I recommend that you read kubernetes-bad own description and instruction for this model [here](https://huggingface.co/kubernetes-bad/chargen-v2) ## Contact Kooten on discord [ko-fi.com/kooten](https://ko-fi.com/kooten)
{"license": "cc-by-nc-4.0"}
text-generation
Kooten/Chargen-v2-8bpw-exl2
[ "transformers", "pytorch", "mistral", "text-generation", "conversational", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:14:50+00:00
[]
[]
TAGS #transformers #pytorch #mistral #text-generation #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Kubernetes-bad Chargen-v2 Exl2 quant of kubernetes-bad/chargen-v2 >CharGen is a model that helps you to write characters for role playing with. > >It produces character description based on your input prompt, step-by-step, in a dialogue format. ### Instructions I recommend that you read kubernetes-bad own description and instruction for this model here ## Contact Kooten on discord URL
[ "# Kubernetes-bad Chargen-v2\n\nExl2 quant of kubernetes-bad/chargen-v2\n\n>CharGen is a model that helps you to write characters for role playing with.\n>\n>It produces character description based on your input prompt, step-by-step, in a dialogue format.", "### Instructions\nI recommend that you read kubernetes-bad own description and instruction for this model here", "## Contact\nKooten on discord\n\nURL" ]
[ "TAGS\n#transformers #pytorch #mistral #text-generation #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Kubernetes-bad Chargen-v2\n\nExl2 quant of kubernetes-bad/chargen-v2\n\n>CharGen is a model that helps you to write characters for role playing with.\n>\n>It produces character description based on your input prompt, step-by-step, in a dialogue format.", "### Instructions\nI recommend that you read kubernetes-bad own description and instruction for this model here", "## Contact\nKooten on discord\n\nURL" ]
[ 61, 68, 24, 7 ]
[ "passage: TAGS\n#transformers #pytorch #mistral #text-generation #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Kubernetes-bad Chargen-v2\n\nExl2 quant of kubernetes-bad/chargen-v2\n\n>CharGen is a model that helps you to write characters for role playing with.\n>\n>It produces character description based on your input prompt, step-by-step, in a dialogue format.### Instructions\nI recommend that you read kubernetes-bad own description and instruction for this model here## Contact\nKooten on discord\n\nURL" ]
[ -0.03192935883998871, -0.11486481130123138, -0.0017474853666499257, 0.06996863335371017, 0.1420496255159378, 0.022527744993567467, 0.18164439499378204, 0.056251950562000275, 0.24070917069911957, -0.014599279500544071, 0.07466141134500504, -0.09593278169631958, 0.028778795152902603, 0.1338217854499817, 0.016345346346497536, -0.23168236017227173, 0.04809032753109932, -0.0011545468587428331, 0.309471070766449, 0.10072626918554306, 0.09798599034547806, -0.06244941055774689, 0.06921360641717911, 0.04083099961280823, -0.10618472844362259, -0.055271394550800323, 0.028790174052119255, -0.047397155314683914, 0.14020340144634247, 0.01525453943759203, 0.1053171306848526, 0.03749464079737663, -0.02993900328874588, -0.10565473884344101, 0.056207481771707535, -0.054796963930130005, -0.01242036372423172, 0.0036532559897750616, -0.08871355652809143, 0.010666236281394958, 0.12369424849748611, -0.031541209667921066, -0.03480164706707001, -0.002383801620453596, -0.051721010357141495, 0.0814332515001297, -0.05539734289050102, 0.16400577127933502, 0.188358336687088, 0.05787176638841629, 0.00023057166254147887, -0.022156333550810814, -0.12021879851818085, 0.07603462040424347, 0.27322202920913696, -0.11960475146770477, -0.027980182319879532, -0.00619385065510869, 0.041158754378557205, 0.09870297461748123, -0.06150009483098984, -0.016425440087914467, -0.002090933034196496, -0.04258225858211517, -0.0606829933822155, -0.06758003681898117, -0.015871785581111908, 0.013617211952805519, -0.11080507934093475, -0.004754797555506229, 0.18704809248447418, -0.026036035269498825, -0.04851769655942917, -0.0657447800040245, -0.03417927771806717, -0.025674602016806602, 0.000999730546027422, -0.07136410474777222, -0.10649117827415466, -0.04517749696969986, 0.039540644735097885, -0.030072003602981567, -0.08044018596410751, -0.024576647207140923, -0.062256503850221634, 0.14386369287967682, 0.029971282929182053, -0.016049375757575035, -0.10652617365121841, 0.08531523495912552, -0.07926299422979355, -0.060791976749897, -0.04917862266302109, -0.08608481287956238, 0.049249324947595596, -0.02953994832932949, -0.012620334513485432, 0.015732470899820328, 0.085503488779068, 0.08301093429327011, 0.03223046287894249, 0.009071567095816135, 0.020393282175064087, 0.040075723081827164, 0.055941395461559296, 0.06571996957063675, 0.020542507991194725, -0.14178520441055298, 0.11176076531410217, 0.07690079510211945, 0.04075677692890167, -0.08426526933908463, -0.1813492625951767, -0.11882480978965759, 0.13781552016735077, 0.11042574793100357, 0.04276791960000992, 0.029071563854813576, -0.05855794623494148, -0.0009617295581847429, 0.2245369404554367, -0.03778902068734169, 0.01526207197457552, 0.006445754785090685, -0.056431084871292114, 0.05632813274860382, -0.03369753435254097, -0.01595626212656498, -0.06475913524627686, 0.151325523853302, -0.0568714365363121, 0.02438260056078434, -0.033257730305194855, -0.059876542538404465, 0.04240470007061958, -0.026249516755342484, 0.023016395047307014, -0.17047661542892456, -0.07353967428207397, 0.035134207457304, -0.007917382754385471, -0.010083124041557312, -0.054369956254959106, -0.05470013618469238, -0.019663937389850616, 0.04438300058245659, -0.05981278419494629, -0.14402541518211365, -0.053271155804395676, -0.010132743045687675, 0.006560825742781162, 0.10527956485748291, -0.13465996086597443, 0.005264471750706434, -0.07030156999826431, 0.01704161986708641, -0.16151703894138336, -0.003395348321646452, -0.06151699274778366, -0.04592910036444664, -0.08663150668144226, -0.02317717857658863, 0.04919962212443352, 0.004206744953989983, 0.05949525535106659, 0.15905162692070007, -0.03128931671380997, -0.03090802952647209, 0.10797608643770218, -0.07162237167358398, -0.1329164355993271, 0.16906820237636566, -0.01620301976799965, 0.045449405908584595, 0.1145399734377861, 0.06992876529693604, 0.1691727489233017, -0.19903194904327393, -0.006020168773829937, 0.1041630432009697, -0.05354532226920128, -0.02325928770005703, 0.02726900950074196, 0.040110599249601364, -0.0929357185959816, 0.046870436519384384, -0.09216304123401642, 0.06987885385751724, -0.021232018247246742, -0.0547223724424839, 0.004937396384775639, -0.010644646361470222, 0.17059744894504547, -0.08636067807674408, 0.013658290728926659, 0.0084707485511899, -0.04711541533470154, 0.08987145870923996, 0.10464566200971603, -0.018372496590018272, 0.0659414678812027, -0.09034944325685501, 0.1494326889514923, 0.011422046460211277, 0.031771618872880936, -0.04966994747519493, -0.08873879909515381, 0.00900361780077219, 0.14759047329425812, 0.002031269483268261, -0.0009644061792641878, -0.009341178461909294, 0.02309383824467659, -0.07977038621902466, 0.010789239779114723, 0.03600003197789192, 0.0026914917398244143, -0.08907973021268845, -0.12729589641094208, -0.014132408425211906, 0.019001590088009834, 0.004555244464427233, -0.03602553531527519, -0.02728985622525215, 0.1507451981306076, -0.024944739416241646, -0.03501338139176369, 0.04627126455307007, -0.04755092412233353, 0.03500892594456673, -0.026421459391713142, 0.04682578518986702, 0.04824542626738548, -0.03433666005730629, -0.05353636294603348, 0.17026372253894806, -0.11314179003238678, -0.07879264652729034, 0.11395818740129471, 0.10734617710113525, 0.0000019851254364766646, -0.02570587769150734, 0.012674336321651936, -0.051781490445137024, 0.02688174694776535, -0.031184915453195572, 0.10689244419336319, 0.010796315968036652, 0.01007311325520277, -0.022412244230508804, 0.03394639864563942, -0.0017485178541392088, -0.062344010919332504, 0.02693263813853264, 0.04086709022521973, 0.07060214132070541, -0.05422361195087433, -0.004507862031459808, 0.08298366516828537, -0.12957674264907837, 0.15919385850429535, 0.05908389389514923, -0.004850943572819233, -0.06762298941612244, 0.01101041492074728, 0.03478461503982544, 0.1397455781698227, -0.1781102865934372, -0.08667156845331192, 0.028256731107831, -0.057413309812545776, 0.03224508836865425, -0.1201956644654274, -0.01611758954823017, -0.00232155853882432, -0.03043864481151104, 0.027954811230301857, 0.1080026775598526, -0.07473891228437424, 0.051314063370227814, 0.003204992739483714, -0.0854315385222435, 0.03770633786916733, 0.005925035569816828, -0.0777791365981102, 0.14646530151367188, -0.08876346051692963, -0.1886979043483734, -0.1503012776374817, -0.0728139728307724, -0.057691220194101334, 0.008571027778089046, 0.015578705817461014, -0.060765113681554794, -0.0012128794332966208, -0.06440115720033646, 0.04136554151773453, 0.0015876471297815442, 0.023185918107628822, -0.00455523282289505, -0.06685362756252289, -0.11140337586402893, -0.09060899913311005, -0.07684212177991867, 0.03878887742757797, -0.09447482228279114, 0.08445198833942413, -0.055908381938934326, 0.11392867565155029, 0.1923104226589203, 0.0071625420823693275, -0.032273128628730774, -0.07310622185468674, 0.10505794733762741, -0.04331224039196968, 0.06613385677337646, 0.17837704718112946, -0.11030679941177368, 0.08549225330352783, 0.10228296369314194, -0.02545495517551899, 0.00394469266757369, 0.07327425479888916, -0.040838103741407394, -0.09154888242483139, -0.058043114840984344, -0.039080195128917694, -0.07341473549604416, 0.17498695850372314, 0.007388726808130741, 0.01517022680491209, 0.10537227988243103, 0.08678289502859116, -0.0496450699865818, 0.08306213468313217, 0.060476720333099365, 0.10994242131710052, 0.07323452085256577, -0.011129298247396946, 0.06667477637529373, 0.03496634215116501, -0.0037044158671051264, 0.05242865905165672, 0.022949710488319397, 0.24322053790092468, -0.033159155398607254, 0.11858444660902023, 0.08815397322177887, 0.11031237244606018, 0.11448371410369873, 0.0006335356156341732, -0.0642075464129448, -0.005821788217872381, 0.0011978434631600976, -0.07563192397356033, -0.033635836094617844, 0.03858614340424538, 0.0028170980513095856, -0.03413100913167, -0.07581909745931625, 0.16158461570739746, 0.04698202759027481, -0.024932218715548515, 0.029797056689858437, -0.1098463237285614, -0.0944688469171524, 0.019368786364793777, -0.04660392925143242, -0.00044540551607497036, 0.027677925303578377, 0.049126822501420975, -0.13953901827335358, -0.08237907290458679, -0.026855137199163437, 0.0749189481139183, -0.11866741627454758, 0.03704109042882919, -0.09830829501152039, 0.06712419539690018, -0.0016230065375566483, 0.056723326444625854, -0.2612661123275757, 0.10348149389028549, -0.048451464623212814, 0.05182972177863121, -0.1261606216430664, -0.08886558562517166, 0.07576188445091248, 0.03424767032265663, 0.04544263705611229, 0.045447938144207, 0.023631885647773743, -0.08051091432571411, -0.049491383135318756, 0.003542917547747493, 0.05186513066291809, -0.042564570903778076, 0.061340633779764175, -0.014455745927989483, 0.0026515561621636152, 0.021296219900250435, 0.10175738483667374, -0.17885668575763702, -0.08335857093334198, 0.0576593354344368, 0.06788928061723709, 0.03229295834898949, -0.04774995893239975, -0.052250612527132034, 0.14502249658107758, -0.022895175963640213, -0.01759481616318226, -0.061209212988615036, -0.04170449078083038, -0.11233209073543549, 0.04879261925816536, -0.17996256053447723, 0.005999738350510597, -0.01004153210669756, 0.0635574460029602, -0.12694890797138214, -0.05128559097647667, 0.07342914491891861, -0.11587176471948624, -0.09430164843797684, -0.00869716051965952, 0.10918059945106506, 0.14488281309604645, 0.060936201363801956, 0.000716903421562165, -0.03230137377977371, -0.004548557102680206, -0.11683453619480133, -0.05459052324295044, 0.1399199366569519, -0.0675610676407814, -0.0009482391178607941, 0.09343850612640381, 0.00493622338399291, -0.11587318778038025, -0.02076587826013565, 0.2088935226202011, 0.18665972352027893, -0.015425216406583786, 0.1588188260793686, 0.08313434571027756, -0.08015398681163788, -0.30255424976348877, -0.09887195378541946, 0.019492078572511673, 0.026388229802250862, -0.04808398708701134, -0.08676854521036148, 0.07551693171262741, -0.03792029246687889, -0.03643336147069931, 0.06893289089202881, -0.21965520083904266, -0.161800816655159, 0.08132585138082504, 0.09236244112253189, 0.3649655878543854, -0.06470130383968353, -0.028594493865966797, -0.05912839621305466, -0.21417175233364105, 0.12476655095815659, -0.045642707496881485, 0.05212561786174774, -0.04231899976730347, 0.14380136132240295, -0.015308110043406487, -0.028449280187487602, 0.1284637153148651, 0.02465607412159443, -0.016892209649086, -0.11353090405464172, -0.24749785661697388, 0.07688727229833603, -0.10224031656980515, 0.05901671573519707, -0.1208956316113472, -0.04135981947183609, -0.13005058467388153, -0.02880793996155262, -0.1044197678565979, 0.07048416137695312, -0.04790893569588661, -0.07919950783252716, -0.04911024495959282, 0.07639049738645554, 0.03185689076781273, 0.019021259620785713, 0.13075506687164307, 0.00035663257585838437, -0.07015705108642578, 0.07314866036176682, 0.10618516802787781, -0.03563886880874634, 0.10727053135633469, 0.041686736047267914, -0.07225921750068665, 0.08822524547576904, -0.07547091692686081, 0.004584199748933315, 0.041442010551691055, 0.006952587980777025, 0.08410521596670151, 0.014337596483528614, -0.0668049231171608, 0.10702501982450485, 0.10642702132463455, -0.15839113295078278, -0.1939786821603775, -0.09703762084245682, -0.036174476146698, -0.06969109177589417, -0.031349580734968185, 0.18378832936286926, -0.1295424848794937, -0.022021058946847916, 0.0035665961913764477, 0.07684634625911713, -0.06144966185092926, 0.03529239445924759, 0.0865699052810669, 0.051656078547239304, -0.0338866226375103, -0.01634363643825054, 0.04179507493972778, -0.011414340697228909, 0.07179632037878036, -0.02300061471760273, -0.14100372791290283, -0.07026013731956482, -0.0789431631565094, 0.030509984120726585, -0.09010063111782074, -0.08540912717580795, -0.062358543276786804, -0.09275806695222855, -0.01941094547510147, 0.08465532958507538, 0.03249946981668472, 0.04494437202811241, 0.0016507526161149144, 0.09004668891429901, -0.08189503848552704, 0.1105443686246872, 0.08543452620506287, 0.04830934852361679, -0.07707664370536804, 0.03663542866706848, -0.07629700750112534, 0.08191732317209244, -0.04828815534710884, -0.030785702168941498, -0.16433247923851013, -0.011527393944561481, -0.30107083916664124, 0.0369013212621212, -0.159704327583313, -0.019324759021401405, -0.009561976417899132, -0.012962027452886105, -0.002893423428758979, 0.0779450461268425, -0.06451596319675446, 0.031912531703710556, -0.01733211986720562, 0.060402218252420425, -0.0700240284204483, 0.016625724732875824, 0.11353355646133423, -0.015672514215111732, 0.10125139355659485, 0.07851964235305786, -0.04942404851317406, 0.1131315678358078, -0.1420975625514984, 0.026396233588457108, -0.028794774785637856, 0.000628475274425, 0.03531278669834137, -0.06387177109718323, -0.020697981119155884, 0.018111351877450943, 0.05859123170375824, 0.03215668722987175, 0.048306696116924286, -0.05952664092183113, -0.016411684453487396, 0.010507096536457539, -0.015313340350985527, -0.03680345043540001, 0.07309286296367645, 0.06052089482545853, 0.05102101340889931, 0.10015330463647842, -0.042059846222400665, 0.05557377263903618, -0.021665871143341064, 0.009078241884708405, 0.025259215384721756, -0.04958345368504524, -0.04712732881307602, -0.16897153854370117, 0.01464946661144495, -0.01915467157959938, 0.05658801645040512, -0.02025756426155567, -0.011436725035309792, -0.0230351984500885, 0.06591181457042694, 0.04892272502183914, -0.01230884063988924, 0.07197152078151703, -0.03438958898186684, -0.024208392947912216, -0.11105885356664658, 0.007899037562310696, 0.008164169266819954, -0.05314362421631813, 0.24545083940029144, -0.030899954959750175, 0.08069736510515213, 0.08516035228967667, 0.024931637570261955, 0.06915409117937088, -0.051194820553064346, -0.24601322412490845, -0.12320487946271896, 0.028980080038309097, -0.051545388996601105, 0.05177877098321915, 0.16738127171993256, -0.08697909116744995, 0.015489593148231506, -0.034025710076093674, -0.15003101527690887, -0.10446925461292267, -0.26004308462142944, -0.047362424433231354, -0.12705200910568237, 0.06089126691222191, -0.107479028403759, -0.02966519445180893, 0.008390005677938461, 0.023960163816809654, -0.06570722162723541, 0.22124439477920532, 0.11193188279867172, -0.05244585499167442, 0.17600280046463013, -0.06764880567789078, -0.024554677307605743, 0.04158945009112358, -0.0034271006006747484, -0.036033254116773605, -0.07054650783538818, 0.028737597167491913, 0.05142056196928024, -0.05420577898621559, -0.012555673718452454, -0.02587999403476715, -0.06231497973203659, -0.012889087200164795, 0.024217095226049423, 0.0639667958021164, 0.17812788486480713, 0.05160890519618988, -0.028259044513106346, 0.011613879352807999, 0.15719978511333466, 0.003260899567976594, -0.18919529020786285, -0.02258789911866188, 0.14394688606262207, -0.0007965083932504058, 0.00886288471519947, -0.030557269230484962, -0.020119378343224525, -0.017550159245729446, 0.1115829274058342, 0.15320469439029694, -0.06494921445846558, 0.042376868426799774, -0.07995046675205231, 0.042305659502744675, 0.01705382764339447, 0.16138525307178497, 0.006995688658207655, 0.2679738402366638, -0.03756335750222206, 0.08629575371742249, -0.04243123158812523, -0.011537652462720871, -0.03648412972688675, -0.043216899037361145, 0.05255371704697609, -0.06858086585998535, -0.10706394165754318, 0.05876702815294266, -0.2542029023170471, -0.05962926149368286, -0.0904783084988594, -0.10198332369327545, -0.07805737853050232, -0.0066771660931408405, 0.20528902113437653, 0.05504566431045532, 0.11298836767673492, -0.005982177797704935, 0.06432286649942398, 0.09791285544633865, 0.014744020067155361, -0.10025332868099213, 0.07354309409856796, 0.0785798579454422, 0.046841152012348175, -0.010555969551205635, -0.02994479425251484, 0.19182980060577393, 0.09598595649003983, 0.060949187725782394, -0.04068966209888458, 0.0009489383664913476, 0.0585581511259079, -0.06834622472524643, 0.007749055977910757, 0.10448358952999115, 0.014172323979437351, -0.02714807726442814, 0.10584525018930435, 0.04529307037591934, 0.02124309167265892, 0.09567581862211227, 0.08863124251365662, -0.11685359477996826, 0.07584778219461441, -0.11818529665470123, 0.1375391185283661, 0.10367269068956375, -0.11292265355587006, -0.0326114222407341, 0.004486745223402977, -0.03674798458814621, -0.03836427628993988, 0.10371601581573486, -0.04024862125515938, -0.11153283715248108, -0.07005155831575394, 0.08399754017591476, 0.09131669998168945, -0.1317521184682846, -0.03127703815698624, -0.11294730007648468, -0.0032832708675414324, -0.08665040880441666, 0.13821186125278473, 0.11700338125228882, -0.014778380282223225, 0.03413930907845497, -0.1256243884563446, -0.017988737672567368, 0.07596266269683838, -0.1334346979856491, -0.0915694460272789 ]
null
null
transformers
<p><h1> speechless-mistral-hermes-code-7b </h1></p> Code: https://github.com/uukuguy/speechless Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities. Total 986k samples. - teknium/OpenHermes-2.5 - TokenBender/python_eval_instruct_51k - Spider - codefuse-ai/Evol-instruction-66k ## How to Prompt the Model This model accepts the Alpaca instruction format. For example: ``` You are an intelligent programming assistant. ### Instruction: Implement a linked list in C++ ### Response: ``` ## HumanEval | Metric | Value | | --- | --- | | humaneval-python | | ## lm-evaluation-harness ```json {'ARC (acc_norm)': , 'HellaSwag (acc_norm)': , 'MMLU (acc)': , 'TruthfulQA (mc2)': , 'Winoground (acc)': , 'GSM8K (acc)': , 'DROP (f1)': , 'Open LLM Score': } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_uukuguy__speechless-code-mistral-7b-v1.0) | Metric | Value | |-----------------------|---------------------------| | Avg. | | | ARC (25-shot) | | | HellaSwag (10-shot) | | | MMLU (5-shot) | | | TruthfulQA (0-shot) | | | Winogrande (5-shot) | | | GSM8K (5-shot) | | | DROP (3-shot) | |
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["code"], "datasets": ["teknium/OpenHermes-2.5", "TokenBender/python_eval_instruct_51k", "codefuse-ai/Evol-instruction-66k"], "pipeline_tag": "text-generation", "model-index": [{"name": "SpeechlessCoder", "results": [{"task": {"type": "text-generation"}, "dataset": {"name": "HumanEval", "type": "openai_humaneval"}, "metrics": [{"type": "pass@1", "value": 0.0, "name": "pass@1", "verified": false}]}]}]}
text-generation
uukuguy/speechless-mistral-hermes-code-7b
[ "transformers", "safetensors", "mistral", "text-generation", "code", "en", "dataset:teknium/OpenHermes-2.5", "dataset:TokenBender/python_eval_instruct_51k", "dataset:codefuse-ai/Evol-instruction-66k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:15:24+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #code #en #dataset-teknium/OpenHermes-2.5 #dataset-TokenBender/python_eval_instruct_51k #dataset-codefuse-ai/Evol-instruction-66k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
speechless-mistral-hermes-code-7b ================================== Code: URL Use the following dataset to fine-tune mistralai/Mistral-7B-v0.1 in order to improve the model's reasoning and planning abilities. Total 986k samples. * teknium/OpenHermes-2.5 * TokenBender/python\_eval\_instruct\_51k * Spider * codefuse-ai/Evol-instruction-66k How to Prompt the Model ----------------------- This model accepts the Alpaca instruction format. For example: HumanEval --------- lm-evaluation-harness --------------------- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #code #en #dataset-teknium/OpenHermes-2.5 #dataset-TokenBender/python_eval_instruct_51k #dataset-codefuse-ai/Evol-instruction-66k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ 112 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #code #en #dataset-teknium/OpenHermes-2.5 #dataset-TokenBender/python_eval_instruct_51k #dataset-codefuse-ai/Evol-instruction-66k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
[ -0.10647544264793396, 0.14478613436222076, -0.0041321804746985435, 0.07386589795351028, 0.1077585518360138, -0.011771798133850098, 0.1869025081396103, 0.10269912332296371, 0.03297467157244682, 0.0025416077114641666, 0.14404435455799103, 0.17769935727119446, 0.020334407687187195, 0.17878924310207367, -0.1146845892071724, -0.09904670715332031, 0.08830251544713974, -0.03604797273874283, -0.020924845710396767, 0.059068743139505386, 0.0939883217215538, -0.035068903118371964, 0.10419296473264694, -0.06655953079462051, -0.017343463376164436, 0.010899110697209835, 0.034010566771030426, -0.12339110672473907, 0.08423382043838501, 0.024211382493376732, 0.08257493376731873, 0.012898586690425873, -0.004349333234131336, -0.17324303090572357, 0.023366305977106094, 0.07271851599216461, -0.03013411909341812, 0.06371548026800156, 0.03420130908489227, -0.009445615112781525, -0.0030057558324187994, -0.06282259523868561, -0.005065965931862593, 0.05453374981880188, -0.08686626702547073, -0.11759297549724579, -0.06336141377687454, -0.045731332153081894, 0.07187574356794357, 0.10521411895751953, 0.017407158389687538, 0.19261236488819122, 0.023385606706142426, 0.13583508133888245, 0.1196405291557312, -0.2696356475353241, -0.012209123931825161, 0.04161592200398445, 0.002351334085687995, 0.04701418802142143, -0.0337366946041584, -0.006302751135081053, 0.10318563878536224, 0.01107553020119667, 0.07145673036575317, -0.05435801297426224, -0.15754808485507965, 0.009028291329741478, -0.10010018199682236, -0.047263264656066895, 0.3526029586791992, 0.0012967409566044807, -0.04047350212931633, -0.0074578518979251385, -0.14200729131698608, 0.026718609035015106, 0.015931665897369385, 0.006927321664988995, 0.02911003865301609, 0.06107492744922638, 0.0376141220331192, -0.026489078998565674, -0.12366987019777298, -0.00570554006844759, -0.14865973591804504, 0.12441736459732056, 0.0027493005618453026, 0.042986683547496796, -0.1427074372768402, 0.04210228845477104, 0.020457660779356956, -0.1258266419172287, -0.014080969616770744, -0.0549318864941597, 0.06340473890304565, -0.010841730050742626, -0.004632244352251291, -0.1035502552986145, 0.1526627391576767, 0.21255400776863098, -0.056562233716249466, 0.026621975004673004, -0.08447692543268204, 0.04650465399026871, 0.009593963623046875, 0.015146900899708271, -0.03343046084046364, -0.021339738741517067, 0.10719739645719528, -0.008478391915559769, 0.12555444240570068, -0.035427700728178024, -0.06738213449716568, -0.0032235633116215467, 0.06541046500205994, 0.09594272822141647, 0.056845903396606445, 0.08838851004838943, -0.05722774192690849, 0.006254435516893864, 0.11369108408689499, -0.12065586447715759, -0.0002597587008494884, 0.014701119624078274, -0.0028376830741763115, 0.022193068638443947, 0.04360857605934143, 0.04776544123888016, -0.05936098098754883, -0.03232627362012863, -0.0826757624745369, -0.028818117454648018, -0.04376033693552017, -0.11583670973777771, 0.06910653412342072, -0.059480227530002594, 0.051811445504426956, -0.14381912350654602, -0.26789551973342896, 0.021024249494075775, 0.07527206838130951, 0.02115153893828392, 0.010685357265174389, -0.05608391389250755, -0.10974155366420746, 0.03416837379336357, -0.03270046412944794, -0.08669790625572205, -0.08698436617851257, 0.035342492163181305, -0.011777043342590332, 0.044577162712812424, -0.14819127321243286, 0.007368229795247316, -0.15150080621242523, 0.026952384039759636, -0.0027250805869698524, -0.004160511773079634, -0.05863826349377632, 0.13122610747814178, -0.08006837218999863, 0.01608799397945404, 0.02000218629837036, 0.0003411733778193593, 0.06388511508703232, 0.20178121328353882, -0.16000865399837494, 0.007207583636045456, 0.19632533192634583, -0.12976880371570587, -0.248652845621109, 0.13053399324417114, 0.0011603898601606488, 0.06136910617351532, 0.071255162358284, 0.13601157069206238, 0.04369715228676796, -0.10486696660518646, -0.011343838647007942, 0.10401058942079544, -0.006534247659146786, -0.10447271168231964, 0.07525929063558578, -0.009614218957722187, -0.06145331263542175, 0.02920084446668625, 0.030978308990597725, 0.036480631679296494, -0.006097034551203251, -0.08044251799583435, -0.06762301921844482, -0.06335502117872238, 0.023394109681248665, -0.02872595377266407, -0.0007434888393618166, -0.0966963991522789, -0.022293834015727043, -0.046462759375572205, 0.0874689370393753, -0.05863926559686661, 0.017041310667991638, -0.08852294087409973, 0.08117608726024628, -0.05875767394900322, 0.024175282567739487, -0.07138732075691223, -0.08291561901569366, 0.009910118766129017, 0.0464073084294796, -0.06725192815065384, -0.015349271707236767, 0.08299387246370316, 0.020146619528532028, 0.030307913199067116, -0.052685271948575974, 0.09966640919446945, 0.01598883979022503, -0.059977468103170395, -0.1670110821723938, 0.051947809755802155, -0.07730506360530853, 0.10844980925321579, -0.12128660082817078, 0.059633005410432816, 0.03236338123679161, 0.07612848281860352, 0.04714873060584068, 0.053363680839538574, 0.025170551612973213, -0.009926876984536648, -0.09730581939220428, -0.04467339068651199, 0.040222324430942535, 0.04923097789287567, -0.0709138959646225, 0.045076001435518265, -0.16396643221378326, 0.25559040904045105, 0.13742280006408691, -0.1003829836845398, 0.04207809269428253, -0.034886088222265244, 0.001572081004269421, -0.014941113069653511, 0.013382311910390854, -0.031211208552122116, -0.02863476797938347, -0.00047094517503865063, 0.11283355206251144, -0.07618441432714462, -0.02449381723999977, 0.028867078945040703, -0.11169405281543732, -0.039940718561410904, 0.06641189754009247, 0.03758439049124718, -0.14449149370193481, 0.16388997435569763, 0.2405441403388977, -0.07544731348752975, 0.10208036750555038, -0.0641256719827652, -0.02834044210612774, 0.00509167555719614, 0.07561969757080078, -0.0027015707455575466, 0.02216550149023533, -0.12748265266418457, 0.02818980999290943, 0.060794465243816376, 0.017301024869084358, 0.03468923643231392, -0.11916181445121765, -0.02611396089196205, -0.0000678374053677544, -0.013842770829796791, -0.03165888041257858, 0.01997417025268078, -0.032693032175302505, 0.10062256455421448, -0.04554881155490875, -0.08644196391105652, 0.09360718727111816, 0.004742725752294064, -0.1247054785490036, 0.2109939008951187, -0.1669124960899353, -0.16096465289592743, -0.12651696801185608, -0.06173145771026611, -0.05295148119330406, 0.008440585806965828, 0.09738634526729584, -0.0660105049610138, -0.06667988747358322, -0.12726204097270966, -0.04389426112174988, 0.018557781353592873, -0.010262647643685341, 0.06435082852840424, 0.026608183979988098, 0.0003539200406521559, -0.13677377998828888, -0.03286859765648842, 0.05616180971264839, -0.06902802735567093, 0.1183001920580864, -0.05832169950008392, 0.09869780391454697, 0.10071151703596115, 0.009831276722252369, -0.010919863358139992, -0.027019955217838287, 0.16796979308128357, -0.0033649085089564323, 0.048417121171951294, 0.17497694492340088, -0.023872122168540955, 0.06891147792339325, 0.15428368747234344, -0.006551080849021673, -0.0902412012219429, 0.038025882095098495, -0.04954510182142258, -0.028113942593336105, -0.2756878137588501, -0.07423446327447891, -0.07921948283910751, 0.1786116659641266, 0.023183925077319145, 0.030759014189243317, 0.05824046581983566, 0.10824112594127655, -0.036746829748153687, 0.0490366667509079, 0.005878561642020941, 0.09181512892246246, 0.1045067235827446, 0.01577874645590782, 0.07110845297574997, -0.08347172290086746, -0.022841021418571472, 0.11297418922185898, 0.105354443192482, 0.11751853674650192, 0.01693878136575222, 0.15204806625843048, 0.026102382689714432, 0.12901608645915985, -0.006093757227063179, 0.1577683687210083, -0.016099030151963234, 0.00845516286790371, -0.01908097416162491, -0.06386023014783859, -0.08783070743083954, 0.055258508771657944, -0.20612522959709167, -0.036719657480716705, -0.03577844426035881, 0.09655889868736267, 0.09437306970357895, 0.10294206440448761, 0.09731370210647583, -0.29607707262039185, -0.0634809210896492, 0.09260162711143494, 0.04874121770262718, -0.06207064166665077, 0.08399723470211029, 0.07911443710327148, -0.04447987303137779, 0.085100457072258, -0.06166738644242287, 0.08148150891065598, -0.018813496455550194, 0.027013305574655533, -0.05463693290948868, 0.059853751212358475, -0.01217492576688528, 0.09186720848083496, -0.2843126356601715, 0.18939945101737976, 0.017481520771980286, 0.05478392541408539, -0.08715531975030899, 0.05021166056394577, 0.03257078677415848, 0.11783299595117569, 0.10904067009687424, 0.004146444611251354, -0.053088825196027756, -0.05364128574728966, -0.07790948450565338, 0.06592310965061188, 0.03494853153824806, 0.041284672915935516, 0.04653678089380264, -0.02952263318002224, 0.015575516037642956, 0.04057006910443306, 0.056194011121988297, -0.10395723581314087, -0.1367397904396057, 0.029170488938689232, 0.13983558118343353, 0.017452972009778023, -0.05255024507641792, -0.015905480831861496, -0.08155690133571625, 0.15692968666553497, -0.13882605731487274, -0.08882879465818405, -0.07998205721378326, -0.07489649206399918, 0.03910551220178604, -0.07666046172380447, 0.045116208493709564, -0.0443260595202446, 0.03437570109963417, -0.024793650954961777, -0.13853242993354797, 0.1372813582420349, -0.1495819240808487, -0.03605501726269722, -0.04144494980573654, 0.03470413014292717, -0.05775681138038635, -0.021145422011613846, 0.010108321905136108, 0.01910584419965744, -0.07835094630718231, -0.08151120692491531, 0.012679013423621655, 0.09204907715320587, 0.028875842690467834, 0.03732652962207794, -0.08943179249763489, -0.1434033215045929, 0.021198371425271034, -0.03400722146034241, 0.1845943033695221, 0.27911850810050964, -0.018375597894191742, 0.03827199712395668, 0.20251135528087616, -0.08456391096115112, -0.27033209800720215, -0.03568523749709129, -0.14465118944644928, -0.03567386791110039, -0.01720975898206234, -0.18339313566684723, 0.11424239724874496, 0.05875977501273155, -0.058804918080568314, 0.11251060664653778, -0.21459534764289856, -0.07006058841943741, 0.16251641511917114, 0.0768323764204979, 0.23786449432373047, -0.16379640996456146, -0.05478580296039581, -0.09116283804178238, -0.1624450832605362, 0.10350161790847778, -0.28238698840141296, 0.041154149919748306, 0.025708215311169624, 0.02178051508963108, -0.0016716677928343415, -0.07722008973360062, 0.08887456357479095, -0.02829042263329029, 0.09718529134988785, -0.10352642089128494, 0.042733777314424515, 0.15350103378295898, -0.053289417177438736, 0.13347743451595306, -0.1734701693058014, 0.07704154402017593, -0.05928080901503563, -0.0011084441794082522, -0.0033345494884997606, 0.08436588943004608, 0.0019745659083127975, -0.10359813272953033, -0.015999523922801018, -0.04552242532372475, 0.060987457633018494, 0.002412277739495039, 0.21604856848716736, 0.09454852342605591, 0.09152952581644058, 0.19005250930786133, 0.144306018948555, -0.09353028237819672, 0.15010163187980652, -0.01882355287671089, -0.07022736966609955, 0.07029390335083008, -0.15525807440280914, 0.03939434513449669, 0.07204332202672958, -0.013013535179197788, 0.07688338309526443, 0.05256984010338783, 0.007636227644979954, 0.016843175515532494, 0.08558980375528336, -0.18378403782844543, -0.08152908086776733, -0.00014094417565502226, 0.13353484869003296, -0.06991426646709442, 0.16411612927913666, 0.19683444499969482, -0.026065759360790253, -0.000539549975655973, -0.032237693667411804, 0.06720958650112152, -0.006743275094777346, 0.10067025572061539, 0.05080628767609596, 0.0086217587813735, -0.08769474923610687, 0.1430661529302597, -0.010101772844791412, -0.1141788437962532, 0.0916590467095375, 0.0826023742556572, -0.14996613562107086, -0.12202286720275879, 0.023964814841747284, 0.1618262380361557, -0.0890309065580368, -0.0988476350903511, -0.08206700533628464, -0.043961815536022186, 0.0028594115283340216, 0.11056544631719589, 0.06771805137395859, 0.058908816426992416, 0.04826446250081062, -0.03687393292784691, -0.03838159143924713, 0.09636052697896957, 0.002095655305311084, 0.04153786599636078, -0.1641201674938202, 0.01803227700293064, -0.06699372082948685, 0.022872813045978546, -0.03284524008631706, 0.00014043753617443144, -0.094656802713871, -0.015391074120998383, -0.13772845268249512, 0.05119524151086807, -0.07904892414808273, -0.006582389120012522, 0.003349770326167345, -0.019518237560987473, -0.032693441957235336, 0.03900572657585144, -0.06107715889811516, -0.0029674868565052748, -0.0033723297528922558, 0.060838740319013596, -0.14508022367954254, -0.03563752770423889, 0.026685835793614388, -0.0602356493473053, 0.10527067631483078, 0.05882536247372627, -0.09235535562038422, 0.04691139981150627, -0.2578582167625427, 0.0012762608239427209, 0.08730833232402802, 0.00654486333951354, 0.011342515237629414, -0.03017067164182663, -0.038282085210084915, 0.1023748517036438, 0.009708136320114136, -0.003370575839653611, 0.09733690321445465, -0.06940408051013947, 0.008455825969576836, -0.0016402679029852152, -0.07479305565357208, -0.04915996640920639, -0.025011638179421425, 0.094852976500988, -0.05149269104003906, 0.19157584011554718, -0.05640061944723129, 0.013944297097623348, -0.1098521500825882, 0.004978389013558626, 0.03478221222758293, -0.11267978698015213, -0.15271024405956268, 0.013315471820533276, 0.02313411794602871, -0.07521727681159973, 0.14945167303085327, -0.02120889350771904, -0.0738113597035408, 0.022514116019010544, -0.05324291065335274, 0.03548852726817131, 0.03744302690029144, 0.2639003098011017, 0.04693932458758354, -0.03875821456313133, -0.14400425553321838, -0.009731089696288109, 0.077046237885952, 0.04796462878584862, 0.04366408288478851, 0.09657783806324005, -0.025555582717061043, 0.11761296540498734, -0.031729258596897125, -0.038839537650346756, -0.056385938078165054, -0.09047292917966843, -0.027113907039165497, 0.10148929059505463, 0.028638718649744987, 0.10534444451332092, 0.19678761065006256, -0.012583543546497822, -0.03264826536178589, -0.04261681064963341, -0.055770888924598694, -0.1554979383945465, -0.16600798070430756, -0.11169187724590302, -0.12280753254890442, -0.019264040514826775, -0.13787800073623657, 0.0008801236981526017, 0.04294765368103981, 0.03189080208539963, -0.031476449221372604, 0.11477455496788025, 0.04633210599422455, -0.04137377440929413, 0.022136403247714043, -0.015654757618904114, -0.035362012684345245, 0.027215028181672096, -0.08735587447881699, 0.002197680762037635, -0.0038769289385527372, 0.0054925428703427315, 0.0514347217977047, 0.048884205520153046, 0.09519997984170914, -0.10113347321748734, -0.09165646880865097, -0.03602803871035576, 0.03531775251030922, -0.0672605037689209, 0.07261601835489273, 0.05031057074666023, -0.011896485462784767, 0.09885941445827484, 0.19691558182239532, -0.06978566199541092, -0.12765130400657654, -0.12260597944259644, 0.14250272512435913, -0.008153000846505165, 0.06940965354442596, 0.0014205477200448513, -0.07223905622959137, -0.011392234824597836, 0.18304434418678284, 0.23879565298557281, -0.04110218584537506, 0.011852659285068512, -0.05177554860711098, 0.009451081044971943, -0.029953306540846825, 0.09321170300245285, 0.07394541054964066, 0.1255052387714386, -0.05256262421607971, -0.00809234008193016, -0.01744144782423973, -0.02067730389535427, -0.11835843324661255, 0.0022971087601035833, -0.03574593737721443, -0.05598248168826103, -0.02315850369632244, 0.08022388815879822, -0.08511489629745483, 0.013683567754924297, -0.11198356002569199, -0.07545514404773712, -0.04778355732560158, -0.014105579815804958, 0.12381225824356079, 0.038783106952905655, 0.04778657853603363, -0.030916444957256317, -0.015572253614664078, 0.09788905084133148, -0.018447188660502434, -0.14371612668037415, -0.0021738114301115274, -0.0032445674296468496, -0.13526563346385956, 0.15539899468421936, 0.02338695526123047, 0.07310400903224945, 0.1285136193037033, -0.008023242466151714, -0.11616656184196472, 0.07524941861629486, 0.057865507900714874, 0.060073502361774445, 0.03119310550391674, -0.054772522300481796, -0.04463985562324524, 0.054209399968385696, 0.07548242062330246, -0.05398344248533249, -0.011937076225876808, 0.1498079150915146, -0.039857517927885056, -0.06881596148014069, 0.017083790153265, -0.08495993167161942, 0.08473502844572067, 0.02919081039726734, -0.052795734256505966, 0.01340341567993164, -0.042939987033605576, 0.03644245117902756, 0.01053672470152378, -0.16333085298538208, -0.01842883974313736, -0.1376454383134842, -0.023032432422041893, 0.1000145822763443, 0.06577426195144653, -0.2272377610206604, 0.012318132445216179, -0.12505285441875458, 0.013685708865523338, -0.1532413363456726, 0.028061509132385254, 0.16398608684539795, 0.0005895367357879877, -0.04021761193871498, 0.021429773420095444, -0.004759679548442364, 0.08840639144182205, -0.017949199303984642, -0.12774060666561127 ]
null
null
transformers
<p align="center"> <img src="logo_en.png" width="400"/> <p> <p align="center"> <b><font size="6">InternLM-XComposer2</font></b> <p> <div align="center"> [💻Github Repo](https://github.com/InternLM/InternLM-XComposer) [Paper](https://arxiv.org/abs/2401.16420) </div> **InternLM-XComposer2** is a vision-language large model (VLLM) based on [InternLM2](https://github.com/InternLM/InternLM) for advanced text-image comprehension and composition. We release InternLM-XComposer2 series in two versions: - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks. - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*. This is the 4-bit version of InternLM-XComposer2-VL, install the latest version of [auto_gptq](https://github.com/AutoGPTQ/AutoGPTQ#quick-installation) before using. ## Quickstart We provide a simple example to show how to use InternLM-XComposer with 🤗 Transformers. ```python import torch, auto_gptq from transformers import AutoModel, AutoTokenizer from auto_gptq.modeling import BaseGPTQForCausalLM auto_gptq.modeling._base.SUPPORTED_MODELS = ["internlm"] torch.set_grad_enabled(False) class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM): layers_block_name = "model.layers" outside_layer_modules = [ 'vit', 'vision_proj', 'model.tok_embeddings', 'model.norm', 'output', ] inside_layer_modules = [ ["attention.wqkv.linear"], ["attention.wo.linear"], ["feed_forward.w1.linear", "feed_forward.w3.linear"], ["feed_forward.w2.linear"], ] # init model and tokenizer model = InternLMXComposer2QForCausalLM.from_quantized( 'internlm/internlm-xcomposer2-vl-7b-4bit', trust_remote_code=True, device="cuda:0").eval() tokenizer = AutoTokenizer.from_pretrained( 'internlm/internlm-xcomposer2-vl-7b-4bit', trust_remote_code=True) text = '<ImageHere>Please describe this image in detail.' image = 'examples/image1.webp' with torch.cuda.amp.autocast(): response, _ = model.chat(tokenizer, query=query, image=image, history=[], do_sample=False) print(response) #The image features a quote by Oscar Wilde, "Live life with no excuses, travel with no regrets." #The quote is displayed in white text against a dark background. In the foreground, there are two silhouettes of people standing on a hill at sunset. #They appear to be hiking or climbing, as one of them is holding a walking stick. #The sky behind them is painted with hues of orange and purple, creating a beautiful contrast with the dark figures. ``` ### Open Source License The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact [email protected].
{"license": "other", "pipeline_tag": "text-generation"}
text-generation
internlm/internlm-xcomposer2-vl-7b-4bit
[ "transformers", "internlm", "feature-extraction", "text-generation", "custom_code", "arxiv:2401.16420", "license:other", "region:us" ]
2024-02-06T12:15:29+00:00
[ "2401.16420" ]
[]
TAGS #transformers #internlm #feature-extraction #text-generation #custom_code #arxiv-2401.16420 #license-other #region-us
<p align="center"> <img src="logo_en.png" width="400"/> <p> <p align="center"> <b><font size="6">InternLM-XComposer2</font></b> <p> <div align="center"> Github Repo Paper </div> InternLM-XComposer2 is a vision-language large model (VLLM) based on InternLM2 for advanced text-image comprehension and composition. We release InternLM-XComposer2 series in two versions: - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks. - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*. This is the 4-bit version of InternLM-XComposer2-VL, install the latest version of auto_gptq before using. ## Quickstart We provide a simple example to show how to use InternLM-XComposer with Transformers. ### Open Source License The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL.
[ "## Quickstart\nWe provide a simple example to show how to use InternLM-XComposer with Transformers.", "### Open Source License\nThe code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL." ]
[ "TAGS\n#transformers #internlm #feature-extraction #text-generation #custom_code #arxiv-2401.16420 #license-other #region-us \n", "## Quickstart\nWe provide a simple example to show how to use InternLM-XComposer with Transformers.", "### Open Source License\nThe code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL." ]
[ 43, 25, 69 ]
[ "passage: TAGS\n#transformers #internlm #feature-extraction #text-generation #custom_code #arxiv-2401.16420 #license-other #region-us \n## Quickstart\nWe provide a simple example to show how to use InternLM-XComposer with Transformers.### Open Source License\nThe code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL." ]
[ -0.08756936341524124, -0.0028485830407589674, -0.004024135414510965, 0.021752646192908287, 0.13220921158790588, -0.006475231610238552, 0.295065313577652, 0.013772686943411827, 0.035488106310367584, -0.10704640299081802, 0.10654328018426895, 0.16667301952838898, -0.021706515923142433, -0.02013867162168026, -0.047512542456388474, -0.09537124633789062, -0.0003855245595332235, 0.025547174736857414, -0.18248078227043152, 0.005815023090690374, 0.12291298061609268, -0.028866594657301903, 0.0710623636841774, 0.0995275229215622, -0.15415839850902557, -0.02056426741182804, -0.03153044730424881, -0.06915642321109772, 0.056504324078559875, 0.08712305873632431, 0.04359427094459534, 0.08452147245407104, 0.01716490648686886, -0.12589502334594727, 0.011364951729774475, -0.05525403097271919, -0.03811866417527199, 0.034360188990831375, 0.01610218733549118, 0.0406612791121006, 0.174396812915802, 0.007824834436178207, -0.049263495951890945, 0.026318814605474472, -0.061144378036260605, -0.14038114249706268, 0.006465924438089132, -0.06900565326213837, 0.05547728016972542, 0.09213818609714508, 0.09184986352920532, 0.1414719521999359, -0.10840266942977905, 0.05115709826350212, 0.12146880477666855, -0.24545440077781677, -0.02933468110859394, 0.016744310036301613, 0.056246209889650345, -0.015576526522636414, 0.04288512468338013, 0.07291201502084732, 0.09672726690769196, -0.002888709306716919, 0.041821062564849854, -0.07758156210184097, -0.07191769778728485, 0.04885483160614967, -0.11778073757886887, -0.0013440664624795318, 0.2271943837404251, 0.003153145546093583, -0.0934506431221962, -0.04617222025990486, 0.03370395675301552, 0.13154563307762146, -0.06643016636371613, 0.039513297379016876, 0.08378806710243225, 0.05401499196887016, 0.06628312915563583, -0.13605794310569763, -0.10333112627267838, -0.07398135960102081, -0.010935647413134575, 0.15574848651885986, -0.0027143892366439104, 0.10036493092775345, -0.09760566800832748, -0.05849337577819824, 0.11687695980072021, -0.08498913794755936, -0.043811433017253876, -0.0698188915848732, 0.13062113523483276, -0.012936596758663654, -0.06502342224121094, -0.09097574651241302, 0.1643277406692505, 0.0931289792060852, 0.08068876713514328, -0.03930084407329559, 0.05457434430718422, 0.10403887927532196, 0.009828043170273304, 0.003887418657541275, 0.11355193704366684, 0.10762187093496323, 0.13017302751541138, -0.06792490929365158, 0.05224074423313141, -0.05004074424505234, -0.18011583387851715, -0.04726776108145714, -0.10638374835252762, 0.0936543196439743, 0.04118265211582184, 0.0043357862159609795, -0.019468756392598152, -0.05902004987001419, 0.08368659764528275, -0.035958390682935715, -0.002645270200446248, 0.001399970380589366, -0.03167266398668289, 0.048798561096191406, 0.09160443395376205, 0.026560772210359573, -0.022979622706770897, -0.1344383805990219, -0.016059599816799164, 0.04510250687599182, -0.08125229924917221, -0.07165086269378662, 0.03532439470291138, -0.009068304672837257, 0.07728507369756699, -0.13549640774726868, -0.1996365785598755, 0.00021520555310416967, 0.18605779111385345, 0.0428474135696888, -0.06846916675567627, -0.01749395951628685, 0.006045877933502197, -0.03261544182896614, -0.02175111137330532, -0.039357990026474, -0.05393459275364876, 0.005197721533477306, 0.021093962714076042, 0.05799880623817444, -0.2310994565486908, 0.04571021348237991, -0.11676033586263657, 0.00200208043679595, 0.03030109778046608, 0.023331545293331146, -0.06535039842128754, 0.11662676930427551, 0.004295466933399439, -0.006820507813245058, 0.04508589953184128, 0.06547132134437561, -0.02570025622844696, 0.05740775913000107, -0.02980455383658409, -0.06259284168481827, -0.02736988104879856, -0.08746408671140671, -0.28948459029197693, 0.0761645957827568, -0.027133753523230553, 0.1184568926692009, 0.020320933312177658, 0.044247567653656006, 0.12814614176750183, -0.1950075626373291, 0.09357305616140366, 0.10550934821367264, -0.10383356362581253, -0.2921410799026489, 0.08820758759975433, 0.11619528383016586, -0.10136939585208893, 0.030488146468997, -0.12769219279289246, 0.1598290503025055, -0.02017257921397686, -0.0634075328707695, -0.03935464844107628, -0.11306023597717285, -0.14618660509586334, 0.009647998958826065, 0.05341190844774246, 0.013122159987688065, 0.03127173334360123, 0.19010934233665466, 0.07202395051717758, 0.004543018527328968, -0.01669939234852791, -0.11243311315774918, 0.034185681492090225, -0.08760211616754532, -0.0042574177496135235, -0.11903756111860275, 0.05800364539027214, -0.003346479730680585, 0.027122972533106804, 0.15457762777805328, 0.15862306952476501, 0.010392711497843266, 0.042303092777729034, 0.08089154213666916, 0.0090776477009058, 0.06334803253412247, -0.010851636528968811, -0.031679749488830566, -0.16052772104740143, -0.0129507752135396, -0.030380984768271446, 0.07233353704214096, -0.13665162026882172, 0.041009146720170975, -0.07409664988517761, -0.05929199606180191, 0.009151888079941273, 0.10433419793844223, 0.021715624257922173, 0.04710852727293968, -0.06009196490049362, 0.01720816269516945, 0.08152169734239578, 0.12099508196115494, -0.12413282692432404, 0.056876081973314285, 0.05838595703244209, 0.16571615636348724, 0.10165359824895859, -0.2761167585849762, 0.024029385298490524, -0.08096273988485336, -0.043231625109910965, 0.05624351650476456, -0.0588190071284771, 0.09873715043067932, 0.09213250130414963, -0.027201058343052864, 0.09034767746925354, -0.04805323854088783, 0.04932469129562378, -0.03736993670463562, -0.1538648009300232, 0.012738739140331745, 0.06181097775697708, 0.2656213343143463, -0.04788139462471008, 0.05832498520612717, 0.20884232223033905, -0.11677432805299759, 0.11563281714916229, -0.09015563130378723, -0.008740461431443691, -0.07153241336345673, 0.05785354971885681, 0.059425968676805496, 0.03192628547549248, -0.1028926745057106, -0.031076878309249878, 0.04910031333565712, -0.07991675287485123, 0.06469327211380005, -0.13566818833351135, -0.05787346139550209, 0.08935102820396423, -0.02346249856054783, -0.07068119198083878, -0.04215299338102341, -0.07851812243461609, 0.009151259437203407, -0.036382921040058136, -0.08872688561677933, 0.08360757678747177, -0.03608845919370651, -0.08850271254777908, 0.09525749832391739, -0.016650181263685226, -0.08252623677253723, -0.2019529789686203, -0.0745055079460144, -0.06994850933551788, -0.010825482197105885, 0.07481099665164948, -0.053775228559970856, -0.0723060816526413, -0.032812636345624924, -0.036151207983493805, 0.05493883416056633, -0.01803574338555336, 0.09380082041025162, 0.10722337663173676, -0.041338611394166946, -0.14313621819019318, -0.0501503050327301, 0.01671002060174942, 0.009360249154269695, 0.025315245613455772, -0.09803285449743271, 0.12640909850597382, 0.07698281854391098, 0.032672297209501266, 0.021101731806993484, 0.05988907814025879, 0.21991920471191406, -0.012734534218907356, -0.07694040983915329, 0.27803900837898254, 0.05884891748428345, 0.026174504309892654, 0.024853304028511047, 0.1223134994506836, -0.044419120997190475, -0.0010305539472028613, -0.08537472784519196, -0.07325734943151474, -0.1881970912218094, -0.08135142177343369, -0.13838236033916473, -0.018153684213757515, -0.07073438167572021, 0.03297567740082741, 0.1155039519071579, 0.1179707795381546, 0.06356481462717056, 0.18697650730609894, -0.03166951239109039, 0.07236466556787491, 0.11408236622810364, 0.08363912999629974, 0.035403773188591, -0.14272746443748474, -0.014240847900509834, 0.10700182616710663, -0.0812811627984047, 0.2782100737094879, 0.08919297158718109, 0.22892625629901886, 0.1210043653845787, 0.03749088570475578, 0.07634580135345459, 0.14161522686481476, -0.07185209542512894, -0.0025888553354889154, -0.021345563232898712, -0.09000957012176514, -0.06678377091884613, 0.09582334011793137, -0.12654292583465576, -0.05255642160773277, -0.0135812908411026, 0.07256384193897247, 0.012459219433367252, 0.15938641130924225, -0.06528498977422714, -0.18559050559997559, 0.003722280729562044, -0.003680122783407569, 0.03170718252658844, 0.03475133329629898, 0.01180952601134777, -0.015468792989850044, -0.0546291247010231, 0.05928053334355354, 0.004571937490254641, 0.14697988331317902, 0.031247368082404137, 0.042739126831293106, -0.014438080601394176, -0.015003153122961521, 0.03891915827989578, 0.10680043697357178, -0.2787591218948364, 0.09983763843774796, 0.0551735982298851, 0.1016823872923851, -0.11625421792268753, 0.03244452923536301, 0.06581199169158936, 0.11970871686935425, 0.04361738637089729, -0.03083506040275097, -0.12088415771722794, -0.07838572561740875, -0.004185968078672886, 0.07687924057245255, -0.0279249120503664, 0.07426135241985321, 0.002700063632801175, -0.053089067339897156, 0.01653418131172657, 0.0419212244451046, 0.018260983750224113, -0.15541723370552063, -0.15136027336120605, -0.008419379591941833, 0.09255878627300262, -0.09691214561462402, -0.03643699735403061, 0.015808645635843277, 0.07807677984237671, 0.13028959929943085, 0.013355875387787819, -0.08232849091291428, -0.07460998743772507, -0.100925974547863, 0.009614446200430393, -0.08460166305303574, 0.06282416731119156, -0.02010929211974144, 0.006850195117294788, -0.013249032199382782, -0.14400839805603027, 0.03392715007066727, -0.09263793379068375, 0.033719778060913086, 0.02622959017753601, -0.057727377861738205, -0.018185850232839584, 0.04632292687892914, 0.049942225217819214, -0.02576764114201069, -0.1086403951048851, -0.12401924282312393, -0.03422963246703148, -0.01144960056990385, -0.0716569572687149, 0.005778925959020853, -0.10873117297887802, 0.00022288029140327126, 0.06983140110969543, -0.08576454967260361, 0.14747554063796997, 0.28207889199256897, 0.006022019777446985, 0.02210891991853714, 0.1718905121088028, -0.10854604840278625, -0.19830185174942017, -0.03183750435709953, -0.04202905297279358, 0.014040213078260422, 0.02342740073800087, -0.2110978215932846, 0.1391339898109436, 0.050287481397390366, -0.019459201022982597, 0.0412326417863369, -0.16500306129455566, -0.036438051611185074, 0.1478905826807022, 0.06040944904088974, 0.19939333200454712, -0.17621375620365143, -0.043834589421749115, -0.12296924740076065, -0.24943403899669647, 0.24421155452728271, -0.1421673595905304, 0.04975472763180733, -0.031071029603481293, -0.06857357919216156, 0.02325543202459812, -0.039324816316366196, 0.0934004932641983, -0.057980652898550034, 0.12880799174308777, -0.061355795711278915, -0.025406820699572563, 0.10634178668260574, -0.004769184160977602, 0.15858721733093262, -0.2225118726491928, 0.00947013683617115, -0.04046853259205818, -0.05668749660253525, -0.030625537037849426, 0.11192963272333145, 0.010068451054394245, -0.10285968333482742, -0.05687914043664932, -0.044983118772506714, -0.02908080630004406, 0.05812257528305054, 0.18605829775333405, 0.05866975709795952, -0.0957232266664505, 0.16314853727817535, 0.18685555458068848, -0.21461765468120575, 0.038656726479530334, -0.0559447817504406, -0.009224231354892254, 0.08826780319213867, -0.17345459759235382, 0.005565253552049398, 0.053461987525224686, 0.021055204793810844, 0.08752850443124771, 0.06673605740070343, 0.043092235922813416, 0.05409844592213631, 0.09423951059579849, -0.015167429111897945, -0.13767670094966888, -0.09350182861089706, 0.14041882753372192, 0.04251287505030632, 0.08536911755800247, 0.0817256048321724, -0.06314985454082489, 0.010020284913480282, 0.030036581680178642, 0.010230380110442638, -0.057046230882406235, -0.024704599753022194, 0.10401567071676254, -0.01404405664652586, -0.05678647756576538, -0.002976098330691457, 0.046810757368803024, -0.01639113761484623, -0.0210126806050539, 0.01522759348154068, -0.018908394500613213, -0.10266872495412827, 0.12666621804237366, 0.25350746512413025, -0.22108064591884613, -0.08787672966718674, -0.11036062240600586, -0.10508778691291809, -0.015968549996614456, -0.02258971519768238, 0.09763459861278534, -0.03782247006893158, 0.005033206660300493, 0.03502397984266281, -0.03941859304904938, 0.026729613542556763, -0.03416012227535248, 0.05005539208650589, -0.13702671229839325, 0.042983636260032654, -0.030757460743188858, 0.07537561655044556, -0.07234202325344086, -0.0007612267509102821, -0.0949840173125267, 0.03181344270706177, -0.23766116797924042, 0.05410957708954811, -0.10094652324914932, 0.03029877506196499, 0.007047658786177635, -0.003931737504899502, -0.0766584575176239, 0.09657731652259827, -0.11876413971185684, 0.019379213452339172, 0.031031757593154907, 0.07425510138273239, -0.07899900525808334, -0.05014178901910782, 0.041695691645145416, -0.03222724422812462, 0.009005025029182434, 0.013464493677020073, -0.0625295639038086, 0.014585616067051888, -0.12621377408504486, -0.018768249079585075, 0.06523898243904114, 0.07086845487356186, 0.061465322971343994, 0.007364818826317787, 0.013139832764863968, 0.11625435948371887, 0.007143560331314802, -0.021613171324133873, 0.035820238292217255, -0.07118389755487442, 0.01980774663388729, -0.028134332969784737, -0.07246115058660507, -0.037114955484867096, 0.017340894788503647, 0.16351136565208435, 0.10035121440887451, 0.21209603548049927, -0.019348522648215294, 0.062017135322093964, -0.08373551070690155, 0.031760115176439285, 0.00803741067647934, -0.042341914027929306, -0.10013008117675781, -0.1071677878499031, -0.02821412682533264, -0.052188996225595474, 0.2350364476442337, 0.04091678187251091, -0.0803670659661293, -0.01705241948366165, 0.09063161164522171, 0.13402824103832245, -0.008116904646158218, 0.1894616037607193, 0.06104796379804611, 0.10681872814893723, -0.03308780863881111, 0.02367829903960228, 0.10168632864952087, 0.009861052967607975, 0.05824602022767067, 0.08785653114318848, 0.014988677576184273, 0.05983271449804306, 0.11679902672767639, 0.03680361434817314, -0.03994400054216385, -0.011550508439540863, 0.14150215685367584, 0.11295421421527863, -0.06329274922609329, 0.17089274525642395, 0.10629773139953613, 0.0015211942372843623, 0.0250626802444458, 0.02861041948199272, -0.011320586316287518, -0.1310499906539917, -0.09867198765277863, -0.041748058050870895, -0.1498105674982071, -0.031071117147803307, -0.07357622683048248, -0.025845186784863472, 0.008427068591117859, -0.002676695352420211, 0.002594365505501628, 0.011914259754121304, -0.06853672116994858, 0.044416286051273346, -0.007038600742816925, -0.11813676357269287, -0.11455350369215012, -0.10348045825958252, 0.03477689251303673, -0.021898867562413216, -0.011788694187998772, -0.000024421831767540425, 0.06486351042985916, -0.018724462017416954, 0.05279357358813286, -0.032236579805612564, -0.08623006194829941, -0.04997602850198746, -0.023526787757873535, 0.010808848775923252, 0.05973020941019058, -0.006987003609538078, -0.010938305407762527, 0.06002781167626381, 0.0945955365896225, -0.010162774473428726, -0.19470739364624023, -0.09230270981788635, -0.032677553594112396, -0.10893131792545319, -0.00878712348639965, -0.03032669425010681, 0.015474440529942513, -0.017476467415690422, 0.2205713540315628, 0.17936676740646362, -0.11724603176116943, 0.016278130933642387, -0.052430689334869385, 0.00249010999687016, -0.10257511585950851, 0.1104276031255722, 0.01365804672241211, 0.26372024416923523, -0.053364187479019165, -0.08508016914129257, -0.12377253919839859, 0.02145642600953579, -0.14464117586612701, 0.07559223473072052, 0.043515127152204514, -0.06270787864923477, 0.03698689490556717, 0.06043078005313873, -0.16630150377750397, 0.03552011400461197, -0.05857931450009346, 0.05723216012120247, -0.054820794612169266, -0.060475852340459824, 0.062229886651039124, 0.01715436577796936, 0.07796419411897659, -0.08025014400482178, -0.020403984934091568, 0.04124316945672035, -0.028156032785773277, -0.2042326182126999, 0.027263175696134567, 0.19215573370456696, 0.019502347335219383, 0.11817659437656403, 0.03164299577474594, 0.10802985727787018, 0.0610288567841053, 0.03648212552070618, -0.08381669223308563, 0.0566367506980896, 0.008870172314345837, -0.10189187526702881, 0.08039487898349762, -0.1725825071334839, -0.07577619701623917, 0.0630170926451683, 0.02687830664217472, -0.06772495061159134, 0.04219876974821091, 0.17007237672805786, -0.04812159016728401, -0.08988434076309204, -0.07967772334814072, -0.11163611710071564, 0.046574823558330536, 0.04124652221798897, -0.02676507830619812, -0.09877800941467285, -0.05426670238375664, 0.10424622148275375, 0.0784808099269867, -0.10340818017721176, -0.10055214166641235, -0.06387302279472351, 0.015575462020933628, 0.05941186100244522, 0.031161198392510414, -0.042066656053066254, -0.07056699693202972, -0.0738600417971611, -0.024679211899638176, -0.056158725172281265, -0.03866036981344223, 0.26896971464157104, 0.0031801769509911537, -0.022047407925128937, -0.02817973494529724, -0.025034455582499504, -0.022221757099032402, -0.026728618890047073, -0.0840887650847435 ]
null
null
sentence-transformers
This is a ONNX export of [`sentence-transformers/all-distilroberta-v1`](https://huggingface.co/sentence-transformers/all-distilroberta-v1). The export was done using [HF Optimum](https://huggingface.co/docs/optimum/index): ```python from optimum.exporters.onnx import main_export main_export('sentence-transformers/all-distilroberta-v1', "./output", cache_dir='./cache', optimize='O1') ``` Please note, this ONNX model does not contain the mean pooling layer, it needs to be done in code afterwards or the embeddings won't work. Code like this: ```python #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) ``` See the example code from the original model in the "Usage (HuggingFace Transformers)" section.
{"language": "en", "license": "apache-2.0", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "datasets": ["s2orc", "flax-sentence-embeddings/stackexchange_xml", "MS_Marco", "gooaq", "yahoo_answers_topics", "code_search_net", "search_qa", "eli5", "snli", "multi_nli", "wikihow", "natural_questions", "trivia_qa", "embedding-data/sentence-compression", "embedding-data/flickr30k-captions", "embedding-data/altlex", "embedding-data/simple-wiki", "embedding-data/QQP", "embedding-data/SPECTER", "embedding-data/PAQ_pairs", "embedding-data/WikiAnswers"], "pipeline_tag": "sentence-similarity"}
sentence-similarity
textualization/all-distilroberta-v1
[ "sentence-transformers", "onnx", "roberta", "feature-extraction", "sentence-similarity", "en", "dataset:s2orc", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:MS_Marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:code_search_net", "dataset:search_qa", "dataset:eli5", "dataset:snli", "dataset:multi_nli", "dataset:wikihow", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/sentence-compression", "dataset:embedding-data/flickr30k-captions", "dataset:embedding-data/altlex", "dataset:embedding-data/simple-wiki", "dataset:embedding-data/QQP", "dataset:embedding-data/SPECTER", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/WikiAnswers", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-06T12:21:48+00:00
[]
[ "en" ]
TAGS #sentence-transformers #onnx #roberta #feature-extraction #sentence-similarity #en #dataset-s2orc #dataset-flax-sentence-embeddings/stackexchange_xml #dataset-MS_Marco #dataset-gooaq #dataset-yahoo_answers_topics #dataset-code_search_net #dataset-search_qa #dataset-eli5 #dataset-snli #dataset-multi_nli #dataset-wikihow #dataset-natural_questions #dataset-trivia_qa #dataset-embedding-data/sentence-compression #dataset-embedding-data/flickr30k-captions #dataset-embedding-data/altlex #dataset-embedding-data/simple-wiki #dataset-embedding-data/QQP #dataset-embedding-data/SPECTER #dataset-embedding-data/PAQ_pairs #dataset-embedding-data/WikiAnswers #license-apache-2.0 #endpoints_compatible #region-us
This is a ONNX export of 'sentence-transformers/all-distilroberta-v1'. The export was done using HF Optimum: Please note, this ONNX model does not contain the mean pooling layer, it needs to be done in code afterwards or the embeddings won't work. Code like this: See the example code from the original model in the "Usage (HuggingFace Transformers)" section.
[]
[ "TAGS\n#sentence-transformers #onnx #roberta #feature-extraction #sentence-similarity #en #dataset-s2orc #dataset-flax-sentence-embeddings/stackexchange_xml #dataset-MS_Marco #dataset-gooaq #dataset-yahoo_answers_topics #dataset-code_search_net #dataset-search_qa #dataset-eli5 #dataset-snli #dataset-multi_nli #dataset-wikihow #dataset-natural_questions #dataset-trivia_qa #dataset-embedding-data/sentence-compression #dataset-embedding-data/flickr30k-captions #dataset-embedding-data/altlex #dataset-embedding-data/simple-wiki #dataset-embedding-data/QQP #dataset-embedding-data/SPECTER #dataset-embedding-data/PAQ_pairs #dataset-embedding-data/WikiAnswers #license-apache-2.0 #endpoints_compatible #region-us \n" ]
[ 265 ]
[ "passage: TAGS\n#sentence-transformers #onnx #roberta #feature-extraction #sentence-similarity #en #dataset-s2orc #dataset-flax-sentence-embeddings/stackexchange_xml #dataset-MS_Marco #dataset-gooaq #dataset-yahoo_answers_topics #dataset-code_search_net #dataset-search_qa #dataset-eli5 #dataset-snli #dataset-multi_nli #dataset-wikihow #dataset-natural_questions #dataset-trivia_qa #dataset-embedding-data/sentence-compression #dataset-embedding-data/flickr30k-captions #dataset-embedding-data/altlex #dataset-embedding-data/simple-wiki #dataset-embedding-data/QQP #dataset-embedding-data/SPECTER #dataset-embedding-data/PAQ_pairs #dataset-embedding-data/WikiAnswers #license-apache-2.0 #endpoints_compatible #region-us \n" ]
[ -0.06802976131439209, 0.17673194408416748, -0.008615069091320038, 0.06200408935546875, 0.060503389686346054, 0.05152559280395508, 0.08384609967470169, 0.20838454365730286, -0.0158202163875103, 0.10462194681167603, 0.07733190059661865, 0.13817502558231354, 0.10472114384174347, 0.12966527044773102, -0.04429925978183746, -0.1575314998626709, 0.02980320155620575, 0.008936244063079357, -0.023125212639570236, 0.10684477537870407, 0.11619414389133453, -0.06770600378513336, 0.09050443023443222, -0.004516224842518568, -0.06185830757021904, -0.0013012238778173923, -0.015577216632664204, -0.051201753318309784, 0.0443684421479702, 0.041666727513074875, -0.004364512860774994, 0.05348467826843262, 0.012352019548416138, -0.2994917333126068, 0.048235487192869186, 0.05120871961116791, -0.036027345806360245, 0.05405885726213455, 0.07319725304841995, -0.061167437583208084, -0.039269912987947464, -0.1258465200662613, 0.040414512157440186, 0.0897284746170044, -0.12136677652597427, -0.08801310509443283, -0.09402123838663101, -0.06111869588494301, 0.0566985122859478, 0.06438916176557541, -0.09285935759544373, 0.050883468240499496, -0.08433008193969727, 0.09511414915323257, 0.19303736090660095, -0.22340670228004456, -0.02817264012992382, -0.011635560542345047, 0.09263409674167633, 0.07319609075784683, -0.06250148266553879, -0.01129675842821598, -0.03541398420929909, 0.03632199391722679, -0.005278346128761768, -0.05414186790585518, -0.1355172097682953, 0.04541030526161194, -0.054513584822416306, 0.015979183837771416, 0.24866247177124023, 0.04806175082921982, 0.03250845521688461, -0.13926957547664642, -0.06386837363243103, -0.006404684390872717, -0.048706166446208954, 0.06218316778540611, -0.027770861983299255, -0.0015350894536823034, -0.055016741156578064, -0.004195890389382839, -0.06131972745060921, -0.005289485678076744, -0.0948987677693367, -0.10304497927427292, 0.01768009550869465, -0.0017931584734469652, -0.09909158200025558, 0.025449182838201523, 0.012759456411004066, -0.15295761823654175, -0.02029140293598175, -0.05656665936112404, -0.11271509528160095, 0.04308491200208664, -0.029430750757455826, -0.04722775146365166, 0.15358074009418488, 0.12459476292133331, 0.07683810591697693, 0.0839916244149208, -0.027007263153791428, 0.028387824073433876, 0.07032064348459244, 0.07564439624547958, -0.08332298696041107, -0.13470682501792908, -0.007584915496408939, 0.021997183561325073, -0.09488752484321594, -0.04616556689143181, -0.03611612319946289, 0.015791328623890877, -0.013735798187553883, 0.061216261237859726, 0.16693159937858582, 0.02809765376150608, -0.08788774907588959, -0.0510694719851017, 0.007619507610797882, -0.09026443958282471, 0.021116698160767555, 0.04642497003078461, 0.0032818091567605734, 0.013937385752797127, 0.007593335583806038, 0.038984186947345734, -0.0613495372235775, 0.0029675683472305536, -0.08289286494255066, -0.004251989535987377, 0.025198640301823616, -0.07009915262460709, 0.055324096232652664, -0.09705015271902084, 0.003404809394851327, -0.05688806623220444, -0.12031511217355728, -0.04137871041893959, -0.0016739354468882084, -0.05980224162340164, -0.054963208734989166, -0.03348095342516899, -0.006322448141872883, 0.04124138876795769, -0.012657568790018559, 0.07310374826192856, -0.062402285635471344, 0.06913664937019348, -0.02091996558010578, 0.07115963101387024, 0.046070944517850876, 0.06110021099448204, -0.08505398035049438, -0.008434324525296688, -0.058325838297605515, 0.12533356249332428, -0.08531004190444946, 0.0004038685583509505, -0.14770062267780304, -0.041735317558050156, 0.05923319235444069, 0.015898413956165314, 0.0029898181091994047, 0.17936736345291138, -0.26166093349456787, -0.04065561667084694, 0.2132994830608368, 0.02021542750298977, -0.18381476402282715, 0.06824007630348206, -0.034808360040187836, 0.02788737416267395, 0.032513029873371124, 0.19456472992897034, 0.054538544267416, -0.09514693915843964, -0.08484657108783722, 0.03520018234848976, 0.06799156218767166, 0.07614489644765854, 0.10897569358348846, -0.045953765511512756, 0.11586777120828629, 0.030415719375014305, -0.005763072986155748, 0.017251987010240555, -0.042532410472631454, -0.10716304928064346, -0.04842227324843407, -0.03824254870414734, -0.014085081405937672, -0.0350855216383934, -0.054710328578948975, -0.010517408140003681, -0.06988316774368286, -0.03591510280966759, 0.05348017066717148, -0.04419948160648346, 0.04074382036924362, -0.1138552874326706, 0.0635601133108139, -0.016379717737436295, 0.02770485170185566, -0.17115174233913422, -0.1423826515674591, -0.02004578523337841, -0.010730319656431675, 0.06430985033512115, -0.08458130806684494, 0.039110198616981506, -0.04193319007754326, -0.04647767171263695, -0.045422881841659546, 0.027544520795345306, 0.019202610477805138, -0.05959669500589371, -0.1804170310497284, 0.025274893268942833, -0.058309156447649, 0.13213539123535156, 0.008100190199911594, 0.01410617958754301, 0.041031308472156525, 0.13040314614772797, 0.024957692250609398, -0.04188062995672226, 0.0340471975505352, -0.0052222297526896, 0.0038125019054859877, -0.012911642901599407, 0.038044385612010956, -0.013956873677670956, -0.08502689003944397, 0.06710343807935715, -0.08408761769533157, -0.010692305862903595, 0.09139131009578705, 0.024956323206424713, 0.029362289234995842, -0.09884902834892273, -0.035533733665943146, -0.014982647262513638, -0.10127510875463486, -0.07723496109247208, 0.06472763419151306, 0.05254466459155083, 0.050285644829273224, -0.0956977978348732, -0.049273841083049774, 0.01172690000385046, -0.007142013870179653, -0.04207221418619156, 0.14929230511188507, 0.03446795418858528, -0.06784309446811676, 0.12667499482631683, 0.1337471753358841, 0.06609290093183517, 0.08708470314741135, -0.0703684538602829, -0.08286138623952866, -0.042665597051382065, -0.006547905039042234, -0.00934380292892456, 0.07197948545217514, -0.10881450027227402, 0.040287427604198456, 0.12367410212755203, 0.017188677564263344, 0.022773653268814087, -0.04805394634604454, -0.04120189696550369, -0.028829900547862053, -0.03118062950670719, -0.056246113032102585, 0.04252564534544945, 0.07069239020347595, 0.09473197162151337, -0.003958752378821373, 0.056307289749383926, -0.01879814825952053, -0.03219688683748245, -0.09733552485704422, 0.15812528133392334, -0.20508137345314026, -0.18752621114253998, -0.06752578169107437, -0.132497638463974, -0.11149129271507263, -0.08102575689554214, 0.12033713608980179, -0.16779929399490356, -0.02142225205898285, -0.04829186946153641, 0.048378169536590576, 0.022468237206339836, -0.017620498314499855, -0.05682721734046936, 0.023481449112296104, 0.045879460871219635, -0.12259546667337418, -0.00038301324821077287, 0.04221919924020767, 0.029353192076086998, 0.08822762221097946, 0.0029401706997305155, 0.10835624486207962, 0.07338428497314453, 0.06956943869590759, 0.04963229224085808, -0.020227674394845963, 0.329662561416626, -0.10062825679779053, 0.08591751754283905, 0.15047170221805573, -0.0025147392880171537, 0.051008254289627075, 0.1567135751247406, 0.023222507908940315, -0.06169417127966881, 0.02756434865295887, 0.12508819997310638, 0.009083467535674572, -0.2880750894546509, -0.08263648301362991, -0.05230386555194855, 0.06915894150733948, 0.04445068538188934, 0.049320437014102936, -0.01802724227309227, 0.057096678763628006, -0.032923623919487, -0.10028550028800964, 0.051630761474370956, 0.03310641646385193, 0.1028519868850708, -0.005602818913757801, 0.11895821988582611, -0.02255128137767315, -0.01715252362191677, 0.07517987489700317, 0.1159197986125946, 0.16741396486759186, -0.007071949075907469, 0.12469746172428131, 0.07719589024782181, 0.11947017908096313, -0.02004172094166279, 0.018281973898410797, -0.0034996920730918646, 0.030489666387438774, 0.00462624616920948, -0.0821281149983406, 0.03711053356528282, 0.03793108090758324, 0.09339917451143265, -0.09309042990207672, -0.026887692511081696, 0.03227787837386131, 0.1180335059762001, 0.14629331231117249, 0.09684216231107712, -0.11829832941293716, 0.03067593090236187, 0.07346460968255997, -0.012038169428706169, -0.09197188168764114, 0.04220854118466377, 0.013643867336213589, -0.12659874558448792, 0.06766220182180405, -0.04170844331383705, 0.16284385323524475, -0.042397383600473404, -0.018176984041929245, 0.023933958262205124, 0.003876276081427932, -0.01089383289217949, 0.07092470675706863, -0.2309822291135788, 0.15376350283622742, 0.06261808425188065, 0.001005623140372336, -0.05135446786880493, 0.0382005050778389, 0.017615647986531258, -0.02041778154671192, 0.20298653841018677, 0.011679103597998619, -0.0782567709684372, -0.06452018022537231, -0.0994376465678215, 0.08027669042348862, 0.06443671882152557, -0.02334117703139782, 0.06314139813184738, -0.00016191747272387147, -0.002475625602528453, -0.008510208688676357, 0.08011672645807266, -0.12351708859205246, -0.18732939660549164, 0.026219863444566727, 0.023416981101036072, 0.014065192081034184, -0.030820010229945183, -0.01566261239349842, -0.1098644807934761, 0.09997480362653732, -0.10772205889225006, -0.08005856722593307, -0.1324857473373413, 0.0303505752235651, 0.13423848152160645, -0.08101840317249298, -0.01801878586411476, -0.04503538832068443, 0.08439455926418304, -0.03130410611629486, -0.11918974667787552, 0.05554964765906334, -0.06642981618642807, -0.09310294687747955, -0.08490458130836487, 0.08982443809509277, 0.0424952432513237, 0.05556098744273186, 0.0011223609326407313, 0.024663010612130165, -0.08052359521389008, -0.08249178528785706, 0.051541831344366074, 0.03529214486479759, 0.09212718158960342, 0.06269817799329758, -0.10680330544710159, 0.011675095185637474, -0.09745821356773376, -0.029948025941848755, 0.1972600519657135, 0.17720927298069, -0.05916156619787216, 0.12129880487918854, 0.09835904836654663, -0.06624680012464523, -0.21320867538452148, -0.03658930957317352, 0.0005470984033308923, -0.009057529270648956, 0.09600052237510681, -0.1957239806652069, 0.14030683040618896, 0.06526405364274979, 0.021264448761940002, -0.07202384620904922, -0.24531595408916473, -0.0882425308227539, 0.08558998256921768, 0.009350994601845741, -0.0713324025273323, -0.15055233240127563, -0.06435656547546387, -0.03951048478484154, -0.21186083555221558, 0.09973232448101044, -0.12043947726488113, 0.05882660299539566, -0.0075195119716227055, 0.08745882660150528, 0.019076252356171608, 0.008811629377305508, 0.19157300889492035, 0.061244864016771317, -0.048399679362773895, -0.017710747197270393, 0.00401969812810421, 0.03448827564716339, -0.017385762184858322, 0.021373532712459564, -0.14519627392292023, 0.06596872210502625, -0.2384195774793625, 0.017662404105067253, -0.09490308910608292, 0.014653452672064304, -0.05177847668528557, -0.04189746826887131, -0.06410621106624603, 0.02868444100022316, 0.12475686520338058, -0.01383319590240717, 0.13649903237819672, -0.07377717643976212, 0.02710314840078354, 0.07543153315782547, 0.08508345484733582, -0.01748870685696602, -0.1959194839000702, -0.03061874955892563, -0.03218346834182739, -0.004804566968232393, -0.16493414342403412, 0.05680330470204353, 0.12518484890460968, -0.012196879833936691, 0.11606468260288239, 0.04355677589774132, -0.057986531406641006, 0.017025938257575035, 0.0709763690829277, -0.06715330481529236, -0.08965998142957687, -0.002311551943421364, -0.009881892241537571, -0.16973896324634552, -0.07779122143983841, 0.13507325947284698, 0.11618993431329727, -0.06010547652840614, 0.017105285078287125, 0.0954023078083992, -0.02700996771454811, 0.1783258616924286, 0.06120399013161659, 0.04962105676531792, -0.1584794670343399, 0.08953461050987244, 0.05637984350323677, -0.09705866873264313, 0.029943665489554405, 0.10890449583530426, -0.0677463486790657, -0.06367582082748413, 0.06168944761157036, 0.13363555073738098, -0.014438417740166187, -0.005116401705890894, -0.0399852991104126, -0.10846935212612152, 0.07146130502223969, 0.0799957811832428, -0.011150642298161983, -0.003326820209622383, 0.03108714148402214, -0.055383794009685516, -0.019535521045327187, 0.1542196422815323, 0.0769982635974884, 0.029261400923132896, -0.06518875807523727, -0.07494478672742844, -0.04578718543052673, 0.13729842007160187, 0.00012082232569810003, 0.005202953238040209, -0.10258442908525467, 0.008806196041405201, -0.09242109209299088, -0.0046130274422466755, -0.14037548005580902, 0.0022285718005150557, -0.022038478404283524, -0.03989078104496002, -0.03890814259648323, -0.029177391901612282, -0.04020309820771217, -0.067873515188694, -0.03440943360328674, 0.14195096492767334, -0.14717642962932587, -0.023642465472221375, 0.050136953592300415, -0.06843521445989609, 0.12932343780994415, 0.031875185668468475, -0.06839879602193832, 0.010558414272964, -0.043838635087013245, -0.04983989894390106, -0.011678008362650871, 0.07271024584770203, 0.05787445232272148, -0.11131686717271805, 0.040582746267318726, -0.042203888297080994, -0.058709852397441864, 0.052331775426864624, 0.0698884055018425, -0.09720897674560547, 0.04505918547511101, -0.09766911715269089, -0.016244010999798775, -0.08869745582342148, 0.026446467265486717, 0.1297212839126587, 0.01848425343632698, 0.10023140162229538, -0.03185150772333145, 0.1028342992067337, -0.18754734098911285, 0.00361722894012928, 0.029953623190522194, -0.06727807968854904, 0.08496948331594467, -0.05403861775994301, 0.09139063954353333, -0.03993050009012222, 0.19196738302707672, -0.01853187382221222, -0.02454291470348835, 0.06181582808494568, 0.0869770497083664, -0.009201308712363243, 0.021656671538949013, 0.1149672344326973, 0.017852382734417915, -0.043515242636203766, 0.007882798090577126, 0.009709430858492851, -0.010161521844565868, 0.1481577306985855, 0.0759783610701561, 0.14731504023075104, 0.1623333841562271, 0.02598784863948822, 0.04123874008655548, -0.06512349843978882, 0.029766086488962173, 0.12107755243778229, -0.027759360149502754, 0.047014277428388596, -0.0119221992790699, 0.039475686848163605, 0.0885399654507637, -0.12432853877544403, 0.08836676925420761, -0.040814489126205444, -0.07639572024345398, -0.11868678033351898, -0.03384565934538841, -0.09233596175909042, -0.05974500998854637, 0.025625944137573242, -0.184402197599411, 0.029926268383860588, 0.054505690932273865, 0.0124147217720747, -0.012535464949905872, 0.09910638630390167, 0.001465479377657175, -0.0811677873134613, 0.05577917397022247, 0.02699759416282177, 0.026428326964378357, 0.00044288745266385376, 0.03914384916424751, 0.08348071575164795, 0.03209500014781952, 0.03128567337989807, 0.06834006309509277, -0.030166948214173317, 0.06351860612630844, -0.16677719354629517, -0.10920639336109161, -0.03485716134309769, -0.02047554776072502, -0.04678907245397568, 0.2002648413181305, 0.06340745836496353, 0.028074901551008224, 0.028913423418998718, 0.17456403374671936, -0.017627084627747536, -0.043638925999403, -0.17921555042266846, -0.08659639954566956, -0.009705394506454468, 0.02200583554804325, 0.050201788544654846, -0.094376340508461, -0.08111677318811417, 0.22150571644306183, 0.15300413966178894, -0.09787378460168839, 0.001166600501164794, 0.07849891483783722, 0.015321009792387486, 0.002035975456237793, 0.007300127297639847, 0.06300784647464752, 0.16689777374267578, -0.048694200813770294, 0.02619037963449955, -0.05345568433403969, -0.09453418850898743, -0.08022384345531464, 0.027568496763706207, 0.07744503021240234, -0.02128005027770996, 0.007649591658264399, 0.1427849680185318, -0.12931221723556519, -0.01527725625783205, 0.012042410671710968, -0.15160591900348663, -0.14526645839214325, -0.06295649707317352, 0.0820922702550888, 0.04784257709980011, 0.013428330421447754, 0.011862829327583313, -0.0017514429055154324, 0.14512582123279572, 0.011881283484399319, -0.04427033290266991, -0.03988674283027649, 0.05335249751806259, -0.1869775652885437, 0.12490098923444748, 0.009646681137382984, 0.05489807948470116, 0.11811302602291107, -0.015753816813230515, -0.09505312144756317, 0.04396417737007141, 0.0814770758152008, -0.013096265494823456, 0.011425256729125977, 0.08501644432544708, 0.00031729883630760014, 0.04772626608610153, 0.12604503333568573, -0.030230529606342316, 0.05010870844125748, 0.044431835412979126, 0.015292671509087086, -0.06816472113132477, 0.09034015238285065, -0.07948452979326248, 0.09047532081604004, 0.09682364016771317, -0.04713395610451698, 0.005688593722879887, -0.041125886142253876, 0.011911492794752121, 0.04080325365066528, 0.07478773593902588, -0.016978446394205093, -0.1328073889017105, 0.016466049477458, 0.029334839433431625, 0.05529394373297691, -0.19930270314216614, -0.0575135163962841, 0.01462327316403389, -0.030188918113708496, -0.05511177331209183, 0.16261246800422668, 0.10899917781352997, -0.048366349190473557, -0.04424365609884262, -0.12556470930576324, 0.04602627456188202, 0.12422024458646774, -0.11147242039442062, -0.05105419456958771 ]
null
null
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="tatlook/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
tatlook/q-FrozenLake-v1-4x4-noSlippery
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-06T12:26:08+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 40, 39 ]
[ "passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 0.04578453302383423, -0.08074592798948288, -0.00430759321898222, 0.10720831900835037, 0.05034215748310089, -0.040469273924827576, 0.11997015029191971, 0.018999949097633362, 0.20601962506771088, -0.010012076236307621, 0.1455274522304535, 0.007022971753031015, -0.006192410364747047, 0.1867983490228653, 0.04572829231619835, -0.26324528455734253, 0.01831899583339691, -0.09495259821414948, -0.07281816750764847, 0.11870454251766205, 0.05470194295048714, -0.01901467889547348, -0.0007633853238075972, 0.056141503155231476, -0.0673527717590332, 0.0007737681735306978, 0.031996939331293106, -0.012976245954632759, 0.19804789125919342, -0.02254498563706875, 0.06641989201307297, 0.054705578833818436, 0.0758768692612648, -0.1998077929019928, 0.0358855277299881, -0.04215473681688309, -0.09439758956432343, -0.03934839740395546, -0.018780618906021118, 0.05878105387091637, 0.053356342017650604, 0.03858819976449013, 0.058354366570711136, 0.09384993463754654, -0.0773480236530304, 0.04328357055783272, 0.04280758649110794, 0.024811049923300743, 0.04589218273758888, -0.0237203948199749, -0.027002155780792236, 0.08246652781963348, -0.22182892262935638, 0.10318073630332947, -0.010159241035580635, -0.5270710587501526, -0.00633762264624238, 0.24088262021541595, 0.11517096310853958, 0.05707438662648201, -0.06903956830501556, 0.10566288232803345, 0.03913382440805435, -0.007209456991404295, 0.03210983797907829, 0.02150118350982666, 0.12817370891571045, 0.06009242683649063, -0.09581366181373596, 0.040699947625398636, 0.13722525537014008, 0.012822695076465607, 0.020306183025240898, -0.08888901025056839, 0.0410032719373703, -0.03461858257651329, -0.007679527159780264, -0.09758518636226654, 0.05478060990571976, 0.012466507963836193, -0.0934976264834404, -0.09247440844774246, -0.04236573353409767, -0.06708304584026337, 0.11252415925264359, 0.046419668942689896, -0.0874939113855362, 0.03884070739150047, -0.06760413944721222, 0.05918780341744423, -0.16863860189914703, 0.02074250765144825, -0.06627868115901947, -0.09376336634159088, -0.11799788475036621, -0.01683047041296959, -0.07946427166461945, 0.009092256426811218, 0.056664444506168365, 0.1447116881608963, 0.22076484560966492, 0.06690320372581482, 0.09728849679231644, 0.07456006109714508, 0.06531001627445221, 0.1538129299879074, 0.10918238013982773, 0.019075315445661545, -0.015266558155417442, 0.0948706716299057, -0.06445580720901489, -0.1351388692855835, -0.15579092502593994, 0.005488025024533272, 0.0983937531709671, 0.08871900290250778, -0.044080477207899094, -0.006702381651848555, -0.024641724303364754, 0.08566431701183319, -0.11314457654953003, -0.024612564593553543, -0.002267979085445404, 0.06882024556398392, -0.024801667779684067, 0.020378148183226585, -0.06242705136537552, 0.12715265154838562, 0.04222423583269119, -0.059924717992544174, -0.055308472365140915, -0.03053177334368229, -0.014276440255343914, -0.027539284899830818, 0.02446848154067993, -0.07659092545509338, 0.04767750948667526, -0.16766095161437988, -0.042871296405792236, -0.04784649610519409, 0.025697942823171616, -0.03907240927219391, -0.13557587563991547, -0.17699143290519714, -0.048906855285167694, -0.022438718006014824, 0.03549358621239662, -0.038111843168735504, 0.006551501806825399, -0.006318534724414349, -0.1583600640296936, 0.09783563017845154, 0.09784027189016342, -0.03643378987908363, -0.02749447710812092, 0.056263517588377, -0.07194498926401138, 0.1561182290315628, -0.21054518222808838, -0.054014235734939575, -0.044764336198568344, -0.06595750898122787, 0.19673264026641846, 0.012690845876932144, -0.01202624011784792, 0.19873127341270447, -0.29073721170425415, -0.06078760325908661, 0.12533614039421082, -0.07834373414516449, -0.0936407670378685, 0.06941844522953033, -0.04206686094403267, 0.023345354944467545, 0.046047765761613846, 0.36345911026000977, -0.02069227211177349, -0.16197136044502258, -0.021782705560326576, 0.13971707224845886, -0.1184760183095932, 0.059895481914281845, 0.04240793362259865, 0.12543781101703644, -0.04250509291887283, -0.018672896549105644, -0.09023164212703705, 0.05999075248837471, -0.05241934582591057, -0.09016361832618713, -0.03393383324146271, -0.07645075023174286, 0.13294468820095062, -0.0629684180021286, 0.05601520463824272, -0.03255095332860947, -0.07133250683546066, -0.050324998795986176, -0.016492370516061783, 0.04460815340280533, 0.05951254442334175, -0.12794871628284454, 0.11029167473316193, 0.13025271892547607, -0.0006193425506353378, -0.07498852163553238, -0.17872096598148346, 0.003240168560296297, 0.009576505981385708, 0.039837226271629333, 0.17141658067703247, 0.12209978699684143, 0.033295199275016785, 0.008770671673119068, -0.06389404833316803, -0.18276847898960114, 0.058129217475652695, -0.056212130934000015, -0.14230976998806, -0.052409034222364426, -0.0728459507226944, 0.017381802201271057, -0.0859743058681488, -0.017379917204380035, 0.021926190704107285, 0.006908397190272808, 0.02990424446761608, -0.026645656675100327, -0.049561817198991776, 0.021254703402519226, 0.06490101665258408, -0.0037617047782987356, 0.12023693323135376, 0.008277264423668385, -0.18308481574058533, 0.07930773496627808, 0.08478537946939468, 0.09196605533361435, 0.013250201940536499, 0.02685922384262085, -0.021522263064980507, -0.08061408251523972, -0.054420311003923416, 0.02957955375313759, 0.11417073011398315, 0.1317172348499298, 0.2361993044614792, 0.08753683418035507, 0.04697408527135849, -0.02164587564766407, -0.016415923833847046, 0.002810494042932987, -0.06318057328462601, -0.029935607686638832, 0.10614971816539764, 0.05865858122706413, -0.067733034491539, -0.04576427489519119, 0.09590928256511688, 0.02732124738395214, 0.21205885708332062, -0.03342745825648308, 0.01286078616976738, -0.10957037657499313, -0.06550975888967514, -0.031982194632291794, 0.09201868623495102, 0.09498392790555954, 0.009755023755133152, -0.022056059911847115, -0.04259001836180687, 0.0012916827108711004, -0.1334889680147171, -0.10375088453292847, 0.026475343853235245, 0.013400445692241192, -0.11206940561532974, 0.11674030870199203, -0.11352457851171494, 0.039504457265138626, 0.06024791672825813, -0.13837239146232605, 0.04428480193018913, -0.029713207855820656, -0.07886212319135666, 0.16866780817508698, -0.11075661331415176, -0.094340018928051, -0.08831550180912018, 0.004082420375198126, 0.0075836325995624065, -0.03922267258167267, -0.009283260442316532, -0.19952571392059326, -0.005375816952437162, -0.03544965013861656, 0.013616434298455715, -0.06988783925771713, -0.11287739872932434, -0.010957922786474228, 0.07084179669618607, -0.043388739228248596, -0.07803605496883392, 0.007967432029545307, -0.08923084288835526, -0.10623309016227722, 0.028189711272716522, 0.019765101373195648, -0.022883659228682518, 0.16152891516685486, 0.01816628873348236, 0.05626589432358742, -0.03298520669341087, 0.30665266513824463, -0.038163769990205765, 0.08371731638908386, -0.02993497997522354, -0.07433546334505081, 0.06130730360746384, -0.022327827289700508, 0.06086638569831848, -0.020221687853336334, -0.02362890914082527, 0.0077952733263373375, -0.08579335361719131, -0.18365982174873352, -0.05417544022202492, 0.03724347800016403, 0.195254847407341, 0.031118987128138542, 0.01910330168902874, -0.0488768145442009, -0.010547760874032974, 0.1665220558643341, -0.10005921125411987, 0.04030545800924301, -0.05366240441799164, 0.11506262421607971, -0.08640182018280029, 0.06195629760622978, 0.020486772060394287, 0.04266135022044182, -0.04877188801765442, 0.09486009180545807, 0.0826394334435463, 0.1121082529425621, -0.02206910029053688, 0.046257395297288895, 0.019012698903679848, 0.07383184134960175, 0.11073657125234604, 0.0368414968252182, -0.0729052945971489, 0.001982470043003559, -0.006313489284366369, -0.039427030831575394, 0.11933320760726929, 0.17963355779647827, -0.11991413682699203, -0.05106910318136215, 0.27167606353759766, 0.0031242913100868464, 0.19481229782104492, -0.01315275114029646, 0.043591804802417755, -0.04484925419092178, 0.04572054371237755, -0.05338600277900696, -0.04086209088563919, 0.2094656229019165, 0.08045925945043564, -0.17165091633796692, -0.08549032360315323, -0.05912299454212189, 0.07081323862075806, 0.10728751868009567, 0.0013539529172703624, -0.04156802222132683, 0.0004610282776411623, 0.0014198932331055403, 0.08339415490627289, -0.14520122110843658, 0.11816094070672989, -0.03172019124031067, 0.05612684786319733, 0.017555562779307365, -0.045326150953769684, 0.04264266416430473, 0.07474290579557419, 0.26618310809135437, 0.0904107540845871, -0.040318213403224945, -0.0892091691493988, -0.12260187417268753, 0.010461576282978058, 0.029102616012096405, -0.03534553572535515, 0.0037547778338193893, -0.020087555050849915, 0.0318896509706974, 0.008264793083071709, 0.016230624169111252, -0.08987458795309067, -0.03175399824976921, -0.027736429125070572, -0.023839212954044342, 0.10733365267515182, -0.09495144337415695, -0.1444292515516281, -0.15713949501514435, 0.04191131144762039, -0.0766405463218689, -0.056593164801597595, -0.054507751017808914, -0.05239389091730118, -0.0311186034232378, -0.03773957118391991, 0.09099467098712921, -0.0021037792321294546, 0.14807306230068207, -0.1920108050107956, -0.04220759496092796, 0.051812779158353806, -0.07607918977737427, -0.08729588985443115, 0.03410962224006653, 0.12136995792388916, 0.05116051807999611, 0.11504370719194412, 0.013609255664050579, 0.09567681699991226, 0.0045484392903745174, -0.06713183224201202, 0.15302421152591705, -0.14069625735282898, -0.27875974774360657, -0.03836318850517273, 0.016946332529187202, 0.1615200787782669, -0.05613167956471443, 0.031766023486852646, 0.3335736393928528, 0.27782970666885376, -0.1428707242012024, 0.25916144251823425, 0.019178593531250954, 0.004398873541504145, -0.19130495190620422, -0.10125631093978882, 0.025324683636426926, 0.04740457236766815, 0.12032642960548401, -0.14564448595046997, -0.010732659138739109, -0.04543145373463631, -0.025908485054969788, 0.10386138409376144, -0.12300799041986465, -0.07263197749853134, 0.07765276730060577, 0.039809420704841614, 0.1808302253484726, 0.03932500258088112, 0.0014799144119024277, 0.13626977801322937, 0.06612244248390198, 0.019124457612633705, 0.05216038227081299, 0.08028066903352737, -0.018944554030895233, 0.14207926392555237, 0.05448179319500923, -0.02551644667983055, 0.052681710571050644, -0.0054580713622272015, -0.03219012916088104, 0.015605825930833817, -0.183198019862175, -0.10147556662559509, -0.0561356320977211, -0.10798973590135574, -0.04978342354297638, 0.056853994727134705, -0.12395523488521576, -0.007896827533841133, -0.03841273859143257, 0.03718273714184761, -0.07831971347332001, -0.09360362589359283, -0.036494381725788116, 0.1351792961359024, 0.07210618257522583, 0.04471297934651375, 0.035655103623867035, -0.07390819489955902, 0.07097936421632767, 0.21671734750270844, 0.08159157633781433, 0.028919655829668045, -0.19545674324035645, -0.024042490869760513, -0.0803457647562027, 0.06306298077106476, -0.08856996893882751, -0.016788700595498085, 0.11923003196716309, 0.08616556972265244, 0.05413002520799637, 0.09640096127986908, -0.045083072036504745, 0.021686913445591927, 0.02684609219431877, -0.15131035447120667, -0.18501274287700653, -0.08534606546163559, -0.03519878163933754, 0.11561143398284912, -0.06398691236972809, 0.10897188633680344, -0.13615410029888153, 0.010051886551082134, -0.006060056854039431, 0.02693452313542366, -0.03596206381917, -0.11251141875982285, 0.15348562598228455, 0.11999429017305374, -0.06767056882381439, 0.03127254918217659, -0.09527092427015305, -0.04423454403877258, 0.12686803936958313, -0.013623855076730251, -0.0371493324637413, -0.054547641426324844, -0.03628576174378395, 0.15247689187526703, -0.03436964750289917, 0.008244883269071579, -0.041229065507650375, -0.18217355012893677, 0.0798322781920433, 0.09045056998729706, 0.019827889278531075, -0.031874191015958786, -0.09797266125679016, -0.010231015272438526, -0.0011165260802954435, 0.11730700731277466, -0.10696814209222794, -0.10933240503072739, -0.15144047141075134, 0.06713984161615372, -0.0007159380475059152, 0.18502596020698547, -0.06394898891448975, -0.08904669433832169, -0.12429379671812057, 0.02344517596065998, -0.0027384376153349876, -0.042264558374881744, 0.01618490368127823, 0.07992301136255264, -0.04095321521162987, 0.02075677551329136, -0.06651144474744797, 0.06372585147619247, -0.11786920577287674, 0.09625071287155151, 0.01063506118953228, 0.016993753612041473, -0.0417880080640316, -0.01618220843374729, 0.039470795542001724, -0.057925306260585785, 0.07921463251113892, 0.011758086271584034, 0.0010938759660348296, 0.10196787863969803, -0.0034960443153977394, 0.06409632414579391, -0.05372481048107147, -0.023290161043405533, 0.06578411161899567, -0.05874887853860855, -0.03370826691389084, -0.1573946475982666, -0.0709633082151413, 0.020051732659339905, -0.04775108024477959, 0.002077929675579071, 0.03673801198601723, 0.062159497290849686, -0.06937079131603241, -0.12125655263662338, -0.043812792748212814, -0.028638383373618126, 0.021301284432411194, 0.10829301923513412, -0.07526551932096481, 0.1547859013080597, -0.052787959575653076, -0.00020603960729204118, 0.07437096536159515, 0.04048224538564682, 0.01393822580575943, -0.10422444343566895, -0.04698587954044342, -0.11035211384296417, 0.1502903699874878, -0.007902312092483044, -0.03533121198415756, 0.03719403222203255, -0.11946307867765427, -0.1572723090648651, 0.03418220207095146, 0.10199101269245148, 0.0448341928422451, 0.025807438418269157, 0.027079269289970398, -0.04042419046163559, -0.021270349621772766, -0.07034418731927872, 0.0882953479886055, -0.12085357308387756, -0.09669415652751923, 0.09555385261774063, 0.12178351730108261, -0.0036850625183433294, -0.07441367954015732, 0.11554073542356491, -0.021787192672491074, 0.05525410920381546, -0.02971339225769043, 0.10308072715997696, 0.0796005055308342, -0.12273547053337097, 0.005693064536899328, -0.036891788244247437, -0.0741485133767128, -0.12975730001926422, 0.019545545801520348, -0.061916105449199677, -0.13383042812347412, 0.12179028987884521, -0.09376577287912369, 0.030037038028240204, -0.10506992787122726, 0.021338803693652153, 0.01864001713693142, 0.061665527522563934, -0.10988292098045349, 0.08575301617383957, 0.13424484431743622, -0.043199893087148666, -0.07184189558029175, -0.12455986440181732, -0.05022053420543671, -0.04231856390833855, -0.13957437872886658, -0.11600435525178909, 0.0100301094353199, -0.023418782278895378, -0.05818291753530502, 0.0015462689334526658, -0.03659068048000336, 0.008594646118581295, 0.021907730028033257, 0.04032021388411522, -0.02693161368370056, 0.05134565755724907, -0.057569269090890884, -0.052510857582092285, 0.11489357799291611, 0.04113486409187317, -0.03561042994260788, -0.052359987050294876, 0.12997733056545258, -0.11959461867809296, 0.07662346214056015, -0.020313527435064316, 0.017129231244325638, -0.06435854732990265, 0.17131924629211426, 0.11673715710639954, -0.1367570012807846, -0.005008010193705559, -0.08210669457912445, 0.020409544929862022, 0.023555370047688484, 0.13693512976169586, -0.03411718085408211, -0.0012358218664303422, -0.1580323874950409, 0.018575575202703476, -0.18557456135749817, -0.03716109320521355, 0.04671547934412956, 0.09917585551738739, 0.15293832123279572, -0.0034432117827236652, -0.1263325810432434, 0.10424192249774933, -0.2118520885705948, 0.0907607227563858, 0.05121984705328941, -0.11874113976955414, -0.06765396893024445, -0.06795281916856766, 0.1198519766330719, 0.009196433238685131, 0.2040700763463974, -0.013615905307233334, -0.09132910519838333, -0.07060808688402176, -0.01980910450220108, -0.030524181202054024, 0.09714830666780472, 0.041414931416511536, 0.04653804749250412, 0.12821412086486816, 0.00368314771912992, 0.07533777505159378, 0.060310911387205124, 0.02759413793683052, -0.012300663627684116, 0.04076618701219559, 0.08261215686798096, -0.14588621258735657, -0.1659701019525528, 0.1326720416545868, 0.025149408727884293, 0.11792458593845367, 0.03658788278698921, -0.1549617499113083, 0.06687124073505402, 0.2523096203804016, -0.11147607117891312, 0.02505038119852543, 0.12737524509429932, -0.0366884209215641, 0.0672016367316246, 0.1144871786236763, -0.02633814327418804, -0.05217865854501724, -0.011363590136170387, 0.10233135521411896, 0.028660254552960396, -0.04646271467208862, -0.02340836264193058, -0.03373933956027031, -0.019070526584982872, -0.011738128960132599, -0.0909019410610199, -0.1543993502855301, -0.10471053421497345, -0.16619662940502167, 0.04399140924215317, -0.04626438021659851, 0.13418889045715332, 0.09469578415155411, -0.012723101302981377, 0.04568437114357948, 0.028575526550412178, 0.07275456190109253, 0.07916246354579926, -0.02939477376639843, -0.036159269511699677 ]
null
null
diffusers
### Why My intention was to creat model that could generate animated sprites. ### How Trained for ~48 hours in total 25 epochs, on Google TPU v3-8 with this my custom script [train_text_to_image_flax_sdxl](https://github.com/PawKanarek/spraix/blob/48d8c209a359622e6db56e6d555667ac466dc952/train_text_to_image_flax_sdxl.py) on my custom dataset [spraix_1024_9frames](https://huggingface.co/datasets/pawkanarek/spraix_1024_9frames). This is my second attempt to create such model. This time i changed dataset to always consist 9 frames, but it doesn't help much. ### Appendix This is demonstration only. This is my first time where i wrote training script of such complicated model in flax framework. Scirpt is probably full of bugs. Dataset that i prepared is also far from perfect. But I'm happy that i can train, save, and load my custom SDXL model. ### How to use Intented to use with FLAX Model will generate ugly sprite animations, out of shape, deformed, pixelated and uneven. Prompt ideas ``` "Pixel-art animation of a blue water droplet with legs, that: is swiniging axe, facing: East", "Pixel-art animation of a Tree, that: is Idle, facing: South", "Pixel-art animation of a Dinosaur with a backpack, that: is jumping, facing: North", "Pixel-art animation of a Fire demon with axe, that: is running, facing West", ``` Samples of the output of this model can be seen here:
{"license": "gpl-3.0", "library_name": "diffusers", "tags": ["art"], "datasets": ["pawkanarek/spraix_1024_9frames"], "pipeline_tag": "text-to-image"}
text-to-image
pawkanarek/spraix_sdxl_9frames_25epochs
[ "diffusers", "art", "text-to-image", "dataset:pawkanarek/spraix_1024_9frames", "license:gpl-3.0", "diffusers:FlaxStableDiffusionXLPipeline", "region:us" ]
2024-02-06T12:26:57+00:00
[]
[]
TAGS #diffusers #art #text-to-image #dataset-pawkanarek/spraix_1024_9frames #license-gpl-3.0 #diffusers-FlaxStableDiffusionXLPipeline #region-us
### Why My intention was to creat model that could generate animated sprites. ### How Trained for ~48 hours in total 25 epochs, on Google TPU v3-8 with this my custom script train_text_to_image_flax_sdxl on my custom dataset spraix_1024_9frames. This is my second attempt to create such model. This time i changed dataset to always consist 9 frames, but it doesn't help much. ### Appendix This is demonstration only. This is my first time where i wrote training script of such complicated model in flax framework. Scirpt is probably full of bugs. Dataset that i prepared is also far from perfect. But I'm happy that i can train, save, and load my custom SDXL model. ### How to use Intented to use with FLAX Model will generate ugly sprite animations, out of shape, deformed, pixelated and uneven. Prompt ideas Samples of the output of this model can be seen here:
[ "### Why\nMy intention was to creat model that could generate animated sprites.", "### How \nTrained for ~48 hours in total 25 epochs, on Google TPU v3-8 with this my custom script train_text_to_image_flax_sdxl on my custom dataset spraix_1024_9frames. \n\nThis is my second attempt to create such model. This time i changed dataset to always consist 9 frames, but it doesn't help much.", "### Appendix\n\nThis is demonstration only. This is my first time where i wrote training script of such complicated model in flax framework. Scirpt is probably full of bugs. Dataset that i prepared is also far from perfect. But I'm happy that i can train, save, and load my custom SDXL model.", "### How to use \nIntented to use with FLAX\n\nModel will generate ugly sprite animations, out of shape, deformed, pixelated and uneven.\nPrompt ideas\n\n\nSamples of the output of this model can be seen here:" ]
[ "TAGS\n#diffusers #art #text-to-image #dataset-pawkanarek/spraix_1024_9frames #license-gpl-3.0 #diffusers-FlaxStableDiffusionXLPipeline #region-us \n", "### Why\nMy intention was to creat model that could generate animated sprites.", "### How \nTrained for ~48 hours in total 25 epochs, on Google TPU v3-8 with this my custom script train_text_to_image_flax_sdxl on my custom dataset spraix_1024_9frames. \n\nThis is my second attempt to create such model. This time i changed dataset to always consist 9 frames, but it doesn't help much.", "### Appendix\n\nThis is demonstration only. This is my first time where i wrote training script of such complicated model in flax framework. Scirpt is probably full of bugs. Dataset that i prepared is also far from perfect. But I'm happy that i can train, save, and load my custom SDXL model.", "### How to use \nIntented to use with FLAX\n\nModel will generate ugly sprite animations, out of shape, deformed, pixelated and uneven.\nPrompt ideas\n\n\nSamples of the output of this model can be seen here:" ]
[ 62, 17, 88, 72, 54 ]
[ "passage: TAGS\n#diffusers #art #text-to-image #dataset-pawkanarek/spraix_1024_9frames #license-gpl-3.0 #diffusers-FlaxStableDiffusionXLPipeline #region-us \n### Why\nMy intention was to creat model that could generate animated sprites.### How \nTrained for ~48 hours in total 25 epochs, on Google TPU v3-8 with this my custom script train_text_to_image_flax_sdxl on my custom dataset spraix_1024_9frames. \n\nThis is my second attempt to create such model. This time i changed dataset to always consist 9 frames, but it doesn't help much.### Appendix\n\nThis is demonstration only. This is my first time where i wrote training script of such complicated model in flax framework. Scirpt is probably full of bugs. Dataset that i prepared is also far from perfect. But I'm happy that i can train, save, and load my custom SDXL model.### How to use \nIntented to use with FLAX\n\nModel will generate ugly sprite animations, out of shape, deformed, pixelated and uneven.\nPrompt ideas\n\n\nSamples of the output of this model can be seen here:" ]
[ -0.132454976439476, 0.052164264023303986, -0.0011659289011731744, 0.07273741811513901, 0.1729438751935959, -0.023258183151483536, -0.01037037093192339, 0.10448478162288666, 0.006991008296608925, 0.14863047003746033, 0.0825868621468544, 0.029028723016381264, 0.04743713140487671, 0.21729369461536407, -0.02385094203054905, -0.26405927538871765, 0.020923856645822525, -0.041858963668346405, 0.02594912424683571, 0.07546708732843399, 0.09816990792751312, -0.07869647443294525, 0.1081557348370552, -0.0368872731924057, -0.1393296867609024, -0.09069432318210602, -0.022878140211105347, 0.017502740025520325, 0.06921590119600296, 0.06866360455751419, 0.008150658570230007, 0.041933342814445496, 0.04995701462030411, -0.05151268094778061, 0.038699813187122345, 0.04057358577847481, 0.05415581539273262, 0.04737357050180435, -0.002613550052046776, 0.08948642760515213, 0.16559618711471558, -0.04474184662103653, -0.045070189982652664, 0.08972357958555222, -0.12068314105272293, 0.015834486111998558, -0.12219914048910141, 0.01113640796393156, 0.04351785406470299, 0.05470425263047218, -0.04184628278017044, 0.04620399698615074, 0.004389725625514984, 0.04120691865682602, 0.13167820870876312, -0.13892973959445953, -0.04252653941512108, 0.014052147977054119, 0.09024619311094284, -0.025753367692232132, -0.02625867910683155, 0.041412968188524246, 0.01061459630727768, 0.009068090468645096, 0.022352706640958786, -0.012770636938512325, 0.05664996802806854, -0.03620382398366928, -0.12536673247814178, -0.03895391896367073, 0.09698488563299179, 0.05044940486550331, -0.08690984547138214, -0.1911524087190628, -0.04424208775162697, -0.12158140540122986, -0.010588785633444786, -0.04135134443640709, 0.011138609610497952, 0.033360887318849564, 0.039653170853853226, -0.13402262330055237, -0.11760130524635315, 0.002147362334653735, 0.017393948510289192, 0.016642171889543533, 0.00569883780553937, 0.032761018723249435, -0.029355406761169434, 0.13014067709445953, -0.1628546416759491, -0.01913902722299099, -0.0296167004853487, -0.11553535610437393, -0.061768628656864166, 0.0019995870534330606, -0.032803308218717575, -0.16252049803733826, -0.0847923532128334, 0.15748316049575806, 0.0697854608297348, -0.01120740082114935, 0.10953836888074875, 0.015157935209572315, 0.09235753118991852, 0.04575180634856224, -0.05876167491078377, 0.0597509928047657, 0.057088904082775116, 0.06939733773469925, 0.04521115496754646, -0.032154228538274765, -0.027601057663559914, 0.01332088652998209, -0.034983232617378235, 0.04109523817896843, 0.05839572846889496, 0.003784325672313571, -0.06539040803909302, -0.03467899560928345, 0.2129184752702713, -0.03778606280684471, 0.029345031827688217, 0.03364182636141777, -0.12957324087619781, 0.0849001482129097, 0.08524323254823685, -0.02350148931145668, -0.07130314409732819, -0.002989341737702489, -0.06926161795854568, 0.029737742617726326, -0.05508110299706459, -0.0820639505982399, 0.029272394254803658, -0.1606685072183609, -0.06793667376041412, -0.11110112816095352, -0.19306860864162445, -0.05098745599389076, 0.030076030641794205, -0.07230589538812637, -0.007075631525367498, 0.008098889142274857, -0.029392272233963013, 0.00880663376301527, -0.011815140955150127, 0.04408656433224678, -0.01771565154194832, 0.053768571466207504, 0.02025882713496685, 0.012823600322008133, -0.08817125111818314, 0.06151321902871132, -0.08784788846969604, 0.03918122127652168, -0.13687008619308472, 0.07664363831281662, 0.027293143793940544, 0.024584660306572914, -0.04439922049641609, -0.08718124777078629, -0.013140724040567875, -0.014392518438398838, 0.08087889850139618, 0.18595972657203674, -0.16601720452308655, 0.039241258054971695, 0.02565636672079563, -0.0907077044248581, -0.09680293500423431, 0.0927421897649765, 0.005745751317590475, 0.027305642142891884, 0.03808888420462608, -0.00606224499642849, -0.04072358086705208, -0.16252651810646057, -0.11780790984630585, -0.0471867099404335, -0.06555677950382233, 0.007503836415708065, 0.019262874498963356, 0.016700074076652527, 0.11464747041463852, 0.004472595639526844, -0.08293119072914124, 0.07100915163755417, -0.074191153049469, -0.019116055220365524, -0.09515358507633209, -0.07377665489912033, -0.01150825247168541, 0.059311479330062866, 0.003685377072542906, -0.04464692994952202, -0.12325325608253479, 0.019935617223381996, 0.07822801172733307, -0.008734377101063728, 0.039125215262174606, -0.029543107375502586, 0.19066499173641205, -0.04256194457411766, -0.04105854779481888, -0.17510704696178436, -0.14675204455852509, 0.048737071454524994, 0.04628627002239227, 0.021300099790096283, 0.012049366720020771, 0.03220208361744881, 0.08655540645122528, 0.035700466483831406, -0.06948471814393997, -0.06756862998008728, -0.018135327845811844, -0.08915568888187408, 0.00562784168869257, -0.08735723048448563, -0.09458163380622864, 0.1088508814573288, -0.18979822099208832, 0.014862584881484509, 0.030370375141501427, 0.13003647327423096, 0.038653384894132614, -0.10980240255594254, 0.06146412715315819, -0.020502295345067978, -0.0836876779794693, -0.05967596173286438, 0.09450136870145798, 0.044529326260089874, -0.04413728415966034, 0.1154152899980545, -0.19639351963996887, -0.19869199395179749, 0.0371701717376709, 0.021053137257695198, -0.10247358679771423, 0.007368236780166626, -0.07124952226877213, 0.008520272560417652, -0.0955701470375061, -0.05904871225357056, -0.018633609637618065, 0.013274860568344593, 0.1405620574951172, -0.024158522486686707, 0.014689427800476551, 0.02830519899725914, -0.04777758941054344, -0.057690732181072235, 0.04553188383579254, 0.04494868963956833, -0.027534011751413345, 0.07345142215490341, 0.006638286169618368, 0.08782756328582764, 0.1398344486951828, 0.006448184605687857, -0.10635814815759659, -0.026046032086014748, 0.11026182770729065, 0.017025655135512352, 0.03594869002699852, -0.008827785030007362, -0.01837294176220894, 0.024994680657982826, 0.0012423109728842974, 0.0055581810884177685, -0.1225895807147026, 0.004625964909791946, 0.06067337095737457, -0.037298090755939484, 0.10080097615718842, 0.0850902646780014, -0.0775553286075592, 0.05164182931184769, -0.0019658352248370647, 0.043450143188238144, -0.0006834788364358246, 0.023869356140494347, -0.07758919894695282, 0.051294177770614624, -0.0027112802490592003, -0.1473992019891739, -0.10543123632669449, 0.06318490952253342, -0.038364510983228683, 0.03860640153288841, 0.04625344276428223, 0.004488984122872353, -0.0589342825114727, -0.0949128046631813, -0.06412526220083237, -0.01798294112086296, 0.003214263590052724, -0.05492577701807022, -0.043911393731832504, 0.05666102096438408, -0.031739961355924606, 0.0075333076529204845, 0.02048254944384098, 0.043399859219789505, 0.06295938789844513, 0.07097150385379791, 0.13027457892894745, 0.09352430701255798, 0.02316121757030487, -0.012183688580989838, 0.026555387303233147, 0.25779595971107483, -0.04107062518596649, 0.13911253213882446, 0.27781105041503906, 0.026134943589568138, 0.12538334727287292, 0.021073412150144577, -0.0022811649832874537, -0.09517913311719894, 0.06776124238967896, 0.02791335992515087, -0.09961236268281937, -0.07634422183036804, -0.02923954837024212, -0.08193045854568481, -0.007744858972728252, 0.04331192374229431, 0.03168991953134537, -0.07734153419733047, 0.08237852901220322, -0.04533277824521065, 0.010466312058269978, -0.06084814667701721, 0.05756035074591637, -0.04909677430987358, -0.028666364029049873, 0.02769978903234005, -0.034885868430137634, -0.027966266497969627, 0.12684214115142822, -0.10130997002124786, 0.128652423620224, -0.13286790251731873, 0.12517432868480682, 0.0044959308579564095, 0.038788873702287674, -0.02317824214696884, 0.0014020841335877776, -0.05054116249084473, -0.014813088811933994, -0.022392062470316887, -0.045290231704711914, -0.006419384852051735, 0.10508289188146591, 0.0838191881775856, -0.030253970995545387, -0.08142037689685822, 0.016225961968302727, 0.022224312648177147, 0.1485961228609085, 0.1738937348127365, -0.21394632756710052, -0.11249195784330368, 0.010814649984240532, 0.03318370133638382, -0.08678696304559708, -0.04580772668123245, 0.1668606549501419, -0.09912241995334625, 0.03645581007003784, -0.09783103317022324, 0.09175554662942886, 0.05396781489253044, -0.02102837897837162, -0.01458317693322897, 0.08046044409275055, 0.02254672348499298, 0.04428050294518471, -0.08180992305278778, 0.03350985422730446, 0.00692254351451993, 0.08406036347150803, -0.019066177308559418, 0.029000379145145416, 0.09616485983133316, 0.027869701385498047, 0.14236505329608917, 0.0321539081633091, -0.05634462833404541, -0.08072604238986969, -0.07484543323516846, -0.04576098918914795, 0.09821653366088867, -0.024843307211995125, 0.09148278087377548, -0.00033340597292408347, -0.0019519380293786526, -0.00019617084763012826, 0.05943765491247177, -0.12351983040571213, -0.08395297080278397, 0.06432008743286133, 0.02306642383337021, 0.03811360150575638, -0.03359590098261833, -0.01625864766538143, -0.061110399663448334, 0.12122688442468643, 0.04017111659049988, -0.04830993339419365, -0.1407388299703598, 0.11549244076013565, 0.09196978062391281, -0.059222545474767685, 0.06143290922045708, -0.047586534172296524, 0.06917926669120789, -0.015853965654969215, -0.04443953558802605, 0.0579429566860199, -0.07128968834877014, -0.193374365568161, -0.08506613969802856, 0.04178693890571594, 0.02066854201257229, -0.034219253808259964, -0.05324054881930351, 0.07278858125209808, -0.0670778900384903, -0.05465211719274521, 0.09962935000658035, 0.024553442373871803, 0.06211008504033089, 0.10696661472320557, -0.04697607830166817, 0.061927858740091324, -0.03265661373734474, -0.10863034427165985, 0.08836793154478073, 0.2974971830844879, -0.09540801495313644, 0.05981292203068733, 0.010128187015652657, -0.03533622622489929, -0.22562696039676666, 0.0140976682305336, 0.04162543639540672, 0.09293915331363678, 0.03861403837800026, -0.14812995493412018, 0.003229977795854211, 0.056130558252334595, -0.0135099608451128, 0.1672150194644928, -0.3274291157722473, -0.08155213296413422, -0.0352085642516613, 0.07504580914974213, 0.1187959685921669, -0.11185843497514725, -0.054038841277360916, 0.02890133298933506, -0.020279912278056145, 0.07400375604629517, -0.03440296649932861, 0.11099869757890701, -0.005897192750126123, 0.0038362008053809404, 0.05704766884446144, -0.07664160430431366, 0.1315876692533493, -0.07131759822368622, 0.06822343170642853, -0.10004261881113052, 0.029203934594988823, -0.0006480233278125525, -0.10976878553628922, 0.2232840657234192, -0.009978127665817738, 0.07177980244159698, -0.18380723893642426, -0.03807413950562477, -0.10984933376312256, 0.05399594455957413, -0.008090812712907791, -0.040382370352745056, -0.08396679162979126, 0.04174887016415596, 0.06134861707687378, 0.01677454449236393, -0.05247063189744949, -0.02291557379066944, -0.042060062289237976, 0.19984276592731476, -0.09628946334123611, 0.055557120591402054, -0.16190406680107117, -0.031321991235017776, -0.004284888505935669, 0.02457611635327339, -0.0453125536441803, -0.022779755294322968, 0.10319831967353821, 0.018667588010430336, 0.17929455637931824, 0.017371652647852898, -0.06809328496456146, 0.08534807711839676, 0.03470558673143387, -0.11251115798950195, -0.20448118448257446, -0.07802041620016098, -0.01309919822961092, -0.06668584048748016, -0.06657785922288895, 0.12116695940494537, -0.06947816908359528, 0.008087952621281147, -0.03457576036453247, 0.08058154582977295, 0.05227800831198692, 0.06768697500228882, 0.061337776482105255, -0.033192574977874756, -0.06735260784626007, 0.057774901390075684, 0.00968982744961977, -0.19574841856956482, 0.02164960838854313, 0.15264154970645905, -0.11027555167675018, -0.0585591197013855, -0.006711514666676521, 0.012470481917262077, -0.1682332307100296, 0.028337521478533745, -0.04210351034998894, 0.013623954728245735, 0.056468937546014786, 0.022790521383285522, 0.0006056982674635947, 0.01721126213669777, -0.013253099285066128, 0.041324056684970856, -0.07700413465499878, 0.04216800257563591, 0.11619008332490921, 0.06903881579637527, -0.14642199873924255, 0.17551033198833466, -0.017577771097421646, 0.07964766025543213, -0.028132140636444092, -0.015377995558083057, -0.026377437636256218, -0.052744776010513306, -0.03676117584109306, -0.026788081973791122, -0.08203040808439255, -0.05234484747052193, 0.004094813950359821, -0.032823264598846436, 0.0298321433365345, 0.024011489003896713, -0.05593062564730644, -0.0840189978480339, -0.03989143669605255, -0.004372702445834875, -0.11581800132989883, -0.044593118131160736, 0.02947286330163479, -0.07462701946496964, 0.0852946788072586, 0.07027675956487656, -0.04085386171936989, -0.047389645129442215, -0.0925472304224968, -0.019099656492471695, 0.05187946557998657, -0.006622869987040758, 0.017358211800456047, -0.05551556125283241, 0.0010380169842392206, -0.02090839110314846, 0.0015298879006877542, -0.03163726255297661, 0.13391149044036865, -0.13875484466552734, -0.09331873804330826, 0.023532630875706673, 0.03606371954083443, -0.055748749524354935, 0.05774153023958206, 0.003510713577270508, 0.1274019330739975, 0.09490610659122467, -0.06303291022777557, 0.0623445063829422, -0.11504974961280823, -0.015789929777383804, 0.0015755349304527044, 0.00116474530659616, 0.05715589597821236, 0.010112252086400986, 0.014762550592422485, -0.03517356514930725, -0.025668615475296974, -0.006498232949525118, -0.0443146638572216, 0.04918477311730385, 0.012774473987519741, -0.03159564733505249, 0.0012686096597462893, 0.10827645659446716, -0.021083174273371696, -0.03641936928033829, -0.027847180142998695, 0.06914754956960678, 0.06012734770774841, 0.1476641446352005, 0.17327269911766052, 0.014071373268961906, 0.025579148903489113, 0.14386525750160217, -0.03911716118454933, -0.060638654977083206, -0.07965879142284393, -0.00001929974132508505, -0.1087995395064354, 0.13481195271015167, -0.11643673479557037, 0.058663297444581985, 0.056738678365945816, -0.06180617958307266, 0.04058680683374405, -0.03226206824183464, -0.061518169939517975, -0.03144514560699463, -0.11113649606704712, -0.03417540714144707, 0.006511997431516647, 0.0016946344403550029, -0.005877438932657242, 0.09984420239925385, 0.04821426421403885, -0.015312830917537212, -0.010121120139956474, 0.14028631150722504, -0.031679023057222366, -0.05875889211893082, 0.06632420420646667, -0.008049141615629196, -0.02548261359333992, 0.1074540764093399, -0.013444038107991219, 0.030003245919942856, -0.03639552369713783, 0.07346533983945847, 0.05532431602478027, 0.007023427169770002, 0.057021621614694595, 0.06167944520711899, -0.06296481192111969, -0.03857380151748657, 0.05283919349312782, 0.022356649860739708, 0.06015200912952423, 0.05490775406360626, 0.047012809664011, -0.03313041105866432, 0.19657187163829803, -0.07944522798061371, 0.04791281744837761, -0.15802529454231262, 0.06045451760292053, 0.008461552672088146, -0.039598606526851654, -0.03190915286540985, -0.14329519867897034, 0.02811289206147194, 0.12814471125602722, 0.09405553340911865, -0.1074276715517044, -0.029350249096751213, -0.047538984566926956, -0.016805648803710938, 0.021285569295287132, 0.05868184566497803, 0.003138785483315587, 0.1317211389541626, -0.07062826305627823, 0.11783421784639359, -0.08009367436170578, -0.056280363351106644, -0.07703623175621033, 0.125351682305336, -0.03386308625340462, 0.02616022527217865, -0.05482051521539688, 0.021424800157546997, -0.005434156861156225, -0.1422090381383896, 0.10004758834838867, -0.0365012027323246, -0.031143808737397194, -0.009277956560254097, -0.05028621479868889, 0.04739154130220413, 0.12816564738750458, -0.06957533955574036, 0.047310151159763336, 0.17944735288619995, -0.012714345939457417, -0.11920533329248428, -0.0008826506091281772, 0.02697020210325718, -0.03812781348824501, 0.10729074478149414, 0.014558792114257812, -0.005419339518994093, 0.06093454733490944, -0.01777888834476471, -0.1608448177576065, 0.06338225305080414, 0.0027613381389528513, 0.02688104845583439, 0.008766396902501583, 0.18605054914951324, -0.022963834926486015, -0.012937025167047977, -0.03296497091650963, -0.13881509006023407, 0.00890006497502327, 0.1311032772064209, -0.003921661991626024, -0.10991816967725754, 0.016696149483323097, -0.07577548176050186, 0.16210973262786865, 0.1097583919763565, -0.027445010840892792, 0.0020239409059286118, -0.05584074556827545, -0.01185189001262188, 0.018259944394230843, 0.10355190932750702, 0.015913117676973343, -0.1462416648864746, 0.028440874069929123, 0.04909680783748627, 0.06269087642431259, -0.2444154918193817, -0.02964167669415474, -0.08461332321166992, -0.0033613762352615595, 0.019264820963144302, 0.10902398079633713, 0.08258672058582306, -0.0035795061849057674, -0.03912021219730377, 0.1424311250448227, -0.020844515413045883, 0.07785442471504211, 0.009893572889268398, -0.06701499968767166 ]
null
null
transformers
人工智慧的認知與計算試驗-人格與數理
{"language": ["en", "zh"], "license": "other", "library_name": "transformers", "datasets": ["c-s-ale/alpaca-gpt4-data-zh", "sahil2801/CodeAlpaca-20k", "TIGER-Lab/MathInstruct"], "license_name": "tongyi-qianwen", "license_link": "https://huggingface.co/Qwen/Qwen1.5-72B-Chat/blob/main/LICENSE"}
text-generation
win10/Qwen1.5-0.5b-Xia-Ai
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "en", "zh", "dataset:c-s-ale/alpaca-gpt4-data-zh", "dataset:sahil2801/CodeAlpaca-20k", "dataset:TIGER-Lab/MathInstruct", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:26:58+00:00
[]
[ "en", "zh" ]
TAGS #transformers #safetensors #qwen2 #text-generation #conversational #en #zh #dataset-c-s-ale/alpaca-gpt4-data-zh #dataset-sahil2801/CodeAlpaca-20k #dataset-TIGER-Lab/MathInstruct #license-other #autotrain_compatible #endpoints_compatible #region-us
人工智慧的認知與計算試驗-人格與數理
[]
[ "TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #en #zh #dataset-c-s-ale/alpaca-gpt4-data-zh #dataset-sahil2801/CodeAlpaca-20k #dataset-TIGER-Lab/MathInstruct #license-other #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 97 ]
[ "passage: TAGS\n#transformers #safetensors #qwen2 #text-generation #conversational #en #zh #dataset-c-s-ale/alpaca-gpt4-data-zh #dataset-sahil2801/CodeAlpaca-20k #dataset-TIGER-Lab/MathInstruct #license-other #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.12320376187562943, 0.1338847130537033, -0.0027738413773477077, 0.04847825691103935, 0.07531341910362244, -0.02842467464506626, 0.11627005785703659, 0.10184203088283539, 0.03703504055738449, 0.013102412223815918, 0.12733860313892365, 0.1714899092912674, 0.036444760859012604, 0.17511408030986786, -0.11073489487171173, -0.09269117563962936, 0.06865066289901733, 0.013918823562562466, -0.030811548233032227, 0.09437751770019531, 0.12597471475601196, -0.06490705162286758, 0.1120324656367302, -0.017929868772625923, -0.0880967378616333, -0.01184077002108097, 0.023699400946497917, -0.10651105642318726, 0.12378321588039398, 0.061380814760923386, 0.07452402263879776, 0.16465017199516296, 0.007224295288324356, -0.15398168563842773, 0.035258885473012924, -0.026169678196310997, -0.08094186335802078, 0.03952090069651604, 0.008336570113897324, -0.03177084028720856, 0.012385383248329163, 0.006717284210026264, -0.01466735266149044, 0.08627254515886307, -0.11133494228124619, -0.04460250586271286, -0.08858811855316162, -0.022336075082421303, 0.07194837927818298, 0.06908689439296722, -0.022537142038345337, 0.20385494828224182, -0.029838476330041885, 0.10914305597543716, 0.13318581879138947, -0.4001423418521881, 0.024294862523674965, 0.14601697027683258, 0.10850957036018372, 0.01950816437602043, -0.050035130232572556, 0.058108218014240265, 0.08132883906364441, -0.04268571734428406, 0.03593004494905472, -0.06636787950992584, -0.027864541858434677, 0.02486087940633297, -0.11072560399770737, 0.014623576775193214, 0.20054851472377777, -0.00937063992023468, -0.011406488716602325, -0.03400782495737076, -0.10049045085906982, -0.02829906903207302, 0.013731664046645164, 0.0026630370412021875, -0.042302291840314865, 0.023803632706403732, -0.05841102823615074, 0.009302577935159206, -0.11965234577655792, -0.033306099474430084, -0.15852467715740204, 0.11716771125793457, -0.0056492965668439865, 0.022989802062511444, -0.1349448710680008, 0.047061119228601456, 0.008231974206864834, -0.1481991857290268, -0.038991961628198624, -0.09719443321228027, -0.004180733114480972, -0.00047046286636032164, -0.003657884895801544, -0.07895517349243164, 0.17499423027038574, 0.16239404678344727, 0.01588406227529049, 0.03613869473338127, -0.043165840208530426, 0.009941625408828259, 0.018918100744485855, 0.07373064011335373, -0.05483458936214447, -0.10495761036872864, 0.10644270479679108, 0.01652977429330349, 0.049416329711675644, -0.07639763504266739, -0.10375643521547318, -0.042699385434389114, 0.037539079785346985, 0.11476575583219528, 0.03188682720065117, 0.11794449388980865, -0.04915694519877434, 0.010452342219650745, 0.10237424075603485, -0.053512610495090485, -0.04137072712182999, 0.04390387982130051, 0.016015324741601944, -0.07712256163358688, 0.01440242026001215, 0.0860806480050087, 0.01028680894523859, -0.035893697291612625, -0.07180961221456528, -0.07445548474788666, -0.0036400791723281145, -0.0826982706785202, 0.02950708009302616, -0.0059962705709040165, 0.04208913818001747, -0.16122236847877502, -0.1602044403553009, 0.028880726546049118, 0.0056951832957565784, 0.013736474327743053, -0.023401305079460144, -0.04800889641046524, -0.030406802892684937, 0.03065626695752144, -0.05188291519880295, -0.05539871007204056, -0.07371485233306885, 0.09099207073450089, 0.043037474155426025, 0.07644374668598175, -0.16606172919273376, 0.009643255732953548, -0.10633796453475952, 0.030664382502436638, 0.0325058177113533, 0.024124395102262497, -0.10486098378896713, 0.08747940510511398, -0.033981624990701675, 0.014070011675357819, 0.039446525275707245, 0.013624907471239567, 0.040532805025577545, 0.1525707095861435, -0.1664295196533203, -0.027852926403284073, 0.2601052224636078, -0.11416266113519669, -0.2626703381538391, 0.1316586136817932, -0.030112678185105324, 0.05900847166776657, 0.08305004984140396, 0.23340897262096405, 0.0752737894654274, -0.10047011822462082, -0.07825719565153122, 0.06288504600524902, -0.05956106260418892, -0.08068152517080307, 0.07233823835849762, 0.05528793856501579, -0.09040026366710663, 0.045121852308511734, 0.02676304243505001, 0.05542596057057381, -0.04786448925733566, -0.0933174192905426, -0.06262984871864319, -0.1150076612830162, 0.09413294494152069, -0.03084317035973072, 0.037878818809986115, -0.07021849602460861, 0.005974050611257553, -0.0804542675614357, 0.07335805892944336, -0.02605113573372364, -0.028868068009614944, -0.15763583779335022, 0.11658554524183273, 0.0002964799932669848, 0.02873544953763485, -0.09347802400588989, -0.053069766610860825, 0.004604511894285679, 0.020503105595707893, 0.01599687710404396, -0.0062888688407838345, 0.029337968677282333, 0.04980851337313652, 0.001427197246812284, -0.05178767070174217, 0.1071392223238945, 0.057109907269477844, -0.06533440202474594, -0.09435943514108658, 0.06609777361154556, -0.07232215255498886, 0.14028240740299225, -0.14277614653110504, 0.044887468218803406, 0.08446750044822693, 0.0683947503566742, 0.0034556337632238865, 0.055044420063495636, 0.024027463048696518, -0.00878224242478609, -0.06299232691526413, 0.017571639269590378, 0.058388520032167435, 0.043854206800460815, -0.1444729119539261, 0.08789131790399551, -0.16624993085861206, 0.2730881869792938, 0.13785392045974731, -0.056469663977622986, 0.05693389102816582, -0.04801284521818161, -0.012193581089377403, -0.0075236097909510136, 0.012132292613387108, -0.02795104682445526, -0.003982389811426401, -0.016159232705831528, 0.13306909799575806, -0.08755779266357422, 0.005984257906675339, 0.018223686143755913, -0.07670055329799652, -0.0007142581162042916, 0.11798130720853806, 0.050869300961494446, -0.2333543747663498, 0.1474456936120987, 0.1902572512626648, 0.04655420035123825, 0.18547184765338898, -0.02979038655757904, 0.023151034489274025, -0.024108005687594414, 0.004585753194987774, -0.013937050476670265, 0.08514239639043808, -0.07349736988544464, 0.009906986728310585, 0.07753312587738037, -0.006908765994012356, 0.0405135452747345, -0.11961202323436737, -0.07057780772447586, -0.013746766373515129, -0.01979311741888523, -0.10428952425718307, 0.09429717063903809, -0.018397245556116104, 0.12641721963882446, -0.036550186574459076, -0.05197950825095177, 0.06994040310382843, -0.02046489715576172, -0.12484229356050491, 0.20538993179798126, -0.11986883729696274, -0.27753037214279175, -0.09929706156253815, -0.09610436856746674, -0.10268023610115051, 0.002224535681307316, 0.1157846450805664, -0.05799541249871254, -0.03841269761323929, -0.043548598885536194, 0.008762369863688946, 0.02835622802376747, 0.009529788978397846, 0.003844170831143856, 0.028808582574129105, -0.03261423110961914, -0.1424199938774109, -0.037048205733299255, 0.01502922736108303, -0.06732198596000671, 0.1407061368227005, -0.10253137350082397, 0.1424131542444229, 0.09029052406549454, -0.009668619371950626, 0.013650665059685707, -0.05984608829021454, 0.23930682241916656, -0.0347745344042778, 0.027211453765630722, 0.1653430461883545, -0.05023636668920517, 0.06325512379407883, 0.18143340945243835, -0.00397424167022109, -0.0843336433172226, 0.04219436272978783, -0.04866988956928253, -0.0738048404455185, -0.22689592838287354, -0.12521979212760925, -0.027015559375286102, 0.14973530173301697, -0.03973723575472832, 0.02028403803706169, 0.10957277566194534, 0.08423125743865967, -0.007344055455178022, -0.05564957857131958, 0.005270135123282671, 0.05588172748684883, 0.09827978163957596, 0.0035451387520879507, 0.13663257658481598, -0.08404997736215591, -0.03572297841310501, 0.07711231708526611, 0.12328853458166122, 0.08918546140193939, 0.04332326352596283, 0.11518954485654831, 0.052626002579927444, 0.19517239928245544, 0.12890799343585968, 0.08265358209609985, 0.005526491906493902, -0.06447399407625198, -0.010198615491390228, -0.03953323885798454, -0.0621914267539978, 0.02498316578567028, -0.03852417320013046, -0.05263635516166687, -0.041285280138254166, 0.09102046489715576, 0.09724839776754379, 0.08538723737001419, 0.04217744246125221, -0.15470455586910248, -0.04739296808838844, 0.05542919784784317, 0.042452942579984665, -0.0497402548789978, 0.09115596860647202, 0.03320015221834183, -0.0774197205901146, 0.0753362700343132, -0.05663939192891121, 0.06945890188217163, 0.03407179191708565, 0.06492550671100616, -0.1436733454465866, -0.0673077180981636, -0.02564241550862789, 0.10717986524105072, -0.345998078584671, 0.23414072394371033, 0.029272856190800667, 0.013627798296511173, -0.06838079541921616, -0.04039732739329338, 0.025902146473526955, 0.12429036945104599, 0.1376061737537384, -0.013758265413343906, -0.04997982829809189, -0.12178438901901245, -0.07076838612556458, 0.0826522633433342, 0.035178039222955704, 0.008952618576586246, 0.03652327507734299, -0.022282512858510017, 0.005011390894651413, 0.0007573894108645618, 0.044558361172676086, -0.09019484370946884, -0.1267266720533371, 0.06654427945613861, 0.024089735001325607, 0.039588067680597305, -0.06344091892242432, -0.025415970012545586, -0.1351526528596878, 0.11667316406965256, -0.12420123815536499, -0.0774116963148117, -0.08345764130353928, -0.056010257452726364, 0.009257684461772442, -0.10327759385108948, 0.04701453074812889, -0.03581596165895462, 0.04420601576566696, -0.08560021966695786, -0.1638517528772354, 0.1105000451207161, -0.10751986503601074, -0.09820548444986343, -0.04102310165762901, 0.10251543670892715, -0.0444265641272068, 0.03879120200872421, 0.06492052227258682, -0.0005574477254413068, -0.05841297656297684, -0.10739322006702423, -0.012253101915121078, -0.04213768243789673, -0.00017595526878722012, -0.029530063271522522, -0.057598043233156204, -0.18638955056667328, -0.0352073535323143, -0.10671789944171906, 0.24085292220115662, 0.30508479475975037, -0.08725571632385254, 0.1071862131357193, 0.24105113744735718, -0.026883596554398537, -0.3259645700454712, -0.09530580043792725, -0.11484935134649277, 0.010037008672952652, 0.008983958512544632, -0.09412045776844025, 0.07398317009210587, 0.0691865012049675, -0.05877764895558357, 0.026151014491915703, -0.19943520426750183, -0.09986647963523865, 0.16263417899608612, 0.06536737084388733, 0.255212664604187, -0.17857763171195984, -0.06368310749530792, -0.08580093830823898, -0.19594275951385498, 0.2047843039035797, -0.19447971880435944, 0.06562511622905731, 0.009039449505507946, 0.020629847422242165, 0.0064883423037827015, -0.05531574785709381, 0.10442278534173965, -0.01933310739696026, 0.015933586284518242, -0.06805503368377686, -0.09584331512451172, 0.0778399407863617, -0.023917371407151222, 0.05786338821053505, -0.1311507672071457, 0.09035707265138626, -0.07512237131595612, -0.004110320471227169, -0.04419644549489021, 0.0581064410507679, -0.018017610535025597, -0.1043163314461708, -0.07702438533306122, -0.01449640654027462, 0.05048555135726929, -0.02035277709364891, 0.16030669212341309, -0.02879180759191513, 0.06968095898628235, 0.15484249591827393, 0.1491539031267166, -0.14657315611839294, 0.13503773510456085, -0.042218953371047974, -0.07601357251405716, 0.05299430713057518, -0.12131107598543167, 0.06881356984376907, 0.12797246873378754, 0.0031750821508467197, 0.07339893281459808, 0.044626232236623764, 0.002256453735753894, 0.057356301695108414, 0.11763866245746613, -0.1957888901233673, -0.07069822400808334, -0.04646235331892967, 0.10243602842092514, 0.011457035318017006, 0.14131441712379456, 0.1401849240064621, 0.012080351822078228, -0.0385429672896862, -0.033350735902786255, 0.035248324275016785, -0.02061578817665577, 0.09679828584194183, 0.09419035166501999, 0.053018901497125626, -0.12027956545352936, 0.051190584897994995, -0.012892723083496094, -0.029868144541978836, 0.023551765829324722, 0.04322637990117073, -0.15338659286499023, -0.11330744624137878, -0.05994154512882233, 0.17980945110321045, -0.17883792519569397, -0.06251983344554901, -0.08774114400148392, -0.09276121854782104, -0.021921051666140556, 0.29592207074165344, 0.06350595504045486, 0.058979906141757965, 0.032735053449869156, -0.04633522406220436, -0.029537124559283257, 0.07297632098197937, -0.010951176285743713, 0.06316429376602173, -0.10997036844491959, 0.026297248899936676, -0.03969666361808777, 0.10890914499759674, -0.0723550021648407, -0.014405510388314724, -0.1756025105714798, -0.0032578774262219667, -0.16327375173568726, 0.035142455250024796, -0.09323583543300629, -0.006137941963970661, -0.03721111640334129, -0.08008494973182678, -0.03049721196293831, 0.000761052593588829, -0.06362610310316086, 0.032802764326334, -0.008077955804765224, 0.07582029700279236, -0.106032595038414, -0.026953794062137604, 0.043647706508636475, -0.01740063540637493, 0.11314530670642853, 0.028233105316758156, -0.04050159081816673, 0.09883604943752289, -0.18812371790409088, -0.029363462701439857, 0.044054362922906876, 0.03924700617790222, 0.06059381738305092, 0.010167849250137806, -0.009194554761052132, 0.07434157282114029, 0.004502344876527786, 0.0498991385102272, 0.10362760722637177, -0.0686681792140007, 0.03339875862002373, -0.0602487213909626, -0.05343612655997276, -0.030684320256114006, -0.037309564650058746, 0.09375304728746414, -0.0016726745525375009, 0.1534343957901001, -0.07590210437774658, 0.02610476128757, -0.10642866790294647, 0.0035650490317493677, 0.011355102993547916, -0.15802431106567383, -0.12526804208755493, -0.05626572296023369, 0.014541163109242916, -0.04469742625951767, 0.19491690397262573, -0.05602468177676201, -0.013826511800289154, 0.02483186684548855, 0.036586713045835495, 0.05328086391091347, 0.01359227392822504, 0.2750456929206848, 0.047371599823236465, 0.01044545229524374, -0.04832698777318001, 0.055536363273859024, -0.01129743829369545, 0.0015028532361611724, 0.0442592017352581, 0.05208076909184456, 0.0027389992028474808, 0.05834374949336052, 0.06003996729850769, 0.004670023452490568, -0.09045162051916122, -0.12675391137599945, -0.09194102883338928, -0.004168556071817875, 0.002845978597179055, 0.07512423396110535, 0.18583257496356964, -0.051775362342596054, -0.00643113162368536, -0.06587623804807663, -0.07379024475812912, -0.12760214507579803, -0.11093652993440628, -0.1311134546995163, -0.055505361407995224, -0.0008635374833829701, -0.11977433413267136, -0.018315430730581284, 0.05538780242204666, 0.04838411882519722, -0.051199715584516525, 0.1181601881980896, 0.00030877022072672844, -0.02662988379597664, -0.0047611393965780735, -0.021004367619752884, -0.02021702192723751, -0.004402099642902613, 0.005015184171497822, -0.0008725019288249314, 0.04818015545606613, -0.009108565747737885, 0.03210321441292763, -0.036901336163282394, 0.049320660531520844, -0.1020670011639595, -0.07808937132358551, -0.03730766847729683, 0.03931541368365288, 0.0072744362987577915, 0.12780430912971497, 0.046274855732917786, 0.004102860577404499, 0.07420715689659119, 0.16737718880176544, -0.008650854229927063, -0.11967269331216812, -0.12246173620223999, 0.11094733327627182, -0.019020438194274902, 0.10181530565023422, 0.003972647245973349, -0.05080179497599602, -0.010929602198302746, 0.27768322825431824, 0.23183704912662506, -0.09145832061767578, 0.04478758946061134, -0.05037883296608925, 0.03768619894981384, -0.0069620502181351185, 0.0922689437866211, 0.07625451683998108, 0.23130887746810913, -0.07046643644571304, -0.055116474628448486, -0.07242309302091599, -0.03320629149675369, -0.07969065755605698, 0.08451981097459793, 0.014648019336163998, -0.021247047930955887, -0.03900734335184097, 0.09095057100057602, -0.11022203415632248, 0.06420528143644333, -0.17307402193546295, -0.15416301786899567, -0.07654567062854767, 0.0023914226330816746, 0.07911541312932968, 0.01367893349379301, 0.009913815185427666, -0.01924186572432518, 0.010194390080869198, -0.02030123770236969, -0.0004584636481013149, -0.12246439605951309, 0.06148694455623627, 0.07052619010210037, -0.037545833736658096, 0.13300518691539764, -0.012364444322884083, 0.0665023997426033, 0.12820307910442352, 0.026860209181904793, -0.06653505563735962, 0.15974470973014832, 0.05344211310148239, -0.036735888570547104, -0.0004094043979421258, -0.033580366522073746, 0.015508565120398998, 0.07170893996953964, 0.04852056875824928, -0.11208993196487427, 0.05880693718791008, 0.08551283180713654, -0.035884443670511246, -0.03514738008379936, 0.10060352087020874, -0.04282071813941002, 0.12045750766992569, 0.020102018490433693, -0.05149420350790024, 0.007752937730401754, -0.015562228858470917, 0.04859364405274391, -0.007914263755083084, -0.0680171325802803, -0.038182277232408524, -0.19174717366695404, -0.024129558354616165, 0.03573629632592201, 0.02157263085246086, -0.21291518211364746, -0.0036090996582061052, -0.12112851440906525, 0.03960547223687172, -0.11428526788949966, 0.08915209770202637, 0.16678838431835175, -0.0047699506394565105, -0.013405464589595795, -0.07440124452114105, -0.007588617969304323, 0.07429344207048416, -0.0933261439204216, -0.15808765590190887 ]
null
null
transformers
This is fine-tuned form of google/mt5-base model used as Russian text summarizer, trained on ~50k samples' dataset. Updates are coming soon. Target is to improve the quality, length and accuracy. Example Usage: ```python model_name = "sarahai/ru-sum" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) device = torch.device("cpu") #if you are using cpu input_text = "текст на русском" #your input in russian input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) outputs = model.generate(input_ids, max_length=100, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True) #change according to your preferences summary = tokenizer.decode(outputs[0], skip_special_tokens=True) print(summary) ``` References Hugging Face Model Hub T5 Paper Disclaimer: The model's performance may be influenced by the quality and representativeness of the data it was fine-tuned on. Users are encouraged to assess the model's suitability for their specific applications and datasets.
{"language": ["ru"], "license": "apache-2.0", "library_name": "transformers", "tags": ["summarizer", "text-generation-inference"], "datasets": ["IlyaGusev/gazeta"], "base_model": "google/mt5-base", "pipeline_tag": "summarization", "widget": [{"text": "\u0412 \u043f\u043e\u043d\u0435\u0434\u0435\u043b\u044c\u043d\u0438\u043a \u0432 \u0421\u0430\u043d\u043a\u0442-\u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433\u0441\u043a\u043e\u043c \u0433\u0430\u0440\u043d\u0438\u0437\u043e\u043d\u043d\u043e\u043c \u0432\u043e\u0435\u043d\u043d\u043e\u043c \u0441\u0443\u0434\u0435 \u043d\u0430\u0447\u0430\u043b\u0438\u0441\u044c \u0441\u043b\u0443\u0448\u0430\u043d\u0438\u044f \u043f\u043e \u0434\u0435\u043b\u0443 \u0431\u044b\u0432\u0448\u0435\u0433\u043e \u043a\u0430\u043f\u0438\u0442\u0430\u043d\u0430 \u0424\u0421\u0411 \u0418\u0432\u0430\u043d\u0430 \u041a\u0440\u0443\u0433\u043b\u043e\u0432\u0430. \u0415\u0433\u043e \u043e\u0431\u0432\u0438\u043d\u044f\u044e\u0442 \u043f\u043e \u0447. 4 \u0441\u0442\u0430\u0442\u044c\u0438 111 \u0423\u041a \u0420\u0424 (\u0443\u043c\u044b\u0448\u043b\u0435\u043d\u043d\u043e\u0435 \u043f\u0440\u0438\u0447\u0438\u043d\u0435\u043d\u0438\u0435 \u0442\u044f\u0436\u043a\u043e\u0433\u043e \u0432\u0440\u0435\u0434\u0430 \u0437\u0434\u043e\u0440\u043e\u0432\u044c\u044e, \u043f\u043e\u0432\u043b\u0435\u043a\u0448\u0435\u0435 \u043f\u043e \u043d\u0435\u043e\u0441\u0442\u043e\u0440\u043e\u0436\u043d\u043e\u0441\u0442\u0438 \u0441\u043c\u0435\u0440\u0442\u044c \u043f\u043e\u0442\u0435\u0440\u043f\u0435\u0432\u0448\u0435\u0433\u043e). \u0412 \u043f\u0440\u043e\u0448\u043b\u043e\u043c \u0433\u043e\u0434\u0443 \u044d\u043a\u0441-\u0441\u0438\u043b\u043e\u0432\u0438\u043a, \u043d\u0435 \u0431\u0443\u0434\u0443\u0447\u0438 \u043f\u0440\u0438 \u0438\u0441\u043f\u043e\u043b\u043d\u0435\u043d\u0438\u0438 \u0441\u043b\u0443\u0436\u0435\u0431\u043d\u044b\u0445 \u043e\u0431\u044f\u0437\u0430\u043d\u043d\u043e\u0441\u0442\u0435\u0439, \u0437\u0430\u0441\u0442\u0440\u0435\u043b\u0438\u043b \u0438\u0437 \u0442\u0440\u0430\u0432\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u043e\u0433\u043e \u043f\u0438\u0441\u0442\u043e\u043b\u0435\u0442\u0430 \u0441\u043b\u0443\u0447\u0430\u0439\u043d\u043e\u0433\u043e \u043f\u0440\u043e\u0445\u043e\u0436\u0435\u0433\u043e \u2014 \u0436\u0438\u0442\u0435\u043b\u044f \u041f\u0435\u0442\u0435\u0440\u0431\u0443\u0440\u0433\u0430 \u0417\u0432\u0438\u0430\u0434\u0430 \u0425\u0430\u0447\u0430\u0442\u0443\u0440\u044f\u043d\u0430, \u043a\u043e\u0442\u043e\u0440\u044b\u0439 \u043f\u043e\u0437\u0434\u043d\u0435\u0435 \u0441\u043a\u043e\u043d\u0447\u0430\u043b\u0441\u044f. \u0412 \u043d\u0430\u0447\u0430\u043b\u0435 \u0437\u0430\u0441\u0435\u0434\u0430\u043d\u0438\u044f \u0441\u0442\u043e\u0440\u043e\u043d\u0430 \u043f\u043e\u0434\u0441\u0443\u0434\u0438\u043c\u043e\u0433\u043e \u0445\u043e\u0434\u0430\u0442\u0430\u0439\u0441\u0442\u0432\u043e\u0432\u0430\u043b\u0430 \u043f\u0435\u0440\u0435\u0434 \u0441\u0443\u0434\u043e\u043c, \u0447\u0442\u043e\u0431\u044b \u0441\u0434\u0435\u043b\u0430\u0442\u044c \u043f\u0440\u043e\u0446\u0435\u0441\u0441 \u043f\u043e\u043b\u043d\u043e\u0441\u0442\u044c\u044e \u0437\u0430\u043a\u0440\u044b\u0442\u044b\u043c. \u0410\u0434\u0432\u043e\u043a\u0430\u0442 \u041a\u0440\u0443\u0433\u043b\u043e\u0432\u0430 \u041b\u0435\u0432 \u041a\u043e\u0436\u043e\u0445\u0438\u043d \u043c\u043e\u0442\u0438\u0432\u0438\u0440\u043e\u0432\u0430\u043b \u0445\u043e\u0434\u0430\u0442\u0430\u0439\u0441\u0442\u0432\u043e \u0442\u0435\u043c, \u0447\u0442\u043e \u0432 \u043a\u0430\u0447\u0435\u0441\u0442\u0432\u0435 \u0441\u0432\u0438\u0434\u0435\u0442\u0435\u043b\u0435\u0439 \u043f\u0440\u0438\u0432\u043b\u0435\u0447\u0435\u043d\u044b \u043d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u043e \u0434\u0435\u0439\u0441\u0442\u0432\u0443\u044e\u0449\u0438\u0445 \u0441\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u043a\u043e\u0432 \u0424\u0421\u0411, \u0430 \u0441\u043b\u0435\u0434\u043e\u0432\u0430\u0442\u0435\u043b\u044c\u043d\u043e, \u043c\u043e\u0433\u0443\u0442 \u0431\u044b\u0442\u044c \u0440\u0430\u0437\u0433\u043b\u0430\u0448\u0435\u043d\u044b \u0444\u0430\u043a\u0442\u044b, \u0438\u043c\u0435\u044e\u0449\u0438\u0435 \u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0435 \u043a \u0433\u043e\u0441\u0443\u0434\u0430\u0440\u0441\u0442\u0432\u0435\u043d\u043d\u043e\u0439 \u0442\u0430\u0439\u043d\u0435. \u041e\u0434\u043d\u0430\u043a\u043e \u0441\u0443\u0434\u044c\u044f \u0412\u0438\u0442\u0430\u043b\u0438\u0439 \u041a\u0440\u0430\u0441\u043d\u043e\u0449\u0435\u043a\u043e\u0432 \u0443\u0434\u043e\u0432\u043b\u0435\u0442\u0432\u043e\u0440\u0438\u043b \u043f\u0440\u043e\u0441\u044c\u0431\u0443 \u0447\u0430\u0441\u0442\u0438\u0447\u043d\u043e: \u0437\u0430\u0441\u0435\u0434\u0430\u043d\u0438\u044f \u0431\u0443\u0434\u0443\u0442 \u0437\u0430\u043a\u0440\u044b\u0442\u044b\u043c\u0438 \u0442\u043e\u043b\u044c\u043a\u043e \u043f\u0440\u0438 \u0434\u043e\u043f\u0440\u043e\u0441\u0435 \u0441\u043e\u0442\u0440\u0443\u0434\u043d\u0438\u043a\u043e\u0432 \u0424\u0421\u0411 \u0438 \u043f\u0440\u0438 \u043e\u0431\u0441\u0443\u0436\u0434\u0435\u043d\u0438\u0438 \u0441\u0435\u043a\u0440\u0435\u0442\u043d\u043e\u0439 \u0438\u043d\u0444\u043e\u0440\u043c\u0430\u0446\u0438\u0438. "}], "example_title": "Summarization Example 1"}
summarization
sarahai/ru-sum
[ "transformers", "safetensors", "mt5", "text2text-generation", "summarizer", "text-generation-inference", "summarization", "ru", "dataset:IlyaGusev/gazeta", "base_model:google/mt5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:28:21+00:00
[]
[ "ru" ]
TAGS #transformers #safetensors #mt5 #text2text-generation #summarizer #text-generation-inference #summarization #ru #dataset-IlyaGusev/gazeta #base_model-google/mt5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This is fine-tuned form of google/mt5-base model used as Russian text summarizer, trained on ~50k samples' dataset. Updates are coming soon. Target is to improve the quality, length and accuracy. Example Usage: References Hugging Face Model Hub T5 Paper Disclaimer: The model's performance may be influenced by the quality and representativeness of the data it was fine-tuned on. Users are encouraged to assess the model's suitability for their specific applications and datasets.
[]
[ "TAGS\n#transformers #safetensors #mt5 #text2text-generation #summarizer #text-generation-inference #summarization #ru #dataset-IlyaGusev/gazeta #base_model-google/mt5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 90 ]
[ "passage: TAGS\n#transformers #safetensors #mt5 #text2text-generation #summarizer #text-generation-inference #summarization #ru #dataset-IlyaGusev/gazeta #base_model-google/mt5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ -0.05103076249361038, 0.11109118908643723, -0.004387566354125738, -0.006801729556173086, 0.11244819313287735, -0.016728242859244347, 0.21188713610172272, 0.07393759489059448, 0.020765993744134903, -0.038419436663389206, 0.1748393476009369, 0.08161213248968124, -0.020175982266664505, 0.1669653207063675, -0.08303948491811752, -0.15565654635429382, 0.09883928298950195, -0.06149379163980484, -0.05580748990178108, 0.098868228495121, 0.13282841444015503, -0.02208765596151352, 0.0880589410662651, -0.045035190880298615, -0.007790714967995882, 0.042201511561870575, 0.057413049042224884, -0.12686115503311157, 0.07458140701055527, 0.05111806467175484, 0.006450475659221411, 0.11320960521697998, 0.0011981712887063622, -0.151457279920578, 0.023753056302666664, 0.016118958592414856, -0.08174224942922592, 0.046567197889089584, 0.08452615141868591, -0.0770152285695076, 0.08441974967718124, -0.012027758173644543, -0.039796844124794006, 0.06592950969934464, -0.08803041279315948, -0.0300300195813179, -0.08158449083566666, 0.03004738874733448, 0.10241194069385529, 0.10115120559930801, -0.0006453655078075826, 0.11035539954900742, -0.0743628740310669, 0.07752929627895355, 0.08917232602834702, -0.3239263892173767, -0.02181408554315567, 0.11276500672101974, -0.027805820107460022, 0.0664837583899498, 0.016225973144173622, 0.10138265788555145, 0.06445479393005371, -0.0455830842256546, 0.03864981606602669, -0.02813042141497135, -0.04046935960650444, 0.04141391068696976, -0.07766889780759811, -0.023441705852746964, 0.3744710683822632, 0.024184299632906914, 0.02191934734582901, -0.009306822903454304, -0.07767567038536072, 0.07081522047519684, -0.01281820423901081, 0.029683254659175873, 0.01642800308763981, 0.1003275141119957, -0.018435144796967506, -0.02882033959031105, -0.11909350007772446, -0.026890628039836884, -0.14321129024028778, 0.07167745381593704, -0.020235981792211533, 0.047417476773262024, -0.09367633610963821, 0.06010004132986069, -0.05067341402173042, -0.143057182431221, 0.02872791700065136, -0.09402672946453094, 0.040129389613866806, 0.00361382937990129, -0.03915535658597946, -0.0850951299071312, 0.15782828629016876, 0.22248458862304688, 0.06530595570802689, 0.04059974104166031, -0.0367928221821785, 0.08123994618654251, -0.0024879425764083862, 0.009090405888855457, -0.05663685128092766, -0.14624252915382385, 0.0919831246137619, -0.02771657519042492, 0.0920025035738945, -0.016881830990314484, -0.09268389642238617, -0.007603020872920752, -0.0007737105479463935, 0.09399381279945374, 0.07043666392564774, 0.11064562201499939, -0.03764169290661812, 0.03578643500804901, 0.05839884653687477, -0.06047038361430168, -0.027792781591415405, -0.00788641907274723, -0.017638815566897392, 0.024102646857500076, 0.03702424839138985, 0.06698226183652878, -0.019566195085644722, 0.054389093071222305, -0.05745381861925125, -0.0398203507065773, -0.003928050864487886, -0.025065820664167404, 0.07090058922767639, -0.04372916743159294, 0.0379987508058548, -0.17438697814941406, -0.23790733516216278, -0.007130159996449947, 0.08458802103996277, -0.049671709537506104, -0.03136805444955826, -0.02710738033056259, -0.038344062864780426, 0.0385599210858345, -0.06913076341152191, 0.011743155308067799, -0.1049557626247406, 0.010616933926939964, -0.06755447387695312, 0.05381686985492706, -0.10558582842350006, 0.04011295735836029, -0.15350393950939178, 0.012349930591881275, -0.06517526507377625, 0.05060455575585365, -0.10699393600225449, 0.18101108074188232, -0.08124969154596329, 0.0556412972509861, -0.07255436480045319, -0.00564202107489109, 0.030198317021131516, 0.22411707043647766, -0.1303698867559433, -0.04351946711540222, 0.08939370512962341, -0.16105325520038605, -0.20468340814113617, 0.09093865007162094, 0.018719036132097244, 0.10008320212364197, 0.10778181254863739, 0.15345139801502228, 0.017406947910785675, -0.008842583745718002, -0.005139608401805162, 0.049558691680431366, -0.07185006886720657, -0.09153548628091812, 0.05686597153544426, -0.0015633737202733755, -0.14434924721717834, 0.060683898627758026, 0.022975299507379532, 0.07808276265859604, -0.02774067595601082, -0.06373295187950134, -0.07165874540805817, -0.0753803700208664, 0.027896510437130928, -0.037312354892492294, 0.059648048132658005, -0.08967535197734833, -0.016765961423516273, -0.07675392925739288, 0.03626126050949097, 0.024725520983338356, 0.006945756729692221, -0.0505974255502224, 0.07690336555242538, -0.04290584847331047, 0.06740998476743698, -0.09729862213134766, -0.013757879845798016, -0.013388278894126415, 0.03894257918000221, 0.019457638263702393, -0.044403351843357086, 0.05479726567864418, -0.0360441580414772, -0.05365956947207451, -0.0319395437836647, 0.16014686226844788, 0.053886596113443375, -0.04007131978869438, -0.19168607890605927, 0.07487733662128448, -0.03568771481513977, 0.09594956785440445, -0.059034012258052826, 0.04986625164747238, 0.017652079463005066, 0.13035807013511658, -0.010990518145263195, 0.0821714848279953, 0.01087555568665266, -0.034465234726667404, -0.08640355616807938, -0.01269438024610281, 0.07617369294166565, 0.03534109517931938, -0.09364102780818939, 0.17427411675453186, -0.061835262924432755, 0.24780984222888947, 0.1854904443025589, -0.09309683740139008, 0.04581726714968681, -0.029686789959669113, 0.015611454844474792, -0.027372052893042564, 0.012081518769264221, 0.00346189271658659, -0.06669066101312637, -0.0020916617941111326, 0.12087838351726532, -0.07382277399301529, 0.015463952906429768, -0.00866834819316864, -0.078015998005867, -0.07148563861846924, 0.05514601990580559, 0.12268627434968948, -0.22923552989959717, 0.16649700701236725, 0.26324111223220825, 0.017156770452857018, 0.1418619602918625, -0.04186105728149414, -0.010396617464721203, 0.03309756517410278, -0.013704088516533375, -0.039464499801397324, 0.03014858439564705, -0.12274086475372314, 0.011330232955515385, 0.062454041093587875, 0.04176351800560951, 0.07651715725660324, -0.07222072780132294, -0.03580277040600777, -0.009392022155225277, -0.029694320634007454, -0.07485426962375641, 0.04782816767692566, -0.050236236304044724, 0.12834660708904266, -0.040378082543611526, -0.04116054251790047, 0.08766917139291763, -0.01614292711019516, -0.1005668118596077, 0.14535777270793915, -0.1203562542796135, -0.22318178415298462, -0.13591280579566956, -0.05424388498067856, -0.11441555619239807, 0.03517233952879906, 0.10136139392852783, -0.07665081322193146, -0.06082000955939293, -0.09049993753433228, -0.008029882796108723, 0.05860370770096779, 0.027902372181415558, -0.007549937814474106, 0.09908266365528107, 0.025705400854349136, -0.09400849789381027, -0.02403135411441326, 0.00978037714958191, 0.00017320887127425522, 0.0997704342007637, -0.08952410519123077, 0.10258854925632477, 0.06524889916181564, 0.017040615901350975, 0.008582589216530323, -0.01235234271734953, 0.12365919351577759, -0.034459229558706284, 0.051361747086048126, 0.19875477254390717, 0.030289532616734505, 0.02752540446817875, 0.19072620570659637, -0.004371719900518656, -0.06984192132949829, 0.07674124091863632, -0.039713211357593536, -0.05924559757113457, -0.265920490026474, -0.1298866719007492, -0.06694649904966354, 0.07964775711297989, 0.03926796466112137, 0.046716056764125824, 0.040709108114242554, 0.12952035665512085, -0.05270769074559212, -0.032081086188554764, 0.07540302723646164, 0.06320259720087051, 0.16166433691978455, -0.02177640236914158, 0.13921765983104706, -0.10568635910749435, -0.03141317144036293, 0.11721933633089066, -0.001207226188853383, 0.13234873116016388, 0.09205982834100723, 0.047790251672267914, 0.03994492441415787, 0.1062798798084259, 0.08585792779922485, 0.12680189311504364, 0.09231141954660416, -0.041114579886198044, -0.028499890118837357, -0.044404033571481705, -0.05173115432262421, 0.07929575443267822, -0.10351088643074036, -0.08109049499034882, -0.021709280088543892, 0.016876110807061195, 0.12651462852954865, 0.18156033754348755, 0.05162477493286133, -0.20953240990638733, -0.018231026828289032, 0.10161993652582169, 0.0012484834296628833, -0.026626886799931526, 0.090122751891613, 0.010789530351758003, -0.04960649088025093, 0.15041784942150116, -0.01514904759824276, 0.11982371658086777, 0.06860997527837753, 0.03650035709142685, -0.05512082204222679, -0.04325662925839424, -0.0218706913292408, 0.11961192637681961, -0.2877294719219208, 0.23232589662075043, 0.0023085952270776033, -0.004999859258532524, -0.06378748267889023, 0.004197238944470882, 0.06467247754335403, 0.20611102879047394, 0.09549812227487564, 0.010736672207713127, -0.16479052603244781, 0.027478020638227463, -0.11835047602653503, 0.06782356649637222, 0.030963847413659096, -0.028857093304395676, 0.008412370458245277, -0.0629960149526596, -0.030859075486660004, 0.01767003908753395, 0.03038204461336136, -0.1723199337720871, -0.14636079967021942, -0.00013290012429933995, 0.09956716001033783, 0.12278478592634201, -0.08531506359577179, -0.020893020555377007, -0.06357064098119736, 0.16682226955890656, 0.017157835885882378, -0.07232105731964111, -0.11568283289670944, -0.04697291925549507, 0.06702414155006409, -0.02432454191148281, 0.0337793231010437, -0.03724094480276108, 0.052228447049856186, -0.027714353054761887, -0.1864282339811325, 0.09508389979600906, -0.14408351480960846, -0.07401003688573837, -0.06125951185822487, 0.1359182447195053, -0.07167205214500427, -0.004457028117030859, 0.010053286328911781, 0.025897691026329994, -0.061549846082925797, -0.10027629882097244, -0.0038969446904957294, 0.0008578363922424614, -0.008533095940947533, 0.05892209708690643, -0.07700849324464798, -0.1473788470029831, -0.0186158437281847, -0.09988638758659363, 0.14727936685085297, 0.2310725748538971, -0.05879395082592964, 0.12392277270555496, 0.19920359551906586, -0.04726070165634155, -0.30804243683815, -0.07599911093711853, -0.13405677676200867, -0.05232517793774605, -0.013832587748765945, -0.1157488003373146, 0.08118927478790283, 0.06094956025481224, -0.08694344013929367, 0.034044552594423294, -0.17023248970508575, -0.11749354004859924, 0.14835043251514435, -0.02579697221517563, 0.2840437591075897, -0.14180698990821838, -0.07903225719928741, -0.14115919172763824, -0.058443546295166016, 0.09281421452760696, -0.18837839365005493, 0.043941400945186615, 0.01751100644469261, -0.05298810452222824, -0.015559721738100052, -0.04069623351097107, 0.11927278339862823, -0.022363755851984024, 0.05576141178607941, -0.09512870758771896, 0.0809527337551117, 0.12364323437213898, -0.029822222888469696, 0.09156037122011185, -0.1209736093878746, 0.06295260787010193, -0.0061092013493180275, -0.03509262949228287, -0.013198364526033401, 0.06255492568016052, 0.010457849130034447, -0.0500028170645237, -0.029506325721740723, -0.024217508733272552, 0.019128233194351196, -0.016300758346915245, 0.22785267233848572, -0.012341709807515144, 0.07812409847974777, 0.1910461038351059, 0.10702814906835556, -0.2210237830877304, 0.11208295822143555, -0.02422412857413292, -0.071797214448452, 0.04226496443152428, -0.21522678434848785, 0.056030403822660446, 0.06575831025838852, -0.0441083088517189, 0.05163661018013954, 0.046711377799510956, 0.010286086238920689, -0.019263355061411858, 0.14634068310260773, -0.19955387711524963, -0.021189918741583824, -0.05654629319906235, 0.043357107788324356, 0.027308423072099686, 0.08828258514404297, 0.15694771707057953, -0.046505700796842575, 0.012256295420229435, 0.000012241145668667741, 0.04992622137069702, -0.027608774602413177, 0.11381281912326813, 0.022609930485486984, 0.006433362606912851, -0.12225832790136337, 0.19219297170639038, 0.003977888263761997, -0.0812440812587738, -0.018024548888206482, 0.05179764702916145, -0.16916204988956451, -0.12876296043395996, -0.04072461277246475, 0.10890929400920868, -0.06772105395793915, -0.1155204251408577, -0.09144061803817749, -0.131906658411026, 0.05711507424712181, 0.06469538062810898, 0.08710062503814697, 0.038039494305849075, 0.010537217371165752, -0.08851795643568039, 0.005722028203308582, 0.057162266224622726, 0.052095990628004074, 0.014987854287028313, -0.1464708000421524, -0.1081588938832283, -0.013078717514872551, 0.02052183635532856, -0.08295980095863342, 0.00024078928981907666, -0.09058613330125809, 0.012715157121419907, -0.16753968596458435, -0.02138172835111618, -0.12520131468772888, -0.02747618407011032, -0.008168816566467285, -0.09904948621988297, -0.09558052569627762, -0.014058740809559822, -0.0810387060046196, -0.010907169431447983, -0.04035161808133125, 0.09361493587493896, -0.0874849483370781, -0.0036902648862451315, 0.06405634433031082, -0.051753271371126175, 0.0898386687040329, 0.10398166626691818, -0.05629369616508484, 0.07503221929073334, -0.263019859790802, -0.05736561864614487, 0.08229611068964005, 0.012677098624408245, 0.005139429587870836, -0.029483456164598465, 0.004007241223007441, 0.12148256599903107, -0.011660662479698658, 0.03609339892864227, -0.004481894429773092, -0.10453490167856216, 0.001754040364176035, -0.04151146113872528, -0.04685244709253311, -0.007350140251219273, -0.0822523683309555, 0.12450863420963287, 0.01003978494554758, 0.2068691998720169, -0.10756488889455795, 0.010573040693998337, -0.10704704374074936, 0.05126135051250458, -0.02307668700814247, -0.16615909337997437, -0.14286424219608307, -0.045989740639925, -0.00785498134791851, -0.020859774202108383, 0.2649191617965698, 0.0024681168142706156, -0.05504128709435463, 0.0683414489030838, 0.07738587260246277, 0.07435405999422073, 0.0467630997300148, 0.21621248126029968, 0.0707455426454544, 0.007927040569484234, -0.11596401035785675, 0.037407949566841125, 0.08114262670278549, -0.09693019837141037, 0.016775185242295265, 0.10323069244623184, -0.0175041314214468, 0.10572443902492523, 0.02798503451049328, -0.024740125983953476, 0.01663164421916008, 0.011076751165091991, -0.061328426003456116, 0.06239119544625282, 0.004525167401880026, 0.044161926954984665, 0.20272870361804962, -0.030461564660072327, -0.031356263905763626, -0.044864896684885025, 0.005750065669417381, -0.11413181573152542, -0.14356891810894012, -0.11049279570579529, -0.20129989087581635, 0.0025322958827018738, -0.07741852849721909, -0.017166422680020332, 0.08775313198566437, 0.058670759201049805, -0.059214141219854355, 0.025844695046544075, 0.00037280985270626843, -0.07852712273597717, 0.06039757281541824, -0.03893178328871727, -0.05606052652001381, -0.016822587698698044, -0.09788378328084946, -0.021397940814495087, -0.020797422155737877, -0.07177402824163437, 0.06818459928035736, -0.006721375044435263, 0.06876830756664276, -0.06685363501310349, -0.07386647164821625, -0.052452798932790756, 0.03743559867143631, -0.017304077744483948, 0.07513205707073212, 0.016540123149752617, 0.0037464278284460306, 0.10064086318016052, 0.25405627489089966, -0.039457205682992935, -0.12913160026073456, -0.10290265828371048, 0.09648334980010986, -0.0003271235909778625, 0.09647248685359955, -0.028614211827516556, -0.04541153460741043, -0.02002537064254284, 0.2325448840856552, 0.31478744745254517, -0.024787304922938347, 0.019747110083699226, -0.08550267666578293, 0.009471142664551735, 0.038145389407873154, 0.062433045357465744, 0.07600400596857071, 0.0786459669470787, -0.05035438388586044, 0.04589607194066048, -0.025299226865172386, -0.01147284172475338, -0.10959156602621078, 0.13411469757556915, -0.009678998962044716, -0.07422571629285812, -0.02734796330332756, 0.14959070086479187, -0.08941803872585297, 0.06115182861685753, -0.09415530413389206, -0.11173570156097412, -0.044670186936855316, -0.02058287151157856, 0.14427177608013153, 0.043818794190883636, 0.026241514831781387, -0.03603951632976532, -0.003713165409862995, -0.03714756667613983, -0.0009489304502494633, -0.1456182897090912, -0.07700572162866592, 0.023653078824281693, -0.022149991244077682, 0.14883358776569366, -0.004823910538107157, 0.008950882591307163, 0.10285438597202301, 0.01254341471940279, -0.12351688742637634, 0.10950637608766556, 0.01879001222550869, -0.0407332219183445, 0.05828775838017464, -0.0936807245016098, 0.00007879480108385906, 0.07283489406108856, 0.07499545812606812, -0.06279043108224869, 0.05586262792348862, 0.00835307128727436, -0.05914212763309479, -0.052069325000047684, 0.058588605374097824, -0.07327451556921005, 0.08786258101463318, 0.01669551059603691, -0.060401029884815216, -0.0067626358941197395, -0.04116499051451683, 0.061510004103183746, 0.008033865131437778, -0.11090337485074997, 0.022145608440041542, -0.1272134631872177, -0.03146372735500336, 0.08978332579135895, 0.042085107415914536, -0.1719449907541275, 0.008651220239698887, -0.1522533893585205, 0.026322301477193832, -0.10574492067098618, 0.052670735865831375, 0.14887505769729614, 0.0006218079943209887, -0.021646441891789436, -0.18407176434993744, 0.05349678546190262, 0.0851283147931099, -0.05322222039103508, -0.11108507215976715 ]
null
null
transformers
# LLM agent flow text classification This model identifies common LLM agent events and patterns within the conversation flow. Such events include an apology, where the LLM acknowledges a mistake. The flow labels can serve as foundational elements for sophisticated LLM analytics. It is ONNX quantized and is a fined-tune of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-RoBERTa-Large). The base model can be found [here](https://huggingface.co/minuva/MiniLMv2-agentflow-v2) This model is *only* for the LLM agent texts in the dialog. For the user texts [use this model](https://huggingface.co/minuva/MiniLMv2-userflow-v2-onnx/). # Optimum ## Installation Install from source: ```bash python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git ``` ## Run the Model ```py from optimum.onnxruntime import ORTModelForSequenceClassification from transformers import AutoTokenizer, pipeline model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', provider="CPUExecutionProvider") tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-agentflow-v2-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length') pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, ) texts = ["My apologies", "Im not sure what you mean"] pipe(texts) # [{'label': 'agent_apology_error_mistake', 'score': 0.9967106580734253}, # {'label': 'agent_didnt_understand', 'score': 0.9975798726081848}] ``` # ONNX Runtime only A lighter solution for deployment ## Installation ```bash pip install tokenizers pip install onnxruntime git clone https://huggingface.co/minuva/MiniLMv2-agentflow-v2-onnx ``` ## Run the Model ```py import os import numpy as np import json from tokenizers import Tokenizer from onnxruntime import InferenceSession model_name = "minuva/MiniLMv2-agentflow-v2-onnx" tokenizer = Tokenizer.from_pretrained(model_name) tokenizer.enable_padding( pad_token="<pad>", pad_id=1, ) tokenizer.enable_truncation(max_length=256) batch_size = 16 texts = ["thats my mistake"] outputs = [] model = InferenceSession("MiniLMv2-agentflow-v2-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider']) with open(os.path.join("MiniLMv2-agentflow-v2-onnx", "config.json"), "r") as f: config = json.load(f) output_names = [output.name for output in model.get_outputs()] input_names = [input.name for input in model.get_inputs()] for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1): encodings = tokenizer.encode_batch(list(subtexts)) inputs = { "input_ids": np.vstack( [encoding.ids for encoding in encodings], ), "attention_mask": np.vstack( [encoding.attention_mask for encoding in encodings], ), "token_type_ids": np.vstack( [encoding.type_ids for encoding in encodings], ), } for input_name in input_names: if input_name not in inputs: raise ValueError(f"Input name {input_name} not found in inputs") inputs = {input_name: inputs[input_name] for input_name in input_names} output = np.squeeze( np.stack( model.run(output_names=output_names, input_feed=inputs) ), axis=0, ) outputs.append(output) outputs = np.concatenate(outputs, axis=0) scores = 1 / (1 + np.exp(-outputs)) results = [] for item in scores: labels = [] scores = [] for idx, s in enumerate(item): labels.append(config["id2label"][str(idx)]) scores.append(float(s)) results.append({"labels": labels, "scores": scores}) res = [] for result in results: joined = list(zip(result['labels'], result['scores'])) max_score = max(joined, key=lambda x: x[1]) res.append(max_score) res # [('agent_apology_error_mistake', 0.9991968274116516), # ('agent_didnt_understand', 0.9993669390678406)] ``` # Categories Explanation <details> <summary>Click to expand!</summary> - OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed. - agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request. - agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user. - agent_didnt_understand: Indicates that the agent did not understand the user's request or question. - agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information. - agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations. - image_limitations": The agent points out limitations related to handling or interpreting images. - no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question. - success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed. </details> <br> # Metrics in our private test dataset | Model (params) | Loss | Accuracy | F1 | |--------------------|-------------|----------|--------| | minuva/MiniLMv2-agentflow-v2 (33M) | 0.1462 | 0.9616 | 0.9618 | | minuva/MiniLMv2-agentflow-v2-onnx (33M) | - | 0.9624 | 0.9626 | # Deployment Check our [llm-flow-classification repository](https://github.com/minuva/llm-flow-classification) for a FastAPI and ONNX based server to deploy this model on CPU devices.
{"language": ["en"], "license": "apache-2.0", "tags": ["text-classification", "onnx", "int8", "optimum"], "inference": false}
text-classification
minuva/MiniLMv2-agentflow-v2-onnx
[ "transformers", "onnx", "roberta", "text-classification", "int8", "optimum", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
2024-02-06T12:28:47+00:00
[]
[ "en" ]
TAGS #transformers #onnx #roberta #text-classification #int8 #optimum #en #license-apache-2.0 #autotrain_compatible #region-us
LLM agent flow text classification ================================== This model identifies common LLM agent events and patterns within the conversation flow. Such events include an apology, where the LLM acknowledges a mistake. The flow labels can serve as foundational elements for sophisticated LLM analytics. It is ONNX quantized and is a fined-tune of MiniLMv2-L6-H384. The base model can be found here This model is *only* for the LLM agent texts in the dialog. For the user texts use this model. Optimum ======= Installation ------------ Install from source: Run the Model ------------- ONNX Runtime only ================= A lighter solution for deployment Installation ------------ Run the Model ------------- Categories Explanation ====================== Click to expand! ``` - OTHER: Responses or actions by the agent that do not fit into the predefined categories or are outside the scope of the specific interactions listed. - agent_apology_error_mistake: When the agent acknowledges an error or mistake in the information provided or in the handling of the request. - agent_apology_unsatisfactory: The agent expresses an apology for providing an unsatisfactory response or for any dissatisfaction experienced by the user. - agent_didnt_understand: Indicates that the agent did not understand the user's request or question. - agent_limited_capabilities: The agent communicates its limitations in addressing certain requests or providing certain types of information. - agent_refuses_answer: When the agent explicitly refuses to answer a question or fulfill a request, due to policy restrictions or ethical considerations. - image_limitations": The agent points out limitations related to handling or interpreting images. - no_information_doesnt_know": The agent indicates that it has no information available or does not know the answer to the user's question. - success_and_followup_assistance": The agent successfully provides the requested information or service and offers further assistance or follow-up actions if needed. ``` Metrics in our private test dataset =================================== Deployment ========== Check our llm-flow-classification repository for a FastAPI and ONNX based server to deploy this model on CPU devices.
[]
[ "TAGS\n#transformers #onnx #roberta #text-classification #int8 #optimum #en #license-apache-2.0 #autotrain_compatible #region-us \n" ]
[ 45 ]
[ "passage: TAGS\n#transformers #onnx #roberta #text-classification #int8 #optimum #en #license-apache-2.0 #autotrain_compatible #region-us \n" ]
[ -0.03691660240292549, 0.10891017317771912, -0.006620819680392742, 0.08338013291358948, 0.10480347275733948, 0.012068057432770729, 0.20313675701618195, 0.1719866842031479, -0.04533146321773529, -0.0654601901769638, 0.18959467113018036, 0.1815703809261322, -0.007939174771308899, 0.10693193227052689, -0.15176129341125488, -0.1602873057126999, 0.0707005113363266, -0.05379829555749893, -0.025921465829014778, 0.08251930773258209, 0.09530366957187653, 0.02605466917157173, 0.0348961167037487, -0.04088611155748367, -0.04776954650878906, -0.02141016349196434, 0.09271030873060226, -0.12637369334697723, 0.032561298459768295, 0.12458451837301254, 0.037367675453424454, 0.030743099749088287, -0.02881893515586853, -0.276408314704895, 0.03367779031395912, 0.012660205364227295, -0.13260632753372192, 0.03058011457324028, 0.06581380218267441, -0.03935744985938072, 0.027768976986408234, 0.06822828203439713, -0.04978976026177406, 0.10408303141593933, -0.12447647005319595, -0.06448744982481003, -0.1111130341887474, -0.028258230537176132, -0.00839006993919611, 0.00595257431268692, 0.025761069729924202, 0.19393488764762878, -0.09256689995527267, 0.09452349692583084, -0.03480936586856842, -0.25856664776802063, -0.005660293158143759, 0.02426745928823948, 0.000951198919210583, 0.07238210737705231, 0.004267237149178982, 0.06609410792589188, 0.017568960785865784, -0.027886101976037025, 0.018861280754208565, -0.08217493444681168, -0.15956617891788483, 0.0134113235399127, -0.026921065524220467, -0.0718034952878952, 0.20144926011562347, 0.10663140565156937, 0.023450437933206558, -0.04277398809790611, -0.11244694143533707, 0.0014896105276420712, 0.010200287215411663, 0.01385542657226324, 0.004038550890982151, 0.12637080252170563, 0.045533329248428345, -0.05453459545969963, -0.10518433898687363, 0.017539026215672493, -0.10655803978443146, 0.19785919785499573, -0.022803450003266335, 0.06184897571802139, -0.12063081562519073, -0.015949537977576256, 0.0027333062607795, -0.12473999708890915, 0.03307878598570824, -0.08707746863365173, -0.019883545115590096, 0.02254297584295273, -0.010755454190075397, -0.010258303955197334, 0.12533815205097198, 0.2722359001636505, 0.06524689495563507, 0.031600382179021835, -0.04315374419093132, 0.05240723118185997, 0.0016949826385825872, 0.11882836371660233, 0.01168349664658308, -0.03520135581493378, 0.12395251542329788, -0.11638307571411133, 0.0270837489515543, -0.055205125361680984, -0.20492616295814514, 0.0361894890666008, -0.015230298042297363, 0.07903014868497849, 0.038191426545381546, 0.039391592144966125, -0.07951146364212036, -0.01249703112989664, 0.17034435272216797, -0.024852734059095383, 0.02822454273700714, 0.01533754263073206, 0.03661602362990379, -0.027153272181749344, 0.05466686561703682, 0.002238563494756818, -0.016009418293833733, -0.04569448158144951, -0.037193018943071365, -0.04332570731639862, 0.01472734659910202, -0.019553514197468758, 0.09136409312486649, 0.005716807208955288, 0.06850208342075348, -0.182316392660141, -0.09625571221113205, -0.0032969408202916384, 0.06451881676912308, -0.011765263974666595, -0.07189279794692993, 0.0043165055103600025, -0.04761319234967232, 0.024114448577165604, -0.0459279865026474, -0.08206713944673538, -0.10310706496238708, 0.04039108380675316, -0.0012403745204210281, -0.0017965241568163037, -0.1457858383655548, 0.07233966886997223, -0.1186053603887558, -0.03793361783027649, -0.016842465847730637, 0.05565083771944046, -0.09078196436166763, 0.2094343602657318, -0.019148387014865875, -0.02254471555352211, -0.009858530946075916, -0.026460042223334312, -0.052967723459005356, 0.19310621917247772, -0.15357482433319092, -0.0655403807759285, 0.17830634117126465, -0.060942210257053375, -0.14878445863723755, 0.07033006846904755, -0.0257968008518219, 0.08954346179962158, 0.0719834566116333, 0.13539192080497742, 0.13630086183547974, 0.036677420139312744, 0.05599913373589516, 0.11602524667978287, -0.15759873390197754, -0.1692727506160736, 0.08408787846565247, -0.0030347455758601427, -0.08380252122879028, 0.049266308546066284, 0.07773490995168686, 0.1358235478401184, 0.0142313651740551, -0.09361054003238678, -0.08450616896152496, 0.007886771112680435, -0.05791839212179184, 0.032589688897132874, 0.034865278750658035, -0.05888579413294792, -0.05231316760182381, -0.041887834668159485, 0.00033024881849996746, 0.07662700116634369, 0.031095709651708603, -0.10837291181087494, 0.05223250016570091, -0.006218838505446911, 0.09408251196146011, -0.088627390563488, -0.059709735214710236, -0.011874308809638023, -0.07538168877363205, 0.06354991346597672, 0.05043366178870201, 0.004179874435067177, -0.05905414745211601, -0.011957493610680103, 0.0009725646814331412, 0.09091106057167053, 0.07083037495613098, -0.007610424421727657, -0.14552466571331024, 0.07160953432321548, -0.058476511389017105, 0.07415308058261871, -0.10836731642484665, 0.03320465609431267, 0.08800014108419418, 0.025443553924560547, -0.009459730237722397, 0.08623524755239487, 0.014714987948536873, -0.02255108207464218, -0.09494198858737946, -0.043452437967061996, 0.07949180901050568, 0.04272524267435074, -0.16824233531951904, 0.20362499356269836, -0.11130472272634506, 0.22719867527484894, 0.12920528650283813, -0.19312644004821777, 0.06451594829559326, 0.027850022539496422, 0.0042217690497636795, 0.0032824198715388775, 0.0006117189768701792, 0.10134036093950272, -0.00801121350377798, 0.015579788014292717, 0.1845305860042572, -0.07514329254627228, 0.0044215950183570385, 0.04489731788635254, -0.0804557278752327, -0.02253120206296444, 0.0937233716249466, 0.15794861316680908, -0.21692055463790894, 0.15550658106803894, 0.2952340245246887, 0.03959183394908905, 0.07882672548294067, -0.03311042860150337, 0.03304693102836609, -0.012952717952430248, -0.003647544654086232, 0.02346169948577881, -0.03787146136164665, -0.04117002338171005, 0.04496334493160248, 0.0847705826163292, 0.06155940145254135, 0.031517818570137024, -0.08898410201072693, -0.05962301418185234, 0.035205308347940445, -0.04128999263048172, 0.00736162019893527, 0.012025252915918827, -0.034528858959674835, 0.05486192926764488, -0.018336938694119453, -0.138962060213089, 0.15410873293876648, 0.01494317315518856, -0.06931305676698685, 0.12848995625972748, -0.15955545008182526, -0.21452251076698303, -0.21704773604869843, -0.2130069136619568, -0.12743279337882996, 0.0353117510676384, 0.1351066380739212, -0.11748874187469482, -0.036450307816267014, 0.000311900774249807, -0.10545694828033447, -0.00022031244589015841, 0.01918765902519226, -0.08229678124189377, 0.09301520138978958, 0.03947928175330162, -0.11468865722417831, -0.05828674137592316, 0.05797986686229706, -0.042336706072092056, 0.14074842631816864, -0.056624457240104675, 0.08412424474954605, 0.17935605347156525, 0.009183915331959724, 0.0172212403267622, -0.022866807878017426, 0.0979972779750824, -0.0786556825041771, 0.01778375916182995, 0.12723395228385925, -0.044527482241392136, 0.04884300380945206, 0.17300954461097717, 0.06517529487609863, -0.11638091504573822, 0.04399624094367027, -0.01998276449739933, -0.10228919237852097, -0.2964561879634857, -0.11284980922937393, -0.0845412164926529, 0.08042624592781067, 0.035634610801935196, 0.1322052776813507, 0.2468363493680954, 0.0651298463344574, 0.019706588238477707, 0.028369029983878136, 0.0769631415605545, 0.06511328369379044, 0.2370253950357437, 0.023503221571445465, 0.13387642800807953, -0.10344555974006653, -0.04686561971902847, 0.1837765872478485, 0.0861586481332779, 0.09565287828445435, 0.19591934978961945, 0.17145195603370667, 0.08830355852842331, 0.009901097044348717, 0.09439907968044281, 0.044477175921201706, 0.13468037545681, -0.006010544020682573, -0.054490868002176285, -0.03147808089852333, -0.022404877468943596, 0.08139294385910034, -0.02113068662583828, -0.14571581780910492, 0.013174034655094147, -0.07929830998182297, 0.12086642533540726, 0.1300036907196045, 0.04726945236325264, -0.12457773834466934, 0.031843651086091995, 0.10796649754047394, -0.08019961416721344, -0.02586941607296467, 0.08785073459148407, -0.10550381243228912, -0.10952937602996826, 0.11819395422935486, -0.034373071044683456, 0.1772250533103943, -0.08903253078460693, 0.031218547374010086, 0.0013219198444858193, -0.13496345281600952, 0.02592979371547699, 0.12894520163536072, -0.28072410821914673, 0.19873185455799103, 0.020534716546535492, -0.014258050359785557, -0.07004117220640182, 0.018862228840589523, 0.08154518157243729, 0.23863612115383148, 0.06198086962103844, 0.012712926603853703, -0.1407860368490219, -0.027089634910225868, -0.02638884447515011, 0.024475321173667908, -0.0053922985680401325, 0.08789388835430145, -0.06853324174880981, -0.08211307227611542, -0.01270055491477251, 0.0188289862126112, 0.08365365117788315, -0.04670160636305809, -0.11301533132791519, 0.024411749094724655, 0.13820204138755798, -0.010880053974688053, -0.01206077728420496, 0.02850012108683586, -0.18110930919647217, 0.22140687704086304, -0.03643662482500076, 0.016363881528377533, -0.119076669216156, -0.05918193235993385, -0.01690838672220707, -0.016605941578745842, -0.005586449988186359, -0.13914427161216736, -0.01382820587605238, -0.06048007309436798, -0.15339048206806183, 0.056620992720127106, -0.0988013967871666, -0.07066164165735245, -0.04499131441116333, 0.025812223553657532, -0.06372077763080597, 0.002705512335523963, -0.020291820168495178, 0.02704160287976265, -0.0991889014840126, -0.15878888964653015, 0.03405311703681946, -0.024724973365664482, -0.05849767103791237, -0.01566789299249649, -0.06580206751823425, -0.03505783900618553, -0.008469078689813614, -0.005838604178279638, 0.12303715199232101, 0.3902963399887085, -0.06939419358968735, 0.11464063823223114, 0.23732435703277588, -0.07344677299261093, -0.24219241738319397, -0.1648685336112976, -0.2034885436296463, -0.08409254252910614, 0.0665135458111763, -0.1584128886461258, 0.10622552037239075, 0.08033068478107452, -0.058683108538389206, 0.09527094662189484, -0.11237087100744247, -0.08526259660720825, 0.1669718474149704, -0.09936244040727615, 0.40045365691185, -0.12519507110118866, -0.1117968037724495, -0.141753152012825, -0.011068599298596382, 0.07334224134683609, -0.11365306377410889, 0.07041969150304794, 0.04057765379548073, -0.08094007521867752, -0.014663800597190857, 0.00678497226908803, 0.1583668291568756, -0.032589592039585114, 0.041931409388780594, -0.10928937047719955, 0.03252900391817093, 0.1523374766111374, -0.068331278860569, -0.029468959197402, -0.14188608527183533, 0.024170253425836563, -0.12496525794267654, -0.023348450660705566, 0.03233432024717331, 0.13415366411209106, 0.028782624751329422, 0.006043878849595785, -0.04193193092942238, -0.03589624911546707, 0.032645221799612045, -0.0035996364895254374, 0.3131427466869354, -0.01783275231719017, 0.006253247149288654, 0.1873847395181656, 0.039581310003995895, -0.16939252614974976, 0.12141057103872299, -0.0769619271159172, -0.07498413324356079, 0.02719547599554062, -0.13545969128608704, 0.07088392227888107, 0.045506466180086136, -0.08187783509492874, 0.08854884654283524, 0.054611172527074814, 0.032428476959466934, -0.02438417263329029, 0.1339624524116516, -0.1093461662530899, -0.004362019244581461, -0.023555738851428032, -0.014748749323189259, 0.09189668297767639, 0.019649885594844818, 0.1558084636926651, 0.030901823192834854, 0.010809198021888733, 0.04462593048810959, 0.044421084225177765, -0.08164199441671371, 0.009249329566955566, 0.0739002674818039, -0.030776452273130417, -0.14059674739837646, 0.14795346558094025, 0.13024887442588806, -0.05798712372779846, -0.02767224609851837, 0.07229682058095932, -0.12694594264030457, -0.14359024167060852, 0.04173249751329422, 0.11518528312444687, -0.0665949210524559, -0.1350361555814743, -0.0785854160785675, -0.013993067666888237, 0.07179926335811615, 0.11196839809417725, 0.10859667509794235, 0.04297014698386192, -0.026076599955558777, -0.04321157559752464, 0.0033892651554197073, 0.03451753035187721, -0.09333175420761108, -0.008949636481702328, -0.14235526323318481, -0.16823279857635498, 0.02339201606810093, 0.10839604586362839, -0.06938793510198593, -0.029778411611914635, -0.11248897761106491, -0.0013720637653023005, -0.06130944937467575, -0.011370129883289337, -0.09261681884527206, 0.04040815681219101, 0.02119538001716137, -0.06510564684867859, -0.09446275234222412, -0.04291846975684166, -0.08356494456529617, -0.01906340755522251, -0.00700045470148325, 0.10978183150291443, -0.09226617217063904, -0.06511098891496658, 0.06275708973407745, -0.028426313772797585, 0.10738518089056015, 0.04665222018957138, -0.09041716903448105, 0.05720238760113716, -0.10845984518527985, -0.03738001361489296, 0.09368667751550674, 0.03772519528865814, 0.03161921724677086, -0.030499402433633804, 0.05428002402186394, 0.11544381082057953, -0.015329857356846333, 0.034269820898771286, -0.05567396059632301, -0.13420416414737701, -0.005607678089290857, -0.029592180624604225, -0.14217106997966766, -0.0048569003120064735, -0.04344838112592697, 0.10313748568296432, 0.0008449144079349935, 0.23193563520908356, -0.003975185565650463, 0.05725051090121269, -0.057408444583415985, 0.0052611567080020905, -0.019744573161005974, -0.18145641684532166, -0.16749826073646545, -0.06963058561086655, -0.05180517956614494, -0.0003990716359112412, 0.34265628457069397, 0.05205171927809715, -0.07637235522270203, 0.08402980118989944, 0.06653710454702377, -0.06946194171905518, 0.015068810433149338, 0.2213129848241806, 0.10591879487037659, 0.0018501642625778913, -0.08532339334487915, 0.022982193157076836, 0.03471287712454796, -0.13355469703674316, 0.04162202030420303, 0.149779811501503, -0.03299308195710182, 0.08983529359102249, -0.00646601989865303, -0.03024553507566452, -0.050183895975351334, -0.005956231150776148, -0.0464131198823452, 0.1072554662823677, -0.019142383709549904, 0.00868923682719469, 0.10586003214120865, 0.029157398268580437, 0.0599786639213562, 0.007336404640227556, -0.0056138113141059875, -0.21437253057956696, -0.10347800701856613, -0.14530271291732788, -0.17275294661521912, 0.012418352998793125, -0.021097397431731224, 0.024142352864146233, 0.08471467345952988, 0.02024981938302517, -0.08909162133932114, -0.012192991562187672, -0.02663867175579071, -0.029461868107318878, 0.047334544360637665, -0.07254914939403534, -0.01599898934364319, -0.07671374082565308, -0.0663374587893486, -0.07387083023786545, -0.0065672253258526325, -0.04321838542819023, 0.06792958825826645, 0.04016823321580887, 0.03171928972005844, -0.1652328372001648, -0.07794831693172455, -0.0452319011092186, 0.031640175729990005, -0.09270326793193817, 0.17693085968494415, 0.029667004942893982, -0.013021565042436123, 0.12323636561632156, 0.1530861109495163, -0.015017549507319927, -0.11051473766565323, -0.12306058406829834, 0.14577844738960266, 0.07583163678646088, 0.09970128536224365, -0.04873386025428772, -0.019162338227033615, -0.05730471760034561, 0.14202503859996796, 0.20272840559482574, -0.03122437186539173, 0.008757052011787891, 0.045940712094306946, 0.008141346275806427, 0.10004907101392746, 0.11921317875385284, -0.01377083733677864, 0.05290675535798073, -0.01036787685006857, -0.06823698431253433, -0.00820554606616497, -0.03751835599541664, -0.08869871497154236, 0.08362388610839844, 0.024212319403886795, -0.04238433390855789, -0.015996379777789116, 0.14737360179424286, -0.07623519748449326, 0.05721426382660866, 0.05516893044114113, -0.06231646239757538, -0.041051413863897324, -0.0018999510211870074, 0.09173958003520966, -0.009062997996807098, 0.02930161915719509, -0.03129226714372635, -0.08407164365053177, 0.051716163754463196, -0.02740608900785446, -0.16954964399337769, -0.042301930487155914, 0.05827302858233452, -0.09367348253726959, 0.16640929877758026, -0.02997031807899475, 0.034259695559740067, 0.12639084458351135, 0.031414516270160675, -0.0900866836309433, 0.16668187081813812, -0.0409177727997303, -0.038127604871988297, -0.019950857385993004, -0.10018765926361084, -0.029276346787810326, -0.07171423733234406, 0.07506607472896576, -0.07571211457252502, 0.05003776773810387, -0.05129781365394592, -0.08953244239091873, -0.033660806715488434, 0.02328740991652012, -0.07560385018587112, 0.041499581187963486, 0.023628966882824898, -0.020275697112083435, 0.0007535986951552331, -0.08312105387449265, 0.03215356916189194, 0.06640249490737915, -0.07431142777204514, -0.08876816183328629, -0.05725422501564026, -0.013501100242137909, 0.10645239800214767, 0.1402427852153778, -0.13106796145439148, -0.024137336760759354, -0.056192584335803986, 0.01775314100086689, -0.10294560343027115, 0.10834678262472153, 0.07980702817440033, 0.015316828154027462, -0.017561493441462517, -0.13508258759975433, -0.002720152260735631, 0.014467189088463783, -0.09852391481399536, -0.05946151539683342 ]
null
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.7.2.dev0
{"library_name": "peft", "base_model": "TinyPixel/Llama-2-7B-bf16-sharded"}
null
galsenai/llama2-7B_wolof
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:TinyPixel/Llama-2-7B-bf16-sharded", "region:us" ]
2024-02-06T12:30:36+00:00
[ "1910.09700" ]
[]
TAGS #peft #safetensors #arxiv-1910.09700 #base_model-TinyPixel/Llama-2-7B-bf16-sharded #region-us
# Model Card for Model ID ## Model Details ### Model Description - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact ### Framework versions - PEFT 0.7.2.dev0
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.7.2.dev0" ]
[ "TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-TinyPixel/Llama-2-7B-bf16-sharded #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact", "### Framework versions\n\n- PEFT 0.7.2.dev0" ]
[ 45, 6, 3, 54, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4, 14 ]
[ "passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-TinyPixel/Llama-2-7B-bf16-sharded #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.7.2.dev0" ]
[ -0.11161031574010849, 0.2073054015636444, -0.00338488956913352, 0.028071291744709015, 0.07179000973701477, 0.0127456896007061, 0.0691119134426117, 0.1347447782754898, 0.022009512409567833, 0.13016943633556366, 0.06336649507284164, 0.11286039650440216, 0.11675703525543213, 0.22286053001880646, -0.0022172299213707447, -0.1736447811126709, 0.017526809126138687, -0.055685512721538544, 0.03642570599913597, 0.12441796809434891, 0.13405008614063263, -0.093238465487957, 0.07280106097459793, -0.023548416793346405, -0.011904869228601456, -0.02979789301753044, -0.06386495381593704, -0.01247261930257082, 0.04854341968894005, 0.03757314383983612, 0.05722660943865776, -0.008949526585638523, 0.0814543217420578, -0.2671709656715393, 0.015759332105517387, 0.05060623586177826, -0.01240098662674427, 0.082991823554039, 0.10422112792730331, -0.044334881007671356, 0.12785156071186066, -0.032972533255815506, 0.13072535395622253, 0.08081106096506119, -0.10859987884759903, -0.22589632868766785, -0.06504031270742416, 0.08819891512393951, 0.18067531287670135, 0.0659213736653328, -0.04055701196193695, 0.11661829799413681, -0.055340494960546494, 0.02852502651512623, 0.07884886860847473, -0.11227919906377792, -0.06752265989780426, 0.06499554216861725, 0.13461469113826752, 0.08131711184978485, -0.12020956724882126, -0.037839896976947784, 0.032222580164670944, 0.04611828178167343, 0.06858599931001663, 0.007689302787184715, 0.1566804051399231, 0.026089318096637726, -0.13848629593849182, -0.05056634172797203, 0.09967631846666336, 0.006039777770638466, -0.042142510414123535, -0.22081637382507324, -0.012730883434414864, -0.09823364019393921, -0.04230243340134621, -0.04725021496415138, 0.034476615488529205, 0.013176104985177517, 0.11683319509029388, -0.05046572908759117, -0.08052864670753479, -0.014342878013849258, 0.11811264604330063, 0.0626712217926979, 0.010673628188669682, -0.020045407116413116, 0.0002045321889454499, 0.12061387300491333, 0.06326296925544739, -0.13065305352210999, -0.06289239227771759, -0.06030402332544327, -0.02443264052271843, -0.01997574418783188, 0.051937565207481384, 0.029580458998680115, 0.043765824288129807, 0.2772291898727417, -0.026170764118433, 0.06450854241847992, 0.03037887066602707, 0.016735931858420372, 0.020237425342202187, 0.10934706777334213, -0.02766287326812744, -0.19192835688591003, -0.005539377219974995, 0.10625414550304413, 0.0107697993516922, -0.030087370425462723, -0.05527430400252342, 0.024151965975761414, 0.0386076383292675, 0.12292937189340591, 0.10716014355421066, -0.027875829488039017, -0.06636756658554077, -0.05539847910404205, 0.20800702273845673, -0.15222615003585815, 0.05813169106841087, 0.03250480443239212, 0.0010709634516388178, -0.06576544791460037, 0.015633098781108856, 0.0031631209421902895, -0.039228107780218124, 0.0896335169672966, -0.0624811016023159, -0.04228903353214264, -0.11811421066522598, -0.044321704655885696, 0.03872745484113693, -0.02037227712571621, -0.04924343526363373, -0.0360204353928566, -0.07807161659002304, -0.1060260534286499, 0.09777313470840454, -0.05767068266868591, -0.04699879139661789, -0.027896348387002945, -0.07461194694042206, 0.02678648568689823, 0.029224086552858353, 0.06425744295120239, -0.02696424536406994, 0.04856343939900398, -0.016198966652154922, 0.07222253829240799, 0.0797625407576561, 0.03491131216287613, -0.07954877614974976, 0.06752461940050125, -0.18094944953918457, 0.07995883375406265, -0.05986199155449867, 0.03237036243081093, -0.1604316681623459, 0.0017566224560141563, -0.003986286465078592, 0.031388718634843826, 0.05247227102518082, 0.1583675742149353, -0.20241719484329224, -0.034926798194646835, 0.18646617233753204, -0.10007372498512268, -0.12092370539903641, 0.03365973383188248, -0.04014324024319649, 0.1733982414007187, 0.040849290788173676, 0.02459104172885418, 0.09202179312705994, -0.15251466631889343, -0.022663136944174767, -0.028255293145775795, 0.016625382006168365, 0.05659790337085724, 0.07393425703048706, -0.08258761465549469, 0.007574337534606457, 0.0062348204664886, -0.05238049477338791, -0.020641300827264786, -0.037842728197574615, -0.09315034747123718, 0.007816503755748272, -0.07854802161455154, 0.00016725285968277603, 0.005078877322375774, -0.09444618970155716, -0.011135837063193321, -0.14630857110023499, -0.024162249639630318, 0.0764496847987175, 0.0031993575394153595, -0.006501463241875172, -0.08452818542718887, 0.049224287271499634, -0.05439261719584465, -0.01074274443089962, -0.15152165293693542, 0.0017502036644145846, 0.02416231669485569, -0.13695307075977325, 0.010335942730307579, -0.1484275907278061, 0.07213941216468811, 0.012534551322460175, -0.05508045479655266, -0.04190000891685486, 0.011414362117648125, -0.015374153852462769, -0.07353096455335617, -0.2237064689397812, -0.03349722549319267, -0.05754632130265236, 0.12820965051651, -0.2265939712524414, 0.04512554034590721, 0.004801562521606684, 0.11079875379800797, 0.014564255252480507, -0.0643821582198143, 0.023851266130805016, -0.057655077427625656, -0.026477525010704994, -0.07247475534677505, -0.00227652071043849, 0.003212860319763422, -0.024020381271839142, 0.022085191681981087, -0.1396140456199646, -0.06721550226211548, 0.09114468097686768, 0.08153650909662247, -0.1432723104953766, 0.005375873297452927, -0.037274688482284546, -0.05649062246084213, -0.06710372865200043, -0.07174859941005707, 0.06607989221811295, 0.05112621188163757, 0.05497153848409653, -0.0917702466249466, -0.0731181800365448, -0.0000333883726852946, -0.014728033915162086, -0.020866720005869865, 0.12792739272117615, 0.07798388600349426, -0.09768957644701004, 0.0972411260008812, 0.06869658827781677, 0.03678319603204727, 0.10164826363325119, -0.008285864256322384, -0.10319098830223083, -0.03133545070886612, 0.05867256224155426, 0.02329183928668499, 0.1531830132007599, -0.06149706616997719, 0.04337736964225769, 0.045170340687036514, -0.04905166104435921, 0.042152039706707, -0.09654473513364792, 0.013617036864161491, 0.007975979708135128, -0.01877995952963829, 0.031335555016994476, -0.024049198254942894, 0.004357257392257452, 0.09259766340255737, 0.06666494160890579, 0.0313105434179306, 0.01040771696716547, -0.03886064141988754, -0.14105020463466644, 0.17798930406570435, -0.08841467648744583, -0.22887258231639862, -0.15678177773952484, 0.03043203614652157, 0.06178143993020058, -0.00986261572688818, 0.035788726061582565, -0.045398760586977005, -0.08494319021701813, -0.08939459919929504, 0.0191650353372097, 0.04630165547132492, -0.058565378189086914, -0.06898602098226547, 0.0362526960670948, 0.028001772239804268, -0.13147763907909393, 0.024099089205265045, 0.05127953365445137, 0.0007541997474618256, -0.007567445747554302, 0.03329521045088768, 0.08465729653835297, 0.20671497285366058, -0.000028651256798184477, 0.0012089358642697334, 0.05571896955370903, 0.278825581073761, -0.1550283282995224, 0.12381818145513535, 0.12927702069282532, -0.06062274053692818, 0.08129335939884186, 0.1897043138742447, 0.03222430497407913, -0.08849041908979416, 0.015008975751698017, 0.0337633416056633, -0.03686118870973587, -0.2642878293991089, -0.039192091673612595, -0.024983743205666542, -0.06387332081794739, 0.09216763079166412, 0.08434990793466568, 0.0891626700758934, 0.02955728955566883, -0.07399721443653107, -0.07392969727516174, 0.045084644109010696, 0.1190945953130722, -0.050399236381053925, 0.015325604006648064, 0.08446965366601944, -0.0510808527469635, 0.008642065338790417, 0.08688628673553467, -0.010916582308709621, 0.12666966021060944, 0.055617284029722214, 0.11829283833503723, 0.0753215104341507, 0.06110518425703049, 0.0029796527232974768, 0.04771137610077858, -0.013198387809097767, 0.02883479744195938, 0.01652074046432972, -0.09453601390123367, 0.017990510910749435, 0.1104709580540657, -0.0017302784835919738, 0.02897600270807743, 0.015065804123878479, -0.0782763883471489, 0.038118720054626465, 0.2011096179485321, 0.034073419868946075, -0.2120300829410553, -0.08058838546276093, 0.057654622942209244, -0.07303700596094131, -0.15648579597473145, -0.015228403732180595, 0.014971676282584667, -0.15226629376411438, 0.015813929960131645, -0.04326455295085907, 0.11231279373168945, -0.06925199180841446, -0.043752122670412064, 0.10023138672113419, 0.04754393547773361, -0.04191920906305313, 0.03603396192193031, -0.18288187682628632, 0.1038651242852211, 0.03316621109843254, 0.0763213187456131, -0.08244375139474869, 0.08424244821071625, -0.0021532615646719933, -0.015266770496964455, 0.15654225647449493, -0.00541824521496892, -0.06625140458345413, -0.0881396159529686, -0.07622689753770828, -0.015916021540760994, 0.08645667880773544, -0.135358989238739, 0.07897394150495529, -0.022647416219115257, -0.035323791205883026, -0.006094734184443951, -0.10450274497270584, -0.10231459140777588, -0.16425016522407532, 0.05286175757646561, -0.08467058837413788, 0.014148813672363758, -0.07667016237974167, -0.04742510989308357, 0.0487021766602993, 0.16548015177249908, -0.20634669065475464, -0.11294220387935638, -0.1431151181459427, -0.10015657544136047, 0.1510574221611023, -0.05269834026694298, 0.0910874605178833, -0.014942933805286884, 0.15745685994625092, -0.011879585683345795, -0.027274513617157936, 0.08157680928707123, -0.09045510739088058, -0.18811526894569397, -0.05267613008618355, 0.1915331482887268, 0.13053220510482788, 0.027629753574728966, -0.012839220464229584, 0.025814857333898544, -0.052638761699199677, -0.10305342078208923, 0.024372192099690437, 0.13183222711086273, 0.06685657054185867, -0.015977445989847183, -0.04071635380387306, -0.10552920401096344, -0.06079807132482529, -0.033600419759750366, -0.015832070261240005, 0.2070205956697464, -0.06998201459646225, 0.1560649424791336, 0.13043195009231567, -0.06651348620653152, -0.2063623070716858, 0.03717314824461937, 0.0335996150970459, 0.01895030215382576, 0.019002659246325493, -0.19605512917041779, 0.07647170126438141, -0.022294670343399048, -0.07448968291282654, 0.18140245974063873, -0.20234131813049316, -0.13053925335407257, 0.09524405747652054, 0.01758825220167637, -0.20478084683418274, -0.1535213738679886, -0.11243607848882675, -0.017430618405342102, -0.12024342268705368, 0.064007967710495, 0.01350927259773016, 0.01604197360575199, 0.007423097267746925, 0.007480953820049763, 0.04275856167078018, -0.044955361634492874, 0.19057850539684296, -0.03963660076260567, 0.006470112595707178, -0.05387083441019058, -0.09838736057281494, 0.0052971001714468, -0.06509257853031158, 0.11541780084371567, -0.024204261600971222, 0.02690851129591465, -0.16040343046188354, -0.04517306014895439, -0.06580612808465958, 0.022922180593013763, -0.0950513482093811, -0.08061906695365906, -0.04677610844373703, 0.07719594985246658, 0.08963099867105484, -0.015927260741591454, 0.025893066078424454, -0.09187351912260056, 0.09577055275440216, 0.20599547028541565, 0.17023669183254242, 0.05412423238158226, -0.04637054726481438, 0.02548321895301342, -0.03636776655912399, 0.04591997712850571, -0.22415150701999664, 0.03653953596949577, 0.06033043563365936, 0.03518492728471756, 0.07988955080509186, -0.001312833046540618, -0.16158945858478546, -0.08268781006336212, 0.08667624741792679, -0.05776622146368027, -0.15672802925109863, -0.023802340030670166, 0.032419487833976746, -0.20586422085762024, -0.045067090541124344, 0.04192313179373741, -0.016061417758464813, -0.04337722808122635, 0.023942027240991592, 0.08209524303674698, -0.019673820585012436, 0.09744986146688461, 0.08609408885240555, 0.08797892183065414, -0.0938926637172699, 0.057674214243888855, 0.08294416964054108, -0.02017749659717083, 0.019370796158909798, 0.1486225724220276, -0.03712431341409683, -0.03570270538330078, 0.08375218510627747, 0.11616826802492142, 0.0024040094576776028, -0.04283958300948143, 0.015616782940924168, -0.05256131663918495, 0.07575976103544235, 0.13594073057174683, 0.016580408439040184, -0.01067064143717289, 0.06978428363800049, 0.031639114022254944, -0.0929446667432785, 0.12538914382457733, 0.05294976010918617, 0.023185592144727707, -0.017605101689696312, -0.018963446840643883, -0.014201064594089985, -0.010016356594860554, -0.012329892255365849, -0.0004947505658492446, -0.09853808581829071, -0.0000012039622561133, -0.11359252780675888, 0.02616102434694767, -0.07456914335489273, 0.0005025629070587456, 0.012610992416739464, -0.03708649426698685, -0.003756851190701127, -0.009733649902045727, -0.07458720356225967, -0.05766001716256142, -0.03443218395113945, 0.0751105472445488, -0.14298631250858307, 0.03182763233780861, 0.07160655409097672, -0.11119101941585541, 0.06434033066034317, -0.008398240432143211, 0.017944147810339928, 0.0015207389369606972, -0.14681117236614227, 0.05428050085902214, -0.02432352490723133, -0.0154813127592206, 0.007379213348031044, -0.1653946489095688, -0.00007961477240314707, -0.04994111508131027, -0.07719609141349792, 0.008187629282474518, -0.008054831065237522, -0.12700878083705902, 0.11804094910621643, -0.003942074254155159, -0.06231178343296051, -0.014807090163230896, 0.06141810119152069, 0.07074060291051865, -0.01660003326833248, 0.09182070195674896, -0.027810852974653244, 0.08201296627521515, -0.18709369003772736, -0.008465460501611233, -0.016118941828608513, 0.0333646759390831, -0.02246561087667942, -0.035988014191389084, 0.05338633432984352, -0.010512459091842175, 0.1499180942773819, -0.0011621181620284915, 0.06911522895097733, 0.04489444941282272, 0.004833498504012823, 0.033365800976753235, 0.071085125207901, 0.06378553807735443, -0.02106236293911934, -0.012787713669240475, 0.031676847487688065, 0.002535095904022455, -0.0406804233789444, -0.12040030211210251, 0.06448471546173096, 0.18864721059799194, 0.0774235650897026, 0.034526921808719635, 0.003752991557121277, -0.12812407314777374, -0.0856628343462944, 0.0877392366528511, -0.013786070048809052, -0.02933163195848465, -0.06772661954164505, 0.22707465291023254, 0.14294828474521637, -0.19282618165016174, 0.07955453544855118, -0.03964150696992874, -0.03231631964445114, -0.13724181056022644, -0.1633138656616211, -0.056425657123327255, -0.02803482487797737, -0.03505326807498932, -0.06494065374135971, 0.059173811227083206, 0.033056262880563736, -0.0014231664827093482, -0.010349065065383911, 0.10587666928768158, 0.019399775192141533, -0.037841904908418655, 0.05379417538642883, 0.068463534116745, 0.04759417846798897, -0.09020762890577316, 0.011227056384086609, 0.0036531591322273016, 0.005109997466206551, 0.06669189780950546, 0.030572181567549706, -0.05758017674088478, 0.029091957956552505, -0.015039759688079357, -0.11961417645215988, 0.04798784479498863, -0.007953200489282608, -0.014081073924899101, 0.15467025339603424, 0.03255755081772804, 0.002355682197958231, -0.009659570641815662, 0.2315254807472229, -0.06730420887470245, -0.07680148631334305, -0.12427226454019547, 0.07765762507915497, -0.05591174215078354, 0.028538264334201813, 0.009725399315357208, -0.12388361245393753, 0.01203246507793665, 0.17512577772140503, 0.12178965657949448, -0.005782986991107464, 0.00994111131876707, 0.04598216339945793, 0.010887724347412586, -0.019106240943074226, 0.020176958292722702, 0.04595450311899185, 0.21360920369625092, -0.07059107720851898, 0.07265479862689972, -0.009693975560367107, -0.0705455020070076, -0.021121405065059662, 0.12401939183473587, -0.013293125666677952, -0.008401906117796898, -0.05992959067225456, 0.1340067833662033, -0.06466317176818848, -0.2178514450788498, 0.06079312413930893, -0.0915612205862999, -0.1335369348526001, -0.04267143830657005, 0.0070268032141029835, -0.029124990105628967, 0.014240352436900139, 0.06630828231573105, -0.0551157146692276, 0.16187742352485657, 0.026837974786758423, -0.052841220051050186, -0.10276002436876297, 0.04985252767801285, -0.14709201455116272, 0.288333922624588, 0.020128050819039345, 0.02857699990272522, 0.11036474257707596, -0.01889563351869583, -0.14113537967205048, 0.011241575703024864, 0.1045251339673996, -0.05498054623603821, 0.057026494294404984, 0.15836939215660095, -0.005413813050836325, 0.11692332476377487, 0.058388061821460724, -0.06048218160867691, 0.032803695648908615, -0.061486419290304184, -0.05858450382947922, -0.12467528879642487, 0.06792698055505753, -0.08443168550729752, 0.14862965047359467, 0.1268409639596939, -0.07276953011751175, -0.007069936953485012, -0.017855627462267876, 0.07845693081617355, 0.021094022318720818, 0.12424027919769287, 0.01576172560453415, -0.18004754185676575, 0.04692837968468666, 0.009062564931809902, 0.10847004503011703, -0.22624993324279785, -0.054506946355104446, 0.04510903358459473, -0.020554497838020325, -0.09590434283018112, 0.1201176717877388, 0.04022548720240593, 0.019190208986401558, -0.03272434324026108, -0.08940299600362778, 0.019868290051817894, 0.1541491597890854, -0.10025467723608017, -0.016907135024666786 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3157 - Wer: 10.7746 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5562 | 0.49 | 30 | 0.3054 | 11.4500 | | 0.2771 | 0.98 | 60 | 0.2629 | 11.3656 | | 0.1427 | 1.48 | 90 | 0.2726 | 13.1173 | | 0.1369 | 1.97 | 120 | 0.2639 | 10.9751 | | 0.0638 | 2.46 | 150 | 0.2741 | 11.9038 | | 0.0541 | 2.95 | 180 | 0.2833 | 10.0992 | | 0.0289 | 3.44 | 210 | 0.3024 | 10.7851 | | 0.0198 | 3.93 | 240 | 0.3073 | 10.6902 | | 0.0103 | 4.43 | 270 | 0.3177 | 10.4158 | | 0.0089 | 4.92 | 300 | 0.3157 | 10.7746 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0
{"language": ["nl"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "openai/whisper-large-v2", "model-index": [{"name": "Whisper Large V2", "results": []}]}
automatic-speech-recognition
golesheed/whisper-native-elderly-7-dutch
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "nl", "base_model:openai/whisper-large-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-06T12:31:20+00:00
[]
[ "nl" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #nl #base_model-openai/whisper-large-v2 #license-apache-2.0 #endpoints_compatible #region-us
Whisper Large V2 ================ This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.3157 * Wer: 10.7746 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 20 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.38.0.dev0 * Pytorch 2.1.0+cu121 * Datasets 2.14.6 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #nl #base_model-openai/whisper-large-v2 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ 74, 116, 4, 38 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #nl #base_model-openai/whisper-large-v2 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ -0.13621632754802704, 0.15968677401542664, -0.001858389237895608, 0.08833666890859604, 0.08782155066728592, -0.012314315885305405, 0.1681707203388214, 0.12549269199371338, -0.0416557751595974, 0.10454203933477402, 0.11453307420015335, 0.07736121118068695, 0.04561321437358856, 0.19964902102947235, -0.06639396399259567, -0.18399325013160706, 0.06508026272058487, -0.01929723657667637, -0.012141751125454903, 0.10182169824838638, 0.06421684473752975, -0.12256090342998505, 0.06952235847711563, -0.005073512438684702, -0.12787765264511108, -0.04992425814270973, -0.003603593911975622, -0.08829036355018616, 0.10478577762842178, 0.011877073906362057, 0.07441696524620056, 0.055234555155038834, 0.0800032690167427, -0.20251408219337463, 0.008391182869672775, 0.03783120587468147, 0.020442096516489983, 0.06881789863109589, 0.023107007145881653, 0.002746920334175229, 0.017535895109176636, -0.09417406469583511, 0.06630997359752655, 0.024000227451324463, -0.09732259809970856, -0.2184467762708664, -0.10026310384273529, 0.03434481471776962, 0.08626585453748703, 0.07408887147903442, -0.013106338679790497, 0.1581668108701706, -0.012119011022150517, 0.09104708582162857, 0.23101380467414856, -0.3176605999469757, -0.04742036387324333, -0.014271175488829613, 0.026294108480215073, 0.06450144946575165, -0.07825247943401337, -0.004888627678155899, 0.050102706998586655, 0.031746502965688705, 0.10774286836385727, -0.004931247793138027, -0.06233746558427811, -0.02886657603085041, -0.14197440445423126, -0.05681544914841652, 0.15547265112400055, 0.045779261738061905, -0.06491699069738388, -0.09191487729549408, -0.07131195068359375, -0.1496184766292572, -0.04956618696451187, -0.0026261198800057173, 0.040708139538764954, -0.04003528878092766, -0.10001271963119507, -0.006219570990651846, -0.06729330122470856, -0.08073122799396515, -0.03193339332938194, 0.14468765258789062, 0.03321274742484093, 0.009420378133654594, -0.014335672371089458, 0.05693294107913971, -0.0019842665642499924, -0.16536004841327667, -0.03401283174753189, 0.033182013779878616, -0.021878091618418694, -0.020712248980998993, -0.03135780245065689, -0.03883081674575806, 0.06537950783967972, 0.15842470526695251, -0.04659705609083176, 0.06207548454403877, -0.0385638028383255, 0.023183785378932953, -0.09648232907056808, 0.18515583872795105, -0.044731661677360535, -0.04666309803724289, 0.029621554538607597, 0.1070999950170517, 0.09432975202798843, -0.03299562633037567, -0.09444667398929596, 0.03328503668308258, 0.11510292440652847, 0.05439945310354233, -0.02153661474585533, 0.05379653349518776, -0.037912797182798386, 0.004595438949763775, 0.04724494367837906, -0.1189795732498169, 0.013170532882213593, 0.012636043131351471, -0.043195948004722595, -0.055782828480005264, 0.029871907085180283, 0.015721013769507408, -0.01764751970767975, 0.04835459217429161, -0.06849675625562668, -0.011128749698400497, -0.03830641880631447, -0.10412869602441788, 0.03652309626340866, -0.08999405056238174, -0.004184857476502657, -0.1197713240981102, -0.14654004573822021, -0.010356196202337742, 0.02779223397374153, -0.03712131455540657, -0.03228628262877464, -0.09426835924386978, -0.11704937368631363, 0.032112982124090195, -0.02710411697626114, 0.014512862078845501, -0.07628854364156723, 0.08355537056922913, 0.04701763018965721, 0.09049330651760101, -0.03954431042075157, 0.01878131553530693, -0.08150075376033783, 0.04918791353702545, -0.17111089825630188, 0.07168842107057571, -0.08916273713111877, 0.07433856278657913, -0.11224762350320816, -0.07275255769491196, 0.043903231620788574, -0.023215988650918007, 0.102077417075634, 0.11524751782417297, -0.19717739522457123, -0.04972013831138611, 0.21730080246925354, -0.1178780272603035, -0.15726397931575775, 0.15235035121440887, -0.01904238387942314, -0.018581777811050415, 0.06867604702711105, 0.24456007778644562, 0.06123080849647522, -0.1375725120306015, -0.056367188692092896, -0.0261027030646801, 0.07121604681015015, -0.05355974659323692, 0.07951906323432922, -0.004325232934206724, 0.04291364923119545, 0.010138435289263725, -0.01653929427266121, 0.04194147512316704, -0.07492784410715103, -0.09569421410560608, -0.04744570702314377, -0.11836248636245728, 0.01733187958598137, 0.002287462819367647, 0.02962525747716427, -0.12062839418649673, -0.08092740178108215, 0.0054471115581691265, 0.11621628701686859, -0.09865685552358627, 0.026550618931651115, -0.1331365555524826, 0.11432939022779465, -0.07463306933641434, -0.010850919410586357, -0.1483161598443985, -0.018835563212633133, 0.044661860913038254, -0.03598916903138161, 0.02147132158279419, -0.0885128602385521, 0.07264025509357452, 0.07467518001794815, -0.02658570371568203, -0.04248100146651268, -0.0021844636648893356, 0.011659912765026093, -0.08558013290166855, -0.20805923640727997, -0.02916303463280201, -0.05072628706693649, 0.13512323796749115, -0.16510847210884094, 0.026289111003279686, 0.036941152065992355, 0.10755885392427444, 0.050888173282146454, -0.028413690626621246, 0.012378765270113945, 0.0576338954269886, -0.021883849054574966, -0.07558631896972656, 0.028089145198464394, 0.03416816145181656, -0.09576820582151413, 0.017973311245441437, -0.1792900711297989, 0.13350984454154968, 0.13961872458457947, 0.05354544147849083, -0.03920949250459671, 0.026662219315767288, -0.03780747950077057, -0.03187672048807144, -0.026316704228520393, 0.004363284446299076, 0.1465822458267212, 0.0021496822591871023, 0.12176033109426498, -0.09753876179456711, -0.02674207277595997, 0.045568548142910004, -0.03195665404200554, -0.012703437358140945, 0.09416963160037994, 0.021390480920672417, -0.07712744921445847, 0.11574635654687881, 0.1106874868273735, -0.07978503406047821, 0.11232184618711472, -0.07221370190382004, -0.05422946438193321, -0.02878420613706112, 0.027434226125478745, 0.043337490409612656, 0.12183227390050888, -0.09068036079406738, -0.01438656821846962, 0.02515447698533535, 0.012049616314470768, 0.006123725324869156, -0.1886918991804123, 0.005767221562564373, 0.016797926276922226, -0.09008780866861343, -0.025112684816122055, -0.006492929067462683, -0.011711121536791325, 0.09337366372346878, -0.00300964480265975, -0.10617176443338394, 0.014498971402645111, -0.017466768622398376, -0.07522863149642944, 0.17250363528728485, -0.09990600496530533, -0.15192309021949768, -0.11562493443489075, -0.048458099365234375, -0.04277130961418152, 0.020420284941792488, 0.06840915232896805, -0.06886673718690872, -0.04794713854789734, -0.12919248640537262, -0.04088391363620758, 0.06478952616453171, 0.04791481792926788, 0.08473362773656845, -0.0035977375227957964, 0.0837816372513771, -0.10559368878602982, -0.008524681441485882, -0.028159063309431076, -0.01048053614795208, 0.014065103605389595, 0.03254552185535431, 0.11960489302873611, 0.1376330703496933, -0.000840022403281182, 0.019899478182196617, -0.028172969818115234, 0.2301720380783081, -0.07224448770284653, -0.031108040362596512, 0.12259376049041748, -0.02640325389802456, 0.051638029515743256, 0.17324084043502808, 0.030002977699041367, -0.11868065595626831, -0.00007048338738968596, -0.023971926420927048, -0.04381057620048523, -0.21067218482494354, -0.06343332678079605, -0.038883596658706665, 0.04803768917918205, 0.07741225510835648, 0.03194250538945198, 0.01576736941933632, 0.0287628173828125, 0.010801567696034908, 0.03336828202009201, -0.000778556102886796, 0.07745110988616943, 0.10073007643222809, 0.053871072828769684, 0.11427044123411179, -0.04864861071109772, -0.03424227237701416, 0.0309415552765131, 0.008827924728393555, 0.21411235630512238, -0.006806745659559965, 0.1936895102262497, 0.031086552888154984, 0.14399775862693787, 0.03124992921948433, 0.05868235230445862, -0.004321998450905085, -0.0014536561211571097, 0.00011419778456911445, -0.06801947951316833, -0.049581386148929596, 0.026712197810411453, -0.027490390464663506, 0.04718725383281708, -0.09096401929855347, 0.06585752964019775, 0.06531890481710434, 0.291382759809494, 0.08233320713043213, -0.35608431696891785, -0.10410318523645401, 0.013939191587269306, -0.04568859934806824, -0.010707268491387367, 0.04109747335314751, 0.1676306277513504, -0.035800375044345856, 0.05957348644733429, -0.04908604547381401, 0.07021871209144592, -0.07418491691350937, 0.031817398965358734, 0.02570035308599472, 0.0855240598320961, 0.0018178020836785436, 0.023594986647367477, -0.2272135466337204, 0.28047269582748413, 0.012436628341674805, 0.10276336967945099, -0.0487116314470768, 0.0020353891886770725, 0.02182648703455925, 0.016720861196517944, 0.10008277744054794, -0.015368645079433918, -0.12311194837093353, -0.1574331372976303, -0.1477552056312561, 0.045148614794015884, 0.09810465574264526, 0.0223187617957592, 0.11414927989244461, -0.014110207557678223, -0.032044459134340286, 0.04537680372595787, -0.06469541043043137, -0.053272537887096405, -0.07595355063676834, 0.006568394135683775, 0.11694630980491638, 0.004027381539344788, -0.07790198922157288, -0.09135306626558304, -0.09162882715463638, 0.11549058556556702, -0.04482784494757652, -0.03849310800433159, -0.09641735255718231, 0.003951740451157093, 0.11544102430343628, -0.08045060932636261, 0.044089674949645996, 0.018454937264323235, 0.10842259973287582, 0.01175297424197197, -0.05085345357656479, 0.10011888295412064, -0.08017635345458984, -0.1976318061351776, -0.04278148338198662, 0.14413614571094513, 0.007582133635878563, 0.0570187009871006, 0.016380207613110542, 0.03411366418004036, 0.002453245222568512, -0.0755670964717865, 0.03509826213121414, 0.05489535257220268, 0.017490698024630547, 0.005914448760449886, 0.014068059623241425, -0.05549638345837593, -0.07103073596954346, -0.026736579835414886, 0.16581539809703827, 0.29358914494514465, -0.07713106274604797, 0.07019561529159546, 0.10554484277963638, -0.033897191286087036, -0.20164474844932556, -0.01919488050043583, 0.044733766466379166, 0.014007529243826866, -0.03216458484530449, -0.13453763723373413, 0.07363015413284302, 0.06231628358364105, -0.048025429248809814, 0.07798503339290619, -0.29027286171913147, -0.14117367565631866, 0.11903156340122223, 0.10698550939559937, 0.09159891307353973, -0.13823311030864716, -0.06350408494472504, -0.03951125591993332, -0.10792451351881027, 0.0806211605668068, -0.13480418920516968, 0.11504227668046951, 0.011054912582039833, 0.054707806557416916, 0.009646838530898094, -0.06326767057180405, 0.1307542473077774, 0.011582973413169384, 0.07547330111265182, -0.04929868131875992, 0.01807730831205845, 0.026336537674069405, -0.07765660434961319, 0.06403639912605286, -0.1037367582321167, 0.06644802540540695, -0.01571423001587391, -0.02818179689347744, -0.05265707150101662, 0.0024104963522404432, -0.001534575829282403, -0.030629007145762444, -0.024864450097084045, 0.017817918211221695, 0.07605646550655365, 0.003878478892147541, 0.12219811975955963, 0.003997919615358114, 0.10227310657501221, 0.14183922111988068, 0.11386533826589584, -0.08582790940999985, -0.0023103870917111635, 0.017696576192975044, -0.05048684403300285, 0.056129369884729385, -0.12267884612083435, 0.05080711469054222, 0.1187099888920784, 0.02622661180794239, 0.11883791536092758, 0.05286730080842972, -0.05940454453229904, 0.034165505319833755, 0.05844949930906296, -0.14980162680149078, -0.1553071290254593, 0.023392148315906525, 0.03544645383954048, -0.1201973706483841, 0.08259966224431992, 0.14752541482448578, -0.0755700096487999, 0.0036739788483828306, -0.01621028408408165, 0.031722839921712875, -0.02674170583486557, 0.2017463594675064, 0.04023810103535652, 0.0588664673268795, -0.11580227315425873, 0.0918835923075676, 0.04340014234185219, -0.09641899168491364, 0.07375139743089676, 0.05963040515780449, -0.11412306874990463, -0.029042372480034828, 0.012517434544861317, 0.1298513263463974, 0.023425843566656113, -0.0739997997879982, -0.13419552147388458, -0.11811395734548569, 0.07012086361646652, 0.2163677215576172, 0.06164073571562767, 0.03168521821498871, -0.017447616904973984, 0.008418331854045391, -0.11339852213859558, 0.11061214655637741, 0.04519093409180641, 0.06823432445526123, -0.14646613597869873, 0.11587050557136536, -0.015727465972304344, 0.02495487593114376, -0.02533199079334736, 0.026403261348605156, -0.11744826287031174, 0.01147575955837965, -0.14627821743488312, 0.05394823104143143, -0.05587800592184067, 0.004396585747599602, 0.00706110754981637, -0.056114312261343, -0.0706772431731224, 0.034763094037771225, -0.09286361187696457, -0.030004320666193962, 0.0049022468738257885, 0.03647990897297859, -0.13249318301677704, -0.03307902812957764, 0.018925711512565613, -0.09960555285215378, 0.1019238755106926, 0.05885067582130432, -0.018056461587548256, 0.04574736952781677, -0.1150609701871872, -0.03010399267077446, 0.07337243109941483, 0.014473870396614075, 0.05624442547559738, -0.12246954441070557, -0.03631245344877243, 0.01771981082856655, 0.022298045456409454, 0.01760168746113777, 0.11799582093954086, -0.09618406742811203, 0.01204153336584568, -0.022656630724668503, -0.01208792719990015, -0.05695350468158722, 0.01780855469405651, 0.11104132980108261, 0.022894855588674545, 0.15558363497257233, -0.09993931651115417, 0.008565147407352924, -0.1832948923110962, -0.0005412423051893711, -0.019095033407211304, -0.11106836795806885, -0.11574822664260864, -0.0049544572830200195, 0.08544056117534637, -0.07203175127506256, 0.11254741251468658, -0.05579017847776413, 0.01858634501695633, 0.02793101966381073, -0.052619196474552155, -0.03907065838575363, 0.05091674625873566, 0.20321890711784363, 0.04325638338923454, -0.03485757112503052, 0.06155044957995415, -0.014558817259967327, 0.09744757413864136, 0.09995421022176743, 0.15737716853618622, 0.15704390406608582, 0.07030757516622543, 0.12281396985054016, 0.08372491598129272, -0.05185065045952797, -0.15671880543231964, 0.05434349551796913, -0.07844970375299454, 0.11937134712934494, -0.003698879387229681, 0.19599823653697968, 0.10510700941085815, -0.12325511127710342, 0.017096078023314476, -0.04304680973291397, -0.08304844051599503, -0.10995044559240341, -0.06291265785694122, -0.10993708670139313, -0.13319607079029083, 0.0006502840551547706, -0.11679433286190033, 0.02228342927992344, 0.08178167790174484, 0.02289886213839054, 0.019076641649007797, 0.1472093164920807, -0.008880493231117725, 0.05105264112353325, 0.07077731937170029, -0.009628964588046074, -0.05563129484653473, -0.016096483916044235, -0.10109423100948334, 0.04725433886051178, 0.025623423978686333, 0.05894210562109947, -0.009952942840754986, -0.035064611583948135, 0.07017426937818527, -0.02025395818054676, -0.11677761375904083, 0.014983261935412884, 0.00980759970843792, 0.056707728654146194, 0.029363341629505157, 0.05678620934486389, -0.013942847959697247, 0.01449260301887989, 0.20588436722755432, -0.09717857837677002, -0.11521829664707184, -0.14177344739437103, 0.18006600439548492, -0.013315352611243725, -0.014675081707537174, 0.014569193124771118, -0.08950605243444443, -0.02605634182691574, 0.17809627950191498, 0.19374603033065796, -0.05199835076928139, 0.003235545242205262, -0.03814956545829773, -0.002785347169265151, -0.07368181645870209, 0.0733838677406311, 0.12397715449333191, 0.07091996818780899, -0.05419512465596199, -0.05520976334810257, -0.03642336651682854, -0.030847154557704926, -0.0404658168554306, 0.03606013208627701, -0.028954196721315384, -0.006494378205388784, -0.04469893127679825, 0.057992979884147644, -0.09258225560188293, -0.10527916252613068, -0.00040223964606411755, -0.20833276212215424, -0.1687675267457962, 0.00417300732806325, 0.07911945879459381, 0.03212394937872887, 0.028318211436271667, -0.012253234162926674, 0.00021580942848231643, 0.08203965425491333, -0.029652435332536697, -0.06635201722383499, -0.04245767742395401, 0.0534469336271286, -0.09109541773796082, 0.21040211617946625, -0.019157133996486664, 0.06370812654495239, 0.12168209254741669, 0.06113966926932335, -0.11188666522502899, 0.08761792629957199, 0.06347261369228363, -0.10575605183839798, 0.029891571030020714, 0.14618797600269318, -0.06277395039796829, 0.13370433449745178, 0.05734676495194435, -0.1043623760342598, -0.03006412647664547, -0.02347303181886673, -0.03269651532173157, -0.061209358274936676, -0.05205981805920601, -0.053864605724811554, 0.1346656084060669, 0.1382024586200714, -0.07198037952184677, 0.003933044616132975, -0.009475797414779663, 0.024455105885863304, 0.041742440313100815, 0.0062119378708302975, -0.03529017046093941, -0.2672055959701538, 0.009498773142695427, 0.004874990321695805, 0.017476601526141167, -0.2497686743736267, -0.07322251796722412, -0.007318982854485512, -0.031901322305202484, -0.07763360440731049, 0.09062253683805466, 0.11694224178791046, 0.03633561730384827, -0.06715060025453568, -0.022874874994158745, -0.031744956970214844, 0.1601707637310028, -0.15446433424949646, -0.10832486301660538 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-small-yue-full-1 This model is a fine-tuned version of [safecantonese/whisper-small-yue-full](https://huggingface.co/safecantonese/whisper-small-yue-full) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0362 - Cer: 6.1457 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0147 | 0.88 | 1000 | 0.0406 | 6.2936 | | 0.0083 | 1.76 | 2000 | 0.0362 | 6.1457 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"tags": ["generated_from_trainer"], "base_model": "safecantonese/whisper-small-yue-full", "model-index": [{"name": "whisper-small-yue-full-1", "results": []}]}
automatic-speech-recognition
safecantonese/whisper-small-yue-full
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:safecantonese/whisper-small-yue-full", "endpoints_compatible", "region:us" ]
2024-02-06T12:31:49+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-safecantonese/whisper-small-yue-full #endpoints_compatible #region-us
whisper-small-yue-full-1 ======================== This model is a fine-tuned version of safecantonese/whisper-small-yue-full on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.0362 * Cer: 6.1457 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 2000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.0.dev0 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-safecantonese/whisper-small-yue-full #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 68, 158, 4, 38 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-safecantonese/whisper-small-yue-full #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 2000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.10758630931377411, 0.07448869198560715, -0.002523093717172742, 0.049569226801395416, 0.12085610628128052, 0.0003682123788166791, 0.10078369826078415, 0.12655584514141083, -0.07844142615795135, 0.08817116916179657, 0.10286180675029755, 0.05300552025437355, 0.052410513162612915, 0.1462661772966385, -0.027388695627450943, -0.3193710446357727, 0.020726243034005165, -0.016816411167383194, -0.10785971581935883, 0.1074613556265831, 0.09233427792787552, -0.11844315379858017, 0.014125294983386993, -0.000061034425016259775, -0.09375190734863281, -0.002474392531439662, -0.011161016300320625, -0.057964056730270386, 0.12610821425914764, 0.03301198408007622, 0.11191091686487198, 0.036303818225860596, 0.10267354547977448, -0.26058584451675415, 0.018542764708399773, 0.06111574545502663, 0.05289219692349434, 0.06169816479086876, 0.0857032835483551, -0.008169102482497692, 0.09013974666595459, -0.0751434862613678, 0.09402990341186523, 0.03691531717777252, -0.10914365202188492, -0.3169320225715637, -0.07553339004516602, 0.02108048088848591, 0.14527064561843872, 0.07614772021770477, -0.03395897150039673, 0.08141247183084488, -0.061923880130052567, 0.0886494442820549, 0.20501579344272614, -0.25615742802619934, -0.08472678810358047, -0.021814614534378052, 0.0793677419424057, 0.05392748862504959, -0.12040270864963531, -0.02333086170256138, 0.038604751229286194, 0.034097373485565186, 0.10522740334272385, 0.0076237875036895275, 0.00941740907728672, -0.0017651320667937398, -0.14218813180923462, -0.029499990865588188, 0.07919933646917343, 0.06886421144008636, -0.033050570636987686, -0.09742693603038788, -0.024551359936594963, -0.17405728995800018, -0.05339960753917694, -0.013355012983083725, 0.016440359875559807, -0.03646416217088699, -0.11727522313594818, 0.015249104239046574, -0.0865812674164772, -0.09541251510381699, 0.022437138482928276, 0.17017367482185364, 0.042046044021844864, -0.041138097643852234, 0.013424672186374664, 0.0934954434633255, 0.03254501149058342, -0.14398200809955597, 0.009773345664143562, 0.029153315350413322, -0.11906177550554276, -0.03693829104304314, -0.036375172436237335, -0.05095333606004715, 0.010052810423076153, 0.12725020945072174, -0.047884684056043625, 0.08817101269960403, 0.012236719951033592, 0.023385493084788322, -0.08827283978462219, 0.15174022316932678, -0.05413224175572395, -0.04484584555029869, -0.04673583433032036, 0.12498132139444351, -0.008988154120743275, -0.01074772048741579, -0.05870938301086426, 0.0352124385535717, 0.10400116443634033, 0.046234797686338425, -0.0327879898250103, 0.027137015014886856, -0.06031520292162895, -0.001712960540316999, -0.018949458375573158, -0.10206805169582367, 0.042557019740343094, 0.023654688149690628, -0.04151163622736931, -0.042107705026865005, 0.0044212923385202885, 0.027738051488995552, 0.00636184960603714, 0.13424667716026306, -0.06211605668067932, -0.0060111298225820065, -0.08177045732736588, -0.1069350466132164, 0.012798259034752846, 0.00017213932005688548, -0.004577713552862406, -0.08470377326011658, -0.0985720306634903, -0.05390164628624916, 0.057685382664203644, -0.04463228955864906, -0.04443836957216263, -0.06446807086467743, -0.0661759078502655, 0.05202777311205864, -0.015784963965415955, 0.13790982961654663, -0.05616580322384834, 0.11297156661748886, 0.01686098240315914, 0.05013817548751831, 0.055643294006586075, 0.051273901015520096, -0.05508042871952057, 0.059801336377859116, -0.15815846621990204, 0.06755704432725906, -0.08971977233886719, 0.07755789905786514, -0.1422298103570938, -0.11525817215442657, -0.02633332461118698, 0.006322750821709633, 0.1013060063123703, 0.10055221617221832, -0.192027747631073, -0.08305854350328445, 0.19949573278427124, -0.09954117983579636, -0.10150248557329178, 0.1511124223470688, -0.03368162363767624, 0.011020995676517487, 0.03924017772078514, 0.17156009376049042, 0.09196043014526367, -0.09182269126176834, 0.0340765118598938, -0.06599297374486923, 0.11537930369377136, 0.05922397971153259, 0.08884255588054657, -0.04201522842049599, 0.0003297583316452801, -0.009744782000780106, -0.01176607795059681, 0.07568979263305664, -0.09276124835014343, -0.07867485284805298, -0.010958715341985226, -0.08186209946870804, 0.0405360646545887, 0.05609140917658806, 0.032218776643276215, -0.11043858528137207, -0.12307649105787277, 0.035439956933259964, 0.09904353320598602, -0.09400030225515366, 0.021550700068473816, -0.07481004297733307, 0.03137916699051857, -0.019870182499289513, -0.015819618478417397, -0.1461196392774582, -0.018466012552380562, 0.030328746885061264, -0.03837966546416283, 0.010497125796973705, -0.040123749524354935, 0.0953751802444458, 0.06329336762428284, -0.07165723294019699, -0.0752544030547142, -0.04936791583895683, 0.014433672651648521, -0.08359226584434509, -0.2289493829011917, -0.05921965464949608, -0.051634471863508224, 0.15066111087799072, -0.2505338191986084, 0.017524419352412224, 0.014109059236943722, 0.12079737335443497, 0.04985843971371651, -0.04674734175205231, -0.0028948704712092876, 0.07839479297399521, -0.011523883789777756, -0.06944020092487335, 0.03331158682703972, 0.005670439917594194, -0.14266905188560486, 0.016949808225035667, -0.1577477604150772, 0.09077251702547073, 0.08584410697221756, 0.01129621546715498, -0.12123219668865204, -0.07645856589078903, -0.06314413249492645, -0.05923869088292122, -0.027097690850496292, -0.007088728714734316, 0.18767046928405762, 0.03355346620082855, 0.115408755838871, -0.06489378213882446, -0.041670188307762146, 0.02252129279077053, -0.010082971304655075, -0.016997838392853737, 0.12529271841049194, 0.01804135926067829, -0.09518161416053772, 0.08668223023414612, 0.10854463279247284, -0.07790463417768478, 0.15799161791801453, -0.06944278627634048, -0.10388516634702682, -0.026754440739750862, 0.04341892898082733, 0.04793976992368698, 0.11575052887201309, -0.1069662943482399, -0.0033819456584751606, 0.0016154974000528455, 0.018693752586841583, 0.015132882632315159, -0.19655409455299377, -0.01857093721628189, 0.053429313004016876, -0.046863190829753876, -0.013926162384450436, -0.03396499902009964, 0.001564833801239729, 0.09004022181034088, 0.012761303223669529, -0.049367040395736694, -0.011792052537202835, -0.028563598170876503, -0.08067280054092407, 0.20137634873390198, -0.09959851205348969, -0.1313142329454422, -0.1232617124915123, -0.015988260507583618, 0.02807025983929634, -0.004283439833670855, 0.045754626393318176, -0.11143695563077927, -0.028235262259840965, -0.07908467948436737, 0.03367864713072777, -0.0354343056678772, 0.041486941277980804, -0.003354087471961975, 0.01920492947101593, 0.0865882858633995, -0.09110169112682343, 0.027559394016861916, -0.013046639040112495, -0.04214730113744736, 0.033574629575014114, 0.026947030797600746, 0.08946815878152847, 0.17561985552310944, 0.020406754687428474, 0.006231655832380056, -0.046794816851615906, 0.14636923372745514, -0.1060502752661705, -0.02038232423365116, 0.10124816745519638, -0.024589620530605316, 0.047257572412490845, 0.16251982748508453, 0.05042862892150879, -0.08925129473209381, 0.04452748969197273, 0.033597905188798904, -0.018444543704390526, -0.20992645621299744, -0.027033546939492226, -0.04297569766640663, -0.013581670820713043, 0.11891068518161774, 0.030377095565199852, -0.03872828185558319, 0.03441787511110306, -0.017738286405801773, -0.03305133804678917, 0.018074167892336845, 0.0807642713189125, 0.028592733666300774, 0.028942670673131943, 0.1161879226565361, -0.007267703302204609, -0.05184260383248329, 0.021665247157216072, -0.006778128445148468, 0.2391519397497177, -0.000011659330994007178, 0.13896101713180542, 0.04272116348147392, 0.1305406391620636, 0.018911998718976974, 0.054943766444921494, 0.014448319561779499, -0.03818974643945694, 0.014042142778635025, -0.053768619894981384, -0.023019811138510704, 0.05891408026218414, 0.060099340975284576, 0.042596232146024704, -0.11918878555297852, -0.00644548237323761, 0.03193768486380577, 0.3246762752532959, 0.08059254288673401, -0.2872965633869171, -0.10602014511823654, 0.02059256285429001, -0.09206417948007584, -0.0454634353518486, 0.030192190781235695, 0.15524007380008698, -0.0858680009841919, 0.04740140214562416, -0.08303162455558777, 0.08275521546602249, -0.04368547350168228, 0.006256942171603441, 0.06488378345966339, 0.0722280889749527, -0.023381531238555908, 0.046337928622961044, -0.22678323090076447, 0.32091009616851807, -0.018601953983306885, 0.08028236776590347, -0.02419303171336651, 0.029893606901168823, 0.0349186547100544, -0.02464490383863449, 0.08065635710954666, -0.014882543124258518, -0.1460227072238922, -0.19683143496513367, -0.06742081046104431, 0.019537178799510002, 0.14316707849502563, -0.04846265912055969, 0.12581834197044373, -0.03425252065062523, -0.0063593401573598385, 0.0650993287563324, -0.08399811387062073, -0.10367538779973984, -0.09375518560409546, 0.005965187679976225, 0.009101931005716324, 0.07737252116203308, -0.1251370757818222, -0.10617149621248245, -0.06485195457935333, 0.1691850870847702, -0.07069844007492065, -0.0060913050547242165, -0.13350600004196167, 0.08190832287073135, 0.15666382014751434, -0.0610712394118309, 0.05609634146094322, 0.02327786199748516, 0.1214001253247261, 0.008020728826522827, 0.008762060664594173, 0.12452805042266846, -0.08189374953508377, -0.21041740477085114, -0.07762371748685837, 0.17068034410476685, 0.037855297327041626, 0.06497571617364883, -0.01758556440472603, 0.03172345086932182, 0.0016896625747904181, -0.07313568145036697, 0.05516692250967026, 0.011308828368782997, 0.012114090844988823, 0.047929950058460236, -0.04636155068874359, -0.016109203919768333, -0.06665734946727753, -0.0665278211236, 0.14897707104682922, 0.3278631269931793, -0.09258656203746796, 0.028283795341849327, 0.062078166753053665, -0.03851809352636337, -0.1596018671989441, 0.024895677343010902, 0.1271972954273224, 0.036205027252435684, 0.030596595257520676, -0.1840941160917282, 0.04221757501363754, 0.09154033660888672, -0.031194817274808884, 0.05894976854324341, -0.3091674745082855, -0.14170704782009125, 0.10652454197406769, 0.12126614898443222, -0.027151232585310936, -0.162891685962677, -0.05840544030070305, -0.013555942103266716, -0.05110698938369751, 0.02555476501584053, -0.04272794723510742, 0.11805689334869385, 0.01521376520395279, 0.0340016707777977, 0.03336460515856743, -0.06077563017606735, 0.14650145173072815, -0.05951540917158127, 0.07521916180849075, -0.024625834077596664, 0.02876845933496952, -0.0046822866424918175, -0.05904543399810791, -0.01268182322382927, -0.07342234998941422, 0.025111999362707138, -0.08225546032190323, -0.0354861281812191, -0.0788685530424118, 0.018154611811041832, -0.03902512416243553, -0.056809891015291214, -0.008895903825759888, 0.0663311704993248, 0.07031489908695221, -0.0087724095210433, 0.09895045310258865, -0.07252203673124313, 0.18016286194324493, 0.09006505459547043, 0.10709481686353683, 0.005840314086526632, -0.04300406202673912, 0.012827586382627487, -0.025902995839715004, 0.0491899698972702, -0.10844999551773071, 0.041045088320970535, 0.13481701910495758, 0.039161257445812225, 0.15358105301856995, 0.059698980301618576, -0.06629923731088638, 0.022716719657182693, 0.08120884001255035, -0.07643576711416245, -0.15957799553871155, -0.01074619498103857, 0.08764919638633728, -0.15615291893482208, 0.007750030141323805, 0.11077149957418442, -0.05007249489426613, -0.008659063838422298, 0.005879583302885294, 0.02410351112484932, -0.0402880497276783, 0.22040259838104248, 0.021578028798103333, 0.08136726915836334, -0.06863028556108475, 0.0715319961309433, 0.060962725430727005, -0.16463035345077515, 0.031527746468782425, 0.09525243937969208, -0.04755550995469093, -0.020991405472159386, 0.031649138778448105, 0.07642586529254913, 0.05064520612359047, -0.03881367668509483, -0.11236618459224701, -0.1435595601797104, 0.054489683359861374, 0.1301208734512329, 0.022389309480786324, 0.019894592463970184, -0.018128909170627594, 0.051396433264017105, -0.11105123162269592, 0.11343513429164886, 0.09045272320508957, 0.08032538741827011, -0.13700394332408905, 0.19102074205875397, -0.007651763502508402, -0.016667669638991356, -0.005769068840891123, 0.011212426237761974, -0.11578390002250671, 0.021984197199344635, -0.12085514515638351, -0.02322450652718544, -0.06186782568693161, -0.01018443051725626, 0.01653010956943035, -0.05500863119959831, -0.04536082223057747, 0.00926232524216175, -0.11075128614902496, -0.041061703115701675, -0.00892289262264967, 0.05689549073576927, -0.09151522815227509, -0.039263345301151276, 0.05019035562872887, -0.10462988168001175, 0.09002867341041565, 0.031228845939040184, 0.02744164876639843, 0.024818705394864082, -0.1396423876285553, 0.02493901550769806, 0.039883341640233994, -0.02076691947877407, 0.00402854522690177, -0.16481192409992218, -0.03081464394927025, -0.03632590174674988, 0.02502412721514702, 0.0006130530964583158, 0.03728308528661728, -0.12843400239944458, -0.02565898187458515, -0.014399553649127483, -0.06568128615617752, -0.05337636545300484, 0.019643276929855347, 0.04186904802918434, 0.02807329222559929, 0.15195126831531525, -0.11672232300043106, 0.058627672493457794, -0.2155625820159912, -0.00011224796617170796, -0.028954917564988136, -0.0628957450389862, -0.06666240096092224, -0.022683994844555855, 0.08041802793741226, -0.06533058732748032, 0.07226704061031342, -0.07518219202756882, 0.05912125110626221, 0.03988226130604744, -0.1415647715330124, 0.05909767001867294, 0.058631621301174164, 0.22929657995700836, 0.0431026965379715, -0.049042023718357086, 0.042554765939712524, 0.008753704838454723, 0.048246853053569794, 0.14165137708187103, 0.1405612677335739, 0.18300095200538635, 0.05011687055230141, 0.07378979027271271, 0.054080016911029816, -0.09791111946105957, -0.11947042495012283, 0.09791026264429092, -0.021715957671403885, 0.10349000990390778, -0.025342298671603203, 0.2224700152873993, 0.12642288208007812, -0.18727809190750122, 0.045050427317619324, -0.04920179396867752, -0.08672860264778137, -0.08535093814134598, -0.05176158994436264, -0.08691036701202393, -0.1667812615633011, 0.009456825442612171, -0.10341823101043701, 0.034696221351623535, 0.03983740136027336, 0.03798094019293785, 0.03588596358895302, 0.15549030900001526, 0.041882142424583435, 0.018606726080179214, 0.10857704281806946, 0.020756345242261887, 0.0018428300973027945, -0.021519098430871964, -0.10634320229291916, 0.04288219287991524, -0.03831171616911888, 0.030515359714627266, -0.04673819988965988, -0.10379964858293533, 0.05306417495012283, 0.01980762928724289, -0.10984496027231216, 0.024490229785442352, -0.003944197203963995, 0.0610370859503746, 0.0679468885064125, 0.04383186623454094, -0.010943181812763214, -0.02654016949236393, 0.2592678368091583, -0.11040598154067993, -0.07872753590345383, -0.1389792412519455, 0.2721121311187744, 0.0003615650348365307, 0.00568692060187459, -0.0021361433900892735, -0.08713264763355255, 0.014337465167045593, 0.12909112870693207, 0.13656364381313324, -0.02674686163663864, 0.002535358304157853, 0.005236404947936535, -0.0166262686252594, -0.06244179233908653, 0.07315713912248611, 0.11234893649816513, 0.03520544245839119, -0.06717110425233841, -0.04290882498025894, -0.030751733109354973, -0.04298173636198044, -0.03617887943983078, 0.0682704970240593, 0.03392759710550308, 0.010180914774537086, -0.04402559623122215, 0.118524931371212, -0.04135306179523468, -0.12758654356002808, 0.018722543492913246, -0.1818711757659912, -0.17215114831924438, -0.032718539237976074, 0.07128538191318512, 0.020234594121575356, 0.05186117812991142, -0.003661123337224126, -0.014494860544800758, 0.05970379710197449, -0.0007569693261757493, -0.007543317507952452, -0.11017833650112152, 0.07988160848617554, -0.07504711300134659, 0.20187991857528687, -0.03591277822852135, 0.0010926496470347047, 0.12640070915222168, 0.05443858355283737, -0.0700087696313858, 0.06731285899877548, 0.0842919647693634, -0.1328941285610199, 0.04951532930135727, 0.20824012160301208, -0.04937700554728508, 0.1620033085346222, 0.05046717822551727, -0.14185656607151031, 0.03873378038406372, -0.10373377799987793, -0.07479266077280045, -0.062031302601099014, 0.0024637822061777115, -0.038366638123989105, 0.14727471768856049, 0.22160355746746063, -0.06767357140779495, -0.0013972509186714888, -0.04703722894191742, 0.008487450890243053, 0.04967522621154785, 0.1419399380683899, -0.04426204040646553, -0.2766034007072449, 0.01613342948257923, 0.03078330308198929, 0.02169988863170147, -0.26328566670417786, -0.1054723933339119, 0.0315411277115345, -0.043605584651231766, -0.05624885484576225, 0.12343189120292664, 0.08923271298408508, 0.047974977642297745, -0.05340879037976265, -0.13891783356666565, -0.02620343118906021, 0.18797892332077026, -0.16020411252975464, -0.06183319166302681 ]
null
null
null
# Enlighten-Instruct - Adapter Fine-tune Mistral-7b on the Enlighten codebase <br> # <a href='https://github.com/ali7919/Enlighten-Instruct'>Github Repo</a> # <a href='https://medium.com/@codersama/60e12d437cca'>Full tutorial on Medium</a>
{}
null
codersan/Enlighten_Instruct
[ "safetensors", "region:us" ]
2024-02-06T12:36:49+00:00
[]
[]
TAGS #safetensors #region-us
# Enlighten-Instruct - Adapter Fine-tune Mistral-7b on the Enlighten codebase <br> # <a href='URL Repo</a> # <a href='URL tutorial on Medium</a>
[ "# Enlighten-Instruct - Adapter\nFine-tune Mistral-7b on the Enlighten codebase\n<br>", "# <a href='URL Repo</a>", "# <a href='URL tutorial on Medium</a>" ]
[ "TAGS\n#safetensors #region-us \n", "# Enlighten-Instruct - Adapter\nFine-tune Mistral-7b on the Enlighten codebase\n<br>", "# <a href='URL Repo</a>", "# <a href='URL tutorial on Medium</a>" ]
[ 11, 27, 13, 14 ]
[ "passage: TAGS\n#safetensors #region-us \n# Enlighten-Instruct - Adapter\nFine-tune Mistral-7b on the Enlighten codebase\n<br># <a href='URL Repo</a># <a href='URL tutorial on Medium</a>" ]
[ -0.004476434085518122, 0.04524657875299454, -0.007785102818161249, 0.06317265331745148, 0.05886223167181015, -0.014386244118213654, 0.12475463002920151, -0.04629932716488838, 0.07389990985393524, -0.0066409120336174965, 0.07702357321977615, 0.09447795897722244, -0.07583951205015182, -0.042635347694158554, -0.015270952135324478, -0.1915937215089798, 0.04185064882040024, -0.015605439431965351, 0.018463457003235817, 0.06355633586645126, 0.1010102704167366, -0.09493300318717957, 0.00635391054674983, -0.05098347365856171, 0.0791226327419281, 0.06925918161869049, -0.007270762696862221, -0.03847675025463104, 0.07021056860685349, -0.014059655368328094, 0.13222062587738037, 0.017262814566493034, 0.0033565673511475325, -0.17142486572265625, 0.03665831312537193, -0.010229367762804031, -0.004939323756843805, 0.013906947337090969, -0.0027822181582450867, 0.009833011776208878, -0.059795137494802475, -0.0055948239751160145, 0.027125036343932152, 0.030159760266542435, -0.04937136173248291, 0.038870979100465775, -0.017961200326681137, 0.04632160812616348, 0.0726526752114296, 0.12193017452955246, 0.03542085736989975, 0.07381530106067657, -0.05702473968267441, 0.10562346875667572, 0.1999608874320984, -0.1835039108991623, -0.04634169861674309, -0.041682276874780655, 0.02713189460337162, 0.2074197232723236, -0.1241079717874527, 0.038850970566272736, 0.045270420610904694, -0.025033200159668922, -0.020033186301589012, -0.10457583516836166, -0.09092728793621063, -0.008629252202808857, -0.09231361746788025, -0.025848258286714554, 0.22049379348754883, 0.03325134515762329, -0.0054776910692453384, 0.1118278056383133, -0.09393510222434998, 0.17608439922332764, 0.0062982672825455666, -0.021480591967701912, 0.04069431498646736, 0.05553209036588669, -0.00116616184823215, -0.1900545358657837, -0.08291331678628922, -0.04082084074616432, -0.04196365177631378, 0.3029983341693878, -0.03084607794880867, 0.033861152827739716, -0.10203701257705688, 0.016796205192804337, 0.1006893515586853, -0.11359371989965439, -0.02396528236567974, -0.07123112678527832, 0.14442747831344604, 0.02157001942396164, -0.0041074263863265514, -0.06985015422105789, 0.16277439892292023, 0.2376651167869568, -0.07462344318628311, 0.07153727859258652, -0.07739586383104324, 0.05721842870116234, -0.07129237800836563, 0.04659516364336014, 0.04054616019129753, -0.04961293563246727, 0.168375626206398, 0.04868016019463539, 0.15967363119125366, -0.008978292346000671, -0.10604137927293777, -0.02061317302286625, -0.04148600250482559, 0.09605290740728378, -0.012352574616670609, -0.012769767083227634, -0.06911779940128326, 0.06593839824199677, 0.10070376843214035, -0.10621697455644608, 0.003448354545980692, 0.0139440493658185, 0.029412632808089256, -0.027400631457567215, 0.00975639745593071, -0.011024943552911282, -0.03353051096200943, -0.030538858845829964, -0.06456704437732697, -0.026958122849464417, -0.017402153462171555, -0.023508446291089058, 0.011627156287431717, 0.04209339618682861, 0.08326129615306854, -0.12608930468559265, -0.11318491399288177, 0.012053029611706734, 0.054923225194215775, 0.07410813122987747, 0.029941458255052567, -0.055660560727119446, -0.022045306861400604, 0.02880476787686348, -0.014495045877993107, -0.15692122280597687, -0.0544232614338398, 0.06837276369333267, -0.03536396101117134, -0.0019822907634079456, -0.23158884048461914, 0.003451200434938073, -0.09431538730859756, -0.015722541138529778, -0.21083472669124603, 0.04244568198919296, -0.08069845288991928, 0.11942154169082642, -0.0009013874223455787, -0.03321509808301926, -0.0417468398809433, 0.0110133932903409, 0.08516155183315277, 0.09657730162143707, -0.010504789650440216, -0.012356525287032127, 0.049355290830135345, -0.13395459949970245, -0.13467855751514435, 0.12122057378292084, 0.01319127157330513, -0.0234155785292387, 0.07905494421720505, 0.2111775428056717, 0.041124049574136734, -0.04859277233481407, 0.03378187492489815, 0.10904719680547714, -0.07938440144062042, 0.00879902858287096, 0.011787476018071175, -0.005299142096191645, -0.1157246083021164, 0.008083476684987545, -0.02051612362265587, 0.028239715844392776, 0.026235492900013924, -0.03938646987080574, 0.014034677296876907, -0.00789368711411953, -0.007292243652045727, -0.044920600950717926, -0.062216151505708694, -0.09986003488302231, 0.0013230907497927547, 0.07734765112400055, 0.07854306697845459, -0.04649616405367851, 0.05208142101764679, -0.028287123888731003, 0.06899138540029526, -0.01764584705233574, 0.005042398814111948, -0.09750743210315704, -0.00001815263749449514, -0.06696781516075134, 0.16769258677959442, 0.031071064993739128, 0.00893133133649826, 0.07665679603815079, 0.0009837611578404903, -0.04169108718633652, -0.12517806887626648, -0.03329308703541756, 0.01786334626376629, -0.013852614909410477, -0.10021916031837463, 0.1201237365603447, -0.053318511694669724, -0.03348097950220108, -0.08346888422966003, -0.008267952129244804, 0.11680952459573746, 0.045400653034448624, 0.012785590253770351, 0.05030178651213646, 0.03193870931863785, -0.03122572973370552, -0.010335536673665047, -0.02110842429101467, 0.05015089362859726, 0.008912656456232071, -0.11817311495542526, 0.006586666218936443, -0.06344714760780334, 0.14543968439102173, 0.13210146129131317, -0.2079305201768875, 0.06360869854688644, -0.025112390518188477, 0.013181495480239391, 0.039920639246702194, 0.06687233597040176, -0.018043166026473045, 0.14287184178829193, 0.00996503233909607, 0.06683846563100815, -0.08231443166732788, 0.005833401344716549, -0.027200929820537567, -0.06085046008229256, -0.03168005496263504, 0.07525238394737244, -0.11100081354379654, -0.23874512314796448, 0.009275693446397781, 0.32025569677352905, -0.10702142119407654, 0.09431314468383789, -0.014604914002120495, -0.004373129922896624, 0.03915645554661751, 0.043023329228162766, -0.04638633504509926, 0.08749747276306152, -0.06866712123155594, 0.04498083516955376, -0.01739618554711342, -0.005681575275957584, 0.018101489171385765, -0.12441126257181168, -0.022316984832286835, -0.05295627564191818, -0.02474021166563034, -0.037827182561159134, -0.03135111182928085, -0.04403048753738403, 0.03255217894911766, -0.017692219465970993, -0.10024373233318329, 0.07227686047554016, -0.022637808695435524, -0.035290881991386414, 0.12518057227134705, -0.1907244175672531, -0.1793493628501892, -0.11335145682096481, -0.0023307844530791044, -0.054623186588287354, 0.015608137473464012, 0.1274874210357666, -0.1475779265165329, -0.05873196944594383, -0.0762336254119873, -0.08729712665081024, 0.035353321582078934, -0.013601541519165039, 0.08511950820684433, 0.04288287088274956, 0.04133320972323418, -0.17180490493774414, 0.0001526682317489758, -0.017616845667362213, -0.1548420637845993, 0.01809571497142315, -0.05300711840391159, 0.06202031672000885, 0.0455823615193367, 0.03691089153289795, -0.004266189411282539, 0.021675579249858856, 0.18412885069847107, -0.058836597949266434, 0.017250727862119675, 0.06272118538618088, -0.0795031264424324, 0.11391308158636093, 0.1755400449037552, 0.042712729424238205, -0.09174220263957977, 0.08137883245944977, 0.009938950650393963, -0.021075230091810226, -0.19512824714183807, -0.04316155984997749, -0.03136298432946205, -0.07124309986829758, -0.0035906590055674314, 0.0769440159201622, -0.08883362263441086, 0.03411276638507843, -0.020149672403931618, -0.08089691400527954, 0.1602882444858551, 0.06852791458368301, 0.144413560628891, -0.03385353088378906, -0.005812800955027342, -0.08222702890634537, -0.04052526503801346, 0.09894421696662903, 0.09474007785320282, 0.024428127333521843, -0.006099448073655367, 0.08259885013103485, 0.07423000782728195, -0.05558960139751434, 0.022334469482302666, 0.13132160902023315, -0.07393204420804977, 0.007061508484184742, -0.04808736592531204, -0.07064957916736603, -0.05882970988750458, 0.02589915692806244, -0.06938522309064865, 0.07036302983760834, -0.00986764021217823, 0.06972318142652512, 0.14206042885780334, 0.06758933514356613, 0.0003380753914825618, -0.0836733877658844, -0.042013365775346756, 0.10767664760351181, 0.03506900742650032, -0.027773594483733177, 0.16872826218605042, 0.17714948952198029, 0.07408399879932404, 0.07160381227731705, 0.08131375163793564, 0.12098312377929688, -0.019706759601831436, 0.018687166273593903, -0.15080855786800385, 0.08799109607934952, -0.030215982347726822, 0.03513115644454956, -0.19483044743537903, 0.1701313704252243, 0.0454387329518795, 0.1127392053604126, 0.07712049782276154, -0.042721446603536606, 0.11996569484472275, 0.22130917012691498, 0.07234947383403778, 0.026829449459910393, 0.0019945662934333086, -0.08867571502923965, -0.029210643842816353, 0.05717504024505615, 0.07828636467456818, 0.09753624349832535, -0.04980132356286049, -0.026043469086289406, -0.036765266209840775, -0.0028095473535358906, -0.13274721801280975, -0.2148280292749405, -0.13061560690402985, -0.09208977967500687, 0.1653546839952469, 0.07890717685222626, -0.0736788734793663, -0.00012498813157435507, 0.07781323790550232, 0.01505443174391985, -0.08415986597537994, -0.0014121648855507374, -0.01745268888771534, -0.08501430600881577, 0.07329260557889938, -0.07867074012756348, 0.06411067396402359, -0.027727853506803513, -0.013079780153930187, -0.03299235552549362, -0.014472139067947865, 0.04396352916955948, -0.07182250171899796, 0.022415434941649437, -0.00959451962262392, 0.11057824641466141, -0.0002705921360757202, -0.018388934433460236, 0.026067759841680527, -0.007879242300987244, -0.02704835683107376, -0.13795433938503265, 0.005927473306655884, 0.029820939525961876, -0.005781969055533409, 0.049964386969804764, -0.09735158830881119, -0.10085176676511765, -0.02492307499051094, 0.027664104476571083, 0.14168092608451843, 0.1587144285440445, 0.035528190433979034, -0.009503372013568878, 0.41948401927948, -0.04181133583188057, -0.2235076129436493, -0.036989953368902206, -0.12326794862747192, -0.08456622064113617, -0.02575385943055153, -0.1613602340221405, 0.12626007199287415, 0.013050711713731289, 0.003908216487616301, 0.05281747505068779, -0.06477067619562149, -0.057702578604221344, 0.11245176196098328, 0.09851273149251938, 0.2496400624513626, -0.0440015085041523, -0.06262203305959702, -0.07759550958871841, -0.19184306263923645, 0.030170202255249023, -0.1574823409318924, 0.07582830637693405, 0.02609461545944214, -0.017981689423322678, -0.0036462778225541115, -0.008560014888644218, 0.06715723127126694, -0.12475453317165375, 0.05852595716714859, -0.08315694332122803, -0.04995150491595268, 0.07339590042829514, -0.017919888719916344, 0.018534569069743156, -0.07590081542730331, 0.06584042310714722, 0.05402984842658043, -0.0030324042309075594, 0.008769752457737923, 0.06287309527397156, 0.007295450661331415, -0.07063499093055725, -0.005360856652259827, -0.042229920625686646, -0.01651524379849434, 0.06519347429275513, 0.21196863055229187, -0.004829374607652426, -0.040209658443927765, -0.12981417775154114, 0.13798080384731293, -0.2666769325733185, 0.021417921409010887, -0.010256705805659294, -0.030717963352799416, 0.09102234989404678, -0.06967458128929138, 0.07274463772773743, 0.0558735691010952, -0.009256606921553612, 0.0331910103559494, 0.08652404695749283, 0.03833102434873581, 0.05809880793094635, 0.07531654089689255, -0.1264166682958603, -0.07169058918952942, -0.029364367946982384, 0.14011763036251068, 0.03336847946047783, 0.12688836455345154, 0.15927362442016602, 0.027568403631448746, -0.01627674326300621, 0.001278094481676817, 0.043032221496105194, -0.08726869523525238, -0.02782553620636463, 0.09213095903396606, 0.004473866894841194, -0.04626063257455826, 0.10082703083753586, 0.014075689017772675, -0.22540798783302307, 0.011387734673917294, 0.1620086431503296, -0.09311988204717636, -0.09479768574237823, 0.020653123036026955, 0.04640962556004524, -0.01666550152003765, -0.06324880570173264, -0.0646316260099411, -0.031904350966215134, -0.03342478349804878, 0.15443119406700134, 0.04780007526278496, -0.017486341297626495, 0.01717238873243332, 0.02397586964070797, 0.039187636226415634, 0.028736872598528862, -0.14594212174415588, 0.007677274290472269, -0.10188428312540054, -0.20842218399047852, 0.0005776808829978108, -0.028330430388450623, -0.03864457458257675, -0.07424445450305939, -0.13022226095199585, 0.043027762323617935, -0.1536376178264618, 0.10674069076776505, -0.06786755472421646, 0.06806536018848419, -0.027827421203255653, -0.06992903351783752, -0.03793339058756828, 0.07448320090770721, -0.050947405397892, 0.0019016058649867773, 0.06421086937189102, 0.06307725608348846, -0.13395699858665466, -0.03585505485534668, 0.04263618588447571, -0.011640363372862339, 0.13015452027320862, 0.0529605932533741, -0.13514278829097748, 0.037204474210739136, -0.35965946316719055, -0.11299706250429153, 0.08463063091039658, 0.02832942083477974, -0.030410369858145714, 0.1011730432510376, -0.01941129006445408, 0.04466218501329422, 0.06210135668516159, -0.049244094640016556, 0.21196348965168, -0.02197798155248165, 0.007652553264051676, -0.06027752533555031, -0.16194450855255127, -0.05756048485636711, -0.045735105872154236, 0.14902502298355103, 0.012824147008359432, 0.16120998561382294, -0.07793550938367844, -0.01826847717165947, -0.005990387871861458, 0.04265119135379791, 0.0571531243622303, -0.10939983278512955, -0.21340952813625336, -0.013864738866686821, -0.01962340995669365, -0.06745839864015579, 0.06761297583580017, -0.16885055601596832, -0.10802333801984787, 0.05920857936143875, -0.012473752722144127, -0.054853226989507675, 0.027709051966667175, 0.21917258203029633, 0.016451548784971237, -0.037363648414611816, -0.11096230149269104, -0.03569488227367401, 0.08076992630958557, 0.04653220996260643, 0.015145871788263321, 0.12131110578775406, 0.18263719975948334, 0.09667766094207764, -0.01517962571233511, 0.10722902417182922, -0.08333706855773926, -0.1218138262629509, 0.14648208022117615, 0.010071410797536373, -0.014459135942161083, 0.08107297867536545, 0.23111747205257416, 0.06434701383113861, -0.008392542600631714, -0.01717153750360012, -0.006441154517233372, -0.10754366219043732, -0.0038874715100973845, -0.08805035799741745, -0.08940362185239792, 0.005776194389909506, -0.0954478457570076, -0.022217335179448128, -0.046590808779001236, 0.019344530999660492, -0.00680650444701314, 0.13433879613876343, 0.09111695736646652, 0.00877175759524107, 0.0173911452293396, 0.001418047584593296, -0.007077151909470558, 0.09595897048711777, -0.040071308612823486, 0.036627043038606644, -0.08365870267152786, -0.06717325001955032, 0.038512296974658966, -0.009004934690892696, 0.0010882957139983773, -0.06692793220281601, -0.04714782163500786, -0.019985390827059746, 0.0967523455619812, -0.01601419597864151, 0.12191815674304962, 0.046116769313812256, -0.10234437882900238, 0.06269028037786484, 0.2008877992630005, -0.01769617758691311, -0.20428317785263062, -0.002000208478420973, 0.1256406009197235, -0.021917736157774925, 0.1019093245267868, -0.05150255560874939, -0.07782509177923203, 0.014619657769799232, 0.07731809467077255, 0.13755296170711517, -0.09809575229883194, 0.04723603278398514, -0.0556330680847168, 0.038896430283784866, -0.04347563534975052, 0.06509830057621002, 0.08686448633670807, 0.15598902106285095, 0.011805807240307331, -0.1110745519399643, -0.03896376118063927, 0.014534247107803822, -0.09132134914398193, -0.09131427854299545, -0.030511735007166862, -0.04172240197658539, -0.06649226695299149, 0.07502207905054092, -0.056844715029001236, -0.034626249223947525, -0.03777916356921196, -0.050953831523656845, -0.002867265371605754, -0.020367706194519997, 0.187757670879364, 0.038249675184488297, 0.012185751460492611, 0.003814068390056491, -0.07659218460321426, -0.03898904472589493, -0.002518200781196356, -0.1069679707288742, -0.04338199272751808, 0.03320099413394928, -0.022312119603157043, 0.22536669671535492, 0.01603912189602852, 0.07975994795560837, 0.06085890531539917, 0.024143384769558907, -0.0679597482085228, 0.11598903685808182, 0.0492500402033329, -0.0801529511809349, -0.018933836370706558, -0.01605282723903656, -0.05152251571416855, 0.05807589739561081, 0.05676062032580376, -0.0010054543381556869, 0.044775933027267456, 0.15965071320533752, -0.12462255358695984, -0.0439767986536026, 0.023121029138565063, -0.13129885494709015, 0.05892835929989815, -0.0406423956155777, 0.001548381638713181, -0.035120561718940735, -0.018103988841176033, 0.012182909063994884, 0.044249165803194046, -0.01803550310432911, -0.0017913079354912043, -0.08472071588039398, -0.010278144851326942, 0.09458565711975098, -0.01897266134619713, -0.15223254263401031, -0.03992210328578949, -0.10030277073383331, 0.04773016273975372, -0.10031679272651672, 0.012322401627898216, 0.1124664843082428, 0.038961924612522125, 0.04444113373756409, -0.12303187698125839, -0.001682052155956626, 0.0347462072968483, -0.06652618199586868, -0.06227827072143555 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xmlRoberta_Pan12_GenData This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "xlm-roberta-base", "model-index": [{"name": "xmlRoberta_Pan12_GenData", "results": []}]}
text-classification
Constien/xmlRoberta_Pan12_GenData
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "text-classification", "generated_from_trainer", "base_model:xlm-roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:37:07+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #xlm-roberta #text-classification #generated_from_trainer #base_model-xlm-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
# xmlRoberta_Pan12_GenData This model is a fine-tuned version of xlm-roberta-base on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# xmlRoberta_Pan12_GenData\n\nThis model is a fine-tuned version of xlm-roberta-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #xlm-roberta #text-classification #generated_from_trainer #base_model-xlm-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# xmlRoberta_Pan12_GenData\n\nThis model is a fine-tuned version of xlm-roberta-base on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 69, 36, 6, 12, 8, 3, 90, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #xlm-roberta #text-classification #generated_from_trainer #base_model-xlm-roberta-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# xmlRoberta_Pan12_GenData\n\nThis model is a fine-tuned version of xlm-roberta-base on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.08206809312105179, 0.08396261185407639, -0.0012774228816851974, 0.0764148086309433, 0.17003700137138367, 0.013269358314573765, 0.1490139663219452, 0.07383758574724197, -0.09283915907144547, 0.05763954296708107, 0.06775175780057907, 0.08439196646213531, 0.02714567445218563, 0.13868772983551025, -0.06306590884923935, -0.22979754209518433, 0.011828464455902576, 0.0028773739468306303, -0.08442247658967972, 0.08586647361516953, 0.09594763815402985, -0.11934231221675873, 0.07447674125432968, -0.008008870296180248, -0.18375268578529358, 0.03756559267640114, 0.001266961800865829, -0.05332113429903984, 0.09847728908061981, 0.03263755515217781, 0.13763687014579773, 0.012901905924081802, 0.14799542725086212, -0.1955307275056839, 0.010134309530258179, 0.08322247862815857, 0.023142892867326736, 0.0637935996055603, 0.06633534282445908, 0.010486426763236523, 0.10228447616100311, -0.14260831475257874, 0.09597507864236832, 0.02181355468928814, -0.06829414516687393, -0.12761801481246948, -0.06935876607894897, 0.06119200214743614, 0.11725762486457825, 0.09001195430755615, 0.004837963730096817, 0.15515445172786713, -0.08470046520233154, 0.09265446662902832, 0.1737351417541504, -0.2592655420303345, -0.09129652380943298, 0.10490744560956955, 0.07858889549970627, 0.10407216846942902, -0.10021736472845078, 0.005874721799045801, 0.07233139872550964, 0.022276511415839195, 0.10283675789833069, -0.03209829702973366, -0.05722278729081154, 0.0008699460886418819, -0.15182657539844513, 0.02072749473154545, 0.16563282907009125, 0.04780639708042145, -0.05069296061992645, -0.07094594836235046, -0.05182580277323723, -0.04941176995635033, -0.026744896546006203, -0.06192078813910484, 0.04662008583545685, -0.056280747056007385, -0.06894735991954803, -0.05995769798755646, -0.07889733463525772, -0.0627695694565773, -0.0031284624710679054, 0.14353477954864502, 0.03940371051430702, 0.006211423315107822, -0.039827462285757065, 0.09165401011705399, 0.007052804343402386, -0.0945509821176529, 0.00026812928263098, 0.006941791623830795, -0.06636989861726761, -0.08138095587491989, -0.03260461241006851, -0.06539197266101837, 0.014726143330335617, 0.13466133177280426, -0.06639742106199265, 0.056742891669273376, 0.02760333940386772, 0.014530179090797901, -0.040358636528253555, 0.14276593923568726, -0.0326739177107811, -0.06522232294082642, 0.02115803025662899, 0.09209369122982025, 0.01824239455163479, -0.009606663137674332, -0.10685610771179199, 0.004087953828275204, 0.08984807133674622, 0.06242096424102783, -0.05327877029776573, 0.03651551157236099, -0.002154292305931449, -0.026112113147974014, -0.004718932788819075, -0.12362546473741531, 0.057485710829496384, -0.010147512890398502, -0.06134606897830963, -0.005153606180101633, 0.02480851300060749, 0.006673730909824371, -0.011667473241686821, 0.10935691744089127, -0.09210798889398575, 0.01932268775999546, -0.11985260993242264, -0.1044163629412651, 0.009690442122519016, -0.07324285060167313, -0.002223856281489134, -0.08982975780963898, -0.1978207677602768, -0.051588404923677444, 0.05248797684907913, -0.0183857511729002, -0.026366926729679108, -0.05197666585445404, -0.06539952009916306, -0.008486157283186913, 0.0013011364499107003, 0.10846538841724396, -0.041474536061286926, 0.06587065011262894, 0.008418994024395943, 0.029118075966835022, -0.011227278038859367, 0.024885021150112152, -0.08496985584497452, 0.027571335434913635, -0.14290407299995422, 0.039314545691013336, -0.07917511463165283, 0.04732222110033035, -0.07196619361639023, -0.08918435126543045, -0.0009666736586950719, 0.019279878586530685, 0.026586560532450676, 0.07817187905311584, -0.16264350712299347, -0.035479649901390076, 0.14759641885757446, -0.0917675644159317, -0.08295135200023651, 0.10131823271512985, -0.05058988928794861, 0.04448608681559563, 0.06762616336345673, 0.1469314843416214, 0.06493799388408661, -0.1513269543647766, -0.0020894345361739397, -0.00856610108166933, 0.0479588508605957, -0.02243022806942463, 0.04744051769375801, 0.010684908367693424, 0.006030742544680834, 0.0021169278770685196, -0.09743771702051163, 0.003607391146942973, -0.08272136747837067, -0.08543593436479568, -0.04944857954978943, -0.09388936311006546, 0.008953016251325607, 0.03420279175043106, 0.04156794399023056, -0.07542087882757187, -0.09123352915048599, 0.15445120632648468, 0.11270112544298172, -0.07148353010416031, -0.005713527090847492, -0.06701440364122391, 0.03594416752457619, -0.05669977888464928, -0.02664727158844471, -0.17780205607414246, -0.13420332968235016, 0.007920710369944572, -0.05674904212355614, 0.052153538912534714, 0.04486055299639702, 0.05455698445439339, 0.0946984738111496, -0.04426833614706993, -0.01797812432050705, -0.05777011066675186, 0.014874202199280262, -0.10818372666835785, -0.20167382061481476, -0.03608348220586777, -0.03993964567780495, 0.1449459344148636, -0.2862997353076935, 0.037625886499881744, -0.08146641403436661, 0.10444885492324829, 0.039617493748664856, -0.030322188511490822, -0.036852531135082245, 0.08697206526994705, -0.028018491342663765, -0.08938730508089066, 0.03896500542759895, -0.001923746895045042, -0.06832722574472427, -0.08321701735258102, -0.18049275875091553, 0.11962570995092392, 0.09263382107019424, 0.014054710045456886, -0.0977945402264595, -0.005032865796238184, -0.04863402247428894, -0.03966532647609711, -0.09699427336454391, 0.024355396628379822, 0.136938214302063, -0.023307686671614647, 0.13654106855392456, -0.05940105393528938, -0.042519643902778625, -0.0007148119038902223, -0.03125326707959175, -0.009441140107810497, 0.07662875950336456, 0.1329704076051712, -0.1276271939277649, 0.11033450067043304, 0.1006590947508812, -0.12189128249883652, 0.15286242961883545, -0.0371694341301918, -0.055622074753046036, -0.024752583354711533, 0.008955099619925022, 0.0033094463869929314, 0.13244572281837463, -0.06669739633798599, 0.0024313649628311396, -0.00044442276703193784, -0.0006687846616841853, 0.044585682451725006, -0.18719665706157684, -0.014023184776306152, 0.024495834484696388, -0.030724279582500458, 0.0146018723025918, -0.031660281121730804, 0.01623864471912384, 0.09030251204967499, -0.0075957803055644035, -0.042523305863142014, 0.021633150056004524, 0.009361285716295242, -0.10006209462881088, 0.19998975098133087, -0.08911819756031036, -0.12941874563694, -0.13161934912204742, 0.03389756754040718, -0.07340212911367416, -0.019495274871587753, 0.013590767048299313, -0.0832124873995781, -0.06375131756067276, -0.09904997050762177, -0.03980506956577301, -0.023370079696178436, -0.0176859013736248, 0.03435948118567467, 0.02838875912129879, 0.07228446006774902, -0.12327364087104797, 0.0023861476220190525, -0.031972579658031464, -0.10484372824430466, 0.0017601981526240706, 0.06413987278938293, 0.13732457160949707, 0.14671547710895538, -0.04405717924237251, 0.006504532415419817, -0.025545725598931313, 0.1924213320016861, -0.06121040880680084, 0.0004391818365547806, 0.12124544382095337, 0.004456310998648405, 0.037580884993076324, 0.1155816987156868, 0.04692073166370392, -0.09317510575056076, 0.024529797956347466, 0.07300572842359543, -0.026283083483576775, -0.22659988701343536, -0.046150557696819305, -0.02918071113526821, -0.06428875029087067, 0.07016310095787048, 0.051831431686878204, 0.06168946996331215, 0.047018811106681824, 0.005947117693722248, 0.06617549061775208, -0.01652316376566887, 0.08876483887434006, 0.07627557218074799, 0.04376006871461868, 0.11423664540052414, -0.04614682123064995, -0.050055183470249176, 0.04249146953225136, -0.007729159668087959, 0.2789930999279022, 0.01690368913114071, 0.0343296192586422, 0.052815865725278854, 0.10495202243328094, -0.0018483665771782398, 0.03579087182879448, 0.027107056230306625, -0.03547351062297821, 0.013660721480846405, -0.064182348549366, 0.0023337446618825197, 0.03734230250120163, -0.0581037700176239, 0.0543597936630249, -0.08659839630126953, 0.06154489517211914, 0.03380761295557022, 0.20159752666950226, -0.009135649539530277, -0.3037775158882141, -0.06918203830718994, 0.016638970002532005, -0.013307889923453331, -0.041874583810567856, 0.003808022942394018, 0.1315532922744751, -0.10766850411891937, 0.04750562831759453, -0.0731375589966774, 0.09290321171283722, -0.01106995064765215, 0.0013750533107668161, 0.039806585758924484, 0.17709697782993317, -0.017509933561086655, 0.07267676293849945, -0.23408128321170807, 0.2249804437160492, 0.02685880847275257, 0.15549463033676147, -0.03566235676407814, 0.022006694227457047, 0.026615168899297714, 0.11959556490182877, 0.07916046679019928, -0.014348160475492477, -0.09723319113254547, -0.18931472301483154, -0.043497584760189056, 0.05289854109287262, 0.10947061330080032, 0.01635686494410038, 0.10282047837972641, -0.04548615217208862, 0.00619372446089983, 0.07111644744873047, -0.09654898196458817, -0.20124542713165283, -0.11885812133550644, -0.01866304688155651, 0.017278360202908516, -0.06681409478187561, -0.08509192615747452, -0.09830257296562195, -0.07036598771810532, 0.19155313074588776, -0.019028201699256897, -0.012805880978703499, -0.13229689002037048, 0.07627405971288681, 0.06724835932254791, -0.06070517748594284, 0.01507443655282259, 0.01785353757441044, 0.11455059051513672, 0.01334631908684969, -0.0783119723200798, 0.0601789727807045, -0.09741642326116562, -0.13193319737911224, -0.054710257798433304, 0.0654413029551506, 0.05252828449010849, 0.03397964686155319, 0.0074842278845608234, 0.009974789805710316, 0.02429632842540741, -0.09737122058868408, 0.00026909916778095067, 0.09302865713834763, 0.05036574974656105, 0.05577870085835457, -0.10841567814350128, -0.05742714926600456, -0.04068146273493767, -0.03174218162894249, 0.10351590067148209, 0.20993410050868988, -0.07971556484699249, 0.02257816307246685, 0.08593197911977768, -0.10385366529226303, -0.18867409229278564, 0.09723324328660965, 0.0695708692073822, 0.01844797655940056, 0.060481008142232895, -0.1566474735736847, 0.15098430216312408, 0.1332731693983078, -0.015005581080913544, 0.07910097390413284, -0.31389397382736206, -0.13832859694957733, 0.08249171078205109, 0.1554458886384964, 0.041994210332632065, -0.1508701592683792, -0.023691833019256592, -0.032296132296323776, -0.09637951105833054, 0.10234542191028595, -0.12267494946718216, 0.1012967899441719, 0.009572473354637623, 0.06120308116078377, 0.007367616984993219, -0.0470384806394577, 0.14082977175712585, -0.0003423967573326081, 0.12511488795280457, -0.05144810304045677, -0.006404307205229998, 0.08397100865840912, -0.0631052702665329, 0.046001188457012177, -0.06658782064914703, 0.04262375459074974, -0.0818738266825676, -0.03873090818524361, -0.04745563492178917, 0.08837471902370453, -0.048678938299417496, -0.06553082168102264, -0.04814284294843674, 0.04953429847955704, 0.025677647441625595, -0.02963859960436821, 0.07081817835569382, 0.00968252681195736, 0.1381649672985077, 0.09388400614261627, 0.10579981654882431, -0.03466358035802841, -0.061963651329278946, -0.007686742581427097, -0.0253820288926363, 0.07764288783073425, -0.09118061512708664, 0.01033332385122776, 0.11897098273038864, 0.03164157271385193, 0.15602780878543854, 0.05245253071188927, -0.033115509897470474, 0.017302656546235085, 0.0471225343644619, -0.10330934822559357, -0.16833002865314484, -0.005973984487354755, -0.07328518480062485, -0.10698527097702026, 0.04268159717321396, 0.0984899029135704, -0.08331938832998276, 0.008058713749051094, -0.026967084035277367, 0.011190369725227356, -0.02428945153951645, 0.184208482503891, 0.05757703259587288, 0.0495736300945282, -0.06406747549772263, 0.09092289209365845, 0.07240486890077591, -0.06897255033254623, 0.03743547201156616, 0.07013818621635437, -0.07492891699075699, -0.028896167874336243, 0.09209270030260086, 0.2279437929391861, -0.07687173783779144, -0.0626383051276207, -0.12592460215091705, -0.11180399358272552, 0.025328705087304115, 0.15616582334041595, 0.05128186196088791, -0.044838495552539825, -0.026668375357985497, 0.04780028760433197, -0.16460102796554565, 0.10200488567352295, 0.04582536220550537, 0.09338612109422684, -0.18132063746452332, 0.15703976154327393, 0.025743843987584114, 0.009315303526818752, -0.019794009625911713, 0.03526713699102402, -0.11833261698484421, -0.024455418810248375, -0.1312515288591385, -0.01232089102268219, -0.03635780140757561, 0.0053471592254936695, 0.004407168366014957, -0.028777137398719788, -0.06428874284029007, 0.05063435435295105, -0.061615824699401855, -0.03954385221004486, 0.03241358697414398, 0.05105304345488548, -0.12935175001621246, -0.007741207256913185, -0.008072770200669765, -0.07362891733646393, 0.02528141625225544, 0.028116147965192795, 0.02620563469827175, 0.03208927810192108, -0.19315394759178162, 0.016182849183678627, 0.0529516339302063, 0.029518982395529747, 0.06477676331996918, -0.06581132858991623, -0.0030384825076907873, 0.0012311491882428527, 0.07257890701293945, 0.01849185861647129, 0.0521685965359211, -0.11613717675209045, 0.015136068686842918, -0.07649905234575272, -0.06402357667684555, -0.060881610959768295, 0.05050576105713844, 0.11052607744932175, 0.017814693972468376, 0.18855524063110352, -0.10924305021762848, 0.0334620475769043, -0.19958721101284027, -0.027848949655890465, 0.0005560130230151117, -0.033937498927116394, -0.07056716084480286, -0.03259308263659477, 0.06376319378614426, -0.05678367614746094, 0.12718066573143005, 0.041957657784223557, 0.0650387778878212, 0.03933331370353699, -0.05695215240120888, 0.0010298918932676315, 0.0154194887727499, 0.18514591455459595, 0.05134394019842148, -0.00551194092258811, 0.05045478790998459, 0.014031960628926754, 0.07929474860429764, 0.013854527845978737, 0.20798297226428986, 0.15660084784030914, -0.09564688801765442, 0.07897584140300751, 0.06859344244003296, -0.10061267018318176, -0.133046492934227, 0.09474795311689377, -0.03265473619103432, 0.10312725603580475, -0.03964222967624664, 0.14082519710063934, 0.15453863143920898, -0.16085077822208405, 0.016782058402895927, -0.0411154143512249, -0.10017632693052292, -0.129261314868927, -0.04225194454193115, -0.0985841378569603, -0.09906092286109924, 0.01773340441286564, -0.12255364656448364, 0.0209108404815197, 0.06123165041208267, 0.009629194624722004, 0.004262011963874102, 0.15999849140644073, -0.014878407120704651, 0.03496619313955307, 0.03075912594795227, 0.002374909585341811, -0.011632044799625874, -0.06320278346538544, -0.05274513363838196, 0.031555090099573135, -0.030413612723350525, 0.05549095943570137, -0.05836367979645729, -0.011954967863857746, 0.0561617948114872, -0.012700249440968037, -0.055386774241924286, 0.0329725481569767, 0.024676097556948662, 0.03163713216781616, 0.055009063333272934, 0.04412158206105232, -0.03167394548654556, -0.026708049699664116, 0.2439090460538864, -0.06377380341291428, -0.10238175094127655, -0.10867922753095627, 0.22054536640644073, 0.028555184602737427, 0.0022302246652543545, 0.039699118584394455, -0.10075899213552475, 0.028991444036364555, 0.17488354444503784, 0.16772164404392242, -0.05955643206834793, -0.011609225533902645, -0.03305662050843239, -0.02296445332467556, -0.0745111033320427, 0.13443613052368164, 0.08382081985473633, 0.08985058218240738, -0.034833379089832306, -0.021647999063134193, -0.029537947848439217, -0.022537222132086754, -0.11058368533849716, 0.024556146934628487, 0.04426371678709984, -0.0016637721564620733, -0.015371443703770638, 0.07545790821313858, -0.002084854757413268, -0.1394820511341095, 0.0680622085928917, -0.12053604423999786, -0.15724094212055206, -0.028579724952578545, 0.1161392480134964, -0.04209426790475845, 0.040547050535678864, -0.035875387489795685, -0.02110835164785385, 0.1016564667224884, -0.026079224422574043, -0.051326896995306015, -0.0834837332367897, 0.060818351805210114, -0.061879757791757584, 0.2293715626001358, -0.01151533517986536, 0.0716974064707756, 0.11073832213878632, 0.009022567421197891, -0.09680246561765671, 0.09057320654392242, 0.043040644377470016, -0.07576889544725418, 0.06378325074911118, 0.11871987581253052, -0.062031786888837814, 0.11229385435581207, 0.03916877508163452, -0.1223926767706871, 0.005864875856786966, -0.04866436496376991, -0.0656815618276596, -0.06720910221338272, 0.00469493493437767, -0.07292860746383667, 0.14581039547920227, 0.1876118779182434, -0.01724604144692421, 0.026004144921898842, -0.06895224750041962, 0.05133887380361557, 0.07044295966625214, 0.10374104231595993, -0.027718542143702507, -0.2204189896583557, 0.03419259935617447, -0.021584948524832726, 0.0063814762979745865, -0.2707921862602234, -0.0805710181593895, -0.00013874602154828608, -0.057627733796834946, -0.07068829238414764, 0.08555558323860168, 0.13431501388549805, 0.0459773875772953, -0.048558443784713745, -0.14014165103435516, -0.05849736928939819, 0.15145617723464966, -0.13226991891860962, -0.05822843313217163 ]
null
null
transformers
<p align="center"> <img src="logo_en.png" width="400"/> <p> <p align="center"> <b><font size="6">InternLM-XComposer2</font></b> <p> <div align="center"> [💻Github Repo](https://github.com/InternLM/InternLM-XComposer) [Paper](https://arxiv.org/abs/2401.16420) </div> **InternLM-XComposer2** is a vision-language large model (VLLM) based on [InternLM2](https://github.com/InternLM/InternLM) for advanced text-image comprehension and composition. We release InternLM-XComposer2 series in two versions: - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks. - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*. This is the 4-bit version of InternLM-XComposer2, install the latest version of [auto_gptq](https://github.com/AutoGPTQ/AutoGPTQ#quick-installation) before using. ```python import torch, auto_gptq from transformers import AutoModel, AutoTokenizer from auto_gptq.modeling import BaseGPTQForCausalLM auto_gptq.modeling._base.SUPPORTED_MODELS = ["internlm"] torch.set_grad_enabled(False) class InternLMXComposer2QForCausalLM(BaseGPTQForCausalLM): layers_block_name = "model.layers" outside_layer_modules = [ 'vit', 'vision_proj', 'model.tok_embeddings', 'model.norm', 'output', ] inside_layer_modules = [ ["attention.wqkv.linear"], ["attention.wo.linear"], ["feed_forward.w1.linear", "feed_forward.w3.linear"], ["feed_forward.w2.linear"], ] # init model and tokenizer model = InternLMXComposer2QForCausalLM.from_quantized( 'internlm/internlm-xcomposer2-7b-4bit', trust_remote_code=True, device="cuda:0").eval() tokenizer = AutoTokenizer.from_pretrained( 'internlm/internlm-xcomposer2-7b-4bit', trust_remote_code=True) img_path_list = [ 'panda.jpg', 'bamboo.jpeg', ] images = [] for img_path in img_path_list: image = Image.open(img_path).convert("RGB") image = quant_model.vis_processor(image) images.append(image) image = torch.stack(images) query = '<ImageHere> <ImageHere>please write an article based on the images. Title: my favorite animal.' with torch.cuda.amp.autocast(): response, history = quant_model.chat(tokenizer, query=query, image=image, history=[], do_sample=False) print(response) #My Favorite Animal: The Panda #The panda, also known as the giant panda, is one of the most beloved animals in the world. These adorable creatures are native to China and can be found in the wild in a few select locations, but they are more commonly seen in captivity at zoos or wildlife reserves. #Pandas have a distinct black-and-white coloration that makes them instantly recognizable. They are known for their love of bamboo, which they eat almost exclusively. In fact, pandas spend up to 14 hours a day eating, with the majority of their diet consisting of bamboo. Despite this seemingly unbalanced diet, pandas are actually quite healthy and have a low body fat percentage, thanks to their ability to digest bamboo efficiently. #In addition to their unique eating habits, pandas are also known for their playful personalities. They are intelligent and curious creatures, often engaging in activities like playing with toys or climbing trees. However, they do not typically exhibit these behaviors in the wild, where they are solitary creatures who prefer to spend their time alone. #One of the biggest threats to the panda's survival is habitat loss due to deforestation. As a result, many pandas now live in captivity, where they are cared for by dedicated staff and provided with enrichment opportunities to keep them engaged and stimulated. While it is important to protect these animals from extinction, it is also crucial to remember that they are still wild creatures and should be treated with respect and care. #Overall, the panda is an amazing animal that has captured the hearts of people around the world. Whether you see them in the wild or in captivity, there is no denying the charm and allure of these gentle giants. ``` ### Open Source License The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact [email protected].
{"license": "other", "pipeline_tag": "text-generation"}
text-generation
internlm/internlm-xcomposer2-7b-4bit
[ "transformers", "internlm", "feature-extraction", "text-generation", "custom_code", "arxiv:2401.16420", "license:other", "region:us" ]
2024-02-06T12:38:00+00:00
[ "2401.16420" ]
[]
TAGS #transformers #internlm #feature-extraction #text-generation #custom_code #arxiv-2401.16420 #license-other #region-us
<p align="center"> <img src="logo_en.png" width="400"/> <p> <p align="center"> <b><font size="6">InternLM-XComposer2</font></b> <p> <div align="center"> Github Repo Paper </div> InternLM-XComposer2 is a vision-language large model (VLLM) based on InternLM2 for advanced text-image comprehension and composition. We release InternLM-XComposer2 series in two versions: - InternLM-XComposer2-VL: The pretrained VLLM model with InternLM2 as the initialization of the LLM, achieving strong performance on various multimodal benchmarks. - InternLM-XComposer2: The finetuned VLLM for *Free-from Interleaved Text-Image Composition*. This is the 4-bit version of InternLM-XComposer2, install the latest version of auto_gptq before using. ### Open Source License The code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL.
[ "### Open Source License\nThe code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL." ]
[ "TAGS\n#transformers #internlm #feature-extraction #text-generation #custom_code #arxiv-2401.16420 #license-other #region-us \n", "### Open Source License\nThe code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL." ]
[ 43, 69 ]
[ "passage: TAGS\n#transformers #internlm #feature-extraction #text-generation #custom_code #arxiv-2401.16420 #license-other #region-us \n### Open Source License\nThe code is licensed under Apache-2.0, while model weights are fully open for academic research and also allow free commercial usage. To apply for a commercial license, please fill in the application form (English)/申请表(中文). For other questions or collaborations, please contact internlm@URL." ]
[ -0.07718884199857712, 0.2101067155599594, -0.0024841849226504564, 0.027025131508708, 0.03154980018734932, 0.022223664447665215, 0.2912643253803253, 0.06322892755270004, 0.046254366636276245, -0.12601029872894287, 0.11652646958827972, 0.1610938161611557, 0.0008509757462888956, 0.009821354411542416, -0.03321909159421921, -0.08267112076282501, -0.02024035155773163, -0.0042123813182115555, -0.14685387909412384, -0.015104205347597599, 0.09096358716487885, 0.03308209776878357, 0.058240145444869995, 0.0767601877450943, -0.012811529450118542, -0.0165358055382967, -0.024609597399830818, -0.06986328959465027, 0.04804125428199768, 0.07132816314697266, -0.015809480100870132, 0.081330306828022, 0.030830899253487587, -0.16016726195812225, 0.00889347679913044, -0.07083188742399216, -0.09393035620450974, 0.06555797159671783, 0.01478871051222086, -0.032577935606241226, 0.28589993715286255, 0.06234851852059364, -0.0399848073720932, 0.0638466328382492, -0.058458827435970306, -0.2076159119606018, -0.03350845351815224, -0.0021861852146685123, 0.015192734077572823, 0.07810287177562714, 0.1108829453587532, 0.09172405302524567, -0.061306554824113846, 0.01845644600689411, 0.030900662764906883, -0.26102396845817566, -0.021907778456807137, 0.10844141244888306, -0.05982600152492523, 0.02430916577577591, 0.04045642539858818, 0.06277241557836533, 0.13366250693798065, 0.0013367494102567434, 0.027478527277708054, -0.092963807284832, -0.11060300469398499, 0.047097403556108475, -0.06377896666526794, -0.035372599959373474, 0.32059773802757263, 0.02355084754526615, -0.08569972217082977, 0.020845917984843254, 0.02731703221797943, 0.17664052546024323, -0.014893243089318275, 0.0721965953707695, 0.09310882538557053, 0.12083278596401215, 0.11122792214155197, -0.1423363983631134, -0.12505097687244415, -0.10414394736289978, -0.10619238018989563, 0.03510023280978203, 0.001971122343093157, 0.089301697909832, -0.06501369923353195, -0.041810739785432816, -0.05973402410745621, -0.07271350175142288, -0.05279134586453438, -0.08649034798145294, 0.1762445718050003, 0.010180138051509857, -0.07180994749069214, -0.06540992856025696, 0.1868252158164978, 0.12203550338745117, 0.052674032747745514, -0.02771320380270481, -0.022563684731721878, 0.06899061053991318, -0.0005477321101352572, -0.03897707909345627, 0.03276612609624863, 0.10157178342342377, 0.11575169861316681, -0.0892803892493248, 0.04037501662969589, -0.002122045261785388, -0.13698525726795197, -0.017163319513201714, -0.16879072785377502, 0.08648891001939774, 0.05008891224861145, 0.011985983699560165, -0.015810858458280563, -0.005780319683253765, 0.1668444126844406, -0.013347374275326729, -0.047117605805397034, -0.03799039497971535, -0.013340857811272144, 0.013611244969069958, 0.1542615294456482, 0.035357505083084106, 0.013141952455043793, -0.14732404053211212, -0.038021452724933624, -0.020916765555739403, -0.04561104625463486, -0.017774395644664764, 0.08785826712846756, 0.008341723121702671, 0.07577504217624664, -0.09207739681005478, -0.2044539749622345, 0.0081404447555542, 0.1980535387992859, 0.0518420971930027, -0.04146221652626991, 0.04284290596842766, 0.01176624745130539, -0.04782649129629135, -0.029737921431660652, -0.07015442103147507, -0.043510470539331436, 0.00798018742352724, -0.0332048237323761, 0.047533296048641205, -0.22716616094112396, 0.029271619394421577, -0.11476471275091171, 0.024588067084550858, 0.041648175567388535, -0.026245975866913795, -0.09750790894031525, 0.12891605496406555, -0.03953437879681587, -0.020923281088471413, 0.008317919448018074, 0.011486700735986233, -0.018192561343312263, 0.06890279054641724, -0.08294253796339035, 0.018852028995752335, 0.08047780394554138, -0.0714663490653038, -0.2761233448982239, 0.08721978217363358, -0.027537129819393158, 0.0620831623673439, 0.04252989590167999, 0.11958780884742737, 0.1427496373653412, -0.1265762895345688, 0.09907728433609009, 0.13670898973941803, -0.031927112489938736, -0.2846214473247528, 0.142518550157547, 0.006229670252650976, -0.15678103268146515, 0.054566096514463425, -0.13411405682563782, 0.09466907382011414, 0.05148475989699364, -0.1106553003191948, -0.025632483884692192, -0.11772236973047256, -0.1155649870634079, 0.015037300996482372, 0.03189202770590782, -0.030224906280636787, 0.03340475261211395, 0.05920219048857689, 0.11317656189203262, 0.011810488998889923, -0.03280409798026085, -0.07995176315307617, -0.04002382978796959, -0.021906819194555283, 0.003315883921459317, -0.05411326885223389, 0.12614476680755615, -0.04493695870041847, -0.06482352316379547, 0.1643316000699997, 0.17232264578342438, 0.021787377074360847, 0.011420452035963535, 0.034512121230363846, 0.05715195834636688, 0.036033306270837784, -0.025495432317256927, 0.02221318706870079, -0.17642627656459808, 0.04381188750267029, -0.0200655497610569, 0.16363690793514252, -0.1336323767900467, 0.03986606001853943, -0.0688515305519104, -0.04782235249876976, -0.023381749168038368, 0.11984933912754059, 0.05887950584292412, 0.00966279674321413, -0.0625268965959549, 0.029338805004954338, 0.08885630965232849, 0.06316639482975006, -0.1576676070690155, 0.0965815857052803, 0.12049507349729538, 0.1847268044948578, 0.11671246588230133, -0.18209496140480042, 0.05206011235713959, -0.11812378466129303, -0.03201962262392044, 0.05249409377574921, 0.024333301931619644, 0.10446000844240189, 0.09230110049247742, -0.011502561159431934, 0.04062599316239357, -0.07974610477685928, 0.04713745787739754, -0.053726423531770706, -0.17935864627361298, -0.02109009400010109, 0.043258145451545715, 0.24289236962795258, -0.05055397376418114, 0.07717572897672653, 0.25581830739974976, -0.12019975483417511, 0.12609967589378357, -0.08119040727615356, -0.03185559809207916, -0.0587436780333519, 0.0508425310254097, 0.06462449580430984, 0.04064884036779404, -0.08855637162923813, -0.00907699204981327, 0.060047101229429245, -0.05028495565056801, 0.07385961711406708, -0.14492520689964294, -0.09924036264419556, 0.052466582506895065, -0.04865775257349014, -0.10682839155197144, 0.0012388693867251277, -0.1288846731185913, 0.030529167503118515, -0.03234659507870674, 0.003913866356015205, 0.045838844031095505, -0.03279188647866249, -0.06633073836565018, 0.08568265289068222, -0.04620150849223137, 0.042101770639419556, -0.1946096122264862, 0.032286129891872406, -0.10668755322694778, 0.017906997352838516, 0.0772850289940834, -0.04929212108254433, -0.07528490573167801, -0.052712079137563705, -0.1535315215587616, 0.01964259147644043, -0.06483206897974014, 0.09812983870506287, 0.09748883545398712, 0.021088946610689163, -0.1320217102766037, -0.05340012535452843, 0.05015234276652336, -0.0372437909245491, 0.011017709039151669, -0.12512798607349396, 0.1428556591272354, 0.042570989578962326, 0.03662749007344246, 0.004330480005592108, 0.028751347213983536, 0.11592048406600952, 0.0486472062766552, -0.06702155619859695, 0.2786192297935486, 0.10245926678180695, 0.057952895760536194, 0.0603533536195755, 0.08105237036943436, -0.079670250415802, 0.021615726873278618, -0.04109536111354828, -0.07763854414224625, -0.2901952266693115, -0.06364613026380539, -0.13255493342876434, 0.046397846192121506, -0.023962562903761864, 0.01715698093175888, 0.14008194208145142, 0.13714554905891418, 0.02663598395884037, 0.18407171964645386, -0.050197191536426544, 0.04429307207465172, 0.17792974412441254, 0.05388437211513519, 0.019164619967341423, -0.17652910947799683, 0.04976440221071243, 0.16785065829753876, 0.036839429289102554, 0.21172000467777252, 0.0553058423101902, 0.2378358393907547, 0.1850252002477646, 0.10692952573299408, 0.04361232370138168, 0.09709213674068451, -0.06823478639125824, 0.035179462283849716, -0.05135750770568848, -0.08076219260692596, -0.09792818874120712, 0.12070634216070175, -0.13892117142677307, -0.11331038922071457, 0.06264786422252655, -0.014329900033771992, -0.009105159901082516, 0.08656270802021027, -0.021129945293068886, -0.14822405576705933, 0.033115994185209274, 0.08485957980155945, 0.1034286841750145, 0.03270920366048813, 0.035961464047431946, -0.08095753937959671, -0.06197395175695419, 0.1503298133611679, 0.03460443392395973, 0.12039163708686829, 0.027738425880670547, 0.004664111882448196, -0.10755849629640579, -0.051441777497529984, 0.051804497838020325, 0.1602010875940323, -0.23298346996307373, 0.17249900102615356, 0.040809620171785355, 0.027910815551877022, -0.11266843229532242, 0.00835313182324171, 0.1295735388994217, 0.13792796432971954, 0.049183089286088943, -0.013473610393702984, -0.12997618317604065, -0.0011253440752625465, -0.03660079091787338, 0.07497195899486542, -0.12025470286607742, 0.010303189046680927, -0.05185551568865776, -0.05030488967895508, 0.037788111716508865, 0.015927167609333992, 0.12092979997396469, -0.1867489516735077, -0.14994648098945618, -0.006603982765227556, 0.09817288815975189, -0.05665942654013634, -0.057912811636924744, 0.014384131878614426, 0.05663014575839043, 0.099949412047863, -0.009575347416102886, -0.0867428109049797, -0.076467365026474, -0.13603922724723816, 0.021494554355740547, -0.10461549460887909, -0.0036874059587717056, -0.053582023829221725, -0.047624070197343826, -0.029116446152329445, -0.15787707269191742, 0.009448862634599209, -0.07181647419929504, 0.023363996297121048, 0.030933814123272896, -0.047140367329120636, -0.03985823318362236, 0.07553696632385254, 0.030226992443203926, -0.042839471250772476, -0.08236813545227051, -0.174642413854599, -0.04450986161828041, 0.06332915276288986, 0.06291241943836212, -0.06048118695616722, -0.08997393399477005, 0.012771546840667725, 0.06489020586013794, -0.07420708239078522, 0.11427014321088791, 0.2473164200782776, -0.02760664001107216, 0.022817891091108322, 0.2558012306690216, -0.11283334344625473, -0.19685861468315125, -0.0782589241862297, -0.08862115442752838, -0.03591500595211983, 0.05437100678682327, -0.22395530343055725, 0.11114705353975296, 0.07478473335504532, -0.07685072720050812, -0.005768014118075371, -0.0728849247097969, -0.04870085418224335, 0.141999751329422, 0.06828603893518448, 0.1911173015832901, -0.148616760969162, -0.04916004836559296, -0.1530400663614273, -0.2759096920490265, 0.12532860040664673, -0.2139013558626175, 0.028952069580554962, -0.0427212156355381, -0.043579887598752975, -0.01179774384945631, -0.033776529133319855, 0.15368545055389404, -0.06609340012073517, 0.11207760870456696, -0.08440147340297699, 0.04044560343027115, 0.14305181801319122, -0.012912136502563953, 0.2215084731578827, -0.26950928568840027, 0.07456552237272263, -0.027813013643026352, -0.05649857223033905, 0.006089105736464262, 0.10302571952342987, -0.0036160170566290617, -0.14412128925323486, -0.06490668654441833, -0.012487770989537239, -0.02889603190124035, 0.028786588460206985, 0.18107226490974426, 0.040294814854860306, -0.044301655143499374, 0.1897575706243515, 0.20455233752727509, -0.15765540301799774, 0.16766475141048431, -0.06327880173921585, -0.03942932188510895, 0.04721609130501747, -0.34314364194869995, -0.006936047691851854, 0.06528525054454803, -0.010317908599972725, 0.06564099341630936, -0.009047913365066051, -0.006508589256554842, 0.10221712291240692, 0.10974497348070145, -0.039570413529872894, -0.08277241140604019, -0.05132434144616127, 0.14028345048427582, -0.0050515527836978436, 0.12592527270317078, 0.07729296386241913, -0.057985104620456696, 0.02670065313577652, 0.0018845275044441223, 0.010722503997385502, -0.0869806632399559, -0.061099711805582047, 0.11919769644737244, -0.04859743267297745, -0.0625593513250351, 0.04039434343576431, 0.05027411878108978, 0.025446729734539986, 0.01078328862786293, -0.03498637303709984, -0.02008504793047905, -0.1260986030101776, 0.06706245243549347, 0.19771799445152283, -0.18511083722114563, -0.12517811357975006, -0.04398593679070473, -0.02660028636455536, -0.030752485617995262, -0.011916253715753555, 0.10388621687889099, 0.0050090160220861435, 0.02927989885210991, -0.01426878571510315, 0.04825412854552269, -0.00639204028993845, -0.0928516834974289, 0.02026715688407421, -0.09962795674800873, -0.06050993129611015, -0.008047245442867279, 0.04724622145295143, -0.030155504122376442, -0.014432551339268684, -0.027338789775967598, 0.019632039591670036, -0.2691739797592163, 0.031918324530124664, -0.14232584834098816, 0.08850960433483124, 0.012857635505497456, -0.0623016431927681, -0.09724796563386917, 0.07838904112577438, -0.13422974944114685, 0.015692317858338356, 0.006093943957239389, 0.13014031946659088, -0.11343422532081604, -0.03884774073958397, 0.0684610903263092, 0.03640412539243698, -0.008734205737709999, -0.043568097054958344, -0.0397193506360054, 0.05913173407316208, -0.09886790066957474, 0.03974107652902603, 0.0285757128149271, 0.08755232393741608, 0.020139118656516075, 0.018535066395998, -0.010245101526379585, 0.12407193332910538, -0.0036267077084630728, 0.007796316873282194, 0.004964294843375683, -0.06941168755292892, -0.0767773911356926, 0.008410033769905567, -0.10442712157964706, -0.015119894407689571, -0.03324408829212189, 0.21284905076026917, 0.05926056578755379, 0.20509986579418182, 0.022924723103642464, 0.01417793519794941, -0.13321098685264587, 0.006648201961070299, -0.0035570794716477394, -0.002862702589482069, -0.09909768402576447, -0.08967429399490356, -0.07551085203886032, -0.04448289796710014, 0.2999829351902008, 0.016808491200208664, -0.11045010387897491, -0.012300673872232437, 0.0974997878074646, 0.16512133181095123, -0.03437386453151703, 0.19800634682178497, 0.03855748847126961, 0.06518212705850601, -0.04484039917588234, 0.05352956801652908, 0.020838554948568344, -0.0687335804104805, -0.028354650363326073, 0.050177160650491714, 0.016093134880065918, -0.002691019559279084, 0.12356147170066833, 0.09325830638408661, -0.014359177090227604, -0.027017388492822647, 0.13922356069087982, 0.039905913174152374, -0.03794148564338684, 0.1019180491566658, 0.162787526845932, -0.10304926335811615, 0.01529145147651434, 0.03191640228033066, -0.017753301188349724, -0.13609983026981354, -0.21856088936328888, -0.06958341598510742, -0.14820072054862976, -0.021577797830104828, -0.04748618230223656, -0.017391052097082138, 0.10425544530153275, 0.01473851315677166, -0.021539758890867233, -0.03055364266037941, -0.12499938905239105, -0.008725075051188469, -0.047086700797080994, -0.04953431710600853, -0.08818890154361725, -0.12047038972377777, 0.020740175619721413, 0.010870100930333138, -0.02559053897857666, -0.014973737299442291, 0.037153761833906174, -0.009167933836579323, 0.03230138123035431, -0.06307661533355713, -0.06373951584100723, -0.06507127732038498, 0.009253053925931454, 0.031168822199106216, 0.12167167663574219, 0.03989916294813156, -0.02068619430065155, 0.11801331490278244, 0.056947991251945496, -0.0033423916902393103, -0.14409314095973969, -0.1510113626718521, 0.03845977783203125, -0.09373439848423004, 0.000324147375067696, -0.007652084808796644, 0.03899030759930611, 0.039809729903936386, 0.19232404232025146, 0.20202785730361938, -0.08379390090703964, -0.0034957751631736755, -0.07886155694723129, 0.009923773817718029, -0.08209874480962753, 0.12313242256641388, 0.03453171253204346, 0.1667545586824417, -0.04346388950943947, -0.07456980645656586, -0.07599832117557526, 0.047318484634160995, -0.13321015238761902, 0.05772244930267334, -0.033013030886650085, -0.09963291883468628, 0.0516098290681839, 0.10070102661848068, -0.05389217659831047, 0.07500059902667999, -0.027035847306251526, 0.021746283397078514, -0.054101333022117615, -0.025011025369167328, 0.02063344232738018, 0.0274041835218668, 0.010624158196151257, -0.07465941458940506, 0.014127247035503387, 0.05886506661772728, -0.00862765870988369, -0.1976468414068222, -0.012923548929393291, 0.16071036458015442, 0.06601300090551376, 0.19742164015769958, 0.039204709231853485, 0.044864069670438766, 0.07968087494373322, -0.012611371465027332, -0.07651982456445694, 0.11554065346717834, 0.03408903628587723, -0.007402106188237667, 0.020872216671705246, -0.23974423110485077, -0.09374189376831055, 0.03321567177772522, 0.08005733042955399, 0.04908473789691925, 0.03483884036540985, 0.12598052620887756, -0.023429429158568382, -0.13068035244941711, 0.014343379996716976, -0.1655355542898178, 0.04544232785701752, 0.03402436524629593, -0.04793111979961395, -0.11626353859901428, -0.06421953439712524, 0.08309054374694824, 0.06331496685743332, -0.25813916325569153, -0.07405558973550797, 0.06119050085544586, -0.006468783598393202, 0.09644990414381027, 0.05891000106930733, -0.06180319935083389, -0.034434691071510315, -0.050575386732816696, -0.0007055784808471799, -0.05560501292347908, -0.04138900339603424, 0.19659371674060822, -0.011498802341520786, -0.023199360817670822, -0.1395816206932068, -0.02394573576748371, -0.0647248774766922, -0.039893556386232376, -0.07943791896104813 ]
null
null
diffusers
# OmnigenXL (NSFW & SFW) API Inference ![generated from modelslab.com](https://pub-3626123a908346a7a8be8d9295f44e26.r2.dev/generations/4373894371707223026.png) ## Get API Key Get API key from [ModelsLab API](http://modelslab.com), No Payment needed. Replace Key in below code, change **model_id** to "omnigenxl-nsfw-sfw" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: [View docs](https://modelslab.com/docs) Try model for free: [Generate Images](https://modelslab.com/models/omnigenxl-nsfw-sfw) Model link: [View model](https://modelslab.com/models/omnigenxl-nsfw-sfw) View all models: [View Models](https://modelslab.com/models) import requests import json url = "https://modelslab.com/api/v6/images/text2img" payload = json.dumps({ "key": "your_api_key", "model_id": "omnigenxl-nsfw-sfw", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(response.text) > Use this coupon code to get 25% off **DMGG0RBN**
{"license": "creativeml-openrail-m", "tags": ["modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic"], "pinned": true}
text-to-image
stablediffusionapi/omnigenxl-nsfw-sfw
[ "diffusers", "modelslab.com", "stable-diffusion-api", "text-to-image", "ultra-realistic", "license:creativeml-openrail-m", "endpoints_compatible", "has_space", "diffusers:StableDiffusionXLPipeline", "region:us" ]
2024-02-06T12:40:10+00:00
[]
[]
TAGS #diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #has_space #diffusers-StableDiffusionXLPipeline #region-us
# OmnigenXL (NSFW & SFW) API Inference !generated from URL ## Get API Key Get API key from ModelsLab API, No Payment needed. Replace Key in below code, change model_id to "omnigenxl-nsfw-sfw" Coding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs Try model for free: Generate Images Model link: View model View all models: View Models import requests import json url = "URL payload = URL({ "key": "your_api_key", "model_id": "omnigenxl-nsfw-sfw", "prompt": "ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K", "negative_prompt": "painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime", "width": "512", "height": "512", "samples": "1", "num_inference_steps": "30", "safety_checker": "no", "enhance_prompt": "yes", "seed": None, "guidance_scale": 7.5, "multi_lingual": "no", "panorama": "no", "self_attention": "no", "upscale": "no", "embeddings": "embeddings_model_id", "lora": "lora_model_id", "webhook": None, "track_id": None }) headers = { 'Content-Type': 'application/json' } response = requests.request("POST", url, headers=headers, data=payload) print(URL) > Use this coupon code to get 25% off DMGG0RBN
[ "# OmnigenXL (NSFW & SFW) API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"omnigenxl-nsfw-sfw\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"omnigenxl-nsfw-sfw\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ "TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #has_space #diffusers-StableDiffusionXLPipeline #region-us \n", "# OmnigenXL (NSFW & SFW) API Inference\n\n!generated from URL", "## Get API Key\n\nGet API key from ModelsLab API, No Payment needed. \n\nReplace Key in below code, change model_id to \"omnigenxl-nsfw-sfw\"\n\nCoding in PHP/Node/Java etc? Have a look at docs for more code examples: View docs\n\nTry model for free: Generate Images\n\nModel link: View model\n\nView all models: View Models\n\n import requests \n import json \n \n url = \"URL \n \n payload = URL({ \n \"key\": \"your_api_key\", \n \"model_id\": \"omnigenxl-nsfw-sfw\", \n \"prompt\": \"ultra realistic close up portrait ((beautiful pale cyberpunk female with heavy black eyeliner)), blue eyes, shaved side haircut, hyper detail, cinematic lighting, magic neon, dark red city, Canon EOS R3, nikon, f/1.4, ISO 200, 1/160s, 8K, RAW, unedited, symmetrical balance, in-frame, 8K\", \n \"negative_prompt\": \"painting, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, deformed, ugly, blurry, bad anatomy, bad proportions, extra limbs, cloned face, skinny, glitchy, double torso, extra arms, extra hands, mangled fingers, missing lips, ugly face, distorted face, extra legs, anime\", \n \"width\": \"512\", \n \"height\": \"512\", \n \"samples\": \"1\", \n \"num_inference_steps\": \"30\", \n \"safety_checker\": \"no\", \n \"enhance_prompt\": \"yes\", \n \"seed\": None, \n \"guidance_scale\": 7.5, \n \"multi_lingual\": \"no\", \n \"panorama\": \"no\", \n \"self_attention\": \"no\", \n \"upscale\": \"no\", \n \"embeddings\": \"embeddings_model_id\", \n \"lora\": \"lora_model_id\", \n \"webhook\": None, \n \"track_id\": None \n }) \n \n headers = { \n 'Content-Type': 'application/json' \n } \n \n response = requests.request(\"POST\", url, headers=headers, data=payload) \n \n print(URL)\n\n> Use this coupon code to get 25% off DMGG0RBN" ]
[ 75, 20, 562 ]
[ "passage: TAGS\n#diffusers #modelslab.com #stable-diffusion-api #text-to-image #ultra-realistic #license-creativeml-openrail-m #endpoints_compatible #has_space #diffusers-StableDiffusionXLPipeline #region-us \n# OmnigenXL (NSFW & SFW) API Inference\n\n!generated from URL" ]
[ -0.0714045986533165, 0.11783770471811295, -0.0029362656641751528, 0.027851160615682602, 0.08123143762350082, -0.04005850851535797, 0.16399598121643066, 0.007916164584457874, 0.045119110494852066, 0.03317009657621384, 0.12907391786575317, 0.13651563227176666, -0.026628972962498665, 0.1546889841556549, -0.10852514207363129, -0.20700512826442719, 0.04131384938955307, 0.048459798097610474, -0.07526030391454697, 0.03710894286632538, 0.11911539733409882, -0.04743973910808563, 0.12202140688896179, 0.019667834043502808, -0.12426602840423584, -0.014041408896446228, 0.0002660456229932606, -0.07840085029602051, 0.02315376326441765, 0.0923076719045639, -0.00813596323132515, 0.11744575202465057, 0.02207195572555065, -0.09847801923751831, 0.03182661533355713, 0.00795599352568388, -0.0651698037981987, 0.05574391409754753, 0.008909551426768303, 0.011332680471241474, 0.13553786277770996, -0.00035733767435885966, -0.04430483654141426, 0.036672528833150864, -0.062320128083229065, -0.019365772604942322, 0.017232678830623627, 0.06886009871959686, 0.011789292097091675, 0.01902216486632824, 0.06306926906108856, 0.08577163517475128, 0.015064291656017303, 0.08769252151250839, 0.1368888020515442, -0.29581260681152344, -0.03662846237421036, 0.21496310830116272, 0.11378151178359985, 0.02417931705713272, -0.048885881900787354, 0.1298440843820572, 0.05568096041679382, -0.027760442346334457, 0.08729875087738037, -0.05308742821216583, 0.09791049361228943, -0.018274210393428802, -0.08245149254798889, 0.04886261001229286, 0.2290879786014557, 0.08149404078722, -0.024859849363565445, -0.1594848483800888, -0.08082745969295502, 0.13647083938121796, -0.07405450940132141, 0.005658416543155909, 0.026432903483510017, 0.03510086610913277, 0.007624255493283272, -0.09037680923938751, -0.0925229862332344, 0.008663304150104523, -0.07025647163391113, 0.18786589801311493, -0.04847326502203941, 0.09806880354881287, -0.058638423681259155, 0.06628777831792831, -0.19267457723617554, -0.1544407159090042, 0.010747154243290424, -0.1407608836889267, 0.06372837722301483, 0.05253250524401665, -0.026544908061623573, -0.11080953478813171, 0.0726432204246521, 0.05558706074953079, 0.005287470296025276, -0.033466219902038574, 0.0727938637137413, 0.12368198484182358, 0.03469419106841087, -0.039634741842746735, -0.1103043183684349, -0.09067480266094208, 0.020128075033426285, -0.0432288683950901, 0.035883840173482895, -0.04590335115790367, -0.1408228874206543, -0.05027499422430992, -0.1678083837032318, -0.05747591331601143, 0.021387333050370216, 0.05952247604727745, -0.014451798982918262, -0.03403531014919281, 0.17249080538749695, 0.02641521580517292, 0.009688538499176502, -0.05945952236652374, -0.017166156321763992, 0.21668381989002228, 0.11358651518821716, 0.018418459221720695, 0.035241954028606415, 0.09517180919647217, -0.08624267578125, -0.007774073164910078, -0.03470573574304581, -0.07800216227769852, 0.003984675742685795, -0.11651364713907242, 0.049775220453739166, -0.12006990611553192, -0.18779602646827698, 0.02574155479669571, 0.0945897251367569, -0.03916792571544647, -0.050148896872997284, 0.048319000750780106, -0.08333640545606613, 0.06778354197740555, -0.003242263337597251, -0.028692012652754784, -0.058269843459129333, 0.02604539506137371, -0.05972623452544212, 0.09540202468633652, -0.24237282574176788, 0.030526187270879745, 0.0005586547777056694, 0.023879900574684143, -0.1076851561665535, 0.03142375126481056, -0.07728850096464157, 0.055722545832395554, 0.00799819827079773, -0.05316796898841858, -0.035731732845306396, 0.03604982793331146, 0.025835053995251656, 0.15836836397647858, -0.11764377355575562, -0.000993287656456232, 0.14177262783050537, -0.10510427504777908, -0.1225876733660698, 0.044257018715143204, 0.0016151020536199212, 0.03862174227833748, 0.012507644481956959, 0.0831342339515686, 0.047894395887851715, -0.23002097010612488, 0.079678475856781, 0.14012303948402405, -0.0949532762169838, -0.11956971883773804, 0.029873568564653397, 0.06474406272172928, 0.054379869252443314, 0.07555361092090607, -0.06959547102451324, 0.08694375306367874, -0.06195683404803276, -0.009612548165023327, -0.07042624801397324, -0.08063025027513504, -0.00738197285681963, 0.010410361923277378, 0.07171398401260376, -0.02542281150817871, -0.03653484955430031, 0.07394357770681381, 0.027064824476838112, 0.014783349819481373, -0.02204192243516445, -0.03849313408136368, 0.1333484798669815, -0.09393087774515152, -0.017238978296518326, -0.07510840147733688, -0.0018922665622085333, -0.01621563546359539, 0.12624430656433105, 0.00765265291556716, 0.22680671513080597, 0.08718767762184143, 0.06392816454172134, -0.0040564509108662605, 0.013375154696404934, 0.0714503601193428, 0.04742647334933281, -0.05040288716554642, -0.15862923860549927, 0.04658583551645279, -0.07619954645633698, -0.01599404774606228, -0.19608214497566223, 0.025131111964583397, -0.03310225158929825, 0.13489921391010284, 0.06387266516685486, 0.004518439527601004, 0.00693531846627593, -0.04439758509397507, -0.06871429085731506, 0.002845621667802334, 0.06441313028335571, 0.06548666954040527, -0.01977989263832569, 0.21475090086460114, -0.09040722995996475, 0.3343053460121155, 0.1433953195810318, -0.12171462178230286, -0.03307336941361427, -0.07376495003700256, -0.03847039118409157, 0.044685013592243195, -0.002959432080388069, -0.006540704984217882, -0.07224997133016586, -0.029558170586824417, 0.13099178671836853, -0.05530104413628578, 0.01274479366838932, 0.06380125135183334, -0.06153606250882149, -0.05900530517101288, 0.05861126631498337, 0.13006600737571716, -0.10907794535160065, 0.11378566920757294, 0.18300491571426392, 0.00786382146179676, 0.1580246388912201, 0.005804918240755796, -0.021091077476739883, -0.03249391168355942, 0.0272127203643322, -0.030813612043857574, 0.1559532731771469, -0.07041656970977783, 0.006681669969111681, 0.0841049998998642, -0.021702881902456284, 0.027457984164357185, -0.058396998792886734, -0.046659041196107864, 0.07179103046655655, -0.002901209983974695, 0.1033288910984993, 0.1272677779197693, -0.07651331275701523, 0.11357888579368591, -0.06976281106472015, -0.11167479306459427, 0.03658748045563698, -0.003273101057857275, -0.044971201568841934, 0.06530007719993591, -0.055544912815093994, -0.05850542336702347, -0.12242680042982101, -0.11771178990602493, -0.10792721807956696, 0.005774428602308035, 0.03867318108677864, 0.0613739937543869, -0.08662445098161697, -0.10055942088365555, -0.1356261819601059, -0.030292097479104996, -0.012787909246981144, 0.018086180090904236, -0.004551840480417013, -0.04255950450897217, -0.08854886889457703, -0.03787919133901596, -0.023598331958055496, 0.09739590436220169, 0.08806096017360687, 0.017980877310037613, 0.13164904713630676, 0.09203985333442688, -0.019927622750401497, 0.028440875932574272, 0.0743638128042221, 0.2364940196275711, 0.0016358449356630445, 0.10756316035985947, 0.22694747149944305, 0.07135544717311859, 0.07439957559108734, 0.09970372915267944, 0.06390848010778427, -0.0608895905315876, 0.00680185854434967, -0.06106872856616974, -0.10927709192037582, -0.0435720831155777, -0.1359260380268097, -0.10586795210838318, -0.019134489819407463, -0.030654972419142723, 0.030558133497834206, 0.07276159524917603, 0.1519637405872345, 0.02273334003984928, 0.023860715329647064, -0.005330285057425499, 0.06723058223724365, 0.10343676060438156, -0.030656110495328903, 0.09976060688495636, -0.08155512809753418, -0.04140419512987137, 0.1324978470802307, -0.036662280559539795, 0.03836161270737648, -0.020270872861146927, -0.022615013644099236, 0.09148716926574707, 0.002100928919389844, 0.12083926051855087, 0.09740319848060608, -0.02699846215546131, -0.07749591767787933, -0.030447443947196007, -0.10138160735368729, 0.07684545964002609, 0.10157027095556259, -0.034008946269750595, -0.058541927486658096, -0.008229702711105347, 0.020959047600626945, 0.021049633622169495, 0.02364686317741871, 0.09765595942735672, -0.23023347556591034, 0.012264913879334927, 0.03670099377632141, 0.0667911171913147, -0.0677209421992302, 0.003577399766072631, 0.197723850607872, -0.051516093313694, 0.08267000317573547, -0.01694417931139469, 0.11666836589574814, 0.10308436304330826, 0.022616008296608925, 0.01047452911734581, 0.04864378646016121, 0.0006582955247722566, 0.02199191227555275, -0.1554618924856186, 0.14024148881435394, -0.00004043518492835574, 0.012991498224437237, -0.04028021916747093, -0.016374239698052406, 0.024242501705884933, 0.15679995715618134, 0.15817220509052277, 0.012406808324158192, 0.058433085680007935, 0.014804000034928322, -0.07675852626562119, -0.031755268573760986, 0.056344032287597656, 0.019537856802344322, -0.011547981761395931, 0.051653023809194565, -0.039039433002471924, 0.03512551635503769, 0.15533573925495148, -0.1525733917951584, -0.16919846832752228, 0.029468949884176254, 0.13731615245342255, -0.07986100018024445, -0.015513292513787746, -0.004627751186490059, -0.19836634397506714, 0.222516730427742, -0.019618816673755646, -0.10576853901147842, -0.1581619679927826, -0.06705460697412491, 0.0007940815994516015, -0.024273471906781197, 0.05756514146924019, -0.07309393584728241, 0.057983264327049255, -0.06151721626520157, -0.14046147465705872, 0.07599420845508575, -0.12374189496040344, -0.00317218154668808, -0.08966091275215149, 0.05314604565501213, -0.03542540967464447, -0.031181657686829567, 0.014936496503651142, -0.01693178154528141, -0.044919807463884354, -0.16471901535987854, 0.011736190877854824, 0.09412427246570587, 0.01287560723721981, 0.010766617022454739, -0.09272181987762451, -0.026750439777970314, 0.11170150339603424, 0.018701346591114998, 0.10117653757333755, 0.22291386127471924, -0.12605348229408264, 0.08657144010066986, 0.11360763013362885, -0.020086146891117096, -0.21007512509822845, -0.03998243808746338, -0.06809274107217789, 0.005654308013617992, 0.04132818058133125, -0.021838147193193436, 0.13655371963977814, -0.007462426088750362, -0.03128291293978691, 0.24633356928825378, -0.26712566614151, -0.08875050395727158, 0.038025278598070145, 0.07407157868146896, 0.3024669587612152, -0.13483072817325592, -0.05822770670056343, -0.04253794625401497, -0.3365601897239685, 0.1642448604106903, -0.036201562732458115, 0.040216315537691116, -0.04615942761301994, 0.045372188091278076, 0.008093488402664661, -0.07226778566837311, 0.14619380235671997, -0.04778299853205681, 0.10818155109882355, -0.1277455985546112, 0.08985059708356857, 0.10182193666696548, -0.0202021487057209, 0.10309413075447083, -0.16263167560100555, 0.05545924976468086, -0.12583287060260773, -0.03311893343925476, -0.051793985068798065, 0.06608791649341583, -0.02205297350883484, -0.1165299266576767, -0.05213291570544243, -0.01276453584432602, 0.0414583720266819, 0.015309966169297695, 0.02581370808184147, -0.015631865710020065, 0.060865018516778946, 0.2378830909729004, -0.0120726702734828, -0.1470247358083725, -0.1082870215177536, -0.08661522716283798, -0.03690198436379433, 0.08254256099462509, -0.10736817866563797, -0.03082757443189621, 0.12563857436180115, 0.04735136404633522, 0.06407644599676132, 0.043980494141578674, 0.013203391805291176, 0.003486948786303401, 0.08840971440076828, -0.17876267433166504, -0.009543370455503464, -0.06711313128471375, 0.14689144492149353, 0.1196497455239296, 0.033369727432727814, 0.14179490506649017, -0.08563601970672607, 0.06496528536081314, -0.013819617219269276, 0.002561523113399744, -0.03627994284033775, 0.035406049340963364, 0.05101821944117546, 0.01466795988380909, -0.07503325492143631, -0.0017535091610625386, -0.08271295577287674, -0.05672287568449974, -0.08536452800035477, 0.002684103325009346, -0.11905286461114883, -0.06986183673143387, 0.043266285210847855, 0.06148955225944519, -0.21196764707565308, -0.016737496480345726, 0.015791743993759155, -0.12074446678161621, 0.04604586213827133, 0.09337256848812103, 0.055026400834321976, -0.016041366383433342, 0.00326907099224627, -0.06047768518328667, -0.017244407907128334, 0.005535633768886328, 0.022406430914998055, 0.07651778310537338, -0.18835052847862244, -0.05471167340874672, -0.06989526748657227, 0.0328105129301548, -0.09498347342014313, 0.0072745210491120815, -0.10786096751689911, -0.03425439074635506, -0.15690983831882477, 0.016211776062846184, -0.11877511441707611, -0.06611795723438263, -0.03627635911107063, -0.07049750536680222, -0.04212813079357147, 0.021233124658465385, -0.08121384680271149, -0.0010913353180512786, 0.02256769686937332, 0.021832145750522614, -0.041334569454193115, -0.04032507911324501, -0.028279608115553856, -0.05989084765315056, 0.040711384266614914, 0.012802177108824253, -0.11737599223852158, -0.07692664861679077, -0.23929892480373383, -0.04943329468369484, 0.08204766362905502, 0.029025718569755554, 0.03235027939081192, 0.10860612988471985, 0.057414740324020386, 0.049458201974630356, 0.0053375232964754105, -0.04067732021212578, 0.007662964519113302, -0.09956488758325577, 0.007773181889206171, -0.06996610760688782, 0.03515786677598953, -0.06452589482069016, -0.022791292518377304, 0.1354164332151413, 0.06511156260967255, 0.12776319682598114, -0.03494463488459587, 0.04479016363620758, -0.09024245291948318, 0.016493339091539383, 0.05694827064871788, -0.07331734150648117, 0.09161335229873657, 0.01060029398649931, -0.02047877386212349, -0.03378024324774742, 0.27836287021636963, 0.016702251508831978, -0.19977760314941406, 0.017578886821866035, -0.03917563334107399, 0.0647369772195816, -0.014252579770982265, 0.23511086404323578, 0.0360027477145195, 0.0603036992251873, -0.1408766210079193, 0.09296101331710815, 0.09770966321229935, -0.03153679519891739, 0.028676412999629974, 0.14551928639411926, -0.09794435650110245, 0.10342635214328766, 0.04387512058019638, -0.014377463608980179, -0.03938858583569527, -0.012795407325029373, -0.03853346407413483, 0.16384083032608032, -0.09139673411846161, -0.05182524025440216, 0.14468452334403992, -0.050674039870500565, 0.029148444533348083, 0.07377247512340546, -0.010811977088451385, -0.07927607744932175, -0.2394101917743683, -0.06376516819000244, -0.1163008064031601, 0.01832502707839012, -0.04764359071850777, 0.055367011576890945, -0.0073679662309587, 0.05955415964126587, -0.008759895339608192, -0.04630350321531296, -0.1273229420185089, -0.03541119396686554, 0.11497220396995544, -0.022471701726317406, -0.06936776638031006, -0.012983397580683231, 0.02767890691757202, -0.05906674265861511, -0.006006359588354826, -0.04828718304634094, 0.05742640048265457, 0.03198728337883949, 0.0037340642884373665, 0.011261047795414925, -0.027575228363275528, -0.04641580954194069, -0.00010749772627605125, 0.022586723789572716, 0.1175488829612732, -0.0035713452380150557, -0.0023765263613313437, -0.017320729792118073, 0.16191977262496948, -0.05695222690701485, -0.07539065927267075, -0.07874587923288345, -0.02847237139940262, -0.03896905854344368, 0.09986691176891327, -0.057621464133262634, -0.03798063471913338, -0.02809169515967369, 0.23226840794086456, 0.25350362062454224, -0.2038123458623886, 0.04336514696478844, -0.013040219433605671, 0.0016302434960380197, 0.016576996073126793, 0.024491937831044197, 0.00363471289165318, 0.3447510600090027, -0.03535790368914604, -0.03574424237012863, -0.10296644270420074, -0.009116381406784058, -0.0844491645693779, -0.03268041834235191, 0.031083738431334496, -0.0918472558259964, -0.05835585668683052, 0.051100652664899826, -0.15746279060840607, 0.04143211245536804, 0.027598202228546143, -0.059561874717473984, 0.000635799893643707, -0.03225092217326164, -0.024140410125255585, 0.033377163112163544, 0.03260594978928566, -0.09303022921085358, -0.028402043506503105, 0.011331036686897278, -0.03550243005156517, -0.09525760263204575, 0.09225591272115707, -0.0037746273446828127, -0.02896433137357235, 0.04846152290701866, 0.006570280063897371, 0.02655753493309021, 0.05996796488761902, 0.011241555213928223, -0.057717736810445786, 0.07681730389595032, -0.0038351980037987232, -0.13376423716545105, -0.035256873816251755, 0.023468412458896637, -0.015977999195456505, -0.03189842402935028, -0.009637058712542057, -0.1424739956855774, 0.013504443690180779, 0.09194575250148773, -0.09624984860420227, -0.06686893105506897, 0.02764013409614563, -0.04957155883312225, 0.09549283236265182, 0.022189360111951828, -0.014295180328190327, -0.06450951844453812, -0.005732188932597637, 0.08856876194477081, 0.01798812486231327, -0.1392834186553955, -0.006907343398779631, -0.07143010944128036, -0.014342021197080612, -0.00632837787270546, 0.046863358467817307, -0.1383168250322342, -0.03474339470267296, -0.12998490035533905, 0.029736323282122612, -0.017249463126063347, 0.024623462930321693, 0.2677854597568512, 0.017488883808255196, -0.02752823941409588, -0.09039238095283508, 0.01799006760120392, 0.06479297578334808, -0.01660063862800598, -0.08200575411319733 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test_twowayloss_implementation This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 8.9001 - Accuracy: 0.5659 - Precision: 0.0114 - Recall: 0.5082 - F1: 0.0223 - Hamming: 0.4341 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Hamming | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:| | 8.8818 | 0.0 | 5 | 8.9210 | 0.5632 | 0.0110 | 0.4947 | 0.0216 | 0.4368 | | 8.124 | 0.0 | 10 | 8.9001 | 0.5659 | 0.0114 | 0.5082 | 0.0223 | 0.4341 | ### Framework versions - Transformers 4.35.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.7.1 - Tokenizers 0.14.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "precision", "recall", "f1"], "base_model": "bert-base-uncased", "model-index": [{"name": "test_twowayloss_implementation", "results": []}]}
text-classification
bdpc/test_twowayloss_implementation
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "base_model:bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:41:21+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
test\_twowayloss\_implementation ================================ This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 8.9001 * Accuracy: 0.5659 * Precision: 0.0114 * Recall: 0.5082 * F1: 0.0223 * Hamming: 0.4341 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 10 ### Training results ### Framework versions * Transformers 4.35.0.dev0 * Pytorch 2.0.1+cu118 * Datasets 2.7.1 * Tokenizers 0.14.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.0.dev0\n* Pytorch 2.0.1+cu118\n* Datasets 2.7.1\n* Tokenizers 0.14.1" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.0.dev0\n* Pytorch 2.0.1+cu118\n* Datasets 2.7.1\n* Tokenizers 0.14.1" ]
[ 63, 115, 4, 36 ]
[ "passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 10### Training results### Framework versions\n\n\n* Transformers 4.35.0.dev0\n* Pytorch 2.0.1+cu118\n* Datasets 2.7.1\n* Tokenizers 0.14.1" ]
[ -0.09673411399126053, 0.11198246479034424, -0.0027385426219552755, 0.12503573298454285, 0.15589678287506104, 0.026764163747429848, 0.1124773770570755, 0.15403470396995544, -0.09109826385974884, 0.029608817771077156, 0.1155288815498352, 0.13385134935379028, 0.022366560995578766, 0.14210546016693115, -0.049265358597040176, -0.2836069166660309, 0.004258307162672281, 0.009127502329647541, -0.07315751165151596, 0.12747421860694885, 0.09318017214536667, -0.10974152386188507, 0.10097282379865646, -0.01134172547608614, -0.1476900726556778, 0.008190995082259178, 0.013107952661812305, -0.054000359028577805, 0.13703225553035736, 0.03070964850485325, 0.09694987535476685, 0.01746327057480812, 0.10408543050289154, -0.2051759958267212, 0.002688558539375663, 0.06240855157375336, 0.006833717692643404, 0.09476424753665924, 0.051434051245450974, -0.007986985146999359, 0.11736546456813812, -0.09446753561496735, 0.06357565522193909, 0.03660128638148308, -0.13057570159435272, -0.22039580345153809, -0.09363778680562973, 0.04353485628962517, 0.0870143249630928, 0.08338496834039688, -0.0011153926607221365, 0.08724763244390488, -0.07393261045217514, 0.10289400815963745, 0.23262901604175568, -0.29356545209884644, -0.06124495342373848, 0.032099708914756775, 0.023780930787324905, 0.07614579796791077, -0.10501623898744583, -0.015724295750260353, 0.04090375453233719, 0.0352897010743618, 0.1316208690404892, -0.026031555607914925, -0.09577033668756485, 0.015610484406352043, -0.1336165964603424, -0.031229009851813316, 0.13202454149723053, 0.03340180590748787, -0.037923384457826614, -0.048650454729795456, -0.06754951924085617, -0.16994932293891907, -0.03927280753850937, 0.005975944921374321, 0.053338050842285156, -0.01845588907599449, -0.06273240596055984, -0.02897050604224205, -0.07855010777711868, -0.08308271318674088, -0.03374193236231804, 0.1183173805475235, 0.03238875791430473, 0.010602177120745182, -0.007918426766991615, 0.11677690595388412, -0.013363095931708813, -0.15243443846702576, 0.0006082762847654521, 0.018094537779688835, -0.014366409741342068, -0.044615376740694046, -0.04801095277070999, 0.0033890416380017996, 0.011218711733818054, 0.15925028920173645, -0.0416623018682003, 0.060059286653995514, 0.0004255945095792413, 0.022651750594377518, -0.10294397175312042, 0.19565458595752716, -0.040636979043483734, -0.059240423142910004, 0.008610322140157223, 0.08214480429887772, 0.02563687413930893, -0.022207064554095268, -0.11759565770626068, 0.005055376794189215, 0.0925692617893219, 0.040171004831790924, -0.060735322535037994, 0.07903079688549042, -0.042821452021598816, -0.01929442025721073, 0.050883758813142776, -0.107254758477211, 0.03922523185610771, 0.015043837018311024, -0.09583169966936111, -0.05619960278272629, 0.0368010438978672, 0.007544344291090965, -0.015249719843268394, 0.10274932533502579, -0.08353248983621597, 0.025088191032409668, -0.08657165616750717, -0.1215893104672432, 0.010491511784493923, -0.07291145622730255, 0.002299685264006257, -0.0774683728814125, -0.18853184580802917, -0.02458864077925682, 0.06365815550088882, -0.04889403656125069, -0.04951200634241104, -0.06035348027944565, -0.084854856133461, 0.03241625800728798, -0.019582554697990417, 0.11334078013896942, -0.0722094252705574, 0.10101904720067978, 0.027776148170232773, 0.06385849416255951, -0.0387752503156662, 0.06248762831091881, -0.10522257536649704, 0.01788688823580742, -0.20159287750720978, 0.06074823811650276, -0.0658065676689148, 0.0627562403678894, -0.10890872031450272, -0.10042691975831985, 0.04485892131924629, 0.0005959034897387028, 0.0736537054181099, 0.11346105486154556, -0.18167753517627716, -0.06243899092078209, 0.13771258294582367, -0.07221406698226929, -0.1058724895119667, 0.098584845662117, -0.06062673404812813, 0.04989058896899223, 0.07001262903213501, 0.176947683095932, 0.08852303773164749, -0.07543133199214935, 0.020345086231827736, -0.00025250809267163277, 0.06647325307130814, -0.02133604697883129, 0.07217077165842056, -0.005597670096904039, 0.006075694691389799, 0.020184675231575966, -0.0606536790728569, 0.042608581483364105, -0.08369159698486328, -0.09218890219926834, -0.036967162042856216, -0.09088584035634995, 0.05635062977671623, 0.05186430737376213, 0.05673248693346977, -0.10065966844558716, -0.10267047584056854, 0.07445055991411209, 0.09499933570623398, -0.06608185917139053, 0.03183634579181671, -0.06313221901655197, 0.048366133123636246, -0.011882052756845951, -0.01586955413222313, -0.17704801261425018, -0.03682592138648033, 0.027819935232400894, 0.00014385770191438496, 0.025449413806200027, -0.0074577187187969685, 0.07175511121749878, 0.06584221124649048, -0.06582260876893997, -0.029416851699352264, -0.0204957015812397, 0.0022521161008626223, -0.12394915521144867, -0.21654902398586273, -0.04599136486649513, -0.01959897018969059, 0.11339964717626572, -0.2161189168691635, 0.03967709094285965, 0.010939030908048153, 0.08153202384710312, 0.026934562250971794, -0.00836374331265688, -0.02928059920668602, 0.06332480162382126, -0.04005831107497215, -0.06918308883905411, 0.07165955752134323, -0.0006704478291794658, -0.08328468352556229, -0.022645607590675354, -0.11623483896255493, 0.12756916880607605, 0.11819004267454147, -0.05928543210029602, -0.08629932254552841, 0.005834294483065605, -0.04706357792019844, -0.0330347865819931, -0.03405216336250305, 0.02088109217584133, 0.17304681241512299, 0.001208625384606421, 0.16350649297237396, -0.06501211225986481, -0.04413881152868271, 0.014423533342778683, -0.011350343003869057, 0.03116179071366787, 0.11971811950206757, 0.08947017788887024, -0.0876525342464447, 0.13736869394779205, 0.14707182347774506, -0.06834917515516281, 0.12973515689373016, -0.03847020864486694, -0.06265239417552948, -0.017607128247618675, -0.01924256794154644, -0.0048848469741642475, 0.09352605044841766, -0.10601106286048889, -0.013982309028506279, 0.015686463564634323, 0.030503155663609505, 0.00495673855766654, -0.2072296440601349, -0.01672465354204178, 0.031351201236248016, -0.0777520015835762, -0.02999138832092285, -0.01983516663312912, -0.002562605543062091, 0.10613595694303513, 0.023485859856009483, -0.09509129822254181, 0.0338149257004261, -0.008027423173189163, -0.07078003138303757, 0.1969165951013565, -0.1002935916185379, -0.1383100003004074, -0.13213875889778137, -0.07594283670186996, -0.05355396866798401, 0.015448007732629776, 0.059639301151037216, -0.08582863211631775, -0.03305536508560181, -0.0830310583114624, 0.019095422700047493, 0.006683807820081711, 0.020339632406830788, -0.010618307627737522, -0.001776385004632175, 0.07687586545944214, -0.11650615930557251, -0.014138606376945972, -0.03539175167679787, -0.07909972965717316, 0.020811887457966805, 0.029661377891898155, 0.0932808369398117, 0.14669474959373474, -0.01132498774677515, 0.012535370886325836, -0.035914983600378036, 0.2335505187511444, -0.06997992098331451, 0.00431214552372694, 0.13706308603286743, -0.013145634904503822, 0.05841212347149849, 0.15739959478378296, 0.05959540978074074, -0.09469132870435715, 0.017380619421601295, 0.040924180299043655, -0.025313565507531166, -0.22188173234462738, -0.037236351519823074, -0.04154933616518974, 0.004294300451874733, 0.10803761333227158, 0.03399736061692238, 0.03267760947346687, 0.038533564656972885, 0.022584980353713036, 0.055907536298036575, -0.0021422915160655975, 0.07312139123678207, 0.12595349550247192, 0.04113708809018135, 0.13050544261932373, -0.04039228335022926, -0.03502337634563446, 0.04953291639685631, -0.008610766381025314, 0.2001563310623169, -0.007077611051499844, 0.14128047227859497, 0.03471006080508232, 0.14559893310070038, -0.004246581811457872, 0.06299374997615814, -0.0022840742021799088, -0.01665332540869713, -0.017598653212189674, -0.04940918833017349, -0.04262872040271759, 0.03369685634970665, -0.07358549535274506, 0.04997352510690689, -0.12776505947113037, -0.004297707229852676, 0.05662226676940918, 0.28910133242607117, 0.06153353676199913, -0.3165866434574127, -0.09978422522544861, 0.013603455387055874, -0.046789202839136124, -0.030161812901496887, 0.02631535939872265, 0.10082419961690903, -0.086955726146698, 0.04875710606575012, -0.06396099925041199, 0.10053419321775436, -0.05368047580122948, 0.05079730600118637, 0.10261423140764236, 0.09412061423063278, -0.0038507371209561825, 0.0722113773226738, -0.2794068157672882, 0.2655888795852661, 0.017062559723854065, 0.06200738996267319, -0.05998679995536804, 0.013395843096077442, 0.04902512952685356, 0.09572490304708481, 0.06381881237030029, -0.01663164421916008, -0.06691544502973557, -0.19885732233524323, -0.07465796917676926, 0.021995265036821365, 0.10014095157384872, -0.05193508788943291, 0.09884870052337646, -0.053239792585372925, -0.010985995642840862, 0.06609959900379181, -0.04686719551682472, -0.06620825082063675, -0.08259999006986618, 0.0014530883636325598, 0.014050806872546673, 0.016843952238559723, -0.06323611736297607, -0.09933358430862427, -0.07212486863136292, 0.16927693784236908, -0.046005066484212875, -0.04241009056568146, -0.11894309520721436, 0.05845912918448448, 0.10196220874786377, -0.08688196539878845, 0.04226357862353325, 0.0053981002420187, 0.07258427143096924, 0.047051578760147095, -0.07277598977088928, 0.12274583429098129, -0.05983448028564453, -0.19695112109184265, -0.05930652096867561, 0.12027490884065628, 0.02416655421257019, 0.06583835929632187, -0.01325762178748846, 0.027825355529785156, -0.01939784362912178, -0.08181969821453094, 0.007498508784919977, 0.0050828950479626656, 0.05578247457742691, 0.02041793055832386, -0.07223543524742126, 0.022601798176765442, -0.06630191206932068, -0.020985446870326996, 0.16004760563373566, 0.2543500065803528, -0.10633806139230728, 0.05669781193137169, 0.04088297486305237, -0.07356420904397964, -0.20445147156715393, 0.030568886548280716, 0.05742262676358223, -0.0016897177556529641, 0.029419926926493645, -0.20364868640899658, 0.09313242882490158, 0.09326282888650894, -0.023792153224349022, 0.09824412316083908, -0.3044464886188507, -0.13319267332553864, 0.10501457750797272, 0.10152854025363922, 0.08203447610139847, -0.1546669453382492, -0.0339333638548851, -0.030879413709044456, -0.0981144905090332, 0.11345366388559341, -0.08346779644489288, 0.125803604722023, -0.020275278016924858, 0.07787066698074341, 0.01213065255433321, -0.03892344981431961, 0.12152926623821259, 0.015639031305909157, 0.10058753192424774, -0.06014908477663994, -0.03357516601681709, 0.03322390466928482, -0.06513557583093643, 0.03458216041326523, -0.0988147035241127, 0.041720278561115265, -0.1082037091255188, -0.011606892570853233, -0.0776599571108818, 0.022037988528609276, -0.03883174806833267, -0.06250640749931335, -0.03519294783473015, 0.03794478997588158, 0.05589025095105171, -0.01310627069324255, 0.15624667704105377, -0.0061100502498447895, 0.13508544862270355, 0.12203316390514374, 0.08004993945360184, -0.043436601758003235, -0.04117769002914429, 0.004575613420456648, -0.018461983650922775, 0.06383417546749115, -0.18466977775096893, 0.050057049840688705, 0.1357692927122116, 0.013739710673689842, 0.14641955494880676, 0.06864207983016968, -0.017214374616742134, -0.005825262516736984, 0.060180842876434326, -0.1531546711921692, -0.05973611772060394, -0.005410492420196533, -0.05338946729898453, -0.12400822341442108, 0.041941918432712555, 0.12150594592094421, -0.06716570258140564, -0.007888496853411198, 0.005367171950638294, 0.030429696664214134, -0.045667991042137146, 0.19450706243515015, 0.059129051864147186, 0.05429776757955551, -0.10654671490192413, 0.08522588014602661, 0.0582764632999897, -0.05989944562315941, 0.01991051249206066, 0.10163481533527374, -0.09002891182899475, -0.04128728806972504, 0.06331051141023636, 0.15884092450141907, -0.05212126672267914, -0.03883354738354683, -0.13647934794425964, -0.10743431001901627, 0.07729758322238922, 0.17496353387832642, 0.09875195473432541, 0.02184295281767845, -0.04878374561667442, 0.015551626682281494, -0.09922410547733307, 0.09439069032669067, 0.030807262286543846, 0.06403843313455582, -0.13884419202804565, 0.15525294840335846, -0.0009381506242789328, 0.037468403577804565, -0.02391454391181469, 0.026876142248511314, -0.11478682607412338, -0.001372877391986549, -0.137309730052948, -0.014876349829137325, -0.023202983662486076, 0.014987137168645859, -0.0018416499951854348, -0.061493828892707825, -0.05710802227258682, 0.011922935023903847, -0.11701863259077072, -0.03908906131982803, 0.00652823131531477, 0.06117376685142517, -0.13302607834339142, -0.041317667812108994, 0.026209276169538498, -0.07858723402023315, 0.0809306651353836, 0.026464596390724182, 0.013538853265345097, 0.05671015754342079, -0.1319016069173813, 0.005991812329739332, 0.04303998127579689, 0.004702802747488022, 0.059184424579143524, -0.08829467743635178, -0.011121154762804508, -0.025498420000076294, 0.04891330003738403, 0.019146181643009186, 0.1026187539100647, -0.13262516260147095, 0.00846619252115488, -0.0206756591796875, -0.0667804405093193, -0.04980122298002243, 0.050159115344285965, 0.09168191999197006, 0.02147703617811203, 0.19170521199703217, -0.09175055474042892, 0.036265548318624496, -0.20727355778217316, -0.000499783840496093, -0.015827752649784088, -0.11851136386394501, -0.12598051130771637, -0.06723146140575409, 0.07037051767110825, -0.057859066873788834, 0.1247805580496788, 0.03164970129728317, 0.07211871445178986, 0.03974000737071037, -0.027138376608490944, 0.005461125168949366, 0.03056216612458229, 0.18278935551643372, 0.03956061974167824, -0.03180123120546341, 0.07291808724403381, 0.039877597242593765, 0.0916953757405281, 0.1047716736793518, 0.19866205751895905, 0.1333092749118805, 0.01112503744661808, 0.09013844281435013, 0.046752430498600006, -0.08723372220993042, -0.15501999855041504, 0.05095556378364563, -0.03275974839925766, 0.12237480282783508, -0.04479526728391647, 0.2072228342294693, 0.05418096110224724, -0.1718161553144455, 0.050704143941402435, -0.05747697129845619, -0.08856703341007233, -0.1286514699459076, -0.029590165242552757, -0.08624696731567383, -0.15841229259967804, -0.0119105139747262, -0.10832254588603973, 0.04615525156259537, 0.09564366191625595, 0.0027975693810731173, -0.005553205497562885, 0.12816326320171356, -0.014013877138495445, 0.018063481897115707, 0.062091320753097534, 0.008505359292030334, -0.021442610770463943, -0.08115582168102264, -0.08102001994848251, -0.0010391843970865011, -0.009101306088268757, 0.02738533541560173, -0.04074295610189438, -0.04211302101612091, 0.036883581429719925, -0.026769621297717094, -0.10264905542135239, 0.018301814794540405, 0.026461055502295494, 0.05981951951980591, 0.06992936879396439, 0.01940886303782463, 0.005267133004963398, 0.0020455624908208847, 0.2549976110458374, -0.09605472534894943, -0.07059803605079651, -0.11526788026094437, 0.2827014625072479, 0.035991884768009186, -0.004199609626084566, 0.013439629226922989, -0.07844096422195435, -0.014450355432927608, 0.22492216527462006, 0.20723669230937958, -0.08859985321760178, -0.01129606831818819, -0.004275409039109945, -0.006793432869017124, -0.007270027883350849, 0.11136256903409958, 0.11561186611652374, 0.01667049713432789, -0.08103740215301514, -0.040568701922893524, -0.027806324884295464, -0.02929813414812088, -0.04451800137758255, 0.07376734912395477, 0.014655543491244316, 0.0064494009129703045, -0.03752145916223526, 0.05782337486743927, -0.05211102217435837, -0.1272047609090805, 0.04677380993962288, -0.21399499475955963, -0.16535063087940216, -0.01909707300364971, 0.08853413164615631, 0.020764917135238647, 0.054681774228811264, -0.010252855718135834, -0.004720097873359919, 0.09807951003313065, -0.02614319697022438, -0.07716905325651169, -0.10868757218122482, 0.09432100504636765, -0.11775007843971252, 0.22030746936798096, -0.034141656011343, 0.031826525926589966, 0.12171769887208939, 0.04860345646739006, -0.08920194953680038, 0.058623846620321274, 0.05341305583715439, -0.0885840579867363, 0.021890705451369286, 0.10257595777511597, -0.04971843957901001, 0.09971590340137482, 0.04160064458847046, -0.12430545687675476, 0.01107724104076624, -0.0604073740541935, -0.08634424954652786, -0.04480351507663727, -0.05756960064172745, -0.04502866789698601, 0.13763776421546936, 0.23330548405647278, -0.04158734157681465, 0.009354903362691402, -0.07334829121828079, 0.0006808871403336525, 0.051584914326667786, 0.025324326008558273, -0.06529729813337326, -0.2204105705022812, 0.01374802179634571, 0.06872348487377167, -0.002878406085073948, -0.22414110600948334, -0.08599461615085602, 0.012227424420416355, -0.04097401350736618, -0.09978366643190384, 0.106281578540802, 0.05554747208952904, 0.04076670482754707, -0.045407697558403015, -0.07661496102809906, -0.062151189893484116, 0.15932351350784302, -0.16443277895450592, -0.08652592450380325 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext-base-224-22k-1k-finetuned-eurosat This model is a fine-tuned version of [facebook/convnext-base-224-22k-1k](https://huggingface.co/facebook/convnext-base-224-22k-1k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4190 - Accuracy: 0.8483 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6643 | 0.99 | 70 | 0.6090 | 0.7754 | | 0.4729 | 2.0 | 141 | 0.4641 | 0.8253 | | 0.3858 | 2.98 | 210 | 0.4190 | 0.8483 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/convnext-base-224-22k-1k", "model-index": [{"name": "convnext-base-224-22k-1k-finetuned-eurosat", "results": []}]}
image-classification
parvpareek/convnext-base-224-22k-1k-finetuned-eurosat
[ "transformers", "tensorboard", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-base-224-22k-1k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:42:12+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k-1k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
convnext-base-224-22k-1k-finetuned-eurosat ========================================== This model is a fine-tuned version of facebook/convnext-base-224-22k-1k on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4190 * Accuracy: 0.8483 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k-1k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 76, 144, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-base-224-22k-1k #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.1536388099193573, 0.1342429518699646, -0.002070749644190073, 0.08476448804140091, 0.1356876641511917, 0.010102122090756893, 0.1086341068148613, 0.13656307756900787, -0.09468112140893936, 0.08976531773805618, 0.1303931474685669, 0.10276669263839722, 0.050142936408519745, 0.16227318346500397, -0.025303132832050323, -0.2776004672050476, 0.007134558167308569, 0.005088811740279198, -0.1710297018289566, 0.11126396805047989, 0.09447173774242401, -0.11652897298336029, 0.07732436060905457, 0.02345453016459942, -0.1502724289894104, 0.00649996567517519, -0.02874878980219364, -0.05295812338590622, 0.10740064829587936, 0.0466807521879673, 0.09591758996248245, 0.04044680669903755, 0.09306425601243973, -0.21139545738697052, 0.009553425945341587, 0.07218851149082184, 0.0003156425373163074, 0.07902417331933975, 0.08790653198957443, -0.02242049016058445, 0.11507958173751831, -0.08315066993236542, 0.0695614442229271, 0.04609431326389313, -0.10325758159160614, -0.29065918922424316, -0.10238650441169739, 0.10016757249832153, 0.13964752852916718, 0.07334790378808975, -0.02303670346736908, 0.08140046149492264, -0.0771581307053566, 0.0851941704750061, 0.24241147935390472, -0.27860352396965027, -0.09120354801416397, 0.03656778112053871, 0.028306081891059875, 0.007936358451843262, -0.12213734537363052, -0.015381300821900368, 0.06510037928819656, 0.024113809689879417, 0.10856550186872482, 0.010368731804192066, 0.031988926231861115, 0.0028401240706443787, -0.14681684970855713, -0.04063352197408676, 0.13780798017978668, 0.11136418581008911, -0.048915304243564606, -0.07585480064153671, -0.018074050545692444, -0.2088261842727661, -0.023450439795851707, -0.006719847675412893, 0.039565179497003555, -0.060501281172037125, -0.13224714994430542, 0.024011505767703056, -0.09860669821500778, -0.08068696409463882, 0.03306858614087105, 0.14407092332839966, 0.0559871681034565, -0.0009605336235836148, 0.012531322427093983, 0.139272540807724, 0.038474757224321365, -0.14843127131462097, -0.013160866685211658, 0.013583051040768623, -0.08094695955514908, -0.03604338318109512, -0.022122912108898163, 0.0015248339623212814, 0.009585343301296234, 0.1830691695213318, -0.0570000559091568, 0.06553711742162704, 0.0698724165558815, 0.034600891172885895, -0.09582486748695374, 0.147126704454422, -0.07621967792510986, -0.04538637399673462, -0.04487176984548569, 0.10922826826572418, -0.0009060021839104593, -0.0008367181872017682, -0.0787532776594162, 0.0413178876042366, 0.09639041870832443, 0.03240244463086128, -0.043363481760025024, 0.032004740089178085, -0.06005620211362839, -0.025336867198348045, 0.07052546739578247, -0.06985542923212051, 0.03227264806628227, 0.011614912189543247, -0.10422562062740326, -0.03271889686584473, 0.02937818318605423, 0.01972823590040207, 0.032997794449329376, 0.15998175740242004, -0.09564714878797531, -0.015537073835730553, -0.08931846916675568, -0.07460515946149826, 0.02576235495507717, -0.06224725767970085, 0.010660579428076744, -0.09724857658147812, -0.1395488679409027, -0.0484878234565258, 0.07202184945344925, -0.04553086310625076, -0.07023102045059204, -0.04832732304930687, -0.10011328011751175, 0.03716972842812538, -0.01864173449575901, 0.13980750739574432, -0.059949956834316254, 0.10081248730421066, 0.03598600998520851, 0.0633733719587326, 0.027829857543110847, 0.037615817040205, -0.05963362008333206, 0.06157919391989708, -0.190811425447464, 0.03714306652545929, -0.09193747490644455, 0.09024970978498459, -0.12014603614807129, -0.10896464437246323, -0.020331010222434998, 0.004345913417637348, 0.07211975753307343, 0.11030501872301102, -0.1502232551574707, -0.09325747936964035, 0.16438670456409454, -0.08687008917331696, -0.14767543971538544, 0.1106550469994545, -0.02123277261853218, 0.0010008119279518723, 0.033872850239276886, 0.11488933861255646, 0.09152575582265854, -0.10264355689287186, -0.04772593453526497, -0.03674699366092682, 0.08832547068595886, -0.015024598687887192, 0.10177920758724213, -0.029400795698165894, 0.034779686480760574, 0.005952373147010803, -0.06585253775119781, 0.04667885601520538, -0.10323964804410934, -0.08667878806591034, -0.016624704003334045, -0.10032611340284348, 0.03230413421988487, 0.06165236979722977, 0.061574406921863556, -0.10271401703357697, -0.13814955949783325, 0.02627234347164631, 0.12000472843647003, -0.07057969272136688, 0.006719027180224657, -0.06637825816869736, 0.08456633239984512, -0.044487640261650085, -0.023158753290772438, -0.13761357963085175, -0.07026344537734985, 0.01505146361887455, -0.04267280548810959, -0.009779096581041813, -0.01740901917219162, 0.07832829654216766, 0.07540401816368103, -0.06716353446245193, -0.07168161869049072, -0.07034364342689514, -0.011222301982343197, -0.08921153843402863, -0.23812749981880188, -0.0849563479423523, -0.02383917197585106, 0.19028867781162262, -0.2610105872154236, 0.03734264522790909, 0.027169113978743553, 0.15025748312473297, 0.05609017238020897, -0.04303678125143051, -0.03512190654873848, 0.04155377671122551, -0.03467153385281563, -0.07914873212575912, 0.0351569727063179, 0.002666529966518283, -0.099342480301857, -0.03101046197116375, -0.0865081176161766, 0.15735162794589996, 0.1088542565703392, -0.010610166005790234, -0.11570903658866882, -0.05330517143011093, -0.0868944302201271, -0.04837388917803764, -0.028230654075741768, -0.00870491936802864, 0.10399755835533142, 0.017782825976610184, 0.12964379787445068, -0.07711655646562576, -0.06397876888513565, 0.036356981843709946, -0.014252174645662308, -0.01892988011240959, 0.12461552768945694, 0.12170862406492233, -0.06888861954212189, 0.14176268875598907, 0.11656434088945389, -0.06464186310768127, 0.145131453871727, -0.04603374004364014, -0.09297507256269455, -0.022987430915236473, 0.040235500782728195, 0.029465101659297943, 0.16274231672286987, -0.09976691007614136, -0.010070621967315674, 0.009479274041950703, 0.01603608950972557, 0.02713066339492798, -0.2032436579465866, -0.026952942833304405, 0.03904035687446594, -0.04578199237585068, 0.018134308978915215, -0.018824273720383644, -0.019724788144230843, 0.09198015928268433, 0.015918724238872528, -0.059610895812511444, 0.010996157303452492, 0.004221736453473568, -0.08033580332994461, 0.21641023457050323, -0.07445638626813889, -0.12977491319179535, -0.14841507375240326, 0.006455874070525169, -0.04577014967799187, -0.005355334375053644, 0.046279724687337875, -0.11122658848762512, -0.03508735075592995, -0.06601351499557495, 0.029610836878418922, -0.008816665969789028, 0.034727636724710464, 0.015995701774954796, 0.03103397972881794, 0.08103145658969879, -0.09706605225801468, 0.01932290568947792, -0.025523673743009567, -0.05312459543347359, 0.03045550361275673, 0.024716133251786232, 0.10062423348426819, 0.14376674592494965, 0.02999313734471798, 0.031583718955516815, -0.03727921470999718, 0.1773747354745865, -0.10494247078895569, -0.017287543043494225, 0.10433722287416458, 0.015377464704215527, 0.049788057804107666, 0.11921702325344086, 0.05334864556789398, -0.09996538609266281, 0.037322431802749634, 0.07932797074317932, -0.02284788154065609, -0.20658574998378754, -0.011310112662613392, -0.031013602390885353, 0.010368888266384602, 0.12333109229803085, 0.049048833549022675, 0.043191343545913696, 0.07890339940786362, -0.01002225186675787, 0.026180600747466087, -0.024421170353889465, 0.07889465242624283, 0.0020639917347580194, 0.05072794482111931, 0.12875185906887054, -0.0366191640496254, -0.03137513995170593, 0.04204273968935013, 0.00022609966981690377, 0.2532447874546051, -0.018506426364183426, 0.10433206707239151, 0.07902152091264725, 0.17432846128940582, -0.017131244763731956, 0.059057824313640594, 0.00787197332829237, -0.05565890297293663, 0.013129713013768196, -0.05366484820842743, 0.005780844017863274, 0.061337459832429886, 0.018580198287963867, 0.06764470785856247, -0.14829768240451813, 0.033747270703315735, 0.05188443884253502, 0.3358277976512909, 0.08545742928981781, -0.3467923402786255, -0.09858343750238419, 0.0032614676747471094, -0.04909732565283775, -0.026246046647429466, 0.01467755064368248, 0.12559212744235992, -0.09858262538909912, 0.07648105174303055, -0.08560258150100708, 0.08394676446914673, -0.035680241882801056, -0.009139426052570343, 0.10652367770671844, 0.07931038737297058, -0.013583851978182793, 0.0626915842294693, -0.21941688656806946, 0.29313135147094727, -0.006350595969706774, 0.07374711334705353, -0.03756453096866608, 0.02848529815673828, 0.050052110105752945, 0.04105297848582268, 0.09605920314788818, -0.018464505672454834, -0.07206827402114868, -0.19502276182174683, -0.08970431983470917, 0.015091936103999615, 0.11744607239961624, -0.11925330013036728, 0.1236865222454071, -0.008389566093683243, -0.026082167401909828, 0.047112397849559784, -0.016000622883439064, -0.10277697443962097, -0.09647173434495926, 0.0012092068791389465, -0.02638937160372734, 0.025191044434905052, -0.11247511953115463, -0.12092281877994537, -0.09758131206035614, 0.1686066836118698, -0.07733484357595444, -0.03012259490787983, -0.13627588748931885, 0.09824279695749283, 0.11856793612241745, -0.07747726887464523, 0.054839033633470535, 0.006592809688299894, 0.11994275450706482, 0.024293802678585052, -0.02390981838107109, 0.10927363485097885, -0.09191296249628067, -0.23372916877269745, -0.06658999621868134, 0.14068712294101715, 0.05088580399751663, 0.03804580122232437, -0.023984376341104507, 0.01394433993846178, 0.000008504018296662252, -0.08751731365919113, 0.06816446036100388, -0.03239540383219719, 0.06341017037630081, 0.03284890949726105, -0.018205218017101288, 0.022448016330599785, -0.05389237403869629, -0.04802407696843147, 0.0954848900437355, 0.3306083679199219, -0.10111403465270996, -0.021485373377799988, 0.031436752527952194, -0.032243434339761734, -0.14507818222045898, 0.06317882984876633, 0.12157764285802841, 0.02046188898384571, 0.023215577006340027, -0.18542051315307617, 0.10393115878105164, 0.12558116018772125, -0.03782039135694504, 0.1451973170042038, -0.27635687589645386, -0.1384211778640747, 0.09336250275373459, 0.12274730205535889, -0.016420627012848854, -0.1749504655599594, -0.06089712679386139, -0.01489789504557848, -0.132594496011734, 0.08827240020036697, -0.06426151096820831, 0.10013389587402344, -0.009336806833744049, 0.012378216721117496, 0.007498616818338633, -0.05558867007493973, 0.15722331404685974, 0.009443231858313084, 0.09734563529491425, -0.020828722044825554, 0.0147068090736866, 0.01992177963256836, -0.07779444009065628, 0.01955379918217659, -0.08411847054958344, 0.02673664130270481, -0.1108335554599762, -0.01939738728106022, -0.09528881311416626, 0.048800986260175705, -0.06025528162717819, -0.04086698964238167, -0.049338288605213165, 0.06334986537694931, 0.0240846686065197, 0.0011991491774097085, 0.15286941826343536, 0.000654265284538269, 0.17269770801067352, 0.09660914540290833, 0.04855332896113396, -0.021826066076755524, -0.09571906179189682, -0.020968221127986908, -0.02073797956109047, 0.06028091534972191, -0.1536274254322052, 0.019825944676995277, 0.13569897413253784, 0.038327015936374664, 0.14864268898963928, 0.06213338300585747, -0.07070884108543396, 0.015999434515833855, 0.10523806512355804, -0.1022769957780838, -0.07052349299192429, -0.018053453415632248, -0.014157532714307308, -0.1368325799703598, 0.07258694618940353, 0.10233228653669357, -0.059072431176900864, -0.0036170165985822678, -0.00230471626855433, 0.016020001843571663, -0.04170209541916847, 0.2088732123374939, 0.07238291949033737, 0.08150479942560196, -0.08072152733802795, 0.09336971491575241, 0.028956083580851555, -0.12081466615200043, 0.0021687252447009087, 0.05774197727441788, -0.05568689852952957, -0.020207148045301437, 0.022212456911802292, 0.11181675642728806, -0.034379687160253525, -0.06181621924042702, -0.1549738347530365, -0.11728965491056442, 0.07072417438030243, 0.121087945997715, 0.07089294493198395, 0.01423381082713604, 0.006276547443121672, 0.05471658706665039, -0.10975854843854904, 0.10246846079826355, 0.0818924680352211, 0.09554587304592133, -0.1833113580942154, 0.14027556777000427, 0.01703752763569355, 0.016100944951176643, 0.0010158459190279245, 0.02820822224020958, -0.12295215576887131, -0.004466618411242962, -0.10489795356988907, -0.044125474989414215, -0.06413208693265915, -0.010812441818416119, 0.015936357900500298, -0.04094294086098671, -0.06812810897827148, 0.01705673709511757, -0.12361684441566467, -0.04495640844106674, 0.027066918089985847, 0.058089978992938995, -0.11918114870786667, -0.018373088911175728, 0.03287157416343689, -0.11251414567232132, 0.08546000719070435, 0.021205242723226547, 0.059597428888082504, 0.031074924394488335, -0.08773139864206314, 0.03962009400129318, 0.051169466227293015, -0.0299720149487257, 0.04696780443191528, -0.12397421151399612, -0.008518058806657791, -0.04646727815270424, 0.04252246022224426, -0.00036254950100556016, 0.026722554117441177, -0.13595308363437653, -0.022871248424053192, -0.028426842764019966, -0.05696716904640198, -0.0525427870452404, 0.05088603496551514, 0.06523570418357849, 0.015954449772834778, 0.18638771772384644, -0.07545147091150284, 0.015597008168697357, -0.23083025217056274, -0.00424729660153389, -0.01190088503062725, -0.06447196006774902, -0.05074751377105713, -0.010527095757424831, 0.07037898153066635, -0.06721911579370499, 0.08476555347442627, -0.04275071620941162, 0.060149576514959335, 0.033449914306402206, -0.08938878774642944, 0.04951835051178932, 0.05136808380484581, 0.14884650707244873, 0.020673399791121483, -0.007674630731344223, 0.03800853341817856, 0.03453822061419487, 0.08451434224843979, 0.030208250507712364, 0.20001555979251862, 0.13126729428768158, -0.045714061707258224, 0.11822052299976349, 0.058910056948661804, -0.11908832937479019, -0.15016676485538483, 0.06866458803415298, -0.05208604037761688, 0.11893685907125473, -0.008238296955823898, 0.15274670720100403, 0.12237591296434402, -0.19729141891002655, 0.02011639066040516, -0.03010782040655613, -0.07495682686567307, -0.0905454009771347, -0.05361982062458992, -0.07029084861278534, -0.1934264451265335, 0.027429139241576195, -0.107737235724926, 0.002777273068204522, 0.08982761949300766, 0.027296975255012512, 0.015129930339753628, 0.16094021499156952, 0.02167937345802784, 0.028819231316447258, 0.08620162308216095, 0.02012837491929531, -0.03316968306899071, -0.056121230125427246, -0.08014509081840515, 0.004991741385310888, -0.03330450877547264, 0.03517116978764534, -0.08727813512086868, -0.09988243132829666, 0.06717764586210251, 0.057918041944503784, -0.09430462121963501, 0.019282344728708267, 0.00004988247019355185, 0.05978013202548027, 0.053451862186193466, 0.0064570303075015545, 0.028874898329377174, -0.02644849196076393, 0.22765788435935974, -0.10185546427965164, -0.0033055413514375687, -0.15646368265151978, 0.21177849173545837, 0.01316590141505003, -0.009852977469563484, 0.027466457337141037, -0.10342884063720703, 0.0032283628825098276, 0.16220450401306152, 0.1472642421722412, -0.03381079435348511, -0.018746456131339073, 0.012778913602232933, -0.018338564783334732, -0.0516064390540123, 0.08156764507293701, 0.10223731398582458, 0.07474492490291595, -0.07415816187858582, -0.05488656088709831, -0.02907702885568142, -0.04439639300107956, -0.003679936286062002, 0.0685470923781395, 0.02816353552043438, 0.010251675732433796, -0.04257691279053688, 0.09656818211078644, -0.02786148153245449, -0.13567057251930237, 0.10412457585334778, -0.1778852790594101, -0.19118356704711914, -0.0315590538084507, 0.05286560207605362, 0.006193306762725115, 0.07641146332025528, -0.005833301227539778, -0.04556804150342941, 0.10056018084287643, -0.004923881962895393, -0.06253764033317566, -0.14727415144443512, 0.07886302471160889, -0.07614948600530624, 0.25582432746887207, -0.05623204633593559, 0.01151987724006176, 0.13310110569000244, 0.03173868730664253, -0.08416424691677094, 0.010742501355707645, 0.06787984073162079, -0.09705853462219238, 0.029270118102431297, 0.1425044685602188, -0.03656257316470146, 0.13253985345363617, 0.04049357399344444, -0.14658208191394806, 0.011779200285673141, -0.06829550117254257, -0.04674890264868736, -0.09059152007102966, 0.012282148003578186, -0.055075060576200485, 0.12641659379005432, 0.22624871134757996, -0.05452080816030502, -0.011568431742489338, -0.05348778888583183, 0.0507209487259388, 0.061590492725372314, 0.084761843085289, -0.025214996188879013, -0.2589021623134613, 0.04814538732171059, 0.007557868957519531, -0.009836063720285892, -0.2633958160877228, -0.09039002656936646, 0.038606688380241394, -0.06866060197353363, -0.056198541074991226, 0.0929943323135376, 0.08406785875558853, 0.06937584280967712, -0.06392839550971985, -0.05396494269371033, -0.0782652348279953, 0.16727033257484436, -0.16707244515419006, -0.08213521540164948 ]
null
null
transformers
# Enlighten-Instruct - Merged model Fine-tune Mistral-7b on the Enlighten codebase <br> # <a href='https://github.com/ali7919/Enlighten-Instruct'>Github Repo</a> # <a href='https://medium.com/@codersama/60e12d437cca'>Full tutorial on Medium</a>
{}
text-generation
codersan/Enlighten_Instruct_merged
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T12:42:40+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Enlighten-Instruct - Merged model Fine-tune Mistral-7b on the Enlighten codebase <br> # <a href='URL Repo</a> # <a href='URL tutorial on Medium</a>
[ "# Enlighten-Instruct - Merged model\nFine-tune Mistral-7b on the Enlighten codebase\n<br>", "# <a href='URL Repo</a>", "# <a href='URL tutorial on Medium</a>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Enlighten-Instruct - Merged model\nFine-tune Mistral-7b on the Enlighten codebase\n<br>", "# <a href='URL Repo</a>", "# <a href='URL tutorial on Medium</a>" ]
[ 51, 28, 13, 14 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Enlighten-Instruct - Merged model\nFine-tune Mistral-7b on the Enlighten codebase\n<br># <a href='URL Repo</a># <a href='URL tutorial on Medium</a>" ]
[ 0.008372473530471325, 0.07501858472824097, -0.006105773616582155, 0.08066798001527786, 0.09356285631656647, 0.0018701708177104592, 0.14276565611362457, 0.01889032870531082, 0.012081488966941833, -0.012445173226296902, 0.10207434743642807, 0.14065879583358765, -0.052631016820669174, 0.006924844346940517, -0.07938701659440994, -0.248762309551239, 0.056839048862457275, -0.013001280836760998, -0.025886736810207367, 0.07238064706325531, 0.14205147325992584, -0.07957398891448975, 0.04758292809128761, -0.048549722880125046, 0.010014190338551998, 0.04338794946670532, -0.02600768394768238, -0.0765959620475769, 0.10484892874956131, 0.07021825760602951, 0.07255903631448746, 0.018858779221773148, -0.0019590866286307573, -0.19045476615428925, 0.04264716058969498, -0.024985188618302345, -0.01763109117746353, 0.03640787675976753, -0.011189090088009834, -0.04127998277544975, -0.010544666089117527, 0.023766839876770973, 0.049673568457365036, 0.03368305414915085, -0.0999952033162117, 0.07794014364480972, -0.023883624002337456, 0.025780638679862022, 0.08219961076974869, 0.10583431273698807, -0.0009087627404369414, 0.06401906162500381, -0.027284540235996246, 0.12306628376245499, 0.07833604514598846, -0.23799818754196167, -0.051015704870224, -0.009900185279548168, 0.02206026390194893, 0.16898395121097565, -0.09305735677480698, 0.06530606001615524, 0.06361140310764313, -0.013131611980497837, -0.014427592977881432, -0.09151152521371841, -0.06195937097072601, -0.004477929789572954, -0.09362559020519257, 0.003977136220782995, 0.2334159016609192, 0.030122460797429085, 0.016554562374949455, 0.01693592593073845, -0.11360493302345276, 0.15253539383411407, -0.02360718697309494, -0.04502624645829201, 0.004280343186110258, 0.06254951655864716, 0.00031840233714319766, -0.1365119069814682, -0.08758808672428131, -0.0013752969680354, -0.11098434776067734, 0.23512187600135803, -0.009077201597392559, 0.014114038087427616, -0.11847224831581116, 0.03416590392589569, 0.058191802352666855, -0.12972736358642578, -0.028151724487543106, -0.06099038943648338, 0.07515068352222443, -0.011584456078708172, -0.04520447924733162, -0.058545757085084915, 0.13466298580169678, 0.23931725323200226, -0.052891865372657776, 0.05154088884592056, -0.0373765304684639, 0.04361911863088608, 0.01332594733685255, 0.0483553372323513, -0.011580100283026695, -0.12420608103275299, 0.11356306821107864, 0.004319730214774609, 0.11942882835865021, -0.02078297734260559, -0.15512244403362274, -0.020548062399029732, -0.03351910412311554, 0.04628719389438629, 0.000285015586996451, 0.07408805191516876, -0.050923340022563934, 0.034071262925863266, 0.06600742042064667, -0.07875636965036392, 0.016101764515042305, 0.013326067477464676, 0.01634194888174534, 0.022987762466073036, 0.021729933097958565, 0.04466572403907776, -0.05326360464096069, 0.005209959577769041, -0.06287458539009094, -0.02725265547633171, -0.020184461027383804, -0.0713125690817833, 0.003212054492905736, 0.032406557351350784, 0.0473887175321579, -0.11202938854694366, -0.17597386240959167, -0.012927161529660225, 0.053099874407052994, -0.005111181642860174, -0.034308988600969315, -0.12305546551942825, 0.008958590216934681, 0.03612621873617172, -0.01686740666627884, -0.10314464569091797, -0.04392148181796074, 0.0512826181948185, -0.03681021183729172, 0.04352832958102226, -0.252980500459671, 0.02712039276957512, -0.10332146286964417, -0.025228820741176605, -0.143983855843544, 0.10769488662481308, -0.016509216278791428, 0.12981317937374115, -0.021046586334705353, 0.006964291911572218, -0.017469720914959908, 0.044621117413043976, 0.06435629725456238, 0.16894963383674622, -0.07363004982471466, -0.05322957783937454, 0.06925875693559647, -0.07555485516786575, -0.17009562253952026, 0.19462858140468597, -0.03237573429942131, 0.05031367391347885, 0.126149982213974, 0.1760641634464264, 0.019908392801880836, 0.013182641938328743, 0.06068084016442299, 0.09016460925340652, -0.049792058765888214, 0.06960469484329224, 0.008102872408926487, -0.0014246613718569279, -0.12799280881881714, 0.036291226744651794, 0.05922551453113556, -0.004033288918435574, -0.009418745525181293, -0.05324416235089302, -0.0008828098070807755, -0.0050689904019236565, 0.05636214464902878, -0.06447605043649673, 0.011341193690896034, -0.10062762349843979, -0.012473488226532936, 0.06356965750455856, 0.043389398604631424, -0.07440459728240967, 0.05139292776584625, -0.034567106515169144, 0.05465240776538849, -0.005276435986161232, 0.04369319602847099, -0.11096605658531189, 0.001716396538540721, -0.052468832582235336, 0.21791048347949982, 0.06260178983211517, 0.04356000944972038, 0.03954529017210007, 0.006813648622483015, -0.05350799486041069, -0.04371372610330582, 0.06769472360610962, 0.0012370672775432467, -0.07100514322519302, -0.13698185980319977, 0.12097351998090744, -0.07459699362516403, 0.04638870060443878, -0.11164478212594986, 0.02844300866127014, 0.05440811067819595, 0.11081244051456451, -0.012408798560500145, 0.09482356160879135, 0.006741348188370466, -0.023161685094237328, -0.06750548630952835, 0.013562818057835102, 0.07840999960899353, 0.012987392954528332, -0.16921605169773102, 0.06462297588586807, -0.11573760211467743, 0.15559589862823486, 0.14104050397872925, -0.21369847655296326, 0.03767029568552971, -0.1024811640381813, -0.010497677139937878, 0.02255708910524845, 0.03633730486035347, -0.024212654680013657, 0.15934205055236816, -0.010952483862638474, 0.12874889373779297, -0.07692687958478928, -0.023059839382767677, -0.035030558705329895, -0.06801381707191467, -0.05981889367103577, 0.11082049459218979, -0.07996947318315506, -0.2659645974636078, 0.1000218316912651, 0.2631298005580902, -0.07078389823436737, 0.14765579998493195, 0.03822917118668556, 0.026155302301049232, 0.05009549483656883, -0.012131460942327976, -0.06837871670722961, -0.019900668412446976, -0.13828285038471222, 0.011747745797038078, 0.02190474607050419, 0.012193689122796059, 0.04028461501002312, -0.09776313602924347, 0.007841485552489758, -0.010370013304054737, -0.0060694171115756035, 0.04507126286625862, 0.012600794434547424, -0.02088414691388607, 0.08691045641899109, -0.00591248506680131, -0.09177801012992859, 0.08613968640565872, -0.0028257251251488924, -0.07731062918901443, 0.16163595020771027, -0.1877906620502472, -0.23530326783657074, -0.15208987891674042, -0.08577375113964081, -0.08154073357582092, 0.039705704897642136, 0.11303116381168365, -0.11779272556304932, -0.05814902484416962, -0.08195038884878159, -0.02838614210486412, -0.0012691030278801918, -0.011244055815041065, 0.06225225329399109, 0.03099963068962097, -0.04240672290325165, -0.14088571071624756, -0.016660207882523537, -0.000974061549641192, -0.10359187424182892, 0.040880411863327026, -0.09642850607633591, 0.08024706691503525, 0.08814095705747604, 0.004956390708684921, 0.013774936087429523, -0.0188478771597147, 0.21380102634429932, -0.0696360245347023, 0.03991089388728142, 0.07362128794193268, -0.09608617424964905, 0.10114244371652603, 0.24425262212753296, 0.0063117980025708675, -0.0841171145439148, 0.09474898874759674, -0.017915673553943634, -0.009744876064360142, -0.1867145150899887, -0.09123331308364868, -0.0702289566397667, 0.015130195766687393, 0.005749077536165714, 0.0543910413980484, 0.006642149295657873, 0.04376668855547905, -0.06663458049297333, -0.006632160395383835, 0.13082517683506012, 0.10615532845258713, 0.2536311447620392, -0.03844201937317848, 0.07818397879600525, -0.0570797473192215, -0.10173188894987106, 0.08384180068969727, 0.08974604308605194, 0.017785508185625076, 0.036530036479234695, 0.14105373620986938, 0.03019765578210354, -0.04589769244194031, 0.055956851691007614, 0.0773637592792511, -0.034768424928188324, 0.00015651855210307986, -0.06902746111154556, -0.07194303721189499, -0.028674457222223282, 0.04806721583008766, -0.06327265501022339, 0.039990510791540146, -0.0490509495139122, 0.05423356965184212, 0.1463737189769745, 0.09299576282501221, 0.05559397116303444, -0.173043891787529, -0.08611781150102615, 0.12256268411874771, -0.012126446701586246, -0.06465499103069305, 0.10493313521146774, 0.11306019127368927, -0.010769247077405453, 0.10586889088153839, 0.04125775396823883, 0.13542670011520386, -0.02744346484541893, 0.062332846224308014, -0.131241574883461, 0.006717167794704437, -0.04231608659029007, 0.045948583632707596, -0.2972514033317566, 0.20718243718147278, 0.046612031757831573, 0.05942373722791672, 0.028593027964234352, -0.013636967167258263, 0.0838962197303772, 0.24185407161712646, 0.056596364825963974, -0.03505523502826691, 0.036818038672208786, -0.01562112383544445, -0.0013627366861328483, 0.06240250542759895, 0.07090826332569122, 0.03090130165219307, 0.01713119074702263, -0.05055653676390648, -0.029831208288669586, 0.0003727920993696898, -0.036040909588336945, -0.18605056405067444, -0.20779676735401154, -0.03072822280228138, 0.12822146713733673, 0.08888749033212662, -0.0041246572509408, -0.017783626914024353, -0.032973356544971466, 0.12249039858579636, -0.052990786731243134, -0.021473191678524017, -0.06979786604642868, -0.01867714151740074, 0.04633089154958725, -0.06815452873706818, 0.03979137912392616, -0.05357886478304863, 0.055951301008462906, -0.06707624346017838, -0.06631561368703842, 0.059846922755241394, -0.0858863890171051, -0.029856747016310692, -0.04436556249856949, 0.09618662297725677, -0.003300853306427598, -0.007186154834926128, 0.04217090457677841, 0.012134294025599957, -0.08041062951087952, -0.09710919111967087, -0.01372504886239767, 0.05967921018600464, 0.02517743781208992, 0.045788317918777466, -0.09592942148447037, -0.15716655552387238, -0.03319825977087021, -0.012928472831845284, 0.1838865578174591, 0.14008867740631104, 0.018918419256806374, 0.05734165757894516, 0.382225900888443, -0.08192402124404907, -0.2486030012369156, -0.05581861734390259, -0.12399186939001083, -0.03178287297487259, -0.0576542392373085, -0.12124775350093842, 0.09306858479976654, 0.0002679868193808943, 0.01721983030438423, -0.011908718384802341, -0.1372506022453308, -0.10574927181005478, 0.11804991960525513, 0.06510823965072632, 0.28237810730934143, -0.06495516002178192, -0.05851292982697487, -0.12578639388084412, -0.1991470754146576, 0.08005806058645248, -0.13421505689620972, 0.0848608911037445, 0.014641222544014454, 0.06244860962033272, 0.014804497361183167, 0.02628212422132492, 0.06447016447782516, -0.07091106474399567, 0.02257281169295311, -0.09640862047672272, -0.06798702478408813, 0.05476837232708931, -0.011710353195667267, 0.021076232194900513, -0.1077975183725357, 0.04656602814793587, 0.04617850482463837, -0.0258285254240036, 0.01650044322013855, 0.02965432219207287, -0.011653554625809193, -0.08528424054384232, -0.021478639915585518, -0.048559851944446564, 0.0031257690861821175, 0.0443100668489933, 0.22056671977043152, -0.034690968692302704, 0.05605991929769516, -0.03190164268016815, 0.1916022151708603, -0.24266260862350464, 0.08478344976902008, -0.004050547257065773, -0.05848013237118721, 0.08596404641866684, -0.08747520297765732, 0.060404203832149506, 0.09014149010181427, -0.038930781185626984, 0.08767542243003845, 0.10038410872220993, 0.05664927884936333, 0.03123677708208561, 0.059620510786771774, -0.1696920543909073, -0.14871588349342346, -0.025138551369309425, 0.04008690267801285, 0.005418962333351374, 0.1218423843383789, 0.2227822095155716, -0.0051262895576655865, -0.028378961607813835, 0.006036102306097746, 0.035660114139318466, -0.04894650727510452, 0.020139150321483612, 0.041022952646017075, -0.0015113182598724961, -0.07516373693943024, 0.08664145320653915, 0.030156759545207024, -0.20775099098682404, 0.019916804507374763, 0.17861907184123993, -0.10831301659345627, -0.11162488162517548, -0.021433943882584572, 0.13374750316143036, -0.06877551972866058, -0.037948884069919586, -0.09787499904632568, -0.09159531444311142, 0.035300273448228836, 0.17032451927661896, 0.06553535908460617, 0.019750330597162247, -0.05082469433546066, -0.00843479298055172, 0.010280451737344265, 0.07317911833524704, -0.04448259621858597, -0.009529873728752136, -0.0768723338842392, -0.06928079575300217, -0.0695238783955574, 0.019362805411219597, -0.05453213304281235, -0.08566603064537048, -0.14750953018665314, 0.022836491465568542, -0.17458225786685944, 0.04748314991593361, -0.09268258512020111, 0.021318748593330383, -0.02455955371260643, -0.057535044848918915, -0.026750454679131508, 0.005573972128331661, -0.0575188510119915, 0.0025796841364353895, 0.03666093200445175, 0.07788954675197601, -0.10146189481019974, -0.0012339588720351458, 0.04487055540084839, -0.01697234995663166, 0.1412670761346817, 0.02979603037238121, -0.14021709561347961, 0.008921594358980656, -0.3511132299900055, -0.08361350744962692, 0.08376043289899826, 0.013197741471230984, 0.03541896864771843, 0.07744159549474716, -0.028139716014266014, 0.06892891228199005, 0.08725181221961975, -0.004833635874092579, 0.15282590687274933, -0.04061711207032204, 0.03811558708548546, -0.05069289728999138, -0.16743247210979462, -0.057830773293972015, -0.03806000202894211, 0.06678909063339233, 0.008601613342761993, 0.1813070923089981, -0.09453935921192169, 0.005568797700107098, -0.04540075361728668, 0.05322752520442009, 0.06302341818809509, -0.15576910972595215, -0.23675446212291718, -0.07126933336257935, 0.007527932059019804, -0.022876890376210213, 0.09084321558475494, -0.08633334934711456, -0.0638524740934372, 0.0761944130063057, 0.015226109884679317, -0.030882254242897034, 0.03908639773726463, 0.19612044095993042, 0.05376717820763588, -0.04858303442597389, -0.12461457401514053, 0.008867542259395123, 0.07985936105251312, 0.06752307713031769, 0.03167932853102684, 0.051043786108493805, 0.12964676320552826, 0.1292683184146881, -0.0341900996863842, 0.12026356905698776, -0.06164857745170593, -0.1096029058098793, 0.08767728507518768, 0.024028660729527473, -0.038391269743442535, 0.06901178508996964, 0.2323026955127716, -0.0015372185735031962, 0.0008030696189962327, -0.026988593861460686, -0.043449774384498596, -0.14175759255886078, -0.07723379135131836, -0.12544524669647217, -0.08446885645389557, -0.018833043053746223, -0.12787216901779175, 0.025907287374138832, -0.07961027324199677, 0.04957516863942146, -0.03806513920426369, 0.033590078353881836, 0.0791885182261467, -0.023217426612973213, 0.04290272668004036, -0.02483299933373928, 0.06584315001964569, 0.036285899579524994, -0.030752647668123245, -0.01830744557082653, -0.03231292963027954, -0.04646947607398033, 0.06094352528452873, 0.00581593019887805, -0.0008941300911828876, -0.08336406201124191, -0.05506560578942299, -0.018927203491330147, 0.0956091359257698, 0.005043431650847197, 0.10370944440364838, 0.04601006582379341, -0.09060249477624893, 0.06973588466644287, 0.23792915046215057, -0.04598286375403404, -0.15871359407901764, -0.07630457729101181, 0.1534314602613449, 0.0043213991448283195, 0.12082552164793015, -0.010305950418114662, -0.06180691346526146, -0.01888338476419449, 0.16643951833248138, 0.25269532203674316, -0.10215424746274948, 0.020993484184145927, -0.03635987266898155, 0.04439059644937515, 0.0423673540353775, 0.029485182836651802, 0.074536994099617, 0.19605477154254913, -0.020553067326545715, -0.05815548449754715, -0.027386952191591263, -0.024860987439751625, -0.09897613525390625, -0.02152969315648079, -0.015338166616857052, -0.03516754135489464, -0.0337459035217762, 0.09327626973390579, -0.10713452100753784, -0.009492381475865841, -0.10342830419540405, -0.10399626195430756, -0.03475357964634895, -0.015474370680749416, 0.13766036927700043, 0.02130567468702793, 0.0563373826444149, 0.021666843444108963, -0.07553563266992569, 0.05994981899857521, -0.014637441374361515, -0.10091816633939743, -0.0207876805216074, 0.061247292906045914, -0.06470997631549835, 0.11769922077655792, -0.0012720618396997452, 0.0574822761118412, 0.10567089170217514, 0.04033724218606949, -0.050631824880838394, 0.06554711610078812, 0.029126960784196854, 0.003050623694434762, 0.05824631080031395, -0.016896164044737816, -0.005254391115158796, 0.04954211786389351, 0.0795367881655693, -0.11012648791074753, 0.07578324526548386, 0.07417386025190353, -0.11906005442142487, -0.03951313719153404, 0.0747755765914917, -0.09462469071149826, 0.07024228572845459, 0.051157981157302856, -0.022210251539945602, -0.006660228595137596, 0.005962291266769171, -0.014522067271173, 0.008163975551724434, -0.018804069608449936, -0.021000264212489128, -0.15325632691383362, -0.03807612508535385, 0.0707930400967598, -0.032598789781332016, -0.21682478487491608, -0.05312429368495941, -0.11701591312885284, 0.05815757066011429, -0.12418422102928162, 0.05745645985007286, 0.15972116589546204, 0.018248731270432472, 0.022052275016903877, -0.13203682005405426, 0.006301865912973881, 0.056624799966812134, -0.05117335915565491, -0.07668573409318924 ]
null
null
null
# **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python model = load_from_hub(repo_id="tatlook/q-Taxi-v3", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.36 +/- 2.85", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
tatlook/q-Taxi-v3
[ "Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
2024-02-06T12:43:27+00:00
[]
[]
TAGS #Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 Taxi-v3 This is a trained model of a Q-Learning agent playing Taxi-v3 . ## Usage
[ "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ "TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 32, 33 ]
[ "passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage" ]
[ 0.048862796276807785, -0.16549694538116455, -0.005485367961227894, 0.02960980497300625, 0.1345081776380539, -0.01784728653728962, 0.11895976960659027, 0.07759871333837509, -0.07461097836494446, -0.055395450443029404, 0.1418241262435913, 0.09088201075792313, 0.055222880095243454, 0.05699880048632622, 0.09511256217956543, -0.27440664172172546, 0.048217080533504486, -0.02918700873851776, 0.05621987581253052, 0.11878681182861328, 0.0670095682144165, -0.040441032499074936, 0.061956584453582764, 0.11818158626556396, -0.1018151044845581, -0.007344264071434736, 0.035402704030275345, -0.09440053254365921, 0.17413531243801117, 0.07204403728246689, 0.12337774783372879, 0.05132639780640602, 0.179361954331398, -0.12762396037578583, 0.024310702458024025, -0.0010275895474478602, -0.10138072073459625, -0.03909514099359512, -0.012415820732712746, -0.08349097520112991, 0.03230205550789833, 0.23522862792015076, 0.07199250161647797, 0.06632792949676514, -0.17707863450050354, -0.06584878265857697, -0.04375573247671127, 0.069611094892025, 0.14951466023921967, 0.03758616745471954, -0.033800311386585236, 0.1684885323047638, -0.2564343810081482, 0.05066783353686333, 0.037275806069374084, -0.42313119769096375, 0.017119819298386574, 0.1507398933172226, 0.15090937912464142, 0.06909667700529099, -0.10573802888393402, 0.013512322679162025, 0.051325585693120956, -0.0005318621988408267, 0.024325110018253326, 0.006554204970598221, 0.15601307153701782, 0.08537693321704865, -0.1487821787595749, -0.058576688170433044, 0.17441977560520172, -0.03788546845316887, -0.02613203600049019, -0.039745692163705826, 0.0067160045728087425, -0.06427708268165588, -0.004067842848598957, -0.1777995079755783, 0.00734262028709054, 0.06666424125432968, -0.014348524622619152, 0.014901017770171165, -0.035522811114788055, -0.0966939702630043, -0.023098144680261612, -0.08592145889997482, 0.01677769608795643, -0.006319406442344189, -0.10187895596027374, 0.05002119392156601, -0.061138734221458435, 0.0014382408699020743, -0.05123179033398628, -0.15047866106033325, -0.049055423587560654, -0.03481535613536835, 0.1474713832139969, -0.0044205985032022, -0.01873963139951229, -0.03164304047822952, 0.15474793314933777, 0.049551334232091904, -0.05370146036148071, 0.05625450983643532, 0.07605006545782089, 0.23867930471897125, 0.10401605814695358, 0.10196955502033234, -0.06798075139522552, 0.10180158913135529, -0.12330973148345947, -0.08915644884109497, -0.17508824169635773, 0.11820860952138901, 0.00015364694991149008, 0.1317785084247589, -0.12023144960403442, 0.07898581773042679, -0.067511186003685, 0.013453764840960503, 0.01636839471757412, 0.0820009782910347, -0.012399360537528992, 0.10676060616970062, -0.005061192903667688, -0.06941985338926315, 0.014177112840116024, 0.05935845896601677, 0.03754841163754463, -0.038601722568273544, -0.03192409873008728, -0.05762290954589844, -0.05065649375319481, -0.10128600150346756, -0.06447898596525192, 0.018573462963104248, -0.007677143905311823, -0.1833900660276413, -0.06407523155212402, 0.00897200871258974, 0.015712225809693336, -0.03988850116729736, -0.05148044601082802, -0.15265507996082306, -0.042461175471544266, -0.015450406819581985, -0.03500641882419586, -0.06214277446269989, -0.0383245050907135, 0.046435944736003876, -0.07560601085424423, 0.013364278711378574, 0.023342855274677277, 0.05405820533633232, -0.025881100445985794, 0.06068144738674164, -0.08357544988393784, 0.09493788331747055, -0.1540430635213852, -0.03271956741809845, -0.025445878505706787, -0.041183918714523315, 0.1752462536096573, 0.06099751964211464, -0.015994304791092873, 0.15260063111782074, -0.17141541838645935, -0.058121129870414734, 0.15596486628055573, 0.008629098534584045, -0.09967197477817535, -0.003560945624485612, -0.09397093951702118, 0.1428760588169098, 0.08571921288967133, 0.2478504776954651, 0.12005335837602615, -0.22748184204101562, 0.055358242243528366, 0.12515293061733246, -0.14365963637828827, 0.10365243256092072, 0.07344598323106766, 0.005470725707709789, -0.18886831402778625, -0.06843198090791702, -0.06121627986431122, 0.1053021252155304, -0.08522345870733261, -0.0776243582367897, 0.09323626756668091, -0.05086790770292282, 0.24641476571559906, -0.028281206265091896, 0.06174173951148987, -0.026681531220674515, -0.1389324963092804, -0.01723906397819519, 0.060955192893743515, 0.05258452147245407, -0.024835573509335518, -0.25895482301712036, 0.13646544516086578, 0.048650871962308884, 0.025074828416109085, 0.004106190986931324, -0.05691491439938545, 0.016934165731072426, 0.1511998474597931, 0.020012924447655678, 0.13717477023601532, 0.027723990380764008, 0.0706823319196701, -0.006239562761038542, -0.10560829937458038, -0.04169593006372452, 0.061916545033454895, -0.08518962562084198, -0.06641357392072678, 0.011197872459888458, -0.06935211271047592, -0.11783787608146667, -0.12166737765073776, -0.026334572583436966, -0.02980303019285202, -0.07444227486848831, 0.02368103712797165, 0.06536602973937988, -0.06702698022127151, -0.0023908785078674555, 0.007125476840883493, -0.011537045240402222, 0.16434046626091003, 0.011393417604267597, -0.007796820718795061, 0.1328643560409546, -0.11533161997795105, 0.12461213022470474, 0.049438029527664185, -0.024806302040815353, -0.04662557691335678, 0.0014137453399598598, -0.057529181241989136, 0.029044216498732567, -0.04390640929341316, 0.02774495631456375, 0.20111067593097687, 0.02772962674498558, 0.11389166116714478, -0.0656520202755928, 0.04385066404938698, -0.007961965166032314, -0.009693224914371967, 0.018563594669103622, 0.07608018070459366, 0.07813210040330887, -0.1324140727519989, 0.02262016013264656, 0.22455167770385742, 0.1385764330625534, 0.18313980102539062, -0.010877152904868126, 0.06325667351484299, -0.04875868931412697, 0.027505528181791306, 0.024100203067064285, 0.10314226150512695, -0.10732068121433258, -0.0322517491877079, -0.025407759472727776, 0.023599207401275635, -0.08197105675935745, -0.1055799350142479, -0.090115025639534, 0.01222382951527834, -0.03125503659248352, -0.15570329129695892, 0.13300658762454987, -0.10451057553291321, 0.01802753657102585, 0.04692702740430832, -0.22163605690002441, 0.11530312895774841, 0.014291439205408096, -0.10303618758916855, 0.11281087249517441, -0.12051989883184433, -0.08699832111597061, -0.05777236074209213, -0.18658851087093353, 0.05280197039246559, 0.04673841595649719, 0.05166793242096901, -0.18521739542484283, 0.024835903197526932, 0.05545609071850777, 0.13426995277404785, -0.09743253141641617, -0.07142634689807892, -0.15038461983203888, 0.016068490222096443, -0.033661190420389175, -0.16029728949069977, -0.005609163548797369, -0.032781440764665604, -0.18849676847457886, -0.04539939761161804, -0.15086813271045685, -0.034627582877874374, 0.20464378595352173, 0.026907702907919884, 0.09480511397123337, -0.07926445454359055, 0.3802889585494995, -0.042039383202791214, -0.06146497279405594, -0.01321389526128769, -0.07072482258081436, 0.02512686513364315, 0.13271741569042206, 0.0036099457647651434, -0.017886579036712646, -0.0037857077550143003, 0.0024592927657067776, -0.06234965845942497, -0.13400450348854065, 0.0028710351325571537, 0.03905198723077774, 0.1874423623085022, 0.004639793653041124, 0.06659388542175293, 0.03133883699774742, 0.057546284049749374, 0.07748064398765564, 0.030926106497645378, 0.0011591583024710417, -0.01591806672513485, 0.06604493409395218, -0.11684755235910416, 0.042466625571250916, -0.030429253354668617, -0.10143838077783585, -0.013183288276195526, 0.07950251549482346, 0.12755028903484344, 0.17849206924438477, -0.04790908098220825, 0.17489230632781982, 0.13580141961574554, 0.16576050221920013, 0.049315933138132095, -0.020801831036806107, -0.08773037046194077, -0.06118565797805786, 0.004774159751832485, -0.031952597200870514, 0.04869702458381653, 0.3231290578842163, 0.037619613111019135, -0.09036035090684891, 0.11149907857179642, 0.009480619803071022, 0.05359881371259689, 0.022797370329499245, -0.11162138730287552, 0.11170321702957153, 0.07968773692846298, -0.06341761350631714, -0.07602835446596146, 0.16758501529693604, -0.1109386757016182, -0.26646625995635986, -0.11410990357398987, -0.012305386364459991, 0.07903840392827988, 0.005651174578815699, 0.05498376116156578, -0.11829282343387604, -0.16034497320652008, -0.034191906452178955, 0.1335442066192627, -0.3077351450920105, 0.2065143585205078, -0.0198091771453619, 0.06707923114299774, -0.039657969027757645, -0.07026876509189606, 0.09694647043943405, 0.13174086809158325, 0.29124146699905396, 0.01396956667304039, 0.04841272905468941, -0.15176129341125488, -0.0976925864815712, 0.0018439020495861769, 0.015482662245631218, -0.02563396655023098, 0.028520405292510986, -0.0540912002325058, 0.008404579944908619, -0.018086453899741173, 0.2102297693490982, -0.11316607892513275, 0.004344627261161804, -0.06968966871500015, -0.11707738786935806, 0.19409789144992828, -0.07178345322608948, -0.04543264955282211, -0.14959357678890228, -0.15512511134147644, -0.004174166824668646, -0.02413962036371231, -0.019664527848362923, -0.17603960633277893, -0.18804074823856354, -0.05204557999968529, -0.005645004566758871, -0.003464865731075406, 0.05867868289351463, -0.07517234236001968, -0.04805335775017738, 0.1009904220700264, -0.07743175327777863, -0.056063808500766754, -0.1103200614452362, 0.1391381323337555, 0.06248528137803078, 0.16743235290050507, 0.05907081440091133, 0.0006117874872870743, 0.11471151560544968, -0.02913086675107479, 0.11103474348783493, -0.11291708797216415, -0.17145049571990967, -0.08334989100694656, -0.018775060772895813, 0.09519003331661224, -0.04789286106824875, 0.0028788831550627947, 0.2550160884857178, 0.14880181849002838, -0.0897710770368576, 0.27680760622024536, 0.04414956644177437, -0.09375058114528656, -0.18432219326496124, -0.15961645543575287, 0.03759992495179176, 0.060025621205568314, 0.13095876574516296, -0.057205069810152054, -0.08483537286520004, -0.08492398262023926, -0.07478608191013336, -0.13140805065631866, -0.24232175946235657, -0.030598774552345276, 0.22874866425991058, 0.08656918257474899, 0.08219650387763977, -0.012482990510761738, -0.01186054851859808, 0.00526038184762001, 0.02680150233209133, 0.12018456310033798, -0.13341329991817474, 0.11107480525970459, 0.022198403254151344, 0.044267985969781876, 0.009712530300021172, 0.07929777354001999, 0.03375575691461563, -0.003218587953597307, -0.0006439819699153304, -0.0988350659608841, -0.2596651017665863, 0.0816885456442833, -0.01623627357184887, -0.09960969537496567, 0.014988959766924381, 0.02061903104186058, -0.2089255303144455, 0.011128270998597145, -0.019883770495653152, -0.03150356933474541, -0.06483490765094757, -0.10664787143468857, -0.056551624089479446, 0.04928823933005333, 0.10853826254606247, 0.011660109274089336, 0.05354316532611847, -0.0404130220413208, 0.07917837053537369, 0.0826287642121315, 0.15132710337638855, 0.06795957684516907, -0.190711110830307, -0.10953907668590546, -0.0414445661008358, 0.12121522426605225, -0.12505418062210083, 0.036917757242918015, 0.053161121904850006, -0.016534561291337013, 0.14621229469776154, 0.1070784479379654, -0.07452095299959183, 0.11915595084428787, 0.08904775977134705, -0.04094788804650307, -0.23367151618003845, -0.07120766490697861, 0.11133213341236115, 0.07195597887039185, -0.03961895406246185, 0.018120890483260155, -0.04960581287741661, -0.013980977237224579, 0.048759616911411285, -0.0538676381111145, -0.07230538129806519, 0.004421027842909098, 0.1247575581073761, 0.1029362753033638, -0.04655474051833153, 0.01296416949480772, 0.037371400743722916, 0.003788623260334134, 0.04730486497282982, 0.0407949760556221, -0.08269952982664108, -0.04124005511403084, 0.02782733179628849, 0.37552911043167114, -0.010165480896830559, -0.020456433296203613, 0.018555615097284317, -0.19949445128440857, 0.09135842323303223, 0.13205479085445404, 0.04697350412607193, 0.004247748292982578, -0.08139242231845856, 0.026877427473664284, -0.010625290684401989, 0.09936143457889557, -0.07806670665740967, -0.05493134260177612, -0.21631066501140594, -0.025010565295815468, 0.017490221187472343, 0.24077683687210083, -0.08458559215068817, -0.12801732122898102, -0.20628872513771057, 0.13128381967544556, -0.11333390325307846, -0.03695881739258766, -0.024473199620842934, 0.03926658630371094, -0.01989821158349514, 0.06291737407445908, -0.0710630789399147, 0.006373001262545586, -0.11024709790945053, 0.055267609655857086, 0.04204455390572548, 0.1229788213968277, 0.014207782223820686, 0.02016810141503811, 0.05822525918483734, -0.01837925612926483, 0.07173580676317215, -0.06203491613268852, -0.04550490900874138, 0.14224006235599518, -0.020255116745829582, -0.04152837023139, -0.0483345128595829, -0.036874305456876755, 0.11981741338968277, -0.05059147998690605, -0.007141099311411381, -0.054929375648498535, -0.06906463205814362, 0.03462086617946625, -0.009175732731819153, -0.008798843249678612, 0.06801853328943253, 0.04024988040328026, -0.026994358748197556, 0.005263668950647116, 0.03447828069329262, -0.10330043733119965, -0.04955084249377251, 0.16955432295799255, -0.0749620869755745, 0.10274054110050201, -0.031069839373230934, 0.018015999346971512, 0.005847334861755371, -0.022399673238396645, -0.015360680408775806, -0.1457086056470871, -0.06137600541114807, -0.09489979594945908, 0.11565322428941727, 0.08146517723798752, 0.03358805552124977, 0.04274565726518631, 0.019532648846507072, -0.04414922371506691, -0.038583990186452866, 0.12961317598819733, 0.08133101463317871, 0.012996876612305641, 0.01137041300535202, 0.01941833831369877, -0.020302120596170425, 0.0028480992186814547, -0.01250747125595808, -0.07239153981208801, -0.05874783173203468, 0.09400010108947754, 0.1600283533334732, -0.06127211079001427, -0.13325586915016174, -0.020593497902154922, 0.04988488554954529, 0.0014717020094394684, -0.08777432143688202, 0.04833676666021347, 0.15805292129516602, -0.05623878911137581, 0.03216489031910896, -0.09984751045703888, -0.07263360917568207, -0.16060975193977356, -0.10029061883687973, -0.06092562898993492, -0.28350353240966797, 0.09752398729324341, 0.006392303854227066, -0.014731393195688725, 0.059529416263103485, 0.051305368542671204, -0.052508849650621414, 0.07068239152431488, -0.18146829307079315, -0.007054794579744339, 0.03497592359781265, -0.13212306797504425, 0.02475893869996071, -0.2378365397453308, 0.10198072344064713, -0.04623803123831749, -0.1519704908132553, -0.04004510119557381, 0.0641569048166275, -0.09540136158466339, -0.01822364516556263, -0.0475153923034668, -0.01922670193016529, 0.01624443754553795, -0.009348669089376926, -0.031147832050919533, 0.13716529309749603, 0.02827494591474533, -0.03268734738230705, 0.005254602525383234, 0.0223685409873724, 0.03955082967877388, -0.0969657450914383, -0.05986930429935455, 0.08311155438423157, -0.031056145206093788, 0.14728976786136627, 0.000341245875461027, 0.04181376099586487, -0.06758682429790497, 0.2593761384487152, 0.2023983597755432, -0.12479214370250702, 0.008118697442114353, -0.021801479160785675, 0.012670028023421764, -0.041751839220523834, 0.13110700249671936, 0.013386172242462635, 0.12186761200428009, -0.17513342201709747, -0.01036517322063446, -0.0818324014544487, -0.04501292482018471, 0.06702108681201935, 0.14714950323104858, 0.15742522478103638, 0.03436789661645889, -0.07328428328037262, 0.06722653657197952, -0.30119743943214417, 0.20540550351142883, -0.1346001923084259, -0.01498429011553526, -0.040251150727272034, -0.058389630168676376, 0.061147745698690414, 0.11309876292943954, 0.10832664370536804, -0.021150551736354828, -0.0905047357082367, -0.04486766457557678, -0.039378076791763306, -0.13019338250160217, -0.02718670479953289, 0.1654091775417328, 0.06799814850091934, 0.31520840525627136, -0.017577875405550003, 0.07702425122261047, 0.034410297870635986, 0.06451138854026794, 0.004519328009337187, 0.09537279605865479, 0.07960964739322662, -0.06345855444669724, -0.07373003661632538, -0.001637450186535716, 0.05033271387219429, 0.14567798376083374, -0.03826142102479935, -0.18691548705101013, 0.15858715772628784, 0.07192251086235046, -0.13762691617012024, -0.05777517706155777, 0.08409425616264343, -0.0739973932504654, 0.0550808347761631, 0.08115427941083908, 0.015876613557338715, -0.017793258652091026, -0.004664506763219833, 0.06074233725667, 0.024694660678505898, -0.02343848906457424, 0.003570882137864828, -0.08337053656578064, -0.04151543974876404, 0.07267895340919495, -0.0844460055232048, -0.20546193420886993, -0.0957019031047821, -0.07551700621843338, 0.030557552352547646, -0.0649830624461174, 0.12575586140155792, 0.1717868149280548, 0.0593598335981369, -0.03307248651981354, -0.10721943527460098, -0.035562749952077866, 0.07602505385875702, -0.044773899018764496, -0.09409699589014053 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-lora-2.63M-snli-model3 This model is a fine-tuned version of [roberta-large](https://huggingface.co/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6340 - Accuracy: 0.789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 94 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3517 | 1.0 | 2146 | 0.2626 | 0.9043 | | 0.3266 | 2.0 | 4292 | 0.2489 | 0.9096 | | 0.3199 | 3.0 | 6438 | 0.2441 | 0.9117 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "roberta-large", "model-index": [{"name": "roberta-large-lora-2.63M-snli-model3", "results": []}]}
text-classification
varun-v-rao/roberta-large-lora-2.63M-snli-model3
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T12:44:28+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
roberta-large-lora-2.63M-snli-model3 ==================================== This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6340 * Accuracy: 0.789 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 256 * eval\_batch\_size: 256 * seed: 94 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 94\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 94\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 64, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 256\n* eval\\_batch\\_size: 256\n* seed: 94\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.08927876502275467, 0.0740436539053917, -0.0018733100732788444, 0.10394014418125153, 0.16699805855751038, 0.02379602938890457, 0.1556134819984436, 0.10319550335407257, -0.09493394941091537, 0.050134334713220596, 0.12864498794078827, 0.13763530552387238, 0.001171574112959206, 0.126874178647995, -0.06882601976394653, -0.23955446481704712, 0.0006479477160610259, 0.033681225031614304, -0.09035617858171463, 0.114943727850914, 0.09790622442960739, -0.13670434057712555, 0.0942169651389122, -0.011690565384924412, -0.2114347219467163, 0.028619520366191864, 0.03791990131139755, -0.05520306155085564, 0.13919837772846222, 0.04860967770218849, 0.14353905618190765, 0.029119307175278664, 0.08821221441030502, -0.19166521728038788, 0.017425736412405968, 0.056979041546583176, -0.013229976408183575, 0.08354160189628601, 0.033916279673576355, -0.014649147167801857, 0.1039908304810524, -0.09408724308013916, 0.0659627839922905, 0.022722512483596802, -0.13537976145744324, -0.19453071057796478, -0.06723081320524216, 0.040979333221912384, 0.08191590756177902, 0.08498240262269974, -0.01681756041944027, 0.1414014846086502, -0.06351464241743088, 0.0918961614370346, 0.20508751273155212, -0.30379587411880493, -0.0665159597992897, 0.06146423518657684, 0.022587649524211884, 0.08650312572717667, -0.11408489942550659, -0.005540960934013128, 0.08045613765716553, 0.018574858084321022, 0.11683472245931625, -0.03287496045231819, -0.056305643171072006, 0.016278980299830437, -0.14052055776119232, -0.004830056801438332, 0.14118051528930664, 0.04911190643906593, -0.03812510147690773, -0.04393434897065163, -0.056341055780649185, -0.1414104551076889, -0.039002854377031326, -0.02914833277463913, 0.043070483952760696, -0.03322828188538551, -0.10249202698469162, -0.011053062975406647, -0.11415637284517288, -0.07969125360250473, -0.06480340659618378, 0.1631527841091156, 0.03326157107949257, -0.0017313254065811634, -0.0206974558532238, 0.09395384788513184, -0.03784297779202461, -0.12009665369987488, 0.019241344183683395, 0.02309524267911911, -0.0031637991778552532, -0.07052762806415558, -0.059478189796209335, -0.07121608406305313, 0.027488121762871742, 0.14589738845825195, -0.06369716674089432, 0.04640641063451767, 0.025228777900338173, 0.041934337466955185, -0.09402573853731155, 0.16319052875041962, -0.05482340604066849, -0.01797802932560444, 0.012999778613448143, 0.07028725743293762, 0.03318329527974129, -0.003104584524407983, -0.12613996863365173, 0.013957570306956768, 0.11389555037021637, 0.012371652759611607, -0.07890798151493073, 0.08081263303756714, -0.04449261352419853, 0.005594379268586636, 0.012561590410768986, -0.08462344855070114, 0.029599960893392563, 0.004539801273494959, -0.05369282886385918, -0.058755576610565186, 0.02390451170504093, 0.013677793554961681, 0.016572151333093643, 0.10617036372423172, -0.09981861710548401, 0.01712348312139511, -0.0899534672498703, -0.13023297488689423, 0.00910925306379795, -0.0698680430650711, 0.035103436559438705, -0.11656177788972855, -0.1390523612499237, -0.02080449089407921, 0.04014396294951439, -0.027812235057353973, -0.02353275753557682, -0.05405420809984207, -0.07881442457437515, 0.01210616622120142, -0.010408242233097553, 0.08942940831184387, -0.05741645395755768, 0.09733391553163528, 0.05655873566865921, 0.06956219673156738, -0.05715399235486984, 0.031686846166849136, -0.10006678104400635, 0.02047785557806492, -0.1970512568950653, 0.01839512214064598, -0.054022662341594696, 0.06910660117864609, -0.07430385798215866, -0.08107567578554153, -0.014545929618179798, 0.02905707061290741, 0.06983640789985657, 0.0938333049416542, -0.15125103294849396, -0.07713944464921951, 0.16901543736457825, -0.09645707905292511, -0.14028310775756836, 0.12243849784135818, -0.06801290810108185, 0.0671188235282898, 0.07157354801893234, 0.1791761964559555, 0.06410230696201324, -0.08457732200622559, -0.006432047113776207, -0.01186162419617176, 0.044527556747198105, -0.05342070385813713, 0.06198469176888466, 0.0021038681734353304, -0.006733499933034182, 0.008783712983131409, -0.027419671416282654, 0.050107743591070175, -0.09430196136236191, -0.08089287579059601, -0.03637184575200081, -0.10414158552885056, 0.04923933744430542, 0.06484963744878769, 0.071956567466259, -0.12502215802669525, -0.08673786371946335, 0.09273365139961243, 0.07443235069513321, -0.07057342678308487, 0.01674489863216877, -0.07466161251068115, 0.06582355499267578, -0.06395493447780609, -0.02831839583814144, -0.1579117327928543, -0.04967333748936653, -0.005880444310605526, 0.030128661543130875, 0.025678763166069984, 0.019531438127160072, 0.07928700000047684, 0.07429971545934677, -0.07623065263032913, -0.028636949136853218, -0.009992158971726894, 0.016517983749508858, -0.12881752848625183, -0.2083517163991928, -0.00607470003888011, -0.03309735655784607, 0.14222925901412964, -0.2567920684814453, 0.05090463161468506, 0.003220447339117527, 0.07992077618837357, 0.041952405124902725, -0.00108783645555377, -0.04686400666832924, 0.07468141615390778, -0.048531606793403625, -0.05247553437948227, 0.04712052643299103, 0.002199646318331361, -0.0912383422255516, -0.04488244652748108, -0.15952850878238678, 0.2077602595090866, 0.13992315530776978, -0.10809839516878128, -0.10720078647136688, -0.0029214348178356886, -0.042550619691610336, -0.023313051089644432, -0.04880347102880478, 0.004988064058125019, 0.1168685108423233, -0.02548626996576786, 0.14724090695381165, -0.07032258063554764, -0.03256428241729736, 0.024463260546326637, -0.05678851157426834, 0.012037367559969425, 0.11627417057752609, 0.10502970218658447, -0.12045347690582275, 0.15138177573680878, 0.15213912725448608, -0.1077752560377121, 0.15394285321235657, -0.031990811228752136, -0.06059861555695534, -0.023963045328855515, -0.00175360101275146, 0.015265294350683689, 0.1200297549366951, -0.1118529811501503, -0.0090796472504735, -0.00008309736585943028, 0.007276718970388174, 0.01938060112297535, -0.21795381605625153, -0.040749166160821915, 0.03666502982378006, -0.03202034533023834, 0.015326268970966339, -0.022899430245161057, -0.00943999644368887, 0.10577836632728577, 0.00013653148198500276, -0.07648217678070068, 0.03713679686188698, 0.0003162303182762116, -0.08939753472805023, 0.22367437183856964, -0.062199488282203674, -0.11854266375303268, -0.13603989779949188, -0.05227624624967575, -0.033667705953121185, 0.032495155930519104, 0.05629109591245651, -0.09254803508520126, -0.034340109676122665, -0.0989176407456398, 0.020161708816885948, 0.02503116801381111, 0.037882305681705475, -0.0012191652785986662, 0.015843590721488, 0.07435797154903412, -0.09987151622772217, -0.0064779347740113735, -0.059236977249383926, -0.07359838485717773, 0.04006778821349144, 0.023393793031573296, 0.12697258591651917, 0.1526276171207428, -0.036893751472234726, -0.004589351825416088, -0.039328742772340775, 0.2160663902759552, -0.06889393925666809, -0.02318635955452919, 0.11330635845661163, -0.01944124512374401, 0.0353224091231823, 0.1360597014427185, 0.06819084286689758, -0.09537254273891449, 0.03124227188527584, 0.04641329497098923, -0.034112390130758286, -0.21294918656349182, -0.032099898904561996, -0.03212612867355347, -0.003916255664080381, 0.09023132920265198, 0.03369496390223503, 0.03826150298118591, 0.07852155715227127, 0.033062975853681564, 0.07101493328809738, -0.02033703401684761, 0.06854619830846786, 0.1076088696718216, 0.04622499644756317, 0.13298019766807556, -0.05993766710162163, -0.0786699578166008, 0.029494479298591614, -0.013470922596752644, 0.19972141087055206, 0.026797041296958923, 0.12290532141923904, 0.05796807259321213, 0.13762174546718597, 0.0072870817966759205, 0.06754835695028305, -0.0015696638729423285, -0.06736955791711807, -0.0034226467832922935, -0.04519915580749512, -0.014166159555315971, 0.040199171751737595, -0.07854948937892914, 0.06011028215289116, -0.12671798467636108, 0.018062714487314224, 0.06462278217077255, 0.18966510891914368, 0.06118996813893318, -0.3294174373149872, -0.09517833590507507, 0.022691475227475166, -0.015323732979595661, -0.01605217717587948, 0.026622598990797997, 0.1309330314397812, -0.04839710518717766, 0.0252944715321064, -0.0614144541323185, 0.07160653173923492, -0.0405794121325016, 0.04428446292877197, 0.03941790387034416, 0.0945328027009964, -0.030329592525959015, 0.06766588985919952, -0.2817067503929138, 0.2783714532852173, 0.019018955528736115, 0.07793544977903366, -0.046300556510686874, -0.014803129248321056, 0.03082258068025112, 0.09429889172315598, 0.06823081523180008, -0.02788994461297989, -0.08270402252674103, -0.21427799761295319, -0.03424325957894325, 0.032119542360305786, 0.11046268045902252, -0.031031940132379532, 0.10796598345041275, -0.03273540362715721, 0.008033563382923603, 0.09930575639009476, -0.02885000966489315, -0.08154397457838058, -0.09422637522220612, -0.03334204480051994, 0.023027757182717323, -0.03833138942718506, -0.07894804328680038, -0.10620518773794174, -0.12318563461303711, 0.15854917466640472, -0.04269380122423172, -0.013375441543757915, -0.10308758169412613, 0.09145978838205338, 0.04663119092583656, -0.08754990994930267, 0.04567566514015198, 0.015737032517790794, 0.07962354272603989, 0.021557893604040146, -0.05274207144975662, 0.13534095883369446, -0.06560958176851273, -0.1676880419254303, -0.06573458015918732, 0.09769783169031143, 0.02468113787472248, 0.04627544805407524, -0.0017624839674681425, 0.011679611168801785, -0.008013837039470673, -0.08223094046115875, 0.03344828635454178, -0.03012961521744728, 0.05839287117123604, 0.023267943412065506, -0.06382013857364655, -0.009328611195087433, -0.053158342838287354, -0.028872717171907425, 0.17105531692504883, 0.28963834047317505, -0.08959420770406723, -0.020259207114577293, 0.055998362600803375, -0.06277378648519516, -0.22100357711315155, 0.07325053960084915, 0.014513674192130566, 0.009791257791221142, 0.05115507170557976, -0.14147832989692688, 0.12178126722574234, 0.10182450711727142, -0.01935574971139431, 0.09604859352111816, -0.2752254009246826, -0.14128732681274414, 0.1368374228477478, 0.16733798384666443, 0.1326247900724411, -0.16322368383407593, -0.025892620906233788, -0.042114920914173126, -0.09025652706623077, 0.10534552484750748, -0.13706932961940765, 0.1122099906206131, -0.005058408249169588, 0.04719538241624832, 0.007399935740977526, -0.058312226086854935, 0.12066140025854111, -0.014695926569402218, 0.12308800965547562, -0.06301790475845337, -0.04825884848833084, 0.06108906865119934, -0.04560069739818573, 0.014073078520596027, -0.09728264808654785, 0.030798614025115967, -0.04473497346043587, -0.04003404080867767, -0.05487264692783356, 0.043736644089221954, -0.04037988558411598, -0.07259715348482132, -0.05299656093120575, 0.03424789756536484, 0.020840169861912727, -0.015828359872102737, 0.15169349312782288, -0.0032898238860070705, 0.16599072515964508, 0.12746994197368622, 0.09098056703805923, -0.05202428996562958, -0.002033833647146821, 0.018572870641946793, -0.03998704254627228, 0.06002933904528618, -0.1596176028251648, 0.03793340176343918, 0.11765052378177643, 0.013682326301932335, 0.14770515263080597, 0.08668823540210724, -0.03474043682217598, 0.021866079419851303, 0.08640646189451218, -0.15530964732170105, -0.11961299926042557, -0.008052186109125614, -0.06620749831199646, -0.11755829304456711, 0.07872186601161957, 0.11551940441131592, -0.07662904262542725, 0.004242392256855965, -0.01311914436519146, -0.001934865489602089, -0.05212940275669098, 0.18539345264434814, 0.09580123424530029, 0.04710264876484871, -0.07074083387851715, 0.0645185336470604, 0.0410773940384388, -0.06841236352920532, 0.014925231225788593, 0.04403287172317505, -0.07175220549106598, -0.04680505394935608, 0.06620653718709946, 0.20915868878364563, -0.058603838086128235, -0.05091467872262001, -0.1573566198348999, -0.11738656461238861, 0.04636124521493912, 0.20414568483829498, 0.10216619819402695, 0.009008222259581089, -0.023050354793667793, 0.023663686588406563, -0.14207015931606293, 0.10830748081207275, 0.030853282660245895, 0.08869015425443649, -0.15289759635925293, 0.15775848925113678, -0.006391158793121576, 0.007170401513576508, -0.0294994805008173, 0.045844368636608124, -0.14163459837436676, -0.003570426721125841, -0.12188079953193665, -0.021735822781920433, -0.02867179922759533, 0.005013330839574337, 0.009457703679800034, -0.05440552160143852, -0.07499565929174423, 0.006368160247802734, -0.10413555055856705, -0.01131171453744173, 0.04563912749290466, 0.057861097157001495, -0.12326139956712723, -0.03040545992553234, 0.021261561661958694, -0.06005789339542389, 0.06338820606470108, 0.010471546091139317, 0.03315001726150513, 0.0639294758439064, -0.1839558482170105, 0.03647363558411598, 0.07216478884220123, -0.0078148003667593, 0.05170920863747597, -0.07955577969551086, -0.0057220375165343285, -0.007680048234760761, 0.07268301397562027, 0.025131987407803535, 0.07051423192024231, -0.11930687725543976, 0.02411653660237789, -0.04498185217380524, -0.07268524169921875, -0.05598969757556915, 0.034686796367168427, 0.07566459476947784, -0.008349287323653698, 0.1991555094718933, -0.10354989022016525, 0.005463491193950176, -0.21499848365783691, 0.008791591040790081, -0.005410008132457733, -0.10809041559696198, -0.10933641344308853, -0.058596331626176834, 0.0570034384727478, -0.05743731930851936, 0.1476157009601593, 0.016562780365347862, 0.01762290485203266, 0.0431399904191494, -0.038301981985569, 0.04547009617090225, 0.04014397785067558, 0.24133573472499847, 0.029299527406692505, -0.046842049807310104, 0.014384260401129723, 0.052092377096414566, 0.12211200594902039, 0.08775587379932404, 0.18507879972457886, 0.16775192320346832, -0.07263154536485672, 0.10300694406032562, 0.0488167367875576, -0.048386383801698685, -0.10780063271522522, 0.062403805553913116, -0.05066028609871864, 0.06465891748666763, -0.0229211263358593, 0.17940016090869904, 0.12730763852596283, -0.15004943311214447, 0.005796889308840036, -0.06627602875232697, -0.08299870043992996, -0.11800609529018402, -0.03657488524913788, -0.11037731915712357, -0.15084102749824524, 0.006797224748879671, -0.11679624021053314, -0.008266953751444817, 0.10880598425865173, 0.008327209390699863, -0.018963567912578583, 0.18679529428482056, 0.01904914900660515, 0.04435162991285324, 0.04494481906294823, -0.0013157302746549249, -0.03168856352567673, -0.08760964870452881, -0.07694388926029205, 0.003926546778529882, -0.03342447802424431, 0.016534263268113136, -0.0573672391474247, -0.03864482045173645, 0.04748080298304558, -0.013681060634553432, -0.1028575673699379, 0.011815317906439304, 0.03785669803619385, 0.05857215076684952, 0.03254760056734085, 0.009626371785998344, 0.00005787766713183373, -0.004243335220962763, 0.22180475294589996, -0.07101582735776901, -0.07310482114553452, -0.09850549697875977, 0.2379227578639984, 0.044385772198438644, 0.032588206231594086, 0.0009950031526386738, -0.10271850228309631, 0.04234910011291504, 0.21633481979370117, 0.2036910057067871, -0.0844203531742096, 0.01086302287876606, -0.010565008036792278, -0.0075399200432002544, -0.03201508894562721, 0.09890677034854889, 0.1032547727227211, 0.022096041589975357, -0.08049541711807251, -0.05479833856225014, -0.0333535298705101, -0.001756169949658215, -0.029563866555690765, 0.05899382382631302, 0.05212927609682083, 0.02169148437678814, -0.0520557202398777, 0.060706157237291336, -0.03527946025133133, -0.10830042511224747, 0.07035110890865326, -0.2058996856212616, -0.14314891397953033, -0.013826357200741768, 0.11097113788127899, -0.018467847257852554, 0.06326499581336975, -0.038307271897792816, -0.012356606312096119, 0.029027877375483513, -0.01736670546233654, -0.08516395837068558, -0.06928335130214691, 0.05948975309729576, -0.08037016540765762, 0.21669983863830566, -0.045332178473472595, 0.04619881138205528, 0.1433362513780594, 0.03850964456796646, -0.06683287769556046, 0.097673200070858, 0.04143371805548668, -0.07449594885110855, 0.037988096475601196, 0.08057615160942078, -0.044417835772037506, 0.1046997681260109, 0.0586591437458992, -0.15478500723838806, 0.0308571495115757, -0.08826867491006851, -0.08221297711133957, -0.06352188438177109, -0.03603517264127731, -0.06384454667568207, 0.1316429227590561, 0.18955446779727936, -0.029836852103471756, 0.01978025585412979, -0.042237788438797, 0.02620534785091877, 0.08027315884828568, 0.04963742941617966, -0.04226679727435112, -0.24356326460838318, 0.03237845376133919, 0.0750071182847023, -0.01790311001241207, -0.30646511912345886, -0.07729975879192352, -0.008005153387784958, -0.047056183218955994, -0.09518907219171524, 0.09034053236246109, 0.13693185150623322, 0.06324101239442825, -0.06474270671606064, -0.1131347268819809, -0.07557596266269684, 0.1648571491241455, -0.13225634396076202, -0.11215883493423462 ]
null
null
transformers
## Exllama v2 Quantizations of Kunocchini Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.13">turboderp's ExLlamaV2 v0.0.13</a> for quantization. # The "main" branch only contains the measurement.json, download one of the other branches for the model (see below) Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/Test157t/Kunocchini | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/Bartowski/Kunocchini-exl2/tree/8_0) | 8.0 | 8.0 | 8.4 GB | 9.8 GB | 11.8 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/Bartowski/Kunocchini-exl2/tree/6_5) | 6.5 | 8.0 | 7.2 GB | 8.6 GB | 10.6 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/Bartowski/Kunocchini-exl2/tree/5_0) | 5.0 | 6.0 | 6.0 GB | 7.4 GB | 9.4 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/Bartowski/Kunocchini-exl2/tree/4_25) | 4.25 | 6.0 | 5.3 GB | 6.7 GB | 8.7 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/Bartowski/Kunocchini-exl2/tree/3_5) | 3.5 | 6.0 | 4.7 GB | 6.1 GB | 8.1 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Kunocchini-exl2 Kunocchini-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download the `main` (only useful if you only care about measurement.json) branch to a folder called `Kunocchini-exl2`: ```shell mkdir Kunocchini-exl2 huggingface-cli download bartowski/Kunocchini-exl2 --local-dir Kunocchini-exl2 --local-dir-use-symlinks False ``` To download from a different branch, add the `--revision` parameter: Linux: ```shell mkdir Kunocchini-exl2-6_5 huggingface-cli download bartowski/Kunocchini-exl2 --revision 6_5 --local-dir Kunocchini-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell mkdir Kunocchini-exl2-6.5 huggingface-cli download bartowski/Kunocchini-exl2 --revision 6_5 --local-dir Kunocchini-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["SanjiWatsuki/Kunoichi-DPO-v2-7B", "Epiculous/Fett-uccine-7B"], "quantized_by": "bartowski", "pipeline_tag": "text-generation"}
text-generation
bartowski/Kunocchini-exl2
[ "transformers", "mergekit", "merge", "text-generation", "base_model:SanjiWatsuki/Kunoichi-DPO-v2-7B", "base_model:Epiculous/Fett-uccine-7B", "endpoints_compatible", "region:us" ]
2024-02-06T12:46:18+00:00
[]
[]
TAGS #transformers #mergekit #merge #text-generation #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-Epiculous/Fett-uccine-7B #endpoints_compatible #region-us
Exllama v2 Quantizations of Kunocchini -------------------------------------- Using <a href="URL ExLlamaV2 v0.0.13 for quantization. The "main" branch only contains the URL, download one of the other branches for the model (see below) ===================================================================================================== Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions. Original model: URL Download instructions --------------------- With git: With huggingface hub (credit to TheBloke for instructions): To download the 'main' (only useful if you only care about URL) branch to a folder called 'Kunocchini-exl2': To download from a different branch, add the '--revision' parameter: Linux: Windows (which apparently doesn't like \_ in folders sometimes?): Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#transformers #mergekit #merge #text-generation #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-Epiculous/Fett-uccine-7B #endpoints_compatible #region-us \n" ]
[ 68 ]
[ "passage: TAGS\n#transformers #mergekit #merge #text-generation #base_model-SanjiWatsuki/Kunoichi-DPO-v2-7B #base_model-Epiculous/Fett-uccine-7B #endpoints_compatible #region-us \n" ]
[ -0.04071064293384552, -0.02435329556465149, -0.0026278910227119923, -0.032321497797966, 0.10341561585664749, 0.06785096228122711, 0.1286436915397644, 0.1232575997710228, 0.11674173921346664, 0.027264151722192764, 0.06602896749973297, 0.0793350413441658, 0.048364441841840744, 0.1684197038412094, -0.07057689130306244, -0.2985547184944153, 0.10758665204048157, 0.13023978471755981, -0.13366299867630005, 0.05670823156833649, 0.11680921912193298, -0.04867995157837868, 0.08225574344396591, -0.008520122617483139, -0.15730780363082886, 0.06651761382818222, -0.02816731669008732, -0.05079213157296181, 0.05592777207493782, 0.09577244520187378, 0.13335445523262024, 0.050485238432884216, -0.06964654475450516, -0.1577613353729248, 0.0390663743019104, 0.0004950985312461853, -0.0727933794260025, 0.02710791677236557, 0.05236433446407318, -0.003272550879046321, 0.04598890244960785, -0.03671078383922577, -0.03879266977310181, 0.05489187687635422, -0.12437029927968979, -0.0035987223964184523, -0.03371170535683632, 0.11956082284450531, 0.1394311934709549, 0.033390361815690994, -0.019573859870433807, -0.015622526407241821, -0.04814712703227997, 0.05083521828055382, 0.09067395329475403, -0.23640190064907074, -0.03798484057188034, 0.12189376354217529, 0.06884229928255081, 0.02430560439825058, 0.005689533893018961, 0.0261900182813406, 0.061559028923511505, -0.06044204533100128, -0.10300379991531372, -0.06780804693698883, 0.16676895320415497, 0.009966426528990269, -0.07439740002155304, 0.05098189041018486, 0.2295771986246109, 0.06468531489372253, 0.06945542246103287, -0.02166583389043808, -0.1176302433013916, 0.008968151174485683, -0.048500072211027145, -0.07495027035474777, -0.010743088088929653, 0.05644156411290169, 0.1042318269610405, -0.06218009442090988, -0.05943663790822029, -0.014804399572312832, -0.15030524134635925, 0.235824853181839, 0.009994661435484886, 0.009053177200257778, -0.10878175497055054, 0.013968055136501789, -0.16025114059448242, -0.13251730799674988, -0.011357825249433517, -0.10104157775640488, 0.01194007694721222, -0.002027282025665045, -0.08315455168485641, -0.07790035009384155, 0.10415460169315338, 0.1586529016494751, 0.01588287204504013, 0.03917127475142479, 0.06614506989717484, 0.06330400705337524, 0.04766811057925224, -0.008979424834251404, -0.10437213629484177, -0.14400669932365417, 0.008151446469128132, -0.008139830082654953, 0.0007931813597679138, -0.02040388062596321, -0.14778625965118408, -0.07183315604925156, -0.05938795581459999, -0.022772453725337982, 0.04450136423110962, 0.04395506903529167, -0.052206628024578094, -0.0659528449177742, 0.1028430163860321, -0.0606997087597847, -0.024837099015712738, -0.03874710574746132, -0.007370788138359785, 0.19943594932556152, -0.02706722728908062, 0.05442933738231659, 0.01984604448080063, 0.04258030652999878, -0.08620783686637878, -0.04664117097854614, -0.046274393796920776, 0.01094911340624094, 0.037041064351797104, -0.17363733053207397, 0.05749793350696564, -0.11129412055015564, -0.10739036649465561, 0.00032006576657295227, 0.017293376848101616, -0.052458420395851135, -0.04437730833888054, -0.04905121400952339, 0.0362609326839447, 0.004321754444390535, -0.02164587751030922, -0.06027362868189812, -0.031165622174739838, -0.01929190754890442, 0.020483918488025665, 0.0735478401184082, -0.18487121164798737, 0.0559128113090992, -0.049354154616594315, 0.08629218488931656, -0.17694051563739777, 0.022323518991470337, -0.0352797694504261, 0.12793008983135223, -0.04729430377483368, 0.039048273116350174, -0.1358339786529541, 0.01924622803926468, 0.006851918529719114, 0.19599765539169312, -0.023895999416708946, -0.09666381776332855, 0.10859888046979904, -0.084030881524086, -0.12819917500019073, 0.0646127387881279, 0.027284124866127968, 0.053694866597652435, 0.04382968693971634, 0.22746603190898895, 0.05772342160344124, 0.03420327231287956, 0.0147241884842515, 0.1071854829788208, -0.04037795215845108, -0.08548226207494736, 0.09967827796936035, -0.0038752714172005653, -0.07953976094722748, 0.05005712807178497, 0.060749173164367676, 0.06284281611442566, -0.05835900828242302, -0.04042249917984009, -0.04611082747578621, -0.07209170609712601, 0.026194430887699127, 0.010950643569231033, 0.10512980073690414, -0.057847991585731506, -0.020234115421772003, 0.09473671764135361, 0.07785706967115402, -0.025657497346401215, 0.026820041239261627, -0.03016628883779049, 0.17883062362670898, -0.10800789296627045, 0.03273222967982292, -0.10507027804851532, -0.06670824438333511, -0.01631070487201214, 0.06154854595661163, -0.031213071197271347, 0.09725020080804825, 0.04276052117347717, -0.07740405946969986, -0.06081623584032059, 0.006199227645993233, 0.07447540760040283, 0.04554262384772301, -0.022976109758019447, -0.12132728099822998, -0.013257837854325771, -0.07164257019758224, 0.13149899244308472, -0.02033599652349949, 0.03451021760702133, 0.045564714819192886, 0.23759743571281433, -0.05250047147274017, 0.0708419606089592, -0.007022861856967211, 0.03752603009343147, -0.03127998486161232, 0.03858263045549393, 0.08235802501440048, -0.016027411445975304, -0.17620360851287842, 0.13207709789276123, -0.015057663433253765, 0.17443925142288208, 0.15208019316196442, -0.14562366902828217, 0.017876960337162018, -0.0876595750451088, -0.01614668034017086, -0.020508868619799614, 0.10262152552604675, -0.04276610165834427, -0.010280432179570198, -0.04278545826673508, 0.10035263001918793, -0.07380253821611404, 0.01783132366836071, 0.021970706060528755, -0.04463127627968788, -0.09052293002605438, 0.058209046721458435, 0.0759374126791954, -0.2723580002784729, 0.1899070143699646, 0.19245290756225586, 0.0566813163459301, 0.20301665365695953, -0.014768342487514019, -0.05112672597169876, -0.011917809024453163, 0.023502221331000328, -0.06663331389427185, 0.03849047049880028, -0.23778057098388672, 0.019507579505443573, 0.04228738695383072, -0.0003115228610113263, 0.11925950646400452, -0.06155272200703621, -0.043104227632284164, 0.020148446783423424, 0.02472107857465744, 0.02130984514951706, 0.09831665456295013, -0.014019171707332134, 0.08951486647129059, 0.053020332008600235, -0.013458669185638428, 0.07242991775274277, 0.008169760927557945, -0.03587671369314194, 0.1582057774066925, -0.1301085650920868, -0.2180144488811493, -0.13676652312278748, -0.09720504283905029, -0.06431308388710022, 0.02887316606938839, 0.04342028871178627, -0.10335497558116913, -0.002053194912150502, -0.0128591638058424, 0.043889716267585754, -0.0722586065530777, 0.01915184035897255, 0.04402344301342964, 0.060300979763269424, -0.07392177730798721, -0.04195164144039154, -0.03657287731766701, -0.017175359651446342, 0.04357624053955078, 0.047652002424001694, -0.19114762544631958, 0.11623353511095047, 0.1462273746728897, 0.051149602979421616, 0.009531751275062561, -0.009914089925587177, 0.1288244128227234, -0.11091786623001099, 0.04417963698506355, 0.16592489182949066, -0.03603184595704079, 0.0526743121445179, 0.2076229751110077, 0.003770872950553894, -0.04832841455936432, -0.008948134258389473, -0.03857512027025223, -0.048477500677108765, -0.19402962923049927, -0.06425769627094269, -0.16661760210990906, 0.05408846586942673, -0.035542234778404236, 0.013171115890145302, 0.0974932312965393, 0.09889774769544601, -0.03140563145279884, 0.007572721224278212, -0.028408978134393692, 0.04818505793809891, 0.20978349447250366, -0.035967227071523666, 0.09482206404209137, -0.04624863713979721, -0.04547634348273277, 0.07172445207834244, 0.08601616322994232, 0.08337987214326859, 0.09707693010568619, 0.10769078135490417, 0.027561699971556664, 0.11162333935499191, 0.1320018470287323, 0.03516427055001259, 0.006875682156533003, -0.030095355585217476, -0.04190792888402939, -0.023834319785237312, 0.03761650621891022, 0.10291554778814316, 0.03918197378516197, -0.07010053843259811, -0.03443072736263275, -0.06745917350053787, 0.05702202022075653, 0.12858803570270538, 0.09219185262918472, -0.18354308605194092, -0.020918793976306915, 0.08180747181177139, 0.011454110965132713, -0.050064027309417725, 0.017377199605107307, -0.010809492319822311, -0.06798644363880157, 0.134769007563591, 0.004784431774169207, 0.11041299253702164, 0.08490481972694397, 0.018352342769503593, 0.01668592356145382, -0.025730757042765617, 0.004826789256185293, 0.0624469593167305, -0.16673500835895538, 0.22024588286876678, 0.0006568506360054016, -0.06963953375816345, 0.00024079158902168274, 0.02372835762798786, 0.007550444919615984, 0.22015060484409332, 0.09321188926696777, -0.00397025141865015, -0.01668178290128708, -0.033773913979530334, -0.022269686684012413, 0.020946284756064415, 0.12409576773643494, -0.06691867113113403, 0.00958927907049656, -0.004615942016243935, -0.02178388088941574, -0.002456618705764413, 0.10709122568368912, -0.0946035087108612, -0.18111789226531982, 0.10104238241910934, 0.00194427534006536, 0.0751868188381195, -0.017212379723787308, -0.007527780253440142, -0.04036330431699753, 0.20830096304416656, -0.0008944512810558081, -0.045440252870321274, -0.1331539899110794, -0.03230581060051918, 0.15453338623046875, -0.06068241596221924, 0.07906809449195862, -0.07420885562896729, 0.007367687299847603, -0.07000572979450226, -0.16331978142261505, 0.1107020229101181, -0.08061488717794418, -0.03533819317817688, -0.04560054838657379, 0.13806915283203125, -0.07341308146715164, 0.010792150162160397, 0.012522227130830288, -0.009507639333605766, -0.039227649569511414, -0.027262108400464058, -0.030461745336651802, 0.055712487548589706, 0.025019893422722816, 0.09672452509403229, -0.06767629832029343, -0.013313849456608295, -0.028390513733029366, -0.048524949699640274, 0.12919938564300537, 0.238326758146286, -0.009296095930039883, 0.07053127884864807, 0.12051323056221008, -0.04982662945985794, -0.18066050112247467, -0.0319039523601532, -0.0740518867969513, 0.04916277155280113, -0.10903389751911163, -0.10649624466896057, 0.077268086373806, 0.09841746836900711, -0.0060676936991512775, 0.05815976858139038, -0.20145754516124725, -0.10794416069984436, 0.03893762826919556, -0.02014828845858574, 0.3794269859790802, -0.11413570493459702, -0.0630592629313469, -0.06116946041584015, -0.2615683376789093, 0.03250943869352341, -0.01750742644071579, 0.08495312184095383, -0.046920135617256165, -0.04694368317723274, 0.008045901544392109, -0.01932854950428009, 0.15720881521701813, 0.003165533533319831, -0.036193862557411194, -0.09857837855815887, -0.09148401767015457, 0.04656946659088135, -0.016821034252643585, -0.039878495037555695, -0.00309640821069479, -0.023384027183055878, -0.13848359882831573, -0.06917387247085571, -0.0489041693508625, 0.027527131140232086, -0.00445796363055706, -0.06573686003684998, -0.058552198112010956, 0.0654090940952301, -0.01677844673395157, 0.023628661409020424, 0.26705822348594666, -0.07424982637166977, 0.11049584299325943, 0.08176615089178085, 0.05472256988286972, -0.1851757913827896, 0.0564897321164608, -0.019821707159280777, -0.07682836055755615, 0.05692923814058304, -0.11995872855186462, -0.0071183014661073685, 0.10284551978111267, -0.030738893896341324, 0.05493554845452309, 0.08209561556577682, -0.015267561189830303, 0.0013144764816388488, 0.15301764011383057, -0.15227293968200684, -0.10295011103153229, -0.07728412002325058, -0.1331043839454651, 0.02252844348549843, 0.06934870779514313, 0.13027328252792358, 0.001265117316506803, -0.02363029681146145, -0.004158825147897005, -0.025699522346258163, -0.14464786648750305, 0.0015139956958591938, 0.05159410089254379, 0.01397340465337038, -0.0701165497303009, 0.0788353830575943, 0.019746750593185425, -0.1841326653957367, -0.03812839463353157, 0.07296904921531677, -0.10371679067611694, -0.08137176930904388, -0.08286275714635849, 0.10146400332450867, -0.10332725942134857, -0.05305525287985802, -0.146445631980896, -0.13217127323150635, 0.06478705257177353, 0.1817009150981903, 0.09154685586690903, 0.020365837961435318, 0.028692401945590973, -0.02475326508283615, -0.029576726257801056, -0.03818938508629799, 0.038573384284973145, 0.06255973875522614, -0.06636711955070496, -0.0875624269247055, -0.05284060537815094, 0.11777932196855545, -0.06285890191793442, -0.019886700436472893, -0.17314539849758148, -0.0207410529255867, -0.11312799900770187, -0.09250947833061218, -0.15426337718963623, -0.09846515953540802, -0.042357996106147766, -0.06915691494941711, -0.07800658792257309, -0.023879610002040863, -0.06196129322052002, -0.005657370202243328, -0.013898483477532864, 0.03933928906917572, 0.007626656908541918, 0.00722850114107132, 0.07709508389234543, -0.04582332819700241, 0.04389818012714386, 0.06556151807308197, -0.021142596378922462, 0.014728082343935966, -0.07409834116697311, -0.06746190786361694, 0.039449792355298996, 0.022381681948900223, 0.04488535225391388, 0.004346556030213833, 0.009763647802174091, 0.05393563210964203, 0.007121813949197531, 0.010396875441074371, 0.00023750132822897285, -0.0658031478524208, -0.03388671576976776, -0.09183221310377121, -0.12475914508104324, -0.07161669433116913, -0.049793098121881485, 0.14974938333034515, 0.04693581536412239, 0.04894980043172836, -0.003488243091851473, 0.07073131203651428, -0.10113034397363663, 0.0029213503003120422, 0.00835124496370554, -0.134290874004364, 0.09429661929607391, -0.10573920607566833, -0.005817411467432976, 0.02607833407819271, 0.22297729551792145, -0.08686772733926773, -0.04485389217734337, 0.060431912541389465, -0.08488421887159348, 0.12018260359764099, 0.07182632386684418, 0.3394002616405487, 0.13980582356452942, -0.014151569455862045, -0.09064213186502457, 0.09835454821586609, 0.02940640226006508, 0.08040837943553925, 0.043588414788246155, 0.15197408199310303, 0.0032180233392864466, 0.1563224196434021, 0.05722840502858162, 0.037524331361055374, 0.04503214731812477, -0.05496932566165924, -0.0308865737169981, 0.0026390140410512686, 0.025309555232524872, 0.08719558268785477, 0.1594390869140625, -0.14091317355632782, 0.045873481780290604, 0.009186304174363613, -0.046602506190538406, -0.09363124519586563, -0.06873916834592819, -0.09186456352472305, -0.21472595632076263, 0.03165367990732193, -0.10657385736703873, 0.0030440837144851685, 0.08288636803627014, 0.02414015494287014, -0.03027222491800785, 0.12046722322702408, 0.033638712018728256, -0.043007005006074905, 0.0966859832406044, -0.006042006891220808, 0.015195952728390694, -0.004370134323835373, -0.10606196522712708, -0.06523982435464859, -0.06139950454235077, -0.08457868546247482, 0.003645647317171097, -0.045358821749687195, 0.02294185757637024, -0.01993403397500515, -0.09466458857059479, -0.03280545398592949, 0.03722449764609337, 0.02950097806751728, 0.05013717710971832, -0.005636603105813265, -0.013910551555454731, 0.007379508577287197, 0.11455200612545013, -0.00530609767884016, -0.02283882349729538, -0.08923058956861496, 0.007862529717385769, 0.06711184978485107, 0.07678031921386719, 0.0028948704712092876, -0.0697256401181221, -0.0267805065959692, 0.2328585535287857, 0.22994719445705414, -0.044591132551431656, 0.004855957347899675, 0.05979790911078453, 0.038798533380031586, 0.1086820736527443, 0.06365688890218735, 0.04211844503879547, 0.10575895756483078, -0.0531327910721302, -0.033023640513420105, -0.014503853395581245, -0.055876269936561584, -0.07089695334434509, 0.0461193285882473, 0.13430306315422058, -0.09280598163604736, -0.02201615832746029, 0.10638411343097687, -0.158331498503685, 0.1020112931728363, 0.0825204998254776, -0.20133325457572937, -0.09397032856941223, -0.09718101471662521, 0.0825464203953743, -0.0345163494348526, 0.07795071601867676, -0.07083629816770554, -0.055197373032569885, 0.1211049035191536, 0.03737286105751991, -0.15867525339126587, -0.09296231716871262, 0.0486629344522953, -0.017921652644872665, -0.0756082832813263, -0.030293680727481842, -0.011136290617287159, 0.10780631750822067, 0.05901091545820236, -0.025175560265779495, -0.013157817535102367, 0.01835520751774311, -0.009664076380431652, -0.03252697363495827, 0.011844249442219734, -0.016787467524409294, -0.03034389764070511, 0.050661370158195496, -0.19622856378555298, 0.07331350445747375, -0.01818563975393772, -0.04134165495634079, -0.06444931030273438, 0.07464531064033508, -0.10859605669975281, 0.13640253245830536, 0.1497296690940857, -0.03017392009496689, -0.05962785705924034, 0.005207022652029991, 0.05002174153923988, 0.08181199431419373, 0.07484769076108932, -0.08748935163021088, -0.11422616988420486, -0.09533806145191193, 0.04328259453177452, -0.0047123366966843605, -0.13399527966976166, -0.07977963984012604, -0.13227999210357666, 0.025958910584449768, -0.09370727092027664, 0.06121665984392166, 0.1063508465886116, -0.005601541139185429, -0.0043992237187922, -0.21846702694892883, 0.030400600284337997, 0.047011569142341614, -0.09007580578327179, -0.09385183453559875 ]
null
null
diffusers
### My-lion-qwe Dreambooth model trained by rishikachinivar following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 3SL21CS011 Sample pictures of this concept:
{"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]}
text-to-image
rishikachinivar/my-lion-qwe
[ "diffusers", "safetensors", "NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-06T12:49:36+00:00
[]
[]
TAGS #diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
### My-lion-qwe Dreambooth model trained by rishikachinivar following the "Build your own Gen AI model" session by NxtWave. Project Submission Code: 3SL21CS011 Sample pictures of this concept:
[ "### My-lion-qwe Dreambooth model trained by rishikachinivar following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 3SL21CS011\n\nSample pictures of this concept:" ]
[ "TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "### My-lion-qwe Dreambooth model trained by rishikachinivar following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 3SL21CS011\n\nSample pictures of this concept:" ]
[ 73, 54 ]
[ "passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-lion-qwe Dreambooth model trained by rishikachinivar following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 3SL21CS011\n\nSample pictures of this concept:" ]
[ -0.10885399580001831, 0.1004706472158432, -0.00152748660184443, 0.02752450853586197, 0.05899005010724068, -0.035632286220788956, 0.18038934469223022, -0.007633687928318977, 0.05089510977268219, 0.02971016988158226, 0.12475968897342682, 0.05173075571656227, 0.014391086995601654, 0.1632908582687378, -0.032812755554914474, -0.10791889578104019, 0.0507533885538578, 0.07277945429086685, -0.01859939657151699, 0.06260136514902115, 0.07340558618307114, -0.07093263417482376, 0.1333901435136795, -0.029339367523789406, -0.13806584477424622, -0.01347542367875576, -0.027092136442661285, -0.032988984137773514, 0.06656917184591293, 0.03353627026081085, 0.05735781043767929, 0.12435384839773178, 0.04284026846289635, -0.04502051696181297, 0.04700051248073578, -0.0074336291290819645, -0.055643148720264435, 0.03916148096323013, 0.02689262293279171, 0.06653418391942978, 0.1135193333029747, 0.07777423411607742, -0.06451468914747238, 0.04387727379798889, -0.0731220617890358, 0.024733519181609154, 0.016292408108711243, 0.1355060338973999, 0.12358297407627106, 0.08211228251457214, 0.009803972207009792, 0.11050013452768326, 0.03617512807250023, 0.12286149710416794, 0.11949773877859116, -0.2947412431240082, -0.09770064800977707, 0.19073288142681122, 0.09427477419376373, 0.036979421973228455, -0.04402682185173035, 0.10430090874433517, 0.10241060703992844, -0.003148353658616543, 0.041864462196826935, -0.08517228811979294, 0.040705546736717224, -0.08616956323385239, -0.09889553487300873, 0.035063572227954865, 0.22399966418743134, 0.05585794895887375, -0.03749538213014603, -0.04214031249284744, -0.09560100734233856, 0.018740803003311157, -0.026481157168745995, -0.036058783531188965, -0.051919881254434586, 0.019666938111186028, -0.027064761146903038, -0.059486571699380875, -0.1264961063861847, -0.050683099776506424, -0.023700358346104622, 0.1359892636537552, -0.001567593775689602, 0.06333805620670319, -0.11900705844163895, 0.07299221307039261, 0.01650398224592209, -0.13489937782287598, -0.0016626244178041816, -0.10838776081800461, 0.042495980858802795, 0.05555642768740654, 0.03395641967654228, -0.046142932027578354, 0.07622873783111572, 0.008898328989744186, 0.016023509204387665, -0.01837335340678692, 0.058999497443437576, 0.08590167760848999, 0.011418292298913002, -0.055394578725099564, -0.09106861799955368, -0.09848268330097198, 0.024761341512203217, -0.059816185384988785, 0.01848335936665535, -0.0389581024646759, -0.09564129263162613, -0.0103678610175848, -0.06775543093681335, 0.045596662908792496, 0.014815372414886951, 0.06390159577131271, -0.0016449212562292814, -0.04538343846797943, 0.1848967969417572, 0.04457046836614609, -0.042196016758680344, -0.036212872713804245, 0.005788004025816917, 0.0652218908071518, 0.0699489638209343, -0.010872699320316315, 0.0065836310386657715, -0.0046272058971226215, -0.09040877968072891, -0.04950894042849541, -0.02090431936085224, -0.015531610697507858, 0.006410627625882626, -0.1511213779449463, 0.05682354047894478, -0.19054636359214783, -0.11687488853931427, 0.0491500087082386, 0.057101666927337646, -0.011152147315442562, -0.0538431741297245, -0.044464558362960815, -0.083163782954216, 0.0011284890351817012, -0.030118398368358612, -0.04419148713350296, -0.013070093467831612, 0.03893529623746872, 0.012636950239539146, 0.08169826865196228, -0.21865560114383698, -0.006375806871801615, -0.06414591521024704, 0.04608161747455597, 0.007872083224356174, -0.018405165523290634, -0.04409434273838997, 0.07322844862937927, -0.012284249998629093, -0.011469450779259205, 0.006779947783797979, 0.0073128966614604, 0.007965046912431717, 0.15907084941864014, -0.10933081805706024, 0.004594753496348858, 0.1524907946586609, -0.13749611377716064, -0.19845396280288696, 0.08576000481843948, 0.045356977730989456, 0.08599656075239182, 0.052715979516506195, 0.11647946387529373, 0.07965467125177383, -0.2069469839334488, -0.04698168858885765, 0.02753886952996254, -0.10885367542505264, -0.18982242047786713, 0.004220966715365648, 0.1658603847026825, -0.020887035876512527, 0.021893775090575218, -0.08722978085279465, 0.11393404752016068, -0.08189565688371658, -0.037209898233413696, -0.04927031323313713, -0.14144986867904663, -0.03244587406516075, -0.007688980083912611, 0.030890796333551407, -0.0023490239400416613, 0.017216049134731293, -0.1401807963848114, 0.052983906120061874, -0.03732404485344887, -0.006168792024254799, -0.1399012953042984, 0.09227027744054794, -0.07904507219791412, -0.0007074990426190197, -0.01900586299598217, -0.07441658526659012, 0.03581109270453453, 0.10846500843763351, -0.006008013151586056, 0.16208769381046295, 0.06406326591968536, 0.06460416316986084, -0.040157612413167953, -0.08715587854385376, 0.09379305690526962, 0.012570491060614586, -0.02808317169547081, -0.15524137020111084, 0.06720693409442902, -0.06590008735656738, -0.03888634592294693, -0.14788661897182465, 0.02533416822552681, 0.009365742094814777, 0.12794728577136993, 0.05013769119977951, 0.003413299797102809, 0.02930537983775139, -0.0035588531754910946, -0.06747274845838547, -0.00023184010933618993, 0.05939348414540291, 0.025481654331088066, -0.11286291480064392, 0.18932345509529114, -0.12333377450704575, 0.2117854207754135, 0.07090863585472107, -0.05415002256631851, -0.012647146359086037, 0.0325816348195076, -0.05945618450641632, -0.006924120709300041, 0.024148862808942795, 0.019892146810889244, 0.0016766063636168838, -0.039087697863578796, 0.10488200187683105, -0.058510810136795044, -0.003688697936013341, 0.06344105303287506, -0.038393937051296234, -0.04014677181839943, 0.08259449899196625, 0.06921885907649994, -0.1558980643749237, 0.11823341995477676, 0.12459878623485565, 0.0021361131221055984, 0.19190746545791626, 0.01815531961619854, -0.003748547751456499, -0.05870630592107773, 0.07672373950481415, 0.012860450893640518, 0.22192272543907166, -0.07824323326349258, 0.018074486404657364, 0.01797095686197281, -0.008464916609227657, 0.04240792989730835, -0.062353942543268204, -0.08104074001312256, -0.02042227052152157, -0.02301093190908432, 0.09985104203224182, 0.10238894820213318, -0.13702313601970673, 0.0951501801609993, -0.08743975311517715, -0.1043933555483818, 0.033197637647390366, -0.018091095611453056, -0.05198602005839348, 0.08296613395214081, -0.02248428203165531, -0.18528904020786285, -0.1271340399980545, -0.11013660579919815, -0.084831602871418, -0.01408317033201456, 0.05599275976419449, -0.05166406184434891, -0.03761005774140358, -0.07098866254091263, -0.06095382571220398, -0.019339099526405334, 0.017094755545258522, 0.05793347209692001, 0.019197462126612663, -0.007732641417533159, -0.0563378632068634, 0.01850714348256588, -0.03573240339756012, 0.0011511342599987984, 0.12418956309556961, -0.015439464710652828, 0.17285263538360596, 0.0879599004983902, 0.011643219739198685, -0.01592651754617691, 0.018745584413409233, 0.24938970804214478, -0.051290810108184814, 0.12461401522159576, 0.161221444606781, 0.03872532397508621, 0.05637956038117409, 0.17128680646419525, 0.03100019134581089, -0.09164939820766449, 0.04571351781487465, -0.06719671934843063, -0.10445813089609146, -0.12338690459728241, -0.08166323602199554, -0.05710381641983986, 0.11628589034080505, -0.034107085317373276, 0.06901337206363678, 0.08484088629484177, 0.1677677184343338, 0.002112420042976737, -0.01703217625617981, -0.04844940826296806, 0.09370330721139908, -0.03282918035984039, -0.02535363845527172, 0.03490791469812393, -0.08237514644861221, -0.03626891225576401, 0.09642736613750458, 0.07055848091840744, 0.13239361345767975, 0.014955300837755203, 0.04210572689771652, 0.09431397914886475, 0.150761216878891, 0.14043071866035461, 0.10862938314676285, -0.03966250270605087, -0.07258833199739456, -0.009054533205926418, -0.06690534204244614, 0.07996866106987, 0.05271216854453087, -0.06497087329626083, -0.023103753104805946, 0.07099219411611557, 0.09305853396654129, -0.03625739365816116, 0.1251148134469986, 0.10456398874521255, -0.2130597084760666, -0.00006190425483509898, 0.024717280641198158, 0.05181380733847618, -0.06142342463135719, 0.030635226517915726, 0.258769690990448, -0.02063269354403019, 0.06734096258878708, -0.02949512004852295, 0.08208400011062622, 0.05509842932224274, 0.002872581360861659, -0.07283980399370193, -0.015909774228930473, 0.001009058440104127, 0.03772759065032005, -0.21534086763858795, 0.18101254105567932, -0.01699812151491642, 0.064616359770298, 0.0026206860784441233, -0.046208757907152176, -0.022361597046256065, 0.18511754274368286, 0.1986912041902542, 0.020366525277495384, 0.005750245880335569, -0.04792119190096855, -0.11446242779493332, 0.04370906203985214, 0.04069563001394272, 0.03145061060786247, 0.03791380673646927, 0.0706380158662796, -0.03272990509867668, -0.004348211456090212, 0.04169563576579094, -0.18329036235809326, -0.10096835345029831, -0.0011687278747558594, 0.2170581966638565, 0.049302782863378525, -0.02734982594847679, 0.027001220732927322, -0.0535273440182209, 0.08871130645275116, -0.20995914936065674, -0.08231032639741898, -0.07844004780054092, -0.12755624949932098, 0.0004169090243522078, -0.06926004588603973, 0.007179679349064827, -0.06778330355882645, 0.06909514218568802, -0.054755136370658875, -0.12117278575897217, 0.01998976804316044, -0.1636631041765213, -0.10934139788150787, -0.09272459149360657, 0.0347035713493824, 0.04295318201184273, -0.014180723577737808, 0.01898568868637085, -0.06548979133367538, -0.03791031613945961, -0.11743360757827759, 0.015242991968989372, 0.04240084066987038, -0.08823675662279129, -0.06162306293845177, -0.06889154016971588, -0.03772670775651932, -0.03517363220453262, -0.061681974679231644, 0.06077568233013153, 0.2530871033668518, -0.05881556496024132, 0.05501740798354149, 0.25141751766204834, -0.04027949273586273, -0.23914863169193268, -0.14490839838981628, -0.06521555036306381, -0.017367729917168617, -0.003968563862144947, -0.09103305637836456, 0.14954040944576263, 0.011182407848536968, -0.049660574644804, 0.187413290143013, -0.20491617918014526, -0.06142579764127731, 0.026571981608867645, 0.13851092755794525, 0.3138808310031891, -0.13860924541950226, -0.019579598680138588, -0.013128063641488552, -0.1702052354812622, 0.1491551697254181, 0.00747279217466712, 0.0572160966694355, -0.06783916801214218, 0.03677917271852493, -0.03275642544031143, -0.03196391090750694, 0.09230994433164597, -0.04500047490000725, 0.06556425988674164, -0.08398877829313278, 0.06295158714056015, 0.1568024754524231, -0.02906106598675251, 0.036854177713394165, -0.11486650258302689, 0.04441450908780098, -0.08894054591655731, -0.012177190743386745, -0.05214713141322136, 0.02609013393521309, -0.04957358539104462, -0.12243234366178513, -0.0456014983355999, 0.015033017843961716, 0.0026986885350197554, 0.030531583353877068, -0.009591878391802311, -0.011133914813399315, -0.0011201794259250164, 0.155336394906044, 0.07968124747276306, -0.08505315333604813, -0.003878992050886154, -0.08538565784692764, -0.0578104704618454, 0.12009100615978241, -0.039963483810424805, -0.025104332715272903, 0.10569000989198685, -0.009562843479216099, 0.029767153784632683, 0.029709162190556526, -0.02552427165210247, 0.07601338624954224, 0.10742641985416412, -0.1599956750869751, -0.15343408286571503, -0.02742844633758068, 0.15094801783561707, 0.0775541216135025, 0.1287066787481308, 0.1324479728937149, -0.09817264974117279, 0.037611983716487885, -0.04921369254589081, 0.005968923214823008, -0.038760654628276825, 0.04261002317070961, 0.017562979832291603, 0.04497414082288742, -0.07019085437059402, 0.0398356057703495, -0.04115050658583641, -0.057743437588214874, -0.0332181490957737, 0.05867655202746391, -0.12042544037103653, -0.08630770444869995, -0.006774100475013256, 0.16045162081718445, -0.15713953971862793, -0.0866154208779335, -0.03834187239408493, -0.08350565284490585, 0.021164899691939354, 0.12963561713695526, 0.013797375373542309, 0.015028059482574463, 0.0403091199696064, -0.021879952400922775, -0.0747167244553566, 0.033292848616838455, -0.007762328255921602, 0.10707598179578781, -0.2490268498659134, -0.10915793478488922, -0.0025664782151579857, 0.07373443990945816, -0.09052552282810211, -0.011903711594641209, -0.08565545082092285, 0.023657212033867836, -0.06207864359021187, 0.07069550454616547, -0.11999859660863876, -0.05364688113331795, -0.05256837233901024, -0.03598956763744354, -0.06966660171747208, 0.0317201092839241, -0.035770997405052185, 0.068625308573246, 0.046670399606227875, -0.0018589296378195286, -0.021397436037659645, -0.012638941407203674, -0.012569720856845379, -0.043327368795871735, 0.0876610055565834, -0.028825460001826286, -0.11183718591928482, -0.008465535938739777, -0.22940629720687866, 0.01418774388730526, 0.07472137361764908, 0.019830577075481415, 0.02210431545972824, 0.10864134877920151, -0.011510565876960754, 0.03223555162549019, 0.03797435387969017, -0.024079173803329468, 0.01835981197655201, -0.08212869614362717, 0.006923014298081398, -0.04246317222714424, -0.006028801202774048, -0.07615645974874496, -0.018471525982022285, 0.10739922523498535, 0.04280819743871689, 0.14071780443191528, -0.09346204996109009, 0.04607969895005226, -0.043188296258449554, 0.03606792911887169, 0.11020642518997192, -0.06121332570910454, 0.021498138085007668, -0.05018869414925575, -0.022096117958426476, -0.011742394417524338, 0.10009267181158066, -0.10813789069652557, -0.23368829488754272, -0.014051929116249084, -0.14276152849197388, -0.056954361498355865, -0.027073021978139877, 0.2616601288318634, 0.026898661628365517, 0.009559384547173977, -0.12028922885656357, 0.05728014186024666, 0.055675458163022995, 0.12819430232048035, 0.007691824808716774, 0.09341087192296982, -0.006081823725253344, 0.09369947761297226, 0.047669894993305206, 0.027431311085820198, -0.05019279941916466, -0.02622091770172119, -0.1748325079679489, 0.09454924613237381, -0.01432010903954506, 0.04220431670546532, 0.1819915771484375, 0.0037915827706456184, -0.040310200303792953, 0.08093570172786713, -0.01864335685968399, -0.047413650900125504, -0.20156972110271454, -0.06731274724006653, -0.09876550734043121, 0.0322280079126358, -0.07153767347335815, -0.03687027841806412, -0.01444709487259388, 0.06871097534894943, -0.06840785592794418, 0.08028460294008255, 0.062085893005132675, 0.002257922664284706, 0.09105995297431946, 0.00521770678460598, -0.03961767628788948, 0.05037163570523262, 0.043079644441604614, -0.020345067605376244, 0.010530045256018639, -0.024941977113485336, 0.07044272124767303, -0.027206910774111748, 0.04903445020318031, 0.03208613395690918, -0.06309554725885391, -0.03993508964776993, 0.004724766593426466, 0.0032307447399944067, 0.10565682500600815, 0.005436074919998646, -0.008267166092991829, 0.00777353486046195, 0.08960384875535965, -0.011910177767276764, -0.05515434592962265, -0.07377530634403229, 0.04425183683633804, -0.1196235790848732, 0.061511605978012085, -0.0449596606194973, -0.004575255326926708, -0.062482912093400955, 0.2872658669948578, 0.14298680424690247, -0.08929615467786789, 0.015618274919688702, -0.07514767348766327, 0.02393234707415104, -0.07984524965286255, 0.10091923177242279, 0.026152098551392555, 0.28709283471107483, -0.05590301379561424, -0.04500788450241089, -0.10525336116552353, -0.02208881638944149, -0.06031885743141174, -0.06962879002094269, -0.0032754859421402216, -0.03776995465159416, -0.12267591804265976, 0.06405919790267944, -0.2297033816576004, 0.012967242859303951, 0.07581216841936111, -0.01123570092022419, -0.0006045975023880601, -0.044522881507873535, 0.09864018857479095, 0.033836789429187775, 0.035575468093156815, -0.09896950423717499, 0.032961368560791016, 0.04501138627529144, -0.01579161360859871, -0.08077883720397949, 0.07920201867818832, 0.010795390233397484, -0.12566480040550232, 0.16928836703300476, -0.003439610591158271, 0.026871729642152786, 0.07071062177419662, -0.06193407252430916, -0.13069812953472137, 0.11715158820152283, -0.014475142583251, -0.09361133724451065, -0.036668241024017334, 0.10692934691905975, 0.0059805563651025295, 0.04498378187417984, -0.0035508638247847557, -0.09442758560180664, -0.03060295805335045, 0.12618225812911987, 0.03919881209731102, -0.0948990061879158, 0.08659486472606659, -0.021157605573534966, 0.11126033961772919, -0.01677108183503151, -0.04478874430060387, -0.04205070808529854, -0.02695087157189846, 0.0637904703617096, 0.01914430782198906, -0.04896035045385361, 0.04982706159353256, -0.1455831527709961, -0.031449977308511734, 0.03720768913626671, 0.04974653944373131, -0.17719902098178864, 0.012646246701478958, -0.18048745393753052, 0.0037139200139790773, -0.04847981408238411, 0.012310966849327087, 0.22174757719039917, 0.025311918929219246, 0.013556987047195435, -0.05260574072599411, -0.01499863900244236, 0.02677292190492153, -0.02541922777891159, -0.14269767701625824 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hamsa-tiny-pretrained This model is a fine-tuned version of [nadsoft/Hamsa-tiny](https://huggingface.co/nadsoft/Hamsa-tiny) on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set: - Loss: 0.3795 - Wer: 28.7264 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 50000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:-------:| | 0.6597 | 0.1 | 2500 | 0.6394 | 48.8384 | | 0.5442 | 0.2 | 5000 | 0.5455 | 41.8543 | | 0.4954 | 0.3 | 7500 | 0.5018 | 39.8609 | | 0.474 | 0.4 | 10000 | 0.4770 | 38.5534 | | 0.4696 | 0.5 | 12500 | 0.4566 | 36.2515 | | 0.4312 | 0.6 | 15000 | 0.4433 | 36.8780 | | 0.4208 | 0.7 | 17500 | 0.4308 | 32.3714 | | 0.4089 | 0.8 | 20000 | 0.4229 | 33.4109 | | 0.4163 | 0.9 | 22500 | 0.4143 | 32.5423 | | 0.3831 | 1.0 | 25000 | 0.4077 | 31.6951 | | 0.3842 | 1.1 | 27500 | 0.4023 | 33.6316 | | 0.3848 | 1.2 | 30000 | 0.3984 | 30.1099 | | 0.3774 | 1.3 | 32500 | 0.3948 | 29.2864 | | 0.3667 | 1.4 | 35000 | 0.3912 | 29.5166 | | 0.3674 | 1.5 | 37500 | 0.3881 | 29.6115 | | 0.3721 | 1.6 | 40000 | 0.3851 | 30.4065 | | 0.3533 | 1.7 | 42500 | 0.3834 | 27.9693 | | 0.3594 | 1.8 | 45000 | 0.3815 | 28.8569 | | 0.3628 | 1.9 | 47500 | 0.3802 | 28.1260 | | 0.3392 | 2.0 | 50000 | 0.3795 | 28.7264 | ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.16.2.dev0 - Tokenizers 0.15.0
{"tags": ["whisper-event", "generated_from_trainer"], "datasets": ["nadsoft/QASR-Speech-Resource"], "metrics": ["wer"], "base_model": "nadsoft/Hamsa-tiny", "model-index": [{"name": "hamsa-tiny-pretrained", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "nadsoft/QASR-Speech-Resource default", "type": "nadsoft/QASR-Speech-Resource"}, "metrics": [{"type": "wer", "value": 28.726358005647974, "name": "Wer"}]}]}]}
automatic-speech-recognition
ibrahimj/hamsa-tiny-pretrained
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "whisper-event", "generated_from_trainer", "dataset:nadsoft/QASR-Speech-Resource", "base_model:nadsoft/Hamsa-tiny", "model-index", "endpoints_compatible", "region:us" ]
2024-02-06T12:50:33+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #dataset-nadsoft/QASR-Speech-Resource #base_model-nadsoft/Hamsa-tiny #model-index #endpoints_compatible #region-us
hamsa-tiny-pretrained ===================== This model is a fine-tuned version of nadsoft/Hamsa-tiny on the nadsoft/QASR-Speech-Resource default dataset. It achieves the following results on the evaluation set: * Loss: 0.3795 * Wer: 28.7264 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 64 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 50000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.37.0.dev0 * Pytorch 2.1.2+cu121 * Datasets 2.16.2.dev0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 50000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #dataset-nadsoft/QASR-Speech-Resource #base_model-nadsoft/Hamsa-tiny #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 50000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ 85, 131, 4, 39 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #whisper-event #generated_from_trainer #dataset-nadsoft/QASR-Speech-Resource #base_model-nadsoft/Hamsa-tiny #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 50000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.0.dev0\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.2.dev0\n* Tokenizers 0.15.0" ]
[ -0.15302899479866028, 0.10651380568742752, -0.0016656337538734078, 0.055144909769296646, 0.11438175290822983, -0.021910449489951134, 0.110141821205616, 0.1296296864748001, -0.042773324996232986, 0.08561623841524124, 0.11269490420818329, 0.06352542340755463, 0.05220942199230194, 0.126793771982193, -0.02951599657535553, -0.30993640422821045, 0.028836289420723915, 0.017828019335865974, -0.12034214287996292, 0.11233047395944595, 0.1121475100517273, -0.1046498492360115, 0.04390126094222069, 0.048925165086984634, -0.11422977596521378, -0.006714042276144028, 0.004597152583301067, -0.08358804136514664, 0.10248812288045883, 0.03271554410457611, 0.08720044046640396, 0.03492312505841255, 0.08339410275220871, -0.2111903429031372, 0.017548201605677605, 0.050612397491931915, 0.04918927699327469, 0.07834213972091675, 0.07008170336484909, -0.004272287245839834, 0.06760060787200928, -0.05349017679691315, 0.07470046728849411, 0.0757361352443695, -0.10617991536855698, -0.3000490069389343, -0.08030287176370621, 0.06742756068706512, 0.11521650105714798, 0.08675287663936615, -0.027581943199038506, 0.10445208847522736, -0.023181073367595673, 0.09678511321544647, 0.2000739872455597, -0.24301140010356903, -0.08812228590250015, -0.03758280351758003, 0.08221694827079773, 0.053312625735998154, -0.11573345214128494, -0.007195677142590284, 0.04964040219783783, 0.03264026716351509, 0.08486989140510559, 0.015215134248137474, 0.01727658323943615, -0.01689150556921959, -0.14267447590827942, -0.0542113296687603, 0.15997059643268585, 0.08972398936748505, -0.06614343076944351, -0.09517529606819153, -0.026803916320204735, -0.17201487720012665, -0.05023222789168358, -0.007676129229366779, 0.018827416002750397, -0.04975106194615364, -0.12211968749761581, -0.01667352207005024, -0.09647704660892487, -0.11243901401758194, 0.03279752656817436, 0.22557124495506287, 0.034252654761075974, -0.014327413402497768, -0.024164779111742973, 0.09467867016792297, 0.030625808984041214, -0.16132165491580963, -0.058033619076013565, 0.020600557327270508, -0.07237840443849564, -0.021685238927602768, -0.0518440380692482, -0.041630685329437256, 0.014361879788339138, 0.15784312784671783, -0.050055112689733505, 0.08494756370782852, 0.024121800437569618, 0.01587987132370472, -0.10629801452159882, 0.20151762664318085, -0.031534671783447266, -0.010522615164518356, -0.014564973302185535, 0.11509338021278381, 0.0005657089059241116, -0.01331512164324522, -0.048435602337121964, 0.032494258135557175, 0.08870673924684525, 0.0412415936589241, -0.020401107147336006, 0.026784220710396767, -0.04449410364031792, -0.028030652552843094, 0.02118813805282116, -0.09515632688999176, -0.005357752554118633, 0.020815784111618996, -0.06684888154268265, -0.02943282388150692, 0.0245073102414608, 0.03918406739830971, 0.01486240141093731, 0.042951736599206924, -0.08276405185461044, -0.030990516766905785, -0.068505197763443, -0.08868183195590973, 0.016537828370928764, -0.01865978166460991, 0.004789178259670734, -0.10657618194818497, -0.15291038155555725, -0.03740755841135979, 0.03481445088982582, -0.018506398424506187, -0.07513223588466644, -0.049781084060668945, -0.07686213403940201, 0.04897549748420715, -0.014780694618821144, 0.10020294040441513, -0.04402568191289902, 0.1007077768445015, 0.08471111208200455, 0.049130573868751526, 0.015121872536838055, 0.04485189914703369, -0.05929854139685631, 0.061069589108228683, -0.12974300980567932, 0.09541846811771393, -0.1061587706208229, 0.08196218311786652, -0.12530799210071564, -0.11270489543676376, -0.01952454447746277, -0.0026100522372871637, 0.08230739086866379, 0.1203303188085556, -0.14509086310863495, -0.0962923988699913, 0.1801992505788803, -0.10001407563686371, -0.15912364423274994, 0.11698953807353973, -0.008356604725122452, 0.035768065601587296, 0.060856882482767105, 0.1830030083656311, 0.12977012991905212, -0.09332431852817535, -0.03402246907353401, -0.052118152379989624, 0.10606201738119125, -0.007721394766122103, 0.11427494138479233, -0.028169497847557068, 0.002642539329826832, 0.012632275931537151, -0.07486601173877716, 0.06491021811962128, -0.09688732773065567, -0.0902801901102066, -0.03904294595122337, -0.10766755789518356, 0.022301213815808296, 0.04552261158823967, 0.058012839406728745, -0.09624932706356049, -0.11763105541467667, 0.0703958123922348, 0.12298816442489624, -0.08978738635778427, 0.020595036447048187, -0.11018123477697372, 0.03719635680317879, -0.049256518483161926, -0.025770392268896103, -0.1655043065547943, -0.05808097869157791, 0.0295804925262928, -0.09828241914510727, 0.010989733971655369, -0.07937011122703552, 0.09514585882425308, 0.06246967241168022, -0.03871636465191841, -0.07985436171293259, -0.09543834626674652, 0.003313658060505986, -0.07711625844240189, -0.16639745235443115, -0.08116620779037476, -0.04042986407876015, 0.18089041113853455, -0.2190534621477127, 0.03980962559580803, 0.040348269045352936, 0.13019166886806488, 0.05377817153930664, -0.06160903349518776, 0.0033105076290667057, 0.047153692692518234, -0.0138081731274724, -0.06535590440034866, 0.02669333666563034, 0.02614719793200493, -0.14701275527477264, 0.017188619822263718, -0.1314767599105835, 0.10069127380847931, 0.08817034959793091, 0.03364130109548569, -0.05571389198303223, -0.01874133013188839, -0.08498577028512955, -0.05209926515817642, -0.011117029935121536, -0.042735155671834946, 0.14294305443763733, 0.03283872455358505, 0.12500214576721191, -0.0863652229309082, -0.0587117038667202, 0.040484972298145294, -0.00939237978309393, -0.021311774849891663, 0.11898119747638702, -0.003532598027959466, -0.06913004070520401, 0.08893808722496033, 0.06661059707403183, -0.07336555421352386, 0.1776929795742035, -0.08387647569179535, -0.09359759837388992, -0.01620248518884182, 0.020598065108060837, 0.05166539549827576, 0.11621777713298798, -0.11551779508590698, -0.0008694110438227654, 0.02669578604400158, 0.010535224340856075, 0.024304989725351334, -0.18867169320583344, -0.010709724389016628, 0.045381080359220505, -0.06266535818576813, -0.05949852243065834, 0.015527915209531784, -0.02007266692817211, 0.06564796715974808, 0.012950191274285316, -0.020332930609583855, 0.006526924204081297, -0.01758672669529915, -0.08432070910930634, 0.2036968469619751, -0.06586276739835739, -0.1567058563232422, -0.17787005007266998, -0.010124947875738144, -0.04201873391866684, -0.0033383406698703766, 0.05662614479660988, -0.11403835564851761, -0.029967626556754112, -0.06823087483644485, 0.027587203308939934, -0.014516104012727737, 0.04221871867775917, 0.04235215112566948, 0.009081562981009483, 0.11915291100740433, -0.11884860694408417, 0.018676219508051872, -0.021424831822514534, -0.032090090215206146, -0.005416204687207937, 0.012032662518322468, 0.10738251358270645, 0.1440480649471283, 0.03479476645588875, 0.038266364485025406, -0.02159237489104271, 0.2323659509420395, -0.11050841957330704, -0.03515700250864029, 0.16032803058624268, 0.006373853422701359, 0.039660289883613586, 0.09834225475788116, 0.052722617983818054, -0.08820470422506332, 0.035260725766420364, 0.04588596150279045, -0.0347009040415287, -0.22500108182430267, -0.021547112613916397, -0.04622792452573776, -0.008726189844310284, 0.09459108114242554, 0.04777013510465622, 0.0387166328728199, 0.055391475558280945, -0.020448168739676476, -0.027038324624300003, -0.012850121594965458, 0.09221134334802628, 0.0759543776512146, 0.04525581747293472, 0.12711380422115326, -0.02886589802801609, -0.036279432475566864, 0.020005393773317337, 0.0029365213122218847, 0.23152899742126465, 0.018284780904650688, 0.19184176623821259, 0.054823026061058044, 0.13113339245319366, 0.025909090414643288, 0.0719447135925293, 0.0247065220028162, -0.03781208395957947, 0.03990202769637108, -0.06138771027326584, -0.028871016576886177, 0.05133962631225586, 0.024225810542702675, 0.08296864479780197, -0.11915630847215652, 0.006221265532076359, 0.011701325885951519, 0.3563876450061798, 0.061760563403367996, -0.33342358469963074, -0.15244364738464355, 0.012505190446972847, -0.09088122099637985, -0.04826392978429794, 0.025579122826457024, 0.10556583851575851, -0.09195808321237564, 0.06020178645849228, -0.08345968276262283, 0.10494556277990341, -0.02294469252228737, 0.008814891800284386, 0.0692131519317627, 0.0735241249203682, -0.013176005333662033, 0.043489061295986176, -0.20868130028247833, 0.28525784611701965, -0.01637713611125946, 0.10769598186016083, -0.013080588541924953, 0.02653878554701805, 0.04508085548877716, -0.0000886823472683318, 0.0831032320857048, -0.015192714519798756, -0.09224003553390503, -0.20128339529037476, -0.0878843143582344, 0.03843485191464424, 0.11276416480541229, -0.07340607047080994, 0.13340574502944946, -0.025581765919923782, -0.006436628755182028, 0.05953444540500641, -0.07227078080177307, -0.1405724138021469, -0.06945270299911499, 0.024651749059557915, 0.04914133995771408, 0.09941627830266953, -0.12494530528783798, -0.11212936043739319, -0.046925563365221024, 0.10246825963258743, -0.11644425988197327, -0.04102268069982529, -0.13693413138389587, 0.051856301724910736, 0.15754751861095428, -0.0825577825307846, 0.06121312454342842, 0.006680802907794714, 0.1659269630908966, 0.035759229212999344, -0.012591675855219364, 0.07914330810308456, -0.08809369802474976, -0.21639984846115112, -0.023311128839850426, 0.17138630151748657, 0.029346615076065063, 0.047296859323978424, -0.007529084570705891, 0.03434506431221962, -0.026570623740553856, -0.08684031665325165, 0.06133276969194412, -0.00954351294785738, -0.03701573982834816, 0.011453463695943356, -0.002395173767581582, 0.03572571277618408, -0.08192786574363708, -0.039810631424188614, 0.13212575018405914, 0.2828024625778198, -0.07186438143253326, 0.0003040717274416238, 0.0562141053378582, -0.028531299903988838, -0.13372233510017395, 0.020511463284492493, 0.15096499025821686, 0.03418344259262085, 0.0005225866916589439, -0.1919831931591034, 0.07772510498762131, 0.08307141065597534, -0.046414826065301895, 0.08263042569160461, -0.2602434754371643, -0.14994850754737854, 0.11533794552087784, 0.10944996029138565, -0.014399454928934574, -0.1563401073217392, -0.08605726063251495, -0.018393507227301598, -0.12624461948871613, 0.09498100727796555, -0.06277897953987122, 0.1178051307797432, -0.003532800357788801, 0.07183998823165894, 0.0183103084564209, -0.04767043888568878, 0.160037100315094, -0.016332611441612244, 0.039158325642347336, 0.0012396769598126411, 0.04011352360248566, 0.05082856863737106, -0.07277093827724457, 0.030206484720110893, -0.05720244348049164, 0.044242922216653824, -0.12851496040821075, -0.04100315272808075, -0.09805752336978912, 0.03819175437092781, -0.029618768021464348, -0.040050771087408066, 0.005613140761852264, 0.03879532963037491, 0.0331525094807148, 0.00969760026782751, 0.1638757437467575, -0.055062152445316315, 0.16646936535835266, 0.12655527889728546, 0.11217460036277771, -0.004201943054795265, -0.08569404482841492, -0.01650727540254593, -0.03203316405415535, 0.06099148094654083, -0.14119140803813934, 0.034667376428842545, 0.12371408194303513, 0.058784663677215576, 0.13263657689094543, 0.05848488584160805, -0.07142086327075958, 0.04219045862555504, 0.07645629346370697, -0.07031794637441635, -0.16994313895702362, -0.05260583013296127, 0.056277796626091, -0.18036217987537384, 0.05952350050210953, 0.12481860816478729, -0.07033540308475494, -0.0004053846641909331, -0.0055871871300041676, -0.007869615219533443, -0.049158867448568344, 0.216095969080925, 0.07129374146461487, 0.09141945838928223, -0.08566170930862427, 0.07133711874485016, 0.026078997179865837, -0.11245422065258026, 0.013974687084555626, 0.08572404831647873, -0.05513721704483032, -0.01342393085360527, -0.04697799310088158, 0.060794681310653687, -0.04984678328037262, -0.06480562686920166, -0.15323789417743683, -0.13062414526939392, 0.06755151599645615, 0.14004069566726685, 0.036297883838415146, 0.0344083309173584, -0.03908279910683632, 0.0634850338101387, -0.10835819691419601, 0.11599376797676086, 0.079483762383461, 0.08522556722164154, -0.17200295627117157, 0.13872426748275757, 0.0026683644391596317, 0.02658003568649292, -0.0070116883143782616, -0.01990337297320366, -0.09135846793651581, 0.017952198162674904, -0.14469879865646362, -0.01562360767275095, -0.03701619431376457, -0.0024759843945503235, -0.0046542938798666, -0.0760597437620163, -0.0855310931801796, 0.04824979230761528, -0.11238770931959152, -0.051580026745796204, 0.00881904922425747, 0.06136046350002289, -0.09943993389606476, -0.008043760433793068, 0.06059814617037773, -0.11285320669412613, 0.0839591771364212, 0.05341324582695961, 0.014356708154082298, 0.04787449911236763, -0.060878634452819824, 0.033977657556533813, 0.030722161754965782, -0.009776091203093529, 0.016011856496334076, -0.12669707834720612, -0.014682287350296974, -0.024219783022999763, 0.03575659543275833, -0.0046047428622841835, 0.04252332076430321, -0.12202423810958862, -0.03577812761068344, 0.0010642281267791986, -0.015278021804988384, -0.06904404610395432, 0.020440176129341125, 0.06050020083785057, 0.05876034498214722, 0.1519179493188858, -0.0874577984213829, 0.025793952867388725, -0.23599374294281006, 0.016189729794859886, -0.01628243178129196, -0.08928506821393967, -0.08397034555673599, -0.010677468962967396, 0.07330799847841263, -0.06395751982927322, 0.06611526012420654, -0.09347443282604218, 0.06654571741819382, 0.05207563191652298, -0.06770731508731842, 0.050453510135412216, 0.034465860575437546, 0.27097025513648987, 0.06332753598690033, -0.010416309349238873, 0.09253117442131042, -0.0017723292112350464, 0.04910111799836159, 0.08474864810705185, 0.13894544541835785, 0.16552411019802094, -0.004776512272655964, 0.09997320920228958, 0.07658202946186066, -0.03322197124361992, -0.1401301920413971, 0.06285613775253296, -0.025281481444835663, 0.09770649671554565, -0.005834860727190971, 0.17587022483348846, 0.14323048293590546, -0.16013093292713165, 0.035001158714294434, -0.01830924116075039, -0.07598616927862167, -0.10076417028903961, -0.04902021214365959, -0.08421209454536438, -0.16419613361358643, 0.017051903530955315, -0.12320080399513245, 0.02880406752228737, 0.057975467294454575, 0.022619863972067833, 0.018853411078453064, 0.17867392301559448, 0.02689277194440365, 0.00936516746878624, 0.10594756156206131, -0.024020912125706673, -0.017972173169255257, -0.027906237170100212, -0.104953832924366, 0.06870757043361664, -0.0019329767674207687, 0.039752472192049026, -0.055969368666410446, -0.11530881375074387, 0.05597257614135742, 0.019382013007998466, -0.12148428708314896, 0.02009493112564087, 0.022864509373903275, 0.06010984256863594, 0.028634756803512573, 0.028450744226574898, -0.000757513684220612, -0.014747094362974167, 0.2525028884410858, -0.10067027807235718, -0.044117994606494904, -0.14766281843185425, 0.2109600305557251, 0.00399727001786232, -0.013576642610132694, 0.014198824763298035, -0.0931871086359024, -0.021871570497751236, 0.15924541652202606, 0.090513676404953, -0.0039671496488153934, -0.014178250916302204, -0.008088357746601105, -0.016482185572385788, -0.06468230485916138, 0.07949400693178177, 0.09013897180557251, 0.061453983187675476, -0.05525815859436989, -0.03497466444969177, -0.020800933241844177, -0.055937860161066055, -0.01900072768330574, 0.08842219412326813, 0.0038400280755013227, -0.011141099967062473, -0.04734794795513153, 0.11495745927095413, -0.07264052331447601, -0.07734354585409164, -0.005371250677853823, -0.1527581661939621, -0.17450885474681854, -0.05354490131139755, 0.03518352285027504, 0.03228119760751724, 0.04596263915300369, 0.0027285567484796047, -0.014332545921206474, 0.0886165201663971, -0.00618417002260685, -0.032931677997112274, -0.11592960357666016, 0.10096501559019089, -0.06587976962327957, 0.21816831827163696, -0.04550519958138466, 0.01888057217001915, 0.118680939078331, 0.032405246049165726, -0.10379311442375183, 0.05392475053668022, 0.06459757685661316, -0.1360754817724228, 0.03728606924414635, 0.20813767611980438, -0.032455820590257645, 0.13816365599632263, 0.014755412004888058, -0.18097569048404694, -0.005140948109328747, -0.040848445147275925, -0.052878715097904205, -0.08524109423160553, -0.013622806407511234, -0.050943538546562195, 0.12582777440547943, 0.19475433230400085, -0.0926583781838417, -0.02735762484371662, -0.05200989171862602, 0.03986132889986038, 0.08175408095121384, 0.08641394972801208, -0.028596026822924614, -0.29732149839401245, 0.009537570178508759, 0.004458600655198097, -0.026209913194179535, -0.29015156626701355, -0.09304633736610413, 0.011671802029013634, -0.05126115679740906, 0.0008601914159953594, 0.09620019793510437, 0.109133280813694, 0.03869686648249626, -0.04338282346725464, -0.05558047071099281, -0.05086304619908333, 0.18681834638118744, -0.16986478865146637, -0.07898423075675964 ]
null
null
adapter-transformers
# Adapter `emvecchi/appropriateness` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/appropriateness](https://github.com/timonziegenbein/appropriateness-corpus.git) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("emvecchi/appropriateness", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:argument/quality", "roberta", "adapter-transformers"]}
null
emvecchi/appropriateness
[ "adapter-transformers", "roberta", "adapterhub:argument/quality", "region:us" ]
2024-02-06T12:52:26+00:00
[]
[]
TAGS #adapter-transformers #roberta #adapterhub-argument/quality #region-us
# Adapter 'emvecchi/appropriateness' for roberta-base An adapter for the 'roberta-base' model that was trained on the argument/appropriateness dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'emvecchi/appropriateness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the argument/appropriateness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n", "# Adapter 'emvecchi/appropriateness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the argument/appropriateness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 66, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n# Adapter 'emvecchi/appropriateness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the argument/appropriateness dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ 0.005531467497348785, -0.10996506363153458, -0.004628376569598913, -0.0062531111761927605, 0.17619648575782776, 0.06776823848485947, 0.17745576798915863, -0.016477415338158607, 0.06610117852687836, -0.024767976254224777, 0.06617411226034164, 0.10285081714391708, 0.0035641328431665897, 0.04224923625588417, -0.021437572315335274, -0.112467922270298, 0.047603540122509, 0.07821781933307648, -0.12516815960407257, 0.08695191890001297, 0.13195832073688507, -0.035593852400779724, 0.11424867063760757, 0.04109329730272293, -0.12099500000476837, 0.118282750248909, 0.06970430910587311, -0.12010511010885239, 0.09104040265083313, 0.0763792023062706, 0.25062206387519836, 0.02709009125828743, -0.0038295681588351727, -0.15116599202156067, 0.027127500623464584, 0.06155059486627579, -0.01634952798485756, 0.047866810113191605, -0.0796106681227684, -0.0862254798412323, 0.09401044249534607, 0.061605870723724365, 0.08846253901720047, 0.042693477123975754, -0.11257165670394897, -0.2146076261997223, 0.029788225889205933, 0.06441113352775574, -0.004998504184186459, 0.04226914048194885, 0.03107512928545475, 0.044136907905340195, -0.043388452380895615, 0.04728629067540169, 0.233916237950325, -0.16835053265094757, -0.037445906549692154, 0.008937391452491283, 0.1087811216711998, 0.104880191385746, 0.005167972296476364, 0.008111809380352497, 0.008661819621920586, 0.0268655214458704, 0.11459751427173615, -0.07367872446775436, 0.06816338002681732, 0.04350286349654198, -0.13572008907794952, -0.030622895807027817, 0.31928354501724243, -0.04084612429141998, -0.09450911730527878, 0.025928135961294174, -0.03653912991285324, 0.08263257145881653, 0.027125561609864235, -0.08265424519777298, -0.02848850190639496, 0.05246894806623459, -0.025268832221627235, -0.08777961879968643, -0.066517673432827, -0.12467209994792938, -0.1133057102560997, 0.4488583207130432, -0.007482240442186594, 0.009812205098569393, -0.0468749925494194, 0.08602274954319, -0.012085671536624432, -0.09828546643257141, 0.008953404612839222, -0.07944993674755096, -0.03127450495958328, 0.0028066474478691816, -0.07093394547700882, -0.14810261130332947, 0.11121952533721924, 0.3239305019378662, 0.22560279071331024, 0.042452339082956314, -0.015794875100255013, 0.04950995370745659, 0.004384502302855253, 0.1759655475616455, -0.0869150385260582, -0.09377782046794891, 0.026355460286140442, -0.036226823925971985, -0.007361090742051601, -0.06352908164262772, -0.10168558359146118, -0.07905103266239166, 0.03819672763347626, 0.03778577595949173, 0.020974021404981613, 0.10202103853225708, -0.046939264982938766, -0.049286432564258575, 0.004250356461852789, -0.0996624082326889, -0.0868409052491188, -0.046793993562459946, -0.0066197761334478855, 0.06476127356290817, 0.11026215553283691, -0.034160465002059937, 0.061460405588150024, 0.0520595908164978, -0.0699520856142044, -0.13207705318927765, -0.05789683386683464, -0.16204001009464264, -0.0433407723903656, -0.18665063381195068, 0.10969486087560654, -0.1876680999994278, -0.07735199481248856, 0.02637518011033535, 0.09979934245347977, -0.025237584486603737, 0.06597331911325455, 0.052077122032642365, 0.0032384893856942654, 0.0022075355518609285, -0.06132790446281433, -0.0062024397775530815, -0.03280571103096008, 0.07539565861225128, 0.08636082708835602, 0.021111104637384415, -0.1194143146276474, 0.056569743901491165, -0.0554545633494854, 0.05452880263328552, -0.25131312012672424, 0.025718089193105698, -0.11152416467666626, 0.054893720895051956, -0.12678995728492737, 0.03134821355342865, -0.06421782076358795, 0.09593966603279114, 0.07226947695016861, 0.019836828112602234, -0.0009300449746660888, -0.05439699813723564, 0.006953348871320486, -0.18808655440807343, -0.13480260968208313, 0.02689955197274685, -0.05778924375772476, 0.1964084655046463, 0.04142845422029495, 0.07809502631425858, 0.13804751634597778, -0.003539765253663063, 0.003845121245831251, 0.005675100721418858, -0.15250572562217712, -0.034632883965969086, 0.041838668286800385, 0.09328819811344147, -0.16966018080711365, 0.016214266419410706, -0.11478213965892792, 0.12721256911754608, -0.009153435938060284, -0.018160130828619003, -0.018321800976991653, -0.05430427938699722, 0.006462269928306341, -0.04652155935764313, -0.060142017900943756, 0.024303574115037918, -0.13499823212623596, 0.08604563772678375, 0.10672368854284286, -0.06427711993455887, -0.001605446683242917, -0.14272308349609375, 0.13595448434352875, -0.1513558179140091, -0.0003978731110692024, -0.1826508492231369, 0.06514875590801239, -0.005079975817352533, 0.171245276927948, 0.09700474888086319, 0.08254020661115646, 0.08739917725324631, -0.1104561910033226, -0.005311261862516403, -0.03985277935862541, -0.021732455119490623, 0.08488325029611588, 0.04652618244290352, -0.16369664669036865, -0.035784799605607986, -0.08014759421348572, -0.007546029984951019, -0.05530060455203056, 0.018407009541988373, 0.06402993947267532, 0.06923361867666245, 0.053817082196474075, 0.054012320935726166, -0.09668711572885513, -0.026044636964797974, -0.0659293681383133, -0.04178434982895851, -0.00974745862185955, -0.02250421606004238, -0.07167702913284302, 0.08925836533308029, -0.16555601358413696, 0.09500720351934433, 0.12937895953655243, -0.07662307471036911, -0.08687233924865723, -0.009480616077780724, 0.05211953446269035, -0.006174649111926556, 0.12601743638515472, -0.0773913785815239, 0.21281862258911133, 0.009109919890761375, 0.05444784089922905, -0.0345161035656929, 0.04716300591826439, 0.048034317791461945, -0.07192742824554443, 0.0262347050011158, -0.007701571099460125, 0.05722964555025101, -0.18410368263721466, 0.029749687761068344, 0.19888725876808167, -0.14378401637077332, 0.07700376957654953, -0.010623019188642502, -0.06291382014751434, -0.025218715891242027, -0.052719783037900925, 0.06907658278942108, 0.11657582223415375, -0.11621805280447006, -0.04407285898923874, 0.017512468621134758, -0.035811930894851685, 0.05121029168367386, -0.02889423444867134, 0.06452056765556335, 0.06893434375524521, 0.0026630174834281206, 0.07913468033075333, 0.026134932413697243, -0.027751773595809937, 0.039733290672302246, 0.03806363791227341, -0.047149576246738434, 0.04844224452972412, -0.0035439475905150175, -0.004179670009762049, 0.17145857214927673, -0.04255003109574318, -0.056645847856998444, -0.19246509671211243, -0.2724497318267822, 0.05269058421254158, 0.05901016667485237, 0.05635802820324898, -0.06561565399169922, -0.07552795112133026, -0.005106552504003048, 0.1881900578737259, -0.042269349098205566, 0.04336472600698471, -0.05546072870492935, 0.004928900394588709, 0.057719312608242035, -0.12532632052898407, 0.005136521998792887, -0.02348981983959675, -0.09953413903713226, 0.035112716257572174, -0.0714968740940094, 0.10622028261423111, 0.07043319940567017, -0.02189766988158226, 0.015711387619376183, -0.012469800189137459, 0.08512480556964874, -0.037113457918167114, -0.013226310722529888, 0.19800643622875214, -0.11446015536785126, 0.013338436372578144, 0.09979672729969025, -0.023657333105802536, -0.030609464272856712, 0.038192182779312134, 0.00405467813834548, -0.10125064849853516, -0.19188827276229858, -0.0023407000117003918, -0.03422848507761955, -0.07977010309696198, 0.14324261248111725, 0.019628431648015976, 0.007612425833940506, 0.17136886715888977, 0.051714587956666946, 0.01459956169128418, -0.005886404309421778, 0.09054173529148102, 0.25223594903945923, 0.001403553644195199, 0.10922709852457047, -0.08789582550525665, -0.04516977816820145, 0.07902815192937851, 0.07610597461462021, 0.2567293643951416, 0.01221346203237772, 0.04955127835273743, 0.08537295460700989, -0.09971292316913605, 0.06218770891427994, 0.16020822525024414, -0.05016867071390152, -0.004337694030255079, -0.06138884276151657, 0.0068892138078808784, -0.11674752086400986, 0.03323984891176224, -0.026950880885124207, -0.059958845376968384, 0.029254738241434097, 0.021672729402780533, 0.02939249947667122, 0.041172295808792114, -0.08403274416923523, -0.2623594403266907, -0.03611411154270172, 0.0060488516464829445, -0.017456579953432083, -0.07540662586688995, 0.010597220622003078, 0.004334540572017431, -0.017947755753993988, -0.03561023995280266, -0.006042580585926771, 0.09238918870687485, -0.10145969688892365, -0.02912084199488163, -0.04795803129673004, 0.1937602460384369, -0.024896536022424698, 0.07479773461818695, -0.2282889187335968, 0.13627178966999054, 0.002472190884873271, 0.003492020769044757, -0.04618297889828682, 0.012560857459902763, 0.05914837121963501, 0.07745212316513062, 0.02127799578011036, -0.024464741349220276, -0.024641962721943855, -0.18834169209003448, 0.004260630812495947, 0.08023197948932648, 0.06188054755330086, -0.08704258501529694, 0.09415333718061447, -0.0773610919713974, 0.07047657668590546, 0.07442109286785126, -0.04699334502220154, -0.07840169966220856, -0.1954338103532791, -0.018844161182641983, 0.05586249753832817, 0.012550339102745056, -0.08917973935604095, -0.011402454227209091, 0.10314872115850449, 0.14239394664764404, -0.052092500030994415, -0.025214334949851036, -0.13512304425239563, 0.00009926781058311462, 0.1511393040418625, -0.09854158759117126, 0.10156963020563126, -0.034936729818582535, -0.0005049224710091949, -0.016531281173229218, -0.09489724785089493, 0.13067516684532166, -0.07623393833637238, 0.06094430014491081, -0.05157676339149475, -0.06194836646318436, 0.07026687264442444, -0.003854520618915558, 0.050124622881412506, -0.013876309618353844, -0.04217139631509781, -0.05419101566076279, -0.11374150216579437, -0.06845641881227493, -0.08293338119983673, 0.10923820734024048, -0.040167082101106644, 0.006623808294534683, -0.061515308916568756, 0.03780815750360489, 0.08183407783508301, 0.06177540868520737, -0.039513733237981796, 0.0027539669536054134, 0.10688211023807526, -0.06178584694862366, -0.22837892174720764, -0.0852351039648056, 0.0006958565791137516, 0.011746717616915703, 0.02625880017876625, -0.22574134171009064, 0.17116272449493408, -0.009467274881899357, -0.00330992229282856, -0.011970718391239643, 0.09568210691213608, -0.04139808565378189, 0.2816700041294098, 0.11261065304279327, 0.30571243166923523, -0.11298708617687225, -0.05618962645530701, -0.06798030436038971, -0.18215563893318176, 0.04441552609205246, -0.09858802706003189, 0.0821116715669632, -0.0033544364850968122, 0.02557970955967903, -0.010976784862577915, -0.009595455601811409, 0.11430354416370392, -0.015598858706653118, 0.05586160346865654, -0.08768091350793839, -0.042948924005031586, 0.158977210521698, -0.008276378735899925, -0.011850768700242043, -0.13876691460609436, 0.04122567176818848, -0.06821988523006439, -0.1007269024848938, 0.03146592527627945, 0.09880506992340088, 0.04606499522924423, -0.10552211105823517, -0.055480360984802246, -0.020205538719892502, -0.06896035373210907, -0.01417898666113615, 0.005641494877636433, -0.10339691489934921, 0.003660342190414667, 0.054789237678050995, 0.10276065766811371, 0.0018029764760285616, -0.00283614220097661, 0.026530131697654724, -0.021702736616134644, 0.1309736669063568, -0.1449783742427826, 0.06242426112294197, 0.014012617990374565, -0.04950903356075287, 0.10742087662220001, 0.05953652784228325, -0.09961525350809097, 0.03864751011133194, 0.12410900741815567, -0.04463563114404678, 0.11015744507312775, 0.03193645924329758, 0.04848533123731613, -0.11145909875631332, 0.04057823866605759, 0.1899891197681427, 0.0028953689616173506, -0.006530706770718098, -0.010270040482282639, -0.06440726667642593, -0.10265970230102539, 0.0803106278181076, 0.121223583817482, 0.04284166172146797, -0.027147945016622543, 0.014725972898304462, 0.023890409618616104, 0.002021125750616193, 0.04325612261891365, -0.13654175400733948, -0.09409743547439575, -0.024854453280568123, -0.0557856447994709, 0.14786586165428162, -0.19365061819553375, -0.11111204326152802, -0.13111677765846252, -0.12743034958839417, 0.012133968062698841, 0.2013869285583496, 0.1124812588095665, 0.026649337261915207, -0.06196380779147148, 0.019792737439274788, -0.06041561812162399, 0.01216170284897089, 0.049017954617738724, 0.08187393099069595, -0.12544527649879456, -0.15240785479545593, 0.05073414370417595, -0.036199845373630524, -0.07578273117542267, -0.034779664129018784, -0.14292652904987335, 0.015548303723335266, -0.19135618209838867, 0.024215545505285263, 0.003105109091848135, 0.024362150579690933, 0.07635792344808578, -0.11671262979507446, -0.12456487119197845, 0.02183210477232933, -0.08530272543430328, 0.03707378730177879, 0.06230449676513672, 0.0682431161403656, -0.09039220213890076, -0.030954405665397644, 0.11504596471786499, -0.08736191689968109, 0.07341818511486053, 0.08835551142692566, -0.044787488877773285, 0.03733035922050476, -0.19179430603981018, -0.011134481988847256, 0.009377652779221535, 0.02045697718858719, -0.020093277096748352, -0.09508058428764343, 0.0848308652639389, 0.007748336996883154, 0.06241217255592346, -0.022596152499318123, 0.1542542278766632, -0.057245202362537384, 0.0756382867693901, -0.11043696105480194, -0.0390155203640461, -0.0193470511585474, 0.022889593616127968, 0.17245259881019592, 0.15028084814548492, 0.142431378364563, -0.023085149005055428, -0.020025242120027542, -0.08327091485261917, 0.06439892202615738, -0.01473673153668642, -0.08254599571228027, 0.09951529651880264, -0.1215556412935257, -0.05388019606471062, 0.009319236502051353, 0.29623815417289734, -0.055480100214481354, -0.041623301804065704, 0.03259241580963135, 0.03320256620645523, 0.06442355364561081, -0.020983701571822166, 0.31090420484542847, 0.07546810805797577, 0.05450306460261345, -0.07868383824825287, 0.03656081482768059, 0.04021383076906204, -0.048948757350444794, -0.05685820057988167, 0.1895371973514557, -0.051941800862550735, 0.037718720734119415, 0.09932997822761536, 0.04119449853897095, 0.12736056745052338, 0.034371547400951385, -0.010244813747704029, -0.053962867707014084, 0.07980465888977051, 0.1715082824230194, 0.23031143844127655, 0.042812786996364594, 0.01407528668642044, 0.07122986763715744, -0.011618097312748432, -0.1035197377204895, -0.05857880786061287, -0.07446061819791794, -0.17649243772029877, -0.007713586091995239, -0.05693506449460983, -0.09218310564756393, 0.16909387707710266, -0.01778639294207096, 0.04949759691953659, 0.16315577924251556, -0.025180870667099953, -0.06225677207112312, -0.01670440100133419, -0.05759593844413757, -0.0837952271103859, 0.006561079528182745, -0.033176738768815994, 0.006479212082922459, 0.08851499110460281, 0.004105404019355774, 0.022990217432379723, -0.01242028921842575, 0.059587400406599045, -0.052857618778944016, -0.0899340882897377, -0.076764777302742, 0.01543864794075489, -0.10479430854320526, 0.13130298256874084, -0.06278611719608307, -0.04458042234182358, -0.004977250937372446, 0.1659279465675354, -0.040819793939590454, -0.139949232339859, -0.1325838714838028, 0.07203169167041779, -0.019248178228735924, 0.047537870705127716, -0.10498331487178802, -0.029304642230272293, 0.02055797353386879, 0.18633276224136353, 0.13548648357391357, -0.008070707321166992, 0.033696699887514114, 0.03514207527041435, 0.01821209490299225, -0.006469249725341797, 0.0626983568072319, 0.0018258575582876801, -0.0358990803360939, -0.003944100346416235, -0.08437464386224747, -0.07021687179803848, 0.022720254957675934, 0.0501679852604866, -0.020378751680254936, 0.05615539103746414, -0.07126812636852264, -0.07593952119350433, 0.07821806520223618, -0.008343273773789406, -0.19781553745269775, 0.02631678245961666, 0.018080124631524086, -0.056687016040086746, -0.10710860788822174, 0.08111579716205597, -0.03460538387298584, 0.032018400728702545, -0.04669729247689247, -0.06955586373806, -0.008513710461556911, 0.06370086222887039, -0.15743494033813477, -0.009612414054572582, 0.09951470792293549, 0.10137613862752914, 0.11161835491657257, -0.05322909355163574, 0.02355251833796501, 0.10340072214603424, 0.05642400309443474, -0.06091494485735893, 0.06627215445041656, -0.007724118418991566, -0.07874398678541183, 0.021223897114396095, -0.03223690390586853, -0.06345529854297638, 0.06970483064651489, 0.021347632631659508, -0.10532955080270767, 0.0396481528878212, -0.08752969652414322, -0.09657828509807587, -0.031170982867479324, -0.06746667623519897, -0.1094251424074173, 0.11822041124105453, 0.02950250543653965, 0.005364567972719669, -0.06871028244495392, -0.08902285993099213, 0.034723781049251556, 0.09895553439855576, 0.021179955452680588, -0.048177365213632584, -0.05636266991496086, -0.10371808707714081, 0.047882381826639175, -0.022056246176362038, -0.31690067052841187, -0.01944202557206154, -0.026783937588334084, 0.01909206062555313, -0.021744195371866226, 0.0794375017285347, 0.1202508807182312, 0.1195482462644577, -0.04175719618797302, -0.04572807252407074, -0.00850723497569561, 0.10775700956583023, -0.23589687049388885, -0.05193644016981125 ]
null
null
mlx
# mlx-community/OLMo-1B-hf-4bit-mlx This model was converted to MLX format from [`allenai/OLMo-1B`](). Refer to the [original model card](https://huggingface.co/allenai/OLMo-1B) for more details on the model. ## Use with mlx ```bash pip install mlx-lm pip install ai2-olmo ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/OLMo-1B-hf-4bit-mlx") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en"], "license": "apache-2.0", "tags": ["mlx"], "datasets": ["allenai/dolma"]}
null
mlx-community/OLMo-1B-hf-4bit-mlx
[ "mlx", "safetensors", "olmo", "custom_code", "en", "dataset:allenai/dolma", "license:apache-2.0", "region:us" ]
2024-02-06T12:53:59+00:00
[]
[ "en" ]
TAGS #mlx #safetensors #olmo #custom_code #en #dataset-allenai/dolma #license-apache-2.0 #region-us
# mlx-community/OLMo-1B-hf-4bit-mlx This model was converted to MLX format from ['allenai/OLMo-1B'](). Refer to the original model card for more details on the model. ## Use with mlx
[ "# mlx-community/OLMo-1B-hf-4bit-mlx\nThis model was converted to MLX format from ['allenai/OLMo-1B']().\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ "TAGS\n#mlx #safetensors #olmo #custom_code #en #dataset-allenai/dolma #license-apache-2.0 #region-us \n", "# mlx-community/OLMo-1B-hf-4bit-mlx\nThis model was converted to MLX format from ['allenai/OLMo-1B']().\nRefer to the original model card for more details on the model.", "## Use with mlx" ]
[ 41, 56, 5 ]
[ "passage: TAGS\n#mlx #safetensors #olmo #custom_code #en #dataset-allenai/dolma #license-apache-2.0 #region-us \n# mlx-community/OLMo-1B-hf-4bit-mlx\nThis model was converted to MLX format from ['allenai/OLMo-1B']().\nRefer to the original model card for more details on the model.## Use with mlx" ]
[ -0.10960612446069717, 0.09733383357524872, -0.0017671420937404037, 0.05643770098686218, 0.1258985698223114, 0.06982026249170303, 0.20222805440425873, 0.04858803376555443, -0.012002981267869473, -0.056655388325452805, 0.1309315413236618, 0.18201053142547607, 0.026113301515579224, 0.08415815979242325, -0.03991029039025307, -0.09120166301727295, 0.009133715182542801, -0.009630841203033924, -0.003886573947966099, 0.052851032465696335, 0.07277455180883408, -0.03267916664481163, 0.17460539937019348, 0.00900446530431509, 0.009858697652816772, 0.04919957369565964, 0.033577971160411835, -0.04165103659033775, -0.003938994836062193, 0.07233753055334091, 0.00033388391602784395, 0.002534517552703619, 0.11330598592758179, -0.11838104575872421, 0.02946382202208042, 0.0015242010122165084, -0.04605119302868843, 0.026234744116663933, 0.00549725629389286, -0.08826357126235962, 0.17148643732070923, -0.04850015789270401, -0.05597468838095665, 0.005443310830742121, -0.04339955747127533, -0.1782149225473404, -0.11110075563192368, 0.0018642478389665484, 0.010653522796928883, 0.010154163464903831, 0.06832648813724518, 0.189103901386261, 0.03690527006983757, 0.08213046193122864, 0.2885628938674927, -0.19339603185653687, 0.0014482898404821754, 0.19373086094856262, 0.09625157713890076, -0.006269070785492659, 0.06788340210914612, 0.15810056030750275, 0.08231489360332489, -0.004064273089170456, 0.058800920844078064, -0.07244224846363068, 0.14363116025924683, 0.05985839292407036, -0.07891569286584854, -0.025903010740876198, 0.244521826505661, -0.01680094003677368, -0.02221938967704773, -0.017102312296628952, 0.0038441403303295374, 0.03074534982442856, -0.08643821626901627, 0.02752610296010971, 0.0913165956735611, -0.001301820040680468, 0.10633799433708191, -0.11223510652780533, -0.03477879613637924, -0.05631659924983978, -0.12529729306697845, 0.223514124751091, 0.010192163288593292, 0.10217631608247757, -0.07604608684778214, -0.035048708319664, -0.00638488307595253, -0.05233334004878998, -0.021013522520661354, -0.01903027482330799, 0.2201618254184723, 0.02416645921766758, -0.02838917449116707, 0.00899458210915327, 0.16883885860443115, -0.04674525186419487, 0.09484349191188812, 0.0030560747254639864, 0.046727750450372696, 0.0441143773496151, 0.016649235039949417, -0.0239345021545887, -0.06027040258049965, -0.009444809518754482, 0.10351399332284927, 0.0007745338371023536, 0.09187738597393036, -0.0375887006521225, -0.1289450079202652, 0.09352961927652359, -0.07104150205850601, 0.16058756411075592, 0.007910468615591526, 0.07608342915773392, 0.005567788612097502, -0.0023893704637885094, 0.04304669424891472, -0.12810446321964264, 0.05890898406505585, -0.02278340794146061, -0.012202693149447441, 0.034118473529815674, 0.05108124017715454, -0.01121826283633709, -0.02758329175412655, -0.06170196086168289, -0.06591600924730301, 0.030876873061060905, -0.09618032723665237, -0.08131524920463562, 0.02981015481054783, 0.056666065007448196, 0.08621520549058914, -0.1585601568222046, -0.244417205452919, 0.027693187817931175, 0.11162737011909485, 0.027830669656395912, 0.0670589953660965, -0.0012810678454115987, -0.007441560737788677, -0.02982226014137268, 0.016166038811206818, 0.06049739196896553, -0.0650988221168518, 0.027920333668589592, -0.0037983583752065897, 0.027071772143244743, -0.11209434270858765, 0.02824852615594864, -0.01780673675239086, 0.09050827473402023, 0.11726707220077515, -0.08237206935882568, -0.05273401364684105, 0.012588195502758026, 0.008027364499866962, -0.018415307626128197, 0.07010529190301895, 0.09667225182056427, 0.008099176920950413, 0.08037496358156204, -0.06627703458070755, -0.01849435828626156, 0.061640601605176926, -0.14324715733528137, -0.12701433897018433, 0.00008912620978662744, 0.02234075218439102, -0.023849142715334892, 0.06307503581047058, 0.044265199452638626, 0.12894293665885925, -0.25578245520591736, 0.014834149740636349, 0.057040274143218994, -0.09767081588506699, -0.19607900083065033, 0.13151885569095612, 0.06493169814348221, -0.1972726285457611, 0.09003472328186035, -0.10633272677659988, -0.021558020263910294, -0.03809424489736557, -0.07893064618110657, -0.08675319701433182, -0.0841422900557518, -0.05311644449830055, -0.054310452193021774, -0.041063595563173294, -0.06831075251102448, 0.05195377767086029, 0.10373570024967194, 0.1537303328514099, -0.014026819728314877, -0.05812179669737816, -0.16874779760837555, 0.14541314542293549, -0.20163078606128693, 0.034113768488168716, -0.016444917768239975, -0.006667131558060646, -0.06283323466777802, -0.22296972572803497, 0.014538618735969067, 0.0889362171292305, 0.039849426597356796, 0.05804911628365517, -0.020169883966445923, 0.08164187520742416, 0.08058737963438034, 0.03840832784771919, 0.024766312912106514, -0.15627922117710114, -0.01671459525823593, -0.04005866497755051, 0.02764638513326645, -0.06308355182409286, 0.018706858158111572, -0.08325304090976715, 0.002830536337569356, -0.012302243150770664, 0.03706679865717888, 0.03856413811445236, 0.007207754533737898, 0.032335229218006134, -0.045768458396196365, 0.06376630067825317, 0.024959897622466087, -0.04032127931714058, 0.13574598729610443, -0.21287274360656738, 0.26058584451675415, 0.2105717808008194, 0.06275428086519241, 0.07187531143426895, -0.011012481525540352, 0.017672240734100342, 0.017349649220705032, 0.0014420103980228305, 0.03552602231502533, 0.010244958102703094, -0.05793655663728714, 0.09122411906719208, -0.08895931392908096, -0.019475804641842842, 0.020173149183392525, -0.10323774814605713, -0.18008986115455627, 0.024444183334708214, 0.2480437159538269, -0.1459757536649704, 0.08068466931581497, 0.17899443209171295, -0.011265084147453308, 0.15114983916282654, -0.015806054696440697, -0.002234070096164942, -0.13226544857025146, -0.055413611233234406, -0.007036319933831692, 0.14098910987377167, 0.06203273683786392, 0.02979123964905739, 0.05113103613257408, -0.041946545243263245, 0.10029911249876022, -0.1047365665435791, -0.04259128123521805, 0.050388965755701065, -0.06404487788677216, -0.08318775147199631, 0.07025547325611115, -0.06403990089893341, 0.06484740972518921, -0.090630903840065, -0.005358361639082432, 0.041225530207157135, 0.018508510664105415, -0.07028643786907196, 0.06766127049922943, -0.18078070878982544, -0.18533731997013092, -0.12679094076156616, -0.04871399700641632, -0.14559485018253326, -0.024551281705498695, 0.016810670495033264, 0.010308067314326763, -0.04865560308098793, -0.11734490841627121, -0.054785046726465225, 0.005025150254368782, -0.025988632813096046, 0.10090146958827972, 0.033821526914834976, -0.006646906025707722, -0.16203877329826355, -0.0468149334192276, 0.024534033611416817, -0.00489839306101203, 0.026381297037005424, -0.034686632454395294, 0.08544626086950302, 0.06573139876127243, -0.007042835932224989, 0.04254072532057762, 0.037410371005535126, 0.0839000940322876, 0.03849061205983162, -0.09430931508541107, 0.22877086699008942, 0.11259361356496811, 0.0010616627987474203, 0.009782298468053341, 0.052696388214826584, -0.08380259573459625, -0.07272244244813919, 0.008256964385509491, -0.12316514551639557, -0.11762802302837372, -0.05991121381521225, -0.021780557930469513, 0.03497311472892761, -0.005720235873013735, 0.05632146820425987, -0.07245989888906479, 0.10232377797365189, 0.011707276105880737, -0.026454893872141838, -0.02193446084856987, -0.010436850599944592, 0.005951489321887493, -0.027904057875275612, -0.02110688015818596, -0.10331358760595322, -0.0032935740891844034, 0.148024320602417, 0.0708121508359909, 0.09131458401679993, 0.08355417847633362, -0.04771258309483528, 0.11568369716405869, 0.01999633200466633, 0.022640030831098557, 0.11314980685710907, -0.012562946416437626, 0.002646541688591242, -0.0455067902803421, -0.08252556622028351, -0.01957269012928009, 0.0291670523583889, 0.001103512360714376, 0.01162000373005867, -0.025471746921539307, 0.09444589912891388, 0.057487986981868744, -0.04135619103908539, -0.0636817067861557, -0.2562112808227539, 0.0646260678768158, 0.1061466708779335, 0.1178615391254425, -0.023092100396752357, 0.04565832391381264, 0.034422650933265686, 0.022870317101478577, 0.12387564778327942, -0.0051701306365430355, 0.05921921506524086, 0.010675963945686817, -0.02532794512808323, -0.05228014662861824, 0.17422088980674744, 0.012993671000003815, 0.0872286856174469, -0.2994181513786316, 0.1331070065498352, 0.06963687390089035, 0.06945780664682388, -0.0935741662979126, -0.004565565846860409, 0.12111527472734451, 0.12975578010082245, 0.09018004685640335, 0.057643383741378784, -0.17245879769325256, -0.08197036385536194, -0.11582500487565994, 0.07490710914134979, -0.021537335589528084, 0.06293419748544693, 0.031452476978302, -0.038091178983449936, -0.028022337704896927, -0.038445353507995605, -0.007900839671492577, -0.11064225435256958, -0.08359129726886749, 0.06886356323957443, 0.18295499682426453, -0.06694153696298599, -0.07618191838264465, -0.04903446137905121, -0.08086635917425156, 0.09176521748304367, 0.15038631856441498, -0.06535539031028748, -0.10933107137680054, -0.06863037496805191, 0.03199812024831772, -0.013447429984807968, 0.0016586575657129288, 0.019535930827260017, 0.10290535539388657, -0.01675216481089592, -0.15134774148464203, 0.009922477416694164, -0.11524546146392822, -0.0297393836081028, 0.003863416612148285, 0.05482090264558792, -0.11990821361541748, 0.01179074589163065, 0.0319928377866745, -0.02223406918346882, 0.0007140882662497461, -0.13030071556568146, 0.028417041525244713, 0.11693540960550308, 0.0885821133852005, 0.04889849200844765, -0.0819077268242836, -0.0934569463133812, 0.0749870091676712, -0.08540713787078857, 0.031502991914749146, 0.17532899975776672, -0.007973521016538143, 0.05210163816809654, 0.13339367508888245, -0.12042231112718582, -0.18675187230110168, -0.15606380999088287, -0.13738465309143066, -0.00861145555973053, 0.10586529970169067, -0.022278983145952225, 0.018040383234620094, 0.07721561193466187, -0.03300171345472336, 0.2039310485124588, -0.2190743237733841, -0.06549016386270523, 0.15956911444664001, 0.17356008291244507, 0.2921537756919861, -0.16986438632011414, -0.029907826334238052, -0.15607281029224396, -0.16780361533164978, 0.07211930304765701, -0.15123741328716278, 0.07665615528821945, -0.0072947475127875805, 0.02132079005241394, -0.014104803092777729, -0.06214065104722977, 0.17133361101150513, -0.08723330497741699, 0.14619220793247223, -0.11698205769062042, -0.11653882265090942, 0.07838359475135803, -0.025931410491466522, 0.15775273740291595, -0.23192836344242096, 0.0487501285970211, -0.06401769071817398, -0.03501309081912041, 0.026401417329907417, 0.0833507552742958, -0.042774129658937454, -0.05228181928396225, 0.03732715919613838, 0.02081817388534546, 0.019247982650995255, -0.050481099635362625, -0.06641270220279694, -0.037468962371349335, -0.07560733705759048, 0.06744340062141418, 0.003301910823211074, -0.10549627244472504, 0.036075409501791, -0.03678222745656967, -0.05337303504347801, 0.05588885769248009, -0.01790093630552292, 0.019652195274829865, 0.025040877982974052, -0.008784720674157143, 0.10160278528928757, -0.007309109438210726, 0.01883949525654316, 0.013180109672248363, 0.09457174688577652, -0.08476213365793228, 0.02577780932188034, -0.057167306542396545, 0.06553439795970917, 0.0685686469078064, 0.07975192368030548, 0.15592730045318604, -0.02894427254796028, 0.0028104125522077084, -0.034378182142972946, 0.07295789569616318, -0.0741356834769249, 0.03790868818759918, 0.08846120536327362, 0.011819141916930676, -0.09824666380882263, 0.046447157859802246, -0.06497277319431305, 0.054702624678611755, 0.00799757894128561, -0.07460781931877136, -0.036309611052274704, -0.12593576312065125, 0.10022716224193573, 0.3229013681411743, -0.028245871886610985, -0.17072352766990662, -0.11251697689294815, -0.11341501027345657, 0.03780980408191681, 0.02029276080429554, 0.06763897836208344, 0.019075466319918633, 0.04752567037940025, -0.06783472746610641, -0.09343717992305756, 0.03717634081840515, -0.04942067340016365, -0.040799323469400406, -0.1662319153547287, 0.008843946270644665, 0.00025063613429665565, 0.041727352887392044, -0.05655629560351372, 0.03623763099312782, -0.06943640857934952, -0.012317509390413761, -0.12642280757427216, 0.049485620111227036, -0.12808752059936523, 0.06260084360837936, 0.05365317314863205, -0.0079236114397645, -0.0931427851319313, 0.05448155105113983, -0.08650774508714676, 0.01769792102277279, 0.0340193547308445, 0.05853760614991188, -0.03326806053519249, -0.08471711724996567, -0.010702032595872879, 0.023510590195655823, -0.028706679120659828, 0.07644441723823547, -0.0408848412334919, 0.011162574402987957, -0.1398836076259613, 0.01662745326757431, 0.03624642267823219, 0.06765782833099365, -0.03586839511990547, -0.18290765583515167, 0.016313055530190468, 0.1147550716996193, -0.030358869582414627, 0.011157100088894367, 0.08916758000850677, -0.09993912279605865, -0.05192714184522629, -0.04448686167597771, 0.010765530169010162, 0.04214734956622124, -0.0455978624522686, 0.11877632886171341, -0.021949375048279762, 0.14162030816078186, -0.004836524836719036, -0.035975437611341476, -0.08529267460107803, 0.02596268057823181, -0.027424857020378113, -0.11533211916685104, -0.11878730356693268, 0.0028675408102571964, 0.006391978822648525, -0.026185929775238037, 0.3405013978481293, 0.12759441137313843, -0.1694403439760208, -0.021419726312160492, 0.09503986686468124, 0.0728231891989708, -0.03862587362527847, 0.1873399019241333, -0.023094449192285538, 0.09308575838804245, 0.0009231804287992418, 0.03647768869996071, 0.07241854071617126, -0.14841888844966888, 0.005721768829971552, 0.08582569658756256, 0.10497146844863892, 0.08184238523244858, 0.11810746043920517, -0.04162929952144623, 0.054097115993499756, -0.11688999831676483, -0.022449882701039314, 0.10749004781246185, -0.00240191794000566, -0.026013605296611786, 0.13082310557365417, -0.06683985888957977, 0.04787259176373482, -0.004444889724254608, 0.021253332495689392, -0.13040554523468018, -0.2039998173713684, -0.11425594240427017, -0.09207167476415634, -0.023978691548109055, -0.06455458700656891, 0.018508266657590866, 0.05066432058811188, -0.005749945528805256, 0.001443335902877152, 0.026597503572702408, -0.19538334012031555, 0.006403900682926178, -0.07960763573646545, -0.050806574523448944, -0.07230165600776672, -0.08021140843629837, -0.058583274483680725, -0.001955621875822544, -0.0675487071275711, -0.004913138225674629, -0.007306948304176331, 0.036945320665836334, 0.07894158363342285, -0.07970836758613586, -0.04933804273605347, -0.08246669918298721, -0.07361412048339844, 0.05330057814717293, 0.019907008856534958, -0.014561696909368038, -0.054492224007844925, 0.0706498846411705, 0.027467232197523117, 0.028825053945183754, -0.16861404478549957, -0.05133925750851631, -0.05639652535319328, -0.023532036691904068, 0.023607401177287102, -0.021802084520459175, 0.030207067728042603, 0.01538578700274229, 0.2492244392633438, 0.32588323950767517, -0.015201612375676632, 0.025429261848330498, -0.06342574954032898, 0.022146103903651237, -0.028668014332652092, 0.05832289159297943, 0.026547366753220558, 0.008977190591394901, -0.010651790536940098, -0.06372914463281631, -0.10121140629053116, 0.029815925285220146, -0.048557575792074203, 0.061577290296554565, 0.0005220361636020243, -0.07338377088308334, 0.07879898697137833, -0.012169496156275272, 0.05928443372249603, 0.016556579619646072, 0.014594931155443192, 0.019634496420621872, -0.011080523952841759, -0.029168831184506416, 0.08416073024272919, 0.0763934925198555, 0.003927703481167555, -0.060514405369758606, -0.019822746515274048, 0.044661007821559906, -0.018957410007715225, -0.2821556031703949, -0.12743782997131348, 0.04645497724413872, 0.07954496145248413, 0.20006582140922546, 0.01696453057229519, 0.03823364898562431, 0.055162038654088974, -0.09760985523462296, -0.08003208786249161, 0.19560377299785614, -0.0015788694145157933, -0.07579834014177322, 0.09323485195636749, -0.14164717495441437, -0.060335077345371246, -0.0478043407201767, -0.044633373618125916, 0.07506453990936279, 0.0024752961471676826, 0.03828700631856918, -0.0774242952466011, 0.050340477377176285, 0.0657648891210556, -0.13261139392852783, 0.11502215266227722, 0.02385628968477249, -0.0032379524782299995, -0.03746834769845009, -0.031963661313056946, 0.1821325719356537, 0.008994204923510551, -0.10618318617343903, 0.02217268757522106, -0.09539122879505157, -0.0443018414080143, -0.05409345030784607, 0.02680397406220436, -0.16842971742153168, -0.05041887238621712, -0.08665718883275986, -0.10100173205137253, -0.0630587711930275, -0.03868291154503822, 0.22266925871372223, 0.02762417122721672, -0.08556723594665527, -0.09388250857591629, 0.026758970692753792, 0.03790087252855301, -0.08403867483139038, -0.09419073164463043 ]
null
null
transformers
static quantize of https://huggingface.co/Doctor-Shotgun/mythospice-70b <!-- provided-files --> ## Provided Quants | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q2_K.gguf) | Q2_K | 25.5 | | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q3_K_XS.gguf) | Q3_K_XS | 28.3 | | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q3_K_S.gguf) | Q3_K_S | 29.9 | | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q3_K_M.gguf) | Q3_K_M | 33.3 | lower quality | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q3_K_L.gguf) | Q3_K_L | 36.1 | | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q4_K_S.gguf) | Q4_K_S | 39.2 | fast, medium quality | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q4_K_M.gguf) | Q4_K_M | 41.4 | fast, medium quality | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q5_K_S.gguf) | Q5_K_S | 47.5 | | | [GGUF](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q5_K_M.gguf) | Q5_K_M | 48.8 | | | [PART 1](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q6_K.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q6_K.gguf.split-ab) | Q6_K | 56.6 | very good quality | | [PART 1](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q8_0.gguf.split-aa) [PART 2](https://huggingface.co/mradermacher/mythospice-70b-GGUF/resolve/main/mythospice-70b.Q8_0.gguf.split-ab) | Q8_0 | 73.3 | fast, best quality | <!-- end -->
{"library_name": "transformers", "tags": ["text-generation-inference"], "pipeline_tag": "text-generation"}
text-generation
mradermacher/mythospice-70b-GGUF
[ "transformers", "gguf", "text-generation-inference", "text-generation", "endpoints_compatible", "region:us" ]
2024-02-06T12:55:49+00:00
[]
[]
TAGS #transformers #gguf #text-generation-inference #text-generation #endpoints_compatible #region-us
static quantize of URL Provided Quants ---------------
[]
[ "TAGS\n#transformers #gguf #text-generation-inference #text-generation #endpoints_compatible #region-us \n" ]
[ 34 ]
[ "passage: TAGS\n#transformers #gguf #text-generation-inference #text-generation #endpoints_compatible #region-us \n" ]
[ 0.0073623815551400185, 0.008341513574123383, -0.007678347174078226, -0.05040990188717842, 0.17295390367507935, 0.03874102979898453, 0.0674939900636673, 0.09763631224632263, 0.05162974074482918, 0.012860002927482128, 0.14273236691951752, 0.12680041790008545, 0.012352901510894299, 0.0320456326007843, -0.09341560304164886, -0.226408913731575, 0.10117428004741669, 0.050008829683065414, -0.08355695754289627, 0.06690875440835953, 0.05633561685681343, -0.0223903339356184, 0.1020210012793541, -0.04131411761045456, -0.18934674561023712, 0.0367744043469429, 0.03988189622759819, -0.07709211856126785, 0.08056213706731796, 0.09846779704093933, 0.08839797228574753, 0.0023988462053239346, -0.14493608474731445, -0.23559258878231049, 0.02905336767435074, 0.03710414841771126, -0.08454957604408264, 0.0213867649435997, 0.030413702130317688, -0.12044638395309448, 0.1016942486166954, 0.04838336259126663, -0.09811636805534363, 0.09285624325275421, -0.18513187766075134, -0.04370896518230438, -0.037015289068222046, -0.04266965761780739, 0.03245215862989426, 0.06496737152338028, -0.02545326203107834, -0.06013960763812065, -0.06233803182840347, 0.07570294290781021, 0.17112553119659424, -0.3239229619503021, 0.000960056611802429, 0.19341203570365906, 0.0662161335349083, 0.05969218164682388, -0.07347431033849716, 0.1154913678765297, 0.034621551632881165, -0.010696198791265488, -0.0203451756387949, -0.08808545023202896, -0.01226799376308918, 0.11954393982887268, -0.07954297214746475, -0.06258309632539749, 0.1997499018907547, -0.03768957778811455, 0.03278719261288643, -0.033353693783283234, -0.08320143073797226, -0.05697236582636833, -0.04803302511572838, 0.034447889775037766, -0.03483021259307861, 0.1377314180135727, 0.06383340060710907, -0.09343085438013077, -0.09503135085105896, -0.055141717195510864, -0.173466756939888, 0.23751544952392578, -0.02004774659872055, 0.07486096024513245, -0.22215773165225983, 0.04200180619955063, -0.11200197041034698, -0.07078836113214493, -0.03246716409921646, -0.08746626228094101, -0.010423612780869007, 0.03389802575111389, -0.10133644938468933, -0.08198580890893936, 0.14871005713939667, 0.10021758079528809, -0.06184899061918259, 0.056315332651138306, -0.07636666297912598, 0.09009592235088348, 0.01579928956925869, 0.07369332015514374, -0.016811616718769073, -0.04043228551745415, -0.0028942034114152193, -0.19434212148189545, -0.033810365945100784, -0.07025321573019028, -0.13671690225601196, -0.05744891241192818, -0.039276059716939926, 0.08572378009557724, -0.022396482527256012, 0.07479993999004364, -0.011033016256988049, 0.005907623562961817, -0.01477004960179329, -0.047722917050123215, -0.019395118579268456, 0.015806712210178375, 0.031051823869347572, 0.1225627064704895, -0.04971926286816597, 0.021509742364287376, -0.06868916749954224, 0.026690060272812843, -0.08390563726425171, -0.011098810471594334, -0.03392438963055611, -0.03208889439702034, -0.0026892710011452436, -0.13301214575767517, 0.030932916328310966, -0.10705427080392838, -0.2050364464521408, 0.01388524379581213, 0.024051601067185402, -0.044327523559331894, 0.049052365124225616, -0.059305399656295776, -0.05659608915448189, 0.056057464331388474, -0.05633320286870003, -0.023329146206378937, -0.07125718146562576, 0.06879395246505737, -0.018355777487158775, 0.0657256618142128, -0.14340326189994812, 0.07109162211418152, -0.042298998683691025, 0.039223562926054, -0.13500089943408966, 0.12874150276184082, -0.0527384988963604, 0.13657264411449432, -0.03291815146803856, 0.019035371020436287, -0.13954833149909973, 0.08328501135110855, -0.06987486779689789, 0.2004745453596115, -0.06597370654344559, -0.12161601334810257, 0.30858343839645386, -0.05855724215507507, -0.12983299791812897, 0.07423022389411926, 0.01595122180879116, -0.010723439045250416, 0.08180786669254303, 0.2621033787727356, 0.017565900459885597, 0.0253263209015131, 0.06599292904138565, 0.15631456673145294, -0.10460486263036728, -0.05803802236914635, 0.03553619608283043, -0.06352128833532333, -0.1283416897058487, 0.028022857382893562, 0.02926992066204548, 0.1088157668709755, -0.024505386129021645, -0.014910274185240269, -0.0438370481133461, 0.003352151019498706, 0.03301432728767395, -0.03426598384976387, 0.11206235736608505, -0.04746310040354729, -0.0012813947396352887, -0.06655795127153397, -0.053186606615781784, -0.056265316903591156, 0.03788267448544502, -0.029554307460784912, 0.11268454790115356, -0.06857991218566895, 0.08261831104755402, -0.14277830719947815, -0.11835453659296036, -0.013344524428248405, 0.11230143904685974, -0.036766283214092255, 0.09654261916875839, 0.06495827436447144, -0.0752810537815094, -0.011589846573770046, 0.038358282297849655, 0.15879783034324646, -0.023216355592012405, -0.027057364583015442, -0.035353001207113266, 0.08375538885593414, -0.07224216312170029, -0.059766996651887894, -0.12515969574451447, 0.029505139216780663, 0.15718968212604523, 0.08398327976465225, 0.01733297109603882, -0.007187212817370892, -0.001076680258847773, -0.022825365886092186, -0.04845442995429039, -0.028659379109740257, 0.07887754589319229, -0.015407913364470005, -0.1267017275094986, 0.21496085822582245, -0.12683482468128204, 0.2260841578245163, 0.16896136105060577, -0.22337429225444794, 0.038821928203105927, -0.1052306517958641, -0.02015758492052555, 0.04571210592985153, 0.08000856637954712, -0.0579380989074707, 0.13768470287322998, -0.007309908978641033, 0.15246643126010895, -0.04268551990389824, -0.036979299038648605, -0.005175293888896704, -0.01802973449230194, -0.029870634898543358, 0.04052913188934326, 0.021142324432730675, -0.14951694011688232, 0.2055840939283371, 0.14584213495254517, 0.0889524444937706, 0.20543897151947021, -0.044631052762269974, -0.021510766819119453, 0.06511006504297256, 0.05741911754012108, -0.03671559691429138, -0.040104202926158905, -0.25812777876853943, -0.036889784038066864, 0.059724003076553345, 0.0958876833319664, 0.16152538359165192, -0.1026403158903122, -0.05586562678217888, 0.0037276113871484995, -0.07400408387184143, 0.0013339479919523, 0.08874108642339706, 0.008629722520709038, 0.08614517003297806, 0.014774366281926632, 0.05418722704052925, 0.1175014078617096, -0.010978436097502708, -0.09649219363927841, 0.21756377816200256, -0.12689262628555298, -0.2908060550689697, -0.17462800443172455, -0.20070599019527435, -0.07009055465459824, 0.08529248088598251, 0.09744548052549362, -0.14620204269886017, -0.0348651148378849, 0.026107951998710632, 0.15701307356357574, -0.13138647377490997, 0.03169579431414604, 0.004839529283344746, 0.027538876980543137, -0.1050352156162262, -0.0867840051651001, -0.05257320776581764, -0.010393842123448849, -0.04483800008893013, 0.08320505917072296, -0.13731057941913605, 0.07460205256938934, 0.15795648097991943, 0.07416888326406479, 0.08296170085668564, -0.020016083493828773, 0.22245769202709198, -0.13677643239498138, -0.052587077021598816, 0.16332079470157623, -0.017917944118380547, 0.05426753684878349, 0.08948460221290588, -0.0027865685988217592, -0.1430131047964096, -0.008935922756791115, -0.001159417792223394, -0.11850575357675552, -0.21220824122428894, -0.07442627102136612, -0.1436300128698349, 0.042956091463565826, -0.018315628170967102, 0.08439315110445023, 0.1540733277797699, 0.07724051177501678, 0.004986918531358242, 0.04537642002105713, 0.045099422335624695, 0.06192810460925102, 0.15209877490997314, -0.014786290936172009, 0.08133252710103989, -0.0594942644238472, -0.06954644620418549, 0.06526829302310944, 0.10145916789770126, 0.18645134568214417, 0.1183030977845192, 0.1494632214307785, 0.042727719992399216, -0.03758320212364197, 0.15070416033267975, 0.0896114632487297, -0.017999425530433655, -0.05512133985757828, -0.019411737099289894, -0.01081536803394556, -0.02532927878201008, 0.04090597480535507, -0.0050968388095498085, -0.17730017006397247, -0.02163553796708584, -0.16262152791023254, 0.13585472106933594, 0.04918055236339569, 0.05372718721628189, -0.154494509100914, -0.006472941488027573, 0.1225179135799408, -0.030217917636036873, -0.12457466125488281, 0.10292568057775497, 0.0785130187869072, -0.0939260795712471, 0.07841578871011734, -0.07195163518190384, 0.1323142945766449, -0.027834804728627205, 0.09725191444158554, -0.04886960983276367, -0.06536874920129776, 0.0043839928694069386, 0.09462454169988632, -0.2990280091762543, 0.1966158002614975, 0.03089752048254013, -0.038983795791864395, -0.06677936762571335, 0.01318705826997757, 0.01010613888502121, 0.12998312711715698, 0.1591363251209259, 0.016319360584020615, -0.09410205483436584, -0.048460643738508224, 0.06755441427230835, 0.04993220791220665, 0.19532078504562378, -0.10125472396612167, -0.0007984692929312587, -0.022815853357315063, 0.011877082288265228, -0.024918699637055397, 0.023206042125821114, 0.00012129466631449759, -0.22267866134643555, 0.05875048041343689, 0.06668601930141449, 0.13639110326766968, -0.0001731443335302174, 0.09637404978275299, -0.10302723199129105, 0.22326718270778656, -0.16160379350185394, -0.06956468522548676, -0.1318056583404541, -0.040652960538864136, 0.058711107820272446, -0.02239474095404148, 0.04671407490968704, -0.0797971859574318, 0.033388227224349976, -0.08519463986158371, -0.2213152050971985, 0.11733176559209824, -0.0736718401312828, 0.041329916566610336, -0.026524370536208153, 0.1636161059141159, -0.06293649226427078, -0.024732304736971855, 0.027660369873046875, 0.01781989447772503, -0.05847684293985367, -0.13927797973155975, 0.03755085542798042, 0.010631823912262917, 0.026224534958600998, 0.10648689419031143, -0.03307570517063141, 0.07341783493757248, -0.002257869578897953, -0.007784935180097818, 0.2940836250782013, 0.1192248985171318, -0.024493291974067688, 0.1655491292476654, 0.10282015800476074, -0.08824501186609268, -0.2856706976890564, -0.03363502398133278, -0.15083497762680054, -0.010584102012217045, -0.12508676946163177, -0.23829445242881775, 0.08687415719032288, 0.03581075742840767, 0.006416235119104385, 0.21545960009098053, -0.23456203937530518, -0.04015229269862175, 0.08677917718887329, -0.0013307066401466727, 0.4731837213039398, -0.17603397369384766, -0.15737104415893555, -0.07247912138700485, -0.22134660184383392, 0.1617870032787323, -0.07526391744613647, 0.1206296905875206, -0.0030084489844739437, 0.056691527366638184, 0.027733532711863518, -0.05315158888697624, 0.1634530872106552, 0.06725511699914932, 0.03930215537548065, -0.07062280923128128, -0.014145232737064362, 0.07926779985427856, 0.01193535327911377, -0.00849180668592453, -0.08691012859344482, -0.00053303042659536, -0.13284055888652802, -0.054745886474847794, -0.052530113607645035, 0.053774282336235046, 0.06680983304977417, -0.04634985327720642, -0.055281784385442734, -0.0658106803894043, 0.0077543118968605995, 0.03661434352397919, 0.26153063774108887, -0.10010969638824463, 0.16839826107025146, 0.05617814138531685, 0.061353426426649094, -0.15581169724464417, -0.00546443834900856, -0.04785260558128357, -0.012247301638126373, 0.10508698970079422, -0.1911618411540985, 0.06065197288990021, 0.08368118852376938, -0.04705648496747017, 0.09311886876821518, 0.133894681930542, 0.012431005015969276, 0.02272804081439972, 0.12016918510198593, -0.19112887978553772, -0.12841883301734924, -0.08146453648805618, -0.13141976296901703, 0.10661202669143677, 0.11004871875047684, 0.15854458510875702, 0.07238630205392838, 0.01916700042784214, -0.025467941537499428, 0.00035708281211555004, -0.07850723713636398, 0.02584616281092167, -0.00515533983707428, 0.03778817132115364, -0.14764274656772614, 0.09749293327331543, -0.03350163251161575, -0.14109836518764496, 0.013580359518527985, 0.10226640105247498, -0.1406547874212265, -0.08680185675621033, -0.12220291048288345, 0.14633531868457794, -0.1287495344877243, -0.013109397143125534, -0.012762661091983318, -0.14166241884231567, 0.07227320224046707, 0.2195560485124588, 0.039087239652872086, 0.13801582157611847, -0.018418045714497566, -0.009777383878827095, 0.0020481948740780354, -0.08103147149085999, -0.07011411339044571, 0.007938997820019722, -0.08661293983459473, -0.04074975848197937, -0.06686638295650482, 0.11729928106069565, -0.0791163444519043, -0.05624980852007866, -0.19655096530914307, 0.01600473001599312, -0.15149329602718353, -0.052490003407001495, -0.11046840995550156, -0.059119757264852524, 0.006252598948776722, -0.016934646293520927, -0.05018618702888489, -0.04766131192445755, -0.11907680332660675, 0.01958184689283371, -0.042420681565999985, 0.03301761671900749, -0.057544440031051636, 0.022584255784749985, 0.07474815100431442, -0.04504673555493355, 0.12847517430782318, 0.1655253916978836, -0.07451676577329636, 0.145217165350914, -0.25262022018432617, -0.08967612683773041, 0.09313438832759857, -0.0446694940328598, 0.028329817578196526, 0.10741822421550751, 0.029482616111636162, 0.031103285029530525, 0.0038916885387152433, 0.06234784051775932, -0.05364242196083069, -0.10803990811109543, -0.010546681471168995, -0.09896726161241531, -0.059824202209711075, -0.0538274347782135, -0.052779171615839005, 0.12402965873479843, 0.04129493236541748, 0.05035615712404251, -0.019613539800047874, 0.08930493891239166, -0.00339974625967443, 0.02074059285223484, 0.033454231917858124, -0.18372149765491486, 0.03997473791241646, -0.07897884398698807, 0.010334006510674953, 0.0198623389005661, 0.3382095396518707, -0.030154183506965637, -0.0011135853128507733, 0.022539842873811722, 0.032216787338256836, 0.08499569445848465, 0.03409454599022865, 0.30388811230659485, 0.16094103455543518, -0.05892537906765938, -0.11535567045211792, 0.09257200360298157, 0.03458961844444275, -0.0014711716212332249, 0.11341196298599243, 0.07194800674915314, -0.08679946511983871, 0.16077883541584015, -0.05750836804509163, -0.02974477969110012, -0.003695327090099454, 0.010408550500869751, -0.030877286568284035, 0.03332287445664406, -0.006809916812926531, 0.05008307471871376, 0.18534845113754272, -0.07956060767173767, 0.09079053997993469, 0.025407448410987854, -0.05241144821047783, -0.14902736246585846, -0.14498361945152283, -0.047083184123039246, -0.1724640130996704, 0.04498715698719025, -0.14188328385353088, 0.07342781871557236, 0.1186947226524353, 0.058708637952804565, 0.004860595799982548, 0.15550415217876434, 0.04490360990166664, -0.102976955473423, 0.10939409583806992, -0.05727129802107811, 0.059198472648859024, 0.04566378518939018, -0.028044695034623146, -0.03708631917834282, -0.07492278516292572, 0.004977012984454632, 0.07462916523218155, 0.00896460097283125, 0.028096413239836693, -0.16679053008556366, -0.08015422523021698, -0.04464059695601463, 0.0979541540145874, -0.08652760088443756, 0.10063161700963974, 0.00358870392665267, -0.07127506285905838, 0.04535790905356407, 0.23791606724262238, -0.06311909109354019, 0.04702427610754967, -0.05736315995454788, 0.09124601632356644, 0.0525943785905838, 0.15909874439239502, -0.0797082856297493, -0.021744532510638237, -0.08035191893577576, 0.35505619645118713, 0.21957676112651825, -0.06905315071344376, 0.012070090509951115, 0.04773585870862007, 0.04338761791586876, 0.19237184524536133, 0.0894426703453064, 0.05681614950299263, 0.2649378478527069, -0.04491298645734787, -0.08017343282699585, 0.03335662931203842, -0.05898387357592583, -0.08926882594823837, 0.16402216255664825, 0.05198145657777786, -0.0712011381983757, -0.043700531125068665, 0.12330584973096848, -0.26570841670036316, 0.07431494444608688, -0.01493141334503889, -0.1424683928489685, -0.011727920733392239, -0.05460084229707718, 0.05434072017669678, -0.014351564459502697, 0.08991720527410507, -0.0007448235410265625, -0.15404285490512848, 0.008362796157598495, 0.0437047965824604, -0.24864248931407928, 0.0015469087520614266, 0.004640038125216961, -0.01281535904854536, -0.03059336356818676, -0.03151993826031685, -0.035505764186382294, 0.07760047912597656, 0.03079463355243206, -0.01432123314589262, 0.031962424516677856, -0.02814272791147232, -0.030697593465447426, -0.040354158729314804, 0.08920745551586151, 0.001994339982047677, -0.09931560605764389, 0.06265145540237427, -0.165644571185112, 0.0571473203599453, 0.030934952199459076, -0.07579012960195541, 0.004076667595654726, -0.07074908167123795, -0.09573505818843842, 0.039102692157030106, 0.07699291408061981, 0.010957352817058563, 0.020433830097317696, -0.039453744888305664, 0.019657647237181664, 0.0024166491348296404, 0.0010601141257211566, -0.09628571569919586, -0.08882911503314972, -0.10529844462871552, 0.1948148012161255, -0.04036968573927879, -0.20578475296497345, 0.031026089563965797, -0.04566338285803795, 0.12882976233959198, -0.10748107731342316, 0.08031871169805527, 0.1482127159833908, 0.03702849522233009, -0.03544977307319641, -0.17792177200317383, 0.08074509352445602, 0.08644517511129379, -0.04384119436144829, -0.09323932230472565 ]
null
null
peft
# Model Card for Model ID still training, just testing something out ### Framework versions - PEFT 0.8.2
{"language": ["yue"], "license": "apache-2.0", "library_name": "peft", "datasets": ["mozilla-foundation/common_voice_11_0"], "metrics": ["cer"], "base_model": "openai/whisper-large-v3", "pipeline_tag": "automatic-speech-recognition", "model-index": [{"name": "Whisper Small zh-HK - Alvin", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "mozilla-foundation/common_voice_11_0 zh-HK", "type": "mozilla-foundation/common_voice_11_0", "config": "zh-HK", "split": "test", "args": "zh-HK"}, "metrics": [{"type": "cer", "value": "pending", "name": "Normalized CER"}]}]}]}
automatic-speech-recognition
alvanlii/whisper-largev3-cantonese-peft-lora
[ "peft", "safetensors", "automatic-speech-recognition", "yue", "dataset:mozilla-foundation/common_voice_11_0", "base_model:openai/whisper-large-v3", "license:apache-2.0", "model-index", "region:us" ]
2024-02-06T13:00:06+00:00
[]
[ "yue" ]
TAGS #peft #safetensors #automatic-speech-recognition #yue #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #region-us
# Model Card for Model ID still training, just testing something out ### Framework versions - PEFT 0.8.2
[ "# Model Card for Model ID\nstill training, just testing something out", "### Framework versions\n\n- PEFT 0.8.2" ]
[ "TAGS\n#peft #safetensors #automatic-speech-recognition #yue #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #region-us \n", "# Model Card for Model ID\nstill training, just testing something out", "### Framework versions\n\n- PEFT 0.8.2" ]
[ 75, 13, 11 ]
[ "passage: TAGS\n#peft #safetensors #automatic-speech-recognition #yue #dataset-mozilla-foundation/common_voice_11_0 #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #region-us \n# Model Card for Model ID\nstill training, just testing something out### Framework versions\n\n- PEFT 0.8.2" ]
[ -0.16471797227859497, 0.10495509952306747, -0.0009265397675335407, 0.019017281010746956, 0.08617199212312698, 0.007151810452342033, 0.22442783415317535, 0.09200731664896011, 0.08048177510499954, -0.0008112177602015436, 0.10514185577630997, 0.03623126819729805, 0.08334669470787048, 0.20980416238307953, -0.034763168543577194, -0.15663377940654755, 0.11149680614471436, -0.016764281317591667, 0.291970431804657, 0.10085299611091614, 0.0806325301527977, -0.019120462238788605, 0.01992645673453808, 0.0506104938685894, -0.08942101150751114, -0.04193230718374252, 0.01630549132823944, -0.11578167229890823, 0.104361891746521, -0.01347766537219286, 0.031101642176508904, 0.02393963560461998, 0.08419258147478104, -0.18298280239105225, 0.033914562314748764, 0.05953678861260414, 0.040943693369627, 0.031321942806243896, 0.039016757160425186, 0.014946234412491322, 0.04085302725434303, 0.15970207750797272, 0.0027252917643636465, 0.09027262032032013, -0.020944232121109962, -0.23332446813583374, -0.08874195069074631, 0.14205163717269897, 0.06964105367660522, 0.050889719277620316, -0.027403714135289192, 0.16675445437431335, -0.031510233879089355, 0.03438928723335266, 0.054686691612005234, -0.2313891351222992, -0.028194520622491837, 0.050148651003837585, 0.018158137798309326, -0.01856658235192299, -0.0001348297664662823, 0.02683448977768421, 0.17196178436279297, 0.02142166905105114, -0.06324639916419983, 0.0253550186753273, 0.04603097587823868, -0.085488460958004, -0.08056221157312393, -0.027600973844528198, 0.27799519896507263, 0.07877741008996964, -0.0894155502319336, -0.12317582964897156, -0.029636844992637634, 0.026951013132929802, -0.033580243587493896, -0.03357137367129326, -0.00015818064275663346, 0.03242627531290054, 0.14846092462539673, -0.12433090060949326, -0.07866665720939636, -0.13522540032863617, -0.09425602108240128, 0.11975414305925369, 0.05470207333564758, 0.034979283809661865, -0.032281987369060516, 0.00661036092787981, -0.044310685247182846, -0.04958442598581314, -0.09294164925813675, -0.06038200482726097, 0.051660459488630295, -0.019741160795092583, -0.0060055735521018505, 0.027470147237181664, 0.11331643164157867, 0.1206560730934143, -0.04047386348247528, 0.038852814584970474, -0.09360142052173615, 0.07284192740917206, 0.016923481598496437, 0.011692507192492485, -0.01770532689988613, 0.12739786505699158, 0.05175275728106499, 0.09671695530414581, 0.04072214663028717, -0.02743099443614483, -0.06578528136014938, 0.04354279115796089, 0.05206253007054329, 0.06015078350901604, -0.01687958836555481, 0.009757396765053272, 0.006904416251927614, -0.002401805715635419, 0.0412856861948967, -0.08745728433132172, -0.02268456667661667, 0.04539266228675842, 0.022597001865506172, 0.05323633551597595, 0.06718284636735916, 0.053963661193847656, -0.04159358888864517, -0.061056528240442276, 0.0013941203942522407, -0.01271903607994318, -0.0036302804946899414, -0.008929622359573841, 0.017288215458393097, -0.09124889224767685, 0.020014986395835876, -0.20030224323272705, -0.23592044413089752, -0.0037165239918977022, 0.04221027344465256, -0.0020290128886699677, -0.05523553118109703, -0.0910608246922493, -0.06535416841506958, -0.022615496069192886, -0.050633981823921204, -0.09455284476280212, -0.06549037992954254, 0.04942670464515686, -0.01409072708338499, 0.019949955865740776, -0.11915583908557892, 0.0061422246508300304, -0.07229558378458023, 0.004690081812441349, 0.03524112328886986, 0.06959109008312225, -0.06500750780105591, 0.033229004591703415, -0.08477117866277695, -0.004407039377838373, -0.08048201352357864, 0.09581935405731201, 0.00847529899328947, 0.16653811931610107, -0.14538976550102234, -0.025313660502433777, 0.14908868074417114, -0.20265842974185944, -0.1850530207157135, 0.1515868455171585, 0.02205820567905903, 0.11312472820281982, 0.08692551404237747, 0.29849424958229065, 0.029414057731628418, -0.20686903595924377, 0.01983984000980854, 0.05161125212907791, -0.06524530798196793, -0.11982724815607071, 0.09909091144800186, -0.06558205932378769, -0.1757805347442627, 0.011691419407725334, -0.048621658235788345, 0.028673425316810608, -0.06086529418826103, -0.08932392299175262, -0.05116068944334984, -0.1517122983932495, 0.026136213913559914, -0.008609690703451633, 0.008006841875612736, -0.1135871484875679, -0.027436887845396996, -0.0050190105102956295, 0.15112589299678802, -0.03252615034580231, -0.03629437834024429, -0.1893458217382431, 0.13124454021453857, -0.08434047549962997, -0.0024293027818202972, 0.0026751640252768993, 0.10089530050754547, -0.01165054552257061, -0.010604409500956535, 0.012009695172309875, 0.011729603633284569, 0.04340825229883194, 0.01376892440021038, 0.007246693130582571, -0.060361068695783615, 0.0680575892329216, 0.006550257559865713, -0.030829116702079773, -0.11143023520708084, 0.0005075582303106785, -0.0520378053188324, 0.0914570689201355, -0.1338055431842804, 0.04672454297542572, -0.1096176877617836, 0.06951714307069778, -0.0039143129251897335, 0.01038953848183155, 0.040377672761678696, 0.006878672633320093, 0.023068107664585114, -0.011763660237193108, 0.07555564492940903, 0.052500151097774506, 0.005315983202308416, 0.12632305920124054, -0.0857139304280281, 0.1477339118719101, 0.1531241536140442, 0.049709245562553406, -0.007124845404177904, 0.039234861731529236, -0.010681879706680775, 0.008506319485604763, -0.07572569698095322, -0.029461564496159554, 0.11465100944042206, -0.08365228772163391, 0.14580856263637543, -0.1393476128578186, 0.02037770114839077, 0.05666452646255493, -0.08333143591880798, -0.06522664427757263, 0.04970452934503555, 0.04961426556110382, -0.01703803800046444, 0.08631967753171921, -0.011769206263124943, -0.1030973345041275, 0.158759206533432, -0.06435087323188782, -0.041522055864334106, 0.02352040447294712, 0.09292589128017426, -0.022727396339178085, 0.14838212728500366, -0.11923974752426147, -0.009767597541213036, 0.04046150669455528, -0.001204924308694899, 0.07517535239458084, -0.1301836520433426, -0.040467001497745514, -0.01500144973397255, -0.07747022062540054, -0.1067042425274849, 0.06948977708816528, -0.05976295843720436, 0.07312316447496414, -0.05591922625899315, -0.15591777861118317, 0.05409623682498932, -0.005553390830755234, -0.16183766722679138, 0.06016292795538902, -0.060070570558309555, -0.17117778956890106, -0.09099695086479187, 0.027970807626843452, -0.04200579226016998, 0.03609272837638855, 0.09487642347812653, -0.07900926470756531, 0.040236689150333405, -0.11924751847982407, -0.09819389134645462, 0.03220933675765991, -0.019752072170376778, 0.07871713489294052, 0.010361733846366405, 0.05224345996975899, -0.09398714452981949, -0.0240346547216177, -0.022486813366413116, -0.02366095408797264, 0.029715266078710556, -0.06770732998847961, 0.058550216257572174, 0.1631363332271576, 0.02885231003165245, 0.06383613497018814, -0.02379269152879715, 0.16811874508857727, -0.08250483125448227, -0.033181652426719666, 0.23020142316818237, 0.022118495777249336, -0.005183832254260778, 0.1299494504928589, -0.003911534324288368, -0.10644425451755524, 0.004831536207348108, -0.024020230397582054, -0.07668494433164597, -0.18631313741207123, -0.10494829714298248, 0.009795542806386948, 0.08717891573905945, 0.012954482808709145, 0.046991072595119476, 0.12475898116827011, 0.05978165939450264, -0.024273661896586418, -0.09401218593120575, -0.005345653742551804, 0.01393406093120575, -0.0435960628092289, -0.029617933556437492, 0.06794608384370804, -0.08421535789966583, 0.0017088388558477163, 0.05030398443341255, 0.06193289905786514, 0.07913210988044739, 0.09794451296329498, -0.10164601355791092, 0.07714154571294785, 0.15789861977100372, 0.09718334674835205, 0.0341976061463356, 0.020439673215150833, -0.02663227543234825, 0.007895432412624359, -0.044214729219675064, -0.0733380988240242, 0.09986390918493271, 0.005351272411644459, 0.09833541512489319, -0.0786757841706276, 0.0013746274635195732, 0.04422735795378685, 0.30330997705459595, 0.11468019336462021, -0.23473991453647614, -0.04446486383676529, -0.006985189393162727, -0.06021498516201973, -0.032547663897275925, 0.09813619405031204, 0.07700121402740479, -0.08093871176242828, 0.05567830055952072, 0.018245860934257507, 0.07625175267457962, -0.05610266327857971, 0.035324826836586, -0.07340914011001587, 0.041136451065540314, -0.02232767641544342, 0.03198174759745598, -0.20024797320365906, 0.21574760973453522, -0.008894302882254124, 0.16194914281368256, -0.038899801671504974, -0.010642570443451405, 0.10024391114711761, 0.09042918682098389, 0.16891086101531982, -0.019816014915704727, -0.03148278221487999, -0.07363030314445496, -0.06045321375131607, 0.0993078202009201, 0.0112300468608737, 0.05784172937273979, -0.041035398840904236, -0.0166728924959898, 0.055832911282777786, -0.02596321702003479, -0.020106397569179535, -0.25586310029029846, 0.03628743812441826, -0.023743610829114914, 0.17386046051979065, 0.04749356582760811, -0.05881127342581749, -0.04792679846286774, -0.21150843799114227, -0.00396741833537817, -0.06599639356136322, -0.06087370589375496, -0.04728681594133377, -0.16205324232578278, -0.04281558096408844, 0.002522594528272748, 0.006604311056435108, 0.011744280345737934, 0.06552018970251083, -0.05753658711910248, -0.08064540475606918, 0.032810717821121216, -0.138919398188591, -0.04567901790142059, -0.01460177544504404, 0.13943205773830414, -0.006321737542748451, 0.021466637030243874, 0.08479040861129761, -0.03400755301117897, 0.025591885671019554, -0.039154332131147385, 0.09663727879524231, 0.1353980302810669, -0.08356504887342453, 0.048657797276973724, -0.00663865078240633, -0.13865357637405396, -0.08046904951334, -0.03676009550690651, 0.11228110641241074, 0.1823132038116455, -0.029313672333955765, 0.09294536709785461, 0.2116193175315857, -0.03861772641539574, -0.2673949897289276, -0.06250690668821335, -0.0055577438324689865, 0.016984526067972183, -0.0835619568824768, -0.13736863434314728, 0.04283663630485535, 0.09628557413816452, -0.10969209671020508, 0.06335471570491791, -0.20019640028476715, -0.07415878027677536, 0.21230338513851166, 0.011043238453567028, 0.19405058026313782, -0.09828038513660431, -0.09903141856193542, -0.06931954622268677, -0.022602997720241547, -0.031095458194613457, -0.21626687049865723, 0.06944501399993896, 0.030441008508205414, -0.03800099343061447, 0.0043448712676763535, -0.005119434557855129, 0.16927391290664673, -0.036046963185071945, 0.06057683005928993, -0.06935340911149979, 0.1137659028172493, -0.08701824396848679, -0.018427139148116112, 0.2087434083223343, -0.11032050848007202, 0.06518863141536713, -0.07504000514745712, -0.06244267523288727, -0.05384572222828865, 0.07279264181852341, 0.03685072809457779, -0.07676640897989273, 0.011213419027626514, -0.024526286870241165, -0.011695117689669132, 0.03893321007490158, -0.010920854285359383, -0.1118391826748848, 0.1252080351114273, 0.11960755288600922, 0.17696566879749298, -0.19566915929317474, 0.03237815573811531, -0.06685527414083481, -0.12541720271110535, 0.1361369490623474, -0.17863617837429047, 0.0011875475756824017, 0.020133065059781075, 0.010401293635368347, 0.13890478014945984, 0.006878019776195288, -0.08169987797737122, 0.0662834569811821, 0.059224437922239304, -0.03316206485033035, -0.22954678535461426, -0.04739311710000038, 0.1291906088590622, -0.004119541496038437, 0.16456809639930725, 0.12749144434928894, -0.12338296324014664, 0.019869398325681686, -0.030358964577317238, 0.028043709695339203, -0.10630109161138535, 0.07759968936443329, 0.07178809493780136, 0.053628887981176376, -0.11878161132335663, 0.11104748398065567, -0.059203144162893295, 0.07467079907655716, 0.11108952760696411, -0.031245019286870956, -0.05788027122616768, -0.12554074823856354, -0.05888938531279564, 0.16027024388313293, 0.08664660155773163, -0.17337745428085327, -0.017427893355488777, -0.14185048639774323, 0.025931868702173233, 0.09520721435546875, 0.0623372457921505, 0.012098769657313824, 0.039751358330249786, -0.023442333564162254, -0.07277163863182068, -0.009846600703895092, -0.02201514132320881, -0.009332207962870598, -0.20578323304653168, -0.0060531217604875565, 0.0295895803719759, 0.0969042181968689, -0.07426530122756958, -0.056102316826581955, -0.06729745864868164, 0.08691821992397308, -0.14812704920768738, 0.046321362257003784, -0.07022645324468613, 0.012100007385015488, 0.09440454840660095, -0.057630978524684906, -0.03547995537519455, 0.05125788599252701, -0.06168684363365173, 0.05423944443464279, 0.059868406504392624, 0.09263504296541214, -0.035301417112350464, 0.05081905424594879, -0.006119127385318279, -0.0356186181306839, 0.10658584535121918, 0.03729967400431633, -0.1078917384147644, 0.08111118525266647, -0.22941753268241882, -0.02672714740037918, 0.08525341749191284, 0.0012093562399968505, -0.05683392658829689, -0.024420682340860367, -0.015107933431863785, 0.09836511313915253, -0.007129962556064129, 0.05470545217394829, 0.1164943128824234, -0.0354151651263237, -0.021757999435067177, -0.044242843985557556, 0.01902448572218418, -0.021505022421479225, -0.016693085432052612, 0.1379796415567398, 0.06546109169721603, 0.11579304188489914, -0.11093204468488693, 0.002580110915005207, -0.08450791984796524, 0.025731269270181656, -0.04188781976699829, -0.003815525909885764, -0.08376888185739517, 0.007974669337272644, 0.012818706221878529, -0.027694664895534515, 0.14733785390853882, -0.045843496918678284, -0.09287585318088531, 0.0009098359732888639, -0.036998290568590164, -0.04388056695461273, 0.02649283967912197, 0.3131606876850128, 0.06634721159934998, 0.022351713851094246, -0.009009025990962982, -0.004928193986415863, 0.03814193606376648, -0.019311852753162384, -0.054241620004177094, 0.15565048158168793, 0.028959322720766068, 0.13315975666046143, 0.15110617876052856, -0.00013118945935275406, 0.014816999435424805, 0.023794636130332947, -0.04932818561792374, 0.05461031198501587, 0.0022347213234752417, 0.06893961876630783, 0.2310105264186859, 0.024661993607878685, -0.0067980848252773285, 0.0016160887898877263, -0.01944827474653721, -0.16400177776813507, -0.1713707447052002, -0.0845324695110321, -0.16074343025684357, 0.044009722769260406, -0.0032864741515368223, -0.1091245487332344, 0.1284460574388504, 0.03633080795407295, -0.02548961155116558, 0.041111063212156296, -0.08171165734529495, 0.013746760785579681, 0.12584947049617767, -0.08327090740203857, -0.07024858146905899, -0.17208527028560638, -0.14157061278820038, 0.15770530700683594, 0.038262151181697845, 0.028063086792826653, -0.02026616595685482, -0.07254454493522644, 0.08281196653842926, -0.10169477760791779, -0.08896608650684357, 0.030852269381284714, -0.008758855983614922, 0.010519533418118954, 0.06894727051258087, 0.10405832529067993, -0.05306084826588631, 0.052274174988269806, 0.14075587689876556, -0.027521735057234764, -0.14859256148338318, -0.22385963797569275, 0.16718712449073792, -0.10668091475963593, 0.05314457789063454, -0.042948026210069656, -0.047190360724925995, -0.03673345968127251, 0.21751712262630463, 0.24027536809444427, -0.059395380318164825, 0.02021035924553871, -0.07404321432113647, -0.006135108415037394, -0.1364821046590805, 0.03662477433681488, 0.06763771921396255, -0.02359178476035595, 0.014132864773273468, 0.052725858986377716, -0.024402249604463577, -0.04293825104832649, -0.03874393180012703, -0.0012493401300162077, -0.054564666002988815, -0.045956507325172424, -0.02711188793182373, 0.10738340765237808, -0.09724577516317368, 0.03624103218317032, -0.04131389036774635, 0.040863752365112305, -0.095819391310215, 0.03258891776204109, -0.0022608123254030943, 0.10798192769289017, -0.009855737909674644, -0.09140516817569733, 0.03037285804748535, 0.04727618023753166, -0.0501362569630146, -0.06021646410226822, -0.1338166743516922, -0.02799125202000141, -0.035567041486501694, 0.23310713469982147, 0.03751432150602341, 0.07429755479097366, 0.031121529638767242, 0.027771897614002228, -0.07674100250005722, 0.16808782517910004, -0.0006006307667121291, 0.019200345501303673, 0.029118508100509644, 0.05346941575407982, -0.010554015636444092, 0.07425949722528458, 0.058637771755456924, -0.18323370814323425, -0.04207887500524521, -0.025038309395313263, -0.08713052421808243, -0.09179335832595825, 0.12119390815496445, -0.06316804140806198, 0.06823879480361938, 0.022705785930156708, -0.06114625930786133, -0.048533130437135696, -0.0064467741176486015, 0.10301517695188522, 0.01594347506761551, -0.1748853176832199, 0.01830318570137024, -0.169996976852417, 0.004450949840247631, -0.15533165633678436, -0.023014482110738754, -0.19492416083812714, -0.010109112598001957, -0.12386972457170486, -0.03805921971797943, -0.01328982412815094, -0.012471241876482964, 0.2094510942697525, 0.03812624141573906, -0.0432913638651371, -0.06923407316207886, 0.06641607731580734, 0.08670128136873245, -0.005389265716075897, -0.09657022356987 ]
null
null
adapter-transformers
# Adapter `emvecchi/socc_constructiveness` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [SOCC](https://github.com/sfu-discourse-lab/SOCC.git) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("emvecchi/socc_constructiveness", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:argument/quality", "roberta", "adapter-transformers"]}
null
emvecchi/socc_constructiveness
[ "adapter-transformers", "roberta", "adapterhub:argument/quality", "region:us" ]
2024-02-06T13:01:44+00:00
[]
[]
TAGS #adapter-transformers #roberta #adapterhub-argument/quality #region-us
# Adapter 'emvecchi/socc_constructiveness' for roberta-base An adapter for the 'roberta-base' model that was trained on the SOCC dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'emvecchi/socc_constructiveness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the SOCC dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n", "# Adapter 'emvecchi/socc_constructiveness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the SOCC dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 67, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n# Adapter 'emvecchi/socc_constructiveness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the SOCC dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.023174216970801353, -0.13370132446289062, -0.004640148486942053, 0.00016079505439847708, 0.18838943541049957, 0.05968530476093292, 0.20097480714321136, -0.04180058836936951, 0.09867692738771439, -0.003591309767216444, 0.07414897531270981, 0.08995465189218521, 0.006493165623396635, 0.06391994655132294, -0.013608310371637344, -0.07894503325223923, 0.052277687937021255, 0.07657881826162338, -0.20744551718235016, 0.07871416956186295, 0.11584658920764923, -0.04262170568108559, 0.13086876273155212, 0.0337105430662632, -0.1345718950033188, 0.11659947037696838, 0.07539157569408417, -0.11513848602771759, 0.08765733987092972, 0.07167840749025345, 0.23418140411376953, 0.05384638160467148, 0.004102751147001982, -0.11507297307252884, 0.02939799427986145, 0.05773604288697243, 0.001464959466829896, 0.05930349603295326, -0.08281280100345612, -0.050393927842378616, 0.07692164927721024, 0.064329594373703, 0.09838352352380753, 0.05729874223470688, -0.10544764995574951, -0.19586578011512756, 0.022844968363642693, 0.06108536198735237, 0.019743191078305244, 0.03618006408214569, 0.04889000579714775, 0.009871571324765682, -0.02970108389854431, 0.03791961818933487, 0.2025490552186966, -0.15101811289787292, -0.0314934179186821, -0.0032773062121123075, 0.055928610265254974, 0.12550093233585358, 0.02367873676121235, 0.035679884254932404, -0.0008033010526560247, 0.01728581264615059, 0.1459193229675293, -0.08033113181591034, 0.04390677437186241, 0.05142371729016304, -0.1362786591053009, -0.03182506188750267, 0.30667123198509216, -0.041266847401857376, -0.09036865830421448, 0.041675180196762085, -0.03031286969780922, 0.08151932805776596, 0.01939789205789566, -0.08535029739141464, -0.025611743330955505, 0.04968273267149925, -0.035841573029756546, -0.11562901735305786, -0.07426014542579651, -0.14727002382278442, -0.10608125478029251, 0.3786246180534363, -0.01453875470906496, 0.030555786564946175, -0.039810940623283386, 0.08605670183897018, 0.006468047853559256, -0.08168692141771317, 0.0022570404689759016, -0.08735652267932892, -0.046829503029584885, 0.009461465291678905, -0.0623345747590065, -0.17862233519554138, 0.09152283519506454, 0.2858673632144928, 0.23872563242912292, 0.046391215175390244, 0.007686075754463673, 0.045352499932050705, -0.015109888277947903, 0.17644718289375305, -0.06774108856916428, -0.08535083383321762, 0.021664399653673172, -0.032610490918159485, -0.014163488522171974, -0.07771129906177521, -0.10274473577737808, -0.06423535943031311, 0.01742199994623661, 0.019374055787920952, 0.009234809316694736, 0.10428281873464584, -0.03243408724665642, -0.050605613738298416, 0.04120233654975891, -0.10015642642974854, -0.08710610866546631, -0.0350678488612175, 0.007458237465471029, 0.08798523992300034, 0.13872753083705902, -0.048446834087371826, 0.05166053771972656, 0.05986257642507553, -0.0739840641617775, -0.1301516592502594, -0.05254009738564491, -0.1307397186756134, -0.053539108484983444, -0.19536228477954865, 0.08452162891626358, -0.18712584674358368, -0.08269967883825302, 0.026843378320336342, 0.09090448915958405, -0.02794179506599903, 0.07017720490694046, 0.051690179854631424, 0.007792264223098755, 0.009203186258673668, -0.0640178695321083, -0.007791705895215273, -0.021379249170422554, 0.05227641016244888, 0.10542681068181992, 0.009415650740265846, -0.1351301074028015, 0.061821307986974716, -0.04404797777533531, 0.05161610618233681, -0.2521379292011261, 0.04110885038971901, -0.1342477649450302, 0.0542399138212204, -0.12419988214969635, 0.04024442657828331, -0.06916209310293198, 0.10888979583978653, 0.0706845223903656, 0.05465102940797806, 0.01926838420331478, -0.0811452642083168, 0.028252797201275826, -0.205706387758255, -0.1671425700187683, 0.03399809077382088, -0.046291228383779526, 0.16974222660064697, 0.04655706509947777, 0.04685213044285774, 0.14114996790885925, -0.017376961186528206, 0.006877587642520666, 0.01862553507089615, -0.11921543627977371, -0.08541984856128693, 0.05845595896244049, 0.07004667073488235, -0.15836770832538605, 0.016306839883327484, -0.13833092153072357, 0.129501610994339, -0.002412482164800167, -0.007677906658500433, -0.032180365175008774, -0.06316515803337097, 0.02988002821803093, -0.035351432859897614, -0.03140205517411232, 0.04940180480480194, -0.11974138021469116, 0.14615066349506378, 0.09406180679798126, -0.07819937914609909, -0.012820698320865631, -0.1506880819797516, 0.1359080821275711, -0.1695900410413742, -0.0042237043380737305, -0.18138743937015533, 0.04545053839683533, -0.030328495427966118, 0.1524406224489212, 0.11428335309028625, 0.07431745529174805, 0.09992235898971558, -0.08336398005485535, 0.002495371038094163, -0.021393688395619392, -0.025997865945100784, 0.09007580578327179, 0.03233390301465988, -0.1569111943244934, -0.05362614989280701, -0.06949877738952637, 0.030127637088298798, -0.05476588383316994, 0.03472266346216202, 0.09762085974216461, 0.06494084000587463, 0.058920059353113174, 0.034385327249765396, -0.09683104604482651, -0.013541852124035358, -0.04702906310558319, -0.03602369502186775, -0.013438468798995018, -0.023012885823845863, -0.08946435153484344, 0.08060029149055481, -0.14852778613567352, 0.06647192686796188, 0.12211793661117554, -0.06678830087184906, -0.07336444407701492, -0.014437971636652946, 0.0647653341293335, -0.006181599106639624, 0.13843834400177002, -0.1067022830247879, 0.21249167621135712, 0.01931973546743393, 0.0797918364405632, -0.019152313470840454, 0.04665534570813179, 0.04848245158791542, -0.05922689661383629, 0.028545385226607323, -0.00837597344070673, 0.09313031286001205, -0.17344067990779877, 0.05441679805517197, 0.21478025615215302, -0.12898972630500793, 0.0657057836651802, -0.028612060472369194, -0.07215306162834167, -0.020795954391360283, -0.07617278397083282, 0.06876125931739807, 0.1199963167309761, -0.11693143844604492, -0.06401470303535461, 0.02288631536066532, -0.037574831396341324, 0.044627267867326736, -0.029247544705867767, 0.07315035164356232, 0.07638002932071686, 0.007823934778571129, 0.09476631879806519, 0.026076558977365494, -0.0250885970890522, 0.023378998041152954, 0.04375886172056198, -0.03502544015645981, 0.05438603088259697, 0.0005120764253661036, -0.013785239309072495, 0.15936891734600067, -0.04776635766029358, -0.043502382934093475, -0.24591292440891266, -0.22467096149921417, 0.053380101919174194, 0.061528660356998444, 0.0425218865275383, -0.06461072713136673, -0.07618293911218643, -0.01535494439303875, 0.21506045758724213, -0.01513341162353754, 0.04971790313720703, -0.016829483211040497, -0.010359231382608414, 0.046745866537094116, -0.10098857432603836, 0.00009515687270322815, -0.012621186673641205, -0.0932464748620987, 0.011346226558089256, -0.07617873698472977, 0.09626691043376923, 0.09880375117063522, -0.0027716371696442366, 0.012637306936085224, -0.006413458380848169, 0.05078553408384323, -0.04380816966295242, -0.010663912631571293, 0.2340470552444458, -0.1311158537864685, -0.0007569614099338651, 0.0628349781036377, -0.005465369205921888, -0.018477806821465492, 0.028426919132471085, -0.00012563612835947424, -0.11955557763576508, -0.1911764144897461, -0.0003868378989864141, -0.04102037101984024, -0.045819979161024094, 0.12827223539352417, 0.010987983085215092, 0.03396786376833916, 0.19274744391441345, 0.0694417804479599, -0.0000023779846287652617, -0.00500576151534915, 0.07418963313102722, 0.24121318757534027, 0.005373046733438969, 0.11553944647312164, -0.10933277755975723, -0.02810409478843212, 0.09298298507928848, 0.04212547838687897, 0.22424396872520447, 0.012120911851525307, 0.08235597610473633, 0.08074267953634262, -0.09141626954078674, 0.05258754640817642, 0.15311193466186523, -0.02931172214448452, -0.008063304238021374, -0.05196283385157585, -0.0008366237743757665, -0.12346512824296951, 0.03792331740260124, -0.05258127674460411, -0.05637884885072708, -0.005534520838409662, 0.04497203975915909, 0.021891068667173386, 0.09915490448474884, -0.08859360218048096, -0.2730134427547455, -0.08454470336437225, 0.004844438284635544, 0.005210157949477434, -0.06318119913339615, 0.0027178458403795958, 0.04098070412874222, -0.030235808342695236, -0.02795293554663658, -0.023275159299373627, 0.09662020951509476, -0.07999163866043091, -0.018092043697834015, -0.009363864548504353, 0.18726064264774323, -0.0022957902401685715, 0.04330676421523094, -0.1903993934392929, 0.11322256922721863, 0.004953803028911352, -0.01279599592089653, -0.04476862773299217, 0.027339698746800423, 0.05389260873198509, 0.1163012906908989, 0.017996719107031822, -0.02804398164153099, -0.06228959187865257, -0.18119825422763824, -0.01611911505460739, 0.06485424190759659, 0.05865873023867607, -0.11500149220228195, 0.07669150084257126, -0.09252215921878815, 0.06607392430305481, 0.06295090913772583, -0.04928193613886833, -0.034309271723032, -0.2136623114347458, -0.010937133803963661, 0.050684668123722076, -0.0061403498984873295, -0.0850491002202034, -0.0028581153601408005, 0.07935662567615509, 0.1615443080663681, -0.09844402968883514, -0.0224745012819767, -0.1486528515815735, 0.007249700371176004, 0.1315731257200241, -0.10205385088920593, 0.11982476711273193, -0.026591967791318893, -0.017948627471923828, 0.019536666572093964, -0.1385420262813568, 0.1309700459241867, -0.06880658119916916, 0.055524446070194244, -0.03647086024284363, -0.05633531138300896, 0.05418116971850395, -0.01913706213235855, 0.02660585194826126, -0.011232276447117329, -0.014795315451920033, -0.05786002054810524, -0.09983573108911514, -0.033000506460666656, -0.09298402070999146, 0.1007361114025116, -0.02409583516418934, 0.014939378947019577, -0.04253040999174118, 0.03733794391155243, 0.07144905626773834, 0.04686928912997246, -0.052016448229551315, 0.025442766025662422, 0.10475219041109085, -0.053383324295282364, -0.2503122389316559, -0.07207763195037842, -0.0035143662244081497, 0.024405905976891518, 0.053113214671611786, -0.2229481041431427, 0.19496864080429077, 0.010866028256714344, -0.0072643631137907505, -0.03665515035390854, 0.03708893060684204, -0.046628717333078384, 0.27367180585861206, 0.1210135817527771, 0.2539026141166687, -0.13319005072116852, -0.06268548220396042, -0.057443611323833466, -0.21531714498996735, 0.03636396303772926, -0.11434254050254822, 0.061980847269296646, -0.0096580870449543, 0.029311833903193474, 0.0002347504923818633, -0.01101602241396904, 0.1257489174604416, -0.0614495724439621, 0.047286953777074814, -0.08487018197774887, -0.026189735159277916, 0.16663528978824615, -0.014510240405797958, -0.01380388904362917, -0.15325570106506348, 0.04959544166922569, -0.04392886161804199, -0.10172386467456818, 0.04696926474571228, 0.07198498398065567, 0.04461894929409027, -0.08039840310811996, -0.03649824485182762, -0.03354088217020035, -0.0891493484377861, -0.018048608675599098, 0.058577317744493484, -0.11306732147932053, 0.015407436527311802, 0.07830353081226349, 0.10022652894258499, 0.005203815642744303, -0.03544507548213005, 0.01268287468701601, -0.020876195281744003, 0.12129524350166321, -0.16960446536540985, 0.0864870697259903, 0.017990775406360626, -0.0399952307343483, 0.09390392154455185, 0.05939881131052971, -0.07496846467256546, 0.03118261508643627, 0.11879491060972214, -0.04473886266350746, 0.0644838884472847, 0.031014693900942802, 0.047342751175165176, -0.11386138200759888, 0.08843492716550827, 0.21871140599250793, 0.006145820952951908, -0.006171471439301968, -0.010968487709760666, -0.06802266091108322, -0.11549385637044907, 0.08121691644191742, 0.09425176680088043, 0.044777777045965195, -0.028390709310770035, 0.0108187235891819, 0.026167813688516617, 0.014095716178417206, 0.03734571859240532, -0.11529465019702911, -0.0965542271733284, -0.03148745000362396, -0.049146201461553574, 0.12277793884277344, -0.18658003211021423, -0.10195190459489822, -0.1300317943096161, -0.14474692940711975, 0.005273749586194754, 0.2104686200618744, 0.09016674011945724, 0.026501037180423737, -0.0693373754620552, 0.030359819531440735, -0.04458298534154892, -0.005180546548217535, 0.013557758182287216, 0.08877459913492203, -0.13666106760501862, -0.1141565814614296, 0.021964697167277336, -0.023274170234799385, -0.08050115406513214, -0.027813294902443886, -0.12392939627170563, 0.014146839268505573, -0.1968861222267151, 0.012952087447047234, -0.001141078770160675, 0.012154018506407738, 0.08678323775529861, -0.11821795254945755, -0.11180871725082397, 0.029376691207289696, -0.0763273686170578, 0.03779846057295799, 0.05832900106906891, 0.07166611403226852, -0.08354145288467407, -0.017966585233807564, 0.10891207307577133, -0.08733507990837097, 0.06927451491355896, 0.08404722064733505, -0.0450616255402565, 0.0463133379817009, -0.18830940127372742, 0.002236912027001381, 0.015099615789949894, 0.03537914529442787, -0.011290385387837887, -0.04109394922852516, 0.07359858602285385, -0.0007730330689810216, 0.061030566692352295, -0.017714250832796097, 0.16351574659347534, -0.03576790168881416, 0.07207619398832321, -0.09933555126190186, -0.013569086790084839, -0.03274840489029884, 0.038334786891937256, 0.1715218871831894, 0.15351201593875885, 0.11266911029815674, -0.03682105243206024, -0.016754185780882835, -0.0771237462759018, 0.06090371683239937, -0.003471101401373744, -0.07210687547922134, 0.07827869057655334, -0.14879007637500763, -0.042180631309747696, 0.001555557595565915, 0.26234662532806396, -0.08713310211896896, -0.03940444812178612, 0.035028595477342606, 0.012875521555542946, 0.10920599102973938, 0.002920432947576046, 0.2743404805660248, 0.07972569018602371, 0.05116850137710571, -0.049745991826057434, 0.04208530858159065, 0.020720861852169037, -0.018713511526584625, -0.020728403702378273, 0.1784367710351944, -0.12462003529071808, 0.05517680570483208, 0.0888027474284172, 0.05783054232597351, 0.13584072887897491, 0.008556067943572998, -0.044257573783397675, -0.041897647082805634, 0.05857016146183014, 0.2023065984249115, 0.19242535531520844, 0.046689607203006744, 0.023561256006360054, 0.07866649329662323, -0.016147932037711143, -0.11201082915067673, -0.04046602547168732, -0.06070033460855484, -0.17704230546951294, -0.017881127074360847, -0.033752404153347015, -0.10479003936052322, 0.17421391606330872, -0.011511312797665596, 0.04396597295999527, 0.19139951467514038, -0.020935125648975372, -0.03638555854558945, -0.025601200759410858, -0.06526931375265121, -0.09033790230751038, -0.02390042506158352, -0.03759663924574852, 0.018049001693725586, 0.11532845348119736, 0.002759061986580491, 0.015274115838110447, -0.013672620058059692, 0.0655818060040474, -0.046997688710689545, -0.08532163500785828, -0.07028810679912567, 0.009850263595581055, -0.10232219099998474, 0.12044668197631836, -0.06612007319927216, -0.054573241621255875, -0.014066964387893677, 0.1438915729522705, -0.058721840381622314, -0.10709961503744125, -0.14121809601783752, 0.07678894698619843, -0.028126105666160583, 0.046990618109703064, -0.09235148131847382, -0.023689642548561096, 0.0021628201939165592, 0.18736132979393005, 0.1344449818134308, -0.026515478268265724, 0.04045821353793144, 0.019224928691983223, 0.01563357375562191, -0.024381956085562706, 0.08443029224872589, -0.023916317149996758, -0.028222329914569855, 0.025956857949495316, -0.07092826813459396, -0.03322641924023628, 0.018344175070524216, 0.044823989272117615, -0.02999998815357685, 0.032056890428066254, -0.057801660150289536, -0.056575555354356766, 0.06080251187086105, -0.012822648510336876, -0.19256359338760376, 0.06406007707118988, 0.008227857761085033, -0.05825413390994072, -0.11131080240011215, 0.06289967894554138, -0.0333988219499588, 0.014159541577100754, -0.035508424043655396, -0.06118595972657204, -0.00985950417816639, 0.07655180245637894, -0.14972427487373352, -0.007764551322907209, 0.10406871140003204, 0.015270444564521313, 0.10707361251115799, -0.058745793998241425, 0.016637910157442093, 0.09136848151683807, 0.04925687983632088, -0.06636208295822144, 0.022872913628816605, -0.00425111735239625, -0.11380486190319061, 0.012271794490516186, -0.04438820481300354, -0.07448528707027435, 0.07901673018932343, 0.011808991432189941, -0.0994952917098999, 0.013801710680127144, -0.10095024108886719, -0.09286100417375565, -0.011257106438279152, -0.09230629354715347, -0.11164969950914383, 0.11758129298686981, 0.028982283547520638, 0.0062772901728749275, -0.06949403882026672, -0.08016325533390045, 0.0526808463037014, 0.07343652844429016, 0.0127415107563138, -0.04953466355800629, -0.061773478984832764, -0.08417832851409912, 0.017360737547278404, -0.017580440267920494, -0.3216513991355896, -0.024180704727768898, -0.0456661581993103, 0.03318086266517639, -0.011004467494785786, 0.08499472588300705, 0.15783777832984924, 0.11384845525026321, -0.045733995735645294, -0.07050108164548874, -0.013262334279716015, 0.11574963480234146, -0.22722934186458588, -0.046777982264757156 ]
null
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.0` ```yaml base_model: 152334H/miqu-1-70b-sf model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Open-Orca/SlimOrca type: sharegpt conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./qlora-out adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_table_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "<s>" eos_token: "</s>" unk_token: "<unk>" ``` </details><br> # qlora-out This model is a fine-tuned version of [152334H/miqu-1-70b-sf](https://huggingface.co/152334H/miqu-1-70b-sf) on the Slimorca dataset. It achieves the following results on the evaluation set: - Loss: 0.3110 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.9043 | 0.0 | 1 | 0.6387 | | 0.5612 | 0.25 | 881 | 0.3279 | | 0.6044 | 0.5 | 1762 | 0.3177 | | 0.6592 | 0.75 | 2643 | 0.3110 | ### Framework versions - PEFT 0.8.2 - Transformers 4.38.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0
{"license": "cc0-1.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "152334H/miqu-1-70b-sf", "model-index": [{"name": "qlora-out", "results": []}]}
null
ShinojiResearch/Senku-70B
[ "peft", "llama", "generated_from_trainer", "base_model:152334H/miqu-1-70b-sf", "license:cc0-1.0", "4-bit", "region:us" ]
2024-02-06T13:02:23+00:00
[]
[]
TAGS #peft #llama #generated_from_trainer #base_model-152334H/miqu-1-70b-sf #license-cc0-1.0 #4-bit #region-us
<img src="URL alt="Built with Axolotl" width="200" height="32"/> See axolotl config axolotl version: '0.4.0' qlora-out ========= This model is a fine-tuned version of 152334H/miqu-1-70b-sf on the Slimorca dataset. It achieves the following results on the evaluation set: * Loss: 0.3110 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_steps: 10 * num\_epochs: 1 ### Training results ### Framework versions * PEFT 0.8.2 * Transformers 4.38.0.dev0 * Pytorch 2.1.2+cu118 * Datasets 2.16.1 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0" ]
[ "TAGS\n#peft #llama #generated_from_trainer #base_model-152334H/miqu-1-70b-sf #license-cc0-1.0 #4-bit #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0" ]
[ 47, 144, 4, 44 ]
[ "passage: TAGS\n#peft #llama #generated_from_trainer #base_model-152334H/miqu-1-70b-sf #license-cc0-1.0 #4-bit #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.2+cu118\n* Datasets 2.16.1\n* Tokenizers 0.15.0" ]
[ -0.14288230240345, 0.09301712363958359, -0.00241277483291924, 0.11522142589092255, 0.15448427200317383, 0.030011998489499092, 0.11525431275367737, 0.1169353723526001, -0.11182159930467606, 0.09565255045890808, 0.11254744976758957, 0.09552528709173203, 0.045471519231796265, 0.17577677965164185, -0.03288201615214348, -0.2502467632293701, -0.003648463636636734, -0.007249118760228157, -0.08999275416135788, 0.13373173773288727, 0.0779881626367569, -0.12477954477071762, 0.06856758892536163, -0.021259400993585587, -0.21303847432136536, -0.007583095692098141, -0.018741915002465248, -0.008257962763309479, 0.12145043164491653, 0.01239369623363018, 0.1291644424200058, 0.03380916267633438, 0.13485024869441986, -0.17972621321678162, 0.0036785497795790434, 0.06454108655452728, 0.006124917883425951, 0.09430330246686935, 0.07719039916992188, 0.005019590258598328, 0.11630889028310776, -0.09093508124351501, 0.046636201441287994, 0.02288266457617283, -0.15343643724918365, -0.2053968757390976, -0.12120809406042099, 0.0782376378774643, 0.09737112373113632, 0.08151247352361679, -0.016983214765787125, 0.10037459433078766, -0.08714425563812256, 0.07774502784013748, 0.28971511125564575, -0.2561028003692627, -0.0726199522614479, 0.03685670346021652, -0.002592904958873987, 0.07050276547670364, -0.09206361323595047, -0.04990995675325394, 0.05676855519413948, 0.035955578088760376, 0.09103363752365112, 0.003997421823441982, -0.03287392482161522, 0.013521685265004635, -0.15349481999874115, -0.0427846685051918, 0.06127633526921272, 0.03662573918700218, -0.03618430346250534, 0.008050213567912579, -0.07286571711301804, -0.24470724165439606, -0.041242457926273346, 0.020597802475094795, 0.04809635505080223, -0.04954802617430687, -0.06413547694683075, 0.03188501298427582, -0.06264767795801163, -0.08720780164003372, -0.017929043620824814, 0.14548221230506897, 0.04941786453127861, 0.019103214144706726, 0.00523402588441968, 0.13192106783390045, 0.0040758587419986725, -0.15070195496082306, 0.01449771597981453, 0.0437605082988739, -0.05230794474482536, -0.04421449080109596, -0.05333663150668144, 0.05135798454284668, -0.011708615347743034, 0.1531282216310501, -0.12487762421369553, 0.05661935359239578, 0.04165787249803543, 0.03645053878426552, -0.08852512389421463, 0.11688940972089767, -0.09635414183139801, -0.0030291446018964052, -0.01261165738105774, 0.09578198939561844, 0.007100712042301893, -0.013798965141177177, -0.09633798152208328, 0.007008322048932314, 0.08343299478292465, 0.03209499269723892, -0.0536404512822628, 0.014267942868173122, -0.05199176073074341, -0.013478660956025124, 0.0876568853855133, -0.09817959368228912, 0.047396887093782425, 0.03184320405125618, -0.1034531369805336, -0.026607442647218704, 0.0008384499815292656, 0.001986260525882244, -0.015373647212982178, 0.14686861634254456, -0.10733024030923843, 0.04317723214626312, -0.09823287278413773, -0.11596383899450302, 0.02182462066411972, -0.07088441401720047, -0.008693904615938663, -0.06324148923158646, -0.1372728794813156, -0.04958084598183632, 0.03591745346784592, -0.07923188805580139, -0.05322280898690224, -0.05852825567126274, -0.11451109498739243, 0.017539171501994133, -0.024896681308746338, 0.1501752734184265, -0.06755223870277405, 0.11832315474748611, 0.014773376286029816, 0.059221137315034866, -0.04254445061087608, 0.04304517060518265, -0.0575384795665741, 0.04451652616262436, -0.22947317361831665, 0.04529464989900589, -0.06273059546947479, 0.037522122263908386, -0.10415695607662201, -0.1187918558716774, 0.024360546842217445, -0.030542416498064995, 0.13697515428066254, 0.12941326200962067, -0.18895764648914337, -0.057766202837228775, 0.16273806989192963, -0.06799359619617462, -0.09512653946876526, 0.10694073140621185, -0.04217357560992241, -0.02187262289226055, 0.026556387543678284, 0.14821963012218475, 0.021019937470555305, -0.11607766896486282, -0.013463583774864674, -0.041226938366889954, 0.10957321524620056, -0.0469244122505188, 0.08183758705854416, -0.010624652728438377, 0.0536225400865078, -0.0008829499711282551, -0.05895455554127693, 0.04596537724137306, -0.13342228531837463, -0.08349700272083282, -0.023447386920452118, -0.07960817217826843, 0.026702633127570152, 0.06124838814139366, 0.0462350994348526, -0.09059681743383408, -0.08654949814081192, 0.08189165592193604, 0.11228061467409134, -0.05411779507994652, 0.03906610235571861, -0.050308652222156525, 0.10018642246723175, -0.047157421708106995, -0.03375827893614769, -0.2013099044561386, -0.04419394209980965, 0.02098420076072216, -0.009967939928174019, 0.010395504534244537, -0.04144943878054619, 0.0605914443731308, 0.09914213418960571, -0.06264517456293106, -0.017457012087106705, -0.08546574413776398, -0.018304040655493736, -0.1331809163093567, -0.24971772730350494, -0.0798288881778717, -0.008853684179484844, 0.14365455508232117, -0.20692066848278046, 0.017083389684557915, 0.002794509520754218, 0.11160106211900711, -0.00550480792298913, -0.049577414989471436, -0.050360195338726044, 0.10117137432098389, -0.014810571447014809, -0.07079477608203888, 0.056084044277668, -0.0013258180115371943, -0.05382135882973671, -0.03995386138558388, -0.11631948500871658, 0.11209142953157425, 0.11875792592763901, -0.024818092584609985, -0.12082367390394211, -0.024471750482916832, -0.07671432942152023, -0.037924814969301224, -0.04252583906054497, 0.0453450083732605, 0.15315930545330048, 0.0135630639269948, 0.1260107159614563, -0.08779036998748779, -0.047962624579668045, 0.02983921952545643, -0.0002206036588177085, 0.04893750324845314, 0.14025385677814484, 0.16920970380306244, -0.04765423759818077, 0.13270065188407898, 0.0984402671456337, -0.07998950034379959, 0.08458282053470612, -0.059355493634939194, -0.10761997103691101, -0.04785054549574852, 0.003970846068114042, 0.011783231981098652, 0.156992569565773, -0.04157118871808052, 0.010872961953282356, 0.0077780261635780334, 0.021082274615764618, 0.02190534770488739, -0.22684819996356964, -0.03820370137691498, 0.015449467115104198, -0.05982959643006325, -0.06449682265520096, -0.04801827296614647, 0.008528470993041992, 0.12167491018772125, 0.012879300862550735, -0.08127038180828094, -0.01482062041759491, 0.004920116625726223, -0.0823478251695633, 0.20777595043182373, -0.08757983893156052, -0.05179324001073837, -0.09232542663812637, -0.016254909336566925, -0.026896994560956955, -0.012373073026537895, 0.02918533980846405, -0.08113046735525131, -0.014565030112862587, -0.08060723543167114, -0.007821658626198769, -0.008521048352122307, 0.030116066336631775, 0.013902981765568256, -0.015300254337489605, 0.05839913710951805, -0.09126918762922287, 0.010248294100165367, -0.04419013857841492, -0.03371405974030495, 0.035308852791786194, 0.05125991255044937, 0.1130366250872612, 0.17756585776805878, -0.0032452400773763657, 0.019518600776791573, -0.025649473071098328, 0.2545255422592163, -0.07446496933698654, -0.022965647280216217, 0.07951497286558151, -0.004023139365017414, 0.06543510407209396, 0.139311745762825, 0.07074803858995438, -0.11202447861433029, 0.0020968648605048656, 0.038448765873909, -0.03656579926609993, -0.21093356609344482, -0.05092112720012665, -0.045222148299217224, -0.02674783393740654, 0.10172377526760101, 0.02855331264436245, -0.03055332787334919, 0.03208222612738609, 0.011542219668626785, 0.046815674751996994, -0.04980037361383438, 0.058338798582553864, 0.024322252720594406, 0.06182157248258591, 0.11102040857076645, -0.0266235563904047, -0.016508864238858223, 0.04204476252198219, -0.02459016628563404, 0.2238873541355133, -0.042001981288194656, 0.12268804758787155, 0.0484883189201355, 0.20350147783756256, -0.012158229015767574, 0.07839614897966385, 0.014715146273374557, -0.025084082037210464, 0.00159561971668154, -0.05333312600851059, -0.012251564301550388, 0.013653418980538845, -0.018573325127363205, 0.03795941174030304, -0.12493705749511719, -0.01091372687369585, 0.036241620779037476, 0.30423519015312195, 0.0808691754937172, -0.33641040325164795, -0.08597451448440552, -0.017841685563325882, 0.004223923198878765, -0.012152191251516342, -0.00576981483027339, 0.12774045765399933, -0.06176089495420456, 0.02519966848194599, -0.05164016783237457, 0.09595727920532227, -0.02479846216738224, 0.012123914435505867, 0.09242136031389236, 0.10845115035772324, -0.01962583139538765, 0.0291751679033041, -0.25127193331718445, 0.2920154631137848, 0.016229337081313133, 0.07377490401268005, -0.031032942235469818, -0.007095568347722292, 0.012689619325101376, 0.03988386318087578, 0.04796181991696358, -0.0008907506708055735, -0.05524623766541481, -0.2291216254234314, -0.10531534999608994, 0.024342143908143044, 0.12860107421875, -0.04170222580432892, 0.12150025367736816, -0.0023814798332750797, 0.003146156668663025, 0.0525345504283905, -0.025713764131069183, -0.06703894585371017, -0.047467537224292755, 0.00870570633560419, -0.027726495638489723, -0.031628817319869995, -0.05648830905556679, -0.12088953703641891, -0.07070937007665634, 0.12103509157896042, -0.051980383694171906, -0.0358913280069828, -0.13739384710788727, 0.10948608815670013, 0.1393721103668213, -0.08493829518556595, 0.03125125542283058, 0.03163095563650131, 0.06423589587211609, 0.021659985184669495, -0.039798568934202194, 0.11933191120624542, -0.053060438483953476, -0.22392559051513672, -0.06102745607495308, 0.10895656794309616, 0.06833885610103607, 0.07274484634399414, -0.043032433837652206, 0.03795503452420235, 0.008007977157831192, -0.10585378855466843, 0.03530654311180115, -0.018456576392054558, 0.07998903840780258, 0.04174276068806648, -0.03466082736849785, 0.07801689207553864, -0.054477110505104065, -0.02321733720600605, 0.0953960195183754, 0.35768282413482666, -0.0951228141784668, 0.012277509085834026, 0.04479679465293884, -0.06157972663640976, -0.17274972796440125, 0.04189138114452362, 0.10716591775417328, 0.012948489747941494, 0.015346492640674114, -0.18794018030166626, 0.07258512824773788, 0.12806302309036255, -0.025370309129357338, 0.13659009337425232, -0.34245726466178894, -0.13582666218280792, 0.05858272686600685, 0.13091596961021423, 0.06698846071958542, -0.1689465343952179, -0.03157198801636696, -0.0038628997281193733, -0.15436914563179016, 0.09097132086753845, -0.06383468955755234, 0.10934850573539734, -0.019976915791630745, 0.06067028269171715, 0.00844329223036766, -0.054180409759283066, 0.1415855884552002, 0.04292551800608635, 0.1010502353310585, -0.027567358687520027, -0.021647857502102852, 0.027439720928668976, -0.04746098071336746, 0.002848380943760276, -0.028325609862804413, 0.04134409502148628, -0.08755403012037277, 0.0021627063397318125, -0.09826190769672394, 0.006578804925084114, -0.06089039146900177, -0.04620886594057083, -0.049013350158929825, 0.04068242758512497, 0.04535785689949989, -0.015500294044613838, 0.1004452332854271, 0.014126701280474663, 0.14941169321537018, 0.11866699904203415, 0.014392208307981491, -0.03676164895296097, -0.04495008662343025, 0.015344436280429363, -0.011862521059811115, 0.04929962754249573, -0.15642881393432617, 0.007912920787930489, 0.16475909948349, 0.053484171628952026, 0.11747238039970398, 0.08226986974477768, -0.05832807719707489, 0.011978326365351677, 0.05904339626431465, -0.14059457182884216, -0.06586765497922897, 0.03061997890472412, -0.049584489315748215, -0.1111447662115097, 0.02065294235944748, 0.099453866481781, -0.07243762165307999, -0.022526392713189125, 0.0017515321960672736, 0.023702431470155716, -0.05503486841917038, 0.23802818357944489, 0.07070831954479218, 0.0694064274430275, -0.11881431937217712, 0.07777611166238785, 0.05460719019174576, -0.07624925673007965, 0.01575489155948162, 0.10678289085626602, -0.07999344170093536, -0.0014054534258320928, 0.0945872887969017, 0.12426704168319702, -0.07566190510988235, -0.017491815611720085, -0.154737189412117, -0.10735020786523819, 0.10442368686199188, 0.16866810619831085, 0.07263962179422379, 0.017565730959177017, -0.004799094516783953, 0.024052908644080162, -0.14123742282390594, 0.06814181804656982, 0.04727393388748169, 0.08151538670063019, -0.09329590946435928, 0.2049024999141693, -0.01132753025740385, 0.04304114356637001, -0.01339482981711626, 0.05672169104218483, -0.1343982070684433, 0.014852089807391167, -0.1199943870306015, -0.03280137479305267, -0.030757836997509003, -0.013689585961401463, -0.013159189373254776, -0.05748125538229942, -0.05613928660750389, 0.021755021065473557, -0.12755022943019867, -0.04581935331225395, 0.005494007375091314, 0.015973404049873352, -0.13890524208545685, -0.01512918621301651, 0.026631446555256844, -0.08611727505922318, 0.08359242975711823, 0.058262646198272705, 0.04669807851314545, 0.047758594155311584, -0.11371416598558426, 0.004942710977047682, 0.03441404178738594, -0.015519456937909126, 0.08350257575511932, -0.09996426850557327, -0.015842340886592865, -0.04267832636833191, 0.057343412190675735, 0.020591309294104576, 0.057764921337366104, -0.12157434970140457, 0.004689641296863556, -0.04186825081706047, -0.05706554651260376, -0.04593590646982193, 0.03538971394300461, 0.08443094789981842, 0.04317455366253853, 0.11778555810451508, -0.06932586431503296, 0.0478912778198719, -0.22731859982013702, -0.03203557804226875, -0.012715277262032032, -0.05362631753087044, -0.09146012365818024, -0.038023896515369415, 0.10762327909469604, -0.05265863984823227, 0.08369840681552887, -0.012952631339430809, 0.06454655528068542, 0.0343158096075058, -0.044423915445804596, -0.016447357833385468, 0.045292939990758896, 0.16692660748958588, 0.03958534821867943, -0.03978065773844719, 0.0682392492890358, 0.0562104731798172, 0.08020582050085068, 0.12726353108882904, 0.2419857531785965, 0.11935533583164215, 0.04782744497060776, 0.07916557043790817, 0.05346754938364029, -0.1379869133234024, -0.128662571310997, 0.06716206669807434, -0.05673637613654137, 0.08875694125890732, -0.027586599811911583, 0.20782756805419922, 0.06604599207639694, -0.19106031954288483, 0.03718407452106476, -0.046398043632507324, -0.09601154923439026, -0.11086227744817734, 0.02442636340856552, -0.06373641639947891, -0.15907980501651764, 0.00548442080616951, -0.12085361033678055, 0.04091048613190651, 0.15660426020622253, 0.019871219992637634, 0.02927228808403015, 0.1206478476524353, 0.06559590250253677, 0.037785984575748444, 0.04841043800115585, 0.027602870017290115, 0.0007168293814174831, -0.06295764446258545, -0.09529605507850647, 0.029377464205026627, -0.04276198148727417, 0.062131788581609726, -0.05177699401974678, -0.06521297246217728, 0.0580006018280983, 0.020473914220929146, -0.09776364266872406, 0.031220020726323128, 0.010160093195736408, 0.08070599287748337, 0.07998494058847427, 0.011616827920079231, 0.035529304295778275, -0.03146735951304436, 0.2118227332830429, -0.07015369087457657, -0.043374259024858475, -0.11187396198511124, 0.29059645533561707, 0.03419695422053337, -0.013721073977649212, 0.03584975376725197, -0.08860676735639572, -0.024862734600901604, 0.14569474756717682, 0.14551448822021484, -0.12493502348661423, -0.02134581282734871, 0.014243985526263714, -0.010879989713430405, -0.030693726614117622, 0.12440307438373566, 0.12336210161447525, 0.05432160943746567, -0.10643855482339859, -0.03826398029923439, -0.07207756489515305, -0.03151855617761612, -0.019840015098452568, 0.03505190461874008, 0.023259514942765236, 0.009701278060674667, -0.0539456345140934, 0.07201703637838364, -0.07570267468690872, -0.14482241868972778, 0.10532622039318085, -0.20909875631332397, -0.19217756390571594, -0.005351727828383446, 0.03408290445804596, 0.016038672998547554, 0.07314946502447128, -0.033617276698350906, -0.015222566202282906, 0.11321154981851578, -0.034694697707891464, -0.05627419427037239, -0.12449049949645996, 0.07879464328289032, -0.1199524998664856, 0.19934585690498352, -0.0411512516438961, 0.06263256072998047, 0.11957859992980957, 0.061264559626579285, -0.10657846182584763, 0.029282420873641968, 0.06794372946023941, -0.10635529458522797, 0.001090129022486508, 0.1303897649049759, -0.049997907131910324, 0.042794063687324524, 0.03709924966096878, -0.12404368072748184, 0.006583981681615114, -0.0412818118929863, -0.03495074436068535, -0.05243869870901108, -0.06642882525920868, -0.0491272397339344, 0.130918949842453, 0.2222748100757599, -0.046926431357860565, 0.026614492759108543, -0.057407110929489136, 0.011057679541409016, 0.03728751838207245, 0.09017647057771683, -0.045064229518175125, -0.26045289635658264, 0.04801485687494278, 0.06194061413407326, -0.006479311268776655, -0.2081425040960312, -0.06325674802064896, 0.04142741486430168, -0.07917506992816925, -0.09209983795881271, 0.11617861688137054, 0.024739818647503853, 0.06037459149956703, -0.056666210293769836, -0.11366056650876999, -0.07579533755779266, 0.16849270462989807, -0.15194043517112732, -0.09778417646884918 ]
null
null
null
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': True 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'env_id': 'LunarLander-v2' 'total_timesteps': 50000 'learning_rate': 0.00025 'num_envs': 4 'num_steps': 128 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.95 'num_minibatches': 4 'update_epochs': 4 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'kieranbm/ppo-CartPole-v1' 'batch_size': 512 'minibatch_size': 128} ```
{"tags": ["LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "-165.61 +/- 75.31", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
kieranbm/ppo-CartPole-v1
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
2024-02-06T13:02:29+00:00
[]
[]
TAGS #tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
[ "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n\n # Hyperparameters" ]
[ "TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n", "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n\n # Hyperparameters" ]
[ 51, 37 ]
[ "passage: TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n\n # Hyperparameters" ]
[ 0.07948226481676102, -0.021824665367603302, -0.005334289278835058, 0.07425090670585632, 0.11451162397861481, -0.051334477961063385, 0.11827225238084793, 0.05111894756555557, 0.0632978081703186, 0.08233953267335892, 0.09910695254802704, 0.11526558548212051, 0.02103434130549431, 0.12346389144659042, 0.10133372992277145, -0.26653239130973816, 0.0048308540135622025, -0.042133692651987076, 0.020121442154049873, 0.07062754780054092, -0.028985055163502693, -0.12164036184549332, 0.02042403817176819, -0.008055811747908592, 0.04164125770330429, 0.03685355558991432, -0.020250989124178886, -0.07061084359884262, 0.1035412922501564, -0.04342407360672951, 0.07646117359399796, 0.04053044691681862, 0.12915800511837006, -0.11266650259494781, 0.03731851652264595, 0.047094929963350296, -0.058420803397893906, 0.040810972452163696, 0.023221731185913086, 0.07433853298425674, 0.15582501888275146, 0.0008022422553040087, 0.10807766020298004, -0.019928930327296257, -0.15859591960906982, -0.0564296655356884, 0.04013175517320633, 0.10688508301973343, 0.041339244693517685, 0.05763867497444153, 0.01518392562866211, 0.24210692942142487, -0.07300914824008942, 0.0014766358071938157, 0.1963091939687729, -0.2750851511955261, -0.056198850274086, 0.2650637924671173, 0.08425293117761612, 0.09438422322273254, -0.09869689494371414, -0.0236953292042017, 0.007850034162402153, 0.013983802869915962, -0.038732558488845825, -0.07621388882398605, 0.1343805193901062, 0.06358266621828079, -0.07906194031238556, -0.05448254942893982, 0.09211132675409317, 0.015635671094059944, 0.03398676961660385, 0.0008897133520804346, -0.015260354615747929, 0.03964465111494064, -0.008004734292626381, -0.08323223143815994, 0.067534439265728, 0.017411211505532265, -0.059903185814619064, -0.11101946979761124, -0.11182308942079544, -0.028280947357416153, -0.08438915759325027, 0.16840966045856476, -0.023494480177760124, 0.07285201549530029, -0.06215810775756836, 0.06860414892435074, -0.037912189960479736, 0.004227026831358671, 0.006380763836205006, -0.049948662519454956, -0.04539962485432625, -0.025878654792904854, 0.006328459829092026, 0.011017742566764355, 0.11213880032300949, -0.002449487103149295, 0.0508684441447258, 0.04856472462415695, 0.014653711579740047, 0.0942535474896431, 0.04126615449786186, 0.18958540260791779, -0.006363034248352051, 0.0650586485862732, 0.062062907963991165, 0.017491057515144348, 0.022076671943068504, -0.05142693966627121, -0.1658715307712555, 0.0807771384716034, -0.08260773122310638, -0.028765955939888954, 0.09323479980230331, -0.044928085058927536, -0.1112084910273552, -0.01773354969918728, -0.07590804249048233, -0.025731517001986504, -0.01252016518265009, 0.01790926419198513, -0.035574477165937424, 0.005672375671565533, 0.03449513763189316, 0.08204318583011627, 0.033907562494277954, -0.08674118667840958, 0.00984077900648117, 0.012360874563455582, -0.122767873108387, -0.004771664272993803, 0.010288639925420284, 0.04804306477308273, 0.04491464048624039, -0.1116413027048111, -0.2020648866891861, -0.08828215301036835, 0.053431469947099686, -0.07537820190191269, -0.15614600479602814, -0.11512033641338348, 0.02302604168653488, -0.10217837989330292, -0.046169016510248184, -0.0017400066135451198, -0.019300667569041252, 0.05366985872387886, -0.06531468033790588, 0.1828034669160843, 0.0271916463971138, -0.00020129751646891236, -0.14947181940078735, 0.019320663064718246, -0.2362208217382431, 0.07685942947864532, -0.04987453296780586, 0.07074880599975586, -0.04584719240665436, -0.09154892712831497, -0.01864667609333992, 0.054014526307582855, 0.013841784559190273, 0.10950348526239395, -0.1638582944869995, -0.05129624530673027, 0.024843567982316017, -0.08068934828042984, -0.0030390452593564987, -0.04837793856859207, -0.04604795575141907, 0.1606992781162262, 0.018704978749155998, 0.14688511192798615, -0.12919624149799347, -0.09930720180273056, 0.19129104912281036, 0.03531093895435333, -0.16984215378761292, -0.036521974951028824, 0.09952033311128616, 0.019277004525065422, -0.01849931664764881, -0.05688142776489258, -0.07599073648452759, 0.015944182872772217, -0.08702079951763153, -0.04182637855410576, 0.04013517126441002, -0.042824242264032364, 0.14606650173664093, 0.10223949700593948, 0.07952884584665298, -0.07538176327943802, -0.007020880468189716, 0.08674140274524689, 0.06271850317716599, 0.045035574585199356, 0.03672485426068306, -0.05614851415157318, 0.03206208720803261, -0.025039123371243477, -0.01738123595714569, -0.13521039485931396, 0.0019960827194154263, -0.06055765971541405, 0.1118607297539711, 0.13101612031459808, 0.28467631340026855, 0.10075046867132187, 0.02464960888028145, 0.07675616443157196, -0.07042508572340012, -0.10758408159017563, 0.002032244112342596, 0.0235405582934618, -0.1785016655921936, 0.026378504931926727, -0.07599464803934097, -0.14044412970542908, -0.1351996809244156, -0.025685761123895645, -0.17195537686347961, 0.02159930020570755, 0.054728612303733826, -0.018639836460351944, 0.0013907389948144555, 0.12220112234354019, 0.013543038628995419, -0.053733617067337036, 0.10188740491867065, 0.009542218409478664, -0.05206648260354996, -0.045367226004600525, 0.1050298660993576, 0.13431710004806519, 0.1365344226360321, -0.2098493129014969, 0.008600602857768536, 0.1119711846113205, -0.04708562791347504, 0.03519878163933754, 0.026510966941714287, 0.21071651577949524, 0.2740876078605652, 0.0374440960586071, 0.008118349127471447, -0.05789022892713547, 0.0453064851462841, -0.05260699614882469, -0.11800429224967957, -0.05410657823085785, 0.17159637808799744, 0.07862472534179688, -0.006237224210053682, 0.09871696680784225, 0.07909595966339111, 0.037818074226379395, 0.16045765578746796, 0.03334520757198334, -0.09544764459133148, -0.03232238441705704, -0.026171676814556122, -0.0047440179623663425, 0.06791821867227554, -0.0798373743891716, -0.032012078911066055, 0.021649274975061417, -0.13788609206676483, 0.018513672053813934, -0.18612799048423767, -0.1437452882528305, 0.03805195167660713, 0.043561313301324844, -0.008401780389249325, 0.04065251722931862, -0.0160639937967062, 0.05676067993044853, 0.03282754495739937, -0.08861549198627472, 0.04405612871050835, -0.005384152289479971, 0.009959283284842968, 0.03441033884882927, -0.01767686940729618, -0.21204280853271484, -0.15340813994407654, 0.013550614938139915, -0.05142427980899811, 0.05592547729611397, -0.008550947532057762, -0.19242143630981445, 0.025911282747983932, -0.014332908205688, 0.02364996261894703, -0.03164665028452873, -0.03833974152803421, 0.1345074623823166, 0.14185978472232819, -0.026165392249822617, 0.00023905932903289795, -0.03341824188828468, -0.14318081736564636, -0.180479034781456, 0.06557876616716385, 0.0740460753440857, 0.006866236217319965, 0.1220167726278305, 0.004434254486113787, 0.026604121550917625, -0.00636066310107708, 0.007762894034385681, -0.07827747613191605, -0.10268643498420715, 0.2943233549594879, 0.02490289881825447, -0.022609207779169083, -0.023361563682556152, 0.022680940106511116, -0.005913543980568647, 0.020695405080914497, -0.06731052696704865, -0.11051533371210098, -0.10214895755052567, -0.018064133822917938, -0.05326148122549057, 0.08696132898330688, 0.05207669362425804, -0.0023201601579785347, -0.058658841997385025, 0.0491698756814003, 0.15816207230091095, 0.0022554483730345964, -0.07889559864997864, 0.00756099633872509, 0.06827649474143982, -0.10357149690389633, 0.019141824916005135, -0.011750275269150734, -0.06115471199154854, 0.01578802429139614, 0.021844392642378807, 0.02698187716305256, 0.10298074781894684, -0.21004606783390045, 0.04396829754114151, 0.06455216556787491, 0.025463011115789413, 0.08768844604492188, 0.05016043782234192, -0.11047832667827606, -0.016628960147500038, -0.0343489907681942, -0.16258354485034943, 0.1297316700220108, 0.14130131900310516, 0.06893892586231232, 0.039022352546453476, 0.04288983345031738, -0.07514789700508118, 0.058336563408374786, -0.03656633570790291, -0.1470387876033783, -0.018523573875427246, 0.03902188688516617, 0.03257647529244423, 0.038807060569524765, 0.10827972739934921, 0.10223158448934555, -0.14332416653633118, -0.03201044723391533, 0.06512229144573212, -0.008886558935046196, -0.04119880497455597, 0.004403908737003803, -0.09832779318094254, 0.07498125731945038, -0.0024919756688177586, 0.04813602566719055, -0.20199769735336304, 0.16434083878993988, -0.09330786764621735, 0.034300561994314194, -0.04896155744791031, -0.044333528727293015, 0.03555295243859291, -0.09057865291833878, 0.20472288131713867, 0.0057462104596197605, 0.008313721977174282, -0.12209630757570267, -0.17661772668361664, -0.034985676407814026, -0.09205599129199982, -0.07460658252239227, 0.02909865602850914, 0.0682184249162674, 0.029013507068157196, -0.044006895273923874, 0.1327963024377823, -0.007539169397205114, 0.08532623946666718, -0.09495806694030762, -0.09892267733812332, -0.06850815564393997, -0.09003753960132599, -0.13165755569934845, -0.069197878241539, 0.05082700401544571, 0.12665395438671112, 0.02109835296869278, -0.02864154241979122, 0.016000375151634216, -0.01131656114012003, 0.0060316757299005985, -0.006539386231452227, 0.0482512004673481, 0.015850301831960678, -0.05547862499952316, -0.13189296424388885, 0.08252222090959549, -0.06544385105371475, -0.06556238979101181, -0.023766927421092987, 0.09430349618196487, 0.09706855565309525, 0.1314772367477417, -0.052682001143693924, 0.028886299580335617, -0.03723334148526192, -0.04484548792243004, 0.18565788865089417, 0.0040725888684391975, -0.07140722125768661, 0.04510314390063286, 0.08041586726903915, 0.05989309027791023, 0.0390491709113121, -0.031676698476076126, 0.20406655967235565, 0.15550298988819122, -0.018378838896751404, 0.19636642932891846, -0.017176153138279915, -0.0269333329051733, -0.20952188968658447, 0.006836839485913515, -0.019357649609446526, 0.029477683827280998, 0.1340312361717224, -0.1391998678445816, 0.02293945848941803, -0.004865060094743967, -0.02284914068877697, -0.07053285837173462, -0.3114997148513794, -0.06468415260314941, 0.20102077722549438, 0.17379379272460938, 0.30399972200393677, -0.10662104934453964, 0.05403600633144379, 0.02176249772310257, 0.035715505480766296, 0.03934846818447113, -0.07645441591739655, 0.1000572219491005, -0.11122481524944305, 0.16528162360191345, 0.08111181855201721, -0.020749825984239578, -0.02004031278192997, -0.13701297342777252, 0.018633954226970673, -0.12466508150100708, -0.017992790788412094, 0.08779406547546387, -0.003319771494716406, -0.09328535199165344, 0.23242005705833435, -0.06734555959701538, -0.127778559923172, -0.028943995013833046, -0.057271506637334824, -0.030531147494912148, 0.012628542259335518, -0.09404513984918594, 0.005903336685150862, 0.1308545619249344, -0.011834635399281979, 0.11608193069696426, 0.16071371734142303, -0.035819161683321, 0.07980551570653915, 0.11671095341444016, 0.041628848761320114, 0.06653126329183578, -0.16247588396072388, -0.008802353404462337, -0.0202709399163723, 0.029673689976334572, -0.1328430324792862, -0.08996491879224777, 0.037999510765075684, 0.055287107825279236, -0.016219541430473328, 0.11157703399658203, -0.02790040522813797, 0.0671137273311615, 0.05197756364941597, -0.14911557734012604, -0.21309031546115875, 0.043088413774967194, -0.03457297012209892, 0.16741053760051727, 0.032527483999729156, 0.07026690244674683, -0.1318490356206894, 0.005996404681354761, -0.008010598830878735, -0.02555401436984539, -0.113502137362957, -0.04016893729567528, 0.10736791044473648, 0.01890859194099903, -0.05588224157691002, 0.11932288110256195, 0.053731534630060196, 0.07207717001438141, 0.022103527560830116, 0.036430660635232925, 0.10638459026813507, -0.05759545415639877, 0.08525355905294418, 0.19163745641708374, 0.022084489464759827, -0.050156377255916595, -0.1069810688495636, -0.142279252409935, 0.1059383824467659, -0.029212607070803642, 0.06867408007383347, -0.16743674874305725, -0.09695854038000107, 0.03239866718649864, -0.006085241679102182, -0.045712824910879135, -0.04037291929125786, -0.029692232608795166, -0.1638854742050171, 0.07177262753248215, -0.026750473305583, 0.09733851999044418, -0.07764898240566254, -0.08057862520217896, -0.1878826767206192, 0.0927230566740036, 0.11600489169359207, -0.09250454604625702, -0.07816965878009796, 0.0006463889149017632, 0.007188722491264343, -0.05905555561184883, -0.05547625944018364, 0.05128099024295807, -0.1268264353275299, 0.03925716504454613, 0.02211940288543701, 0.07955963909626007, -0.013168327510356903, -0.022237133234739304, 0.053730763494968414, -0.05526714771986008, -0.004513209220021963, -0.0007778665167279541, -0.010598957538604736, -0.04734821990132332, -0.2539333701133728, 0.026826584711670876, 0.015074611641466618, 0.023000292479991913, 0.11450504511594772, 0.052672553807497025, 0.002142281737178564, -0.022901082411408424, -0.09921795129776001, 0.004082086030393839, 0.0676940307021141, -0.0444176085293293, 0.02973432093858719, 0.04361078143119812, -0.10892095416784286, -0.011856138706207275, -0.024206269532442093, 0.07134921103715897, 0.010941405780613422, 0.06965811550617218, -0.07052738219499588, 0.09066002070903778, -0.1813029795885086, -0.042003389447927475, 0.02394963428378105, 0.0719861164689064, 0.12007027864456177, -0.10232933610677719, 0.05554276332259178, 0.007666701916605234, 0.16984406113624573, 0.10653958469629288, -0.002575549529865384, -0.03601353242993355, 0.06471540033817291, 0.09858960658311844, 0.034707363694906235, 0.04066390544176102, 0.06345933675765991, -0.010203788988292217, 0.10382732003927231, 0.10297582298517227, 0.14551296830177307, 0.050692107528448105, 0.15706492960453033, 0.03763074800372124, 0.008729667402803898, 0.07412492483854294, 0.0944521427154541, 0.08652419596910477, -0.006242257542908192, 0.1731923371553421, -0.007543493993580341, -0.01751723699271679, -0.03595760464668274, 0.16348356008529663, 0.06810002774000168, -0.10502735525369644, 0.032236937433481216, -0.05084357038140297, 0.025795334950089455, -0.021152885630726814, -0.15513712167739868, -0.03436838835477829, -0.2639841139316559, 0.12161721289157867, -0.04934193193912506, -0.00526955584064126, 0.0620683990418911, -0.019800636917352676, -0.053851764649152756, -0.00036916558747179806, 0.0654521957039833, 0.026729213073849678, 0.01114212442189455, -0.028801998123526573, -0.021474527195096016, -0.19075548648834229, -0.11265835911035538, -0.04041624069213867, -0.13205185532569885, -0.026539895683526993, 0.02738100476562977, -0.05638997629284859, 0.00884995236992836, -0.0025031883269548416, -0.01385815255343914, 0.04824291169643402, -0.052424367517232895, 0.045965224504470825, 0.051154542714357376, 0.06721315532922745, -0.07684784382581711, 0.00411610584706068, 0.11700203269720078, 0.03185063600540161, -0.09347992390394211, 0.055158115923404694, 0.12995439767837524, -0.058530066162347794, 0.026019345968961716, -0.007744444999843836, -0.032847896218299866, -0.09708602726459503, 0.19312189519405365, 0.11783043295145035, -0.16847896575927734, 0.0006766151054762304, -0.036616407334804535, -0.01160040870308876, -0.09233774989843369, 0.12344596534967422, 0.1592838317155838, 0.055998723953962326, -0.15062640607357025, -0.11043619364500046, -0.10300665348768234, 0.06709197163581848, -0.07569106668233871, -0.07460284233093262, 0.15964122116565704, -0.02457398921251297, -0.10188330709934235, 0.03819292411208153, -0.21867942810058594, -0.01995755359530449, 0.19039398431777954, -0.29568302631378174, -0.11494400352239609, -0.07910088449716568, 0.18586759269237518, 0.025469033047556877, 0.11436232179403305, -0.023825788870453835, -0.02012297883629799, -0.221383735537529, 0.0029703411273658276, -0.08713068813085556, 0.034245800226926804, 0.0651308074593544, -0.09516268968582153, 0.24007263779640198, -0.09044498205184937, 0.05269941687583923, 0.033750344067811966, 0.07691317796707153, 0.01018204540014267, 0.05163824185729027, -0.048588331788778305, -0.16688252985477448, -0.09095858782529831, 0.014404932036995888, 0.03795035555958748, 0.0503084696829319, 0.09903772920370102, -0.04082057997584343, 0.04713768512010574, 0.0953395888209343, 0.030845828354358673, -0.004454230889678001, 0.052237071096897125, -0.15630710124969482, 0.05534590780735016, 0.018921079114079475, -0.025683825835585594, 0.02539582923054695, -0.08227502554655075, 0.10333657264709473, 0.03491305932402611, 0.0618959404528141, -0.0665573701262474, 0.03160114586353302, -0.009742318652570248, -0.12334126234054565, -0.04329211637377739, -0.18513770401477814, -0.0893927589058876, -0.1391412913799286, -0.03897256776690483, -0.04044290632009506, -0.025919048115611076, 0.01644543558359146, 0.00776201207190752, -0.0044921645894646645, -0.11029971390962601, 0.07136444747447968, 0.11884529888629913, -0.030008424073457718, 0.0031494214199483395 ]
null
null
adapter-transformers
# Adapter `emvecchi/umod_constructiveness` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [UMOD](https://github.com/Blubberli/userMod.git) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("emvecchi/umod_constructiveness", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:argument/quality", "roberta", "adapter-transformers"]}
null
emvecchi/umod_constructiveness
[ "adapter-transformers", "roberta", "adapterhub:argument/quality", "region:us" ]
2024-02-06T13:04:21+00:00
[]
[]
TAGS #adapter-transformers #roberta #adapterhub-argument/quality #region-us
# Adapter 'emvecchi/umod_constructiveness' for roberta-base An adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'emvecchi/umod_constructiveness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n", "# Adapter 'emvecchi/umod_constructiveness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 67, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n# Adapter 'emvecchi/umod_constructiveness' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.019752338528633118, -0.10474009811878204, -0.004346833098679781, 0.0020373049192130566, 0.20326051115989685, 0.09318676590919495, 0.1816599816083908, -0.04116974025964737, 0.0473695732653141, -0.024736588820815086, 0.07148271799087524, 0.07130887359380722, -0.0011993105290457606, 0.030604898929595947, -0.008716316893696785, -0.11114704608917236, 0.055394724011421204, 0.06231856346130371, -0.19863581657409668, 0.07130774110555649, 0.10313959419727325, -0.033317647874355316, 0.12814554572105408, 0.03836502134799957, -0.15576617419719696, 0.11786728352308273, 0.04425656795501709, -0.09952585399150848, 0.06692563742399216, 0.07196324318647385, 0.22804990410804749, 0.04279147461056709, 0.016089893877506256, -0.13230910897254944, 0.02865314483642578, 0.05852922052145004, -0.014910178259015083, 0.04438161477446556, -0.08765239268541336, -0.06711266934871674, 0.12130486965179443, 0.07339837402105331, 0.08363043516874313, 0.04937111213803291, -0.10756562650203705, -0.19443769752979279, 0.016559120267629623, 0.06757635623216629, -0.04504210129380226, 0.04441434517502785, 0.04693489521741867, 0.012023493647575378, -0.04099245369434357, 0.02235523983836174, 0.20997382700443268, -0.14334072172641754, -0.025551626458764076, 0.002500957576557994, 0.08061785995960236, 0.1188543438911438, 0.010083319619297981, 0.004639197140932083, -0.009703269228339195, 0.03473309054970741, 0.08553624153137207, -0.07175857573747635, 0.09511063247919083, 0.03441252559423447, -0.14911510050296783, -0.01645996980369091, 0.3121279776096344, -0.030328605324029922, -0.08648275583982468, 0.06013183668255806, -0.02579430118203163, 0.11464261263608932, 0.006388604175299406, -0.07947464287281036, -0.025670934468507767, 0.04971548169851303, -0.06353349983692169, -0.06419416517019272, -0.043989524245262146, -0.11320673674345016, -0.128840371966362, 0.41380175948143005, -0.005646377801895142, 0.026660531759262085, -0.03802919015288353, 0.06337852030992508, -0.007015909533947706, -0.08814681321382523, 0.0041840458288788795, -0.08782125264406204, -0.000542682595551014, -0.008399774320423603, -0.06471093744039536, -0.17109215259552002, 0.12694494426250458, 0.32042238116264343, 0.21098700165748596, 0.04466021806001663, -0.0021648856345564127, 0.0512760654091835, 0.006944490596652031, 0.16838379204273224, -0.09142076224088669, -0.10644739866256714, 0.028656678274273872, -0.030485475435853004, -0.013660884462296963, -0.06526055186986923, -0.1136416345834732, -0.06808426976203918, 0.052556369453668594, 0.026075564324855804, 0.01203897688537836, 0.1180407702922821, -0.025627607479691505, -0.06597135961055756, 0.038944847881793976, -0.09676335752010345, -0.0740881934762001, -0.030149441212415695, 0.00468398304656148, 0.08519142866134644, 0.13556048274040222, -0.03512877970933914, 0.05555163696408272, 0.05246622487902641, -0.06758086383342743, -0.1202685758471489, -0.04800957441329956, -0.15440359711647034, -0.036251336336135864, -0.13173463940620422, 0.10572600364685059, -0.1966407597064972, -0.06370410323143005, 0.023723984137177467, 0.1091742217540741, -0.015192102640867233, 0.08800546824932098, 0.04592001810669899, 0.026574822142720222, 0.006981395650655031, -0.046175651252269745, -0.013781816698610783, -0.023551596328616142, 0.06347359716892242, 0.11370296031236649, 0.004584215115755796, -0.13469772040843964, 0.0720895454287529, -0.03062722459435463, 0.05467848479747772, -0.24090519547462463, -0.004164285026490688, -0.11712142825126648, 0.05603216961026192, -0.10843034088611603, 0.03837594762444496, -0.05387154594063759, 0.10616454482078552, 0.08612702786922455, 0.024321503937244415, 0.017326686531305313, -0.06909751892089844, -0.01494970079511404, -0.1866730898618698, -0.14612208306789398, 0.03221603482961655, -0.04926712438464165, 0.16250336170196533, 0.031635645776987076, 0.03511228412389755, 0.13455268740653992, 0.004229306243360043, 0.017792368307709694, 0.008604203350841999, -0.12785856425762177, -0.06359218806028366, 0.05635141208767891, 0.09290370345115662, -0.19715027511119843, 0.009221851825714111, -0.08964066952466965, 0.1215946152806282, -0.021882763132452965, -0.012288008816540241, -0.021413344889879227, -0.06724941730499268, 0.007136452943086624, -0.030898306518793106, -0.057597432285547256, 0.04735654965043068, -0.1261104941368103, 0.14628224074840546, 0.1103469505906105, -0.08255309611558914, -0.010585942305624485, -0.14137499034404755, 0.13155828416347504, -0.17768123745918274, 0.01222189050167799, -0.18088075518608093, 0.056093718856573105, -0.036408957093954086, 0.13239845633506775, 0.1060570627450943, 0.05399163067340851, 0.09506790339946747, -0.06670567393302917, 0.002680172910913825, -0.02154192514717579, -0.039572395384311676, 0.0901486948132515, 0.0482972152531147, -0.1486182063817978, -0.03971927613019943, -0.07089751213788986, -0.05433270335197449, -0.07115701586008072, 0.01904778741300106, 0.06175990775227547, 0.05199754610657692, 0.05176685005426407, 0.03998180851340294, -0.10562432557344437, -0.0040742442943155766, -0.05616357550024986, -0.037423789501190186, -0.0027464712038636208, -0.019522229209542274, -0.08216506987810135, 0.05140487104654312, -0.15732844173908234, 0.11080637574195862, 0.12752628326416016, -0.0728345438838005, -0.08140946924686432, 0.012298114597797394, 0.05381177365779877, -0.013186623342335224, 0.1335068941116333, -0.0699738934636116, 0.1640068143606186, 0.016877908259630203, 0.0596025250852108, -0.00961056537926197, 0.05336487665772438, 0.045185819268226624, -0.06023864820599556, 0.010434995405375957, -0.001920246984809637, 0.09376095235347748, -0.1727326214313507, 0.04627830162644386, 0.23071980476379395, -0.14197248220443726, 0.06339892745018005, -0.015793107450008392, -0.05632859095931053, -0.030269954353570938, -0.07017649710178375, 0.07622119039297104, 0.1004185900092125, -0.12398091703653336, -0.0388115718960762, 0.018068479374051094, -0.008340573869645596, 0.06252377480268478, -0.02328892983496189, 0.059150297194719315, 0.07322441786527634, 0.027418797835707664, 0.036507636308670044, 0.03799973055720329, -0.03849034383893013, 0.021991588175296783, 0.045748520642519, -0.002022359287366271, 0.05910994112491608, 0.005204790271818638, -0.00184839335270226, 0.15959101915359497, -0.05964222177863121, -0.08399125188589096, -0.19755713641643524, -0.27312660217285156, 0.029426334425807, 0.04699605703353882, 0.05170436576008797, -0.07120217382907867, -0.07538586109876633, 0.019528847187757492, 0.22361312806606293, -0.04440912976861, 0.040313512086868286, 0.003269691951572895, 0.005079715047031641, 0.057933006435632706, -0.10822434723377228, 0.001156352460384369, -0.009375380352139473, -0.08855664730072021, 0.014985237270593643, -0.0586593821644783, 0.11547723412513733, 0.06127898767590523, -0.008390138857066631, 0.01087950263172388, 0.026165621355175972, 0.09783581644296646, -0.014214339666068554, -0.04558739811182022, 0.23739583790302277, -0.15113116800785065, 0.009324063546955585, 0.07905247807502747, 0.00789653044193983, -0.03712800517678261, 0.025083832442760468, -0.008154802955687046, -0.09188413619995117, -0.15008921921253204, 0.010106317698955536, -0.05008277669548988, -0.07014499604701996, 0.12200863659381866, 0.0157205518335104, -0.030827095732092857, 0.16711312532424927, 0.06831670552492142, 0.054362811148166656, -0.0169716477394104, 0.08056042343378067, 0.22044822573661804, -0.0019895790610462427, 0.08508683741092682, -0.0888514369726181, -0.04462942108511925, 0.08489427715539932, 0.06923505663871765, 0.22313593327999115, 0.04297051951289177, 0.06337512284517288, 0.08970890939235687, -0.09151754528284073, 0.06926292926073074, 0.1485297977924347, -0.04843735322356224, -0.021121447905898094, -0.04844749718904495, 0.010531033389270306, -0.11365099996328354, 0.010401662439107895, -0.03935643658041954, -0.05221334472298622, -0.003830001689493656, 0.04402966797351837, 0.030628150328993797, -0.0066412813030183315, -0.09945683181285858, -0.2596488893032074, -0.05192198231816292, -0.007455012761056423, -0.014316477812826633, -0.06984087824821472, -0.0016355316620320082, -0.007745797745883465, -0.014135516248643398, -0.03906356543302536, -0.011239992454648018, 0.09820359200239182, -0.10817824304103851, -0.019598906859755516, -0.010685205459594727, 0.2318446934223175, -0.00716079818084836, 0.06770560145378113, -0.23024168610572815, 0.084149070084095, -0.009024271741509438, 0.006638073828071356, -0.0365760363638401, 0.010217179544270039, 0.0762016549706459, 0.12009695172309875, -0.013321319594979286, -0.016901683062314987, -0.04401300475001335, -0.15037007629871368, 0.008070608600974083, 0.07829750329256058, 0.06931842118501663, -0.08538620173931122, 0.07877181470394135, -0.0853084921836853, 0.07966698706150055, 0.08218590915203094, -0.008661037310957909, -0.12391602993011475, -0.2051670253276825, -0.01188006903976202, 0.005931739695370197, 0.034130584448575974, -0.07871158421039581, -0.007892339490354061, 0.07062815874814987, 0.18532179296016693, -0.03559661656618118, -0.007451703306287527, -0.14385190606117249, 0.021525386720895767, 0.12228457629680634, -0.09824465215206146, 0.0876145213842392, -0.023864831775426865, -0.0037138971965759993, -0.0021456077229231596, -0.13413040339946747, 0.11648642271757126, -0.0778365358710289, 0.05279640480875969, -0.04101550206542015, -0.11470334976911545, 0.06081902235746384, -0.022539030760526657, 0.005920836236327887, -0.01648459956049919, -0.03803590312600136, -0.06821996718645096, -0.10665753483772278, -0.025851015001535416, -0.06736163049936295, 0.08794281631708145, -0.035172779113054276, 0.03852768987417221, -0.02810910902917385, 0.022557172924280167, 0.09464991092681885, 0.04831137880682945, -0.022408073768019676, -0.0010688898619264364, 0.1385234296321869, -0.04105405509471893, -0.2613251507282257, -0.10268135368824005, 0.009449576027691364, 0.015652427449822426, 0.02422439306974411, -0.23273234069347382, 0.19363658130168915, 0.0029568937607109547, 0.018264969810843468, -0.007447340991348028, 0.04825590178370476, -0.04133279621601105, 0.29310980439186096, 0.1372048258781433, 0.2750968039035797, -0.11711668968200684, -0.032344188541173935, -0.09965581446886063, -0.2139502316713333, 0.06529856473207474, -0.08444260060787201, 0.07883439213037491, -0.02182852104306221, 0.060061015188694, -0.016645746305584908, -0.012387465685606003, 0.10728709399700165, -0.055562980473041534, 0.043618787080049515, -0.09690367430448532, -0.04746526852250099, 0.14255087077617645, -0.012047733180224895, -0.023552896454930305, -0.15135423839092255, 0.05163125693798065, -0.005855930037796497, -0.10934986919164658, 0.06306776404380798, 0.07913301885128021, 0.03800312802195549, -0.08592774718999863, -0.02394738793373108, -0.014284157194197178, -0.08796915411949158, -0.018619274720549583, 0.03783121332526207, -0.08012033253908157, -0.0406535379588604, 0.030165281146764755, 0.08009368181228638, -0.002146639861166477, -0.00700020045042038, 0.011823109351098537, -0.024106398224830627, 0.13368573784828186, -0.12964226305484772, 0.07671528309583664, 0.008715886622667313, -0.05025415122509003, 0.10700713098049164, 0.06810557842254639, -0.09128769487142563, 0.021598409861326218, 0.12900283932685852, -0.03509768098592758, 0.07903019338846207, 0.02166861668229103, 0.01869376190006733, -0.12921124696731567, 0.056648969650268555, 0.1813126504421234, 0.004967126064002514, -0.006527699530124664, -0.014414054341614246, -0.059173695743083954, -0.1286180317401886, 0.07671160250902176, 0.13036386668682098, 0.02807822823524475, -0.02636588364839554, 0.03155560791492462, 0.013759404420852661, 0.034347932785749435, 0.02754705213010311, -0.11548986285924911, -0.09662571549415588, -0.03004990518093109, -0.03280537202954292, 0.20003239810466766, -0.18477460741996765, -0.11897403746843338, -0.11726348847150803, -0.12397340685129166, 0.029954589903354645, 0.18278026580810547, 0.10033709555864334, 0.023278506472706795, -0.07665231823921204, 0.04485819861292839, -0.05799052491784096, 0.0007953121094033122, 0.04346437752246857, 0.09626297652721405, -0.13710138201713562, -0.1744861602783203, 0.036859072744846344, -0.01671053096652031, -0.07473193109035492, -0.01942470297217369, -0.17200547456741333, -0.00011606764019234106, -0.24961170554161072, 0.00468582333996892, -0.005130981095135212, 0.04063089191913605, 0.08675891160964966, -0.11519409716129303, -0.12162084132432938, 0.0326000340282917, -0.07642889022827148, 0.013519467785954475, 0.06066306307911873, 0.06033335253596306, -0.06290717422962189, 0.0016332146478816867, 0.09788014739751816, -0.08267005532979965, 0.051831718534231186, 0.06787781417369843, -0.037510525435209274, 0.04544584080576897, -0.16316983103752136, -0.02899039350450039, -0.011599532328546047, 0.03485517203807831, -0.005734438542276621, -0.0769817978143692, 0.07061796635389328, 0.0032718018628656864, 0.04079979658126831, -0.02757505141198635, 0.20668792724609375, -0.05321739614009857, 0.05631646513938904, -0.12982742488384247, -0.024723898619413376, -0.03427145257592201, 0.02060888335108757, 0.1427043080329895, 0.15984222292900085, 0.1432269662618637, -0.01900802180171013, -0.015630530193448067, -0.08220724016427994, 0.0489426888525486, 0.01686774380505085, -0.07717615365982056, 0.08316119015216827, -0.11584428697824478, -0.0369059294462204, -0.0016836964059621096, 0.2812168002128601, -0.08490338176488876, -0.050125762820243835, 0.008291492238640785, 0.05719536170363426, 0.03407023847103119, -0.025842897593975067, 0.29480645060539246, 0.08267232775688171, 0.05711960047483444, -0.09554260224103928, 0.05522187799215317, 0.03512177616357803, -0.072578564286232, -0.02018164098262787, 0.17390181124210358, -0.11432435363531113, 0.023637698963284492, 0.09383987635374069, 0.06017574295401573, 0.11748002469539642, 0.038875844329595566, -0.017280178144574165, -0.04868442937731743, 0.06474987417459488, 0.17066450417041779, 0.2083663046360016, 0.055385489016771317, 0.017537500709295273, 0.06523638963699341, -0.016950035467743874, -0.09913738816976547, -0.0886903926730156, -0.07369128614664078, -0.19529859721660614, 0.01012903917580843, -0.053337618708610535, -0.10032878071069717, 0.1502312868833542, -0.01623358391225338, 0.04879630357027054, 0.15856733918190002, -0.040180906653404236, -0.05811404436826706, -0.057212136685848236, -0.08478908985853195, -0.09943905472755432, 0.025052426382899284, -0.03245504945516586, 0.018293095752596855, 0.09977994859218597, 0.03472769632935524, 0.022302620112895966, -0.016640737652778625, 0.08050411939620972, -0.06529230624437332, -0.07891923189163208, -0.07830231636762619, 0.003759183920919895, -0.09160266071557999, 0.1223011240363121, -0.07408302277326584, -0.03836188465356827, -0.0026745437644422054, 0.1258566528558731, -0.03389791026711464, -0.178867906332016, -0.14495496451854706, 0.09976501017808914, -0.018074454739689827, 0.05402586981654167, -0.0976921021938324, -0.03514276072382927, 0.011687963269650936, 0.2195042222738266, 0.1340026557445526, -0.040610454976558685, 0.024729140102863312, 0.055368516594171524, 0.014138590544462204, -0.018191054463386536, 0.10113487392663956, 0.01287800632417202, -0.03575211390852928, 0.02906659245491028, -0.1101522371172905, -0.0779496431350708, 0.012745440006256104, 0.05172307789325714, 0.0005894708447158337, 0.0762953907251358, -0.06243012100458145, -0.07442954927682877, 0.06753524392843246, -0.03902094066143036, -0.1766274869441986, 0.030610235407948494, 0.0478421226143837, -0.06391362100839615, -0.1230473741889, 0.09696555882692337, -0.038054078817367554, 0.011263140477240086, -0.03078731708228588, -0.06083158403635025, -0.01268282625824213, 0.0667378231883049, -0.13025924563407898, 0.015367777086794376, 0.0906267762184143, 0.08967772126197815, 0.08942940831184387, -0.05242801457643509, 0.017217004671692848, 0.09760423004627228, 0.07744689285755157, -0.051372770220041275, 0.05400629714131355, -0.030003052204847336, -0.0919819176197052, 0.029818689450621605, -0.027122709900140762, -0.07322928309440613, 0.03621596097946167, 0.013079377822577953, -0.09564831852912903, 0.0071231224574148655, -0.10546430945396423, -0.08000852167606354, -0.0064061651937663555, -0.07164472341537476, -0.09705669432878494, 0.12320010364055634, 0.03690669313073158, 0.01910298503935337, -0.05054444074630737, -0.10197468847036362, 0.07168886810541153, 0.08887611329555511, 0.030808553099632263, -0.04137071594595909, -0.0726269781589508, -0.10214598476886749, 0.04565032944083214, -0.034470830112695694, -0.26136514544487, -0.03292066231369972, -0.033543892204761505, 0.03043566644191742, -0.010966998524963856, 0.0894831046462059, 0.1642964631319046, 0.11357685178518295, -0.06257075816392899, -0.04314923658967018, -0.015124930068850517, 0.10304677486419678, -0.22708824276924133, -0.058181170374155045 ]
null
null
transformers
# Commit Message Quality Classifier This is the checkpoint for [CodeBERT](https://huggingface.co/microsoft/codebert-base) model, fine-tuned for the commit message quality classification. It was used during processing of the [Commit Message Generation dataset](https://huggingface.co/datasets/JetBrains-Research/lca-commit-message-generation) from 🏟️ [Long Code Arena benchmark](https://huggingface.co/spaces/JetBrains-Research/long-code-arena). 🔍 For further details, please refer to: * **Repository**: TODO
{"language": ["code", "en"], "license": "apache-2.0", "tags": ["code", "commit_message_generation"], "datasets": ["saridormi/commit-message-quality"], "widget": [{"text": "Fix README"}, {"text": "Add backoff on exceptions from OpenAI API & make pip requirements up-to-date"}]}
text-classification
saridormi/commit-message-quality-codebert
[ "transformers", "pytorch", "roberta", "text-classification", "code", "commit_message_generation", "en", "dataset:saridormi/commit-message-quality", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T13:05:42+00:00
[]
[ "code", "en" ]
TAGS #transformers #pytorch #roberta #text-classification #code #commit_message_generation #en #dataset-saridormi/commit-message-quality #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Commit Message Quality Classifier This is the checkpoint for CodeBERT model, fine-tuned for the commit message quality classification. It was used during processing of the Commit Message Generation dataset from ️ Long Code Arena benchmark. For further details, please refer to: * Repository: TODO
[ "# Commit Message Quality Classifier\n\nThis is the checkpoint for CodeBERT model, fine-tuned for the commit message quality classification. It was used during processing of the Commit Message Generation dataset from\n️ Long Code Arena benchmark.\n\n For further details, please refer to:\n* Repository: TODO" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #code #commit_message_generation #en #dataset-saridormi/commit-message-quality #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Commit Message Quality Classifier\n\nThis is the checkpoint for CodeBERT model, fine-tuned for the commit message quality classification. It was used during processing of the Commit Message Generation dataset from\n️ Long Code Arena benchmark.\n\n For further details, please refer to:\n* Repository: TODO" ]
[ 73, 70 ]
[ "passage: TAGS\n#transformers #pytorch #roberta #text-classification #code #commit_message_generation #en #dataset-saridormi/commit-message-quality #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Commit Message Quality Classifier\n\nThis is the checkpoint for CodeBERT model, fine-tuned for the commit message quality classification. It was used during processing of the Commit Message Generation dataset from\n️ Long Code Arena benchmark.\n\n For further details, please refer to:\n* Repository: TODO" ]
[ -0.09042731672525406, 0.1562550663948059, -0.002937823534011841, 0.026940062642097473, 0.14410968124866486, -0.033699456602334976, 0.10939288139343262, 0.0929105132818222, -0.1073841080069542, -0.019921088591217995, 0.09025703370571136, 0.14079709351062775, 0.08032576739788055, 0.15608488023281097, -0.05177556723356247, -0.1368556171655655, 0.060456495732069016, 0.05049407482147217, -0.005424419417977333, 0.15491701662540436, 0.11411556601524353, -0.08056998997926712, 0.12700852751731873, 0.010024456307291985, -0.12447110563516617, -0.001905242446810007, 0.03829612582921982, -0.10568469017744064, 0.04453589394688606, -0.009433102793991566, 0.04571983590722084, 0.09143632650375366, -0.04871745780110359, -0.1446911096572876, 0.03228429704904556, 0.03618454560637474, -0.02740969881415367, 0.04913879930973053, 0.015672601759433746, -0.007609006483107805, 0.021265070885419846, 0.03170665353536606, -0.0309548769146204, 0.0580098032951355, -0.058864228427410126, 0.03606637194752693, -0.05917443335056305, 0.10232143104076385, 0.1454397290945053, 0.09218955039978027, 0.008274545893073082, 0.22176402807235718, -0.11022859811782837, 0.0921010747551918, 0.028178906068205833, -0.2822645902633667, -0.026347266510128975, 0.1298407018184662, 0.008666242472827435, 0.10369247198104858, -0.07726585865020752, -0.013027752749621868, 0.07693950831890106, 0.013425156474113464, 0.05660761147737503, -0.08869996666908264, -0.11066728830337524, 0.03514072299003601, -0.1065589040517807, -0.09586477279663086, 0.27429652214050293, 0.020901670679450035, -0.07723778486251831, -0.03750940412282944, -0.04090723767876625, -0.1819923222064972, 0.00011616712436079979, -0.044414542615413666, 0.014613988809287548, 0.06694037467241287, -0.050635769963264465, 0.026175418868660927, -0.15710489451885223, -0.07596250623464584, -0.1312534213066101, -0.02919694595038891, 0.003621005220338702, 0.07809748500585556, -0.13944821059703827, 0.0851915180683136, 0.033322084695100784, -0.12653404474258423, -0.04220667481422424, -0.06382158398628235, 0.07311444729566574, -0.03166872262954712, -0.04117726907134056, -0.1292337328195572, 0.1620592325925827, 0.07354871928691864, 0.0675133615732193, 0.009237715043127537, -0.03566261753439903, 0.02018200047314167, 0.04539850354194641, 0.16335442662239075, -0.009561381302773952, -0.07545604556798935, 0.12564818561077118, -0.04541734978556633, 0.04358948767185211, 0.012866895645856857, -0.08424683660268784, 0.02465914562344551, 0.16931100189685822, 0.09145734459161758, 0.0169307142496109, 0.1073157787322998, -0.054620034992694855, -0.025533568114042282, 0.20923909544944763, -0.09369104355573654, -0.0273232851177454, 0.023480191826820374, -0.0342174768447876, -0.0032435201574116945, -0.04108018800616264, 0.04054464027285576, -0.10142243653535843, -0.07976970821619034, -0.08103834837675095, -0.03505191206932068, -0.061827316880226135, -0.04399711638689041, 0.08186940848827362, -0.07045932114124298, -0.0005148325581103563, -0.16095030307769775, -0.1602349877357483, -0.01948467083275318, -0.007834832184016705, 0.01897905208170414, -0.03415947034955025, -0.014515996910631657, -0.08573278784751892, 0.044712238013744354, -0.042719218879938126, -0.12309061735868454, -0.09863203018903732, 0.08356629312038422, -0.04587157070636749, -0.012460080906748772, -0.08451011031866074, 0.014204593375325203, -0.21396410465240479, -0.024708615615963936, -0.0947890505194664, 0.0076012141071259975, -0.0119499946013093, 0.1501811444759369, -0.12239307165145874, -0.06625188142061234, 0.005672866944223642, -0.03423153981566429, -0.04119425266981125, 0.2227623611688614, -0.15059921145439148, -0.02018366940319538, 0.14875686168670654, -0.13921140134334564, -0.12179724872112274, 0.1473992019891739, 0.009240359999239445, 0.033538952469825745, 0.11740031838417053, 0.07687845826148987, 0.14013546705245972, -0.04371652007102966, -0.05954030156135559, 0.07339105755090714, -0.09928743541240692, -0.16926558315753937, 0.06586500257253647, 0.06588380038738251, 0.0305872093886137, 0.06862735748291016, 0.04181576147675514, -0.001736698322929442, -0.00553978281095624, -0.07043016701936722, -0.032071325927972794, -0.0071729314513504505, -0.052064016461372375, 0.016428383067250252, 0.044788908213377, -0.06819648295640945, -0.030254824087023735, -0.023926177993416786, 0.058987151831388474, -0.007420795504003763, 0.015428945422172546, -0.13716626167297363, 0.11185920983552933, -0.1030091643333435, -0.0017818630440160632, -0.11632644385099411, 0.049936290830373764, 0.038933489471673965, 0.06676501035690308, -0.018071269616484642, 0.08262426406145096, 0.0014458912191912532, -0.0767197534441948, 0.033140379935503006, -0.05745120346546173, 0.11369208246469498, -0.01745537668466568, -0.053483057767152786, -0.09565075486898422, 0.034357886761426926, -0.022704919800162315, 0.13944034278392792, -0.09826850146055222, 0.03165380284190178, 0.18694914877414703, 0.05487282574176788, 0.024606212973594666, 0.007958859205245972, 0.06906873732805252, 0.02143426239490509, -0.07796148210763931, -0.012159639038145542, 0.016266629099845886, 0.08801130950450897, -0.0734219029545784, 0.07716426998376846, -0.09648389369249344, 0.2101665884256363, 0.15769538283348083, -0.0887492448091507, 0.016944337636232376, -0.02042720653116703, -0.022443968802690506, 0.0010116611374542117, 0.04697617515921593, 0.02226707525551319, 0.09250732511281967, -0.029402295127511024, 0.12977281212806702, -0.10215558856725693, -0.010367373935878277, 0.02236134745180607, -0.08078335225582123, -0.021273674443364143, 0.048348188400268555, -0.04298151656985283, -0.1550065279006958, 0.1301480531692505, 0.13129422068595886, 0.006522680167108774, 0.144969180226326, -0.08272968977689743, 0.014086449518799782, 0.012654679827392101, 0.010501601733267307, -0.0381588451564312, -0.0013374388217926025, -0.12649214267730713, -0.051457371562719345, 0.054214321076869965, 0.037137262523174286, 0.023656141012907028, -0.09516958147287369, 0.027364149689674377, 0.00135108083486557, -0.03900821506977081, -0.05991348624229431, 0.02521546557545662, 0.0056091416627168655, 0.08052442222833633, -0.0008309808908961713, -0.03960055112838745, 0.11237072944641113, -0.03125537931919098, -0.0958470031619072, 0.17201954126358032, -0.11883952468633652, -0.33010825514793396, -0.18915319442749023, 0.000390960049116984, -0.10457585752010345, 0.025952786207199097, 0.07839146256446838, -0.13082288205623627, -0.0009196202154271305, -0.05260899290442467, 0.026578739285469055, 0.021952282637357712, 0.04697730019688606, -0.055169325321912766, 0.03657962381839752, 0.002902897773310542, -0.10292387008666992, -0.044231973588466644, -0.028744317591190338, -0.13187041878700256, 0.08283023536205292, -0.08564690500497818, 0.12819287180900574, 0.15217071771621704, 0.017297035083174706, -0.0011571060167625546, -0.04127444699406624, 0.1475146859884262, -0.058737143874168396, 0.029570724815130234, 0.31944501399993896, 0.018412988632917404, 0.018850037828087807, 0.1274290680885315, -0.02207326330244541, -0.022474659606814384, 0.014129599556326866, -0.06542667746543884, -0.0498262383043766, -0.20998676121234894, -0.09165725111961365, -0.06874719262123108, 0.061440855264663696, -0.03544040396809578, 0.056632399559020996, 0.08201383799314499, 0.076416976749897, 0.014100238680839539, -0.01845586486160755, 0.011819963343441486, 0.11114498227834702, 0.06649091094732285, 0.036693356931209564, 0.1018674373626709, -0.08781944960355759, -0.012785240076482296, 0.14719849824905396, 0.05090891942381859, 0.012167726643383503, 0.002813796978443861, 0.0970425084233284, 0.06595425307750702, 0.15988105535507202, 0.07760615646839142, 0.03195741027593613, -0.028322963044047356, -0.020114531740546227, -0.02779272571206093, -0.04084538668394089, -0.16968370974063873, 0.01188481692224741, -0.07506268471479416, 0.02176830545067787, -0.09181085973978043, -0.019274912774562836, 0.10172966867685318, 0.23051494359970093, 0.053727198392152786, -0.2900545001029968, -0.09485433995723724, 0.07158249616622925, -0.032121818512678146, -0.0680929571390152, 0.0773930475115776, 0.04437198117375374, -0.12369157373905182, 0.047160208225250244, -0.04318990930914879, 0.11438688635826111, -0.10293257981538773, 0.07592226564884186, -0.040165483951568604, -0.04405933618545532, 0.010226661339402199, 0.1105010136961937, -0.22589360177516937, 0.1172242984175682, 0.01088022068142891, 0.015722164884209633, -0.0986771285533905, 0.010872950777411461, -0.006494923494756222, 0.19213168323040009, 0.07566424459218979, -0.014694467186927795, -0.0029264711774885654, -0.1111958846449852, -0.10874408483505249, 0.040096819400787354, 0.012154299765825272, 0.008127386681735516, -0.0023465680424124002, -0.03184881806373596, 0.019273342564702034, -0.049022309482097626, 0.023167366161942482, -0.020308809354901314, -0.029082315042614937, 0.034805748611688614, 0.15534614026546478, 0.09679396450519562, -0.03378114476799965, -0.014528132975101471, 0.017386605963110924, 0.245230570435524, -0.16309775412082672, -0.109611876308918, -0.10151224583387375, -0.0363258421421051, 0.01501611340790987, -0.09347933530807495, 0.019021451473236084, -0.07038327306509018, 0.0899573341012001, 0.06292518973350525, -0.11649611592292786, 0.07043208181858063, -0.10176853090524673, -0.07725530862808228, -0.03013552725315094, 0.12211078405380249, -0.019253289327025414, 0.010265669785439968, 0.060763947665691376, -0.02943059615790844, -0.10476402193307877, -0.09025609493255615, -0.07434921711683273, 0.009334780275821686, 0.11267821490764618, 0.020478062331676483, -0.019645433872938156, -0.13973361253738403, -0.020099541172385216, -0.0046782479621469975, 0.13619160652160645, 0.08244387805461884, -0.04305200278759003, 0.09454402327537537, 0.15925273299217224, -0.07245220988988876, -0.28804266452789307, -0.03208058327436447, -0.06114582717418671, -0.020405463874340057, -0.12186496704816818, -0.03691551089286804, 0.13224731385707855, 0.02662256732583046, -0.07335730642080307, -0.0286062303930521, -0.19331519305706024, -0.04008537903428078, 0.13726310431957245, -0.011769548989832401, 0.3233306407928467, -0.17873090505599976, -0.057589419186115265, -0.06948550045490265, -0.2631934583187103, 0.07428785413503647, -0.1106720119714737, 0.02387462742626667, -0.02029750868678093, 0.02535559982061386, 0.015944719314575195, -0.07012201100587845, 0.053282730281353, 0.03010564297437668, 0.07823745906352997, -0.10133860260248184, -0.025622760877013206, 0.1254059076309204, -0.04309220612049103, 0.09752798825502396, -0.10254188627004623, 0.07922804355621338, -0.12575560808181763, -0.008973152376711369, -0.0668456181883812, 0.06538629531860352, 0.0027998422738164663, -0.06696785241365433, -0.0747741088271141, 0.005080572795122862, 0.009021790698170662, 0.006914025172591209, 0.21277256309986115, -0.05015641078352928, 0.05544137582182884, 0.1966087371110916, 0.1379597932100296, -0.14483754336833954, 0.013944673351943493, -0.036593906581401825, -0.04799824208021164, 0.09918081760406494, -0.13512665033340454, 0.07592574506998062, 0.060907915234565735, -0.05805628001689911, 0.08972083777189255, 0.0376211479306221, -0.00009310928726335987, 0.02841131016612053, 0.119408018887043, -0.1447986364364624, 0.06858068704605103, 0.0011443804251030087, 0.0742020308971405, -0.031784359365701675, 0.1652958244085312, 0.19644293189048767, -0.018454695120453835, -0.017830729484558105, -0.018483908846974373, 0.09025393426418304, -0.04335392266511917, 0.08767098188400269, 0.004326160065829754, 0.023508485406637192, -0.12812478840351105, 0.0647159069776535, 0.0561925545334816, -0.06556724011898041, 0.0009344312129542232, -0.04396429657936096, -0.1681082844734192, -0.11004229635000229, 0.056283190846443176, 0.054001834243535995, -0.0763486921787262, -0.12428367882966995, -0.14690767228603363, -0.08244378864765167, 0.02373896725475788, 0.11588425189256668, 0.10036386549472809, 0.12370982766151428, -0.010563588701188564, -0.05146325007081032, -0.04114701971411705, 0.003934990148991346, 0.015428164973855019, 0.022677630186080933, -0.16517631709575653, 0.08907036483287811, -0.01002409216016531, 0.10271656513214111, -0.06157498061656952, -0.045602332800626755, -0.097618967294693, -0.0010283907176926732, -0.05658698081970215, 0.027615858241915703, -0.05917125567793846, -0.013990533538162708, -0.027611123397946358, -0.030683942139148712, -0.10882270336151123, 0.03839194029569626, -0.07626792043447495, 0.03140367567539215, 0.006777747068554163, 0.10943834483623505, -0.09952002763748169, 0.001033145934343338, 0.06408598273992538, -0.007608646526932716, 0.14452610909938812, 0.07069581747055054, -0.08906586468219757, 0.04394510015845299, -0.07933498919010162, 0.005754681769758463, 0.09415144473314285, 0.024521997198462486, 0.009990709833800793, 0.05583609268069267, 0.04680752754211426, 0.15480363368988037, -0.054515935480594635, 0.04227167367935181, 0.054338980466127396, -0.09928858280181885, -0.00927260983735323, -0.05777648463845253, -0.04330640658736229, -0.07082046568393707, -0.025740886107087135, 0.10006161779165268, 0.036325324326753616, 0.19391871988773346, -0.031069623306393623, -0.0035372087731957436, -0.12322266399860382, -0.02055097371339798, 0.003843525191769004, -0.13080929219722748, -0.2242824286222458, -0.049584098160266876, 0.031438540667295456, -0.031185854226350784, 0.18384431302547455, 0.07710739970207214, -0.033515263348817825, 0.03857564553618431, 0.14747917652130127, 0.10244245082139969, 0.00022540846839547157, 0.13409782946109772, 0.061009880155324936, -0.032610028982162476, 0.04046010226011276, -0.0016757320845499635, 0.02035544253885746, -0.04366442561149597, 0.07658573240041733, 0.14486713707447052, 0.07024586945772171, 0.10202787071466446, -0.00485956110060215, 0.0931754931807518, -0.043364085257053375, -0.13896304368972778, -0.11746632307767868, 0.12255899608135223, 0.0037082433700561523, 0.11252832412719727, 0.1394161880016327, -0.08357220888137817, -0.015488128177821636, -0.036187365651130676, -0.03722763434052467, -0.12759001553058624, -0.18422894179821014, -0.10106751322746277, -0.12342603504657745, 0.0039993650279939175, -0.09618274867534637, -0.03277066722512245, 0.113664910197258, 0.026689235121011734, -0.06362040340900421, 0.08969627320766449, -0.04683294892311096, -0.0904175415635109, 0.06897825002670288, -0.01707238331437111, 0.003796712029725313, 0.0013059229822829366, 0.05262718349695206, 0.006756358779966831, 0.04943479597568512, 0.047295305877923965, 0.032901301980018616, 0.12030498683452606, 0.025436125695705414, -0.1381029486656189, -0.07979190349578857, -0.020104514434933662, 0.034997399896383286, -0.001733103534206748, 0.09260646253824234, 0.05028300732374191, -0.023657092824578285, 0.06369057297706604, 0.23744043707847595, -0.06382881104946136, -0.05602748319506645, -0.11698257178068161, 0.2166999727487564, 0.032829299569129944, 0.025929652154445648, -0.010638231411576271, -0.0823090597987175, -0.037177909165620804, 0.28420060873031616, 0.22885072231292725, -0.038629159331321716, 0.008956673555076122, -0.06869830936193466, -0.0023451982997357845, 0.009408426471054554, 0.159322127699852, 0.08283994346857071, 0.21624357998371124, -0.031429655849933624, 0.028419354930520058, -0.05355950817465782, -0.0026224933099001646, -0.09684731811285019, 0.10671424865722656, -0.08470038324594498, -0.03310603275895119, -0.03125704824924469, 0.08142790198326111, -0.05058737471699715, -0.06401527673006058, -0.058077119290828705, -0.09780453890562057, -0.06238427385687828, 0.019366057589650154, 0.09379708766937256, 0.03660212829709053, 0.03622450307011604, -0.0033053152728825808, 0.014243272133171558, 0.07914585620164871, -0.01182819064706564, -0.08405493199825287, -0.07848591357469559, 0.11273380368947983, -0.05408335104584694, 0.1429288387298584, -0.006621293257921934, 0.10449377447366714, 0.12578894197940826, -0.024357765913009644, -0.07900241762399673, 0.060333769768476486, -0.0009781819535419345, -0.04280565679073334, 0.037444956600666046, -0.03981102257966995, 0.028705492615699768, 0.025478331372141838, 0.08863240480422974, -0.028309283778071404, -0.017966385930776596, -0.13535542786121368, -0.006964805070310831, -0.14246535301208496, 0.07098662108182907, -0.0687275156378746, 0.08328161388635635, 0.051750242710113525, -0.07313497364521027, 0.006349469069391489, -0.06405158340930939, 0.06643795222043991, -0.018399350345134735, -0.14226414263248444, 0.0027548926882445812, -0.11706987023353577, -0.022804858162999153, 0.014104687608778477, 0.05227864906191826, -0.22509360313415527, -0.001668651937507093, -0.07003628462553024, 0.016302702948451042, -0.1303655356168747, 0.0578608401119709, -0.0034379903227090836, -0.014211578294634819, -0.03716982528567314, 0.11563761532306671, 0.028534308075904846, 0.050626467913389206, -0.06687089800834656, -0.09918220341205597 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # colorist-v This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v0.1](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v0.1", "model-index": [{"name": "colorist-v", "results": []}]}
null
sasha1keshten/colorist-v
[ "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v0.1", "license:apache-2.0", "region:us" ]
2024-02-06T13:06:10+00:00
[]
[]
TAGS #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-TinyLlama/TinyLlama-1.1B-Chat-v0.1 #license-apache-2.0 #region-us
# colorist-v This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.1 on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - training_steps: 250 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# colorist-v\n\nThis model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-TinyLlama/TinyLlama-1.1B-Chat-v0.1 #license-apache-2.0 #region-us \n", "# colorist-v\n\nThis model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.1 on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 58, 39, 6, 12, 8, 3, 125, 4, 33 ]
[ "passage: TAGS\n#tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-TinyLlama/TinyLlama-1.1B-Chat-v0.1 #license-apache-2.0 #region-us \n# colorist-v\n\nThis model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v0.1 on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- training_steps: 250\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.0754234716296196, 0.061285801231861115, -0.004137201700359583, 0.08118882030248642, 0.1027095690369606, 0.024282045662403107, 0.12913940846920013, 0.14380744099617004, -0.08277974277734756, 0.07726888358592987, 0.02989848703145981, 0.02469733916223049, 0.059428393840789795, 0.12360239028930664, -0.032609496265649796, -0.21896156668663025, 0.005163861438632011, -0.026726096868515015, -0.07184125483036041, 0.10211358219385147, 0.11971531808376312, -0.11590088903903961, 0.04218636825680733, 0.024558991193771362, -0.12328562885522842, -0.00957927294075489, -0.016638079658150673, -0.04095672816038132, 0.10206902772188187, -0.007064439356327057, 0.12531735002994537, 0.03248099982738495, 0.1411503553390503, -0.226866215467453, 0.0002686287625692785, 0.08723682165145874, 0.053048644214868546, 0.07514512538909912, 0.06538686156272888, -0.012898055836558342, 0.05553637444972992, -0.13505777716636658, 0.11246585845947266, 0.009727672673761845, -0.09909355640411377, -0.17544330656528473, -0.10568740218877792, 0.04041058570146561, 0.1144811362028122, 0.0821533054113388, 0.007533686235547066, 0.1394854038953781, -0.12040818482637405, 0.052429284900426865, 0.21949918568134308, -0.22814254462718964, -0.05837131291627884, 0.08067236095666885, 0.038265787065029144, 0.08935554325580597, -0.09061115235090256, -0.02575499936938286, 0.03745482116937637, 0.00803016684949398, 0.08782100677490234, 0.007233600132167339, -0.07808033376932144, -0.01000090129673481, -0.10219496488571167, -0.04802174121141434, 0.0977356806397438, 0.028623929247260094, -0.024165857583284378, -0.12039900571107864, -0.04965012148022652, -0.13866913318634033, -0.04486698657274246, -0.03461799398064613, 0.05080414563417435, -0.02726653404533863, -0.04935085028409958, -0.03714856505393982, -0.09721168130636215, -0.04539423808455467, 0.02773670293390751, 0.07233547419309616, 0.030630232766270638, 0.015871379524469376, -0.05949855595827103, 0.10345956683158875, 0.024600539356470108, -0.14202207326889038, -0.005859958007931709, 0.004527995362877846, -0.07455816864967346, -0.04150109738111496, -0.05336083099246025, -0.0017482731491327286, 0.005582975223660469, 0.14594589173793793, -0.018334658816456795, 0.07556888461112976, -0.024127552285790443, 0.014088347554206848, -0.042553678154945374, 0.13648851215839386, -0.004980896599590778, -0.03320026770234108, 0.0018304460681974888, 0.12474959343671799, 0.04324747994542122, -0.02368880808353424, -0.0766778513789177, -0.003768021007999778, 0.07004529982805252, 0.06656353920698166, -0.03540937975049019, 0.0014936074148863554, -0.07311513274908066, -0.03215125948190689, 0.004488206002861261, -0.130358025431633, 0.05197283998131752, 0.019102629274129868, -0.05368239805102348, -0.045819319784641266, -0.009429512545466423, 0.035252124071121216, -0.017502300441265106, 0.09636540710926056, -0.05774060636758804, 0.004436811897903681, -0.09000347554683685, -0.04497351869940758, 0.009035922586917877, -0.056047916412353516, -0.020171906799077988, -0.04586503654718399, -0.15960726141929626, -0.04353661090135574, 0.058373644948005676, -0.07761096954345703, -0.05006687715649605, -0.025875013321638107, -0.07230576127767563, 0.0298870000988245, -0.005975296720862389, 0.12538613379001617, -0.05103708431124687, 0.06593348830938339, -0.01655438542366028, 0.0370938777923584, 0.0759090706706047, 0.02242261730134487, -0.08406837284564972, 0.03899407759308815, -0.1407906860113144, 0.07401631027460098, -0.06193888187408447, 0.004853320773690939, -0.10511792451143265, -0.08962154388427734, -0.02155361697077751, -0.03347191587090492, 0.05517256632447243, 0.09468169510364532, -0.2091779112815857, -0.0362747423350811, 0.1817101240158081, -0.11046212166547775, -0.057359013706445694, 0.09403450787067413, -0.06448179483413696, 0.007302080746740103, 0.04879538342356682, 0.19136744737625122, 0.10903140902519226, -0.1312994509935379, 0.011971154250204563, -0.019921915605664253, 0.08937492966651917, 0.05603209510445595, 0.06510720402002335, -0.020993387326598167, 0.07015467435121536, 0.0001652364881010726, -0.06196655333042145, -0.007971854880452156, -0.06351244449615479, -0.08593305200338364, -0.06000661477446556, -0.0629730299115181, 0.043488722294569016, 0.03249979764223099, 0.020380984991788864, -0.08100967109203339, -0.10945073515176773, 0.04375147074460983, 0.13979431986808777, -0.06561940163373947, 0.02007010020315647, -0.10997367650270462, 0.038725510239601135, 0.008473213762044907, -0.04935053735971451, -0.17405326664447784, -0.0719921812415123, 0.04681594669818878, -0.05037342384457588, -0.00399426044896245, 0.03928687050938606, 0.057912103831768036, 0.04784299060702324, -0.06269469112157822, -0.003904883051291108, -0.10715268552303314, -0.01023121178150177, -0.07866816967725754, -0.19874688982963562, -0.05028710514307022, -0.02676507644355297, 0.2199544608592987, -0.22507023811340332, 0.006125330459326506, 0.03563559427857399, 0.15329602360725403, 0.06062011420726776, -0.05739227682352066, -0.02682790905237198, 0.03099283017218113, -0.006074750795960426, -0.0994591936469078, 0.04409218579530716, 0.01333501935005188, -0.055082354694604874, -0.020862918347120285, -0.14522403478622437, -0.033438000828027725, 0.10167177021503448, 0.06566622108221054, -0.06912226974964142, -0.021212562918663025, -0.07501712441444397, -0.016266103833913803, -0.07260666787624359, 0.0018729683943092823, 0.16489693522453308, 0.025033939629793167, 0.11805697530508041, -0.08404665440320969, -0.0898263156414032, 0.0036755679175257683, -0.0013321945443749428, 0.015588224865496159, 0.068620964884758, 0.058958034962415695, -0.053600139915943146, 0.0737660676240921, 0.09415183961391449, -0.01591218262910843, 0.1065349206328392, -0.06870698928833008, -0.0813727080821991, -0.02943003736436367, -0.00031919730827212334, 0.010678197257220745, 0.13646066188812256, -0.05404210090637207, 0.02712075598537922, 0.027128232643008232, 0.030470961704850197, 0.030003830790519714, -0.2070818990468979, -0.007734186481684446, 0.04482056200504303, -0.04714161157608032, 0.04069218412041664, -0.04618300497531891, 0.05142059177160263, 0.09313050657510757, 0.008004307746887207, -0.030759336426854134, -0.0031250484753400087, -0.041237879544496536, -0.08523105829954147, 0.15932130813598633, -0.09849661588668823, -0.16456346213817596, -0.06785756349563599, 0.04927707463502884, 0.00705427210777998, -0.01272012759000063, 0.001255473354831338, -0.09532251209020615, -0.044982586055994034, -0.12357398122549057, -0.03723778948187828, -0.003531085792928934, -0.0103678647428751, 0.08795173466205597, 0.05078592151403427, 0.06762353330850601, -0.12843796610832214, 0.00688213063403964, -0.02583342231810093, -0.07123108953237534, 0.02639845758676529, 0.053116220980882645, 0.05042838677763939, 0.16943630576133728, -0.02645786479115486, 0.008409983478486538, -0.033976878970861435, 0.1931958794593811, -0.10430345684289932, 0.005875949747860432, 0.14594247937202454, -0.000557463732548058, 0.05185452476143837, 0.15183091163635254, 0.028270190581679344, -0.09542819857597351, 0.02324630692601204, 0.06635957211256027, -0.025442367419600487, -0.23972713947296143, -0.06607300788164139, -0.03128921985626221, -0.05057559907436371, 0.1042684018611908, 0.037507928907871246, -0.021477703005075455, 0.03731171786785126, -0.021581463515758514, 0.007259964477270842, 0.037842024117708206, 0.06844492256641388, 0.09444811195135117, 0.04396025463938713, 0.11588417738676071, -0.012761744670569897, -0.037754595279693604, 0.06637866050004959, 0.01009224820882082, 0.24627448618412018, -0.017328526824712753, 0.11819163709878922, 0.03836984187364578, 0.11828108131885529, 0.0027134690899401903, 0.005851430352777243, 0.0046155694872140884, -0.022657962515950203, -0.00847773626446724, -0.05982629954814911, -0.0283373910933733, 0.0202428437769413, -0.023876557126641273, 0.010191148146986961, -0.06783142685890198, 0.045917291194200516, 0.03132112696766853, 0.2628767490386963, 0.07800750434398651, -0.24822214245796204, -0.0451272614300251, 0.04047660902142525, -0.023182375356554985, -0.03611267730593681, 0.005800523795187473, 0.13371556997299194, -0.11816874891519547, 0.04869547486305237, -0.06917600333690643, 0.07432397454977036, -0.05902555212378502, -0.0038524081464856863, 0.05024285241961479, 0.05933363735675812, 0.01593632809817791, 0.06630509346723557, -0.17914487421512604, 0.20758996903896332, 0.005307106766849756, 0.09029323607683182, -0.07294128090143204, 0.037025220692157745, -0.003150323638692498, 0.027354976162314415, 0.08855108916759491, 0.004513287451118231, -0.100784070789814, -0.1622546762228012, -0.09611771255731583, 0.04002789035439491, 0.13111747801303864, -0.05194176733493805, 0.09416531771421432, -0.06944313645362854, 0.009499270468950272, 0.04610010236501694, -0.07270217686891556, -0.1467840075492859, -0.14933353662490845, 0.032875675708055496, 0.0055771456100046635, -0.06173466518521309, -0.10818859934806824, -0.09342134743928909, -0.00880393199622631, 0.17593532800674438, 0.010669964365661144, -0.05052487924695015, -0.13469763100147247, 0.0670723095536232, 0.13391411304473877, -0.031713876873254776, 0.029940959066152573, 0.041960909962654114, 0.1789768934249878, 0.019062262028455734, -0.059378717094659805, 0.03168369084596634, -0.06929915398359299, -0.22138270735740662, -0.07285081595182419, 0.1597076803445816, 0.04244125634431839, 0.06477759778499603, 0.01842188835144043, 0.04026501253247261, 0.029054654762148857, -0.0819779485464096, 0.01944599859416485, 0.07461279630661011, 0.05989301949739456, 0.016123022884130478, -0.06003563478589058, 0.014180154539644718, -0.039265409111976624, -0.038389019668102264, 0.1157892644405365, 0.25298914313316345, -0.09202125668525696, 0.107599638402462, 0.013362985104322433, -0.07084754854440689, -0.16781437397003174, 0.04555455222725868, 0.1145995631814003, 0.02272411808371544, 0.07955029606819153, -0.16460798680782318, 0.08790779113769531, 0.10714391618967056, -0.03816811367869377, 0.033128879964351654, -0.3769688010215759, -0.13865961134433746, 0.04295146092772484, 0.0835527628660202, -0.0029570553451776505, -0.12188318371772766, -0.03987210616469383, -0.04284375160932541, -0.11683778464794159, 0.13631166517734528, -0.09205904603004456, 0.09577610343694687, 0.0021750694140791893, 0.04701899364590645, 0.040950264781713486, -0.037142593413591385, 0.16039378941059113, -0.0024181075859814882, 0.07943293452262878, -0.045815061777830124, -0.005555060226470232, 0.09057547897100449, -0.05329308658838272, -0.01922428607940674, -0.022872716188430786, 0.06673745810985565, -0.12340933829545975, -0.013931862078607082, -0.06364826112985611, 0.011647632345557213, -0.05359511822462082, -0.0661952793598175, -0.08396698534488678, 0.07218296825885773, 0.0907905101776123, -0.030112633481621742, 0.06710650771856308, 0.013093339279294014, 0.0946633368730545, 0.09030367434024811, 0.08807839453220367, -0.02099180966615677, -0.07688324898481369, -0.003101188922300935, 0.0011474573984742165, 0.029249178245663643, -0.10796474665403366, 0.06102081015706062, 0.11454442143440247, 0.04243740811944008, 0.12498419731855392, 0.040939319878816605, -0.04965673014521599, 0.008430914022028446, 0.05252416804432869, -0.08243336528539658, -0.1294441521167755, 0.02413203753530979, 0.04600631818175316, -0.12811674177646637, -0.03935571759939194, 0.12191811203956604, -0.03175089880824089, -0.03164279833436012, -0.004163773264735937, 0.03252612054347992, 0.0038804905489087105, 0.16712374985218048, 0.018321817740797997, 0.07659458369016647, -0.07851947098970413, 0.10986200720071793, 0.09697453677654266, -0.08333243429660797, 0.022319825366139412, 0.05630393698811531, -0.08572647720575333, -0.0028798335697501898, 0.09274213761091232, 0.11127456277608871, 0.03431543707847595, -0.036444395780563354, -0.10723967105150223, -0.11299794912338257, 0.04500483348965645, 0.061920102685689926, 0.04530378058552742, 0.007314108312129974, -0.012565720826387405, 0.015213982202112675, -0.12882845103740692, 0.09838850051164627, 0.034553900361061096, 0.05296860262751579, -0.11780288815498352, 0.11583293229341507, 0.016386043280363083, 0.005209280177950859, -0.011623016558587551, 0.028172023594379425, -0.06847986578941345, -0.006691924761980772, -0.09992575645446777, 0.04787001758813858, 0.003428773256018758, -0.007157884072512388, -0.004293425008654594, -0.021740542724728584, -0.046635691076517105, 0.030355121940374374, -0.0823773592710495, -0.05336364358663559, -0.025315644219517708, 0.04747545346617699, -0.11703945696353912, -0.004914294928312302, 0.058829449117183685, -0.10491738468408585, 0.081827312707901, 0.009985812939703465, 0.03799853473901749, 0.00767495296895504, -0.1250920593738556, -0.039832741022109985, 0.02781364694237709, 0.041863374412059784, 0.04392644390463829, -0.13600467145442963, -0.012740080244839191, -0.018140818923711777, 0.01887931488454342, 0.01709308661520481, 0.056866325438022614, -0.13374841213226318, -0.00993473082780838, -0.04948163777589798, -0.08763650804758072, -0.035735201090574265, 0.019764279946684837, 0.059254974126815796, 0.028522614389657974, 0.15221035480499268, -0.0727134495973587, 0.0622078962624073, -0.23439598083496094, -0.038189198821783066, 0.0024478419218212366, 0.00976496934890747, -0.07722698152065277, -0.014309952966868877, 0.07376258820295334, -0.046137694269418716, 0.10712847858667374, 0.023021522909402847, 0.06833411753177643, 0.04752369225025177, -0.062881700694561, 0.007145622279495001, 0.03490332514047623, 0.1772528439760208, 0.06891170144081116, -0.018706945702433586, 0.12031480669975281, -0.056163981556892395, 0.055335961282253265, 0.052330758422613144, 0.20788995921611786, 0.18957604467868805, 0.02398877777159214, 0.032557446509599686, 0.036256276071071625, -0.13081622123718262, -0.1483025997877121, 0.13328717648983002, -0.051276661455631256, 0.09271270781755447, -0.05766696110367775, 0.20045147836208344, 0.10683663189411163, -0.21365247666835785, 0.058018140494823456, -0.0848386362195015, -0.08429329842329025, -0.12300493568181992, -0.05102967470884323, -0.09759176522493362, -0.13442297279834747, 0.01661045104265213, -0.11849850416183472, 0.042249150574207306, 0.12843894958496094, 0.010854294523596764, 0.02763977274298668, 0.0951886996626854, -0.053876589983701706, 0.011044220067560673, 0.03613215684890747, 0.04137107729911804, 0.02323160506784916, -0.07322600483894348, -0.07133741676807404, 0.031540367752313614, 0.01401547435671091, 0.07020123302936554, -0.03535851463675499, 0.018094360828399658, 0.013548092916607857, 0.0038085903506726027, -0.07045062631368637, 0.039871856570243835, -0.02535703405737877, 0.06668134778738022, 0.028399989008903503, 0.046734489500522614, 0.03514167293906212, -0.045178234577178955, 0.29841533303260803, -0.05444500595331192, -0.10499291121959686, -0.12466456741094589, 0.13475480675697327, 0.002898917766287923, -0.007227023597806692, 0.06440337002277374, -0.12163495272397995, -0.03605115786194801, 0.17650653421878815, 0.14422935247421265, -0.07004142552614212, -0.0035348113160580397, -0.00859702005982399, -0.011673728004097939, -0.05806618928909302, 0.11625741422176361, 0.08354199677705765, 0.04268166050314903, -0.0750366821885109, -0.026008134707808495, -0.001046981429681182, -0.03015485405921936, -0.0739242359995842, 0.09281330555677414, -0.011808314360678196, 0.023253781720995903, -0.038050610572099686, 0.07101111859083176, 0.04469509422779083, -0.1501891314983368, 0.10120867192745209, -0.22187185287475586, -0.18895673751831055, 0.008471175096929073, 0.10487053543329239, -0.04960532858967781, 0.06162884831428528, -0.018936485052108765, -0.025576520711183548, 0.07683341950178146, -0.01700012944638729, -0.031813740730285645, -0.08752112835645676, 0.07494457811117172, -0.09640185534954071, 0.266488254070282, -0.009697578847408295, 0.0729776993393898, 0.09982682764530182, 0.030673479661345482, -0.13153375685214996, 0.02135120891034603, 0.0809665098786354, -0.05991021916270256, 0.008991927839815617, 0.1678122878074646, -0.052087415009737015, 0.088123619556427, 0.08950051665306091, -0.12978264689445496, 0.007154498714953661, -0.013649635948240757, -0.013575607910752296, -0.07259909063577652, -0.026856988668441772, -0.07313795387744904, 0.13018691539764404, 0.18467161059379578, -0.048667117953300476, 0.009579824283719063, -0.044068582355976105, 0.025990504771471024, 0.03881876543164253, 0.11986353248357773, -0.021932452917099, -0.22291520237922668, 0.03064795397222042, 0.07510512322187424, 0.01761038787662983, -0.193404421210289, -0.1006477102637291, 0.05466381832957268, -0.07026989012956619, -0.07810855656862259, 0.12590382993221283, 0.057359155267477036, 0.029096033424139023, -0.03505643084645271, -0.13291583955287933, -0.03547332063317299, 0.14284130930900574, -0.14426930248737335, -0.04448136314749718 ]
null
null
adapter-transformers
# Adapter `emvecchi/cmv_moderation` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [argument/quality](https://adapterhub.ml/explore/argument/quality/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("emvecchi/cmv_moderation", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:argument/quality", "roberta", "adapter-transformers"]}
null
emvecchi/cmv_moderation
[ "adapter-transformers", "roberta", "adapterhub:argument/quality", "region:us" ]
2024-02-06T13:06:22+00:00
[]
[]
TAGS #adapter-transformers #roberta #adapterhub-argument/quality #region-us
# Adapter 'emvecchi/cmv_moderation' for roberta-base An adapter for the 'roberta-base' model that was trained on the argument/quality dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'emvecchi/cmv_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the argument/quality dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n", "# Adapter 'emvecchi/cmv_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the argument/quality dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 66, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n# Adapter 'emvecchi/cmv_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the argument/quality dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.005614886991679668, -0.10189857333898544, -0.004324198700487614, -0.012726835906505585, 0.1768610030412674, 0.07262109220027924, 0.1947554051876068, -0.02076868526637554, 0.038909368216991425, -0.0224969033151865, 0.08647133409976959, 0.10097222030162811, -0.0016339297872036695, 0.057562947273254395, -0.00846538133919239, -0.11779691278934479, 0.045757729560136795, 0.08338110148906708, -0.1532587707042694, 0.09824026376008987, 0.13418829441070557, -0.05077509209513664, 0.11659801006317139, 0.04636893421411514, -0.14909926056861877, 0.10821924358606339, 0.07515555620193481, -0.12060268968343735, 0.08098303526639938, 0.07312730699777603, 0.2314722239971161, 0.03530687838792801, 0.007559155113995075, -0.12312588840723038, 0.031543608754873276, 0.0641985759139061, -0.0026783111970871687, 0.065811887383461, -0.07538549602031708, -0.07135297358036041, 0.12071533501148224, 0.06089385598897934, 0.09310811012983322, 0.04480462521314621, -0.10046817362308502, -0.2293219119310379, 0.017419567331671715, 0.09637419134378433, 0.00862684566527605, 0.05257680267095566, 0.048502638936042786, 0.03571223467588425, -0.04904951900243759, 0.042651355266571045, 0.218720480799675, -0.17405688762664795, -0.03301156312227249, 0.04400411993265152, 0.07599329203367233, 0.10372434556484222, 0.008870692923665047, 0.031527914106845856, -0.011037847027182579, 0.01688169315457344, 0.11982663720846176, -0.07032553106546402, 0.06785942614078522, 0.03713229298591614, -0.13535061478614807, -0.044163577258586884, 0.29998302459716797, -0.04927594214677811, -0.07373344898223877, 0.0106633510440588, -0.019698981195688248, 0.0787384957075119, 0.010484921745955944, -0.08302707970142365, -0.034426383674144745, 0.05058800056576729, -0.053892333060503006, -0.08604209125041962, -0.06881900131702423, -0.1365167200565338, -0.11581866443157196, 0.4062073826789856, -0.013135729357600212, 0.017317412421107292, -0.04770783334970474, 0.09309057891368866, 0.0023675572592765093, -0.10287415981292725, 0.0060095773078501225, -0.08240343630313873, -0.02567676082253456, -0.012720772996544838, -0.06575290858745575, -0.1743316948413849, 0.09634680300951004, 0.2959914207458496, 0.22515396773815155, 0.04230319708585739, 0.007896678522229195, 0.04821830242872238, 0.006844102405011654, 0.16765469312667847, -0.08961240202188492, -0.08561746031045914, 0.0417410284280777, -0.03761535882949829, -0.003211657050997019, -0.07305654138326645, -0.09891020506620407, -0.07380156219005585, 0.04378420114517212, 0.04183429479598999, 0.011612674221396446, 0.10423371940851212, -0.03074055351316929, -0.04915658012032509, 0.04851081222295761, -0.09602493047714233, -0.07807256281375885, -0.0354464128613472, 0.009078610688447952, 0.0906316265463829, 0.1126982718706131, -0.039619848132133484, 0.05706239491701126, 0.061249952763319016, -0.07142169028520584, -0.12157683074474335, -0.05002959445118904, -0.15287186205387115, -0.04193813353776932, -0.1565101444721222, 0.08957137167453766, -0.18964822590351105, -0.042233746498823166, 0.02299780771136284, 0.10504205524921417, -0.027093973010778427, 0.07202845066785812, 0.06411068886518478, 0.008619328029453754, 0.009527822956442833, -0.04893852397799492, -0.0053412457928061485, -0.030075227841734886, 0.06645917892456055, 0.09223656356334686, 0.02164888195693493, -0.10860796272754669, 0.05946555733680725, -0.03553909808397293, 0.057933516800403595, -0.2776608467102051, 0.026100773364305496, -0.11729508638381958, 0.047966327518224716, -0.13236334919929504, 0.026426324620842934, -0.05160536244511604, 0.08801893889904022, 0.07315213978290558, 0.029004013165831566, 0.0018255736213177443, -0.0682113766670227, 0.00992924440652132, -0.1941104233264923, -0.1491180658340454, 0.024671023711562157, -0.055517442524433136, 0.1828930824995041, 0.0557405948638916, 0.03574994578957558, 0.15189602971076965, 0.00009050741937244311, 0.005608013831079006, 0.020524051040410995, -0.1409277617931366, -0.06894867867231369, 0.05021167919039726, 0.0818050354719162, -0.16850867867469788, 0.012487558647990227, -0.11646298319101334, 0.11037927865982056, -0.023229319602251053, -0.0158381350338459, -0.01867656596004963, -0.05031218379735947, 0.01602526754140854, -0.04746574908494949, -0.04714042693376541, 0.037706635892391205, -0.12267954647541046, 0.09742466360330582, 0.11689136922359467, -0.07463844120502472, -0.006703589111566544, -0.15045632421970367, 0.11848447471857071, -0.18589386343955994, 0.010416524484753609, -0.19984281063079834, 0.07170514762401581, -0.024159839376807213, 0.15865148603916168, 0.09959699958562851, 0.08320306241512299, 0.09196753054857254, -0.10303002595901489, -0.005673146806657314, -0.016659976914525032, -0.015545487403869629, 0.08817199617624283, 0.03580131381750107, -0.16600534319877625, -0.053501106798648834, -0.0703507587313652, 0.01039076130837202, -0.0698285847902298, 0.003143567591905594, 0.09754026681184769, 0.07288007438182831, 0.06504621356725693, 0.044677261263132095, -0.08412270247936249, -0.012885823845863342, -0.05194253474473953, -0.04346174746751785, -0.00932339671999216, -0.020231910049915314, -0.07977135479450226, 0.09108029305934906, -0.15397846698760986, 0.07710839062929153, 0.13468846678733826, -0.08034422993659973, -0.08062423020601273, -0.0242784321308136, 0.053536586463451385, -0.002150734653696418, 0.12360727787017822, -0.07387412339448929, 0.17847347259521484, 0.02465304173529148, 0.060146234929561615, -0.023875871673226357, 0.03433931618928909, 0.04610898345708847, -0.06310399621725082, 0.024082642048597336, -0.016603991389274597, 0.07018700987100601, -0.1932552456855774, 0.02512112259864807, 0.20500271022319794, -0.13390949368476868, 0.06254837661981583, -0.01777723617851734, -0.072842538356781, -0.032363466918468475, -0.06942633539438248, 0.0807553082704544, 0.10287880897521973, -0.106720469892025, -0.05460922047495842, 0.02657853066921234, -0.030570879578590393, 0.047572873532772064, -0.03591446578502655, 0.0698167085647583, 0.0813877135515213, -0.0003852529334835708, 0.06821133196353912, 0.04406961053609848, -0.03812577575445175, 0.03494036942720413, 0.04062900319695473, -0.024168990552425385, 0.052415214478969574, 0.00010069683048641309, -0.009022057987749577, 0.1559411734342575, -0.0538199320435524, -0.07731166481971741, -0.20822803676128387, -0.26762333512306213, 0.04209061712026596, 0.056891340762376785, 0.040249574929475784, -0.06090323254466057, -0.08263450860977173, -0.01059684157371521, 0.16494937241077423, -0.02945544943213463, 0.044988155364990234, -0.017078567296266556, 0.006373371928930283, 0.05695592239499092, -0.12345673888921738, 0.010409059002995491, -0.01576106622815132, -0.08246321976184845, 0.03273654729127884, -0.05585118383169174, 0.10180053859949112, 0.09674589335918427, -0.013893087394535542, 0.023314055055379868, -0.008843671530485153, 0.09633924812078476, -0.035612888634204865, -0.027862627059221268, 0.22317206859588623, -0.12303129583597183, -0.005598283372819424, 0.08629845082759857, -0.002384418621659279, -0.027756953611969948, 0.029435332864522934, -0.006115046329796314, -0.10984805971384048, -0.1777900606393814, -0.001584319630637765, -0.041008360683918, -0.09975393116474152, 0.13766613602638245, 0.026062369346618652, 0.02062911167740822, 0.1663006842136383, 0.0597052276134491, 0.01791173592209816, -0.0042974138632416725, 0.08234167844057083, 0.24756214022636414, -0.0009326493600383401, 0.10399959236383438, -0.10094103962182999, -0.0263088159263134, 0.08782149851322174, 0.05619487911462784, 0.22469380497932434, 0.011433973908424377, 0.0850536897778511, 0.09556067734956741, -0.08766564726829529, 0.07432949542999268, 0.15278533101081848, -0.03889290988445282, -0.021488238126039505, -0.047212742269039154, -0.005307378713041544, -0.1296984702348709, 0.011681651696562767, -0.025566166266798973, -0.05716715380549431, 0.012893132865428925, 0.04289332777261734, 0.024581778794527054, 0.06527073681354523, -0.08672209084033966, -0.27138733863830566, -0.06369797885417938, -0.006907796952873468, -0.008905471302568913, -0.06017880514264107, -0.003907125908881426, 0.010282929055392742, -0.01689203456044197, -0.039652612060308456, -0.008803832344710827, 0.09458288550376892, -0.12510830163955688, -0.02402224764227867, -0.02689177915453911, 0.21109361946582794, -0.013607410714030266, 0.06388162821531296, -0.2326902598142624, 0.12756434082984924, 0.008824152871966362, 0.0024646171368658543, -0.0546843595802784, 0.019171539694070816, 0.048421941697597504, 0.10673584789037704, 0.003123972564935684, -0.02491532266139984, -0.031052350997924805, -0.1874796599149704, -0.008294224739074707, 0.06221867725253105, 0.0673319548368454, -0.09302511811256409, 0.08341547101736069, -0.09059292823076248, 0.05706901103258133, 0.06845574080944061, -0.039359577000141144, -0.08923779428005219, -0.21187743544578552, 0.0005286562955006957, 0.06625091284513474, 0.030637869611382484, -0.08610755950212479, -0.008689986541867256, 0.10919217020273209, 0.16229820251464844, -0.04192585498094559, -0.01468486338853836, -0.14710605144500732, 0.006865384988486767, 0.14423684775829315, -0.09895050525665283, 0.11380016803741455, -0.026516849175095558, 0.01869019865989685, 0.008884705603122711, -0.10936331748962402, 0.12007655948400497, -0.08454103767871857, 0.04792146384716034, -0.024822471663355827, -0.05164393037557602, 0.058141112327575684, -0.009056957438588142, 0.05044041946530342, -0.010124723426997662, -0.027332967147231102, -0.06311091035604477, -0.1119798868894577, -0.02317073941230774, -0.09467686712741852, 0.07679325342178345, -0.01552717387676239, 0.01804954931139946, -0.03797232359647751, 0.03455597534775734, 0.10092096030712128, 0.06607887148857117, -0.03619702532887459, 0.02823653444647789, 0.13808980584144592, -0.046346601098775864, -0.23386988043785095, -0.09053393453359604, -0.0032394523732364178, 0.008117618970572948, 0.029174929484725, -0.21303251385688782, 0.17757472395896912, -0.0020829676650464535, -0.004036040510982275, -0.024199360981583595, 0.017575526610016823, -0.045722845941782, 0.2660231590270996, 0.12928402423858643, 0.28607767820358276, -0.10979745537042618, -0.055681634694337845, -0.08994992077350616, -0.21950383484363556, 0.04133673012256622, -0.09539607912302017, 0.08201179653406143, -0.0042952862568199635, 0.010991975665092468, -0.010801280848681927, -0.016673807054758072, 0.11075786501169205, -0.04538027569651604, 0.056921832263469696, -0.09246419370174408, -0.032082974910736084, 0.18740186095237732, -0.012440729886293411, -0.017102766782045364, -0.13780660927295685, 0.052538055926561356, -0.04564860835671425, -0.09989389777183533, 0.04687049239873886, 0.06043652817606926, 0.040903978049755096, -0.09165360778570175, -0.0357956625521183, -0.03028981387615204, -0.08365738391876221, -0.02347259782254696, 0.038293708115816116, -0.1105889305472374, 0.002034784760326147, 0.04935614392161369, 0.10783102363348007, -0.03692971169948578, -0.020286891609430313, 0.017831187695264816, -0.029686030000448227, 0.14282700419425964, -0.1379185914993286, 0.0826089084148407, 0.0064672320149838924, -0.042181823402643204, 0.09439511597156525, 0.05520642548799515, -0.08596064150333405, 0.02925756201148033, 0.12647297978401184, -0.050820253789424896, 0.094230517745018, 0.043120965361595154, 0.051985662430524826, -0.1147288903594017, 0.059195198118686676, 0.20449233055114746, 0.005880021955817938, -0.012110361829400063, 0.0013553124153986573, -0.07479946315288544, -0.11302707344293594, 0.09846124053001404, 0.10425417125225067, 0.042964208871126175, -0.04277919977903366, 0.01103891246020794, 0.03148068115115166, 0.02003462240099907, 0.03367815166711807, -0.12021263688802719, -0.10388548672199249, -0.033552058041095734, -0.05179858207702637, 0.12470855563879013, -0.16390512883663177, -0.10070065408945084, -0.11655423790216446, -0.12859956920146942, 0.020497361198067665, 0.1821744590997696, 0.10419516265392303, 0.04150449484586716, -0.0817418247461319, 0.02240087278187275, -0.07976974546909332, 0.0038609118200838566, 0.03126978129148483, 0.08431844413280487, -0.1369568407535553, -0.12369243055582047, 0.03578847646713257, -0.04221943020820618, -0.07870493829250336, -0.03984906151890755, -0.13208350539207458, 0.01638512685894966, -0.19437620043754578, 0.012392722070217133, -0.020581409335136414, 0.020553555339574814, 0.08000548183917999, -0.09531617909669876, -0.11433733999729156, 0.031629085540771484, -0.07835771143436432, 0.03426646441221237, 0.0566779188811779, 0.0650145411491394, -0.0890791267156601, -0.013260699808597565, 0.08888963609933853, -0.082436703145504, 0.08323008567094803, 0.07572706043720245, -0.04806629568338394, 0.0316605344414711, -0.19650974869728088, -0.030349725857377052, 0.021732309833168983, 0.025516975671052933, -0.016807522624731064, -0.10374309122562408, 0.08073677867650986, 0.018321046605706215, 0.0474853515625, -0.014275752007961273, 0.14846228063106537, -0.04618341475725174, 0.05997072532773018, -0.12452411651611328, -0.01424717903137207, -0.021469034254550934, 0.031837671995162964, 0.19386817514896393, 0.14476826786994934, 0.14613185822963715, -0.023841246962547302, -0.02303551323711872, -0.07592063397169113, 0.05594936013221741, -0.018370777368545532, -0.08218742907047272, 0.0386052168905735, -0.11836184561252594, -0.04493678733706474, -0.003653690917417407, 0.2702100872993469, -0.06848851591348648, -0.04098401218652725, 0.030962029471993446, 0.049017634242773056, 0.05832332372665405, -0.012843489646911621, 0.3177311420440674, 0.09920420497655869, 0.05514974519610405, -0.06232570856809616, 0.0486476756632328, 0.03160328045487404, -0.058056652545928955, -0.03140430524945259, 0.1623006910085678, -0.0684213936328888, 0.03321138024330139, 0.08475549519062042, 0.049937766045331955, 0.11197352409362793, 0.028682813048362732, -0.045939672738313675, -0.03887986019253731, 0.06479857116937637, 0.1565668135881424, 0.22722697257995605, 0.043142467737197876, 0.0048046112060546875, 0.07946054637432098, -0.015807457268238068, -0.10557210445404053, -0.10445536673069, -0.0729953795671463, -0.18929937481880188, -0.01442901510745287, -0.04854412376880646, -0.0884343683719635, 0.1544857770204544, -0.0066000125370919704, 0.04342398792505264, 0.16497521102428436, -0.03699101135134697, -0.04945554584264755, -0.020560944452881813, -0.06831981986761093, -0.08988501131534576, -0.011424927040934563, -0.02222183719277382, 0.01098114438354969, 0.08916974067687988, 0.016138838604092598, 0.02893913723528385, -0.012014438398182392, 0.06391832232475281, -0.05274219065904617, -0.09620990604162216, -0.06508627533912659, 0.013406497426331043, -0.08398915827274323, 0.14297647774219513, -0.06577541679143906, -0.0466768778860569, -0.005016949959099293, 0.15898533165454865, -0.0382409431040287, -0.15246334671974182, -0.141757994890213, 0.08043137192726135, -0.011647868901491165, 0.049493543803691864, -0.10209814459085464, -0.02578791044652462, 0.018366513773798943, 0.18943731486797333, 0.1470680981874466, -0.012451168149709702, 0.04441184550523758, 0.027191635221242905, 0.017361167818307877, -0.023907670751214027, 0.09973080456256866, 0.001310074352659285, -0.023176852613687515, 0.01771465316414833, -0.07858440279960632, -0.06679163873195648, 0.010232253931462765, 0.04923136904835701, -0.03535041585564613, 0.05073440819978714, -0.08057912439107895, -0.05105460807681084, 0.07729239761829376, -0.012692454271018505, -0.1557644158601761, 0.03106323815882206, 0.0278034508228302, -0.05526508763432503, -0.10226043313741684, 0.08109387010335922, -0.02842233143746853, 0.019827183336019516, -0.03723595291376114, -0.06060929223895073, 0.02453961782157421, 0.07042813301086426, -0.14513811469078064, -0.027374405413866043, 0.1118500605225563, 0.09536498039960861, 0.09638125449419022, -0.055562444031238556, 0.02310921624302864, 0.09577173739671707, 0.048313163220882416, -0.08475549519062042, 0.05203786492347717, -0.007881869561970234, -0.11384372413158417, 0.0233006589114666, -0.0246780663728714, -0.06534483283758163, 0.07183834910392761, 0.020958930253982544, -0.10212509334087372, 0.02408531680703163, -0.11575038731098175, -0.06665968894958496, -0.023747513070702553, -0.080083929002285, -0.09231946617364883, 0.1224890723824501, 0.027300313115119934, 0.00046673434553667903, -0.058747969567775726, -0.07720855623483658, 0.054296962916851044, 0.08614232391119003, 0.0068076737225055695, -0.05471700429916382, -0.07316868007183075, -0.08992195129394531, 0.015703121200203896, -0.02609829045832157, -0.27301567792892456, -0.034320712089538574, -0.03978142887353897, 0.013613234274089336, -0.0173497311770916, 0.08401106297969818, 0.13963264226913452, 0.12176141887903214, -0.04576107859611511, -0.035659439861774445, -0.011750603094696999, 0.11147484928369522, -0.25080370903015137, -0.05157393217086792 ]
null
null
adapter-transformers
# Adapter `emvecchi/rr_moderation` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [regulation/room](https://dl.acm.org/doi/pdf/10.1145/2307729.2307757) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("emvecchi/rr_moderation", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:argument/quality", "roberta", "adapter-transformers"]}
null
emvecchi/rr_moderation
[ "adapter-transformers", "roberta", "adapterhub:argument/quality", "region:us" ]
2024-02-06T13:07:58+00:00
[]
[]
TAGS #adapter-transformers #roberta #adapterhub-argument/quality #region-us
# Adapter 'emvecchi/rr_moderation' for roberta-base An adapter for the 'roberta-base' model that was trained on the regulation/room dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'emvecchi/rr_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the regulation/room dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n", "# Adapter 'emvecchi/rr_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the regulation/room dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 66, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n# Adapter 'emvecchi/rr_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the regulation/room dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ 0.008316559717059135, -0.11208061873912811, -0.004067873582243919, -0.008979164995253086, 0.17096814513206482, 0.07562582194805145, 0.19540585577487946, -0.01991957798600197, 0.056447435170412064, -0.024662401527166367, 0.06637350469827652, 0.09156118333339691, -0.00873857457190752, 0.054426662623882294, -0.012149552814662457, -0.10825377702713013, 0.044426288455724716, 0.08019211888313293, -0.1490577906370163, 0.0956147238612175, 0.13124175369739532, -0.031663455069065094, 0.11999215930700302, 0.047533825039863586, -0.14766736328601837, 0.12006466090679169, 0.08205513656139374, -0.12208511680364609, 0.09776873886585236, 0.07815351337194443, 0.24650593101978302, 0.04038612172007561, 0.02161668986082077, -0.10732004791498184, 0.03352830931544304, 0.07352092862129211, -0.012419124133884907, 0.06926770508289337, -0.07954367995262146, -0.09077806770801544, 0.11920726299285889, 0.07156232744455338, 0.09095592796802521, 0.0481141023337841, -0.10676129162311554, -0.24239704012870789, 0.019662952050566673, 0.08934919536113739, -0.011473333463072777, 0.056598007678985596, 0.04690427705645561, 0.028693487867712975, -0.04155469685792923, 0.038828399032354355, 0.23982958495616913, -0.16746650636196136, -0.031339243054389954, 0.025240767747163773, 0.08222207427024841, 0.11151977628469467, -0.010150452144443989, 0.010870103724300861, -0.008268343284726143, 0.020948732271790504, 0.10240651667118073, -0.07803124189376831, 0.05875059962272644, 0.020595047622919083, -0.12741748988628387, -0.035148657858371735, 0.286013662815094, -0.04980667680501938, -0.08360522985458374, 0.03185582906007767, -0.038756366819143295, 0.0786648839712143, 0.024090537801384926, -0.06446947902441025, -0.04404653236269951, 0.05269477888941765, -0.05699204280972481, -0.09694880247116089, -0.06447527557611465, -0.147379070520401, -0.11834677308797836, 0.43707913160324097, -0.011373387649655342, 0.02069021388888359, -0.04721323400735855, 0.09499804675579071, 0.013702680356800556, -0.09616569429636002, 0.010269739665091038, -0.08186859637498856, -0.03069281205534935, 0.011086912825703621, -0.06276963651180267, -0.1519751101732254, 0.10013502836227417, 0.3319323658943176, 0.18520784378051758, 0.04172614961862564, -0.00006278697401285172, 0.049347925931215286, -0.010968473739922047, 0.17637331783771515, -0.08791636675596237, -0.07273928821086884, 0.043589357286691666, -0.03925589844584465, -0.009526098147034645, -0.0694625973701477, -0.08829568326473236, -0.07257530093193054, 0.022625479847192764, 0.025765245780348778, 0.004418082069605589, 0.0989753007888794, -0.026359394192695618, -0.045048218220472336, 0.05081908032298088, -0.10036635398864746, -0.08566992729902267, -0.02740728296339512, 0.015824075788259506, 0.07464554160833359, 0.11721809208393097, -0.0508447103202343, 0.07932998985052109, 0.0540698766708374, -0.06711474061012268, -0.13645769655704498, -0.05078238248825073, -0.14677616953849792, -0.06116902083158493, -0.1891443282365799, 0.1073746457695961, -0.1867104470729828, -0.030682465061545372, 0.016921091824769974, 0.10846098512411118, -0.033599190413951874, 0.0770089253783226, 0.06306444853544235, 0.009610460139811039, 0.010257535614073277, -0.04743652790784836, -0.0046860938891768456, -0.01949441060423851, 0.07242915034294128, 0.10102162510156631, 0.020734412595629692, -0.12740591168403625, 0.06078970432281494, -0.049511589109897614, 0.061026763170957565, -0.25658971071243286, 0.019817059859633446, -0.12558850646018982, 0.030846690759062767, -0.13180537521839142, 0.035448603332042694, -0.046673376113176346, 0.09571336209774017, 0.0715935155749321, 0.007744478527456522, 0.022126104682683945, -0.07050459086894989, 0.019799336791038513, -0.20392341911792755, -0.1225520595908165, 0.02083941362798214, -0.05602123588323593, 0.19890373945236206, 0.03764193505048752, 0.06284533441066742, 0.15273313224315643, 0.018548302352428436, -0.00273181707598269, 0.009363767690956593, -0.1508593112230301, -0.06839597970247269, 0.04850782826542854, 0.08842562139034271, -0.17547087371349335, 0.013839593157172203, -0.12004680931568146, 0.11794568598270416, -0.01928907260298729, -0.006852836813777685, -0.015867972746491432, -0.0484660342335701, 0.00859574694186449, -0.02799861505627632, -0.04774310067296028, 0.03808742016553879, -0.13849061727523804, 0.09127716720104218, 0.11593937873840332, -0.07595211267471313, -0.00476783188059926, -0.1453736424446106, 0.11286236345767975, -0.16454997658729553, 0.003068853635340929, -0.19956117868423462, 0.07641676068305969, -0.03879758343100548, 0.1780214160680771, 0.1131921261548996, 0.09215767681598663, 0.10669587552547455, -0.10289999097585678, -0.0043729194439947605, -0.03067658841609955, -0.029489297419786453, 0.08871600776910782, 0.05526091903448105, -0.16132806241512299, -0.04453720524907112, -0.08421524614095688, 0.007789952214807272, -0.06172645092010498, 0.005039521027356386, 0.06036065146327019, 0.06683038175106049, 0.05980866402387619, 0.04912658780813217, -0.09634621441364288, -0.02487407624721527, -0.058371834456920624, -0.04337447136640549, -0.013523763045668602, -0.02542862668633461, -0.07007615268230438, 0.07919885963201523, -0.13815122842788696, 0.08370880782604218, 0.12334456294775009, -0.05106461048126221, -0.09136124700307846, 0.01489268522709608, 0.03830477222800255, 0.0045264000073075294, 0.12067538499832153, -0.07472765445709229, 0.21435293555259705, 0.017787614837288857, 0.05737241357564926, -0.015224318020045757, 0.045922935009002686, 0.0452812984585762, -0.0689573884010315, 0.031051214784383774, 0.0015772093320265412, 0.0643882006406784, -0.19480767846107483, 0.028614675626158714, 0.20005424320697784, -0.1458723247051239, 0.05725652724504471, -0.017425302416086197, -0.07107952982187271, -0.012493315152823925, -0.0711490660905838, 0.08274709433317184, 0.11026152223348618, -0.07721182703971863, -0.04571305587887764, 0.02329673059284687, -0.035720087587833405, 0.05227994918823242, -0.03478836268186569, 0.060597628355026245, 0.06425148993730545, 0.0032849207054823637, 0.061777569353580475, 0.04470347613096237, -0.031774766743183136, 0.035695500671863556, 0.039473723620176315, -0.06280451267957687, 0.046298183500766754, 0.005067850463092327, 0.010707985609769821, 0.15848416090011597, -0.032014571130275726, -0.06934534758329391, -0.21621301770210266, -0.2707388997077942, 0.05385751277208328, 0.053450338542461395, 0.04561180621385574, -0.069063700735569, -0.0810997486114502, -0.00460071349516511, 0.19170960783958435, -0.039492689073085785, 0.03873714432120323, -0.018126627430319786, 0.016157492995262146, 0.059399448335170746, -0.12262667715549469, 0.020703230053186417, -0.02111024037003517, -0.10481023788452148, 0.03810339793562889, -0.06401524692773819, 0.10055321455001831, 0.07700087875127792, -0.02185859903693199, 0.018271874636411667, -0.0040369825437664986, 0.07994767278432846, -0.037956736981868744, -0.018764710053801537, 0.20704463124275208, -0.1226576417684555, -0.0035464756656438112, 0.09439735114574432, -0.007818874903023243, -0.026866361498832703, 0.03025323711335659, 0.011438501067459583, -0.11151261627674103, -0.1887616515159607, 0.017883721739053726, -0.028908992186188698, -0.0928272157907486, 0.13449016213417053, 0.030367404222488403, 0.010470770299434662, 0.16687771677970886, 0.06697197258472443, 0.013024142012000084, -0.010934008285403252, 0.07472538948059082, 0.2296610176563263, -0.003951766062527895, 0.10142002999782562, -0.10588866472244263, -0.03862569481134415, 0.08518151193857193, 0.06965462863445282, 0.2379675805568695, 0.004559152759611607, 0.09422215819358826, 0.08999444544315338, -0.1021113246679306, 0.07585956156253815, 0.17056256532669067, -0.05321488901972771, -0.01757488027215004, -0.057462483644485474, 0.013072465546429157, -0.12708944082260132, 0.013631771318614483, -0.059609971940517426, -0.056155115365982056, 0.02182961069047451, 0.03671069070696831, 0.009057274088263512, 0.045073799788951874, -0.09246649593114853, -0.2620696425437927, -0.06343977898359299, -0.008488279767334461, -0.0035023719538003206, -0.06021850183606148, 0.012200932018458843, 0.009095419198274612, -0.008826754987239838, -0.06468450278043747, -0.01539525669068098, 0.09270264208316803, -0.11820779740810394, -0.032714325934648514, -0.04410985857248306, 0.2211393564939499, -0.013241589069366455, 0.06595940887928009, -0.2046053111553192, 0.13623955845832825, -0.000003064749762415886, -0.005606909282505512, -0.03973659500479698, 0.006255692802369595, 0.05009750649333, 0.08656136691570282, 0.016949664801359177, -0.03055068477988243, -0.059887636452913284, -0.1988818347454071, -0.011419524438679218, 0.07193177938461304, 0.06604383140802383, -0.09543518722057343, 0.08650778979063034, -0.10211298614740372, 0.05860820412635803, 0.07443594187498093, -0.06785754859447479, -0.06647057086229324, -0.21536676585674286, -0.020521923899650574, 0.06024432182312012, 0.018831465393304825, -0.08626613765954971, -0.0047063580714166164, 0.11300705373287201, 0.16549080610275269, -0.028508538380265236, -0.007999283261597157, -0.14932021498680115, 0.0018166645895689726, 0.1628865897655487, -0.10868163406848907, 0.10626561939716339, -0.03519987687468529, -0.012584263458848, 0.0010899556800723076, -0.12667249143123627, 0.11586432158946991, -0.0776822566986084, 0.04478047043085098, -0.026961272582411766, -0.05062509700655937, 0.07410232722759247, -0.0016406821087002754, 0.04522877186536789, -0.007066389080137014, -0.043095026165246964, -0.057810425758361816, -0.09712021797895432, -0.05498994514346123, -0.11296840757131577, 0.05760810524225235, -0.027148639783263206, 0.02869284152984619, -0.043342214077711105, 0.03859430551528931, 0.09620994329452515, 0.05493626743555069, -0.04078671336174011, 0.038621820509433746, 0.12960121035575867, -0.03908486291766167, -0.22016195952892303, -0.10931720584630966, -0.011058473959565163, 0.016584983095526695, 0.01983696222305298, -0.22872325778007507, 0.1768571436405182, 0.0002941638231277466, -0.002719627693295479, -0.005913968198001385, 0.04499500244855881, -0.028111720457673073, 0.28392043709754944, 0.13229180872440338, 0.28512245416641235, -0.10691676288843155, -0.04718777537345886, -0.0635753720998764, -0.2078300416469574, 0.040498875081539154, -0.11034981161355972, 0.09485876560211182, -0.015902813524007797, 0.022646961733698845, -0.020128225907683372, -0.01298707164824009, 0.09269865602254868, -0.045309413224458694, 0.04642574116587639, -0.07832948118448257, -0.04083671420812607, 0.19108112156391144, 0.0032575316727161407, -0.02650602161884308, -0.13867412507534027, 0.05567111447453499, -0.048502374440431595, -0.10363291203975677, 0.03370508551597595, 0.06948935985565186, 0.04717162996530533, -0.09386146813631058, -0.043962299823760986, -0.01519492082297802, -0.09933105111122131, -0.02366025745868683, 0.06240212917327881, -0.10387925058603287, 0.013668757863342762, 0.04399195685982704, 0.08069366216659546, -0.008240094408392906, -0.010565059259533882, 0.02334516867995262, -0.031005194410681725, 0.12681689858436584, -0.13481974601745605, 0.0749286338686943, 0.01063648983836174, -0.03748829662799835, 0.08567258715629578, 0.05966110900044441, -0.09520608186721802, 0.04025480896234512, 0.13014192879199982, -0.04579995945096016, 0.09302572160959244, 0.04529903456568718, 0.0425928458571434, -0.11169896274805069, 0.06809351593255997, 0.20533740520477295, 0.010253135114908218, -0.021291861310601234, -0.010060064494609833, -0.07586316764354706, -0.12081500142812729, 0.08188875019550323, 0.11178305000066757, 0.04331432655453682, -0.035208988934755325, 0.005009000189602375, 0.032837290316820145, 0.03383723646402359, 0.0352044440805912, -0.10902906954288483, -0.10114345699548721, -0.02343713492155075, -0.03622734174132347, 0.12309905141592026, -0.18680445849895477, -0.09815965592861176, -0.13243481516838074, -0.12763944268226624, 0.015042036771774292, 0.1853308528661728, 0.10282216966152191, 0.03420405462384224, -0.07793144136667252, 0.01687534525990486, -0.08280708640813828, -0.0015772568294778466, 0.013307539746165276, 0.08534426987171173, -0.12524113059043884, -0.15663915872573853, 0.04070022329688072, -0.047216661274433136, -0.08078361302614212, -0.03579174354672432, -0.15113303065299988, 0.017037304118275642, -0.1836426556110382, 0.017620693892240524, -0.0027582994662225246, 0.02596527338027954, 0.07136191427707672, -0.10535717010498047, -0.1159774512052536, 0.027658898383378983, -0.07850993424654007, 0.02625853382050991, 0.06089939922094345, 0.057212382555007935, -0.09910129755735397, -0.005460431799292564, 0.10132215917110443, -0.08090672641992569, 0.07481949031352997, 0.0847119688987732, -0.03847538307309151, 0.04113847017288208, -0.19870693981647491, -0.03405488282442093, 0.007232817355543375, 0.016078397631645203, -0.006929024122655392, -0.10748931020498276, 0.08328385651111603, 0.006031817756593227, 0.04939369112253189, -0.018206506967544556, 0.1413397639989853, -0.05039514973759651, 0.0850171148777008, -0.13694414496421814, -0.022778844460844994, -0.023639440536499023, 0.026993637904524803, 0.18700258433818817, 0.15241709351539612, 0.1441514790058136, -0.024480164051055908, -0.006450913846492767, -0.07883484661579132, 0.05880250409245491, -0.009619278833270073, -0.08118115365505219, 0.06181052327156067, -0.1331118941307068, -0.05909083038568497, 0.008930103853344917, 0.26357701420783997, -0.0681304782629013, -0.03593955188989639, 0.027524039149284363, 0.016522010788321495, 0.04529944434762001, -0.027018746361136436, 0.3229408860206604, 0.09341596066951752, 0.05390485003590584, -0.052520375698804855, 0.028733426705002785, 0.027829404920339584, -0.04628384858369827, -0.021801048889756203, 0.17842181026935577, -0.07699207216501236, 0.025634292513132095, 0.08469463139772415, 0.03186099976301193, 0.10580338537693024, 0.03994140774011612, -0.024248680099844933, -0.07731082290410995, 0.0674794539809227, 0.1556854397058487, 0.23615391552448273, 0.056869249790906906, 0.012215575203299522, 0.08412150293588638, -0.007683823816478252, -0.1063327044248581, -0.054958321154117584, -0.08225201070308685, -0.17554745078086853, 0.0008762603392824531, -0.04486126825213432, -0.09742391109466553, 0.15765079855918884, -0.01627211645245552, 0.05647842213511467, 0.17059384286403656, -0.0183376744389534, -0.04026395082473755, -0.043495990335941315, -0.05850212648510933, -0.09247589856386185, -0.0008116665994748473, -0.017417505383491516, 0.014384622685611248, 0.09215856343507767, 0.015961525961756706, 0.020580269396305084, -0.013336218893527985, 0.0645386204123497, -0.053227443248033524, -0.08690439909696579, -0.07452566921710968, 0.026697922497987747, -0.07581733167171478, 0.13281475007534027, -0.06151783466339111, -0.04664357751607895, -0.005724780261516571, 0.16306230425834656, -0.042189158499240875, -0.14528456330299377, -0.13535556197166443, 0.1088428646326065, -0.020438680425286293, 0.040447529405355453, -0.10496307909488678, -0.03344511240720749, 0.012866142205893993, 0.19884093105793, 0.15014329552650452, -0.006265364587306976, 0.03977484256029129, 0.02939128875732422, 0.019914204254746437, -0.018324576318264008, 0.09548421204090118, 0.014006925746798515, -0.012706955894827843, 0.0016585967969149351, -0.11158093065023422, -0.06946273893117905, 0.021345602348446846, 0.05988219380378723, -0.03216301277279854, 0.04912281036376953, -0.07439607381820679, -0.06656397879123688, 0.06936389952898026, -0.02443394996225834, -0.18887607753276825, 0.03587030619382858, 0.026199614629149437, -0.05303392559289932, -0.1120443195104599, 0.07785551249980927, -0.03912247344851494, 0.021333280950784683, -0.03423088416457176, -0.0609242245554924, 0.018569566309452057, 0.07030026614665985, -0.15416596829891205, 0.0014583071460947394, 0.10059119760990143, 0.08735968917608261, 0.10931047052145004, -0.06175123527646065, 0.008494384586811066, 0.09765316545963287, 0.043495744466781616, -0.08860211074352264, 0.06589609384536743, -0.025174370035529137, -0.11113226413726807, 0.012710513547062874, -0.01057085208594799, -0.06586937606334686, 0.07515360414981842, 0.012529073283076286, -0.10327267646789551, 0.03216942027211189, -0.09997398406267166, -0.0738864466547966, -0.020993374288082123, -0.07885240018367767, -0.09855654090642929, 0.12561076879501343, 0.03574730455875397, 0.010403641499578953, -0.05766235664486885, -0.09544935822486877, 0.06044324114918709, 0.1085415706038475, 0.0035313095431774855, -0.061062783002853394, -0.054123710840940475, -0.10777746140956879, 0.03232875093817711, -0.042672716081142426, -0.3143293857574463, -0.024016674607992172, -0.04496829956769943, 0.016586480662226677, -0.023584773764014244, 0.07180872559547424, 0.13173337280750275, 0.13494102656841278, -0.03831001743674278, -0.032545026391744614, -0.013311313465237617, 0.10278340429067612, -0.2562309503555298, -0.04522915557026863 ]
null
null
adapter-transformers
# Adapter `emvecchi/umod_moderation` for roberta-base An [adapter](https://adapterhub.ml) for the `roberta-base` model that was trained on the [UMOD](https://github.com/Blubberli/userMod.git) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("roberta-base") adapter_name = model.load_adapter("emvecchi/umod_moderation", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["adapterhub:argument/quality", "roberta", "adapter-transformers"]}
null
emvecchi/umod_moderation
[ "adapter-transformers", "roberta", "adapterhub:argument/quality", "region:us" ]
2024-02-06T13:09:11+00:00
[]
[]
TAGS #adapter-transformers #roberta #adapterhub-argument/quality #region-us
# Adapter 'emvecchi/umod_moderation' for roberta-base An adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification. This adapter was created for usage with the adapter-transformers library. ## Usage First, install 'adapter-transformers': _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_ Now, the adapter can be loaded and activated like this: ## Architecture & Training ## Evaluation results
[ "# Adapter 'emvecchi/umod_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ "TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n", "# Adapter 'emvecchi/umod_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.", "## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:", "## Architecture & Training", "## Evaluation results" ]
[ 21, 65, 57, 5, 4 ]
[ "passage: TAGS\n#adapter-transformers #roberta #adapterhub-argument/quality #region-us \n# Adapter 'emvecchi/umod_moderation' for roberta-base\n\nAn adapter for the 'roberta-base' model that was trained on the UMOD dataset and includes a prediction head for classification.\n\nThis adapter was created for usage with the adapter-transformers library.## Usage\n\nFirst, install 'adapter-transformers':\n\n\n_Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. More_\n\nNow, the adapter can be loaded and activated like this:## Architecture & Training## Evaluation results" ]
[ -0.0021407869644463062, -0.11165247857570648, -0.004203641787171364, -0.009007387794554234, 0.20030249655246735, 0.09721828252077103, 0.18806737661361694, -0.03946085274219513, 0.03534488007426262, -0.0334576815366745, 0.06714736670255661, 0.06766751408576965, 0.0014451901661232114, 0.0228121317923069, -0.015458554029464722, -0.11436359584331512, 0.051362380385398865, 0.05996886268258095, -0.18575634062290192, 0.07243388146162033, 0.11055941879749298, -0.0373312272131443, 0.12470947951078415, 0.039216410368680954, -0.15468871593475342, 0.1274881362915039, 0.05495670065283775, -0.09890565276145935, 0.060560766607522964, 0.0857345312833786, 0.24261753261089325, 0.03584745526313782, 0.026737522333860397, -0.13496918976306915, 0.02929890900850296, 0.05883702635765076, -0.013031605631113052, 0.044004715979099274, -0.08172519505023956, -0.07189248502254486, 0.1383456587791443, 0.07364322245121002, 0.08934459090232849, 0.03588511049747467, -0.10691376775503159, -0.20408937335014343, 0.014290436170995235, 0.07537785917520523, -0.03413774445652962, 0.059114839881658554, 0.04582838714122772, 0.013779772445559502, -0.057902343571186066, 0.023532060906291008, 0.211125910282135, -0.1461639404296875, -0.024088332429528236, 0.0034782763104885817, 0.07584583014249802, 0.1133718192577362, 0.006116839591413736, 0.0016601239331066608, -0.011351767927408218, 0.02807525172829628, 0.06561210751533508, -0.073299840092659, 0.09697580337524414, 0.027965426445007324, -0.14746198058128357, -0.023615868762135506, 0.3041069805622101, -0.03487306833267212, -0.08494455367326736, 0.06859317421913147, -0.02353907935321331, 0.12192904949188232, 0.00967387668788433, -0.07610639184713364, -0.028714515268802643, 0.055351633578538895, -0.06505174189805984, -0.061481986194849014, -0.045618604868650436, -0.1128818690776825, -0.14517275989055634, 0.441795289516449, -0.004193543456494808, 0.02669897861778736, -0.04208654537796974, 0.06739817559719086, 0.005187871865928173, -0.09847725927829742, 0.013516325503587723, -0.07339537143707275, -0.00658000772818923, -0.01319658849388361, -0.06816840916872025, -0.1706693470478058, 0.12368383258581161, 0.3446246385574341, 0.1875852644443512, 0.050556279718875885, -0.007030617445707321, 0.04707564413547516, 0.011408491991460323, 0.16384123265743256, -0.09906358271837234, -0.09642060101032257, 0.03587230294942856, -0.03354435786604881, 0.008431624621152878, -0.0647984966635704, -0.10774138569831848, -0.062493424862623215, 0.04268122464418411, 0.032953858375549316, 0.022345012053847313, 0.1072545051574707, -0.026067014783620834, -0.061670850962400436, 0.04363848268985748, -0.09845107793807983, -0.0696539506316185, -0.026297396048903465, 0.008018345572054386, 0.08037586510181427, 0.12081443518400192, -0.02060818485915661, 0.06110687553882599, 0.06695204228162766, -0.06435974687337875, -0.12022470682859421, -0.044698555022478104, -0.14924760162830353, -0.034506164491176605, -0.1182008907198906, 0.11448351293802261, -0.19423498213291168, -0.04129182547330856, 0.01758887991309166, 0.11114552617073059, -0.018320394679903984, 0.0889873057603836, 0.050694748759269714, 0.033111028373241425, 0.014079902321100235, -0.04201483726501465, 0.010068370029330254, -0.027332758530974388, 0.06493513286113739, 0.11364544928073883, 0.0037685963325202465, -0.1346207559108734, 0.06563865393400192, -0.028835399076342583, 0.057673968374729156, -0.23245900869369507, -0.012883877381682396, -0.11394651979207993, 0.052880555391311646, -0.1088661327958107, 0.03782299906015396, -0.05508076772093773, 0.1037040576338768, 0.09406746923923492, 0.01629919745028019, 0.025658514350652695, -0.06728065013885498, -0.028052665293216705, -0.19237656891345978, -0.12088192999362946, 0.026847342029213905, -0.0526423417031765, 0.14984388649463654, 0.0297001414000988, 0.039317384362220764, 0.1201239675283432, 0.015233570709824562, 0.014336398802697659, 0.0037621131632477045, -0.13880954682826996, -0.05782439187169075, 0.05851738899946213, 0.09695226699113846, -0.21185915172100067, 0.0028783746529370546, -0.0860566571354866, 0.11818576604127884, -0.029581978917121887, -0.016887499019503593, -0.014455964788794518, -0.060953620821237564, -0.015530510805547237, -0.02436980977654457, -0.06207696348428726, 0.04404013231396675, -0.12492646276950836, 0.14010398089885712, 0.12019165605306625, -0.07346136122941971, -0.0025512150023132563, -0.14358726143836975, 0.11505649983882904, -0.1728840470314026, 0.017860224470496178, -0.189820796251297, 0.07107377052307129, -0.044962961226701736, 0.15203891694545746, 0.10374481976032257, 0.048098232597112656, 0.09524359554052353, -0.0815650150179863, -0.007413138169795275, -0.02137700654566288, -0.029651548713445663, 0.08828772604465485, 0.04624374583363533, -0.15872971713542938, -0.038767389953136444, -0.07138729840517044, -0.05183657631278038, -0.07111025601625443, 0.007173400372266769, 0.05957668647170067, 0.06301941722631454, 0.052727922797203064, 0.04360511526465416, -0.10004092752933502, 0.00005616219641524367, -0.0557396374642849, -0.03757045418024063, -0.007395900320261717, -0.02206309512257576, -0.08032529801130295, 0.04403047263622284, -0.15093261003494263, 0.10831423848867416, 0.13768412172794342, -0.07644510269165039, -0.08157031983137131, 0.02174980752170086, 0.05072066932916641, -0.01268056221306324, 0.12464067339897156, -0.0541650727391243, 0.1663397252559662, 0.010106120258569717, 0.044842999428510666, -0.007867520675063133, 0.05486482381820679, 0.037513602524995804, -0.0636039525270462, 0.007768059615045786, 0.0005620877491310239, 0.09042800217866898, -0.19229035079479218, 0.03478338569402695, 0.22527070343494415, -0.146335631608963, 0.05959427356719971, -0.021350836381316185, -0.0533624067902565, -0.026647748425602913, -0.06838436424732208, 0.0801495909690857, 0.09319563210010529, -0.11445155739784241, -0.028789447620511055, 0.015076369047164917, -0.008466142229735851, 0.06354118138551712, -0.03116842545568943, 0.057537179440259933, 0.06836554408073425, 0.021770473569631577, 0.028281724080443382, 0.033796925097703934, -0.0449223630130291, 0.02525649219751358, 0.05000648275017738, -0.00009167793905362487, 0.059318844228982925, 0.004713003057986498, 0.0034545105881989002, 0.15811388194561005, -0.06497561186552048, -0.08693934231996536, -0.18535296618938446, -0.27232179045677185, 0.027756990864872932, 0.049067866057157516, 0.053342536091804504, -0.07173668593168259, -0.08116268366575241, 0.023030495271086693, 0.20150519907474518, -0.04819171875715256, 0.04138588160276413, 0.005538058001548052, 0.008713350631296635, 0.06027669832110405, -0.10768251121044159, 0.008155526593327522, -0.014664330519735813, -0.09381123632192612, 0.015403630211949348, -0.05205328390002251, 0.11273686587810516, 0.05640767142176628, -0.0051965792663395405, 0.011516856029629707, 0.030273839831352234, 0.10130150616168976, -0.016758030280470848, -0.05163976177573204, 0.2252848893404007, -0.1437336951494217, 0.0007184011046774685, 0.09359733760356903, 0.0043670847080647945, -0.03482549637556076, 0.02282799780368805, -0.0006934292032383382, -0.09405281394720078, -0.1542549431324005, 0.014775766059756279, -0.04420604929327965, -0.09898705780506134, 0.11303059756755829, 0.023565256968140602, -0.04832740128040314, 0.15635961294174194, 0.06263703852891922, 0.04204631969332695, -0.02294788509607315, 0.07330231368541718, 0.21915513277053833, -0.0033157276920974255, 0.08719034492969513, -0.09399010241031647, -0.03610176220536232, 0.09087111055850983, 0.06627005338668823, 0.2135198563337326, 0.04595232754945755, 0.05372912809252739, 0.08868515491485596, -0.09344443678855896, 0.07471509277820587, 0.1448892056941986, -0.043210431933403015, -0.026893649250268936, -0.045431576669216156, 0.012851489707827568, -0.11908368021249771, 0.007376248948276043, -0.04106562212109566, -0.05039529874920845, 0.0032173427753150463, 0.045793693512678146, 0.025521043688058853, -0.006673240102827549, -0.10782273858785629, -0.24561601877212524, -0.046328891068696976, -0.006411453243345022, -0.024196837097406387, -0.05874375253915787, 0.0009785377187654376, -0.008363197557628155, -0.0025148531422019005, -0.03804311901330948, 0.004156642593443394, 0.094747394323349, -0.12549236416816711, -0.023814944550395012, -0.01587684266269207, 0.2342892289161682, -0.01413980033248663, 0.06897134333848953, -0.23927587270736694, 0.09397605061531067, -0.005399628076702356, 0.01650816760957241, -0.029202692210674286, 0.0031040047761052847, 0.06980617344379425, 0.13118340075016022, -0.024820294231176376, -0.010635494254529476, -0.07685882598161697, -0.1584954857826233, 0.00849588867276907, 0.07948992401361465, 0.07075019180774689, -0.06942270696163177, 0.07647154480218887, -0.08469188213348389, 0.07588720321655273, 0.08657997846603394, -0.021211257204413414, -0.12951916456222534, -0.20500969886779785, -0.01527804508805275, 0.020327530801296234, 0.03875119611620903, -0.08255702257156372, -0.006493424531072378, 0.10401574522256851, 0.18873322010040283, -0.022877395153045654, -0.008468849584460258, -0.1470877081155777, 0.027129841968417168, 0.12274675071239471, -0.09805478155612946, 0.08417344093322754, -0.020949991419911385, -0.015717938542366028, 0.0037614323664456606, -0.12676404416561127, 0.11269780248403549, -0.08401037752628326, 0.0446721687912941, -0.0335213840007782, -0.1059299185872078, 0.06325601041316986, -0.017737753689289093, 0.012059975415468216, -0.015177058055996895, -0.03927895054221153, -0.06793317943811417, -0.10200531780719757, -0.016052888706326485, -0.06634543091058731, 0.08340131491422653, -0.02706950344145298, 0.022725993767380714, -0.01858789660036564, 0.015133686363697052, 0.09003383666276932, 0.05170384421944618, -0.008343406952917576, 0.005015409551560879, 0.15328675508499146, -0.039676468819379807, -0.24511407315731049, -0.1121441125869751, 0.005232767667621374, 0.011293064802885056, 0.01451611053198576, -0.2423560470342636, 0.1882397085428238, 0.006204736884683371, 0.016985969617962837, -0.011647447012364864, 0.04940219223499298, -0.03417776897549629, 0.2879067659378052, 0.14135269820690155, 0.3028639554977417, -0.11437764018774033, -0.03558698296546936, -0.10935313254594803, -0.21572184562683105, 0.06467509269714355, -0.08891095221042633, 0.08756580948829651, -0.02169973775744438, 0.044542957097291946, -0.020608894526958466, -0.011712882667779922, 0.10283267498016357, -0.05862532928586006, 0.047466278076171875, -0.0970800518989563, -0.04805832356214523, 0.13263744115829468, -0.0006618722109124064, -0.04214893653988838, -0.14908553659915924, 0.052605509757995605, -0.008544261567294598, -0.11049758642911911, 0.06588897109031677, 0.07698020339012146, 0.0389794297516346, -0.08549580723047256, -0.026233870536088943, -0.015467439778149128, -0.08926009386777878, -0.017633600160479546, 0.038407232612371445, -0.08609754592180252, -0.05100298300385475, 0.025983696803450584, 0.08396898210048676, -0.01945277862250805, 0.015230724588036537, 0.010270579718053341, -0.031945664435625076, 0.13916973769664764, -0.11458148807287216, 0.07705271989107132, 0.0033109949436038733, -0.04958997666835785, 0.09625177830457687, 0.06529766321182251, -0.09122760593891144, 0.023589778691530228, 0.138052299618721, -0.03885262832045555, 0.08886509388685226, 0.02737286686897278, 0.026028677821159363, -0.1217300146818161, 0.045706652104854584, 0.17741501331329346, 0.01635908894240856, -0.009490136988461018, -0.01271431241184473, -0.05471283569931984, -0.1333857774734497, 0.08316315710544586, 0.12870360910892487, 0.02468761056661606, -0.032118383795022964, 0.0367622971534729, 0.019311055541038513, 0.04102417454123497, 0.033393744379282, -0.10338873416185379, -0.10002342611551285, -0.025426028296351433, -0.041806891560554504, 0.19558779895305634, -0.18818248808383942, -0.1322442889213562, -0.11698493361473083, -0.12734007835388184, 0.030536087229847908, 0.1628386676311493, 0.10155073553323746, 0.02810399979352951, -0.07313280552625656, 0.040690530091524124, -0.06668908894062042, -0.005445037502795458, 0.03857308626174927, 0.08921266347169876, -0.12959140539169312, -0.18808379769325256, 0.04209602251648903, -0.03228947892785072, -0.07476748526096344, -0.02233707346022129, -0.1864314079284668, 0.004576666746288538, -0.24946282804012299, 0.0035180491395294666, -0.004184218589216471, 0.040899552404880524, 0.08577010035514832, -0.11592290550470352, -0.12673701345920563, 0.033736880868673325, -0.07174976170063019, 0.012450121343135834, 0.05694571137428284, 0.04927234351634979, -0.0695824921131134, 0.0036701203789561987, 0.09704690426588058, -0.07730501145124435, 0.050932060927152634, 0.08015169948339462, -0.027253106236457825, 0.043972447514534, -0.1710212081670761, -0.034951504319906235, -0.012840303592383862, 0.02946723811328411, -0.010072540491819382, -0.09616567194461823, 0.06718489527702332, 0.016639340668916702, 0.039060477167367935, -0.024451743811368942, 0.21058957278728485, -0.0569612942636013, 0.0642680674791336, -0.13746818900108337, -0.028367815539240837, -0.031585484743118286, 0.02135160192847252, 0.1630384624004364, 0.15653061866760254, 0.15083304047584534, -0.01762213557958603, -0.021432213485240936, -0.0716390460729599, 0.0521298311650753, 0.009351867251098156, -0.0800880417227745, 0.06348330527544022, -0.10780061036348343, -0.04267637059092522, 0.0038674732204526663, 0.27077144384384155, -0.08182545751333237, -0.04874950274825096, 0.012018781155347824, 0.050197672098875046, 0.03946594521403313, -0.025202136486768723, 0.3201126456260681, 0.09284358471632004, 0.0531747080385685, -0.08985349535942078, 0.05178900808095932, 0.036850638687610626, -0.07405458390712738, -0.015939870849251747, 0.18500103056430817, -0.1014058068394661, 0.022489583119750023, 0.08152686804533005, 0.04830218479037285, 0.10617270320653915, 0.04082295298576355, -0.03529610484838486, -0.05733374133706093, 0.0662463828921318, 0.1491508185863495, 0.21917837858200073, 0.04914497584104538, 0.0033641746267676353, 0.06661803275346756, -0.013284381479024887, -0.10008469223976135, -0.08679758757352829, -0.0778515562415123, -0.19807985424995422, 0.01055123284459114, -0.05321340635418892, -0.09340890496969223, 0.14535526931285858, -0.019882362335920334, 0.049295295029878616, 0.15051241219043732, -0.045694999396800995, -0.04487450420856476, -0.06477151066064835, -0.08093880861997604, -0.10571202635765076, 0.028426004573702812, -0.037170302122831345, 0.019910231232643127, 0.08608262240886688, 0.027222387492656708, 0.025160539895296097, -0.022400083020329475, 0.08393944799900055, -0.056600701063871384, -0.07765396684408188, -0.07499955594539642, 0.003790500108152628, -0.07155436277389526, 0.12941144406795502, -0.073566734790802, -0.02771267108619213, 0.003059417475014925, 0.13849090039730072, -0.029711442068219185, -0.19366638362407684, -0.14483964443206787, 0.11738397181034088, -0.016908926889300346, 0.05164004862308502, -0.10279972106218338, -0.045111991465091705, 0.014696892350912094, 0.2202586531639099, 0.125222310423851, -0.030275585129857063, 0.028137173503637314, 0.04715900123119354, 0.017074596136808395, -0.018428582698106766, 0.10690876096487045, 0.026402730494737625, -0.04265739023685455, 0.026736535131931305, -0.1278507113456726, -0.07960234582424164, 0.008975015953183174, 0.05007394030690193, -0.008769119158387184, 0.08407314121723175, -0.0717761442065239, -0.07104162871837616, 0.06906326860189438, -0.031087275594472885, -0.17529474198818207, 0.034913867712020874, 0.05692952126264572, -0.06034716218709946, -0.11904606968164444, 0.10624314844608307, -0.03711572289466858, 0.011285212822258472, -0.028867540881037712, -0.06303954124450684, -0.012848879210650921, 0.07434187829494476, -0.13759808242321014, 0.004668684210628271, 0.09775140136480331, 0.10633575171232224, 0.08932534605264664, -0.05185794085264206, 0.017821038141846657, 0.09752287715673447, 0.07698836922645569, -0.06215410307049751, 0.06916936486959457, -0.03529734909534454, -0.10250746458768845, 0.025611020624637604, -0.019846942275762558, -0.07110212743282318, 0.0344204306602478, 0.0080032330006361, -0.08698354661464691, 0.011420424096286297, -0.12134776264429092, -0.06930918991565704, -0.0076706199906766415, -0.06994981318712234, -0.09724289178848267, 0.12531313300132751, 0.037693895399570465, 0.020694205537438393, -0.044640593230724335, -0.09583498537540436, 0.08086937665939331, 0.09139623492956161, 0.033832721412181854, -0.040038809180259705, -0.07935003936290741, -0.10465023666620255, 0.04308561235666275, -0.036921631544828415, -0.24493509531021118, -0.0294214878231287, -0.04091194272041321, 0.024105744436383247, -0.008809756487607956, 0.08356036990880966, 0.15714384615421295, 0.11397843807935715, -0.06461036950349808, -0.04359510913491249, -0.009749060496687889, 0.10245702415704727, -0.22663553059101105, -0.054822515696287155 ]
null
null
keras
## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 2.9999999242136255e-05 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
{"library_name": "keras"}
null
spneshaei/czech-original-fold5-bert-base-cased
[ "keras", "region:us" ]
2024-02-06T13:09:40+00:00
[]
[]
TAGS #keras #region-us
Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: Model Plot ---------- View Model Plot !Model Image
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ "TAGS\n#keras #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ 9, 28 ]
[ "passage: TAGS\n#keras #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ -0.016794877126812935, -0.06443733721971512, -0.003447679104283452, 0.010077289305627346, 0.20133963227272034, 0.06980562210083008, 0.12438274174928665, 0.06579092144966125, -0.037473227828741074, -0.007062924560159445, 0.11363048106431961, 0.09877283871173859, -0.029508626088500023, 0.052730903029441833, 0.02910503000020981, -0.2834641933441162, -0.02009759657084942, -0.035611119121313095, -0.10451897233724594, 0.13447785377502441, 0.06618232280015945, -0.12353634089231491, 0.05384562537074089, -0.0020122479181736708, -0.3115542232990265, 0.03991362079977989, 0.0259251706302166, -0.05287240818142891, 0.16128510236740112, -0.08753488212823868, 0.18766145408153534, -0.052923399955034256, 0.09752033650875092, -0.18489156663417816, 0.027019361034035683, 0.09480974823236465, -0.004112903028726578, 0.032469917088747025, -0.005600524600595236, 0.036500126123428345, 0.1429472267627716, -0.03384587913751602, 0.07235340029001236, -0.0159943625330925, -0.21577146649360657, -0.09058719128370285, -0.041018303483724594, -0.07818202674388885, 0.09747853875160217, 0.08365477621555328, -0.019298359751701355, 0.16306893527507782, -0.22607210278511047, 0.04079460725188255, 0.11036279797554016, -0.1797262579202652, -0.06482212990522385, 0.18897481262683868, 0.027842842042446136, 0.09813765436410904, -0.1155964583158493, 0.08825048059225082, 0.07578443735837936, 0.00320608913898468, -0.0145331472158432, -0.027931027114391327, -0.1276615709066391, 0.08308197557926178, -0.14635750651359558, 0.0255837794393301, 0.062079038470983505, -0.0048819943331182, 0.04962971806526184, 0.05891118943691254, -0.025213919579982758, 0.01378204207867384, -0.004466011188924313, -0.07148367911577225, 0.09045194834470749, 0.040285855531692505, -0.004793768282979727, -0.04802746698260307, -0.10659626871347427, -0.058606117963790894, -0.057205211371183395, 0.0033207659143954515, -0.024986371397972107, 0.05281004682183266, -0.135709747672081, 0.05041119456291199, -0.2135433405637741, -0.06339319795370102, 0.09683721512556076, -0.03737688437104225, -0.06220521405339241, -0.11099367588758469, -0.07666950672864914, -0.11713483929634094, 0.025191528722643852, -0.06272746622562408, 0.11842593550682068, 0.05392630398273468, -0.018910041078925133, 0.06738237291574478, 0.010983388870954514, 0.10383196920156479, -0.06306745857000351, -0.04046006500720978, -0.053156476467847824, 0.00610389793291688, -0.06512132287025452, -0.01979767344892025, -0.07465885579586029, 0.030439361929893494, -0.006248802877962589, 0.04288671538233757, -0.14152531325817108, 0.0022883883211761713, -0.024162210524082184, 0.014735206961631775, -0.12180010974407196, -0.0473160520195961, 0.026901131495833397, -0.057560257613658905, -0.04164418205618858, 0.01965237408876419, -0.02885500341653824, 0.07752329856157303, 0.03494778648018837, 0.1261243373155594, -0.08805463463068008, 0.08046259731054306, -0.14287757873535156, -0.03876567259430885, -0.04788777604699135, -0.026702703908085823, 0.02776871621608734, -0.019771765917539597, -0.16329361498355865, -0.036917850375175476, 0.10180357843637466, -0.03646467253565788, 0.10390221327543259, -0.04831330478191376, -0.03722335025668144, -0.041956737637519836, 0.04244944080710411, 0.16306915879249573, -0.030403226613998413, 0.0690256878733635, -0.006465299986302853, 0.11309001594781876, -0.027342475950717926, 0.02410578355193138, -0.10246147960424423, 0.01592865400016308, -0.33120107650756836, 0.02365988865494728, -0.0073455399833619595, 0.14877745509147644, 0.002119589364156127, -0.021556919440627098, -0.06074612960219383, 0.05367615073919296, 0.03378913179039955, 0.12447120994329453, -0.3196505308151245, -0.04445332661271095, 0.17695556581020355, -0.09533421695232391, -0.04752815514802933, -0.012595990672707558, -0.11794687807559967, 0.17052115499973297, 0.08322448283433914, 0.4023815393447876, -0.046472225338220596, -0.1553957462310791, 0.1414414793252945, -0.049348726868629456, -0.08538506925106049, 0.0013704078737646341, -0.03931340575218201, -0.07238789647817612, -0.007008018903434277, -0.007150410208851099, -0.039097581058740616, 0.011490419507026672, -0.1314457654953003, -0.08321201801300049, -0.018095768988132477, -0.10441748797893524, 0.03118084743618965, 0.04681782051920891, 0.07474032044410706, -0.10761179774999619, 0.04513311758637428, 0.08727225661277771, 0.04641434922814369, 0.020999399945139885, -0.035987358540296555, -0.010056414641439915, -0.08590836822986603, -0.018908431753516197, -0.04479188099503517, -0.13009823858737946, -0.08295092731714249, -0.02482529915869236, 0.11711535602807999, 0.04846971854567528, 0.10026572644710541, 0.1012880876660347, 0.01794523559510708, -0.026510031893849373, 0.04796740412712097, -0.03301190584897995, 0.024805746972560883, -0.12190406024456024, -0.14969933032989502, 0.053120728582143784, -0.04602799564599991, 0.06847420334815979, -0.2550162374973297, -0.016629420220851898, -0.08028519153594971, 0.08325616270303726, 0.03215799108147621, -0.05637006089091301, -0.034703101962804794, 0.030477488413453102, 0.02631508745253086, -0.05701097100973129, 0.05721000209450722, -0.05029747635126114, 0.013404128141701221, -0.05477548763155937, -0.0634014755487442, 0.009114052169024944, 0.12158391624689102, -0.3370974361896515, -0.11452187597751617, -0.030424542725086212, -0.016897590830922127, -0.00048337955377064645, -0.03716694936156273, 0.009310376830399036, 0.08874741196632385, -0.02852097898721695, 0.07783587276935577, 0.02762300707399845, 0.0050925444811582565, -0.014665896072983742, -0.1058054193854332, 0.04124521464109421, -0.011427096091210842, 0.2321954369544983, -0.13818490505218506, 0.07904268801212311, 0.23286877572536469, -0.00493719382211566, 0.182714581489563, -0.0015242830850183964, -0.03484572470188141, -0.04081353172659874, -0.03647072613239288, -0.04124489799141884, 0.16493885219097137, -0.19730953872203827, -0.009139161556959152, -0.037496525794267654, 0.04306839779019356, 0.0751626193523407, -0.22374418377876282, -0.09038357436656952, 0.004833470098674297, -0.019381634891033173, -0.021902132779359818, -0.008457438088953495, -0.03462614864110947, 0.07653867453336716, -0.017584478482604027, -0.0442403219640255, 0.03700488805770874, -0.03077492117881775, -0.04899081215262413, 0.17243139445781708, -0.09070397913455963, -0.036885716021060944, 0.0018350741593167186, -0.04441449046134949, 0.10813203454017639, 0.036514367908239365, 0.01270249579101801, -0.22033943235874176, 0.001598804141394794, 0.04767562821507454, -0.02874700538814068, -0.006870169658213854, -0.0007830364047549665, 0.02648445963859558, 0.05374275892972946, -0.021639352664351463, -0.07673487067222595, -0.04342769458889961, -0.13515788316726685, -0.06492548435926437, 0.020396891981363297, -0.0012123530032113194, 0.07569833099842072, 0.21907594799995422, 0.00591442734003067, 0.03132259100675583, 0.01558946818113327, 0.25436070561408997, -0.12057546526193619, -0.04322003200650215, 0.037312138825654984, -0.014851517975330353, 0.03238643705844879, 0.10795599222183228, 0.05304901674389839, -0.15768958628177643, -0.0009129803511314094, 0.05621172860264778, -0.10711761564016342, -0.16683313250541687, -0.02571542002260685, -0.049636904150247574, -0.14834605157375336, -0.03675172105431557, -0.007057921029627323, 0.05976521223783493, 0.036492686718702316, 0.18860477209091187, -0.029025055468082428, -0.06241430714726448, -0.06338661909103394, -0.03928221017122269, -0.036122094839811325, 0.03456878289580345, -0.04810245335102081, -0.08712324500083923, 0.06088678538799286, -0.04181840270757675, 0.35134682059288025, 0.1420753449201584, -0.09040948003530502, 0.08478232473134995, 0.029874196276068687, 0.03831919655203819, 0.05329969525337219, -0.008948802947998047, -0.1132144033908844, -0.04766647890210152, -0.0430225133895874, -0.012422009371221066, 0.05002856254577637, -0.009858896024525166, -0.10650037974119186, -0.08065612614154816, -0.023898372426629066, 0.1488049477338791, 0.04646780714392662, 0.07066338509321213, -0.1786642074584961, 0.08930458128452301, 0.0027093354146927595, 0.009136497974395752, 0.00795448012650013, 0.03788524121046066, 0.11256106197834015, -0.13314323127269745, 0.009519870392978191, 0.014033322222530842, 0.0499027818441391, -0.017455194145441055, 0.09603492170572281, 0.03320334479212761, 0.039079852402210236, -0.03121257945895195, 0.035160478204488754, -0.21373237669467926, 0.3434061110019684, -0.0006271422607824206, 0.06504156440496445, -0.05879312753677368, -0.09189719706773758, 0.06837528198957443, 0.06952515989542007, 0.07671519368886948, 0.041370123624801636, -0.13479682803153992, -0.11391307413578033, 0.008188809268176556, 0.018625449389219284, 0.20846350491046906, -0.00798249151557684, 0.010322300717234612, 0.015820518136024475, 0.050492215901613235, 0.056237511336803436, 0.019244182854890823, -0.15112631022930145, -0.012297827750444412, -0.07739903032779694, -0.024403156712651253, -0.07726218551397324, -0.03267794847488403, 0.0009471957455389202, -0.011314792558550835, 0.13332223892211914, 0.2263767123222351, 0.045866336673498154, -0.09335304796695709, 0.08116698265075684, 0.0542871356010437, 0.03382109850645065, 0.06525099277496338, 0.03866339847445488, -0.029242997989058495, 0.03814651444554329, -0.040394436568021774, 0.1324497014284134, -0.0629718080163002, 0.028224116191267967, -0.1322474181652069, 0.10739292949438095, 0.03217848762869835, 0.013036361895501614, 0.05471378564834595, 0.03767663612961769, 0.016364306211471558, -0.07125412672758102, 0.12805473804473877, -0.0510825514793396, -0.03592826798558235, 0.09066411852836609, -0.11743012815713882, 0.09040732681751251, -0.025302167981863022, -0.019315248355269432, 0.2494230717420578, 0.24756227433681488, -0.05912106856703758, 0.04768688604235649, 0.07799278944730759, -0.09555736929178238, -0.1814657747745514, 0.1910889744758606, -0.0099155493080616, -0.025283711031079292, 0.1525517851114273, -0.16916251182556152, 0.1349313110113144, 0.15368084609508514, 0.010049855336546898, 0.11083626002073288, -0.38671329617500305, -0.06752531975507736, 0.01104819867759943, 0.10643221437931061, 0.2467217743396759, -0.14240168035030365, -0.04415740445256233, -0.04263355955481529, -0.05815816670656204, 0.07255285233259201, -0.16848672926425934, 0.10835867375135422, 0.03976474702358246, 0.10078932344913483, 0.01860525831580162, -0.08163024485111237, 0.1907491236925125, 0.06901735067367554, 0.13239486515522003, -0.11357539892196655, -0.1432475745677948, 0.15380707383155823, 0.004645260516554117, -0.07494480162858963, 0.15017840266227722, -0.010932492092251778, -0.14787276089191437, 0.004884015303105116, -0.08338770270347595, -0.02822136878967285, -0.020300479605793953, -0.09079447388648987, -0.0049271900206804276, 0.04210749641060829, -0.009150735102593899, 0.006724045146256685, -0.07112349569797516, -0.03961960971355438, 0.12001458555459976, -0.008021486923098564, 0.02004949375987053, 0.0054425522685050964, -0.0565018467605114, -0.00010686385940061882, 0.007020169869065285, 0.05670104920864105, -0.14493192732334137, -0.007936395704746246, 0.09896489977836609, 0.03925815969705582, 0.11702186614274979, 0.09888110309839249, -0.017299212515354156, 0.051927600055933, 0.11805513501167297, -0.16989323496818542, -0.05030738562345505, 0.022471938282251358, -0.0876431092619896, 0.07404503226280212, 0.028266482055187225, 0.04223521798849106, 0.006967701483517885, 0.019082188606262207, -0.02190633863210678, -0.02359701879322529, -0.1678706705570221, 0.17229168117046356, 0.12926621735095978, 0.001206783577799797, -0.05991806462407112, 0.0712299719452858, 0.02416563592851162, 0.015373758971691132, 0.027114341035485268, 0.09085122495889664, -0.063004270195961, -0.04382142052054405, 0.11368395388126373, 0.36372292041778564, -0.06360658258199692, -0.009470866061747074, -0.0035141881089657545, -0.02976413443684578, -0.0024759937077760696, 0.11714329570531845, 0.11591150611639023, -0.035474445670843124, -0.00249557220377028, 0.047558486461639404, -0.09430371969938278, -0.05953717976808548, -0.024429218843579292, 0.029445508494973183, -0.07339362055063248, 0.13505396246910095, -0.011749859899282455, 0.012919504195451736, -0.07418160885572433, -0.010072994977235794, -0.1691707819700241, 0.07132044434547424, -0.03592734783887863, -0.11013470590114594, 0.07599243521690369, -0.07782822847366333, 0.04736775904893875, -0.027756566181778908, -0.061143431812524796, -0.03505474328994751, -0.13917942345142365, 0.011138231493532658, 0.032481927424669266, -0.01963980309665203, -0.10644613951444626, -0.019421521574258804, 0.07184240221977234, -0.0010104946559295058, 0.04878956079483032, 0.049086540937423706, 0.04932126775383949, 0.10875392705202103, -0.22941954433918, -0.09101147949695587, 0.0914856418967247, -0.03809724748134613, 0.09443480521440506, 0.051294803619384766, -0.03414672613143921, -0.04921264946460724, 0.11027632653713226, 0.05445511266589165, 0.055891990661621094, -0.1050579696893692, 0.006056662183254957, 0.02905924804508686, -0.18409372866153717, 0.007786143105477095, -0.03814983367919922, 0.07709085941314697, 0.011893542483448982, 0.09169743955135345, -0.01677379384636879, 0.062292348593473434, -0.12490691244602203, -0.04170939326286316, -0.03144950792193413, -0.028198879212141037, 0.0858677327632904, -0.0302395299077034, 0.04847332462668419, -0.07618249207735062, 0.23933540284633636, 0.11375748366117477, 0.040041469037532806, 0.030466660857200623, 0.01710023730993271, -0.029654523357748985, 0.06568178534507751, 0.24663378298282623, 0.10377504676580429, -0.03649590164422989, 0.021379806101322174, 0.11346449702978134, 0.04985273256897926, 0.010189102962613106, 0.21538101136684418, 0.12802456319332123, -0.06306260079145432, 0.039129119366407394, 0.0409003384411335, -0.013090616092085838, -0.048180725425481796, 0.06531351059675217, -0.0024893516674637794, 0.0533747673034668, -0.04863420128822327, 0.05981024354696274, 0.08482083678245544, -0.1429469883441925, 0.06301316618919373, -0.09937790036201477, -0.09632519632577896, -0.08124843239784241, 0.06887773424386978, -0.03367835655808449, -0.13156066834926605, 0.05816762521862984, -0.06082761660218239, 0.09296009689569473, 0.25100407004356384, 0.00542967626824975, -0.002954469993710518, 0.2598273456096649, -0.01673690415918827, 0.022994793951511383, 0.058185357600450516, -0.03512432426214218, -0.053473252803087234, -0.17576740682125092, -0.04190322011709213, -0.10092124342918396, -0.029774246737360954, -0.05639142543077469, -0.02108602225780487, -0.12164262682199478, -0.059116117656230927, -0.07456889748573303, -0.057363517582416534, 0.002748801140114665, -0.009055592119693756, 0.009775349870324135, -0.1281258910894394, 0.022050529718399048, -0.019139397889375687, -0.021086130291223526, 0.283098965883255, -0.056054964661598206, -0.1367742121219635, -0.09776615351438522, 0.17268501222133636, -0.008134536445140839, 0.10116787999868393, -0.10749570280313492, -0.0653437152504921, 0.019825700670480728, 0.2661973536014557, 0.2692970037460327, -0.2778298258781433, -0.01785849779844284, -0.03275240957736969, 0.005826127715408802, 0.023235119879245758, 0.19252201914787292, 0.06093309447169304, -0.014619135297834873, -0.11275925487279892, -0.012078037485480309, -0.06341957300901413, -0.04670688137412071, -0.07464414834976196, 0.05233583226799965, 0.15934441983699799, 0.03275129944086075, -0.09926220029592514, 0.17655189335346222, -0.011127492412924767, -0.06985361129045486, 0.062473103404045105, -0.22716015577316284, -0.13125668466091156, -0.010489442385733128, 0.15744951367378235, -0.014044895768165588, 0.083526611328125, -0.070572629570961, -0.11169543117284775, -0.05890963599085808, -0.003538440680131316, -0.1095224916934967, -0.19916045665740967, 0.086093969643116, -0.11671233922243118, 0.18696805834770203, -0.03488932177424431, 0.022669581696391106, 0.07222200930118561, 0.017181051895022392, 0.02476675622165203, 0.04344114288687706, 0.04498361796140671, -0.032195694744586945, -0.11476772278547287, 0.05770121514797211, -0.06534241139888763, -0.1114988699555397, 0.027931710705161095, -0.22080248594284058, 0.05921458452939987, 0.0040149325504899025, -0.043038561940193176, -0.018364407122135162, -0.011710721999406815, -0.10820029675960541, 0.1070646196603775, 0.142975315451622, 0.016092956066131592, 0.12953786551952362, -0.07564318925142288, 0.05813087895512581, 0.04991276189684868, 0.017071865499019623, -0.15322495996952057, -0.14601801335811615, -0.023010972887277603, 0.14191417396068573, -0.07846330851316452, -0.10063741356134415, -0.09100615978240967, -0.02799573540687561, 0.001981357578188181, -0.03318595513701439, 0.07639610022306442, 0.18710191547870636, 0.05139538645744324, -0.024254437536001205, -0.11941802501678467, 0.003666989039629698, 0.15059563517570496, -0.08221475034952164, -0.10429214686155319 ]
null
null
keras
## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | weight_decay | None | | clipnorm | None | | global_clipnorm | None | | clipvalue | None | | use_ema | False | | ema_momentum | 0.99 | | ema_overwrite_frequency | None | | jit_compile | True | | is_legacy_optimizer | False | | learning_rate | 2.9999999242136255e-05 | | beta_1 | 0.9 | | beta_2 | 0.999 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
{"library_name": "keras"}
null
spneshaei/czech-original-fold4-bert-base-cased
[ "keras", "region:us" ]
2024-02-06T13:10:00+00:00
[]
[]
TAGS #keras #region-us
Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: Model Plot ---------- View Model Plot !Model Image
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ "TAGS\n#keras #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ 9, 28 ]
[ "passage: TAGS\n#keras #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ -0.016794877126812935, -0.06443733721971512, -0.003447679104283452, 0.010077289305627346, 0.20133963227272034, 0.06980562210083008, 0.12438274174928665, 0.06579092144966125, -0.037473227828741074, -0.007062924560159445, 0.11363048106431961, 0.09877283871173859, -0.029508626088500023, 0.052730903029441833, 0.02910503000020981, -0.2834641933441162, -0.02009759657084942, -0.035611119121313095, -0.10451897233724594, 0.13447785377502441, 0.06618232280015945, -0.12353634089231491, 0.05384562537074089, -0.0020122479181736708, -0.3115542232990265, 0.03991362079977989, 0.0259251706302166, -0.05287240818142891, 0.16128510236740112, -0.08753488212823868, 0.18766145408153534, -0.052923399955034256, 0.09752033650875092, -0.18489156663417816, 0.027019361034035683, 0.09480974823236465, -0.004112903028726578, 0.032469917088747025, -0.005600524600595236, 0.036500126123428345, 0.1429472267627716, -0.03384587913751602, 0.07235340029001236, -0.0159943625330925, -0.21577146649360657, -0.09058719128370285, -0.041018303483724594, -0.07818202674388885, 0.09747853875160217, 0.08365477621555328, -0.019298359751701355, 0.16306893527507782, -0.22607210278511047, 0.04079460725188255, 0.11036279797554016, -0.1797262579202652, -0.06482212990522385, 0.18897481262683868, 0.027842842042446136, 0.09813765436410904, -0.1155964583158493, 0.08825048059225082, 0.07578443735837936, 0.00320608913898468, -0.0145331472158432, -0.027931027114391327, -0.1276615709066391, 0.08308197557926178, -0.14635750651359558, 0.0255837794393301, 0.062079038470983505, -0.0048819943331182, 0.04962971806526184, 0.05891118943691254, -0.025213919579982758, 0.01378204207867384, -0.004466011188924313, -0.07148367911577225, 0.09045194834470749, 0.040285855531692505, -0.004793768282979727, -0.04802746698260307, -0.10659626871347427, -0.058606117963790894, -0.057205211371183395, 0.0033207659143954515, -0.024986371397972107, 0.05281004682183266, -0.135709747672081, 0.05041119456291199, -0.2135433405637741, -0.06339319795370102, 0.09683721512556076, -0.03737688437104225, -0.06220521405339241, -0.11099367588758469, -0.07666950672864914, -0.11713483929634094, 0.025191528722643852, -0.06272746622562408, 0.11842593550682068, 0.05392630398273468, -0.018910041078925133, 0.06738237291574478, 0.010983388870954514, 0.10383196920156479, -0.06306745857000351, -0.04046006500720978, -0.053156476467847824, 0.00610389793291688, -0.06512132287025452, -0.01979767344892025, -0.07465885579586029, 0.030439361929893494, -0.006248802877962589, 0.04288671538233757, -0.14152531325817108, 0.0022883883211761713, -0.024162210524082184, 0.014735206961631775, -0.12180010974407196, -0.0473160520195961, 0.026901131495833397, -0.057560257613658905, -0.04164418205618858, 0.01965237408876419, -0.02885500341653824, 0.07752329856157303, 0.03494778648018837, 0.1261243373155594, -0.08805463463068008, 0.08046259731054306, -0.14287757873535156, -0.03876567259430885, -0.04788777604699135, -0.026702703908085823, 0.02776871621608734, -0.019771765917539597, -0.16329361498355865, -0.036917850375175476, 0.10180357843637466, -0.03646467253565788, 0.10390221327543259, -0.04831330478191376, -0.03722335025668144, -0.041956737637519836, 0.04244944080710411, 0.16306915879249573, -0.030403226613998413, 0.0690256878733635, -0.006465299986302853, 0.11309001594781876, -0.027342475950717926, 0.02410578355193138, -0.10246147960424423, 0.01592865400016308, -0.33120107650756836, 0.02365988865494728, -0.0073455399833619595, 0.14877745509147644, 0.002119589364156127, -0.021556919440627098, -0.06074612960219383, 0.05367615073919296, 0.03378913179039955, 0.12447120994329453, -0.3196505308151245, -0.04445332661271095, 0.17695556581020355, -0.09533421695232391, -0.04752815514802933, -0.012595990672707558, -0.11794687807559967, 0.17052115499973297, 0.08322448283433914, 0.4023815393447876, -0.046472225338220596, -0.1553957462310791, 0.1414414793252945, -0.049348726868629456, -0.08538506925106049, 0.0013704078737646341, -0.03931340575218201, -0.07238789647817612, -0.007008018903434277, -0.007150410208851099, -0.039097581058740616, 0.011490419507026672, -0.1314457654953003, -0.08321201801300049, -0.018095768988132477, -0.10441748797893524, 0.03118084743618965, 0.04681782051920891, 0.07474032044410706, -0.10761179774999619, 0.04513311758637428, 0.08727225661277771, 0.04641434922814369, 0.020999399945139885, -0.035987358540296555, -0.010056414641439915, -0.08590836822986603, -0.018908431753516197, -0.04479188099503517, -0.13009823858737946, -0.08295092731714249, -0.02482529915869236, 0.11711535602807999, 0.04846971854567528, 0.10026572644710541, 0.1012880876660347, 0.01794523559510708, -0.026510031893849373, 0.04796740412712097, -0.03301190584897995, 0.024805746972560883, -0.12190406024456024, -0.14969933032989502, 0.053120728582143784, -0.04602799564599991, 0.06847420334815979, -0.2550162374973297, -0.016629420220851898, -0.08028519153594971, 0.08325616270303726, 0.03215799108147621, -0.05637006089091301, -0.034703101962804794, 0.030477488413453102, 0.02631508745253086, -0.05701097100973129, 0.05721000209450722, -0.05029747635126114, 0.013404128141701221, -0.05477548763155937, -0.0634014755487442, 0.009114052169024944, 0.12158391624689102, -0.3370974361896515, -0.11452187597751617, -0.030424542725086212, -0.016897590830922127, -0.00048337955377064645, -0.03716694936156273, 0.009310376830399036, 0.08874741196632385, -0.02852097898721695, 0.07783587276935577, 0.02762300707399845, 0.0050925444811582565, -0.014665896072983742, -0.1058054193854332, 0.04124521464109421, -0.011427096091210842, 0.2321954369544983, -0.13818490505218506, 0.07904268801212311, 0.23286877572536469, -0.00493719382211566, 0.182714581489563, -0.0015242830850183964, -0.03484572470188141, -0.04081353172659874, -0.03647072613239288, -0.04124489799141884, 0.16493885219097137, -0.19730953872203827, -0.009139161556959152, -0.037496525794267654, 0.04306839779019356, 0.0751626193523407, -0.22374418377876282, -0.09038357436656952, 0.004833470098674297, -0.019381634891033173, -0.021902132779359818, -0.008457438088953495, -0.03462614864110947, 0.07653867453336716, -0.017584478482604027, -0.0442403219640255, 0.03700488805770874, -0.03077492117881775, -0.04899081215262413, 0.17243139445781708, -0.09070397913455963, -0.036885716021060944, 0.0018350741593167186, -0.04441449046134949, 0.10813203454017639, 0.036514367908239365, 0.01270249579101801, -0.22033943235874176, 0.001598804141394794, 0.04767562821507454, -0.02874700538814068, -0.006870169658213854, -0.0007830364047549665, 0.02648445963859558, 0.05374275892972946, -0.021639352664351463, -0.07673487067222595, -0.04342769458889961, -0.13515788316726685, -0.06492548435926437, 0.020396891981363297, -0.0012123530032113194, 0.07569833099842072, 0.21907594799995422, 0.00591442734003067, 0.03132259100675583, 0.01558946818113327, 0.25436070561408997, -0.12057546526193619, -0.04322003200650215, 0.037312138825654984, -0.014851517975330353, 0.03238643705844879, 0.10795599222183228, 0.05304901674389839, -0.15768958628177643, -0.0009129803511314094, 0.05621172860264778, -0.10711761564016342, -0.16683313250541687, -0.02571542002260685, -0.049636904150247574, -0.14834605157375336, -0.03675172105431557, -0.007057921029627323, 0.05976521223783493, 0.036492686718702316, 0.18860477209091187, -0.029025055468082428, -0.06241430714726448, -0.06338661909103394, -0.03928221017122269, -0.036122094839811325, 0.03456878289580345, -0.04810245335102081, -0.08712324500083923, 0.06088678538799286, -0.04181840270757675, 0.35134682059288025, 0.1420753449201584, -0.09040948003530502, 0.08478232473134995, 0.029874196276068687, 0.03831919655203819, 0.05329969525337219, -0.008948802947998047, -0.1132144033908844, -0.04766647890210152, -0.0430225133895874, -0.012422009371221066, 0.05002856254577637, -0.009858896024525166, -0.10650037974119186, -0.08065612614154816, -0.023898372426629066, 0.1488049477338791, 0.04646780714392662, 0.07066338509321213, -0.1786642074584961, 0.08930458128452301, 0.0027093354146927595, 0.009136497974395752, 0.00795448012650013, 0.03788524121046066, 0.11256106197834015, -0.13314323127269745, 0.009519870392978191, 0.014033322222530842, 0.0499027818441391, -0.017455194145441055, 0.09603492170572281, 0.03320334479212761, 0.039079852402210236, -0.03121257945895195, 0.035160478204488754, -0.21373237669467926, 0.3434061110019684, -0.0006271422607824206, 0.06504156440496445, -0.05879312753677368, -0.09189719706773758, 0.06837528198957443, 0.06952515989542007, 0.07671519368886948, 0.041370123624801636, -0.13479682803153992, -0.11391307413578033, 0.008188809268176556, 0.018625449389219284, 0.20846350491046906, -0.00798249151557684, 0.010322300717234612, 0.015820518136024475, 0.050492215901613235, 0.056237511336803436, 0.019244182854890823, -0.15112631022930145, -0.012297827750444412, -0.07739903032779694, -0.024403156712651253, -0.07726218551397324, -0.03267794847488403, 0.0009471957455389202, -0.011314792558550835, 0.13332223892211914, 0.2263767123222351, 0.045866336673498154, -0.09335304796695709, 0.08116698265075684, 0.0542871356010437, 0.03382109850645065, 0.06525099277496338, 0.03866339847445488, -0.029242997989058495, 0.03814651444554329, -0.040394436568021774, 0.1324497014284134, -0.0629718080163002, 0.028224116191267967, -0.1322474181652069, 0.10739292949438095, 0.03217848762869835, 0.013036361895501614, 0.05471378564834595, 0.03767663612961769, 0.016364306211471558, -0.07125412672758102, 0.12805473804473877, -0.0510825514793396, -0.03592826798558235, 0.09066411852836609, -0.11743012815713882, 0.09040732681751251, -0.025302167981863022, -0.019315248355269432, 0.2494230717420578, 0.24756227433681488, -0.05912106856703758, 0.04768688604235649, 0.07799278944730759, -0.09555736929178238, -0.1814657747745514, 0.1910889744758606, -0.0099155493080616, -0.025283711031079292, 0.1525517851114273, -0.16916251182556152, 0.1349313110113144, 0.15368084609508514, 0.010049855336546898, 0.11083626002073288, -0.38671329617500305, -0.06752531975507736, 0.01104819867759943, 0.10643221437931061, 0.2467217743396759, -0.14240168035030365, -0.04415740445256233, -0.04263355955481529, -0.05815816670656204, 0.07255285233259201, -0.16848672926425934, 0.10835867375135422, 0.03976474702358246, 0.10078932344913483, 0.01860525831580162, -0.08163024485111237, 0.1907491236925125, 0.06901735067367554, 0.13239486515522003, -0.11357539892196655, -0.1432475745677948, 0.15380707383155823, 0.004645260516554117, -0.07494480162858963, 0.15017840266227722, -0.010932492092251778, -0.14787276089191437, 0.004884015303105116, -0.08338770270347595, -0.02822136878967285, -0.020300479605793953, -0.09079447388648987, -0.0049271900206804276, 0.04210749641060829, -0.009150735102593899, 0.006724045146256685, -0.07112349569797516, -0.03961960971355438, 0.12001458555459976, -0.008021486923098564, 0.02004949375987053, 0.0054425522685050964, -0.0565018467605114, -0.00010686385940061882, 0.007020169869065285, 0.05670104920864105, -0.14493192732334137, -0.007936395704746246, 0.09896489977836609, 0.03925815969705582, 0.11702186614274979, 0.09888110309839249, -0.017299212515354156, 0.051927600055933, 0.11805513501167297, -0.16989323496818542, -0.05030738562345505, 0.022471938282251358, -0.0876431092619896, 0.07404503226280212, 0.028266482055187225, 0.04223521798849106, 0.006967701483517885, 0.019082188606262207, -0.02190633863210678, -0.02359701879322529, -0.1678706705570221, 0.17229168117046356, 0.12926621735095978, 0.001206783577799797, -0.05991806462407112, 0.0712299719452858, 0.02416563592851162, 0.015373758971691132, 0.027114341035485268, 0.09085122495889664, -0.063004270195961, -0.04382142052054405, 0.11368395388126373, 0.36372292041778564, -0.06360658258199692, -0.009470866061747074, -0.0035141881089657545, -0.02976413443684578, -0.0024759937077760696, 0.11714329570531845, 0.11591150611639023, -0.035474445670843124, -0.00249557220377028, 0.047558486461639404, -0.09430371969938278, -0.05953717976808548, -0.024429218843579292, 0.029445508494973183, -0.07339362055063248, 0.13505396246910095, -0.011749859899282455, 0.012919504195451736, -0.07418160885572433, -0.010072994977235794, -0.1691707819700241, 0.07132044434547424, -0.03592734783887863, -0.11013470590114594, 0.07599243521690369, -0.07782822847366333, 0.04736775904893875, -0.027756566181778908, -0.061143431812524796, -0.03505474328994751, -0.13917942345142365, 0.011138231493532658, 0.032481927424669266, -0.01963980309665203, -0.10644613951444626, -0.019421521574258804, 0.07184240221977234, -0.0010104946559295058, 0.04878956079483032, 0.049086540937423706, 0.04932126775383949, 0.10875392705202103, -0.22941954433918, -0.09101147949695587, 0.0914856418967247, -0.03809724748134613, 0.09443480521440506, 0.051294803619384766, -0.03414672613143921, -0.04921264946460724, 0.11027632653713226, 0.05445511266589165, 0.055891990661621094, -0.1050579696893692, 0.006056662183254957, 0.02905924804508686, -0.18409372866153717, 0.007786143105477095, -0.03814983367919922, 0.07709085941314697, 0.011893542483448982, 0.09169743955135345, -0.01677379384636879, 0.062292348593473434, -0.12490691244602203, -0.04170939326286316, -0.03144950792193413, -0.028198879212141037, 0.0858677327632904, -0.0302395299077034, 0.04847332462668419, -0.07618249207735062, 0.23933540284633636, 0.11375748366117477, 0.040041469037532806, 0.030466660857200623, 0.01710023730993271, -0.029654523357748985, 0.06568178534507751, 0.24663378298282623, 0.10377504676580429, -0.03649590164422989, 0.021379806101322174, 0.11346449702978134, 0.04985273256897926, 0.010189102962613106, 0.21538101136684418, 0.12802456319332123, -0.06306260079145432, 0.039129119366407394, 0.0409003384411335, -0.013090616092085838, -0.048180725425481796, 0.06531351059675217, -0.0024893516674637794, 0.0533747673034668, -0.04863420128822327, 0.05981024354696274, 0.08482083678245544, -0.1429469883441925, 0.06301316618919373, -0.09937790036201477, -0.09632519632577896, -0.08124843239784241, 0.06887773424386978, -0.03367835655808449, -0.13156066834926605, 0.05816762521862984, -0.06082761660218239, 0.09296009689569473, 0.25100407004356384, 0.00542967626824975, -0.002954469993710518, 0.2598273456096649, -0.01673690415918827, 0.022994793951511383, 0.058185357600450516, -0.03512432426214218, -0.053473252803087234, -0.17576740682125092, -0.04190322011709213, -0.10092124342918396, -0.029774246737360954, -0.05639142543077469, -0.02108602225780487, -0.12164262682199478, -0.059116117656230927, -0.07456889748573303, -0.057363517582416534, 0.002748801140114665, -0.009055592119693756, 0.009775349870324135, -0.1281258910894394, 0.022050529718399048, -0.019139397889375687, -0.021086130291223526, 0.283098965883255, -0.056054964661598206, -0.1367742121219635, -0.09776615351438522, 0.17268501222133636, -0.008134536445140839, 0.10116787999868393, -0.10749570280313492, -0.0653437152504921, 0.019825700670480728, 0.2661973536014557, 0.2692970037460327, -0.2778298258781433, -0.01785849779844284, -0.03275240957736969, 0.005826127715408802, 0.023235119879245758, 0.19252201914787292, 0.06093309447169304, -0.014619135297834873, -0.11275925487279892, -0.012078037485480309, -0.06341957300901413, -0.04670688137412071, -0.07464414834976196, 0.05233583226799965, 0.15934441983699799, 0.03275129944086075, -0.09926220029592514, 0.17655189335346222, -0.011127492412924767, -0.06985361129045486, 0.062473103404045105, -0.22716015577316284, -0.13125668466091156, -0.010489442385733128, 0.15744951367378235, -0.014044895768165588, 0.083526611328125, -0.070572629570961, -0.11169543117284775, -0.05890963599085808, -0.003538440680131316, -0.1095224916934967, -0.19916045665740967, 0.086093969643116, -0.11671233922243118, 0.18696805834770203, -0.03488932177424431, 0.022669581696391106, 0.07222200930118561, 0.017181051895022392, 0.02476675622165203, 0.04344114288687706, 0.04498361796140671, -0.032195694744586945, -0.11476772278547287, 0.05770121514797211, -0.06534241139888763, -0.1114988699555397, 0.027931710705161095, -0.22080248594284058, 0.05921458452939987, 0.0040149325504899025, -0.043038561940193176, -0.018364407122135162, -0.011710721999406815, -0.10820029675960541, 0.1070646196603775, 0.142975315451622, 0.016092956066131592, 0.12953786551952362, -0.07564318925142288, 0.05813087895512581, 0.04991276189684868, 0.017071865499019623, -0.15322495996952057, -0.14601801335811615, -0.023010972887277603, 0.14191417396068573, -0.07846330851316452, -0.10063741356134415, -0.09100615978240967, -0.02799573540687561, 0.001981357578188181, -0.03318595513701439, 0.07639610022306442, 0.18710191547870636, 0.05139538645744324, -0.024254437536001205, -0.11941802501678467, 0.003666989039629698, 0.15059563517570496, -0.08221475034952164, -0.10429214686155319 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # chem_model This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6789 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.253 | 1.0 | 720 | 0.7573 | | 0.8364 | 2.0 | 1440 | 0.6530 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "distilroberta-base", "model-index": [{"name": "chem_model", "results": []}]}
fill-mask
tijanam/chem_model
[ "transformers", "tensorboard", "safetensors", "roberta", "fill-mask", "generated_from_trainer", "base_model:distilroberta-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T13:13:05+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #roberta #fill-mask #generated_from_trainer #base_model-distilroberta-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
chem\_model =========== This model is a fine-tuned version of distilroberta-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6789 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #roberta #fill-mask #generated_from_trainer #base_model-distilroberta-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Tokenizers 0.15.1" ]
[ 68, 98, 4, 27 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #roberta #fill-mask #generated_from_trainer #base_model-distilroberta-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Tokenizers 0.15.1" ]
[ -0.08848121017217636, 0.052987635135650635, -0.0027393177151679993, 0.11063600331544876, 0.13361532986164093, 0.022464653477072716, 0.16765038669109344, 0.1023782417178154, -0.0684790313243866, 0.04872393608093262, 0.13992512226104736, 0.12809260189533234, 0.007367508951574564, 0.15042118728160858, -0.03933409973978996, -0.23304754495620728, 0.0063017294742167, 0.03285312280058861, -0.08808424323797226, 0.10741736739873886, 0.09697622060775757, -0.11989036947488785, 0.08363557606935501, 0.014187962748110294, -0.19104571640491486, 0.02316976897418499, 0.03177843615412712, -0.06205935403704643, 0.13427142798900604, 0.02485637366771698, 0.15234895050525665, 0.008981903083622456, 0.10236044973134995, -0.1744910031557083, 0.016095131635665894, 0.05515260249376297, -0.006548614241182804, 0.07439194619655609, 0.012700360268354416, 0.012825815938413143, 0.08947938680648804, -0.08257395029067993, 0.06628428399562836, 0.01726412959396839, -0.12035620212554932, -0.21613894402980804, -0.0724349170923233, 0.04276537150144577, 0.08456624299287796, 0.0856182798743248, -0.0018826258601620793, 0.13653139770030975, -0.04584699124097824, 0.08781033754348755, 0.23269686102867126, -0.3086080253124237, -0.073830746114254, 0.045379359275102615, 0.05075422301888466, 0.041561514139175415, -0.09822965413331985, -0.017718372866511345, 0.06858666986227036, 0.02685931697487831, 0.1413397490978241, -0.035583484917879105, -0.04265258461236954, -0.004867490381002426, -0.14105504751205444, -0.02030285634100437, 0.12609899044036865, 0.047469377517700195, -0.05404094234108925, -0.033952195197343826, -0.06766646355390549, -0.14467646181583405, -0.0503864511847496, -0.0316040925681591, 0.04470784589648247, -0.02568786032497883, -0.07998311519622803, -0.022607244551181793, -0.10747689753770828, -0.0861070454120636, -0.06369011104106903, 0.18991389870643616, 0.03850780054926872, 0.009327772073447704, -0.0226689875125885, 0.08551106601953506, -0.06573222577571869, -0.1366628259420395, 0.018826650455594063, 0.03252769261598587, 0.0041182637214660645, -0.047911275178194046, -0.05796835944056511, -0.09375879168510437, 0.02386910282075405, 0.17745809257030487, -0.03645665571093559, 0.041951414197683334, 0.04406838119029999, 0.05440358445048332, -0.11815966665744781, 0.17305652797222137, -0.033056002110242844, -0.023694543167948723, 0.02145995758473873, 0.06429778039455414, 0.05585362762212753, -0.002401848789304495, -0.1268208622932434, 0.01573532447218895, 0.07502412050962448, -0.00021402807033155113, -0.061413735151290894, 0.06784560531377792, -0.047646164894104004, 0.013914208859205246, 0.005545672960579395, -0.08730457723140717, 0.02507792040705681, -0.021717388182878494, -0.04036500304937363, -0.05754668638110161, 0.052470143884420395, 0.018485046923160553, 0.02547782100737095, 0.11669407784938812, -0.10023772716522217, 0.00748793687671423, -0.10130728781223297, -0.11499539017677307, 0.012294142507016659, -0.08246105164289474, 0.03114418126642704, -0.11491948366165161, -0.17195041477680206, 0.009046505205333233, 0.07806944102048874, -0.02727639116346836, -0.03203316032886505, -0.02940690889954567, -0.07605145871639252, 0.018399232998490334, -0.001811629394069314, 0.08544424176216125, -0.054129477590322495, 0.09119512885808945, 0.06718200445175171, 0.09128794819116592, -0.04809132218360901, 0.029547085985541344, -0.09185921400785446, 0.03571077808737755, -0.20646311342716217, -0.011238872073590755, -0.05875454843044281, 0.07004891335964203, -0.06829028576612473, -0.0823075920343399, -0.03547630086541176, 0.017800016328692436, 0.07969795912504196, 0.07942625135183334, -0.14857184886932373, -0.07832201570272446, 0.19088315963745117, -0.09585987031459808, -0.12480513751506805, 0.13181155920028687, -0.050943970680236816, 0.06138210743665695, 0.034915901720523834, 0.13718420267105103, 0.05796432122588158, -0.13989049196243286, 0.010900636203587055, -0.0024320536758750677, 0.028098048642277718, -0.04781045764684677, 0.06390470266342163, -0.00044093315955251455, 0.010106559842824936, 0.013029045425355434, -0.02886831760406494, 0.055121421813964844, -0.07559691369533539, -0.09146007895469666, -0.047543011605739594, -0.10038874298334122, 0.058594245463609695, 0.05070577561855316, 0.06611888110637665, -0.11367696523666382, -0.11009011417627335, 0.04078264534473419, 0.0712471455335617, -0.058163657784461975, 0.017575114965438843, -0.07763050496578217, 0.079132080078125, -0.07711771130561829, -0.02624138817191124, -0.14201480150222778, -0.048269253224134445, 0.005025235470384359, -0.03208029642701149, 0.029668131843209267, 0.008913606405258179, 0.08659534156322479, 0.08675111085176468, -0.0626186728477478, -0.01938098669052124, -0.044932108372449875, 0.009332616813480854, -0.11442669481039047, -0.1982911080121994, -0.027378249913454056, -0.0399133563041687, 0.12308551371097565, -0.19549717009067535, 0.046726830303668976, -0.04682258516550064, 0.08725277334451675, 0.037628479301929474, -0.004571667872369289, -0.05812889337539673, 0.06969854980707169, -0.031151091679930687, -0.06092076748609543, 0.04346919804811478, 0.005968667566776276, -0.0834820419549942, -0.051732320338487625, -0.1396743208169937, 0.18778736889362335, 0.12978528439998627, -0.09194836020469666, -0.09859064966440201, 0.0230548158288002, -0.05357614904642105, -0.02975565940141678, -0.04003898799419403, 0.0015303638065233827, 0.12583589553833008, -0.020935026928782463, 0.13676007091999054, -0.06936703622341156, -0.02937597781419754, 0.042055148631334305, -0.06385862827301025, 0.0007701461436226964, 0.0646224319934845, 0.1332266479730606, -0.07764002680778503, 0.14587250351905823, 0.18359601497650146, -0.12993265688419342, 0.14128261804580688, -0.026469195261597633, -0.06675159186124802, -0.031987398862838745, -0.00623335363343358, 0.017870763316750526, 0.1371297538280487, -0.12532079219818115, -0.0036421858239918947, 0.007208667695522308, -0.0075033679604530334, 0.012547255493700504, -0.22333183884620667, -0.037462327629327774, 0.0447513572871685, -0.03619850426912308, 0.0028228070586919785, -0.0024064849130809307, -0.019725939258933067, 0.08658634126186371, 0.0063006458804011345, -0.09801021963357925, 0.044147226959466934, 0.003668558318167925, -0.06982532143592834, 0.19794973731040955, -0.06930723786354065, -0.12541140615940094, -0.15215863287448883, -0.07661598920822144, -0.023092322051525116, 0.03556639328598976, 0.059663232415914536, -0.07023022323846817, -0.0543527789413929, -0.07874210178852081, 0.0029502608813345432, 0.04646478220820427, 0.049955688416957855, 0.03722614049911499, 0.004450567997992039, 0.09442152082920074, -0.09871913492679596, -0.01681848056614399, -0.04208119213581085, -0.05319567397236824, 0.03623002767562866, 0.0428854338824749, 0.12341050058603287, 0.1339176446199417, -0.029027894139289856, -0.006090160459280014, -0.02051793597638607, 0.22210128605365753, -0.07222333550453186, -0.016868066042661667, 0.14073505997657776, -0.02076023630797863, 0.05191364884376526, 0.14090503752231598, 0.06733141839504242, -0.08336496353149414, 0.0242120623588562, 0.035470400005578995, -0.04009374603629112, -0.18489323556423187, -0.023991577327251434, -0.04933572933077812, -0.018946142867207527, 0.09859240055084229, 0.032823048532009125, 0.05806193873286247, 0.07796107232570648, 0.038271464407444, 0.09918616712093353, -0.03605624660849571, 0.07924634963274002, 0.08428443223237991, 0.045920319855213165, 0.12579408288002014, -0.04616190865635872, -0.08513855934143066, 0.018990153446793556, -0.000748709193430841, 0.21607226133346558, 0.04066456854343414, 0.12261962890625, 0.06694359332323074, 0.16295944154262543, 0.0017122923163697124, 0.07834405452013016, -0.0006805102457292378, -0.06722703576087952, -0.007908502593636513, -0.05286047235131264, -0.010343293659389019, 0.0537063330411911, -0.08376827090978622, 0.06688737869262695, -0.08980072289705276, 0.03975853696465492, 0.044136520475149155, 0.25290152430534363, 0.04882245510816574, -0.33166468143463135, -0.09171987324953079, 0.014264896512031555, -0.02693856693804264, -0.0176983792334795, 0.016241049394011497, 0.10987774282693863, -0.05133438482880592, 0.0320366732776165, -0.07859456539154053, 0.06976892054080963, 0.015326177701354027, 0.04473792016506195, 0.06030159816145897, 0.11769352853298187, 0.0001937362103490159, 0.055531587451696396, -0.2692785859107971, 0.2972794473171234, 0.0056516071781516075, 0.09224171191453934, -0.05433949455618858, 0.02246633917093277, 0.04462449997663498, 0.0550449937582016, 0.09004242718219757, -0.030670376494526863, -0.08592268824577332, -0.1836385279893875, -0.03883158415555954, 0.023001059889793396, 0.09891276806592941, -0.01675623469054699, 0.10908143222332001, -0.03795772045850754, -0.010486246086657047, 0.0920405387878418, 0.023664792999625206, -0.08824088424444199, -0.08934865146875381, -0.005566049367189407, 0.029728388413786888, -0.06446994841098785, -0.09132923185825348, -0.10369960963726044, -0.12409592419862747, 0.16298769414424896, -0.03746083378791809, -0.011648227460682392, -0.10176468640565872, 0.06072038784623146, 0.058898020535707474, -0.08340565115213394, 0.07907005399465561, 0.004931432660669088, 0.10052463412284851, 0.005117305088788271, -0.05811912193894386, 0.12143059074878693, -0.08950696140527725, -0.1483668088912964, -0.08372166007757187, 0.08118052780628204, 0.006187924183905125, 0.05233107507228851, -0.004065243527293205, 0.016969108954072, -0.018030107021331787, -0.0689779594540596, 0.041580915451049805, -0.035972315818071365, 0.04861260578036308, -0.001941560534760356, -0.06130087375640869, -0.014821933582425117, -0.041839417070150375, -0.02492857724428177, 0.14141204953193665, 0.28081756830215454, -0.09804040193557739, -0.009567963890731335, 0.04982319474220276, -0.0526178702712059, -0.2103959321975708, 0.023994671180844307, 0.03767232969403267, 0.01791493222117424, 0.05102001875638962, -0.13136440515518188, 0.11612764000892639, 0.09219725430011749, -0.02776746265590191, 0.11538832634687424, -0.27358418703079224, -0.138845756649971, 0.1432168036699295, 0.15261021256446838, 0.12318364530801773, -0.14298680424690247, -0.02482086420059204, -0.03480035811662674, -0.1182078942656517, 0.05835907533764839, -0.10253969579935074, 0.11708953231573105, -0.014503655023872852, 0.06429288536310196, -0.0012708473950624466, -0.07322575151920319, 0.1216883733868599, -0.032110001891851425, 0.10628515481948853, -0.06792201846837997, -0.022888176143169403, 0.05535121262073517, -0.04470665752887726, 0.020304696634411812, -0.09724897146224976, 0.020378056913614273, -0.0008398156496696174, -0.030140381306409836, -0.04455280303955078, 0.057246092706918716, -0.03059593215584755, -0.0684271827340126, -0.03744790703058243, 0.0232878178358078, 0.01649378426373005, -0.022110579535365105, 0.13668744266033173, 0.024806851521134377, 0.16507869958877563, 0.12521323561668396, 0.048391956835985184, -0.058474451303482056, -0.05078069865703583, 0.003602256067097187, -0.037706371396780014, 0.072210393846035, -0.13542355597019196, 0.026082688942551613, 0.10541704297065735, 0.015155942179262638, 0.1460127830505371, 0.07677893340587616, -0.03550316020846367, 0.025074459612369537, 0.09340236335992813, -0.15339599549770355, -0.0918777659535408, 0.0017603597370907664, -0.04805722460150719, -0.12144608050584793, 0.0531373955309391, 0.10777871310710907, -0.08148282766342163, 0.008537356741726398, -0.011020289734005928, 0.0031389330979436636, -0.06989044696092606, 0.1784573793411255, 0.0675625130534172, 0.04729950428009033, -0.058791160583496094, 0.05482623726129532, 0.02785426750779152, -0.06525234878063202, 0.0084450738504529, 0.04140680283308029, -0.06557974219322205, -0.03644336387515068, 0.0673375353217125, 0.18426373600959778, -0.039813391864299774, -0.04667569696903229, -0.16341382265090942, -0.10828068107366562, 0.0469500757753849, 0.1956181675195694, 0.09293272346258163, -0.004264435730874538, -0.03152977302670479, 0.04120710864663124, -0.1127527505159378, 0.10247498750686646, 0.040894731879234314, 0.08852193504571915, -0.15242598950862885, 0.13230854272842407, -0.0016697136452421546, 0.023203177377581596, -0.028876084834337234, 0.0542953684926033, -0.11213600635528564, -0.008269542828202248, -0.11655068397521973, -0.023408975452184677, -0.0347985178232193, -0.010142648592591286, 0.014364481903612614, -0.056753989309072495, -0.07520917057991028, 0.023974131792783737, -0.10199972242116928, -0.030078452080488205, 0.05073271691799164, 0.04199155047535896, -0.10973338782787323, -0.03737153857946396, 0.039757080376148224, -0.06415629386901855, 0.04517204314470291, 0.02914404310286045, 0.031252313405275345, 0.04938627406954765, -0.17485830187797546, 0.030201977118849754, 0.07214275747537613, 0.00890329573303461, 0.04828793928027153, -0.08817368000745773, -0.015584499575197697, -0.021020807325839996, 0.05405232310295105, 0.002838157583028078, 0.07056470960378647, -0.13563953340053558, 0.011941954493522644, -0.03162891045212746, -0.08112405240535736, -0.05797801539301872, 0.0028906245715916157, 0.09262696653604507, -0.013595427386462688, 0.19748149812221527, -0.1079430803656578, 0.027340233325958252, -0.19745343923568726, 0.014892925508320332, -0.004061818588525057, -0.09228776395320892, -0.10022734850645065, -0.05545100197196007, 0.03852933645248413, -0.06127995252609253, 0.1286344826221466, 0.003240136429667473, 0.014751280657947063, 0.03455069661140442, -0.049947548657655716, 0.04979976639151573, 0.01847238652408123, 0.21000124514102936, 0.02787771262228489, -0.043379344046115875, 0.0067758709192276, 0.04564407095313072, 0.11399912089109421, 0.05853328853845596, 0.1688907891511917, 0.15679579973220825, -0.027826309204101562, 0.1250501424074173, 0.055264171212911606, -0.04745304957032204, -0.14769478142261505, 0.04457525908946991, -0.03940602391958237, 0.08186271041631699, -0.013138595968484879, 0.17435935139656067, 0.1323375254869461, -0.15201257169246674, 0.019004957750439644, -0.0395190566778183, -0.07518238574266434, -0.11503677815198898, -0.06508056074380875, -0.09318812936544418, -0.1353178322315216, 0.018284516409039497, -0.08906806260347366, 0.007316228933632374, 0.08106610924005508, -0.0035091631580144167, -0.014290131628513336, 0.211462140083313, -0.00582027668133378, 0.04952418431639671, 0.033168110996484756, 0.007391536608338356, -0.03596732020378113, -0.08161725848913193, -0.078623928129673, -0.01822087913751602, -0.02585313841700554, 0.015280225314199924, -0.06608767807483673, -0.04039410874247551, 0.04758065193891525, 0.0060562812723219395, -0.09978015720844269, 0.006774906534701586, 0.02026284486055374, 0.04630858823657036, 0.024274703115224838, -0.0022235685028135777, 0.01943589188158512, -0.00989674124866724, 0.1792961210012436, -0.08408860117197037, -0.08578374981880188, -0.11082971096038818, 0.2085980325937271, 0.025944523513317108, 0.01592586189508438, -0.004871675278991461, -0.0784660056233406, 0.020457670092582703, 0.23851045966148376, 0.19061054289340973, -0.05806519091129303, 0.01514058280736208, 0.00649488577619195, -0.014609658159315586, -0.06112156808376312, 0.08551430702209473, 0.11670556664466858, 0.051690179854631424, -0.0750264823436737, -0.05955512076616287, -0.04582821577787399, -0.004407535772770643, -0.05920565873384476, 0.0277150459587574, 0.03858334943652153, 0.01825430803000927, -0.03806011378765106, 0.04063946008682251, -0.02426929771900177, -0.09842872619628906, 0.09026681631803513, -0.1851436346769333, -0.14200153946876526, 0.0029302758630365133, 0.12101150304079056, -0.010652018710970879, 0.06698699295520782, -0.0403098538517952, -0.01335551030933857, 0.06671792268753052, -0.016942106187343597, -0.06896187365055084, -0.07771867513656616, 0.06260596960783005, -0.08142485469579697, 0.24895943701267242, -0.04051896557211876, 0.05331113189458847, 0.13278567790985107, 0.053068339824676514, -0.06605798751115799, 0.08704228699207306, 0.045523375272750854, -0.09060531109571457, 0.024290243163704872, 0.10274911671876907, -0.046601079404354095, 0.09057815372943878, 0.04755131155252457, -0.13759347796440125, 0.024220982566475868, -0.06617794930934906, -0.07222316414117813, -0.04401351884007454, -0.021124688908457756, -0.07195671647787094, 0.13200978934764862, 0.19202177226543427, -0.02275913953781128, -0.0023864521645009518, -0.04760734364390373, 0.04050320014357567, 0.09065563976764679, 0.0357510931789875, -0.058207932859659195, -0.22698745131492615, 0.039974115788936615, 0.0417695976793766, -0.02687348611652851, -0.27507033944129944, -0.11135110259056091, -0.008807974867522717, -0.058716315776109695, -0.0890025720000267, 0.06346487998962402, 0.13997474312782288, 0.06669843196868896, -0.055693790316581726, -0.10847392678260803, -0.07882826775312424, 0.1469348669052124, -0.15065298974514008, -0.10327057540416718 ]
null
null
ml-agents
# **ppo** Agent playing **Huggy** This is a trained model of a **ppo** agent playing **Huggy** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: 0fluff0/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy"]}
reinforcement-learning
0fluff0/ppo-Huggy
[ "ml-agents", "Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy", "region:us" ]
2024-02-06T13:14:05+00:00
[]
[]
TAGS #ml-agents #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us
# ppo Agent playing Huggy This is a trained model of a ppo agent playing Huggy using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: 0fluff0/ppo-Huggy 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: 0fluff0/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us \n", "# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: 0fluff0/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 36, 200 ]
[ "passage: TAGS\n#ml-agents #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us \n# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: 0fluff0/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 0.022254707291722298, 0.023759296163916588, -0.0037023003678768873, 0.03817896544933319, 0.13593146204948425, -0.0005077349487692118, 0.12216940522193909, 0.11588244885206223, 0.10489561408758163, 0.09637583047151566, 0.0613054521381855, 0.039959296584129333, 0.036318231374025345, 0.19352862238883972, 0.0797325000166893, -0.20419292151927948, -0.008204110898077488, -0.0990605279803276, 0.06760881096124649, 0.08739836513996124, 0.027346961200237274, -0.03932776302099228, 0.06963144242763519, 0.027556926012039185, -0.032440993934869766, -0.017323138192296028, -0.07431646436452866, -0.01820448227226734, 0.056031160056591034, 0.013522084802389145, -0.03766832500696182, -0.05092275142669678, 0.07421530783176422, -0.23920494318008423, 0.025503722950816154, 0.05364298075437546, 0.003339319257065654, 0.004303491208702326, 0.0834152027964592, 0.06172836199402809, 0.12839573621749878, -0.07906080037355423, 0.06907308846712112, 0.07534845173358917, -0.05965558812022209, -0.03327348828315735, -0.10481511056423187, 0.02143210545182228, 0.19370315968990326, 0.10415252298116684, 0.00045571810915134847, 0.08995016664266586, -0.09757880866527557, 0.02706216648221016, 0.1622806340456009, -0.24391955137252808, -0.06687332689762115, 0.08493760973215103, 0.061026908457279205, -0.01853208616375923, -0.05317587032914162, 0.05197376757860184, -0.01141169760376215, 0.04639188572764397, 0.07777778804302216, -0.009623242542147636, 0.19977036118507385, -0.010383849032223225, -0.06340551376342773, -0.07542072981595993, 0.05431928485631943, 0.07963459938764572, -0.06748298555612564, -0.229932501912117, 0.03881418704986572, 0.12331404536962509, -0.026996660977602005, 0.01710440032184124, 0.07477062195539474, -0.016514159739017487, -0.03353046998381615, -0.0856119841337204, -0.03866497799754143, -0.05553244426846504, 0.07597856223583221, 0.15996064245700836, -0.00803003367036581, -0.036132097244262695, 0.09248574823141098, 0.06709600985050201, 0.030693981796503067, -0.03433368355035782, -0.026460254564881325, -0.036459289491176605, -0.1273455023765564, 0.006153617985546589, -0.004990982823073864, 0.0843270868062973, 0.04090011492371559, 0.1413087695837021, 0.00909943412989378, 0.00856005772948265, 0.02416718564927578, 0.04922980070114136, -0.030256034806370735, 0.1336866021156311, 0.038594458252191544, 0.02663746476173401, 0.03702889010310173, 0.03840327262878418, 0.059628501534461975, -0.05859722942113876, -0.09946688264608383, 0.07540286332368851, -0.12142210453748703, 0.1007312685251236, 0.0750860720872879, 0.024494217708706856, -0.07535414397716522, -0.01929711550474167, 0.0062167709693312645, -0.12964363396167755, 0.08814556896686554, 0.056257206946611404, -0.04790155217051506, -0.11191385239362717, 0.0025080398190766573, 0.0025632018223404884, -0.06834469735622406, 0.01170307956635952, -0.02510395459830761, 0.02502690814435482, -0.007480092812329531, -0.03480960801243782, 0.09847406297922134, -0.03758051246404648, -0.016788076609373093, -0.16131456196308136, -0.09605547040700912, -0.04353780299425125, 0.05834885686635971, -0.05872450768947601, -0.12460590898990631, -0.047475263476371765, 0.0029297613073140383, -0.0850595012307167, 0.0016707034083083272, -0.040442273020744324, -0.07372437417507172, -0.005817490164190531, -0.03265834227204323, 0.07071562856435776, 0.1870753914117813, 0.031463854014873505, -0.014479110948741436, 0.07341796904802322, -0.1725507229566574, 0.10990020632743835, -0.10575209558010101, 0.18024641275405884, -0.04242634400725365, 0.0004928677808493376, 0.03622404485940933, 0.010430694557726383, 0.005657955538481474, 0.17074131965637207, -0.05462556704878807, -0.10663896054029465, 0.1194559782743454, -0.0157623291015625, -0.11098619550466537, 0.06594479084014893, 0.026228507980704308, 0.05001647397875786, 0.031758733093738556, 0.2465643733739853, 0.10177095234394073, -0.267699658870697, 0.057187482714653015, 0.04166368022561073, -0.15200240910053253, 0.026883888989686966, 0.12457607686519623, -0.041383516043424606, -0.016752446070313454, 0.005696325562894344, -0.13332828879356384, 0.08180705457925797, -0.015060542151331902, -0.03831354156136513, 0.037662431597709656, -0.047575172036886215, 0.013866650871932507, -0.012170112691819668, -0.019124779850244522, -0.06198875978589058, -0.10582219064235687, -0.06612079590559006, 0.09050212055444717, -0.007871726527810097, 0.06590618938207626, -0.06767840683460236, 0.11616984009742737, 0.04838567599654198, 0.04578156769275665, -0.09056665003299713, -0.12932342290878296, 0.023208247497677803, 0.012149302288889885, 0.0974046066403389, -0.08730018883943558, 0.05008452758193016, 0.09417354315519333, 0.0035181057173758745, -0.07643113285303116, -0.12872621417045593, -0.015899045392870903, -0.04678395763039589, -0.10972963273525238, -0.060180023312568665, -0.06269015371799469, 0.1276288777589798, -0.12201933562755585, 0.04852093383669853, -0.12908916175365448, 0.032429762184619904, -0.011894471012055874, -0.0330403670668602, 0.051829516887664795, 0.005338916555047035, 0.03526559844613075, -0.06144888699054718, 0.0982980877161026, 0.029584862291812897, -0.08101401478052139, 0.07035847753286362, -0.049447525292634964, -0.0714305192232132, 0.07157150655984879, 0.05356726795434952, -0.02220909669995308, -0.02210884727537632, -0.1043095514178276, 0.012119489721953869, -0.08386199176311493, 0.007970275357365608, 0.16103717684745789, 0.10215253382921219, 0.12646204233169556, -0.07891794294118881, -0.06724243611097336, -0.016154998913407326, -0.08842767775058746, -0.04754285141825676, 0.1446414440870285, 0.018276656046509743, 0.07497028261423111, 0.028529010713100433, 0.0340164490044117, 0.08361570537090302, 0.09941583126783371, 0.02284940890967846, -0.1133468970656395, -0.023254653438925743, 0.052193351089954376, 0.053573884069919586, -0.00598422484472394, 0.05819850414991379, 0.014925024472177029, 0.027231616899371147, -0.03626096993684769, -0.016127724200487137, -0.12865976989269257, -0.08159793168306351, 0.015905212610960007, -0.044389452785253525, 0.05421088635921478, -0.007630637381225824, -0.0383441224694252, 0.049656741321086884, 0.10091045498847961, 0.03149636834859848, 0.0023779894690960646, -0.04599173739552498, -0.11666063964366913, 0.061346057802438736, -0.09802618622779846, -0.3281130790710449, -0.13899636268615723, -0.10748909413814545, -0.07109300047159195, 0.028214434161782265, 0.05509252846240997, -0.15944737195968628, -0.032316695898771286, -0.11292871087789536, -0.05303563177585602, 0.050363827496767044, -0.0798487737774849, 0.17947864532470703, 0.1064228042960167, 0.04376709461212158, -0.07620733231306076, -0.017147451639175415, 0.01911512203514576, -0.03398682922124863, 0.007015628274530172, 0.043887291103601456, 0.0772312805056572, 0.11741742491722107, 0.06318334490060806, 0.03809121996164322, -0.013186472468078136, 0.09255364537239075, -0.07291247695684433, -0.02438335493206978, 0.12380030751228333, -0.01776387356221676, 0.06793578714132309, 0.0393582247197628, 0.03382762148976326, -0.03950135409832001, 0.06466875970363617, 0.011936596594750881, -0.06879100203514099, -0.18766187131404877, -0.12249399721622467, -0.03369224816560745, 0.23208631575107574, 0.08660515397787094, 0.09223625808954239, -0.058724869042634964, -0.07053815573453903, 0.004283691290766001, -0.0479406900703907, 0.1353863775730133, 0.12217853218317032, -0.0013184422859922051, -0.06712580472230911, -0.01464349590241909, -0.03353510797023773, 0.031087815761566162, 0.10007385164499283, -0.040312837809324265, 0.05725306645035744, 0.031084539368748665, 0.00811937265098095, 0.0324745737016201, -0.06381051242351532, -0.052849091589450836, 0.05265428125858307, 0.05007791891694069, -0.009903748519718647, -0.02057853527367115, -0.09039747714996338, -0.038566067814826965, 0.10769607126712799, 0.11438236385583878, -0.05109833925962448, -0.10898057371377945, 0.07276742905378342, 0.0980590209364891, 0.07927215844392776, 0.023966986685991287, -0.12108993530273438, -0.07175479084253311, -0.0004259233537595719, -0.1317843198776245, 0.016937995329499245, 0.0018897670088335872, 0.03925371542572975, -0.18960705399513245, 0.0719069242477417, 0.028948886319994926, 0.12304297089576721, 0.06424299627542496, 0.015341883525252342, 0.03789433464407921, 0.11432435363531113, -0.004749676212668419, 0.0837680920958519, -0.14156821370124817, 0.05332830920815468, -0.008926124311983585, 0.08751065284013748, -0.03153715655207634, -0.004372998606413603, 0.0760483592748642, -0.00922408141195774, 0.1788215935230255, 0.03732951730489731, 0.062214747071266174, -0.0768163651227951, -0.16550788283348083, -0.05113929882645607, -0.007875618524849415, -0.06638634204864502, 0.0727696344256401, -0.0037666833959519863, -0.04773741215467453, -0.10539472103118896, 0.16137495636940002, -0.00730365002527833, -0.06442108005285263, -0.02521262690424919, -0.04793209210038185, 0.04003547132015228, -0.05758298933506012, -0.0212694201618433, -0.04223804548382759, 0.2289145290851593, 0.13958796858787537, 0.003027493366971612, -0.08980313688516617, -0.04384689778089523, -0.022361990064382553, -0.01200943160802126, 0.004237842746078968, -0.012913559563457966, 0.15577691793441772, -0.08923432976007462, -0.022058624774217606, -0.03522811457514763, -0.10176904499530792, -0.11406873166561127, -0.00038204266456887126, 0.23326314985752106, -0.009556056931614876, 0.10374680906534195, -0.01622331514954567, 0.021581565961241722, -0.003236707765609026, -0.08617397397756577, 0.14732374250888824, 0.18986932933330536, 0.01733502373099327, 0.061255622655153275, -0.12921848893165588, 0.07893005013465881, -0.10124947130680084, -0.04003521054983139, 0.1989147961139679, 0.3128485679626465, -0.05457993224263191, 0.22943826019763947, 0.06496162712574005, -0.05889468267560005, -0.20458728075027466, -0.0907704308629036, 0.050537798553705215, 0.0015378502430394292, 0.14653868973255157, -0.14614054560661316, 0.03243931382894516, 0.027864335104823112, -0.009282906539738178, 0.01354475412517786, -0.158882275223732, -0.0909377858042717, -0.02943277917802334, 0.04844629019498825, -0.0007109622238203883, -0.06329183280467987, -0.047376491129398346, -0.041041299700737, -0.08563657104969025, 0.056925367563962936, -0.13680800795555115, 0.09074940532445908, -0.0045027583837509155, 0.027253858745098114, 0.04969428479671478, -0.028574800118803978, 0.13228628039360046, -0.0736030638217926, -0.015321570448577404, -0.0943678691983223, 0.012249751947820187, -0.008189155720174313, -0.10882150381803513, 0.08906866610050201, -0.06287160515785217, -0.045907553285360336, -0.17357534170150757, -0.0539398267865181, -0.03376030921936035, 0.04256701096892357, -0.01329033449292183, -0.018000639975070953, -0.0214932169765234, 0.086650051176548, 0.09547314792871475, 0.04335939884185791, 0.018590833991765976, -0.02432524785399437, -0.013707583770155907, 0.09737391024827957, 0.09648634493350983, 0.024762015789747238, -0.08437537401914597, -0.03813403472304344, -0.03776161000132561, -0.027258744463324547, -0.07834146171808243, 0.003067989367991686, 0.04406610503792763, 0.006049328949302435, 0.05654240772128105, 0.049112193286418915, -0.09287472069263458, -0.038764748722314835, 0.0809086486697197, -0.09597382694482803, -0.13817772269248962, -0.06158044561743736, -0.09506595134735107, -0.03422302007675171, -0.11145476251840591, 0.03137236088514328, -0.04437560588121414, 0.012418985366821289, 0.050346363335847855, 0.029023122042417526, -0.0727066844701767, 0.015465205535292625, -0.03230823203921318, 0.03192026913166046, -0.05466236174106598, 0.14520269632339478, 0.020622985437512398, -0.028638606891036034, 0.024503206834197044, 0.21157905459403992, -0.07239895313978195, -0.06982188671827316, -0.03232120722532272, 0.06210903823375702, 0.1586979478597641, -0.03382783755660057, -0.02263535186648369, -0.07902370393276215, 0.0959305465221405, -0.11582698673009872, -0.004614169709384441, -0.08357524871826172, 0.003819857956841588, 0.08298004418611526, -0.11563285440206528, 0.11225350201129913, -0.008051415905356407, -0.07361730933189392, -0.11500497162342072, 0.09174729883670807, 0.054381586611270905, 0.16719818115234375, -0.01927095651626587, -0.04928620904684067, -0.11919654160737991, 0.01216679997742176, -0.0366537943482399, -0.014405172318220139, -0.14482958614826202, -0.013007485307753086, -0.03691118210554123, 0.07077499479055405, -0.01923677697777748, 0.04518910497426987, -0.04713553562760353, -0.08340456336736679, -0.06530643254518509, 0.0914660319685936, -0.03367578238248825, -0.04251231625676155, 0.0200564693659544, -0.07217714935541153, 0.08870275318622589, 0.05922111123800278, -0.021771365776658058, -0.05037491396069527, -0.06299427151679993, -0.05363081768155098, 0.018457241356372833, -0.03122924454510212, 0.021548431366682053, -0.19196242094039917, 0.006608178373426199, -0.04513762518763542, -0.12023834884166718, 0.004655216354876757, 0.08156434446573257, -0.08247888833284378, 0.031189339235424995, 0.03631120175123215, -0.12850691378116608, -0.08881454169750214, -0.0077838897705078125, -0.0095744039863348, 0.05248543247580528, 0.069192074239254, -0.07491662353277206, 0.16681216657161713, -0.1163170337677002, -0.022693518549203873, -0.0015176364686340094, 0.029625706374645233, 0.001162090920843184, -0.1022634208202362, 0.03114972449839115, -0.008948701433837414, 0.14101222157478333, 0.08748816698789597, -0.04346105083823204, 0.028582720085978508, -0.00892671663314104, 0.07410267740488052, -0.0051622274331748486, 0.045916855335235596, -0.012173967435956001, 0.008642379194498062, 0.0668768584728241, -0.007813980802893639, 0.0631599873304367, -0.10379331558942795, 0.10544796288013458, 0.06592763215303421, 0.1504879742860794, 0.04175719991326332, 0.07777249068021774, -0.11757947504520416, -0.1809045970439911, -0.014405036345124245, -0.019578956067562103, 0.050838153809309006, -0.07217466831207275, 0.21900203824043274, 0.1030033752322197, -0.2168002873659134, 0.0849371924996376, 0.014369414187967777, 0.01412018109112978, -0.08850188553333282, -0.11425221711397171, -0.00004666397944674827, -0.21960516273975372, 0.07637953013181686, -0.056606225669384, 0.023560309782624245, -0.07957160472869873, -0.024540072306990623, -0.019061388447880745, 0.06981540471315384, -0.14146508276462555, -0.05704165995121002, 0.09092272818088531, -0.049676794558763504, 0.010346099734306335, 0.0018286111298948526, -0.0062971534207463264, -0.039558324962854385, -0.09477996826171875, 0.05519295483827591, 0.0697467252612114, 0.016000738367438316, 0.054693032056093216, -0.043221406638622284, -0.04797462746500969, 0.04223212972283363, -0.012218242511153221, 0.029215455055236816, 0.1229081079363823, 0.057882655411958694, -0.10826317965984344, -0.0005064887227490544, 0.21965305507183075, -0.051082927733659744, -0.02281884476542473, -0.08221859484910965, 0.18281713128089905, -0.014257563278079033, -0.053396712988615036, -0.04906999692320824, -0.0895819291472435, -0.09003365784883499, 0.24691441655158997, 0.11208970844745636, -0.05458701774477959, 0.01616835780441761, -0.030672896653413773, 0.01935957558453083, 0.0057616704143583775, 0.12101461738348007, 0.07688622176647186, 0.15012185275554657, -0.05782843753695488, -0.0254450011998415, -0.02358659729361534, -0.07703052461147308, -0.16941221058368683, 0.012771042063832283, 0.021016832441091537, -0.036360953003168106, -0.03873196616768837, 0.032777246087789536, -0.13448530435562134, -0.10497831553220749, 0.11379753798246384, -0.07666347175836563, -0.06689601391553879, -0.028391333296895027, -0.005582447163760662, 0.0360671728849411, 0.11909641325473785, 0.0491778701543808, 0.025789938867092133, 0.11452841013669968, -0.036225758492946625, -0.053482022136449814, 0.03773339092731476, 0.07068605720996857, -0.05697664991021156, 0.18842627108097076, -0.037576716393232346, 0.03084387630224228, 0.04894035682082176, 0.016797691583633423, -0.13381150364875793, 0.08895692229270935, 0.0341266468167305, -0.16570648550987244, 0.01927979849278927, 0.0871378555893898, -0.06500177085399628, -0.029028145596385002, 0.0712759718298912, -0.042170654982328415, -0.007491213269531727, 0.1440092921257019, -0.02689933404326439, -0.03285260498523712, 0.07097349315881729, -0.14729079604148865, 0.09646467119455338, 0.1489543318748474, -0.057908035814762115, -0.008358078077435493, -0.04613934084773064, 0.04532216489315033, 0.030298221856355667, 0.060130536556243896, -0.0073860809206962585, -0.12148167937994003, 0.018926186487078667, 0.03452805057168007, 0.019343484193086624, -0.28541356325149536, -0.13155873119831085, -0.03465517237782478, -0.03831804171204567, -0.03298712894320488, 0.12318719923496246, 0.09389150887727737, -0.017466312274336815, -0.011124057695269585, -0.2135150134563446, 0.05456368997693062, 0.15883617103099823, -0.07966600358486176, -0.014561379328370094 ]
null
null
transformers
## Avansas TinyLlama Model
{"language": ["en"], "pipeline_tag": "text-generation"}
text-generation
halilibr/tinyLlama-avansas-english-model-v1
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:14:15+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #conversational #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## Avansas TinyLlama Model
[ "## Avansas TinyLlama Model" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Avansas TinyLlama Model" ]
[ 53, 8 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #conversational #en #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## Avansas TinyLlama Model" ]
[ -0.0065484377555549145, -0.02141907811164856, -0.006344745401293039, 0.012349456548690796, 0.1397368609905243, -0.03879806399345398, 0.15612871944904327, 0.09992455691099167, -0.0806194543838501, -0.00018240557983517647, 0.13414674997329712, 0.15515978634357452, -0.018015678972005844, 0.04974944889545441, -0.11869892477989197, -0.2379542589187622, 0.06303102523088455, -0.0018166062654927373, 0.01611531339585781, 0.06473222374916077, 0.11269178241491318, -0.08694589138031006, 0.08907561004161835, -0.035790715366601944, -0.0642429068684578, 0.026907693594694138, 0.02782151848077774, -0.15250802040100098, 0.08932076394557953, 0.06250131875276566, 0.06350885331630707, 0.01633627712726593, -0.025141818448901176, -0.17448848485946655, 0.033803582191467285, -0.012148895300924778, -0.00441020680591464, 0.020251840353012085, 0.047211095690727234, -0.06349339336156845, 0.07420432567596436, 0.024644851684570312, -0.005881066434085369, 0.054665707051754, -0.1289106160402298, 0.03778686001896858, 0.03523673117160797, -0.05029473453760147, 0.11041140556335449, 0.09196770936250687, -0.020186111330986023, 0.12760475277900696, -0.07266159355640411, 0.0970989242196083, 0.11702388525009155, -0.2687390148639679, -0.03704219311475754, 0.13064423203468323, 0.08104082942008972, 0.0699397474527359, -0.044995326548814774, 0.12205028533935547, 0.07135791331529617, -0.01351857464760542, 0.02454623393714428, -0.058408983051776886, -0.060669753700494766, 0.031239710748195648, -0.062361422926187515, -0.010217579081654549, 0.23535315692424774, -0.05025244876742363, 0.052842848002910614, -0.1191769540309906, -0.08268361538648605, 0.0040159993804991245, -0.07710801064968109, -0.01263390388339758, -0.016654163599014282, 0.08209582418203354, 0.01523109432309866, -0.03390062600374222, -0.12885881960391998, 0.00967969000339508, -0.1325516402721405, 0.1734558641910553, -0.016788816079497337, 0.008726241998374462, -0.23767942190170288, 0.007659705355763435, 0.027084270492196083, -0.10159500688314438, 0.033336903899908066, -0.07676689326763153, 0.10062117129564285, -0.001815414521843195, -0.0437815859913826, -0.11260069906711578, 0.1508861780166626, 0.0700669139623642, 0.028829853981733322, -0.002948872745037079, -0.036781538277864456, 0.04289170727133751, 0.04856674373149872, 0.03268558159470558, 0.0053398264572024345, -0.09525098651647568, 0.05523913353681564, -0.04161704331636429, 0.06483550369739532, -0.04937276616692543, -0.1402054876089096, 0.03204254433512688, 0.04404357448220253, 0.1069616824388504, 0.03817658871412277, 0.09429728239774704, -0.014948158524930477, 0.01601899228990078, -0.06492254137992859, -0.06179550662636757, -0.025796597823500633, -0.017334749922156334, 0.04159420728683472, 0.12953798472881317, -0.041834499686956406, 0.046432219445705414, -0.07362712174654007, 0.040343403816223145, -0.0601983368396759, -0.06877375394105911, -0.027439236640930176, -0.06758490949869156, 0.011076230555772781, -0.04911048710346222, 0.06031074374914169, -0.2054787278175354, -0.14430378377437592, 0.0008001097594387829, 0.0033245226368308067, -0.06093704327940941, -0.05680650472640991, -0.09408071637153625, -0.057494230568408966, 0.042851340025663376, -0.0469895601272583, -0.042498618364334106, -0.07670625299215317, 0.0503215417265892, 0.004174625035375357, 0.10026074200868607, -0.063752681016922, 0.04129254072904587, -0.10588224977254868, 0.018234074115753174, -0.015904990956187248, 0.07309937477111816, 0.019453492015600204, 0.15736962854862213, 0.006764094345271587, 0.036393772810697556, -0.11039581894874573, 0.09688732028007507, -0.026096222922205925, 0.24710409343242645, -0.11161352694034576, -0.07212840020656586, 0.2283223420381546, -0.09065304696559906, -0.18819767236709595, 0.10934445261955261, 0.0055023133754730225, 0.1268479824066162, 0.1404656618833542, 0.22317343950271606, -0.02266082912683487, 0.0027747275307774544, 0.051197148859500885, 0.08756512403488159, -0.05649564415216446, -0.04506422206759453, -0.0007668359903618693, -0.005535708740353584, -0.10903093218803406, 0.04054538905620575, 0.12533137202262878, 0.04509061202406883, -0.04793309047818184, -0.033086296170949936, -0.032218482345342636, -0.059810057282447815, -0.0010887187672778964, -0.04161916673183441, 0.09829191863536835, -0.10060268640518188, 0.011465712450444698, -0.0258854441344738, 0.00949749443680048, -0.02984171360731125, 8.632357548776781e-7, -0.09846342355012894, 0.09019439667463303, -0.07644826173782349, 0.06090480834245682, -0.11452175676822662, -0.056902818381786346, -0.02708165906369686, 0.1344134360551834, -0.015338598750531673, 0.07126571238040924, 0.05220605805516243, -0.045153260231018066, 0.0023836265318095684, 0.0366368293762207, 0.19906464219093323, 0.02701130136847496, -0.09406999498605728, -0.09284335374832153, 0.11280861496925354, -0.07421603053808212, 0.021135076880455017, -0.1348232626914978, 0.0024838331155478954, 0.020335603505373, 0.0786975547671318, 0.035946089774370193, 0.0707625150680542, 0.004691620822995901, -0.010555257089436054, -0.09599947184324265, 0.0039843786507844925, 0.10388486832380295, 0.005700988695025444, -0.052241500467061996, 0.18307560682296753, -0.21317994594573975, 0.18579748272895813, 0.1853143870830536, -0.22775426506996155, 0.027458008378744125, -0.08861854672431946, 0.00008885616989573464, 0.03143548220396042, 0.005313018336892128, -0.057003170251846313, 0.05048295110464096, -0.02359769307076931, 0.18691155314445496, -0.07222626358270645, -0.003745914436876774, 0.011525698006153107, -0.08400904387235641, -0.04392051324248314, 0.08405782282352448, 0.06657613813877106, -0.1425778716802597, 0.1449696570634842, 0.17874754965305328, 0.048841699957847595, 0.18016941845417023, 0.006044084206223488, -0.0027084876783192158, 0.07850202172994614, 0.000518381770234555, 0.015157545916736126, -0.08032570779323578, -0.15541476011276245, -0.025974972173571587, 0.057441309094429016, 0.023837145417928696, 0.0952187329530716, -0.06846187263727188, -0.03303392603993416, 0.05312089994549751, 0.006724927108734846, 0.12251061946153641, 0.08119349181652069, 0.003753064200282097, 0.13164258003234863, -0.012636151164770126, -0.049429792910814285, 0.05747595429420471, -0.013428295962512493, -0.07767482846975327, 0.17718464136123657, -0.06864666938781738, -0.32201072573661804, -0.1449580192565918, -0.13521523773670197, -0.03412441909313202, 0.08012756705284119, 0.10317619889974594, -0.11041805148124695, -0.059998415410518646, -0.09148593246936798, 0.04570784047245979, -0.014643807895481586, 0.02125481143593788, -0.011526787653565407, 0.08498327434062958, -0.09065835177898407, -0.0921027734875679, -0.04259565845131874, -0.0013675306690856814, -0.009470004588365555, 0.10677733272314072, -0.12981238961219788, 0.07380281388759613, 0.17361032962799072, 0.0336156040430069, 0.014960083179175854, -0.027035780251026154, 0.17644809186458588, -0.08207424730062485, 0.01577506959438324, 0.21833960711956024, -0.02097371406853199, 0.03268570452928543, 0.17145776748657227, -0.013173998333513737, -0.12199927121400833, 0.0677357017993927, -0.013624797575175762, -0.0989110991358757, -0.1915140300989151, -0.12350106984376907, -0.08680860698223114, 0.1219458058476448, 0.04850038141012192, 0.053863756358623505, 0.10318350046873093, 0.11073005944490433, -0.010610368102788925, 0.009339538402855396, 0.028038544580340385, 0.08588483929634094, 0.2589435875415802, -0.039117857813835144, 0.14130450785160065, -0.04704444110393524, -0.17224350571632385, 0.0836486741900444, 0.019882380962371826, 0.04506739601492882, 0.09511739015579224, 0.06609879434108734, 0.014878729358315468, -0.04222217947244644, 0.11979109048843384, 0.12497223913669586, 0.027211548760533333, -0.0666501522064209, -0.04180896654725075, -0.05376608297228813, -0.0314192920923233, 0.05169294774532318, -0.04416714981198311, -0.06841068714857101, -0.07373011112213135, 0.05157653987407684, 0.06369895488023758, 0.13993120193481445, 0.08830730617046356, -0.19961632788181305, -0.012077821418642998, 0.12328193336725235, -0.03845876082777977, -0.0972733199596405, 0.1188800260424614, 0.0868368074297905, -0.06911201775074005, 0.010869111865758896, -0.008059456944465637, 0.104381263256073, -0.04321160912513733, 0.11135827749967575, -0.1481986790895462, -0.06094437837600708, 0.002393724163994193, 0.09198999404907227, -0.2540520131587982, 0.18776273727416992, 0.010176150128245354, 0.001096200430765748, -0.08304370939731598, -0.0015020982827991247, 0.02463049814105034, 0.10594427585601807, 0.13190777599811554, -0.04277117922902107, -0.04911106079816818, -0.042257148772478104, -0.027176151052117348, 0.04338765889406204, 0.1245381161570549, -0.010364344343543053, 0.05747875198721886, -0.09781593084335327, 0.008968917652964592, 0.004181950353085995, -0.07890161871910095, -0.034497737884521484, -0.1940399557352066, 0.03390463441610336, 0.1430758535861969, 0.0575026236474514, -0.01426973007619381, -0.0007065346580930054, -0.10669169574975967, 0.18798388540744781, -0.00001421524939360097, -0.05417151749134064, -0.0928221195936203, -0.08525262773036957, 0.0242678951472044, -0.015717608854174614, 0.0496751144528389, -0.06601055711507797, 0.09763013571500778, -0.07025555521249771, -0.15460443496704102, 0.10471056401729584, -0.1367282122373581, -0.054645929485559464, -0.025807684287428856, 0.1323842704296112, -0.07007952779531479, -0.03215409070253372, 0.08698948472738266, 0.016599545255303383, -0.07311291247606277, -0.0722276046872139, -0.02995092049241066, 0.040323901921510696, -0.028997346758842468, 0.021572675555944443, -0.08280361443758011, -0.0967499390244484, -0.01642834208905697, -0.06537976861000061, 0.27655166387557983, 0.22162127494812012, -0.030092064291238785, 0.11825483292341232, 0.16729705035686493, -0.07536854594945908, -0.34826722741127014, -0.11584034562110901, -0.16364389657974243, -0.03110555186867714, 0.019916946068406105, -0.06791907548904419, 0.1365830898284912, -0.024739811196923256, -0.01727229729294777, 0.05832980200648308, -0.2912956774234772, -0.09486554563045502, 0.1682692915201187, 0.026218991726636887, 0.3877898156642914, -0.16031622886657715, -0.08333076536655426, -0.12809355556964874, -0.039739202708005905, 0.11411075294017792, -0.10404741764068604, 0.10914520174264908, 0.005963296163827181, 0.06953594833612442, 0.07214674353599548, -0.005387168377637863, 0.10763190686702728, -0.07162705063819885, 0.018050620332360268, -0.1305343061685562, -0.054908495396375656, 0.017448898404836655, -0.018705103546380997, 0.02093346044421196, -0.1325066089630127, 0.024785757064819336, -0.08354466408491135, -0.06552442163228989, -0.0024906399194151163, 0.05705476924777031, 0.025287553668022156, -0.07875627279281616, -0.041837096214294434, -0.06627500802278519, 0.04960848018527031, 0.017511049285531044, 0.18131831288337708, -0.11443004012107849, 0.15600338578224182, 0.15106217563152313, 0.19931182265281677, -0.16492986679077148, 0.10385420173406601, -0.01924344338476658, -0.056430134922266006, 0.06132326275110245, -0.10074450820684433, 0.06014345958828926, 0.0757175087928772, -0.052247121930122375, 0.04198175668716431, 0.08473487198352814, 0.034665416926145554, 0.0036911258939653635, 0.1245826855301857, -0.1792755275964737, -0.07799112796783447, -0.05347615107893944, 0.08378587663173676, 0.035167086869478226, 0.05510225519537926, 0.195387601852417, -0.02423243224620819, 0.014116262085735798, -0.021448330953717232, 0.0352601483464241, 0.0005004781996831298, 0.058829549700021744, 0.006557841319590807, 0.025534041225910187, -0.1004529744386673, 0.08940190821886063, 0.011915226466953754, -0.16730444133281708, 0.04213733598589897, 0.12213967740535736, -0.08903296291828156, -0.12221680581569672, 0.014415891841053963, 0.1350603550672531, -0.10523924976587296, -0.04830034822225571, -0.059101685881614685, -0.18549418449401855, 0.050139669328927994, 0.13043254613876343, 0.04946994408965111, 0.05263030529022217, -0.046655185520648956, -0.03783072903752327, -0.07553671300411224, 0.04852594807744026, 0.027476869523525238, -0.012247305363416672, -0.10117099434137344, -0.017963621765375137, -0.0737706869840622, 0.056900374591350555, -0.10371148586273193, -0.04724078252911568, -0.1590210497379303, 0.0247004646807909, -0.17178769409656525, 0.02203984186053276, -0.10339599847793579, -0.04628660902380943, 0.009148778393864632, 0.029824556782841682, -0.07206082344055176, -0.06812364608049393, -0.07957548648118973, 0.032866254448890686, -0.04153379425406456, 0.058284442871809006, -0.02948576584458351, -0.005487284157425165, 0.04572780802845955, -0.04080799221992493, 0.0954810157418251, 0.02613559365272522, -0.10481590777635574, 0.0457782968878746, -0.23915913701057434, -0.059679143130779266, 0.1138741672039032, 0.0008765450911596417, 0.03807630017399788, 0.05850186198949814, 0.0011505564907565713, 0.09925779700279236, 0.03401417285203934, 0.04625726118683815, 0.024025719612836838, -0.09023726731538773, 0.05353548750281334, -0.014661775901913643, -0.1241091787815094, -0.014970947057008743, -0.07106299698352814, 0.05355260148644447, -0.052242718636989594, 0.1424918919801712, -0.09989876300096512, 0.060691166669130325, -0.03653617575764656, 0.05055003613233566, -0.014114325866103172, -0.1646120846271515, -0.05300840735435486, -0.0651608556509018, 0.021887246519327164, -0.004954055417329073, 0.22898510098457336, 0.06242489442229271, -0.001768595422618091, 0.0682227835059166, -0.007229670416563749, 0.0720008984208107, 0.055731356143951416, 0.28001970052719116, 0.13985814154148102, -0.04108772054314613, -0.1328161060810089, 0.04204840213060379, 0.09236722439527512, 0.045713864266872406, 0.07785892486572266, 0.09430983662605286, -0.11215651035308838, 0.14249427616596222, -0.020458437502384186, 0.02798997052013874, -0.03849446773529053, -0.08768409490585327, -0.037601154297590256, 0.04896897077560425, -0.03105347417294979, 0.05205738544464111, 0.22723257541656494, 0.006656406447291374, -0.01133648306131363, -0.0914185419678688, -0.0341065339744091, -0.18559157848358154, -0.14587002992630005, -0.1223052591085434, -0.08773202449083328, -0.022204754874110222, -0.127226784825325, 0.010286853648722172, 0.06257105618715286, 0.07072202116250992, -0.052410636097192764, 0.11202210187911987, -0.027894631028175354, -0.056607309728860855, 0.0899728536605835, -0.04263410344719887, 0.058935437351465225, -0.029864601790905, -0.03865164890885353, -0.12044120579957962, 0.022842347621917725, -0.04857195168733597, 0.0662769302725792, -0.019800256937742233, 0.024620549753308296, -0.12759505212306976, -0.08915787190198898, -0.030089152976870537, 0.047417521476745605, -0.03229871392250061, 0.07979238778352737, 0.013149666599929333, -0.07065416127443314, 0.042858704924583435, 0.2646607458591461, -0.06533335894346237, -0.1062411516904831, -0.04414917156100273, 0.09844369441270828, -0.015822064131498337, 0.14792032539844513, -0.08285880088806152, -0.017567524686455727, -0.07508944720029831, 0.39618661999702454, 0.29734835028648376, -0.09409839659929276, 0.030625352635979652, -0.05392495170235634, 0.03643159568309784, 0.05035275220870972, 0.1125064268708229, 0.06375980377197266, 0.22597095370292664, -0.050729814916849136, 0.010575841180980206, -0.02335062436759472, -0.027223806828260422, -0.14267167448997498, 0.0983966514468193, 0.04650506004691124, -0.020048176869750023, -0.02729799598455429, 0.11406601220369339, -0.19677305221557617, 0.13279448449611664, -0.08367114514112473, -0.12796857953071594, -0.040748611092567444, -0.025947855785489082, 0.08748514950275421, -0.0032426342368125916, 0.09289996325969696, -0.03362615779042244, -0.09294327348470688, -0.03442181646823883, 0.009707418270409107, -0.1572870910167694, 0.03430956229567528, 0.03962837904691696, -0.04960481449961662, 0.05148152634501457, -0.016924696043133736, -0.0405951663851738, 0.09200244396924973, 0.013338356278836727, -0.06333157420158386, 0.08896618336439133, 0.029130931943655014, -0.042503874748945236, 0.09636295586824417, 0.013326556421816349, -0.010672514326870441, -0.011155739426612854, 0.08172404766082764, -0.16827715933322906, 0.04551098123192787, 0.038192637264728546, -0.04183053597807884, -0.017919989302754402, 0.014119409956037998, -0.06996066123247147, 0.0716366246342659, 0.0423005148768425, -0.03168151527643204, -0.012923389673233032, 0.00007972453749971464, 0.042823247611522675, -0.03710007295012474, -0.1035103127360344, -0.05352310463786125, -0.1749057173728943, -0.09278327226638794, 0.10603269934654236, 0.010453836061060429, -0.30269721150398254, 0.02441052347421646, -0.11784958839416504, 0.06167631223797798, -0.14666220545768738, 0.06806907057762146, 0.20649383962154388, 0.013520385138690472, -0.029607316479086876, -0.08308739215135574, 0.04119545966386795, 0.11006161570549011, -0.058683931827545166, -0.10715905576944351 ]
null
null
null
# Enlighten-Instruct - Merged quantized model Fine-tune Mistral-7b on the Enlighten codebase <br> # <a href='https://github.com/ali7919/Enlighten-Instruct'>Github Repo</a> # <a href='https://medium.com/@codersama/60e12d437cca'>Full tutorial on Medium</a>
{}
null
codersan/Enlighten_Instruct_merged-GGUF
[ "gguf", "region:us" ]
2024-02-06T13:16:39+00:00
[]
[]
TAGS #gguf #region-us
# Enlighten-Instruct - Merged quantized model Fine-tune Mistral-7b on the Enlighten codebase <br> # <a href='URL Repo</a> # <a href='URL tutorial on Medium</a>
[ "# Enlighten-Instruct - Merged quantized model\nFine-tune Mistral-7b on the Enlighten codebase\n<br>", "# <a href='URL Repo</a>", "# <a href='URL tutorial on Medium</a>" ]
[ "TAGS\n#gguf #region-us \n", "# Enlighten-Instruct - Merged quantized model\nFine-tune Mistral-7b on the Enlighten codebase\n<br>", "# <a href='URL Repo</a>", "# <a href='URL tutorial on Medium</a>" ]
[ 9, 30, 13, 14 ]
[ "passage: TAGS\n#gguf #region-us \n# Enlighten-Instruct - Merged quantized model\nFine-tune Mistral-7b on the Enlighten codebase\n<br># <a href='URL Repo</a># <a href='URL tutorial on Medium</a>" ]
[ 0.006965354550629854, 0.14375817775726318, -0.006550343241542578, 0.09765690565109253, 0.051480770111083984, 0.016969850286841393, 0.10249054431915283, -0.01886257715523243, 0.09747442603111267, 0.008636394515633583, 0.07393281161785126, 0.046349793672561646, -0.05495380237698555, -0.023429716005921364, 0.014668588526546955, -0.30075210332870483, 0.007455246988683939, -0.0010821025352925062, -0.034975770860910416, 0.04287136718630791, 0.11385184526443481, -0.0671880841255188, 0.01089679729193449, -0.02787461318075657, 0.026176612824201584, 0.02968371845781803, -0.07867779582738876, -0.0021084772888571024, 0.05077959969639778, 0.032827090471982956, 0.0322897732257843, -0.014214297756552696, -0.008167441934347153, -0.16238752007484436, 0.034312255680561066, -0.046001970767974854, -0.03187233582139015, 0.04624218866229057, -0.03426671028137207, 0.027590343728661537, -0.015094256028532982, 0.060066379606723785, 0.014560028910636902, 0.008486219681799412, -0.0784217119216919, 0.0897989571094513, -0.040029704570770264, 0.05479689687490463, 0.05208441987633705, 0.08165964484214783, 0.009554420597851276, 0.00526459701359272, -0.11904438585042953, 0.07394403964281082, 0.12257540225982666, -0.22123529016971588, -0.06222391128540039, 0.0605754591524601, -0.027957366779446602, 0.1716247797012329, -0.1268676072359085, 0.051087718456983566, 0.03996269032359123, -0.008784234523773193, -0.06710812449455261, -0.09094395488500595, -0.09980886429548264, 0.05428215116262436, -0.12525789439678192, -0.000661947880871594, 0.19224779307842255, 0.08364454656839371, 0.011663860641419888, 0.10259919613599777, -0.08388136327266693, 0.09483615309000015, -0.02940254472196102, -0.019153699278831482, 0.04361109063029289, 0.08540377020835876, -0.0007876856252551079, -0.16119429469108582, -0.049377694725990295, -0.02631223574280739, -0.0817444920539856, 0.23870553076267242, -0.021959850564599037, 0.04015333950519562, -0.1280430406332016, 0.04685366526246071, -0.07013449817895889, -0.0811472088098526, -0.05290955305099487, -0.0703880786895752, 0.07082406431436539, 0.017150159925222397, -0.04666658490896225, 0.049039922654628754, 0.17020827531814575, 0.30750417709350586, -0.03474538028240204, 0.06702129542827606, 0.02925238199532032, 0.03763516619801521, 0.05042242258787155, 0.10095613449811935, -0.0658983364701271, -0.08506413549184799, 0.12588118016719818, 0.013697360642254353, 0.08945019543170929, -0.0006171825807541609, -0.13370837271213531, -0.018613049760460854, -0.08653607219457626, 0.007794077042490244, -0.04623530060052872, -0.040231913328170776, -0.09484440833330154, -0.006868413649499416, 0.06199086084961891, -0.0527699775993824, 0.013346896506845951, 0.0013850440736860037, -0.006310332100838423, -0.019287360832095146, -0.016391901299357414, 0.04291674867272377, 0.0022794229444116354, -0.05292529612779617, -0.08936987072229385, -0.01308479718863964, -0.028524434193968773, -0.0013660397380590439, -0.009262725710868835, 0.010918134823441505, 0.09485621005296707, -0.05586430802941322, -0.08420026302337646, -0.013066704384982586, 0.066282719373703, -0.010470081120729446, -0.024399178102612495, -0.08373816311359406, 0.006304994225502014, 0.01793530397117138, 0.010248121805489063, -0.09377898275852203, -0.03628235310316086, 0.019945712760090828, -0.04367320239543915, 0.03152839094400406, -0.2713906466960907, 0.015329466201364994, -0.06270202249288559, -0.011239245533943176, -0.16803859174251556, 0.12868033349514008, -0.09978296607732773, 0.08693403005599976, -0.043393298983573914, -0.0189908966422081, -0.036989446729421616, -0.010488102212548256, 0.12859025597572327, 0.0919710174202919, -0.027983075007796288, -0.0531720407307148, 0.0016947529511526227, -0.013696974143385887, -0.0709516629576683, 0.174275740981102, -0.0066109332256019115, 0.019474992528557777, 0.055478885769844055, 0.26663219928741455, 0.07031411677598953, -0.003490613540634513, 0.053931429982185364, 0.1683078557252884, -0.024913281202316284, 0.053001660853624344, 0.03586464375257492, -0.01926778443157673, -0.11391359567642212, 0.041680607944726944, 0.02429264225065708, 0.022922329604625702, -0.033729441463947296, -0.05082040652632713, 0.02628418058156967, -0.007020721212029457, -0.02909044548869133, -0.04556446895003319, 0.012131886556744576, -0.06966308504343033, 0.017852768301963806, 0.061515629291534424, 0.09224294871091843, -0.04228794947266579, 0.028316611424088478, -0.030681630596518517, 0.09516363590955734, -0.028853055089712143, 0.012110714800655842, -0.1173238754272461, 0.045782510191202164, -0.03326626867055893, 0.17514514923095703, 0.11168703436851501, 0.061202336102724075, 0.030682379379868507, -0.021964645013213158, -0.048930823802948, -0.044074613600969315, -0.09089590609073639, 0.0006407295004464686, -0.057087190449237823, -0.10243867337703705, 0.08614348620176315, -0.06137434393167496, 0.017645476385951042, -0.05566137656569481, -0.013554439879953861, 0.13928867876529694, 0.05043226107954979, -0.016132401302456856, 0.043410640209913254, 0.05559197813272476, -0.03689716383814812, 0.01872016303241253, -0.0006318822270259261, 0.0464448481798172, 0.02465577982366085, -0.1534881740808487, -0.06296174228191376, 0.09852983057498932, 0.11394539475440979, 0.10461148619651794, -0.14244510233402252, 0.05495179444551468, -0.052393414080142975, -0.029736099764704704, 0.05213889852166176, 0.04815613850951195, 0.03337310627102852, 0.1998593956232071, -0.033081214874982834, 0.028216857463121414, -0.07036775350570679, 0.00989555660635233, -0.03200852498412132, -0.05233112350106239, -0.03637395426630974, 0.13744334876537323, -0.033231817185878754, -0.3151921331882477, 0.017208514735102654, 0.21824805438518524, -0.07728119194507599, 0.10061343014240265, -0.0067222099751234055, 0.00916557852178812, -0.0035718586295843124, -0.02089022845029831, -0.10035081952810287, 0.07816477119922638, -0.11847809702157974, 0.03199850022792816, 0.00983318593353033, -0.004651795141398907, 0.05697634071111679, -0.1231221854686737, -0.01765359938144684, -0.050695788115262985, -0.01778283342719078, -0.04982050880789757, 0.018380071967840195, -0.07563748210668564, 0.018271606415510178, 0.01744779758155346, -0.09127279371023178, 0.062301184982061386, 0.005998382810503244, -0.037747304886579514, 0.12756168842315674, -0.19771790504455566, -0.1504271924495697, -0.07804132997989655, 0.022570086643099785, -0.0764436423778534, -0.014274354092776775, 0.06162093207240105, -0.17228743433952332, -0.039891961961984634, -0.03176618367433548, -0.06285001337528229, -0.0052527375519275665, 0.014434818178415298, 0.0975613221526146, 0.0020444097463041544, -0.027126675471663475, -0.16775034368038177, -0.010787640698254108, -0.0649762824177742, -0.10521076619625092, 0.027142278850078583, -0.12749844789505005, 0.07330255955457687, 0.09865525364875793, 0.04481049254536629, 0.04054698348045349, 0.019884223118424416, 0.3468037247657776, -0.07783033698797226, -0.0006687015411444008, 0.0031224677804857492, -0.0028306867461651564, 0.10019988566637039, 0.16504265367984772, 0.06419827044010162, -0.10686790198087692, 0.050321538001298904, 0.032012805342674255, -0.017114881426095963, -0.15446823835372925, -0.05655483901500702, -0.07421301305294037, -0.08089133352041245, -0.013416496105492115, 0.09206513315439224, -0.10784169286489487, 0.03249572217464447, 0.018719017505645752, 0.005163845140486956, 0.07231924682855606, 0.021176818758249283, 0.14028066396713257, -0.03373320773243904, 0.0043216305784881115, -0.046574465930461884, -0.033062245696783066, 0.12469293177127838, 0.13178694248199463, 0.03592333197593689, -0.006237850524485111, 0.11838115751743317, 0.07640676945447922, -0.0050275977700948715, 0.04184788838028908, 0.031716492027044296, -0.09756026417016983, -0.005980180110782385, -0.08450787514448166, -0.060125868767499924, -0.020937291905283928, 0.030792076140642166, 0.01865224912762642, 0.02719532884657383, -0.008162859827280045, 0.020668955519795418, 0.16019342839717865, 0.08883119374513626, 0.06995517015457153, -0.07065334916114807, -0.08781547844409943, 0.08890687674283981, 0.025780124589800835, -0.005844178143888712, 0.1277705281972885, 0.12543724477291107, 0.029718369245529175, 0.03802153840661049, 0.07541650533676147, 0.13902005553245544, -0.00645393505692482, 0.027120554819703102, -0.06717243045568466, 0.05906030908226967, -0.025419285520911217, 0.034688495099544525, -0.19453005492687225, 0.17625916004180908, 0.04781840369105339, 0.06678236275911331, 0.08965394645929337, -0.04070334509015083, 0.11111956089735031, 0.18868222832679749, 0.04690580070018768, 0.04214005917310715, 0.14002449810504913, -0.008958890102803707, -0.01797659881412983, 0.07927294820547104, 0.06391767412424088, 0.0025824643671512604, -0.054759200662374496, 0.012245416641235352, -0.013182411901652813, 0.0050122542306780815, -0.07615149021148682, -0.2295205295085907, -0.13633668422698975, -0.04186320677399635, 0.14410021901130676, 0.01407574862241745, -0.01460256427526474, -0.0266940388828516, 0.04072626307606697, 0.062470659613609314, 0.015798518434166908, -0.005668193101882935, -0.044105011969804764, 0.04141901805996895, 0.13692305982112885, -0.08486457914113998, 0.043710071593523026, -0.03759282827377319, -0.032949160784482956, -0.015450629405677319, -0.044908277690410614, 0.06621483713388443, -0.057901687920093536, 0.03186752647161484, -0.02314665913581848, 0.08434686809778214, 0.03035072237253189, 0.016781488433480263, -0.001070688827894628, -0.006522331386804581, -0.05172903463244438, -0.16926440596580505, 0.035005372017621994, 0.0526101253926754, -0.07849520444869995, 0.07925893366336823, -0.05296047404408455, -0.0029867019038647413, -0.016232391819357872, 0.04598415642976761, 0.1111380010843277, 0.09962236881256104, 0.004273491445928812, 0.03067626617848873, 0.38334938883781433, -0.042118195444345474, -0.18879356980323792, -0.0214440505951643, -0.06921080499887466, -0.021622302010655403, -0.06761853396892548, -0.21250468492507935, 0.10783489048480988, 0.0047948844730854034, -0.011718247085809708, 0.05017995461821556, -0.1440468579530716, -0.06601109355688095, 0.10740267485380173, 0.049939364194869995, 0.26403847336769104, -0.013195157982409, -0.07416929304599762, -0.034268710762262344, -0.22602064907550812, 0.08355899155139923, -0.1329880952835083, 0.11987809836864471, 0.008181964047253132, 0.05163215100765228, 0.00194364576600492, 0.028794417157769203, 0.08645015209913254, -0.035348016768693924, 0.009088271297514439, -0.021973010152578354, -0.10788580030202866, 0.056988269090652466, 0.016553392633795738, 0.0044762142933905125, 0.01289301086217165, 0.07542581856250763, 0.005732662510126829, 0.0005160842556506395, -0.013864961452782154, 0.0011979122646152973, 0.013700108975172043, -0.09227484464645386, -0.08177711069583893, 0.015579421073198318, -0.03554349020123482, 0.07006555795669556, 0.16154101490974426, 0.008001617155969143, -0.10263030230998993, -0.13487601280212402, 0.06414083391427994, -0.2668929994106293, -0.02402639016509056, -0.02469307743012905, -0.024341212585568428, 0.10865659266710281, -0.12545494735240936, 0.02258387766778469, 0.09148672968149185, 0.015228933654725552, 0.042349375784397125, 0.10294993221759796, 0.0037996722385287285, 0.04850008711218834, 0.04788894206285477, -0.11707606911659241, -0.1707325577735901, -0.057862043380737305, -0.005880307871848345, 0.040972113609313965, 0.13074611127376556, 0.16927483677864075, 0.05404365435242653, -0.04790155589580536, 0.021731246262788773, 0.040370456874370575, -0.0948803499341011, -0.0029696859419345856, 0.11368177086114883, -0.013174367137253284, -0.08274844288825989, 0.08053657412528992, 0.02898031659424305, -0.14725084602832794, -0.012406057678163052, 0.1512736827135086, -0.08219858258962631, -0.08357537537813187, -0.036757681518793106, 0.035252295434474945, -0.07426334917545319, 0.010151310823857784, -0.05993705987930298, -0.03179321438074112, 0.02950453758239746, 0.05156391113996506, 0.0816192552447319, -0.002911016810685396, -0.061272282153367996, 0.030959198251366615, 0.06468384712934494, 0.009359074756503105, -0.09281740337610245, -0.022732026875019073, -0.06778795272111893, -0.24015702307224274, -0.04429946467280388, 0.04752415418624878, -0.04164917767047882, -0.10319838672876358, -0.1710726022720337, 0.023718686774373055, -0.1451158970594406, 0.0509505569934845, -0.04045270010828972, 0.07047675549983978, -0.044427353888750076, -0.0722174122929573, -0.03764978051185608, 0.07574369013309479, -0.07247170060873032, -0.016738442704081535, 0.044558074325323105, 0.08231473714113235, -0.07518299669027328, -0.0033990289084613323, 0.06013217568397522, 0.0065575516782701015, 0.1616075485944748, 0.04827852547168732, -0.10070948302745819, 0.02073310874402523, -0.3424336314201355, -0.11783045530319214, 0.07256346195936203, 0.008688047528266907, 0.03777085244655609, 0.0748334601521492, -0.007805232424288988, -0.004507489036768675, 0.08168847113847733, -0.04130404815077782, 0.1694784164428711, -0.031810760498046875, -0.05963378772139549, -0.1064859926700592, -0.163627490401268, -0.08894744515419006, -0.025238540023565292, 0.10579906404018402, 0.0741143450140953, 0.08948850631713867, -0.03645159304141998, -0.02858186513185501, -0.035453349351882935, 0.028003541752696037, 0.05248615890741348, -0.07938758283853531, -0.2596132159233093, -0.038327161222696304, -0.007219832390546799, -0.06892470270395279, 0.08800999075174332, -0.10954931378364563, -0.10539505630731583, 0.008569841273128986, 0.032829269766807556, 0.004058679565787315, 0.03447165712714195, 0.1874365508556366, 0.06727153807878494, -0.028281578794121742, -0.13016290962696075, 0.01131410151720047, 0.051247116178274155, 0.11003831028938293, -0.00015149946557357907, 0.002918521175161004, 0.18516221642494202, 0.10878467559814453, -0.03244476765394211, 0.09352688491344452, -0.07493790239095688, 0.008453399874269962, 0.15049465000629425, 0.012769363820552826, -0.034802697598934174, 0.02025015652179718, 0.18371695280075073, -0.0187898650765419, 0.04939268156886101, 0.007718801498413086, -0.037072669714689255, -0.09568820893764496, -0.07079470902681351, -0.09076958894729614, -0.10104025900363922, 0.017855722457170486, -0.13902099430561066, -0.009740370325744152, -0.0738711804151535, 0.023186372593045235, -0.011230315081775188, 0.024093734100461006, 0.06526478379964828, 0.011806942522525787, 0.04539839178323746, -0.018702538684010506, 0.005532334558665752, 0.04520590975880623, -0.003832432208582759, 0.024354957044124603, -0.032783038914203644, -0.053932368755340576, 0.016824763268232346, -0.011440880596637726, -0.032915789633989334, -0.0401974581182003, -0.012613805010914803, -0.04730399325489998, 0.0698101818561554, 0.0027924515306949615, 0.06435930728912354, 0.04864329472184181, -0.1274670958518982, 0.05845475196838379, 0.18646493554115295, -0.021422075107693672, -0.09822102636098862, -0.058393444865942, 0.1588716208934784, -0.051324982196092606, 0.11972984671592712, -0.007300350349396467, -0.06302998960018158, -0.02156323380768299, 0.09283441305160522, 0.19714663922786713, -0.15698964893817902, -0.0034203368704766035, 0.030664341524243355, 0.03518177941441536, 0.011053837835788727, 0.038517702370882034, 0.06374894827604294, 0.20542636513710022, -0.027634255588054657, -0.10244418680667877, -0.04519345611333847, -0.04947613179683685, -0.032429974526166916, -0.06457985192537308, 0.034355685114860535, -0.041390109807252884, -0.09083597362041473, 0.10225800424814224, -0.12432646006345749, -0.025575289502739906, -0.0015076607232913375, -0.09271571785211563, -0.06454493850469589, -0.023377226665616035, 0.021934473887085915, 0.06389936059713364, 0.08611148595809937, -0.031528547406196594, -0.05573899298906326, 0.006351928226649761, -0.00683358870446682, -0.12066282331943512, -0.04030377045273781, 0.09819673746824265, 0.013118202798068523, 0.1520628184080124, -0.003259188961237669, 0.0857308954000473, 0.09191547334194183, 0.03125772997736931, -0.0496312640607357, 0.03200250864028931, 0.022977035492658615, -0.03693247586488724, -0.04510050639510155, -0.03209911286830902, -0.009453280828893185, 0.013614959083497524, 0.06404619663953781, -0.008784543722867966, 0.038629259914159775, 0.12319594621658325, -0.06941812485456467, -0.07888361811637878, 0.04396523907780647, -0.1658877432346344, 0.07602096349000931, 0.01967361941933632, -0.01973881758749485, -0.029797499999403954, 0.012537101283669472, 0.031113475561141968, 0.026504384353756905, 0.021674761548638344, -0.02730112336575985, -0.027781493961811066, -0.0017232934478670359, 0.08824893832206726, -0.07015956938266754, -0.13003084063529968, -0.06184018775820732, -0.09797092527151108, 0.09329149127006531, -0.04347604513168335, 0.08784472942352295, 0.11512838304042816, 0.028753072023391724, 0.04188975319266319, -0.16712191700935364, -0.024625619873404503, -0.025976648554205894, -0.05237048119306564, -0.06013058125972748 ]
null
null
transformers
# Personalized Text Generation with Fine-Grained Linguistic Control ## Model Description ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained('balhafni/personalized-gen') tokenizer = AutoTokenizer.from_pretrained('balhafni/personalized-gen') ling_atts = {"ADJ": "5-8", "ADP": "10-11", "ADV": "6-8", "AUX": "9-11", "CONJ": "2-4", "DET": "7-10", "FKGL": "5-6", "NOUN": "11-18", "NUM": "2-3", "PART": "4-5", "PRON": "14-17", "PROPN": "8-11", "PUNCT": "22-25", "ROOT": "9-10", "SCONJ": "3-4", "VERB": "16-20", "acl": "0-1", "acomp": "1-2", "advcl": "2-3", "advmod": "7-9", "amod": "3-6", "appos": "0-1", "attr": "1-2", "attribution": "2-3", "aux": "6-7", "auxpass": "0-1", "case": "0-1", "cc": "2-4", "ccomp": "3-4", "compound": "5-6", "conj": "2-4", "contrast": "0-1", "det": "7-10", "dobj": "6-7", "domain": "blog", "elaboration": "10-12", "mark": "2-3", "neg": "2-3", "nmod": "0-1", "npadvmod": "1-2", "nsubj": "13-16", "nsubjpass": "0-1", "num_sents": "9-10", "num_tokens": "118-139", "nummod": "1-2", "pcomp": "0-1", "pobj": "8-10", "poss": "2-3", "prep": "9-10" } prompt = ("Today's lunch was a layered entree, consisting of, " "shredded lettuce and popcorn chicken.") inputs = [''.join([f'{k}:{v}' for k, v in ling_atts.items()]) + prompt] inputs = tokenizer(inputs, return_tensors='pt') preds = model.generate(**inputs, max_length=1024, pad_token_id=tokenizer.pad_token_id, no_repeat_ngram_size=2 ) decoded_preds = tokenizer.batch_decode(preds[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0] output = prompt + ' ' + decoded_preds.strip() print(output) ``` ## Citation ```BibTeX @inproceedings{alhafni-etal-2024-personalized, title = "Personalized Text Generation with Fine-Grained Linguistic Control", author = "Alhafni, Bashar and Kulkarni, Vivek and Kumar, Dhurv and Raheja, Vipul", month = march, year = "2024", address = "Malta", publisher = "Association for Computational Linguistics", abstract = "As the text generation capabilities of large language models become increasingly prominent, recent studies have focused on controlling particular aspects of the generated text to make it more personalized. However, most research on controllable text generation focuses on controlling the content or modeling specific high-level/coarse-grained attributes that reflect authors’ writing styles, such as formality, domain, or sentiment. In this paper, we focus on controlling fine-grained attributes spanning multiple linguistic dimensions, such as lexical and syntactic attributes. We introduce a novel benchmark to train generative models and evaluate their ability to generate personalized text based on multiple fine-grained linguistic attributes. We systematically investigate the performance of various large language models on our benchmark and draw insights from the factors that impact their performance. We make our code, data, and pretrained models publicly available.", } ```
{"language": ["en"], "license": "mit"}
text-generation
balhafni/personalized-gen
[ "transformers", "pytorch", "gpt_neox", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:19:22+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #gpt_neox #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Personalized Text Generation with Fine-Grained Linguistic Control ## Model Description ## Usage
[ "# Personalized Text Generation with Fine-Grained Linguistic Control", "## Model Description", "## Usage" ]
[ "TAGS\n#transformers #pytorch #gpt_neox #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Personalized Text Generation with Fine-Grained Linguistic Control", "## Model Description", "## Usage" ]
[ 56, 15, 3, 3 ]
[ "passage: TAGS\n#transformers #pytorch #gpt_neox #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Personalized Text Generation with Fine-Grained Linguistic Control## Model Description## Usage" ]
[ -0.0011331597343087196, 0.034144990146160126, -0.00480861309915781, 0.0027702543884515762, 0.147502139210701, -0.01530549768358469, 0.13386689126491547, 0.10108521580696106, -0.07084875553846359, -0.03831886127591133, 0.12904313206672668, 0.18362002074718475, -0.025547320023179054, 0.08945003896951675, -0.01982961781322956, -0.3349160850048065, 0.045426882803440094, 0.060633584856987, 0.07954126596450806, 0.1314520388841629, 0.10502215474843979, -0.03540370985865593, 0.10289213061332703, 0.03739618882536888, -0.13514012098312378, -0.0011703629279509187, 0.04363246634602547, -0.12821798026561737, 0.121615469455719, 0.055314935743808746, 0.06211476773023605, 0.03416280448436737, -0.012317445129156113, -0.18965068459510803, 0.030603086575865746, 0.01412220299243927, -0.07595842331647873, 0.041653577238321304, 0.07864859700202942, -0.0632353276014328, 0.27620336413383484, 0.03789207339286804, -0.006536352448165417, 0.04546159505844116, -0.138731449842453, -0.04989383742213249, -0.00040793707012198865, 0.03938926383852959, 0.04362564533948898, 0.10205738991498947, -0.04962340369820595, 0.08015988022089005, -0.0829799696803093, 0.08017664402723312, 0.10071319341659546, -0.2711496651172638, -0.04128013923764229, 0.083321213722229, 0.08285824954509735, 0.049222372472286224, -0.041368577629327774, 0.09004749357700348, 0.030968450009822845, 0.030154043808579445, 0.031876351684331894, -0.0637899711728096, -0.02891412191092968, 0.036714524030685425, -0.12222921848297119, -0.04862799122929573, 0.17803606390953064, -0.059929266571998596, 0.034869514405727386, -0.1381940096616745, -0.06042695790529251, -0.013046243228018284, -0.07094599306583405, -0.02637789025902748, -0.04745512828230858, 0.09812704473733902, 0.03582903370261192, -0.10700556635856628, -0.13690684735774994, -0.03737014904618263, -0.13374125957489014, 0.13345499336719513, 0.03587600961327553, 0.012222053483128548, -0.17413195967674255, 0.09297633171081543, -0.019636554643511772, -0.048497676849365234, 0.046044107526540756, -0.0843609869480133, 0.09794721007347107, -0.009506067261099815, -0.08191392570734024, -0.06252723932266235, 0.08301893621683121, 0.08203185349702835, 0.009593245573341846, 0.011548182927072048, -0.021699046716094017, 0.08114202320575714, 0.01692480407655239, 0.10229594260454178, -0.02553483285009861, 0.005029419902712107, 0.037017934024333954, -0.097335584461689, 0.009143347851932049, -0.04958460107445717, -0.19778534770011902, -0.027433592826128006, 0.0016541574150323868, 0.08876695483922958, 0.023094266653060913, 0.14047391712665558, 0.008233564905822277, -0.01943984441459179, 0.08207335323095322, -0.05651041865348816, -0.007186823524534702, -0.036428891122341156, 0.04265565425157547, 0.03334551304578781, -0.029118923470377922, 0.006753357592970133, -0.1380263864994049, 0.06187893822789192, -0.07476596534252167, -0.0077759441919624805, -0.051836561411619186, -0.050754327327013016, -0.016258427873253822, -0.06788618862628937, -0.0028955067973583937, -0.12688183784484863, -0.18924303352832794, -0.01827193796634674, -0.012337077409029007, -0.03644103556871414, -0.11202935129404068, -0.07119149714708328, -0.01474312599748373, 0.0452125146985054, -0.06350991874933243, -0.03657738119363785, -0.0845518410205841, 0.08472678065299988, -0.0334073044359684, 0.010681536048650742, -0.1482182741165161, 0.07353053241968155, -0.13005474209785461, -0.03144126385450363, -0.0371207669377327, 0.11267015337944031, 0.007779211271554232, 0.09403681755065918, -0.023111553862690926, -0.055848680436611176, -0.07856056839227676, 0.09749162197113037, -0.08603698760271072, 0.16025987267494202, -0.14612101018428802, -0.1300572156906128, 0.2650214433670044, -0.09476418793201447, -0.06886935234069824, 0.10491295158863068, -0.00041227025212720037, 0.11095046997070312, 0.13845683634281158, 0.206764817237854, 0.076138436794281, -0.0004928925191052258, 0.11455730348825455, 0.09462884813547134, -0.10722552984952927, -0.034033600240945816, 0.01108107902109623, -0.04523377865552902, -0.12578734755516052, 0.06293834745883942, -0.007307772058993578, 0.03523319214582443, -0.0060667358338832855, -0.06231928989291191, -0.010436193086206913, 0.01048999559134245, 0.0700901672244072, -0.02933933585882187, 0.08957010507583618, -0.04446657747030258, -0.02911441959440708, 0.01023421622812748, 0.018206223845481873, -0.010625607334077358, 0.048600003123283386, -0.08332289755344391, 0.09993856400251389, 0.07035304605960846, 0.05864882096648216, -0.1778527796268463, -0.025581857189536095, -0.012300011701881886, 0.07283858954906464, 0.11052794754505157, 0.06994067877531052, 0.01670561172068119, -0.028238428756594658, -0.057488154619932175, 0.024964315816760063, 0.11797106266021729, -0.03696831688284874, -0.04162032529711723, -0.10153789818286896, 0.09409856051206589, -0.03609781712293625, 0.0293516106903553, -0.09962226450443268, 0.022220080718398094, 0.047873806208372116, 0.011544328182935715, -0.016978459432721138, 0.05201901122927666, -0.013840267434716225, 0.04266943782567978, -0.029044469818472862, 0.012642004527151585, 0.12577024102210999, 0.003392469370737672, -0.0799172893166542, 0.17007632553577423, -0.16052845120429993, 0.17551499605178833, 0.19380882382392883, -0.1940363049507141, 0.014917315915226936, -0.11569593101739883, -0.023692527785897255, 0.029208559542894363, 0.03633060306310654, 0.002770037390291691, 0.19422195851802826, -0.022123662754893303, 0.1516975313425064, -0.09423623979091644, -0.030689658597111702, -0.04670076444745064, -0.01688399538397789, -0.05710196867585182, 0.0645141527056694, 0.13763771951198578, -0.16000668704509735, 0.15632984042167664, 0.16028040647506714, 0.04690892994403839, 0.2483135312795639, 0.014039643108844757, 0.0030361514072865248, 0.09651258587837219, -0.025566356256604195, -0.04667641595005989, -0.06754527240991592, -0.15856587886810303, -0.016727611422538757, 0.06670957803726196, 0.032504431903362274, 0.13090810179710388, -0.12161727249622345, -0.05323057994246483, -0.024145402014255524, -0.06060938537120819, -0.019029689952731133, 0.07416901737451553, 0.027358761057257652, 0.12049301713705063, -0.0070641376078128815, -0.046886544674634933, 0.08139131218194962, 0.016208389773964882, -0.08977196365594864, 0.15489284694194794, -0.15331099927425385, -0.32270297408103943, -0.1752760261297226, -0.1371336728334427, -0.0817805677652359, 0.05473458766937256, 0.11033591628074646, -0.11679549515247345, -0.011235889978706837, -0.03857250511646271, 0.09756961464881897, -0.08693715184926987, -0.06478041410446167, -0.12014656513929367, 0.04221181944012642, -0.08501368016004562, -0.12612274289131165, -0.03787091746926308, -0.034636758267879486, -0.09358939528465271, 0.09741329401731491, -0.07475759088993073, 0.03539478778839111, 0.20625613629817963, 0.049164220690727234, 0.031220493838191032, -0.07306179404258728, 0.21088731288909912, -0.08174321800470352, -0.021788952872157097, 0.20618346333503723, 0.040647897869348526, 0.05194976553320885, 0.14715445041656494, 0.00978903193026781, -0.09746969491243362, 0.007925700396299362, 0.002350503345951438, -0.06758556514978409, -0.19621244072914124, -0.18068155646324158, -0.08822894096374512, 0.05358363315463066, 0.055355556309223175, 0.09075990319252014, 0.17198705673217773, 0.07315230369567871, -0.05201401188969612, 0.021833784878253937, 0.023282600566744804, 0.10030210018157959, 0.2792882025241852, -0.032698482275009155, 0.12437687069177628, -0.039217766374349594, -0.13356325030326843, 0.08983874320983887, 0.008449943736195564, 0.09395293891429901, 0.09605250507593155, 0.1673358976840973, 0.04853210225701332, 0.0870136171579361, 0.12144770473241806, 0.09175969660282135, 0.0366777628660202, -0.004597977735102177, -0.045935314148664474, -0.054163649678230286, -0.04581090062856674, 0.03928636759519577, 0.015629351139068604, -0.18498463928699493, -0.017079325392842293, -0.09798013418912888, 0.07945241034030914, 0.09966085106134415, -0.021204419434070587, -0.20603018999099731, 0.04404681548476219, 0.054101474583148956, -0.06538329273462296, -0.14414988458156586, 0.09038399904966354, -0.0035949794109910727, -0.14511486887931824, 0.08774448186159134, -0.019215567037463188, 0.13650402426719666, -0.0329585038125515, 0.10667184740304947, -0.03943270817399025, -0.033594436943531036, 0.01959814876317978, 0.13113534450531006, -0.2836664915084839, 0.22548091411590576, -0.0059750936925411224, -0.028869787231087685, -0.08879496157169342, 0.0005586154293268919, 0.02869694121181965, 0.1654253751039505, 0.09402810782194138, -0.009083451703190804, -0.06497721374034882, -0.02174493484199047, 0.003985247574746609, 0.015665613114833832, 0.11372650414705276, -0.07019191235303879, -0.022534014657139778, -0.05668514221906662, 0.008302690461277962, -0.013644617982208729, -0.04949900507926941, -0.06121860072016716, -0.21300256252288818, 0.061242274940013885, 0.03960869833827019, 0.0879417210817337, 0.0010064548114314675, -0.021779246628284454, -0.08833400905132294, 0.16776861250400543, -0.01802499033510685, -0.09199768304824829, -0.11781938374042511, -0.0718655064702034, 0.019840968772768974, -0.0696718767285347, 0.021165739744901657, -0.04700961709022522, 0.07288025319576263, -0.06474392861127853, -0.16341759264469147, 0.09633815288543701, -0.06628002971410751, -0.041029442101716995, -0.01016283966600895, 0.17530202865600586, -0.028651921078562737, 0.004719487391412258, 0.04689144343137741, -0.0056135039776563644, -0.08333347737789154, -0.1265149563550949, -0.015276800841093063, -0.008042870089411736, 0.016727901995182037, 0.003200826235115528, -0.10594317317008972, -0.026052363216876984, -0.07847169786691666, -0.05619459226727486, 0.2906982898712158, 0.10732966661453247, -0.0195486918091774, 0.17842119932174683, 0.1344999372959137, -0.12525665760040283, -0.28668439388275146, -0.11778706312179565, -0.11704804748296738, -0.0493985153734684, -0.029331693425774574, -0.26220467686653137, 0.05295056477189064, 0.010723921470344067, -0.011536965146660805, 0.0930856391787529, -0.22237147390842438, -0.13246522843837738, 0.17901183664798737, 0.011839710175991058, 0.22300821542739868, -0.1453954130411148, -0.11011098325252533, -0.08864989876747131, -0.0625133216381073, 0.1615166962146759, -0.004016587045043707, 0.09026289731264114, -0.02916404977440834, 0.1437903642654419, 0.033628568053245544, 0.024633541703224182, 0.0966225266456604, 0.011245057918131351, 0.03438626602292061, -0.10750408470630646, -0.019645173102617264, 0.05018835887312889, 0.040425386279821396, 0.024945354089140892, -0.09762261062860489, 0.00102030870039016, -0.04826688766479492, -0.08383075892925262, -0.10116990655660629, 0.04947161301970482, 0.0044214422814548016, -0.08170658349990845, -0.060842450708150864, -0.02517511509358883, -0.02926023118197918, -0.018784787505865097, 0.11614931374788284, -0.12556368112564087, 0.1462973952293396, -0.004033542703837156, 0.1889498084783554, -0.11334983259439468, -0.011971973814070225, -0.08327171951532364, -0.04557991772890091, 0.06838635355234146, -0.041244495660066605, 0.018445899710059166, 0.06724578142166138, -0.030722500756382942, 0.0765458419919014, 0.06675057858228683, 0.006800541188567877, -0.035700976848602295, 0.11878151446580887, -0.17809735238552094, -0.11706984043121338, -0.06900076568126678, 0.020881570875644684, 0.06763462722301483, 0.028420384973287582, 0.13447868824005127, 0.017505692318081856, -0.06343084573745728, -0.00670634675770998, 0.020279258489608765, -0.02551279217004776, 0.035818785429000854, -0.014817675575613976, 0.009833397343754768, -0.1612107753753662, 0.028724558651447296, 0.04222140088677406, -0.08296152204275131, 0.011374779045581818, 0.12931948900222778, -0.1104494035243988, -0.1393800675868988, -0.00813604798167944, 0.12957297265529633, -0.12822431325912476, -0.050961676985025406, -0.004029781557619572, -0.16460828483104706, 0.07828781008720398, 0.13006514310836792, 0.07062692195177078, 0.06736914068460464, -0.07885832339525223, -0.022758055478334427, -0.04248225316405296, -0.03148002177476883, -0.04949399083852768, -0.019410643726587296, -0.09603379666805267, 0.09552640467882156, -0.0022977401968091726, 0.09857414662837982, -0.08318613469600677, -0.07280907779932022, -0.08522215485572815, 0.013865682296454906, -0.09887252002954483, -0.007110855542123318, -0.12322502583265305, -0.009667585603892803, -0.00498666288331151, 0.02184445969760418, -0.04996512457728386, -0.061929576098918915, -0.1490783840417862, 0.00101495161652565, -0.038377415388822556, 0.07023682445287704, -0.07709196209907532, 0.0679347962141037, 0.08866742253303528, 0.013301543891429901, 0.1270880103111267, 0.09057091176509857, -0.07837953418493271, 0.1604047268629074, -0.15593741834163666, -0.03275388106703758, 0.06242517754435539, 0.03073841705918312, -0.028898442164063454, 0.04975946992635727, 0.03917955607175827, 0.07668554037809372, 0.0022158038336783648, 0.0552954263985157, -0.02171945385634899, -0.15118072926998138, 0.06016911566257477, 0.020610513165593147, -0.12845809757709503, -0.039803702384233475, -0.025971872732043266, 0.034177426248788834, -0.021575549617409706, 0.14466679096221924, -0.07830703258514404, 0.01681106723845005, -0.0465598925948143, 0.05095463618636131, -0.01557986531406641, -0.15936890244483948, -0.05742837116122246, -0.12497872114181519, 0.02020820416510105, 0.05163095146417618, 0.29937368631362915, 0.09414789825677872, -0.0805179551243782, 0.027459606528282166, 0.1249077320098877, 0.04898381605744362, -0.011892009526491165, 0.2515279948711395, 0.09706821292638779, -0.041822098195552826, -0.04751965031027794, 0.02976134605705738, -0.008121170103549957, 0.05746883898973465, 0.1311391294002533, 0.04038333520293236, 0.04446140676736832, 0.08052372932434082, 0.006682111416012049, 0.00971334520727396, -0.0709383562207222, -0.07604146748781204, 0.02241514064371586, 0.04402269423007965, -0.052746377885341644, 0.10389582812786102, 0.16611088812351227, -0.03586407005786896, 0.09279799461364746, 0.016275623813271523, -0.037628933787345886, -0.17662300169467926, -0.24934174120426178, -0.06398610025644302, -0.12312418967485428, -0.0056758723221719265, -0.10158195346593857, 0.016152890399098396, 0.004971013870090246, 0.03532130643725395, -0.10032226145267487, 0.0822109505534172, -0.051970068365335464, -0.151371031999588, 0.0950155183672905, -0.05622415244579315, 0.04273103550076485, -0.06355589628219604, -0.018630871549248695, -0.07330169528722763, -0.01697705127298832, 0.012254097498953342, 0.04988483712077141, -0.04531614109873772, 0.017275497317314148, -0.1653357744216919, -0.034335099160671234, -0.05176253616809845, 0.04275207221508026, -0.0022507745306938887, 0.1361922174692154, -0.002193292137235403, -0.07247206568717957, 0.05545728653669357, 0.23283542692661285, -0.00893324427306652, -0.10926634073257446, -0.013718645088374615, 0.2163088470697403, 0.06269265711307526, 0.07017341256141663, -0.002290933160111308, 0.02363245189189911, -0.031732529401779175, 0.33573970198631287, 0.37642702460289, -0.05729850381612778, 0.020795853808522224, -0.005798703525215387, 0.03868468850851059, 0.10015124827623367, 0.12872545421123505, 0.07669186592102051, 0.2359924614429474, -0.05502757057547569, -0.023851292207837105, -0.03901263698935509, 0.006812256295233965, -0.12297884374856949, 0.054572124034166336, 0.07559413462877274, -0.07566269487142563, -0.021327834576368332, 0.09990429878234863, -0.21591641008853912, 0.12914258241653442, -0.11677321791648865, -0.047459546476602554, -0.06017269566655159, 0.01609795168042183, 0.06852585077285767, 0.030650023370981216, 0.08880198746919632, 0.028328215703368187, -0.06610821932554245, 0.021581251174211502, 0.026660839095711708, -0.21862326562404633, -0.012270617298781872, 0.09708144515752792, -0.02339477464556694, 0.08232171088457108, -0.025108082219958305, 0.01380306389182806, 0.06489185243844986, 0.04280975088477135, -0.008003813214600086, 0.1504402458667755, -0.01738259382545948, -0.0036878855898976326, 0.09141498804092407, 0.0292142815887928, 0.028903108090162277, -0.09183049947023392, 0.05514898523688316, -0.08247869461774826, 0.08245417475700378, -0.0010481270728632808, -0.041482314467430115, -0.014597526751458645, 0.07977083325386047, -0.14307120442390442, 0.0634593814611435, 0.09903466701507568, 0.011451058089733124, -0.014319276437163353, -0.07247790694236755, 0.021993475034832954, -0.03219533711671829, -0.05770188570022583, -0.06586090475320816, -0.06992818415164948, -0.11348285526037216, 0.06334925442934036, -0.01917801983654499, -0.23978959023952484, -0.004016942344605923, -0.06992301344871521, 0.053718630224466324, -0.16796788573265076, 0.10514865070581436, 0.07185591757297516, -0.012760212644934654, 0.028930485248565674, -0.058548830449581146, 0.044377557933330536, 0.09145380556583405, -0.12994042038917542, -0.04050480201840401 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mistral_sparse_80_percent_boolq_1000 This model is a fine-tuned version of [](https://huggingface.co/) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3381 - Accuracy: 0.8664 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 2 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4991 | 0.05 | 50 | 0.5522 | 0.7216 | | 0.3812 | 0.1 | 100 | 0.4342 | 0.8141 | | 0.369 | 0.15 | 150 | 0.4112 | 0.8170 | | 0.4132 | 0.2 | 200 | 0.4139 | 0.8382 | | 0.4219 | 0.25 | 250 | 0.3940 | 0.8339 | | 0.4144 | 0.3 | 300 | 0.3803 | 0.8481 | | 0.1534 | 0.35 | 350 | 0.3786 | 0.8516 | | 0.4855 | 0.4 | 400 | 0.3821 | 0.8502 | | 0.2109 | 0.45 | 450 | 0.3583 | 0.8516 | | 0.3026 | 0.5 | 500 | 0.3675 | 0.8558 | | 0.2903 | 0.55 | 550 | 0.3744 | 0.8537 | | 0.2988 | 0.6 | 600 | 0.3573 | 0.8587 | | 0.3432 | 0.65 | 650 | 0.3396 | 0.8657 | | 0.3156 | 0.7 | 700 | 0.3299 | 0.8671 | | 0.4978 | 0.75 | 750 | 0.3623 | 0.8657 | | 0.4523 | 0.8 | 800 | 0.3240 | 0.8700 | | 0.2367 | 0.85 | 850 | 0.3393 | 0.8678 | | 0.3334 | 0.9 | 900 | 0.3252 | 0.8834 | | 0.3286 | 0.95 | 950 | 0.3605 | 0.8742 | | 0.1659 | 1.0 | 1000 | 0.3269 | 0.8742 | | 0.2373 | 1.05 | 1050 | 0.3256 | 0.8792 | | 0.5102 | 1.1 | 1100 | 0.3633 | 0.8749 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["super_glue"], "metrics": ["accuracy"], "model-index": [{"name": "mistral_sparse_80_percent_boolq_1000", "results": []}]}
null
thrunlab/mistral_sparse_80_percent_boolq_1000
[ "transformers", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "dataset:super_glue", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:19:28+00:00
[]
[]
TAGS #transformers #safetensors #mistral #trl #sft #generated_from_trainer #dataset-super_glue #endpoints_compatible #text-generation-inference #region-us
mistral\_sparse\_80\_percent\_boolq\_1000 ========================================= This model is a fine-tuned version of [](URL on the super\_glue dataset. It achieves the following results on the evaluation set: * Loss: 0.3381 * Accuracy: 0.8664 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 2 * eval\_batch\_size: 4 * seed: 2 * distributed\_type: multi-GPU * num\_devices: 2 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 8 * total\_eval\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 2\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #safetensors #mistral #trl #sft #generated_from_trainer #dataset-super_glue #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 2\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 55, 160, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #trl #sft #generated_from_trainer #dataset-super_glue #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 2\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.11863479763269424, 0.08751925081014633, -0.001469506649300456, 0.06381949782371521, 0.17584013938903809, 0.03039415366947651, 0.12354399263858795, 0.10279672592878342, -0.10482138395309448, 0.0846555083990097, 0.11837553232908249, 0.07348720729351044, 0.04053293168544769, 0.1621163785457611, -0.021860167384147644, -0.2964790165424347, 0.013726472854614258, -0.0008773240260779858, -0.17865942418575287, 0.11494861543178558, 0.08697063475847244, -0.1299227923154831, 0.07235688716173172, 0.0044096894562244415, -0.18676862120628357, -0.0017587791662663221, -0.0048512849025428295, -0.043460067361593246, 0.11104661226272583, 0.040398065000772476, 0.11545921117067337, 0.016877001151442528, 0.1068168431520462, -0.1978631317615509, 0.007625706493854523, 0.0863073542714119, 0.03227405622601509, 0.08668305724859238, 0.08033571392297745, -0.001398545573465526, 0.1014995127916336, -0.09939085692167282, 0.051797520369291306, 0.04735107719898224, -0.1258666068315506, -0.25933587551116943, -0.09077458083629608, 0.057006049901247025, 0.11265900731086731, 0.06248863413929939, -0.020620359107851982, 0.09502813220024109, -0.06822667270898819, 0.07183773070573807, 0.24532772600650787, -0.285391628742218, -0.09706161171197891, 0.04887622222304344, 0.03726964071393013, 0.05534673482179642, -0.11145774275064468, -0.014490794390439987, 0.07026588916778564, 0.021281767636537552, 0.10203225165605545, 0.008113048039376736, 0.0318625383079052, 0.03001897782087326, -0.16204553842544556, -0.027355242520570755, 0.14872227609157562, 0.06268856674432755, -0.04389358311891556, -0.05135124549269676, -0.050519052892923355, -0.18787795305252075, -0.03320885822176933, -0.02312224544584751, 0.03223176673054695, -0.05754763260483742, -0.12632499635219574, 0.01251008827239275, -0.07512282580137253, -0.11436916887760162, -0.0002515520027372986, 0.1878722459077835, 0.05049174651503563, -0.007215180434286594, -0.009893849492073059, 0.13857431709766388, -0.0049590058624744415, -0.13917121291160583, -0.010083667933940887, 0.010264796204864979, -0.07275073975324631, -0.040039196610450745, -0.047825030982494354, 0.026847032830119133, 0.01065762061625719, 0.15850593149662018, -0.07562559843063354, 0.04110925272107124, 0.05923129990696907, 0.02081238478422165, -0.07777750492095947, 0.1659763902425766, -0.09279265999794006, -0.03352354094386101, -0.04025418311357498, 0.0946638435125351, 0.006628246977925301, -0.004054338671267033, -0.057097427546978, 0.02344037964940071, 0.10125242918729782, 0.03448190167546272, -0.029897652566432953, 0.05074248090386391, -0.038757383823394775, -0.023422351107001305, 0.03672296181321144, -0.09797170013189316, 0.029083658009767532, 0.01427210122346878, -0.07886423915624619, 0.007875323295593262, -0.009479206055402756, 0.006425574887543917, 0.01593523845076561, 0.13875654339790344, -0.12128546833992004, -0.01211542822420597, -0.09629619121551514, -0.10143450647592545, 0.011450660414993763, -0.04215860739350319, -0.008447190746665001, -0.07510390132665634, -0.1454337239265442, -0.021418049931526184, 0.03668795898556709, -0.042169034481048584, -0.05580351874232292, -0.043548304587602615, -0.09971164166927338, 0.018864763900637627, -0.005261853337287903, 0.11705955862998962, -0.053525954484939575, 0.10646737366914749, 0.07595652341842651, 0.05911438539624214, 0.03434334695339203, 0.025949910283088684, -0.07196022570133209, 0.0515173077583313, -0.18625593185424805, 0.03747623413801193, -0.07661467790603638, 0.07387878745794296, -0.10372960567474365, -0.12396735697984695, -0.01556602492928505, -0.0037369350902736187, 0.08890558034181595, 0.12299437075853348, -0.13307452201843262, -0.10520076006650925, 0.19785968959331512, -0.10059189051389694, -0.1364954262971878, 0.12477825582027435, 0.00004323442772147246, -0.018317991867661476, 0.04559221863746643, 0.12377588450908661, 0.10067479312419891, -0.08594400435686111, -0.03692282363772392, -0.027498163282871246, 0.10367045551538467, 0.020613079890608788, 0.10677115619182587, -0.003903912380337715, -0.01454291120171547, 0.027724536135792732, -0.07556955516338348, 0.039039041846990585, -0.12865306437015533, -0.08668423444032669, -0.05098981782793999, -0.10412848740816116, 0.06296669691801071, 0.0644940659403801, 0.06158428266644478, -0.09852931648492813, -0.11245396733283997, 0.0670359879732132, 0.11086558550596237, -0.07121122628450394, 0.010456924326717854, -0.07486215233802795, 0.07546485960483551, -0.05816614255309105, -0.003801279002800584, -0.15953800082206726, -0.09994377940893173, 0.018830271437764168, -0.024120476096868515, -0.007773331832140684, -0.01758585497736931, 0.07215838879346848, 0.09807513654232025, -0.08069919794797897, -0.05635170266032219, -0.06794586032629013, -0.017017412930727005, -0.08381330221891403, -0.22244825959205627, -0.0831468403339386, -0.021766269579529762, 0.1337243765592575, -0.23564551770687103, 0.04059635475277901, 0.018386827781796455, 0.13106469810009003, 0.03606289625167847, -0.0464559867978096, -0.04040621593594551, 0.07609785348176956, -0.03975975885987282, -0.07614254206418991, 0.027400042861700058, -0.0009964645141735673, -0.09442657977342606, -0.06749440729618073, -0.13419075310230255, 0.18409307301044464, 0.11057081073522568, -0.013479987159371376, -0.10196228325366974, -0.009232222102582455, -0.09181127697229385, -0.039229121059179306, -0.05304860323667526, -0.013570557348430157, 0.08743463456630707, 0.004715078976005316, 0.11568935960531235, -0.07189138233661652, -0.058716781437397, 0.03616531565785408, -0.018105486407876015, -0.009901194833219051, 0.10869895666837692, 0.08054473251104355, -0.07220839709043503, 0.13198187947273254, 0.11670581251382828, -0.08615857362747192, 0.1550057977437973, -0.06366921961307526, -0.09015347063541412, -0.042940903455019, 0.018362771719694138, 0.03518690913915634, 0.13987582921981812, -0.10242906212806702, -0.0020229187794029713, -0.0000671350717311725, 0.030632633715867996, 0.029914801940321922, -0.21199293434619904, -0.03089279495179653, 0.028278088197112083, -0.05829848721623421, -0.02607417292892933, -0.018118727952241898, -0.008815815672278404, 0.09547603130340576, 0.01428794302046299, 0.00523053715005517, 0.002323208376765251, 0.002480332273989916, -0.08763909339904785, 0.22266124188899994, -0.08150306344032288, -0.10345970839262009, -0.14754550158977509, 0.025532977655529976, -0.05487018823623657, 0.007965411059558392, 0.03418700769543648, -0.11682534217834473, -0.025095205754041672, -0.06173187866806984, 0.0618419274687767, -0.0018334871856495738, 0.04269135370850563, 0.02865021489560604, 0.014298566617071629, 0.08916962146759033, -0.10809412598609924, 0.028908241540193558, -0.01394261047244072, -0.09786329418420792, 0.01929713599383831, 0.053375616669654846, 0.11898383498191833, 0.15500560402870178, 0.012021726928651333, 0.022651465609669685, -0.0262684915214777, 0.20311157405376434, -0.0915394127368927, -0.03705034404993057, 0.11452078074216843, 0.017120152711868286, 0.04672796651721001, 0.1082891970872879, 0.060909073799848557, -0.08583720028400421, 0.028597954660654068, 0.061048779636621475, -0.025885362178087234, -0.21539846062660217, -0.03126532956957817, -0.042417824268341064, 0.03733187913894653, 0.08994675427675247, 0.030295493081212044, -0.013657849282026291, 0.06258441507816315, -0.026454728096723557, 0.032651402056217194, -0.036680273711681366, 0.07639846205711365, 0.03677849844098091, 0.04481526464223862, 0.12245877087116241, -0.03943100571632385, -0.04774058982729912, 0.03558718413114548, -0.015326093882322311, 0.23688213527202606, -0.0197757575660944, 0.09398563951253891, 0.04840981215238571, 0.16520626842975616, -0.0055890693329274654, 0.08310162276029587, 0.02407749369740486, -0.05553123727440834, 0.018641559407114983, -0.05347158759832382, -0.006193611770868301, 0.03520127385854721, -0.008111927658319473, 0.0691538006067276, -0.14689023792743683, 0.019670842215418816, 0.07597070187330246, 0.2729247510433197, 0.07209504395723343, -0.3216646611690521, -0.13889914751052856, 0.023323798552155495, -0.028220679610967636, -0.01992529258131981, 0.024450229480862617, 0.15445701777935028, -0.08843279629945755, 0.06217767670750618, -0.09116256982088089, 0.07548758387565613, -0.013985972851514816, 0.019417645409703255, 0.1119118183851242, 0.1242348700761795, -0.015176859684288502, 0.06025049462914467, -0.2309003472328186, 0.27250975370407104, 0.001071411301381886, 0.08469904214143753, -0.01999000459909439, 0.017304372042417526, 0.02435188740491867, 0.061434194445610046, 0.0523633174598217, -0.006697538774460554, -0.09133922308683395, -0.21492870151996613, -0.05261579900979996, 0.04356612265110016, 0.15022602677345276, -0.09375254809856415, 0.13512885570526123, -0.04478731006383896, -0.008114236406981945, 0.0676909014582634, -0.059831228107213974, -0.11074139922857285, -0.07422374933958054, 0.01656411774456501, -0.055308498442173004, 0.041356611996889114, -0.11121335625648499, -0.11158178746700287, -0.09805664420127869, 0.17871978878974915, -0.09598041325807571, -0.012567685917019844, -0.12862920761108398, 0.1172100082039833, 0.1323883831501007, -0.07699882984161377, 0.03891053423285484, 0.016787540167570114, 0.12017291784286499, 0.04181089624762535, -0.041186168789863586, 0.10572170466184616, -0.07997797429561615, -0.24141962826251984, -0.042993318289518356, 0.12027817964553833, 0.03149648383259773, 0.04764799401164055, -0.03798443078994751, 0.019257722422480583, 0.01519473921507597, -0.11169377714395523, 0.05327225476503372, 0.021544553339481354, 0.03116302378475666, 0.06530429422855377, -0.04082055389881134, 0.019321300089359283, -0.04186191037297249, -0.040647994726896286, 0.11454519629478455, 0.302390992641449, -0.09079230576753616, -0.033432815223932266, 0.05624019354581833, -0.050351887941360474, -0.18183627724647522, 0.06037062779068947, 0.08418016880750656, 0.02335360459983349, 0.012993418611586094, -0.18446967005729675, 0.10545674711465836, 0.12476558238267899, -0.027919508516788483, 0.1327119618654251, -0.3194243609905243, -0.138307124376297, 0.06418465822935104, 0.13041283190250397, 0.016991227865219116, -0.18376611173152924, -0.04700608551502228, -0.005416260566562414, -0.12167570739984512, 0.0950157418847084, -0.07571061700582504, 0.10330827534198761, -0.008022881112992764, 0.017695022746920586, 0.01283271610736847, -0.06239059939980507, 0.1608634889125824, -0.012549212202429771, 0.083899587392807, -0.008003737777471542, -0.010144145227968693, 0.09310514479875565, -0.05349895730614662, -0.003676526714116335, -0.05248265713453293, 0.05166500434279442, -0.050639890134334564, -0.02733868546783924, -0.08368928730487823, 0.030923988670110703, -0.05627111718058586, -0.05852953717112541, -0.036593805998563766, 0.05947002023458481, 0.027097050100564957, -0.0197722390294075, 0.12731587886810303, 0.007888102903962135, 0.21580994129180908, 0.09068409353494644, 0.06508351862430573, -0.01732594706118107, -0.04893743619322777, 0.00784845370799303, -0.01373040210455656, 0.05898471549153328, -0.14977559447288513, 0.0299585722386837, 0.14486967027187347, 0.05899673327803612, 0.12420317530632019, 0.08897662162780762, -0.04946726933121681, 0.025440800935029984, 0.09318877756595612, -0.14735151827335358, -0.1768358051776886, -0.029448792338371277, -0.05250411108136177, -0.16367407143115997, 0.09590423852205276, 0.09848667681217194, -0.061153825372457504, -0.005543247330933809, -0.0061068469658494, 0.025439728051424026, -0.05812298133969307, 0.22373270988464355, 0.0528043657541275, 0.08831619471311569, -0.08501424640417099, 0.07886536419391632, 0.023636972531676292, -0.13005158305168152, -0.009837580844759941, 0.06590089946985245, -0.06383784860372543, -0.009422863833606243, 0.033298902213573456, 0.09222637116909027, -0.033262066543102264, -0.034000515937805176, -0.1569920927286148, -0.13377544283866882, 0.0628250390291214, 0.1250019669532776, 0.06179104745388031, 0.051184237003326416, -0.019140224903821945, 0.07049944996833801, -0.13028985261917114, 0.11486805975437164, 0.0879920944571495, 0.10169970989227295, -0.1913527399301529, 0.19101253151893616, -0.007711866870522499, 0.02728147804737091, -0.016755463555455208, 0.026249052956700325, -0.13774438202381134, -0.010833913460373878, -0.10727297514677048, -0.05533473193645477, -0.0557917095720768, -0.007274728734046221, 0.008091193623840809, -0.06454140692949295, -0.07908382266759872, 0.012956593185663223, -0.10553637892007828, -0.0426827110350132, 0.011779442429542542, 0.04826280102133751, -0.11956556886434555, 0.012616680935025215, 0.0506214015185833, -0.10764764249324799, 0.08352729678153992, 0.042598072439432144, 0.046174973249435425, 0.05820170044898987, -0.09872890263795853, 0.0340169258415699, 0.041857700794935226, -0.01915699429810047, 0.045754529535770416, -0.11943979561328888, 0.004748871084302664, -0.041464630514383316, 0.06513707339763641, 0.017093118280172348, 0.04229509085416794, -0.1349998116493225, 0.009898267686367035, -0.03506220504641533, -0.04264065995812416, -0.06724630296230316, 0.021965527907013893, 0.0750625804066658, 0.01458665356040001, 0.15185831487178802, -0.08482629805803299, 0.021377407014369965, -0.24711744487285614, -0.007851197384297848, -0.011485472321510315, -0.0941985696554184, -0.07680100947618484, -0.013421229086816311, 0.0782574936747551, -0.05220707878470421, 0.10859167575836182, -0.05215076357126236, 0.07041150331497192, 0.04172668978571892, -0.09103072434663773, 0.03362421318888664, 0.058361418545246124, 0.22495782375335693, 0.04565199837088585, -0.03316135331988335, 0.021892700344324112, 0.03322428837418556, 0.07074135541915894, 0.05127847567200661, 0.22090277075767517, 0.11449992656707764, -0.06691896170377731, 0.08978206664323807, 0.03986931964755058, -0.10875608026981354, -0.16280227899551392, 0.0750092938542366, -0.07065856456756592, 0.10132376849651337, -0.02326967380940914, 0.15070557594299316, 0.13214921951293945, -0.1960616558790207, 0.020848574116826057, -0.0588621161878109, -0.08761133253574371, -0.10927686095237732, -0.028081241995096207, -0.07197028398513794, -0.20524552464485168, 0.016292821615934372, -0.14099423587322235, 0.02940317615866661, 0.10164045542478561, 0.018514366820454597, 0.015639333054423332, 0.19107672572135925, 0.056795634329319, 0.040153391659259796, 0.0666360929608345, 0.018556589260697365, -0.01610255055129528, -0.0223587304353714, -0.09250672161579132, 0.017831619828939438, -0.03042694739997387, 0.05071688070893288, -0.061184726655483246, -0.10167153179645538, 0.07486916333436966, 0.011583404615521431, -0.0897013396024704, 0.010629335418343544, 0.015051158145070076, 0.04546230286359787, 0.008823022246360779, 0.008000358007848263, -0.007358401082456112, -0.028839627280831337, 0.25226229429244995, -0.11502007395029068, -0.049060314893722534, -0.14322875440120697, 0.299508273601532, 0.021328285336494446, 0.004862896166741848, 0.04388067498803139, -0.09714771807193756, -0.015266128815710545, 0.16031543910503387, 0.17494213581085205, -0.025736963376402855, -0.01970064453780651, 0.010986683890223503, -0.01945611648261547, -0.047615598887205124, 0.10143395513296127, 0.10627105087041855, 0.08650058507919312, -0.06895117461681366, -0.03622135519981384, -0.032124485820531845, -0.04167519882321358, -0.013092338107526302, 0.06288106739521027, 0.04135330393910408, 0.014479107223451138, -0.04909529909491539, 0.08152212202548981, -0.07348058372735977, -0.1058647558093071, 0.06687300652265549, -0.17486238479614258, -0.1691329926252365, -0.037814561277627945, 0.08236737549304962, -0.011733725666999817, 0.08766920119524002, -0.01411979366093874, -0.03912645950913429, 0.09115811437368393, -0.003495285054668784, -0.04966665059328079, -0.12346888333559036, 0.07847989350557327, -0.06722039729356766, 0.20399723947048187, -0.05668575316667557, 0.007349404040724039, 0.13403083384037018, 0.01613740064203739, -0.10586117953062057, 0.021875053644180298, 0.06493654102087021, -0.11961888521909714, 0.013475826941430569, 0.15928077697753906, -0.04044100269675255, 0.11403483897447586, 0.03819166123867035, -0.14000454545021057, 0.006615420803427696, -0.054129622876644135, -0.03013456054031849, -0.057160601019859314, -0.01628846302628517, -0.05234041064977646, 0.13431118428707123, 0.24311019480228424, -0.058214034885168076, 0.016973771154880524, -0.04769128933548927, 0.05144323408603668, 0.05076700076460838, 0.14353328943252563, -0.01200841460376978, -0.29975301027297974, 0.02745206654071808, 0.043902687728405, -0.013387956656515598, -0.25447389483451843, -0.0869453102350235, 0.05328335985541344, -0.042425043880939484, -0.06268463283777237, 0.1171017438173294, 0.10422298312187195, 0.058074817061424255, -0.05719301104545593, -0.13396428525447845, -0.08362922817468643, 0.18653173744678497, -0.15665727853775024, -0.09585974365472794 ]
null
null
transformers
# NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [OpenPipe/mistral-ft-optimized-1218](https://huggingface.co/OpenPipe/mistral-ft-optimized-1218) * [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: OpenPipe/mistral-ft-optimized-1218 layer_range: [0, 32] - model: mlabonne/NeuralHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: OpenPipe/mistral-ft-optimized-1218 parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "FredrikBL/NeuralPipe-7B-slerp" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B"], "base_model": ["OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B"]}
text-generation
FredrikBL/NeuralPipe-7B-slerp
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "OpenPipe/mistral-ft-optimized-1218", "mlabonne/NeuralHermes-2.5-Mistral-7B", "base_model:OpenPipe/mistral-ft-optimized-1218", "base_model:mlabonne/NeuralHermes-2.5-Mistral-7B", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:19:29+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #OpenPipe/mistral-ft-optimized-1218 #mlabonne/NeuralHermes-2.5-Mistral-7B #base_model-OpenPipe/mistral-ft-optimized-1218 #base_model-mlabonne/NeuralHermes-2.5-Mistral-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# NeuralPipe-7B-slerp NeuralPipe-7B-slerp is a merge of the following models using LazyMergekit: * OpenPipe/mistral-ft-optimized-1218 * mlabonne/NeuralHermes-2.5-Mistral-7B ## Configuration ## Usage
[ "# NeuralPipe-7B-slerp\n\nNeuralPipe-7B-slerp is a merge of the following models using LazyMergekit:\n* OpenPipe/mistral-ft-optimized-1218\n* mlabonne/NeuralHermes-2.5-Mistral-7B", "## Configuration", "## Usage" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #OpenPipe/mistral-ft-optimized-1218 #mlabonne/NeuralHermes-2.5-Mistral-7B #base_model-OpenPipe/mistral-ft-optimized-1218 #base_model-mlabonne/NeuralHermes-2.5-Mistral-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# NeuralPipe-7B-slerp\n\nNeuralPipe-7B-slerp is a merge of the following models using LazyMergekit:\n* OpenPipe/mistral-ft-optimized-1218\n* mlabonne/NeuralHermes-2.5-Mistral-7B", "## Configuration", "## Usage" ]
[ 126, 63, 4, 3 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #OpenPipe/mistral-ft-optimized-1218 #mlabonne/NeuralHermes-2.5-Mistral-7B #base_model-OpenPipe/mistral-ft-optimized-1218 #base_model-mlabonne/NeuralHermes-2.5-Mistral-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# NeuralPipe-7B-slerp\n\nNeuralPipe-7B-slerp is a merge of the following models using LazyMergekit:\n* OpenPipe/mistral-ft-optimized-1218\n* mlabonne/NeuralHermes-2.5-Mistral-7B## Configuration## Usage" ]
[ -0.07133832573890686, -0.000039409438613802195, -0.0039220997132360935, 0.021085277199745178, 0.0563482865691185, 0.03827233985066414, 0.14534085988998413, 0.06966394186019897, 0.06829501688480377, 0.058952316641807556, 0.07912378758192062, 0.1411416232585907, -0.020003439858555794, 0.0916307121515274, -0.02521892823278904, -0.23332735896110535, 0.11391612142324448, 0.015455403365194798, 0.03227102756500244, 0.07597875595092773, 0.08627717196941376, -0.0298920851200819, 0.06456363201141357, 0.0020614571403712034, -0.08558087050914764, -0.04110265523195267, 0.03963017091155052, -0.02019139565527439, 0.10581611096858978, 0.06490960717201233, 0.07597658038139343, 0.0183528121560812, 0.0008241780451498926, -0.08004415780305862, 0.03813851624727249, -0.004919913597404957, 0.005972242448478937, 0.10275506228208542, 0.05982103943824768, -0.047072503715753555, 0.03400867059826851, -0.038265980780124664, 0.04561544582247734, 0.048238154500722885, -0.07766860723495483, -0.1506015509366989, -0.052394136786460876, 0.06845389306545258, 0.06324063241481781, 0.06171787530183792, -0.02665763720870018, 0.11594606935977936, 0.0006836962420493364, 0.08480820804834366, 0.2405080944299698, -0.3185000717639923, -0.040747418999671936, 0.09524653106927872, 0.024921122938394547, -0.05745118111371994, -0.005277051590383053, 0.04609913378953934, 0.015034194104373455, 0.006693725008517504, 0.08315069228410721, -0.057794470340013504, 0.1456499546766281, -0.08291170746088028, -0.1470378041267395, 0.027461521327495575, 0.06802192330360413, 0.01001670490950346, -0.03761018067598343, -0.10670618712902069, -0.12882545590400696, 0.0779966488480568, -0.06044189631938934, -0.030538327991962433, -0.006254302803426981, -0.000759017770178616, 0.04105696827173233, -0.06099153310060501, -0.0239576306194067, -0.07034846395254135, -0.10577209293842316, 0.24987594783306122, 0.020181573927402496, 0.0024092430248856544, 0.02458794228732586, 0.06708374619483948, -0.09893214702606201, -0.08437429368495941, -0.013800854794681072, -0.06333275884389877, -0.04288969933986664, 0.005981893744319677, -0.08961112052202225, -0.19011040031909943, 0.05094202607870102, 0.2195485234260559, -0.053999315947294235, 0.06406286358833313, 0.051293905824422836, 0.05544465780258179, -0.03069855459034443, -0.00034339859848842025, -0.10565132647752762, -0.03819761425256729, 0.03700582683086395, 0.058403562754392624, 0.10523898154497147, -0.002531621605157852, -0.07944022119045258, -0.034047745168209076, 0.031654149293899536, -0.03215804696083069, 0.015055536292493343, 0.13871149718761444, -0.0792970359325409, -0.07924415171146393, 0.14159823954105377, -0.08533979207277298, -0.016436710953712463, 0.008005095645785332, -0.06683924049139023, 0.049987517297267914, 0.06925733387470245, 0.004032103810459375, -0.00036632720730267465, 0.09768787026405334, -0.08351199328899384, 0.00007013769936747849, -0.05726505070924759, -0.11817076057195663, 0.011393523775041103, -0.019243162125349045, -0.05968712642788887, -0.1352718025445938, -0.256873220205307, 0.02002497762441635, 0.06831870228052139, -0.029409490525722504, 0.04040910676121712, -0.04516248777508736, -0.014450010843575, 0.004681964870542288, -0.019011083990335464, -0.08368930220603943, -0.008946312591433525, 0.0030953241512179375, -0.015073588117957115, 0.07293540239334106, -0.19359593093395233, 0.011721121147274971, -0.06845404207706451, 0.08496570587158203, -0.23517897725105286, 0.12029626965522766, -0.06301572173833847, 0.061347100883722305, -0.09553398191928864, -0.029999513179063797, -0.07623319327831268, 0.011534505523741245, 0.059287022799253464, 0.11752329766750336, -0.11780933290719986, -0.09349013864994049, 0.1358923614025116, -0.14118781685829163, -0.09189910441637039, 0.11355893313884735, -0.011804270558059216, 0.06982161849737167, 0.09110517799854279, 0.2542681097984314, 0.0810920000076294, -0.03698189556598663, -0.045525599271059036, -0.04468690603971481, -0.03174242749810219, 0.03433854505419731, 0.07725673913955688, 0.0047334181144833565, -0.09093878418207169, 0.058081913739442825, -0.02389022707939148, 0.07183930277824402, -0.013167090713977814, -0.04308276250958443, -0.04527267441153526, -0.05148601904511452, 0.17267565429210663, -0.022700577974319458, 0.055512815713882446, -0.07283499836921692, -0.06683720648288727, 0.15711605548858643, 0.07095256447792053, -0.045194003731012344, 0.015844784677028656, -0.11286212503910065, 0.07134529948234558, -0.014404584653675556, 0.05317017436027527, -0.15178166329860687, -0.15051111578941345, -0.002713967114686966, -0.09883051365613937, 0.03136901929974556, -0.056721314787864685, 0.07413283735513687, 0.044265322387218475, -0.07165271043777466, -0.022444598376750946, 0.06411212682723999, 0.0299011692404747, -0.009289625100791454, -0.14613819122314453, -0.041355449706315994, -0.06499457359313965, 0.19129887223243713, -0.0738181620836258, 0.08310956507921219, 0.002856460167095065, 0.1749303787946701, 0.017224494367837906, -0.018861815333366394, 0.036359742283821106, 0.00245875446125865, -0.0014472946058958769, -0.003746466478332877, 0.1238304078578949, -0.033896688371896744, -0.13635557889938354, 0.04028350114822388, -0.12380879372358322, 0.15565872192382812, 0.08892210572957993, 0.039336856454610825, -0.06613991409540176, -0.041371941566467285, 0.001825614832341671, -0.04857589304447174, 0.06720215827226639, -0.09559047222137451, 0.08851645141839981, 0.011797813698649406, 0.09499260783195496, -0.08547314256429672, -0.011369575746357441, -0.01398612279444933, -0.0362541526556015, 0.010691200383007526, 0.041714202612638474, -0.09570580720901489, -0.21617184579372406, 0.0819864347577095, 0.12050744891166687, -0.053192950785160065, 0.09355824440717697, 0.022806400433182716, 0.025804070755839348, -0.06847342103719711, 0.039947349578142166, 0.012206785380840302, -0.0026040510274469852, -0.0647319033741951, 0.029991328716278076, 0.04847313463687897, 0.011034425348043442, 0.04080222547054291, -0.06302841752767563, 0.02653023973107338, -0.004263418260961771, -0.010006515309214592, 0.08839718997478485, 0.08447054773569107, -0.010622461326420307, 0.06877627968788147, 0.042745012789964676, -0.022921394556760788, 0.0443490706384182, -0.004092697985470295, -0.08045651763677597, 0.16644157469272614, -0.13392798602581024, -0.21483944356441498, -0.14043964445590973, -0.04748981446027756, -0.09420978277921677, 0.006527020130306482, 0.050210822373628616, 0.001293829409405589, -0.024857258424162865, -0.10062351822853088, 0.11710163950920105, 0.1070929616689682, 0.015741894021630287, 0.0323113352060318, -0.03149719908833504, 0.027208762243390083, -0.08254215866327286, -0.005931449588388205, -0.020251469686627388, -0.04451331868767738, 0.06559574604034424, -0.06316316872835159, 0.05826637148857117, 0.12808138132095337, 0.04082147032022476, -0.031834281980991364, -0.03312137722969055, 0.19820670783519745, -0.035208653658628464, 0.06734597682952881, 0.11378750950098038, -0.06699056178331375, 0.04253140836954117, 0.17421221733093262, 0.04026363044977188, -0.05462582781910896, 0.028390934690833092, 0.0030398943927139044, -0.03594221547245979, -0.16645009815692902, -0.1303633749485016, -0.022228986024856567, 0.08366499096155167, 0.03531058877706528, 0.04332500696182251, 0.06286090612411499, 0.09056466072797775, -0.026979679241776466, -0.06332025676965714, 0.06366196274757385, 0.0938335433602333, 0.23716826736927032, -0.009806007146835327, 0.13362917304039001, -0.02398383431136608, -0.028787663206458092, 0.04915715381503105, -0.02783902734518051, 0.12280794978141785, 0.001985039794817567, 0.16456015408039093, 0.038431357592344284, 0.03672162815928459, 0.06117939576506615, 0.09114155173301697, -0.02023981139063835, -0.037933118641376495, -0.034521669149398804, -0.089351586997509, -0.05005316063761711, 0.03240931034088135, -0.08037463575601578, 0.08111905306577682, -0.0030363821424543858, -0.0048560695722699165, 0.10061246156692505, 0.13710081577301025, 0.072551429271698, -0.2888287901878357, -0.13383828103542328, 0.020494339987635612, -0.002949622692540288, -0.0008749606204219162, 0.012819457799196243, 0.09264454245567322, -0.057342853397130966, 0.13574151694774628, -0.05628211796283722, 0.06917984038591385, -0.004807238932698965, 0.023798000067472458, -0.026627257466316223, 0.09833734482526779, -0.00013466938980855048, 0.02200482226908207, -0.10499288886785507, 0.11130569130182266, 0.03773518651723862, 0.01462743990123272, 0.04275747761130333, -0.006447531748563051, 0.06135857477784157, 0.15498392283916473, 0.05299653112888336, -0.002441759454086423, -0.010241835378110409, -0.018196558579802513, -0.09495618939399719, -0.01753775216639042, 0.06369466334581375, -0.024473682045936584, 0.09166813641786575, -0.025946423411369324, -0.039360757917165756, 0.024294061586260796, 0.102581687271595, -0.13924099504947662, -0.09486877173185349, 0.05839217081665993, 0.11702892929315567, 0.08356580883264542, -0.0930231586098671, -0.05755693092942238, -0.05594112351536751, 0.1566915214061737, -0.07529232650995255, -0.07629731297492981, -0.10773136466741562, -0.0324307419359684, 0.10372007638216019, -0.06694024056196213, 0.0859057754278183, -0.03756771609187126, 0.0650094598531723, -0.027602504938840866, -0.14449337124824524, 0.10920516401529312, -0.0730653628706932, -0.08499821275472641, -0.018811015412211418, 0.13399237394332886, -0.02268390543758869, 0.025092026218771935, -0.003562220139428973, 0.038281019777059555, 0.006566932890564203, -0.061105817556381226, -0.008827554062008858, 0.13612620532512665, -0.05923821032047272, 0.09664437174797058, -0.11164742708206177, -0.14098910987377167, -0.017135292291641235, 0.04537810757756233, 0.14988943934440613, 0.2037719488143921, -0.04568425193428993, 0.06636424362659454, 0.15960510075092316, -0.03272046893835068, -0.2527010440826416, -0.0062233149074018, 0.07168683409690857, -0.026799194514751434, 0.01702689193189144, -0.15209545195102692, 0.08920223265886307, 0.15553045272827148, -0.026635844260454178, 0.05244799703359604, -0.30119770765304565, -0.13294239342212677, 0.08010529726743698, 0.0848754495382309, 0.20288890600204468, -0.13282042741775513, -0.0799226388335228, -0.08048784732818604, -0.15826264023780823, 0.12722131609916687, -0.13895881175994873, 0.11466959118843079, -0.008203639648854733, 0.0056565674021840096, 0.008682996034622192, -0.024732155725359917, 0.10420381277799606, -0.016803506761789322, 0.045998577028512955, -0.0608854703605175, 0.006602896377444267, 0.10394598543643951, -0.02857881784439087, 0.11536682397127151, -0.03863988444209099, 0.029385505244135857, 0.04212841019034386, -0.050806861370801926, -0.08388285338878632, 0.06262040883302689, 0.009753212332725525, -0.07018155604600906, -0.05647343397140503, 0.048609115183353424, 0.015455333516001701, 0.03008303977549076, 0.11211048811674118, -0.027462435886263847, 0.09156163036823273, 0.17746664583683014, 0.06379091739654541, -0.1294192373752594, -0.05281626433134079, -0.0008437749929726124, -0.06285516172647476, 0.06895265728235245, -0.04471796005964279, -0.019471334293484688, 0.08710507303476334, -0.0019401852041482925, 0.10540027171373367, 0.04785540699958801, -0.015784891322255135, -0.003959640394896269, 0.0729396864771843, -0.14703848958015442, -0.253938764333725, 0.015391468070447445, 0.07956564426422119, -0.03308454528450966, 0.1288721263408661, 0.23338329792022705, -0.04135945811867714, 0.00507743563503027, 0.04358326643705368, -0.032869476824998856, -0.051323410123586655, 0.134408637881279, -0.017467256635427475, 0.04198615252971649, -0.08315273374319077, 0.038712091743946075, 0.007529934868216515, -0.08721578866243362, -0.019160117954015732, 0.09768231958150864, -0.15497304499149323, -0.08712799102067947, -0.15452717244625092, 0.14791125059127808, -0.049869876354932785, -0.01792464591562748, -0.10499490797519684, -0.12517575919628143, 0.02662990801036358, 0.18035060167312622, 0.10074291378259659, 0.03432965278625488, 0.00753889000043273, -0.01937178336083889, 0.007161405403167009, 0.07528920471668243, -0.011742481961846352, 0.09742124378681183, -0.10684645920991898, 0.03975030779838562, -0.03248850628733635, -0.02968655154109001, -0.07845138013362885, -0.018326345831155777, -0.1528281569480896, -0.035912249237298965, -0.18956297636032104, -0.018160801380872726, -0.11438514292240143, -0.031103841960430145, -0.005520517472177744, 0.017944488674402237, -0.003358900547027588, -0.006427050102502108, -0.045065201818943024, -0.03982353210449219, 0.016401588916778564, 0.02541416510939598, -0.0901997908949852, -0.020127220079302788, 0.006164704915136099, -0.032506756484508514, 0.08124959468841553, 0.07135328650474548, -0.022614631801843643, 0.011066406965255737, -0.10879024863243103, -0.052231382578611374, 0.09164606034755707, -0.024346591904759407, 0.009791229851543903, -0.08876648545265198, -0.037634264677762985, -0.008200456388294697, 0.013772120699286461, 0.024671658873558044, 0.14060015976428986, -0.07812519371509552, 0.05680205672979355, -0.028080694377422333, 0.006361612118780613, -0.0713113322854042, -0.06217295676469803, 0.013097652234137058, 0.06162052974104881, 0.16150504350662231, -0.08595776557922363, 0.012896563857793808, -0.12811002135276794, -0.010473967529833317, 0.00020170831703580916, -0.13380222022533417, -0.028732765465974808, -0.023991329595446587, -0.007720596622675657, -0.03119555488228798, 0.09646160900592804, -0.06728342920541763, -0.22548125684261322, 0.04361771419644356, 0.008193599060177803, -0.01204491127282381, 0.027710359543561935, 0.13833767175674438, 0.0850287601351738, -0.05231519788503647, -0.06154514476656914, 0.06884516775608063, 0.032310307025909424, 0.03649446368217468, 0.06981611996889114, 0.11682131141424179, -0.00017451889289077371, 0.0861857682466507, 0.0387093722820282, 0.07138723880052567, -0.0858025774359703, 0.08912015706300735, -0.025598179548978806, 0.047751251608133316, -0.024781273677945137, 0.15395767986774445, 0.13013026118278503, -0.059272442013025284, 0.06594918668270111, 0.04695577919483185, -0.029241329059004784, -0.0815059244632721, -0.11324537545442581, -0.10284589976072311, -0.15230774879455566, -0.07539962232112885, -0.09186312556266785, -0.10114365071058273, 0.05509532615542412, 0.016753798350691795, 0.03713247925043106, 0.266017884016037, -0.11267996579408646, -0.0207980927079916, 0.03620287775993347, -0.02917810156941414, -0.07889311760663986, 0.011077788658440113, -0.05623869225382805, 0.018263258039951324, 0.03252995014190674, 0.00024985935306176543, 0.018454022705554962, -0.019282735884189606, 0.015887491405010223, -0.018865078687667847, -0.09185947477817535, -0.0009290599846281111, 0.07721409201622009, -0.006373778451234102, 0.009698116220533848, 0.013776236213743687, -0.10515400767326355, -0.02153516747057438, 0.1481616199016571, -0.03764829784631729, -0.09947068989276886, -0.08901812136173248, 0.19469930231571198, -0.04640287160873413, 0.06195550411939621, -0.019449645653367043, -0.04345550015568733, -0.002353500807657838, 0.10977096110582352, 0.25079551339149475, -0.08034470677375793, -0.00032452066079713404, 0.0006060453015379608, 0.004198561888188124, 0.008061595261096954, 0.070515476167202, 0.011574605479836464, 0.17642700672149658, -0.014306782744824886, 0.0345938540995121, -0.008850530721247196, -0.06579795479774475, -0.10483532398939133, -0.09092386066913605, 0.011653789319097996, 0.026221569627523422, -0.05311179533600807, 0.077937550842762, -0.10780257731676102, -0.021958427503705025, -0.008858139626681805, -0.1140207052230835, -0.09712640196084976, -0.07458102703094482, 0.055663950741291046, -0.010853118263185024, 0.11215943843126297, -0.029554806649684906, -0.011422784999012947, 0.06179302930831909, -0.04096006602048874, -0.07887765020132065, -0.06550419330596924, 0.04368259012699127, -0.031672511249780655, 0.09779042750597, -0.025119271129369736, 0.04780832305550575, 0.1108669638633728, -0.038398128002882004, -0.10082994401454926, 0.06647857278585434, 0.010069254785776138, -0.0709109827876091, 0.026770733296871185, 0.08076802641153336, -0.029304424300789833, 0.14408713579177856, 0.04177151247859001, -0.19461385905742645, 0.0032514194026589394, 0.11545343697071075, -0.04793725162744522, -0.0818859115242958, 0.05419956520199776, -0.06776420027017593, 0.10395857691764832, 0.1634684056043625, -0.032443515956401825, -0.022611135616898537, -0.011983395554125309, 0.01876472681760788, 0.09737718105316162, 0.02618543617427349, -0.03856416791677475, -0.22270958125591278, -0.006886586081236601, 0.03432025387883186, -0.008168380707502365, -0.2945563495159149, -0.11566829681396484, -0.11385694891214371, 0.0025283002760261297, -0.04877620190382004, 0.027488088235259056, 0.10884097963571548, 0.03243531659245491, -0.008003811351954937, -0.14206065237522125, -0.020828042179346085, 0.07952193170785904, -0.07156549394130707, -0.11958131939172745 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
mkay8/llama2_test_1
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T13:22:07+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # oop-de-qg-flan-t5-base-v7 This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8142 - Rouge1: 62.4362 - Rouge2: 49.6516 - Rougel: 60.4681 - Rougelsum: 60.5095 - Gen Len: 14.8550 - Bleu: 0.3895 - Precisions: [0.6839118825100133, 0.5106941838649156, 0.4258783204798629, 0.3599600599101348] - Brevity Penalty: 0.8098 - Length Ratio: 0.8258 - Translation Length: 2996 - Reference Length: 3628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 10 - eval_batch_size: 10 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | Bleu | Precisions | Brevity Penalty | Length Ratio | Translation Length | Reference Length | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:------:|:-----------------------------------------------------------------------------------:|:---------------:|:------------:|:------------------:|:----------------:| | No log | 1.0 | 116 | 0.9430 | 57.099 | 43.0882 | 55.3609 | 55.5231 | 14.5619 | 0.3190 | [0.6260691070817653, 0.4359567901234568, 0.3485183547103052, 0.2854922279792746] | 0.7857 | 0.8057 | 2923 | 3628 | | No log | 2.0 | 233 | 0.8789 | 58.1933 | 45.0993 | 56.5574 | 56.6018 | 14.2840 | 0.3343 | [0.6437931034482759, 0.45932269365511874, 0.37310098302055406, 0.30886208704771895] | 0.7780 | 0.7993 | 2900 | 3628 | | No log | 3.0 | 349 | 0.8464 | 60.5514 | 47.5045 | 59.0662 | 59.1036 | 14.4683 | 0.3590 | [0.6698663009941721, 0.4895591647331787, 0.4017738359201774, 0.3341995841995842] | 0.7837 | 0.8040 | 2917 | 3628 | | No log | 4.0 | 466 | 0.8383 | 61.0697 | 48.057 | 59.3569 | 59.396 | 14.4894 | 0.3676 | [0.6767537826685007, 0.5001940240589833, 0.41451469278717723, 0.3503916449086162] | 0.7807 | 0.8015 | 2908 | 3628 | | 0.9742 | 5.0 | 582 | 0.8179 | 61.3398 | 48.1544 | 59.4838 | 59.5751 | 14.6918 | 0.3696 | [0.6702557200538358, 0.4926164331692541, 0.4043290043290043, 0.33804951995957555] | 0.8019 | 0.8192 | 2972 | 3628 | | 0.9742 | 6.0 | 699 | 0.8175 | 60.8548 | 47.6751 | 59.0342 | 58.9987 | 14.9033 | 0.3708 | [0.6651178227680054, 0.4862043251304996, 0.3985538068906848, 0.3316831683168317] | 0.8154 | 0.8305 | 3013 | 3628 | | 0.9742 | 7.0 | 815 | 0.8163 | 62.9547 | 50.5344 | 61.1969 | 61.1641 | 14.7946 | 0.3919 | [0.6915322580645161, 0.5202268431001891, 0.43301642178046673, 0.36359051941502774] | 0.8033 | 0.8203 | 2976 | 3628 | | 0.9742 | 7.97 | 928 | 0.8142 | 62.4362 | 49.6516 | 60.4681 | 60.5095 | 14.8550 | 0.3895 | [0.6839118825100133, 0.5106941838649156, 0.4258783204798629, 0.3599600599101348] | 0.8098 | 0.8258 | 2996 | 3628 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge", "bleu"], "base_model": "google/flan-t5-base", "model-index": [{"name": "oop-de-qg-flan-t5-base-v7", "results": []}]}
text2text-generation
LunaticTanuki/oop-de-qg-flan-t5-base-v7
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:22:12+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
oop-de-qg-flan-t5-base-v7 ========================= This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.8142 * Rouge1: 62.4362 * Rouge2: 49.6516 * Rougel: 60.4681 * Rougelsum: 60.5095 * Gen Len: 14.8550 * Bleu: 0.3895 * Precisions: [0.6839118825100133, 0.5106941838649156, 0.4258783204798629, 0.3599600599101348] * Brevity Penalty: 0.8098 * Length Ratio: 0.8258 * Translation Length: 2996 * Reference Length: 3628 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 10 * eval\_batch\_size: 10 * seed: 42 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 20 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 8 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 20\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 20\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 80, 126, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 10\n* eval\\_batch\\_size: 10\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 20\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 8### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.13021233677864075, 0.12117628753185272, -0.0031824728939682245, 0.08714177459478378, 0.1233871802687645, 0.010461336001753807, 0.15613548457622528, 0.1299961507320404, -0.0848773792386055, 0.08361103385686874, 0.12356492877006531, 0.09295783936977386, 0.05595353990793228, 0.1531607061624527, -0.0287187360227108, -0.27761271595954895, 0.004223848693072796, 0.019733618944883347, -0.09572044759988785, 0.15369342267513275, 0.09131661057472229, -0.11408883333206177, 0.06638003140687943, 0.014063939452171326, -0.13543468713760376, -0.024030977860093117, 0.011486811563372612, -0.07794326543807983, 0.1364806443452835, 0.014743111096322536, 0.11434827744960785, 0.06885428726673126, 0.08262111246585846, -0.16064666211605072, 0.013461626134812832, 0.07592073827981949, 0.008276320993900299, 0.11664479970932007, 0.10241931676864624, -0.016368307173252106, 0.10468728840351105, -0.06703446060419083, 0.05861940234899521, 0.04010152071714401, -0.10743194818496704, -0.24766340851783752, -0.09511598944664001, 0.09544997662305832, 0.10255838185548782, 0.07988180220127106, -0.00950278528034687, 0.08556634187698364, -0.06226575747132301, 0.08965501934289932, 0.28093257546424866, -0.3209497332572937, -0.06457807123661041, 0.00998061615973711, 0.057790618389844894, 0.050546858459711075, -0.09652941673994064, -0.01899784803390503, 0.03851382061839104, 0.023844076320528984, 0.13780973851680756, 0.008286816999316216, 0.02006710134446621, -0.009950552135705948, -0.1446513682603836, -0.06807199865579605, 0.1264052540063858, 0.04217757284641266, -0.04283245652914047, -0.08213355392217636, -0.08323327451944351, -0.20821590721607208, -0.017175663262605667, 0.002992319641634822, 0.021494969725608826, -0.04818848893046379, -0.09101248532533646, -0.033968329429626465, -0.09793642163276672, -0.08854448795318604, -0.002523314906284213, 0.12494193017482758, 0.06017389893531799, 0.007077853661030531, -0.00938463769853115, 0.15192215144634247, 0.06503131240606308, -0.165943443775177, 0.02020164765417576, 0.01584271714091301, -0.018371155485510826, -0.004727180581539869, -0.01886807009577751, -0.04221786931157112, 0.011138024739921093, 0.139640212059021, -0.08483810722827911, 0.020960824564099312, 0.012607013806700706, 0.05270295590162277, -0.10442254692316055, 0.16980762779712677, -0.08141122758388519, -0.038854558020830154, 0.02935878559947014, 0.1384083777666092, 0.06694434583187103, -0.02449890784919262, -0.10853386670351028, 0.002882271073758602, 0.1399838775396347, 0.06221747770905495, 0.012861589901149273, 0.03803211823105812, -0.05505476891994476, -0.03152008354663849, 0.07632925361394882, -0.10143761336803436, 0.02137712575495243, 0.028508644551038742, -0.07762500643730164, -0.030019965022802353, 0.03115694411098957, -0.007642865646630526, -0.038255974650382996, 0.11182959377765656, -0.08353279531002045, -0.009679454378783703, -0.07884279638528824, -0.10012449324131012, 0.02362860180437565, -0.0880703553557396, -0.020617803558707237, -0.08848021924495697, -0.17076842486858368, -0.02231934852898121, 0.030400898307561874, -0.044878508895635605, -0.09158574044704437, -0.036023858934640884, -0.10433657467365265, 0.030236491933465004, -0.027908533811569214, 0.11105935275554657, -0.04431420564651489, 0.14229317009449005, 0.03660200163722038, 0.05953783914446831, 0.03346683084964752, 0.04370754957199097, -0.08627501875162125, 0.052828822284936905, -0.1908561885356903, 0.04991426691412926, -0.04789865016937256, 0.03578726947307587, -0.10881594568490982, -0.12239200621843338, 0.008431589230895042, -0.03222046419978142, 0.09640919417142868, 0.1233915314078331, -0.1407654732465744, -0.090849369764328, 0.17837053537368774, -0.10831629484891891, -0.1241619661450386, 0.13121241331100464, -0.0018141968175768852, -0.01943475753068924, 0.02972879260778427, 0.1415046900510788, 0.07534587383270264, -0.08882493525743484, -0.01303184125572443, -0.03044050745666027, 0.07236938923597336, -0.026483163237571716, 0.10700336843729019, -0.01457099337130785, 0.015839826315641403, 0.02084014192223549, -0.0723545029759407, 0.05950908362865448, -0.09782615303993225, -0.07845183461904526, -0.04038644954562187, -0.07487919181585312, 0.09263704717159271, 0.06172633171081543, 0.05178175866603851, -0.08207127451896667, -0.13107611238956451, 0.002986421575769782, 0.09496766328811646, -0.07998272776603699, 0.024643825367093086, -0.06223980709910393, 0.14974822103977203, -0.0720873773097992, -0.005403873044997454, -0.17865456640720367, -0.0582297258079052, 0.03395611792802811, -0.038959331810474396, -0.010954426601529121, -0.03796710446476936, 0.0595007948577404, 0.09591468423604965, -0.06171663478016853, -0.07961978018283844, -0.07168298959732056, -0.025898057967424393, -0.08813074231147766, -0.22309324145317078, -0.07528752088546753, -0.015118809416890144, 0.13610322773456573, -0.19578434526920319, 0.04916513338685036, 0.018001075834035873, 0.12743018567562103, 0.029882485046982765, -0.0279218852519989, -0.0023619469720870256, 0.06209485977888107, -0.048947952687740326, -0.07232620567083359, 0.06272927671670914, 0.017894336953759193, -0.08938775956630707, 0.014595573768019676, -0.13457295298576355, 0.16255562007427216, 0.12008495628833771, -0.011582794599235058, -0.08140436559915543, -0.0124655207619071, -0.09424751996994019, -0.03929358720779419, -0.043475352227687836, 0.003092218656092882, 0.11904750019311905, 0.03146788850426674, 0.15868490934371948, -0.10970182716846466, -0.057426296174526215, 0.03925512358546257, -0.005532199516892433, 0.005423120688647032, 0.11837168782949448, 0.072926364839077, -0.048894669860601425, 0.1300807148218155, 0.14008021354675293, -0.06403148919343948, 0.12825337052345276, -0.06258887052536011, -0.09067852795124054, -0.03132112696766853, 0.028681091964244843, 0.027922164648771286, 0.12968285381793976, -0.10421556979417801, -0.002972203306853771, 0.029259508475661278, -0.002158279297873378, 0.015783609822392464, -0.2192731648683548, -0.011604294180870056, 0.024624597281217575, -0.07245544344186783, -0.022752126678824425, -0.006582752335816622, 0.016040626913309097, 0.11889570951461792, 0.0013738754205405712, -0.059522248804569244, 0.026449261233210564, 0.0037616987247020006, -0.08523926883935928, 0.20161807537078857, -0.061431001871824265, -0.17852431535720825, -0.1427273154258728, 0.022101610898971558, -0.06184278428554535, -0.0052838074043393135, 0.046774350106716156, -0.05679166316986084, -0.017804445698857307, -0.08132799714803696, 0.033640019595623016, 0.0015963794430717826, 0.03918931633234024, -0.010028049349784851, 0.018401548266410828, 0.07712578028440475, -0.10612865537405014, 0.019597509875893593, -0.02245316654443741, -0.06349106878042221, 0.03424479812383652, 0.061010222882032394, 0.1047920435667038, 0.15668877959251404, -0.010546653531491756, 0.013663211837410927, -0.04361513629555702, 0.1512458622455597, -0.08241929858922958, -0.0017012095777317882, 0.16241808235645294, -0.0008865507552400231, 0.07308304309844971, 0.13423269987106323, 0.04190991446375847, -0.05235826224088669, 0.0016942833317443728, 0.01654759980738163, -0.02819819748401642, -0.24918906390666962, -0.024205664172768593, -0.038241662085056305, 0.04631950706243515, 0.11194402724504471, 0.03947827219963074, 0.03430352360010147, 0.054993968456983566, -0.03500393033027649, 0.044061485677957535, 0.00042658112943172455, 0.07364045083522797, 0.08790851384401321, 0.03173743560910225, 0.1311047375202179, -0.034413907676935196, -0.03231917321681976, 0.030085986480116844, -0.0032675855327397585, 0.20844052731990814, -0.07238370925188065, 0.1618078500032425, 0.04698758199810982, 0.18833625316619873, 0.027995886281132698, 0.08923722803592682, 0.004168287385255098, -0.0032766624353826046, 0.01192951388657093, -0.05829128250479698, -0.0334487222135067, 0.006042108405381441, -0.019318697974085808, 0.07867053896188736, -0.13662900030612946, 0.02362189069390297, 0.03578689694404602, 0.3154960870742798, 0.06655309349298477, -0.3321373462677002, -0.11466715484857559, -0.007524130400270224, -0.026660505682229996, -0.0368364043533802, 0.024897994473576546, 0.13258914649486542, -0.09808366000652313, 0.04767099395394325, -0.09756263345479965, 0.07492528855800629, -0.07088343799114227, 0.0033077497500926256, 0.0778345912694931, 0.09965702146291733, 0.002466532401740551, 0.07136549055576324, -0.2545498311519623, 0.27053317427635193, -0.000484938092995435, 0.053070709109306335, -0.050079744309186935, 0.023091759532690048, 0.02034260891377926, 0.03796939551830292, 0.08557483553886414, -0.020802024751901627, -0.021890530362725258, -0.16955411434173584, -0.1424241065979004, -0.0004924634704366326, 0.1059790551662445, -0.08821246773004532, 0.11260420083999634, -0.040293075144290924, -0.02737867832183838, 0.03244183957576752, -0.06766299158334732, -0.07596369087696075, -0.08592701703310013, 0.03244789317250252, -0.022925080731511116, 0.032433267682790756, -0.11289753764867783, -0.13342033326625824, -0.07173963636159897, 0.1827748715877533, -0.11312989145517349, -0.07796425372362137, -0.1267373114824295, 0.1088775023818016, 0.12353944033384323, -0.08929190039634705, 0.04565703868865967, -0.015417341142892838, 0.12335745245218277, 0.006670475006103516, -0.05981799587607384, 0.09057553857564926, -0.0708460733294487, -0.2672741115093231, -0.05582946166396141, 0.18505609035491943, -0.008299300447106361, 0.05779283121228218, -0.0300060473382473, 0.00981020275503397, -0.009749229997396469, -0.08497535437345505, 0.03394393250346184, 0.0173603855073452, 0.05235563963651657, 0.00957154668867588, -0.028255317360162735, 0.00024793099146336317, -0.05428817495703697, -0.028889955952763557, 0.1415061205625534, 0.2610141634941101, -0.1019434854388237, 0.04775645583868027, 0.06488066911697388, -0.03759539872407913, -0.18338513374328613, -0.010961047373712063, 0.10267824679613113, 0.022598152980208397, 0.0015048532513901591, -0.16510500013828278, 0.037775348871946335, 0.08396480232477188, -0.0443757064640522, 0.12583355605602264, -0.3422090709209442, -0.140656977891922, 0.0662546306848526, 0.1328689008951187, 0.04122046008706093, -0.17689241468906403, -0.07407450675964355, 0.01640232652425766, -0.08324640244245529, 0.10005849599838257, -0.05902501195669174, 0.10444929450750351, -0.03625931963324547, 0.020932521671056747, 0.017803439870476723, -0.0716220885515213, 0.1136537492275238, -0.04991185665130615, 0.05038217082619667, -0.03382275998592377, -0.0006196494214236736, 0.10916710644960403, -0.06743674725294113, 0.0287452582269907, -0.06653321534395218, 0.06274309754371643, -0.0653369203209877, -0.019186291843652725, -0.10190229117870331, 0.0436529777944088, -0.061102695763111115, -0.04377010464668274, -0.020451538264751434, 0.02372991107404232, 0.026339087635278702, -0.016955237835645676, 0.13413341343402863, 0.028377331793308258, 0.16207586228847504, 0.13695332407951355, 0.07099282741546631, -0.020950747653841972, -0.08173707872629166, -0.02855829708278179, -0.032098788768053055, 0.05074158310890198, -0.14187957346439362, 0.011917107738554478, 0.13168177008628845, 0.05087122693657875, 0.11435854434967041, 0.07454956322908401, -0.0682692900300026, 0.026166602969169617, 0.07526159286499023, -0.17004044353961945, -0.12689732015132904, -0.04661693796515465, -0.017498917877674103, -0.14961892366409302, 0.06023186817765236, 0.10967742651700974, -0.07148019969463348, -0.023364439606666565, 0.009829028509557247, 0.017059151083230972, 0.005119220353662968, 0.18266089260578156, 0.06380782276391983, 0.08733746409416199, -0.09776024520397186, 0.09257738292217255, 0.0681813582777977, -0.13284622132778168, 0.00144188420381397, 0.09458541125059128, -0.09309761971235275, -0.022703489288687706, 0.012019489891827106, 0.09066693484783173, -0.02489631436765194, -0.05126625671982765, -0.1599392145872116, -0.12966036796569824, 0.0713859423995018, 0.12577399611473083, 0.05791309103369713, 0.04563872516155243, -0.018690122291445732, 0.020782427862286568, -0.12114627659320831, 0.1463402658700943, 0.06544487178325653, 0.0867876261472702, -0.16871286928653717, 0.14789755642414093, 0.02525937557220459, 0.04912790283560753, -0.016750026494264603, 0.029236678034067154, -0.09174953401088715, -0.012126765213906765, -0.08684045076370239, -0.014798964373767376, -0.04277333617210388, -0.017697865143418312, -0.020408205687999725, -0.053342755883932114, -0.04246172681450844, 0.0285707488656044, -0.09459814429283142, -0.04852573573589325, -0.0036342786625027657, 0.02927474118769169, -0.1375306099653244, -0.010205928236246109, 0.028059422969818115, -0.1110692098736763, 0.1195940375328064, 0.037490908056497574, 0.03712223470211029, 0.02600131370127201, -0.0847693681716919, 0.02273419313132763, 0.03675548732280731, -0.0066094850189983845, 0.03327899053692818, -0.1177661344408989, 0.009194090031087399, -0.02258262410759926, -0.009412224404513836, 0.0019934684969484806, 0.049933891743421555, -0.1493837535381317, 0.008991120383143425, 0.000010234422006760724, -0.027173951268196106, -0.061955634504556656, 0.04884027689695358, 0.05162915214896202, 0.012476409785449505, 0.17105720937252045, -0.08516079187393188, 0.052673161029815674, -0.23935602605342865, 0.004872051998972893, -0.026547575369477272, -0.08779001235961914, -0.11072803288698196, -0.013829324394464493, 0.07033365964889526, -0.05423508584499359, 0.07725683599710464, -0.015340746380388737, 0.09356866031885147, 0.025694947689771652, -0.024321654811501503, 0.03681232035160065, 0.04637479409575462, 0.1637197881937027, 0.013521471060812473, -0.026775483042001724, 0.047035228461027145, 0.019104214385151863, 0.07584759593009949, 0.061096835881471634, 0.1830480545759201, 0.09820957481861115, 0.010405066423118114, 0.08526511490345001, 0.054022714495658875, -0.0721508339047432, -0.20192286372184753, 0.05134399235248566, -0.04573523998260498, 0.12087059766054153, -0.014785229228436947, 0.19332793354988098, 0.14152532815933228, -0.16183146834373474, 0.02823856845498085, -0.004327063448727131, -0.06595368683338165, -0.10018309950828552, -0.08001437783241272, -0.068599171936512, -0.15889690816402435, 0.0021080903243273497, -0.11059906333684921, 0.011730960570275784, 0.05464830622076988, 0.013477887026965618, -0.002103854436427355, 0.13286244869232178, 0.09898971021175385, 0.008288230746984482, 0.0805463194847107, 0.0455123595893383, -0.006482081487774849, -0.025061110034585, -0.08619718998670578, 0.009293627925217152, -0.017000669613480568, 0.04385543614625931, -0.03663071244955063, -0.06550630182027817, 0.06097486615180969, 0.009571865200996399, -0.10372179746627808, 0.025719912722706795, 0.0029215191025286913, 0.07156114280223846, 0.0712592601776123, 0.007199859246611595, 0.006862412206828594, -0.026385672390460968, 0.24831530451774597, -0.08270484209060669, -0.05266537517309189, -0.10539983958005905, 0.2555217742919922, 0.005082832649350166, -0.049830082803964615, 0.04843294620513916, -0.09651471674442291, -0.0030093633104115725, 0.1861005574464798, 0.17705856263637543, -0.018448850139975548, -0.013583983294665813, 0.019192591309547424, -0.018324295058846474, -0.026710860431194305, 0.08662715554237366, 0.12114968150854111, 0.11821696907281876, -0.08073297142982483, -0.03222980722784996, -0.04464386776089668, -0.016292477026581764, -0.034071020781993866, 0.09833993762731552, 0.005560099147260189, -0.0015340914251282811, -0.044869281351566315, 0.06524748355150223, -0.040776219218969345, -0.1090126484632492, 0.04787140712141991, -0.21004009246826172, -0.17331001162528992, -0.02710871770977974, 0.10405957698822021, -0.005990980193018913, 0.058735594153404236, 0.004415469244122505, -0.005526014603674412, 0.09338489174842834, -0.020300310105085373, -0.07832692563533783, -0.05385015159845352, 0.0627068355679512, -0.09712062031030655, 0.2185608148574829, -0.04363969340920448, 0.02599720098078251, 0.12496492266654968, 0.04288941249251366, -0.12900322675704956, 0.032304201275110245, 0.06469380110502243, -0.07991228252649307, 0.03979367017745972, 0.15620289742946625, 0.0005434948834590614, 0.05655166134238243, 0.03671574592590332, -0.09648789465427399, 0.006519726011902094, -0.07171736657619476, -0.0499023012816906, -0.056817226111888885, -0.00611402140930295, -0.022763516753911972, 0.1257905215024948, 0.19648194313049316, -0.06287995725870132, -0.005250151269137859, -0.06884757429361343, -0.0003354145446792245, 0.05578475072979927, 0.0875815898180008, 0.016541438177227974, -0.24031029641628265, 0.024804281070828438, 0.04073282331228256, 0.005789484363049269, -0.26852819323539734, -0.07318525016307831, 0.022532472386956215, -0.06219809874892235, -0.1326362043619156, 0.08405285328626633, 0.0593155175447464, 0.056847840547561646, -0.03203996270895004, -0.01110862661153078, -0.0731722041964531, 0.1689891666173935, -0.18674711883068085, -0.07459622621536255 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-large-v3-sr This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3961 - Wer: 17.2694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0498 | 4.81 | 1000 | 0.2004 | 20.1799 | | 0.0042 | 9.62 | 2000 | 0.3225 | 18.2395 | | 0.0001 | 14.42 | 3000 | 0.3799 | 17.2694 | | 0.0001 | 19.23 | 4000 | 0.3961 | 17.2694 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"language": ["sr"], "license": "apache-2.0", "tags": ["hf-asr-leaderboard", "generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_16_1"], "metrics": ["wer"], "base_model": "openai/whisper-large-v3", "model-index": [{"name": "Whisper Large v3 Sr - Slavko Djogic", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 16.1", "type": "mozilla-foundation/common_voice_16_1", "args": "Config: sr"}, "metrics": [{"type": "wer", "value": 17.2694, "name": "Wer"}]}]}]}
automatic-speech-recognition
djoga98/whisper-large-v3-sr
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "hf-asr-leaderboard", "generated_from_trainer", "sr", "dataset:mozilla-foundation/common_voice_16_1", "base_model:openai/whisper-large-v3", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
2024-02-06T13:24:08+00:00
[]
[ "sr" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #sr #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #endpoints_compatible #region-us
whisper-large-v3-sr =================== This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: * Loss: 0.3961 * Wer: 17.2694 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 500 * training\_steps: 4000 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.38.0.dev0 * Pytorch 2.1.1+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #sr #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 107, 130, 4, 38 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #hf-asr-leaderboard #generated_from_trainer #sr #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.1+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.1254226267337799, 0.12363048642873764, -0.003393476828932762, 0.05003868415951729, 0.1023818701505661, 0.01379205659031868, 0.12155012786388397, 0.15960197150707245, -0.05134987831115723, 0.09006623178720474, 0.0855121910572052, 0.06412830203771591, 0.08391023427248001, 0.17850378155708313, -0.030451683327555656, -0.2816145420074463, 0.028299788013100624, -0.020278360694646835, -0.10125087946653366, 0.10248582065105438, 0.09509171545505524, -0.11513780057430267, 0.03273957595229149, 0.003676527412608266, -0.10301880538463593, -0.002863747999072075, -0.027666974812746048, -0.059729136526584625, 0.10324791818857193, 0.02194758877158165, 0.05275396257638931, 0.03444761410355568, 0.09493514150381088, -0.24922335147857666, 0.013571346178650856, 0.05355454981327057, 0.04570745304226875, 0.0668422132730484, 0.0821709856390953, -0.0020072890911251307, 0.049700599163770676, -0.08329922705888748, 0.07008689641952515, 0.0559786856174469, -0.08967307955026627, -0.3047558665275574, -0.08105197548866272, 0.05230960249900818, 0.13480477035045624, 0.06617621332406998, -0.029181815683841705, 0.06103486940264702, -0.04147247225046158, 0.09217505902051926, 0.19664381444454193, -0.22706010937690735, -0.06589137017726898, -0.02267889492213726, 0.03377789258956909, 0.06591637432575226, -0.11227013170719147, -0.010999209247529507, 0.016586575657129288, 0.020820867270231247, 0.10360229760408401, 0.003074605017900467, 0.020815741270780563, -0.0070381443947553635, -0.1293429285287857, -0.04657377675175667, 0.14054954051971436, 0.0757397711277008, -0.02427425980567932, -0.13073888421058655, -0.03631596267223358, -0.13007408380508423, -0.06586437672376633, 0.0037083562929183245, 0.026145486161112785, -0.03810563310980797, -0.06928060203790665, 0.00008870401507010683, -0.05443688482046127, -0.08304014801979065, 0.050457362085580826, 0.13910037279129028, 0.0444256030023098, -0.025217976421117783, 0.0022035373840481043, 0.09327773004770279, 0.04647453874349594, -0.16542667150497437, -0.011405914090573788, 0.030835427343845367, -0.09873635321855545, -0.015396111644804478, -0.008126644417643547, -0.01140517182648182, 0.04950214922428131, 0.1407608538866043, -0.012943880632519722, 0.10193472355604172, 0.011565062217414379, 0.013127931393682957, -0.09043886512517929, 0.1594916582107544, -0.06298995763063431, -0.06454654783010483, -0.028741667047142982, 0.1352423131465912, 0.0050933631137013435, -0.016348812729120255, -0.07020855695009232, 0.032680898904800415, 0.09440141916275024, 0.05230056494474411, -0.008233400993049145, 0.03479785844683647, -0.055841997265815735, -0.025818880647420883, -0.01511059608310461, -0.1316433995962143, 0.0413687601685524, 0.04447949305176735, -0.05707651749253273, -0.04263528436422348, -0.005769007373601198, 0.020054038614034653, -0.02304830588400364, 0.06429928541183472, -0.0509682260453701, -0.007632834371179342, -0.07768165320158005, -0.09039569646120071, 0.018658725544810295, -0.025679264217615128, -0.007151214871555567, -0.06867753714323044, -0.116805300116539, -0.04978816583752632, 0.05369994789361954, -0.052602369338274, -0.04915188252925873, -0.08113572001457214, -0.08028619736433029, 0.04262859746813774, -0.013209820725023746, 0.14282061159610748, -0.04773370176553726, 0.09148415923118591, 0.020270640030503273, 0.060265857726335526, 0.06977743655443192, 0.05742241442203522, -0.024603262543678284, 0.06016017124056816, -0.14625748991966248, 0.10570179671049118, -0.12081047147512436, 0.06771611422300339, -0.14043159782886505, -0.08318343013525009, 0.010993484407663345, 0.0006170559208840132, 0.09701389074325562, 0.13949285447597504, -0.17665183544158936, -0.07959520071744919, 0.18378791213035583, -0.0693206787109375, -0.10213546454906464, 0.13289481401443481, -0.028202440589666367, 0.002547049894928932, 0.033443957567214966, 0.21683809161186218, 0.11766927689313889, -0.09232351928949356, 0.015176145359873772, -0.03301182761788368, 0.1029718816280365, 0.03428761661052704, 0.07956113666296005, -0.04236603528261185, 0.029307562857866287, 0.010060693137347698, -0.0350237712264061, 0.056972429156303406, -0.07496027648448944, -0.08587204664945602, -0.02258841134607792, -0.08124684542417526, 0.015392402186989784, 0.04537130147218704, 0.024393048137426376, -0.08798640221357346, -0.11035197973251343, 0.009156734682619572, 0.11521987617015839, -0.10458316653966904, 0.013350036926567554, -0.09219623357057571, 0.05284677445888519, -0.015613281168043613, 0.003655801061540842, -0.13942769169807434, 0.003521885257214308, 0.04196792468428612, -0.05750899761915207, 0.0016530726570636034, -0.04085391014814377, 0.09012459963560104, 0.042706988751888275, -0.04837403446435928, -0.08009637147188187, -0.026732923462986946, 0.012923786416649818, -0.07142015546560287, -0.22505691647529602, -0.07016944140195847, -0.03693865239620209, 0.1714860051870346, -0.19473420083522797, 0.029549436643719673, 0.054010845720767975, 0.14624811708927155, 0.037039581686258316, -0.04170596972107887, 0.03011687472462654, 0.040627896785736084, 0.004131742753088474, -0.0895107313990593, 0.025314083322882652, 0.009133352898061275, -0.13010771572589874, 0.003156254766508937, -0.14793404936790466, 0.08922174572944641, 0.08739396929740906, 0.0262648556381464, -0.06587924808263779, -0.03846146538853645, -0.052963756024837494, -0.05173691734671593, -0.023273224011063576, -0.019612953066825867, 0.15472817420959473, 0.014400738291442394, 0.11280504614114761, -0.07381463795900345, -0.04788603261113167, 0.024316351860761642, 0.00604269141331315, -0.010834761895239353, 0.14113843441009521, -0.003521405393257737, -0.05459499731659889, 0.09703006595373154, 0.06824544817209244, -0.04293235018849373, 0.15920862555503845, -0.08916383981704712, -0.07698982954025269, -0.02800092287361622, 0.03790309652686119, 0.02436826378107071, 0.11547672003507614, -0.13134559988975525, -0.024809271097183228, 0.027165617793798447, 0.011593857780098915, 0.015057357028126717, -0.18542136251926422, 0.004470399115234613, 0.03018273413181305, -0.08045658469200134, 0.0013185583520680666, -0.004092924762517214, -0.007016636896878481, 0.08035378903150558, 0.003135488135740161, -0.061212457716464996, -0.005184391979128122, -0.04131466522812843, -0.090853251516819, 0.1732461154460907, -0.10671951621770859, -0.1432616412639618, -0.11497847735881805, -0.011298471130430698, -0.009631765075027943, -0.014568855054676533, 0.03624352812767029, -0.10332296788692474, -0.037016429007053375, -0.07839500159025192, -0.008415691554546356, -0.018066616728901863, 0.020862506702542305, 0.04484155774116516, 0.004124385770410299, 0.08534786105155945, -0.09592863917350769, 0.013160786591470242, -0.008296191692352295, -0.014195118099451065, 0.00972997210919857, 0.017613496631383896, 0.08525760471820831, 0.14667709171772003, 0.03383048251271248, 0.048031531274318695, -0.03334183990955353, 0.18393810093402863, -0.12192333489656448, 0.013640858232975006, 0.11541719734668732, -0.0027012412901967764, 0.0496707446873188, 0.17243923246860504, 0.04188285022974014, -0.08176567405462265, 0.013541496358811855, 0.008961692452430725, -0.00850642565637827, -0.20728076994419098, -0.019522199407219887, -0.0609411858022213, -0.016186630353331566, 0.09865057468414307, 0.03630799800157547, -0.012091086246073246, 0.027482442557811737, -0.022098083049058914, -0.02007025107741356, 0.0456673838198185, 0.059158679097890854, 0.060257602483034134, 0.028869707137346268, 0.10504830628633499, -0.016706887632608414, -0.03632062301039696, 0.022370213642716408, 0.01269798818975687, 0.23355188965797424, 0.006269226782023907, 0.19054150581359863, 0.03615102916955948, 0.14144861698150635, 0.003996106330305338, 0.046854689717292786, 0.01856144145131111, -0.006348644383251667, 0.021211208775639534, -0.05675230175256729, -0.026007751002907753, 0.04753446578979492, 0.06731128692626953, 0.04202210530638695, -0.09518426656723022, 0.02576422318816185, 0.039156243205070496, 0.34748247265815735, 0.06185159832239151, -0.2743113338947296, -0.07951328158378601, 0.032346807420253754, -0.08549263328313828, -0.04730010777711868, 0.022275986149907112, 0.13433308899402618, -0.0845756009221077, 0.06260974705219269, -0.07484453916549683, 0.07903623580932617, -0.06715455651283264, 0.01010160706937313, 0.05720118060708046, 0.10531611740589142, -0.005101850256323814, 0.06035136803984642, -0.2755174934864044, 0.2831251621246338, 0.0014249093364924192, 0.09268729388713837, -0.04899132251739502, 0.03470013663172722, 0.043578650802373886, -0.011361961252987385, 0.09370440244674683, -0.006146974861621857, -0.14517316222190857, -0.1681608408689499, -0.0919860452413559, 0.01955370046198368, 0.1195797324180603, -0.05334614962339401, 0.10588875412940979, -0.03629683330655098, -0.0346883200109005, 0.03982775658369064, -0.07505910098552704, -0.10563677549362183, -0.10031473636627197, 0.030432499945163727, 0.040610115975141525, 0.06537414342164993, -0.11249352991580963, -0.08930537849664688, -0.04665743187069893, 0.11207952350378036, -0.10695333778858185, -0.03694086894392967, -0.14707686007022858, 0.058133359998464584, 0.1409071683883667, -0.06190304085612297, 0.040239233523607254, 0.019034039229154587, 0.13973882794380188, 0.012550844810903072, -0.017738576978445053, 0.10605752468109131, -0.08369698375463486, -0.20710128545761108, -0.046728093177080154, 0.1697755604982376, 0.03064585290849209, 0.06408922374248505, -0.011158445850014687, 0.031170936301350594, -0.008526917546987534, -0.06838413327932358, 0.08238845318555832, 0.052435994148254395, -0.007908407598733902, 0.04495573043823242, -0.03295934200286865, -0.02546282298862934, -0.07401977479457855, -0.04800985008478165, 0.12128470093011856, 0.2598097324371338, -0.08021711558103561, 0.059966009110212326, 0.05846349895000458, -0.05795576050877571, -0.16880260407924652, 0.0021361985709518194, 0.10643777996301651, 0.04261678457260132, -0.006612309254705906, -0.19176171720027924, 0.02159285731613636, 0.04617166146636009, -0.035965051501989365, 0.05817553028464317, -0.30065974593162537, -0.13783089816570282, 0.1083725094795227, 0.08858095109462738, -0.025685150176286697, -0.14609591662883759, -0.06539817154407501, -0.020027993246912956, -0.06849584728479385, 0.010985717177391052, -0.04662321135401726, 0.11937971413135529, 0.000135039517772384, 0.04665207862854004, 0.023609036579728127, -0.05464548245072365, 0.13792045414447784, 0.0012242288794368505, 0.0711563304066658, -0.019395051524043083, 0.024618275463581085, 0.013728306628763676, -0.07662307471036911, 0.02545512467622757, -0.07726220041513443, 0.03989283740520477, -0.12986387312412262, -0.01756928116083145, -0.0845290943980217, 0.014991648495197296, -0.037097375839948654, -0.03259088099002838, -0.007209534291177988, 0.056065309792757034, 0.08151734620332718, 0.0067503019236028194, 0.09816556423902512, -0.053516749292612076, 0.13057619333267212, 0.12990915775299072, 0.12511219084262848, -0.01272965781390667, -0.07284227013587952, -0.007468476425856352, -0.011429954320192337, 0.040556229650974274, -0.12647368013858795, 0.050391457974910736, 0.13175572454929352, 0.04202348366379738, 0.15238149464130402, 0.048955053091049194, -0.08954653888940811, 0.005467924289405346, 0.052274491637945175, -0.09477836638689041, -0.18912315368652344, -0.020356830209493637, 0.04359815642237663, -0.14516469836235046, 0.008047857321798801, 0.10869628190994263, -0.03958839923143387, -0.007848067209124565, 0.0024512207601219416, 0.045099202543497086, -0.029463395476341248, 0.21651636064052582, 0.04806916415691376, 0.09624310582876205, -0.09997951239347458, 0.08793578296899796, 0.039655651897192, -0.0886974185705185, 0.05245821177959442, 0.0994967594742775, -0.06894135475158691, -0.020036153495311737, 0.027515865862369537, 0.1149853765964508, 0.08318217098712921, -0.05089738219976425, -0.12493377923965454, -0.14879842102527618, 0.06651557981967926, 0.08343290537595749, 0.025381220504641533, 0.009329410269856453, -0.02398086152970791, 0.02434249222278595, -0.09632841497659683, 0.13170601427555084, 0.08263686299324036, 0.05431235209107399, -0.13152426481246948, 0.12177324295043945, -0.00577030424028635, 0.0017671957612037659, -0.010727276094257832, -0.001484655775129795, -0.10891685634851456, 0.021336708217859268, -0.11966577917337418, -0.012780431658029556, -0.05046489089727402, -0.0018607411766424775, 0.006680782418698072, -0.05901326611638069, -0.04200097918510437, 0.028362920507788658, -0.11484643071889877, -0.042689912021160126, -0.013502550311386585, 0.06100239232182503, -0.08599662035703659, -0.03149084001779556, 0.027791209518909454, -0.11928205192089081, 0.09520313888788223, 0.03927043452858925, -0.0016958422493189573, 0.01101152878254652, -0.08959712833166122, -0.015598984435200691, 0.017520269379019737, -0.0020645796321332455, 0.031001640483736992, -0.172927588224411, -0.023517562076449394, -0.02987833134829998, 0.007039091549813747, -0.006839257664978504, 0.0413350872695446, -0.10858849436044693, 0.003895730711519718, -0.04462243616580963, -0.04056994244456291, -0.06202008202672005, 0.06807085871696472, 0.07662226259708405, 0.016716372221708298, 0.14228081703186035, -0.09160114079713821, 0.050931528210639954, -0.22375141084194183, 0.0014819699572399259, -0.008515959605574608, -0.08865191042423248, -0.06967022269964218, -0.03457804396748543, 0.09909843653440475, -0.06908788532018661, 0.08562289923429489, -0.04315594956278801, 0.032016314566135406, 0.03274841606616974, -0.11071660369634628, 0.026890531182289124, 0.06100240722298622, 0.18850567936897278, 0.026203889399766922, -0.021969271823763847, 0.09183421730995178, -0.012181339785456657, 0.052654437720775604, 0.12203700095415115, 0.11558953672647476, 0.17210523784160614, 0.05318154767155647, 0.08222433179616928, 0.08451883494853973, -0.10235822200775146, -0.12037251144647598, 0.13909082114696503, -0.048546724021434784, 0.13393709063529968, -0.04146641865372658, 0.18339836597442627, 0.10829810053110123, -0.1903795599937439, 0.059832196682691574, -0.038733676075935364, -0.08907435834407806, -0.09492973983287811, -0.0763147845864296, -0.08402113616466522, -0.17629319429397583, 0.009970201179385185, -0.10361171513795853, 0.03815014660358429, 0.05236421525478363, 0.04035466909408569, 0.03101407177746296, 0.13025504350662231, 0.05160524323582649, 0.021371275186538696, 0.12276977300643921, -0.0007916140602901578, -0.021861832588911057, -0.04834705963730812, -0.1127324104309082, 0.057315316051244736, -0.021316275000572205, 0.050726473331451416, -0.04252530261874199, -0.0891295075416565, 0.042109500616788864, 0.0025839763693511486, -0.10918167233467102, 0.027689028531312943, -0.014427478425204754, 0.053681451827287674, 0.05955273285508156, 0.041828643530607224, -0.02220262959599495, -0.01600487343966961, 0.21487995982170105, -0.09768559038639069, -0.07052905112504959, -0.13855557143688202, 0.19243726134300232, -0.01819717325270176, -0.008945575915277004, 0.02183261513710022, -0.07959181815385818, -0.002844404662027955, 0.16680103540420532, 0.14503498375415802, -0.030305977910757065, -0.012391106225550175, 0.0013599497033283114, -0.015147758647799492, -0.042932625859975815, 0.07560157775878906, 0.10698205977678299, 0.0005425053532235324, -0.04867452010512352, -0.008468788117170334, -0.005870891269296408, -0.08438322693109512, -0.04336247220635414, 0.10017748922109604, 0.020242005586624146, 0.00112812127918005, -0.02729235589504242, 0.10474282503128052, -0.04442586749792099, -0.1438562273979187, 0.01639922708272934, -0.1716517060995102, -0.17615990340709686, -0.03444547578692436, 0.054944682866334915, 0.04563671723008156, 0.036900442093610764, 0.001827402040362358, -0.006232840940356255, 0.1150674819946289, -0.0014794230228289962, -0.02525579184293747, -0.09620803594589233, 0.08078684657812119, -0.16439156234264374, 0.17404814064502716, -0.03810995817184448, 0.013987591490149498, 0.12254489958286285, 0.03276549652218819, -0.09090156853199005, 0.03605993092060089, 0.07547664642333984, -0.10811644792556763, 0.038845933973789215, 0.20455482602119446, -0.036746539175510406, 0.13267545402050018, 0.03708923980593681, -0.107340008020401, 0.006251847371459007, -0.09150651097297668, -0.0670047253370285, -0.06805027276277542, 0.00013752000813838094, -0.03284056857228279, 0.1440323293209076, 0.19906312227249146, -0.07761429250240326, -0.003906316589564085, -0.046299468725919724, 0.01566419005393982, 0.038966622203588486, 0.09147922694683075, -0.03739423677325249, -0.26725295186042786, 0.008839225396513939, 0.015560119412839413, 0.014550378546118736, -0.2074654996395111, -0.09250697493553162, 0.004221246112138033, -0.05206821858882904, -0.05326412245631218, 0.1258159577846527, 0.0994449034333229, 0.05461075156927109, -0.053152214735746384, -0.11570744961500168, -0.023125790059566498, 0.18114633858203888, -0.16908112168312073, -0.042597223073244095 ]
null
null
null
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "tags": ["autotrain", "text-generation"], "widget": [{"text": "I love AutoTrain because "}], "base_model": "mistralai/Mistral-7B-Instruct-v0.2"}
text-generation
ai-made-approachable/finetuning_test
[ "safetensors", "autotrain", "text-generation", "conversational", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "license:other", "endpoints_compatible", "region:us" ]
2024-02-06T13:26:20+00:00
[]
[]
TAGS #safetensors #autotrain #text-generation #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-other #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#safetensors #autotrain #text-generation #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-other #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ 56, 29, 3 ]
[ "passage: TAGS\n#safetensors #autotrain #text-generation #conversational #base_model-mistralai/Mistral-7B-Instruct-v0.2 #license-other #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.# Usage" ]
[ -0.06724252551794052, 0.0259409062564373, 0.00006227246922207996, 0.06247992068529129, 0.11910415440797806, -0.03279794380068779, 0.22944504022598267, 0.03998691588640213, -0.020146971568465233, -0.06980428844690323, 0.18533410131931305, 0.16330601274967194, -0.04787760227918625, 0.20726825296878815, -0.04784656688570976, -0.2383301705121994, 0.04668790474534035, -0.037107594311237335, 0.14291886985301971, 0.10727367550134659, 0.15590573847293854, -0.08432292938232422, 0.06522257626056671, 0.01830451190471649, -0.18368911743164062, 0.023164834827184677, 0.05761794000864029, -0.10667441040277481, 0.1787600964307785, 0.03703957051038742, 0.10950827598571777, 0.04230181872844696, 0.16299645602703094, -0.08057494461536407, 0.02163313515484333, -0.007245239801704884, -0.004608385264873505, 0.07612644881010056, 0.07664509117603302, -0.0013105195248499513, 0.06694700568914413, 0.1817726045846939, 0.10523822158575058, 0.03576244041323662, -0.10141602903604507, 0.03457658737897873, -0.030940381810069084, 0.05170644819736481, 0.1499553918838501, 0.11731047183275223, -0.008328991942107677, 0.21553093194961548, -0.13818301260471344, 0.08398108929395676, -0.07589231431484222, -0.2617109715938568, -0.02991887740790844, 0.2038533240556717, 0.053639937192201614, 0.02874361351132393, -0.10053689777851105, 0.034666694700717926, 0.1230594590306282, -0.019932011142373085, 0.002395062241703272, -0.017914393916726112, -0.027002422139048576, -0.016489123925566673, -0.09062004834413528, 0.025547510012984276, 0.22648043930530548, -0.045220863074064255, -0.044217146933078766, -0.055652935057878494, -0.04069245606660843, 0.05158759281039238, -0.013106240890920162, -0.12146324664354324, -0.0312885083258152, 0.08774018287658691, 0.02023169957101345, -0.017297763377428055, -0.14115045964717865, -0.07388457655906677, -0.0619569756090641, 0.0602557435631752, -0.0018113326514139771, 0.003572676796466112, -0.08350658416748047, 0.11438941955566406, -0.05386040359735489, -0.10996739566326141, 0.033897433429956436, -0.09493318945169449, 0.025924034416675568, -0.11786570399999619, -0.007734436076134443, -0.087517149746418, 0.01642918772995472, 0.23558053374290466, 0.15509279072284698, 0.02074628695845604, -0.06038137525320053, 0.037567343562841415, 0.005572691559791565, 0.09630079567432404, 0.02190171554684639, -0.060240667313337326, 0.09245552867650986, 0.006550097372382879, 0.0011860550148412585, -0.02416038326919079, -0.19691285490989685, 0.00790195632725954, 0.01296342071145773, 0.054517053067684174, -0.05956176668405533, 0.0720277801156044, -0.022599725052714348, 0.036789827048778534, 0.08541450649499893, -0.039229776710271835, 0.027013009414076805, -0.0400870256125927, -0.010909324511885643, -0.09491851180791855, 0.03824179247021675, 0.11009184271097183, 0.03812051936984062, 0.09441923350095749, -0.09106659889221191, -0.027965424582362175, -0.09710020571947098, -0.04731038212776184, 0.005813064053654671, 0.03711695596575737, 0.05180960148572922, -0.20760318636894226, -0.2904219329357147, -0.021875282749533653, 0.06204499304294586, -0.047345731407403946, -0.07502087205648422, -0.08901365846395493, 0.01892228052020073, 0.049817271530628204, -0.03153357654809952, 0.05903938040137291, -0.022646872326731682, 0.020768536254763603, -0.045693546533584595, 0.01141455676406622, -0.09643756598234177, -0.00009920958109432831, -0.14096245169639587, -0.016838036477565765, -0.03384006768465042, 0.0021336583886295557, -0.03752991184592247, 0.15335609018802643, -0.03509020432829857, 0.04976244643330574, -0.01367301307618618, 0.03241609409451485, 0.05582869425415993, 0.17936201393604279, -0.14538069069385529, 0.02318381704390049, 0.08183462917804718, -0.12264750152826309, -0.11863051354885101, 0.12215437740087509, -0.08854985982179642, 0.24735799431800842, 0.08465860038995743, 0.11423449963331223, 0.013721346855163574, -0.11627481132745743, 0.15309666097164154, 0.007260917220264673, -0.0847395732998848, -0.03697143867611885, 0.020161524415016174, 0.004116463474929333, -0.22784925997257233, 0.04330969974398613, 0.07097747176885605, 0.05268995836377144, -0.037895213812589645, -0.08697500079870224, -0.02380210906267166, -0.07181747257709503, 0.04636445268988609, -0.00008490130858263001, 0.1175205186009407, -0.07316429167985916, -0.023535598069429398, 0.012124009430408478, 0.08227767795324326, 0.0722254142165184, -0.06393498927354813, -0.06354806572198868, 0.03627186641097069, -0.04988118261098862, -0.0007692828075960279, -0.07645207643508911, -0.028293097391724586, -0.019687887281179428, 0.16687214374542236, 0.04200056195259094, 0.0982765331864357, 0.047555647790431976, 0.07323601096868515, -0.026086941361427307, -0.0117459362372756, 0.16545216739177704, 0.04704940691590309, -0.13220012187957764, -0.12320993095636368, 0.0947781428694725, -0.0947227030992508, 0.13576753437519073, -0.2555062770843506, 0.025467434898018837, -0.13048692047595978, 0.08190186321735382, -0.016175085678696632, 0.07943223416805267, -0.07517624646425247, 0.003109661163762212, -0.09011664241552353, 0.00028882984770461917, 0.06847713887691498, 0.049559395760297775, -0.022920802235603333, 0.09955358505249023, -0.1537470519542694, 0.21298383176326752, 0.09440983086824417, -0.08672918379306793, -0.10197890549898148, -0.121750108897686, 0.004892067983746529, -0.01638077385723591, -0.0763876810669899, 0.0016926100943237543, 0.08307335525751114, -0.05283163860440254, 0.17438235878944397, -0.026642316952347755, -0.004814113490283489, -0.011452331207692623, -0.10433649271726608, -0.02655709907412529, 0.002544050570577383, 0.06757023185491562, -0.24599763751029968, 0.12220106273889542, 0.1553095430135727, -0.05507773533463478, 0.185589998960495, 0.05067241191864014, 0.014205856248736382, -0.0002648485533427447, -0.015861939638853073, -0.011495779268443584, 0.03382152318954468, -0.060285162180662155, -0.007445422001183033, 0.01242451649159193, 0.0146833136677742, 0.02732047624886036, -0.1262226700782776, -0.04350553825497627, 0.003218972822651267, 0.06660354137420654, 0.014335211366415024, 0.05139780044555664, -0.09965024888515472, 0.08660255372524261, -0.01578809879720211, -0.1751568466424942, 0.11036968976259232, 0.019141755998134613, -0.12768468260765076, 0.1685667783021927, -0.1006421446800232, -0.144087016582489, -0.1751249134540558, -0.13147176802158356, -0.006887486670166254, 0.09281735122203827, 0.05471096187829971, -0.07424018532037735, -0.07651647925376892, -0.024549975991249084, -0.13365204632282257, 0.04316522926092148, -0.03379648178815842, -0.06548913568258286, 0.04854857921600342, -0.0010959291830658913, -0.10996066778898239, -0.03472329303622246, -0.005956264212727547, -0.0690254494547844, 0.0513947494328022, -0.05064228177070618, 0.05304089933633804, 0.1557302325963974, -0.023532971739768982, 0.016880182549357414, -0.005465157795697451, 0.19381161034107208, -0.056330498307943344, 0.02661963179707527, 0.11045549064874649, -0.04994776099920273, 0.025707490742206573, 0.262809693813324, 0.017049824818968773, -0.07368645817041397, 0.07467252016067505, -0.06098439544439316, -0.04202459380030632, -0.18525360524654388, -0.10092701017856598, -0.010517461225390434, -0.004575007129460573, 0.08131785690784454, 0.049546029418706894, 0.23839479684829712, 0.14417919516563416, 0.04868001863360405, 0.024345921352505684, 0.043357837945222855, 0.10582546889781952, 0.07085946947336197, -0.04333053156733513, 0.16133256256580353, -0.05808921903371811, -0.1282070130109787, 0.04747354984283447, -0.0005356066976673901, 0.036720793694257736, 0.1477772444486618, -0.05882345512509346, 0.02144661359488964, 0.11799152940511703, 0.13160592317581177, 0.12604792416095734, 0.06715092808008194, -0.07142800092697144, -0.022467242553830147, -0.01871480606496334, -0.0664752945303917, 0.150552898645401, -0.058200690895318985, -0.021010862663388252, -0.035808928310871124, 0.06019159033894539, 0.03440103679895401, 0.05969955027103424, 0.02754610776901245, -0.29697155952453613, -0.013530355878174305, 0.03855394199490547, -0.02989794686436653, -0.10441109538078308, 0.07602813839912415, 0.004941931925714016, -0.1388004720211029, -0.007204022258520126, -0.021278388798236847, 0.08442416042089462, 0.07126782089471817, 0.05781989544630051, -0.09766345471143723, 0.0016587000573053956, -0.05430757999420166, 0.1326259970664978, -0.34278446435928345, 0.2469128668308258, -0.006999587174504995, 0.07153522223234177, -0.09370721876621246, 0.008026203140616417, 0.08511417359113693, 0.2244851142168045, 0.10253608971834183, -0.043656326830387115, -0.18396922945976257, -0.11896657198667526, -0.08072496205568314, -0.0019152330933138728, -0.021027881652116776, 0.03152693808078766, -0.015243333764374256, -0.10567296296358109, -0.01646796055138111, 0.04879288747906685, 0.010125242173671722, -0.1997523307800293, -0.12589198350906372, -0.00886855274438858, 0.03345395624637604, 0.09169581532478333, -0.045709870755672455, -0.06965883821249008, -0.04998878389596939, 0.15221761167049408, 0.04695656895637512, 0.023265628144145012, -0.12388531118631363, -0.019925635308027267, -0.04335528239607811, -0.041589751839637756, 0.06462976336479187, -0.0054697394371032715, 0.1114441305398941, -0.07935706526041031, -0.04717918485403061, 0.10749011486768723, -0.14506913721561432, -0.05912652611732483, -0.1208028793334961, 0.01929246261715889, -0.024788355454802513, -0.013188163749873638, 0.11046674102544785, 0.036930155009031296, -0.06629254668951035, -0.05825125053524971, -0.01915600709617138, 0.0003825050371233374, 0.017588458955287933, -0.11392790079116821, -0.12221372872591019, -0.16582049429416656, -0.023776963353157043, -0.1144179031252861, 0.1807105839252472, 0.173519566655159, -0.07954716682434082, 0.1155925840139389, 0.2781819999217987, -0.08402930945158005, -0.28042683005332947, -0.03474842384457588, -0.03870438411831856, 0.013162284158170223, 0.03508612886071205, -0.07607178390026093, 0.07470924407243729, 0.030930599197745323, -0.0844525694847107, -0.04796181991696358, -0.10027704387903214, -0.15614785254001617, 0.24962218105793, 0.040857549756765366, 0.24718274176120758, -0.0548328272998333, -0.043672826141119, -0.1296379715204239, 0.004886746872216463, -0.005849763285368681, -0.06839195638895035, 0.04575197771191597, 0.035772811621427536, 0.06972657889127731, 0.029637109488248825, -0.040616098791360855, 0.07582985609769821, -0.07078693062067032, 0.08526834845542908, -0.1796233206987381, -0.05566120147705078, 0.022636180743575096, -0.029035987332463264, 0.1155390664935112, -0.014397241175174713, 0.04322657734155655, -0.01717963255941868, -0.05045565217733383, 0.01322524156421423, 0.052106406539678574, -0.013733887113630772, -0.12393003702163696, 0.03334346413612366, 0.02004643715918064, -0.0167239923030138, -0.06344440579414368, 0.027308287099003792, -0.03192095085978508, 0.12836743891239166, 0.17139729857444763, 0.19997967779636383, -0.11614913493394852, 0.10503679513931274, -0.009371055290102959, -0.10245351493358612, 0.08829757571220398, -0.06374817341566086, 0.011924952268600464, 0.061661697924137115, -0.05656895041465759, 0.15452931821346283, 0.052715569734573364, -0.004313131328672171, -0.004205883014947176, 0.1458073854446411, -0.15102626383304596, 0.054933417588472366, -0.07193693518638611, 0.1589880734682083, 0.040665168315172195, 0.005845577921718359, 0.10445261001586914, -0.09691835194826126, -0.024591941386461258, 0.0048520686104893684, 0.008071772754192352, -0.051292091608047485, 0.11128901690244675, 0.05375318601727486, 0.02569960243999958, -0.05984562262892723, 0.042274124920368195, 0.06552521884441376, 0.03115932084619999, 0.03605695813894272, 0.036574896425008774, -0.10400983691215515, -0.12123818695545197, 0.034243494272232056, 0.23833633959293365, -0.15902142226696014, -0.08175966143608093, -0.024471767246723175, -0.07750488072633743, -0.0009347990853711963, 0.053174007683992386, 0.06882383674383163, -0.005835209973156452, -0.05472824349999428, -0.030678246170282364, -0.11674772202968597, 0.10018884390592575, 0.02000809833407402, 0.06512627750635147, -0.1559913605451584, 0.04549244046211243, -0.0517321415245533, -0.02132023498415947, -0.07990562170743942, -0.04097794368863106, -0.13169194757938385, 0.023983344435691833, -0.14632631838321686, -0.02886596880853176, -0.06396294385194778, -0.00043585276580415666, 0.0488772913813591, -0.025753164663910866, -0.012168731540441513, -0.0023233925458043814, -0.09137222915887833, 0.047099657356739044, -0.0004793849366251379, 0.039327215403318405, -0.023589983582496643, -0.020522842183709145, 0.019922878593206406, 0.0001745589979691431, 0.058263421058654785, 0.021749185398221016, -0.014937145635485649, 0.041505906730890274, -0.2202080488204956, 0.012883134186267853, 0.05365940183401108, 0.0059513067826628685, 0.04615842178463936, -0.05766093730926514, -0.0006918657454662025, 0.09827623516321182, 0.026095464825630188, 0.02226860821247101, 0.07577552646398544, -0.0873168557882309, 0.0311773419380188, 0.07701914012432098, -0.16384698450565338, -0.041225746273994446, -0.02538463845849037, 0.008819508366286755, -0.04822546988725662, 0.1956845223903656, -0.13032568991184235, 0.03567639738321304, -0.03676456958055496, 0.02440500073134899, -0.02371009811758995, -0.10422283411026001, -0.13869768381118774, -0.10616307705640793, -0.025731505826115608, -0.0005703833885490894, 0.17335514724254608, 0.09967918694019318, -0.003962457180023193, 0.02923307754099369, 0.04676583409309387, 0.11719442158937454, 0.013435602188110352, 0.1815994530916214, 0.08874024450778961, 0.01413995772600174, -0.13506992161273956, 0.08954393118619919, 0.04812069609761238, -0.04895566776394844, -0.006306542083621025, -0.0047992835752666, -0.07502574473619461, 0.07080763578414917, 0.05837026238441467, -0.05544707179069519, -0.07275605946779251, -0.14620019495487213, -0.09885838627815247, 0.012462963350117207, -0.09998729825019836, -0.006230782717466354, 0.2142539620399475, -0.05757782608270645, -0.04683050513267517, -0.09578511118888855, -0.05581434816122055, -0.19578762352466583, -0.18434372544288635, -0.11333192139863968, -0.10086056590080261, 0.0322098582983017, -0.027483422309160233, 0.03902320936322212, -0.015274167992174625, 0.05011584982275963, -0.0679054781794548, 0.08710532635450363, -0.08730173856019974, 0.0216007512062788, -0.01633583940565586, -0.03913118317723274, 0.007564682513475418, -0.15447449684143066, -0.030063370242714882, -0.11065223813056946, -0.03929533809423447, -0.040912363678216934, -0.03967621922492981, 0.012120827101171017, -0.00297151249833405, 0.009260019287467003, -0.024583883583545685, -0.009217612445354462, 0.03109070472419262, 0.02532304637134075, 0.086465984582901, 0.01426637452095747, 0.019983621314167976, 0.04333687946200371, 0.2092261165380478, -0.027050387114286423, -0.19241075217723846, -0.14449277520179749, 0.24634508788585663, 0.013653881847858429, 0.11419390887022018, -0.06305138766765594, -0.02272152155637741, 0.07126813381910324, 0.26811203360557556, 0.2591857612133026, -0.052802421152591705, 0.007891979068517685, -0.03747430443763733, -0.010065235197544098, -0.05433196574449539, 0.16949911415576935, 0.019467899575829506, 0.11795251071453094, -0.05297752469778061, 0.06736323237419128, -0.013898628763854504, -0.08622678369283676, -0.05033872276544571, 0.09353985637426376, -0.026151174679398537, -0.0172877237200737, -0.030894450843334198, 0.06495533883571625, -0.036565955728292465, 0.15097956359386444, -0.12383222579956055, -0.022421373054385185, -0.0709821954369545, 0.0302826426923275, 0.10700011253356934, -0.00021731464948970824, 0.048048585653305054, -0.04743759706616402, -0.012616111896932125, 0.039936915040016174, -0.04796399921178818, -0.06029573082923889, -0.08947014808654785, 0.07778789848089218, 0.02398032508790493, 0.2531774342060089, -0.007719244807958603, 0.07234285026788712, 0.08161871135234833, 0.0008995247771963477, -0.12850680947303772, 0.12340943515300751, 0.01151083130389452, -0.06356046348810196, 0.11453606933355331, 0.00115738355088979, -0.010617904365062714, 0.026083646342158318, -0.008235394954681396, -0.19913668930530548, 0.11871037632226944, -0.08343751728534698, -0.09178885072469711, -0.0558912456035614, 0.14079558849334717, -0.015174614265561104, 0.17096109688282013, 0.04820401221513748, -0.031149577349424362, -0.011190734803676605, -0.03561439365148544, 0.09989883750677109, 0.015457424335181713, -0.09024881571531296, -0.021578744053840637, -0.22103692591190338, 0.0018095594132319093, 0.08232564479112625, -0.023636844009160995, -0.21689091622829437, -0.08386813849210739, -0.09879954159259796, -0.0389091931283474, -0.10872962325811386, 0.06618939340114594, 0.20100338757038116, 0.02977903187274933, -0.012522434815764427, -0.16307082772254944, -0.027465766295790672, 0.04448603093624115, -0.03324935957789421, -0.1144222766160965 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
areegtarek/patientcommunication-4bit
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
2024-02-06T13:32:50+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 63, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.04107276722788811, 0.18429043889045715, -0.005466660484671593, 0.01707964763045311, 0.09889248013496399, 0.006426886655390263, 0.0552387572824955, 0.11628306657075882, -0.04961670935153961, 0.12391628324985504, 0.04131103307008743, 0.10889437794685364, 0.11733400076627731, 0.14055128395557404, -0.0011570020578801632, -0.21881097555160522, 0.04984959214925766, -0.10812798142433167, -0.010629421100020409, 0.1229625791311264, 0.14664164185523987, -0.10059566050767899, 0.0685141384601593, -0.03650353476405144, -0.018727488815784454, -0.037872105836868286, -0.06369106471538544, -0.04232647642493248, 0.040759239345788956, 0.05543952435255051, 0.06582973897457123, 0.0008197632851079106, 0.08302918821573257, -0.27891653776168823, 0.019616063684225082, 0.06732217967510223, -0.001859458046965301, 0.06605353951454163, 0.0656529888510704, -0.06341347843408585, 0.10816936939954758, -0.05340541526675224, 0.1388159543275833, 0.0840948224067688, -0.09252381324768066, -0.1801718920469284, -0.09092263877391815, 0.10972056537866592, 0.17807576060295105, 0.04927121847867966, -0.027590133249759674, 0.10392458736896515, -0.08213759958744049, 0.018306581303477287, 0.05128932744264603, -0.08673480898141861, -0.05636805668473244, 0.06892803311347961, 0.0909840315580368, 0.05535217374563217, -0.127517431974411, -0.033952608704566956, 0.005268120672553778, 0.017083169892430305, 0.07191447168588638, 0.02225526049733162, 0.15091390907764435, 0.03642427921295166, -0.13347287476062775, -0.052214302122592926, 0.10417953133583069, 0.039806388318538666, -0.04001800715923309, -0.2435668408870697, -0.026749979704618454, -0.023580020293593407, -0.03506208956241608, -0.04501988738775253, 0.040063899010419846, -0.0024812635965645313, 0.0845893919467926, -0.007499109022319317, -0.0730346143245697, -0.032884787768125534, 0.06573588401079178, 0.063177689909935, 0.029224421828985214, -0.020591720938682556, 0.022940656170248985, 0.10680833458900452, 0.09384170919656754, -0.11641748249530792, -0.05923080071806908, -0.06575440615415573, -0.07281184196472168, -0.043026648461818695, 0.03432915359735489, 0.016957378014922142, 0.0712345615029335, 0.2568737864494324, 0.015325438231229782, 0.05812793970108032, 0.030348559841513634, 0.007086529396474361, 0.051940593868494034, 0.10396376997232437, -0.06229512766003609, -0.11413563787937164, -0.021461904048919678, 0.08955145627260208, 0.018870148807764053, -0.03690025582909584, -0.0473799966275692, 0.06586680561304092, 0.04421477019786835, 0.11019476503133774, 0.09768681228160858, 0.019824521616101265, -0.0734618529677391, -0.06183047220110893, 0.2012585699558258, -0.1553279310464859, 0.0378098301589489, 0.04337082803249359, -0.03577252849936485, -0.02073810063302517, 0.008140976540744305, 0.026272648945450783, -0.03220336139202118, 0.0870632603764534, -0.05507489666342735, -0.04573002830147743, -0.1106005385518074, -0.031349990516901016, 0.04460166394710541, 0.01050558965653181, -0.034751567989587784, -0.03554822877049446, -0.07533694058656693, -0.08437393605709076, 0.08658894151449203, -0.06975018978118896, -0.057597868144512177, -0.027681710198521614, -0.08278068900108337, 0.023360921069979668, 0.020822593942284584, 0.0743173137307167, -0.025394825264811516, 0.0548558309674263, -0.053450483828783035, 0.05534251779317856, 0.10136574506759644, 0.03449949249625206, -0.05991470813751221, 0.05828521400690079, -0.22980304062366486, 0.08651042729616165, -0.0686769187450409, 0.0635417103767395, -0.15884330868721008, -0.025311613455414772, 0.035479720681905746, 0.0039023179560899734, -0.005805973429232836, 0.13394178450107574, -0.20890115201473236, -0.024045290425419807, 0.1660108119249344, -0.09623157232999802, -0.07049477100372314, 0.052300989627838135, -0.04749181121587753, 0.1015239804983139, 0.03422097489237785, 0.0028637154027819633, 0.06358838081359863, -0.10867808759212494, -0.009417007677257061, -0.05510617420077324, -0.024897700175642967, 0.14054812490940094, 0.07615227997303009, -0.07858359813690186, 0.06282083690166473, 0.022458016872406006, -0.023672401905059814, -0.06433894485235214, -0.01893056184053421, -0.10131831467151642, 0.01600930653512478, -0.06640354543924332, 0.014057212509214878, -0.01763610914349556, -0.09435714781284332, -0.02923819050192833, -0.16873657703399658, -0.02738712728023529, 0.08095064759254456, -0.0036453690845519304, -0.014766527339816093, -0.11192154884338379, 0.02360657975077629, 0.03575372323393822, 0.004308606963604689, -0.13218367099761963, -0.038643669337034225, 0.03360716253519058, -0.15031422674655914, 0.03721858188509941, -0.07071434706449509, 0.05296730995178223, 0.015814051032066345, -0.028946246951818466, -0.026068145409226418, 0.02240581624209881, 0.009327845647931099, -0.01549700926989317, -0.23842118680477142, -0.024945400655269623, -0.030812138691544533, 0.16146178543567657, -0.2060156911611557, 0.0347215011715889, 0.08237865567207336, 0.15714368224143982, 0.004293185658752918, -0.05037878081202507, 0.018603991717100143, -0.06939104199409485, -0.023690514266490936, -0.05550501495599747, 0.00425359234213829, -0.019322706386446953, -0.047018662095069885, 0.02767501398921013, -0.17775531113147736, -0.048257146030664444, 0.09694717079401016, 0.04846562072634697, -0.12656573951244354, -0.027750778943300247, -0.03659443557262421, -0.05207927152514458, -0.04021235555410385, -0.062280114740133286, 0.1025606319308281, 0.062151361256837845, 0.03721151500940323, -0.060664571821689606, -0.07998596131801605, -0.005254825577139854, -0.015869658440351486, -0.025883622467517853, 0.09547285735607147, 0.07314612716436386, -0.13318641483783722, 0.09358029067516327, 0.08555903285741806, 0.07665112614631653, 0.09008699655532837, -0.021513260900974274, -0.0734030082821846, -0.03775930777192116, 0.03842119127511978, 0.01799904927611351, 0.12194488197565079, -0.04294387623667717, 0.042145516723394394, 0.0407242551445961, -0.026636878028512, 0.01757904887199402, -0.07903152704238892, 0.03391219675540924, 0.021363548934459686, -0.015404801815748215, 0.05207730829715729, -0.03648284450173378, 0.019491707906126976, 0.08773515373468399, 0.05895758792757988, 0.04076753929257393, 0.015477783046662807, -0.05245675891637802, -0.11156144738197327, 0.1588587909936905, -0.12423332780599594, -0.21536298096179962, -0.1318657398223877, 0.011994147673249245, 0.027378013357520103, -0.015752362087368965, 0.00472033629193902, -0.06156763806939125, -0.10836432874202728, -0.09137389808893204, 0.006965515669435263, 0.05607304349541664, -0.08397942781448364, -0.057693157345056534, 0.045506685972213745, 0.03968849778175354, -0.14271289110183716, 0.020852934569120407, 0.0429975800216198, -0.09161601960659027, -0.010225369594991207, 0.07823923975229263, 0.07498764246702194, 0.18603990972042084, 0.021536244079470634, -0.019713889807462692, 0.029369689524173737, 0.22151710093021393, -0.13627390563488007, 0.11189884692430496, 0.1317344307899475, -0.08768384158611298, 0.0811038687825203, 0.21081633865833282, 0.04229486733675003, -0.09574094414710999, 0.030903132632374763, 0.029754992574453354, -0.023434791713953018, -0.23411248624324799, -0.07023821771144867, -0.0005590264336206019, -0.06695892661809921, 0.07743334025144577, 0.095066137611866, 0.07732266187667847, 0.016324089840054512, -0.09633003175258636, -0.0940609723329544, 0.06234998628497124, 0.10914576053619385, 0.013988446444272995, -0.0083477683365345, 0.08871278911828995, -0.03466309234499931, 0.014458059333264828, 0.08648307621479034, 0.004773330874741077, 0.16410057246685028, 0.04966660216450691, 0.1783807873725891, 0.08461165428161621, 0.0707983523607254, 0.0036198562011122704, 0.006051016505807638, 0.01179120410233736, 0.04098048433661461, -0.006200188305228949, -0.08307646214962006, -0.024332163855433464, 0.10978074371814728, 0.06830116361379623, 0.018119553104043007, 0.01537923514842987, -0.0483124777674675, 0.08804096281528473, 0.17867277562618256, 0.00015456941036973149, -0.18041066825389862, -0.05957181379199028, 0.0758126825094223, -0.09812118113040924, -0.10091771185398102, -0.009177285246551037, 0.016242317855358124, -0.16525320708751678, 0.037138622254133224, -0.020507901906967163, 0.10839620232582092, -0.1315004527568817, -0.01726866327226162, 0.07468607276678085, 0.07066181302070618, -0.0023129789624363184, 0.05676833167672157, -0.1800561100244522, 0.10016647726297379, 0.011189276352524757, 0.0706777423620224, -0.09628693759441376, 0.09071888029575348, -0.008443507365882397, -0.02712937630712986, 0.14120987057685852, -0.003397545777261257, -0.07548630982637405, -0.06316021829843521, -0.09301228821277618, -0.011178667657077312, 0.12596110999584198, -0.12770214676856995, 0.09133239090442657, -0.033733878284692764, -0.03574102371931076, -0.010073747485876083, -0.08690870553255081, -0.1102650910615921, -0.17856551706790924, 0.05966923385858536, -0.1299193650484085, 0.03618106618523598, -0.1058541014790535, -0.026455020532011986, -0.025722770020365715, 0.1780775636434555, -0.24061058461666107, -0.07271577417850494, -0.14271517097949982, -0.09457890689373016, 0.13225026428699493, -0.04737140238285065, 0.08879992365837097, -0.01565241813659668, 0.1602710634469986, 0.019751977175474167, -0.019318873062729836, 0.08594216406345367, -0.0841052308678627, -0.19547666609287262, -0.06833874434232712, 0.16493964195251465, 0.12200415879487991, 0.034798283129930496, 0.00001234960109286476, 0.03777633607387543, -0.021238334476947784, -0.11896125227212906, 0.02185136452317238, 0.15354816615581512, 0.06429044902324677, 0.010137155652046204, -0.023354806005954742, -0.11455096304416656, -0.07674204558134079, -0.028791263699531555, 0.032510749995708466, 0.1711813509464264, -0.07065609097480774, 0.17291003465652466, 0.14641587436199188, -0.05902004987001419, -0.20745272934436798, -0.00104529841337353, 0.027895038947463036, -0.009799708612263203, 0.01052815094590187, -0.18731199204921722, 0.08426815271377563, -0.0027930939104408026, -0.053573500365018845, 0.10236258804798126, -0.16446185111999512, -0.13778766989707947, 0.08314235508441925, 0.05050567165017128, -0.1846107542514801, -0.13593068718910217, -0.0956527590751648, -0.04017403721809387, -0.16093777120113373, 0.094541534781456, 0.020600248128175735, 0.011286545544862747, 0.031222112476825714, 0.01729961298406124, 0.024437133222818375, -0.04827499762177467, 0.1766505390405655, -0.017875220626592636, 0.023337768390774727, -0.09548802673816681, -0.08213721215724945, 0.018314361572265625, -0.05043570697307587, 0.07148107886314392, -0.019170429557561874, 0.010796970687806606, -0.10002472996711731, -0.036158230155706406, -0.04323146492242813, 0.01651306450366974, -0.09900262951850891, -0.08600834012031555, -0.04710615426301956, 0.09495867788791656, 0.09545248001813889, -0.02352539822459221, -0.024527089670300484, -0.07954668998718262, 0.057502321898937225, 0.20494122803211212, 0.18888618052005768, 0.0420912466943264, -0.060861583799123764, -0.0007815357530489564, -0.01528065837919712, 0.04347316175699234, -0.1974499374628067, 0.05885709822177887, 0.05645278841257095, 0.020958000794053078, 0.1056937575340271, -0.019571878015995026, -0.15761134028434753, -0.07663667947053909, 0.06839237362146378, -0.0623336136341095, -0.20320051908493042, 0.01006594579666853, 0.06082194298505783, -0.17550897598266602, -0.03924595192074776, 0.047061655670404434, -0.0033835566136986017, -0.03930600732564926, 0.024218931794166565, 0.09521005302667618, 0.0040947855450212955, 0.0774473026394844, 0.06932910531759262, 0.08241982758045197, -0.0995473861694336, 0.08199375867843628, 0.09614647924900055, -0.07453403621912003, 0.028697360306978226, 0.10224969685077667, -0.05786004289984703, -0.03986092656850815, 0.03258426487445831, 0.08356176316738129, 0.026442093774676323, -0.04274778440594673, 0.012539389543235302, -0.0972883403301239, 0.06648266315460205, 0.10121845453977585, 0.029486022889614105, 0.017875563353300095, 0.0438971146941185, 0.046800848096609116, -0.07319830358028412, 0.1247049942612648, 0.03236815705895424, 0.015036910772323608, -0.039863456040620804, -0.04264143109321594, 0.009134208783507347, -0.032499782741069794, -0.0050306725315749645, -0.022684602066874504, -0.08841663599014282, -0.015251140110194683, -0.13281330466270447, -0.00814450066536665, -0.06321382522583008, 0.014864852651953697, 0.028430765494704247, -0.03241420537233353, 0.006226730532944202, 0.005371582228690386, -0.07067935168743134, -0.06628155708312988, -0.013359855860471725, 0.09593217074871063, -0.164642333984375, 0.025939282029867172, 0.08370168507099152, -0.11173626035451889, 0.09951487928628922, 0.01100022904574871, -0.007797855418175459, 0.02429228089749813, -0.14975731074810028, 0.03672046959400177, -0.03686909377574921, 0.00826497282832861, 0.022785359993577003, -0.20199745893478394, -0.00023884387337602675, -0.034025534987449646, -0.06921693682670593, -0.007965313270688057, -0.024753388017416, -0.11103565245866776, 0.10458120703697205, 0.0002950492489617318, -0.08280477672815323, -0.029978938400745392, 0.031977053731679916, 0.07958480715751648, -0.027453763410449028, 0.15224815905094147, -0.013632738031446934, 0.06552384793758392, -0.15841995179653168, -0.011964929290115833, -0.01016872376203537, 0.014539518393576145, -0.03842446580529213, -0.007748632226139307, 0.05015689507126808, -0.015035315416753292, 0.1729361116886139, -0.037935223430395126, 0.013986855745315552, 0.06666132807731628, 0.046996477991342545, -0.03511105850338936, 0.09919431805610657, 0.05079413577914238, 0.01744815893471241, 0.008659602142870426, 0.011847072280943394, -0.04212842136621475, -0.038148507475852966, -0.19158609211444855, 0.07039409875869751, 0.18760721385478973, 0.09802322834730148, -0.02246714197099209, 0.07361312955617905, -0.09906915575265884, -0.0919000506401062, 0.15422968566417694, -0.03650514408946037, -0.007622900884598494, -0.07365479320287704, 0.13077658414840698, 0.14880754053592682, -0.18213480710983276, 0.06703998148441315, -0.07155536860227585, -0.042435649782419205, -0.10888257622718811, -0.19546253979206085, -0.06245911121368408, -0.04822525382041931, -0.018525561317801476, -0.047860633581876755, 0.06643376499414444, 0.05883597210049629, 0.0012075765989720821, -0.007492885459214449, 0.06769093126058578, -0.03296395391225815, -0.0035727631766349077, 0.028557414188981056, 0.0605304129421711, 0.009092770516872406, -0.03663676232099533, 0.017620893195271492, -0.009870080277323723, 0.05314849689602852, 0.07527779787778854, 0.04976372793316841, -0.02661348506808281, 0.018153073266148567, -0.04167592152953148, -0.10696607828140259, 0.049551915377378464, -0.027341017499566078, -0.07445981353521347, 0.15360838174819946, 0.020564887672662735, 0.004388691857457161, -0.012038860470056534, 0.23854023218154907, -0.06319069117307663, -0.10509941726922989, -0.14511722326278687, 0.07529381662607193, -0.04123938828706741, 0.05031263083219528, 0.03968263044953346, -0.10978218168020248, 0.026148788630962372, 0.1434495449066162, 0.1547095775604248, -0.039126113057136536, 0.022912416607141495, 0.03374101594090462, 0.008956367149949074, -0.023304572328925133, 0.03796272352337837, 0.06387558579444885, 0.1512088030576706, -0.0479457788169384, 0.0797942504286766, -0.0006020418368279934, -0.08719385415315628, -0.03671582415699959, 0.11214786022901535, -0.009403618052601814, 0.0136125348508358, -0.05995306745171547, 0.11950281262397766, -0.07238344103097916, -0.2178061157464981, 0.040135592222213745, -0.07077405601739883, -0.13199284672737122, -0.02403392642736435, 0.07905852794647217, -0.01147072110325098, 0.022253720089793205, 0.07827538251876831, -0.07115045189857483, 0.18890751898288727, 0.038776300847530365, -0.058570344001054764, -0.05077022314071655, 0.07556261867284775, -0.07555456459522247, 0.29114294052124023, 0.015565842390060425, 0.041523341089487076, 0.11074405163526535, -0.015121901407837868, -0.14093846082687378, 0.02415761910378933, 0.09602424502372742, -0.09811476618051529, 0.05229158699512482, 0.18022818863391876, 0.0020607570186257362, 0.12836496531963348, 0.07837866246700287, -0.0887366384267807, 0.04519768804311752, -0.07400911301374435, -0.07113581895828247, -0.09759877622127533, 0.10631079226732254, -0.0886058658361435, 0.144490584731102, 0.12301621586084366, -0.055002361536026, 0.010657761245965958, -0.03463399037718773, 0.04656387120485306, -0.0036977268755435944, 0.12035106122493744, 0.009613994508981705, -0.19130825996398926, 0.025861777365207672, -0.026803046464920044, 0.10188493877649307, -0.1675824373960495, -0.08771826326847076, 0.04396218806505203, 0.011473724618554115, -0.07196498662233353, 0.12621460855007172, 0.05924959108233452, 0.029668346047401428, -0.047655340284109116, -0.025236770510673523, -0.010040738619863987, 0.1404636949300766, -0.10325537621974945, -0.003536330536007881 ]
null
null
transformers
# Rhenus spainDupli_BitronDupli_ElantasDupli2_ejot_bormioli_bosch FEB2024 dataset has been depreciated because BOSCH are not needed anymore
{}
token-classification
sxandie/Rhenus_DupliSpain_DupliBit_DupliElnts2_EjtBormBosch_v20.65
[ "transformers", "pytorch", "layoutlmv3", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T13:33:45+00:00
[]
[]
TAGS #transformers #pytorch #layoutlmv3 #token-classification #autotrain_compatible #endpoints_compatible #region-us
# Rhenus spainDupli_BitronDupli_ElantasDupli2_ejot_bormioli_bosch FEB2024 dataset has been depreciated because BOSCH are not needed anymore
[ "# Rhenus spainDupli_BitronDupli_ElantasDupli2_ejot_bormioli_bosch FEB2024\ndataset has been depreciated because BOSCH are not needed anymore" ]
[ "TAGS\n#transformers #pytorch #layoutlmv3 #token-classification #autotrain_compatible #endpoints_compatible #region-us \n", "# Rhenus spainDupli_BitronDupli_ElantasDupli2_ejot_bormioli_bosch FEB2024\ndataset has been depreciated because BOSCH are not needed anymore" ]
[ 41, 46 ]
[ "passage: TAGS\n#transformers #pytorch #layoutlmv3 #token-classification #autotrain_compatible #endpoints_compatible #region-us \n# Rhenus spainDupli_BitronDupli_ElantasDupli2_ejot_bormioli_bosch FEB2024\ndataset has been depreciated because BOSCH are not needed anymore" ]
[ -0.11254196614027023, 0.14499840140342712, -0.005825882311910391, 0.12569616734981537, 0.12001388520002365, 0.03462761640548706, 0.08354845643043518, 0.11119943857192993, -0.04260914772748947, 0.05963561311364174, 0.0781395360827446, 0.23920105397701263, 0.05442477762699127, 0.08337729424238205, -0.15144047141075134, -0.21785345673561096, 0.07374782115221024, 0.07020765542984009, -0.06967158615589142, 0.08850695192813873, 0.14989052712917328, -0.052260205149650574, 0.0752948746085167, -0.01626906730234623, -0.10578598082065582, 0.07252082228660583, 0.047868382185697556, -0.11969694495201111, 0.1450473666191101, 0.11121982336044312, 0.12452889233827591, 0.07280820608139038, 0.00757591100409627, -0.03506717458367348, 0.013127968646585941, 0.0052758860401809216, -0.09775001555681229, 0.0943341925740242, 0.04724769666790962, -0.015763096511363983, 0.07731598615646362, -0.06301573663949966, 0.004885518457740545, -0.0042333174496889114, -0.09992945194244385, -0.08294116705656052, -0.15270520746707916, 0.06722614914178848, -0.04820229485630989, 0.0324823223054409, 0.031298067420721054, 0.2648543119430542, -0.08856265246868134, 0.05930619686841965, 0.1924041360616684, -0.2582765519618988, -0.02550273947417736, 0.08287711441516876, -0.009524937719106674, 0.0032314665149897337, -0.05711758881807327, 0.06377305835485458, 0.024301109835505486, 0.023622410371899605, -0.019894825294613838, -0.022792495787143707, -0.1277005970478058, -0.005505524575710297, -0.05133417621254921, -0.035041239112615585, 0.16037462651729584, -0.03841458633542061, 0.01963823474943638, 0.007818254642188549, -0.10071772336959839, -0.05670247599482536, 0.0008942785207182169, -0.017974767833948135, -0.04559500515460968, -0.013984219171106815, 0.03843303397297859, 0.0640328899025917, -0.028084492310881615, 0.0027980050072073936, -0.17049792408943176, 0.18660791218280792, 0.020759060978889465, 0.05703752487897873, -0.06373653560876846, 0.030227480456233025, 0.015926791355013847, -0.0945788025856018, 0.028188178315758705, -0.07777702063322067, 0.06250869482755661, 0.01539643481373787, -0.06015923246741295, 0.04656878113746643, 0.06234173849225044, 0.1894313097000122, -0.012226825580000877, -0.010171432979404926, 0.0014743981882929802, 0.06140142306685448, 0.059251025319099426, 0.06851448118686676, -0.06801508367061615, -0.16427123546600342, 0.08977511525154114, -0.0653529241681099, 0.05497312173247337, -0.022259389981627464, -0.068327397108078, -0.12786538898944855, 0.09996388107538223, 0.09791470319032669, 0.049647435545921326, 0.04669230803847313, -0.07244319468736649, -0.10197275131940842, 0.16723212599754333, -0.05736837163567543, 0.004627507645636797, -0.027587691321969032, -0.09588047862052917, 0.17065922915935516, -0.007490042131394148, -0.05267082527279854, -0.056624360382556915, 0.07651291787624359, -0.05050535127520561, -0.09429947286844254, 0.031226729974150658, -0.14939497411251068, 0.03998784348368645, -0.20329654216766357, 0.05425240099430084, -0.16547583043575287, -0.13467344641685486, -0.016600364819169044, -0.034846141934394836, -0.07988417148590088, -0.02076374739408493, -0.014130647294223309, 0.002860185457393527, -0.0225653275847435, -0.047173019498586655, 0.02947537787258625, -0.040140826255083084, 0.08176970481872559, -0.06401970237493515, 0.05678553134202957, -0.2458268702030182, 0.05100575089454651, -0.06621834635734558, -0.04362714663147926, -0.13490770757198334, -0.004826435819268227, -0.12822362780570984, -0.04363453760743141, -0.0851769670844078, -0.11029264330863953, 0.0012864795280620456, 0.042971283197402954, 0.03828899934887886, 0.1337732970714569, -0.10383404791355133, -0.10258375108242035, 0.0883946493268013, -0.14066267013549805, -0.03517764061689377, 0.10518407076597214, -0.029442479833960533, -0.033279724419116974, 0.09650199115276337, 0.0695158988237381, 0.04277883842587471, 0.02557661198079586, -0.12350586801767349, -0.008688535541296005, -0.012753927148878574, -0.1445814073085785, 0.05169135332107544, 0.06014236435294151, -0.04035324975848198, 0.05854569375514984, -0.04042329639196396, -0.02708553709089756, -0.057222817093133926, -0.044455382972955704, 0.029832685366272926, -0.0494605228304863, 0.16480733454227448, -0.015739265829324722, 0.11724182963371277, -0.015505842864513397, -0.02071446366608143, 0.006529772188514471, 0.0604110024869442, 0.03633762523531914, 0.028393274173140526, -0.04619356244802475, 0.11771444231271744, -0.08378040045499802, 0.011274919845163822, -0.17877791821956635, -0.10339847952127457, 0.008863871917128563, 0.020972419530153275, -0.023154357448220253, 0.1036960706114769, 0.03628377988934517, -0.01863706484436989, -0.056242868304252625, 0.024274852126836777, 0.026135262101888657, 0.013217214494943619, -0.07161717116832733, -0.1622978299856186, -0.001380457659251988, -0.04053719341754913, -0.05323968455195427, -0.0031357486732304096, -0.009054729714989662, 0.08772220462560654, 0.13822118937969208, 0.004493146203458309, 0.05352536961436272, -0.06494920700788498, 0.07412872463464737, -0.1022464856505394, -0.024466171860694885, 0.039768416434526443, 0.0009112466359511018, -0.053927358239889145, 0.10032369941473007, -0.06001325696706772, 0.160272017121315, 0.18922729790210724, -0.05948445945978165, 0.014294032007455826, -0.029678184539079666, -0.02507079765200615, 0.04358384385704994, 0.0198824480175972, -0.020044108852744102, 0.018575360998511314, 0.007026399951428175, 0.1386612057685852, -0.03843094781041145, -0.030721697956323624, 0.059351783245801926, 0.002446935046464205, -0.07843951135873795, 0.0686095803976059, 0.14208711683750153, -0.15095610916614532, 0.16642998158931732, 0.10314542055130005, -0.009338011965155602, 0.09104394167661667, 0.012993181124329567, 0.020492158830165863, 0.02951265685260296, -0.10886083543300629, 0.013830069452524185, 0.16325069963932037, -0.08684563636779785, 0.0009550966206006706, 0.10153226554393768, 0.053055837750434875, 0.0835370197892189, -0.038628093898296356, 0.0035982984118163586, -0.007455884944647551, 0.04411926865577698, -0.09328240901231766, 0.07797246426343918, 0.015615963377058506, 0.15589837729930878, -0.027859747409820557, -0.1038682609796524, 0.02367354929447174, 0.04112612456083298, -0.003773030359297991, 0.15016701817512512, -0.1109962910413742, -0.24935004115104675, -0.0882020890712738, -0.059766873717308044, -0.13095761835575104, 0.043039530515670776, 0.05359775945544243, -0.09572993218898773, -0.07135902345180511, 0.04393210634589195, 0.06977730989456177, -0.01308041624724865, 0.05921441316604614, -0.020226918160915375, 0.004135493654757738, -0.044873084872961044, -0.11864940822124481, -0.046820443123579025, -0.06852002441883087, 0.013685077428817749, 0.08541830629110336, -0.1073184683918953, 0.11401606351137161, 0.0069740829057991505, -0.02057470940053463, 0.025767765939235687, -0.039792753756046295, 0.1621660739183426, -0.010016066953539848, 0.013256489299237728, 0.1633194535970688, 0.02136354334652424, 0.01506112702190876, 0.052312009036540985, -0.020252792164683342, -0.06479767709970474, -0.04716183990240097, 0.038078684359788895, -0.07394994795322418, -0.22029253840446472, -0.1559571623802185, -0.046329740434885025, -0.025819765403866768, 0.07521963119506836, 0.03399974852800369, 0.06143813207745552, 0.11663039773702621, -0.0423235259950161, 0.12434423714876175, -0.10673312097787857, 0.052231863141059875, 0.15221184492111206, -0.023602794855833054, 0.12540745735168457, -0.014091795310378075, -0.06105823442339897, 0.18683254718780518, 0.09621873497962952, 0.11648160219192505, -0.006176352966576815, 0.0425538532435894, 0.02370890974998474, 0.1313331127166748, 0.030680688098073006, 0.11646817624568939, 0.027728350833058357, 0.0157850943505764, -0.07510428130626678, 0.016256920993328094, -0.0811857208609581, -0.03472951799631119, 0.0035016704350709915, -0.06070620194077492, -0.11746525019407272, -0.025792842730879784, 0.09092167764902115, 0.04888223111629486, -0.012807046994566917, -0.2792774736881256, -0.0702952891588211, 0.00783160887658596, 0.0699131116271019, -0.06261389702558517, -0.009041503071784973, -0.04439111426472664, -0.08696028590202332, 0.06998080760240555, -0.022299794480204582, 0.07248657196760178, -0.08958473801612854, 0.04715058580040932, -0.07261070609092712, -0.05630788579583168, -0.007105543743818998, 0.027349738404154778, -0.17356343567371368, 0.20137035846710205, -0.002368796383962035, -0.04650464281439781, -0.08846176415681839, -0.0241793692111969, 0.057865068316459656, 0.06755266338586807, 0.11737192422151566, 0.007434587460011244, -0.07759888470172882, -0.07989179342985153, -0.10541447252035141, 0.08333489298820496, 0.021775344386696815, -0.047161929309368134, 0.05245986208319664, -0.045291658490896225, 0.036470286548137665, 0.008216684684157372, -0.09152968972921371, -0.003240114077925682, -0.12348002195358276, 0.07898661494255066, 0.040400926023721695, -0.01730090193450451, 0.030146287754178047, -0.12586136162281036, -0.06514975428581238, 0.1916542649269104, -0.05704687908291817, -0.04521062970161438, -0.17786896228790283, 0.1435682326555252, 0.11489228159189224, -0.10359691083431244, 0.06238018721342087, -0.010767502710223198, 0.037603095173835754, -0.029173213988542557, -0.16576099395751953, 0.11790730059146881, -0.12900978326797485, -0.07826252281665802, -0.04825768247246742, 0.0413321815431118, -0.014899007976055145, 0.05007677152752876, 0.05468260496854782, -0.0022335071116685867, 0.002851794706657529, -0.0801243707537651, 0.005180581007152796, 0.002245653420686722, 0.04924638569355011, 0.05072170868515968, -0.07846435159444809, -0.0968763455748558, -0.0029771465342491865, 0.05756806209683418, 0.17256370186805725, 0.18428045511245728, -0.08054117113351822, 0.11184857785701752, 0.0996721163392067, -0.04539281129837036, -0.27829161286354065, -0.042789947241544724, -0.04330546408891678, 0.029388105496764183, -0.022269798442721367, -0.07775245606899261, 0.045060764998197556, 0.10719217360019684, -0.03357398137450218, -0.027419021353125572, -0.20132116973400116, -0.058162491768598557, 0.1332484483718872, 0.04054512456059456, 0.4013042151927948, -0.0731700211763382, -0.027313044294714928, -0.059270333498716354, -0.058446209877729416, 0.1258869171142578, 0.01922554150223732, 0.07697843015193939, -0.06451784074306488, 0.07083722203969955, 0.016462862491607666, -0.03031032159924507, 0.13765555620193481, 0.03242440149188042, 0.03846731781959534, -0.016603775322437286, -0.13515840470790863, 0.12489102780818939, -0.013567769899964333, -0.015089933760464191, 0.025319073349237442, 0.06068689748644829, -0.12238837778568268, -0.014482980594038963, -0.10333476215600967, 0.13450762629508972, -0.03345152735710144, -0.0264827162027359, 0.01304530818015337, 0.06124664098024368, 0.03973414748907089, -0.009970375336706638, 0.16241593658924103, 0.04956972599029541, 0.015070886351168156, 0.05911986902356148, -0.03278782218694687, -0.0008212105021812022, -0.0005630268133245409, -0.0055368030443787575, -0.03346962481737137, 0.08428802341222763, 0.014341595582664013, 0.06628518551588058, 0.14163990318775177, 0.005617836024612188, -0.0035736155696213245, 0.05988841503858566, 0.023328272625803947, 0.003666066098958254, 0.11903605610132217, -0.17981499433517456, 0.09814386069774628, 0.022801268845796585, -0.0655745342373848, 0.0316825807094574, 0.09891551733016968, 0.15947078168392181, 0.020042113959789276, -0.06704926490783691, -0.03882189467549324, 0.023903371766209602, -0.017314324155449867, 0.15245351195335388, 0.036070600152015686, -0.030706625431776047, -0.1506008803844452, 0.06324102729558945, 0.01735539920628071, -0.1182742714881897, 0.016856739297509193, -0.048272646963596344, -0.10442578792572021, -0.09054408222436905, -0.0036087166517972946, 0.018291890621185303, -0.2836252450942993, -0.014305397868156433, -0.17696566879749298, -0.0789070576429367, 0.03874200955033302, 0.09026383608579636, 0.08575611561536789, 0.0769682228565216, -0.07861586660146713, -0.07593781501054764, -0.0825284793972969, -0.013496128842234612, 0.11542373895645142, 0.05541335046291351, -0.0790490135550499, -0.0483570396900177, -0.04602288082242012, 0.028352132067084312, -0.05049503594636917, 0.08218175917863846, -0.12793947756290436, -0.027820896357297897, -0.16412171721458435, -0.017266999930143356, 0.0030015776865184307, -0.016834856942296028, -0.0511917844414711, -0.0689518079161644, -0.01994127593934536, 0.006954963319003582, -0.10592975467443466, 0.026547756046056747, 0.0019797293934971094, 0.0429636612534523, -0.09700881689786911, -0.018537728115916252, 0.03784523531794548, -0.05134904384613037, 0.11876799166202545, 0.11749086529016495, 0.0273862536996603, 0.13200701773166656, -0.032119765877723694, -0.10553056001663208, 0.08973680436611176, 0.04302835464477539, 0.15960346162319183, 0.012120610103011131, 0.030413512140512466, 0.06824290007352829, 0.0065279994159936905, 0.03674834221601486, 0.0676816925406456, -0.10192881524562836, 0.0768679603934288, -0.07901273667812347, -0.10054812580347061, 0.005314645357429981, 0.04845690354704857, 0.13024143874645233, 0.02522469125688076, 0.09067495912313461, -0.0006599933840334415, 0.001010706415399909, -0.08310355246067047, 0.013809907250106335, -0.039888277649879456, -0.17297963798046112, -0.08581238985061646, 0.005690102465450764, 0.050226688385009766, 0.030538409948349, 0.17162904143333435, 0.07709088176488876, 0.06451467424631119, 0.002745935460552573, 0.02825811319053173, -0.10700272023677826, -0.014777136035263538, 0.18249759078025818, 0.09542599320411682, 0.027052389457821846, -0.05645661801099777, 0.07880441099405289, 0.08579789102077484, 0.027895929291844368, 0.19730357825756073, 0.13080337643623352, 0.07585974037647247, 0.07030323892831802, 0.05164549499750137, -0.0565488263964653, -0.14664983749389648, -0.04849134013056755, -0.008413024246692657, 0.06055663526058197, 0.0579768531024456, -0.026307467371225357, 0.05494263395667076, -0.10414911806583405, 0.03364564850926399, 0.008852822706103325, -0.03630632534623146, -0.16171050071716309, -0.058682896196842194, -0.0866762027144432, -0.07039720565080643, -0.002711415523663163, -0.10999352484941483, -0.04531514644622803, 0.06638580560684204, 0.030796751379966736, -0.048952363431453705, 0.005917881149798632, -0.08143916726112366, -0.04359983280301094, 0.05216512456536293, 0.04016128554940224, -0.05029847100377083, -0.06094164401292801, -0.022817106917500496, -0.11114520579576492, 0.11766286194324493, 0.020417317748069763, -0.005466832313686609, -0.010843665339052677, -0.009029076434671879, -0.05305424705147743, -0.07992473244667053, -0.06032344326376915, 0.0008422406390309334, 0.01811992935836315, 0.1868116706609726, -0.002961964113637805, 0.03058067336678505, 0.007551682647317648, 0.16170603036880493, 0.009875817224383354, 0.02385927550494671, -0.09336701035499573, 0.13771957159042358, 0.09499810636043549, 0.062156468629837036, 0.04007143899798393, -0.042443081736564636, -0.013155138120055199, 0.12537088990211487, 0.26460015773773193, -0.018154827877879143, 0.012441499158740044, 0.0314471498131752, 0.03845221549272537, 0.0746910572052002, 0.07328946888446808, 0.0632285624742508, 0.18038006126880646, -0.05605226382613182, -0.021615874022245407, -0.06779586523771286, 0.04755249619483948, -0.010794919915497303, 0.10419044643640518, 0.04992472380399704, -0.03973916918039322, -0.07395201921463013, 0.06839273869991302, -0.03957716003060341, -0.14757871627807617, 0.06995385140180588, -0.251659631729126, -0.1428295522928238, -0.029071204364299774, -0.011599031277000904, 0.0455562099814415, 0.11693831533193588, -0.04500485584139824, -0.03998151421546936, 0.12336458265781403, -0.004224282223731279, -0.16389887034893036, -0.10462614893913269, 0.10114020854234695, 0.084774911403656, 0.07580533623695374, -0.04583904892206192, 0.02311691641807556, 0.10101792216300964, 0.04510039463639259, -0.09035398811101913, -0.055934324860572815, 0.008751354180276394, -0.024950576946139336, 0.0420045368373394, -0.01634141430258751, -0.019350597634911537, 0.029529713094234467, 0.040142472833395004, -0.1047239601612091, 0.020093949511647224, 0.001002445351332426, -0.0988442674279213, -0.00564581947401166, 0.1178429126739502, -0.04363880679011345, 0.06743844598531723, 0.11993955075740814, -0.012825333513319492, -0.003044326324015856, -0.084652841091156, 0.08469024300575256, 0.08493517339229584, -0.04386090114712715, -0.09504701942205429, -0.1235659047961235, -0.010570363141596317, 0.06293529272079468, 0.009479178115725517, -0.1565835177898407, 0.007040141616016626, -0.13892792165279388, 0.013725497759878635, -0.11634484678506851, 0.04716410115361214, -0.06766664981842041, 0.00825551152229309, -0.008214316330850124, 0.0379999577999115, -0.02234978787600994, 0.025583988055586815, -0.05846133083105087, -0.0830828994512558 ]
null
null
pythae
### Downloading this model from the Hub This model was trained with pythae. It can be downloaded or reloaded using the method `load_from_hf_hub` ```python >>> from pythae.models import AutoModel >>> model = AutoModel.load_from_hf_hub(hf_hub_path="your_hf_username/repo_name") ```
{"language": "en", "license": "apache-2.0", "tags": ["pythae"]}
null
neuro-symbolic-ai/def-optimus
[ "pythae", "en", "license:apache-2.0", "region:us" ]
2024-02-06T13:37:54+00:00
[]
[ "en" ]
TAGS #pythae #en #license-apache-2.0 #region-us
### Downloading this model from the Hub This model was trained with pythae. It can be downloaded or reloaded using the method 'load_from_hf_hub'
[ "### Downloading this model from the Hub\nThis model was trained with pythae. It can be downloaded or reloaded using the method 'load_from_hf_hub'" ]
[ "TAGS\n#pythae #en #license-apache-2.0 #region-us \n", "### Downloading this model from the Hub\nThis model was trained with pythae. It can be downloaded or reloaded using the method 'load_from_hf_hub'" ]
[ 20, 41 ]
[ "passage: TAGS\n#pythae #en #license-apache-2.0 #region-us \n### Downloading this model from the Hub\nThis model was trained with pythae. It can be downloaded or reloaded using the method 'load_from_hf_hub'" ]
[ -0.03802475333213806, -0.00007625382568221539, -0.002561448374763131, 0.03677972033619881, 0.027550362050533295, 0.03893930837512016, 0.16290998458862305, 0.115411676466465, 0.22036342322826385, -0.11793395131826401, 0.0268178079277277, 0.11024940013885498, 0.0522637702524662, 0.04047612473368645, 0.11070789396762848, -0.19529488682746887, 0.03557277098298073, 0.038863714784383774, -0.106422558426857, 0.02859554998576641, 0.10726074129343033, -0.0038160057738423347, 0.0459599643945694, 0.02890927903354168, -0.06273961067199707, 0.11145255714654922, -0.05998575687408447, 0.06380816549062729, 0.09085222333669662, -0.07909566164016724, 0.08870682865381241, 0.06492087244987488, 0.08386437594890594, -0.1305871158838272, 0.026748428121209145, 0.003276354167610407, -0.07313120365142822, 0.03893725201487541, 0.038593485951423645, -0.005857367534190416, 0.2047707736492157, 0.10596179217100143, -0.0679304227232933, 0.016560383141040802, -0.002879004692658782, -0.14459344744682312, -0.06562276929616928, 0.1633179783821106, 0.08220820873975754, 0.0594865158200264, 0.03287842124700546, 0.19367657601833344, -0.12490785866975784, -0.02481284737586975, 0.11003275215625763, -0.21835778653621674, 0.050386205315589905, 0.23591089248657227, -0.037041012197732925, 0.030733773484826088, -0.0035012001171708107, -0.004561261739581823, 0.06784281134605408, 0.1015588566660881, 0.07320225983858109, -0.06272837519645691, -0.15932980179786682, 0.03934850916266441, -0.12988324463367462, -0.058815598487854004, 0.19549843668937683, 0.034762248396873474, -0.003280813805758953, 0.03468460589647293, -0.0746493861079216, 0.1633247435092926, -0.021474119275808334, 0.04948211833834648, 0.08057558536529541, 0.0933920294046402, 0.16373072564601898, -0.24056480824947357, -0.1384926736354828, -0.11996372789144516, -0.052861303091049194, 0.0012006826000288129, 0.067501500248909, 0.10246686637401581, -0.13583452999591827, 0.19039419293403625, -0.03294019773602486, -0.05186698958277702, 0.04759689420461655, -0.06341919302940369, 0.15407271683216095, 0.0612185001373291, -0.01313765812665224, 0.04924113675951958, 0.11087526381015778, 0.130010724067688, 0.00718056783080101, -0.045343656092882156, -0.0056929257698357105, 0.10790183395147324, 0.017080891877412796, -0.04688682779669762, -0.07679421454668045, 0.08799679577350616, 0.1601226031780243, 0.048123799264431, -0.009000375866889954, 0.041789572685956955, -0.16733285784721375, 0.032552555203437805, -0.0850180983543396, 0.05901279300451279, 0.03632987663149834, -0.05514749512076378, 0.005989281926304102, -0.05828598141670227, 0.22596734762191772, -0.01761278510093689, -0.07851318269968033, 0.005044336896389723, -0.09285705536603928, 0.07776286453008652, 0.13139225542545319, 0.008367368020117283, -0.04713169485330582, -0.07826530188322067, -0.10014045983552933, 0.015575102530419827, -0.04433402791619301, 0.020667634904384613, 0.057864055037498474, -0.07381431758403778, 0.059697989374399185, -0.15037336945533752, -0.2845510244369507, 0.0378430038690567, 0.07722916454076767, 0.02821503020823002, -0.024784522131085396, 0.05886722728610039, 0.02706843428313732, -0.08260627090930939, -0.06785450130701065, 0.038409002125263214, -0.05942917987704277, 0.0077783335000276566, -0.16128511726856232, -0.031330257654190063, -0.1801283061504364, 0.04549410194158554, -0.1182856410741806, 0.039726871997117996, -0.1347077637910843, -0.06935756653547287, -0.11486633867025375, 0.10594490170478821, -0.09026264399290085, -0.03894650936126709, -0.002697197487577796, -0.0034886030480265617, 0.004245343618094921, 0.1673189401626587, -0.06307826936244965, -0.03259526565670967, 0.11531759053468704, -0.09503205865621567, -0.1700567603111267, 0.022677693516016006, 0.015886172652244568, 0.18500691652297974, 0.02238203026354313, 0.284776508808136, 0.02076779492199421, -0.19145852327346802, 0.08876853436231613, 0.21222074329853058, -0.028399841859936714, -0.21523956954479218, 0.051377516239881516, -0.05254066735506058, -0.1086726039648056, 0.007271822076290846, -0.12632890045642853, 0.14402997493743896, 0.008612635545432568, -0.05504691228270531, -0.009807811118662357, -0.1416110098361969, -0.1605938822031021, -0.01550107728689909, 0.10597281157970428, 0.10154253244400024, 0.06728464365005493, 0.11868997663259506, 0.22523091733455658, -0.005405751056969166, 0.030131852254271507, 0.03311881422996521, 0.11523027718067169, 0.023550445213913918, -0.013417717069387436, -0.06498803198337555, 0.04041582718491554, 0.03661680594086647, -0.17965416610240936, 0.06027766317129135, 0.010734778828918934, 0.05122320353984833, -0.0012614770093932748, -0.006896646693348885, -0.022637655958533287, -0.055287837982177734, 0.03694643825292587, -0.0051789977587759495, -0.10218719393014908, -0.03241175040602684, 0.025278981775045395, 0.19574356079101562, -0.006945718079805374, 0.01916641741991043, -0.10865921527147293, 0.13170474767684937, -0.04880078136920929, 0.0918772742152214, 0.04792681708931923, -0.06233896687626839, 0.0055375490337610245, -0.012908161617815495, 0.06961270421743393, 0.017367128282785416, -0.07390503585338593, 0.12196294218301773, 0.13434450328350067, -0.03212084621191025, 0.17271217703819275, -0.022929245606064796, 0.09721381962299347, -0.06420207023620605, -0.049930449575185776, -0.03082394227385521, 0.07702178508043289, -0.02481308951973915, -0.007005134131759405, -0.007536877878010273, 0.10828985273838043, -0.10175319761037827, 0.01005296315997839, -0.03821214288473129, -0.056024689227342606, 0.03320258483290672, 0.0037515335716307163, 0.24447835981845856, -0.10449937731027603, 0.06972800195217133, 0.25841161608695984, -0.06202235445380211, 0.1238599494099617, -0.07593650370836258, -0.060539718717336655, -0.03936537727713585, -0.03597661852836609, -0.09533587843179703, 0.18295717239379883, -0.056318249553442, 0.03015047125518322, 0.03473643213510513, 0.009603303857147694, 0.15331044793128967, -0.1528589427471161, -0.05119561776518822, -0.09427549690008163, -0.06726054102182388, -0.037964481860399246, 0.09042446315288544, -0.09960292279720306, 0.019359786063432693, -0.07530669867992401, -0.09819342941045761, 0.02883821167051792, -0.0276214350014925, -0.0842617005109787, 0.14338283240795135, -0.13415086269378662, -0.012305201031267643, -0.10233758389949799, 0.004890951327979565, -0.039715155959129333, -0.04020668938755989, 0.04457680135965347, 0.004135871771723032, -0.022489918395876884, -0.05808873102068901, -0.03581893816590309, 0.04840400069952011, -0.08553618937730789, -0.12430045753717422, 0.03525965288281441, 0.04812375083565712, -0.1365988552570343, -0.04824252799153328, -0.03781787306070328, -0.01881483569741249, 0.02803725190460682, -0.1568712592124939, 0.02000332437455654, 0.10293430089950562, 0.09538475424051285, 0.03009437583386898, -0.00023484481789637357, 0.2023577094078064, -0.0009764562710188329, 0.04642125219106674, 0.2088976949453354, 0.09441257268190384, 0.036898646503686905, -0.004796979948878288, 0.06665409356355667, -0.03959525004029274, -0.02871382236480713, -0.020250029861927032, -0.024328287690877914, -0.24458624422550201, -0.11608196794986725, -0.026495380327105522, -0.0697445273399353, 0.0616288036108017, 0.07775892317295074, 0.015324266627430916, 0.08240217715501785, -0.007260696962475777, -0.019667133688926697, -0.10772661864757538, -0.014014172367751598, -0.04862218722701073, -0.04457050934433937, -0.03630013391375542, -0.06844636797904968, 0.010826698504388332, 0.14051134884357452, 0.17168845236301422, 0.1068914607167244, 0.03459343686699867, -0.001352347549982369, 0.1544521152973175, 0.21141968667507172, -0.026679057627916336, 0.18084292113780975, -0.02771206945180893, -0.02170902118086815, -0.048059165477752686, -0.04916146770119667, 0.0717066153883934, 0.073366679251194, 0.04852704703807831, -0.1361398696899414, -0.01341974176466465, -0.1416267454624176, 0.03314756229519844, 0.15134356915950775, 0.02646813727915287, -0.0925014391541481, 0.10263767838478088, 0.04599861800670624, 0.06002504751086235, 0.020076487213373184, 0.07734539359807968, -0.0721418708562851, -0.11046458035707474, 0.027505088597536087, 0.05188796669244766, 0.10196614265441895, 0.06620578467845917, -0.02016335539519787, -0.0899941474199295, -0.00475643714889884, 0.029019590467214584, 0.11860323697328568, -0.10850836336612701, 0.17084725201129913, 0.002564376685768366, -0.025419648736715317, -0.0624394491314888, -0.07170912623405457, 0.17235513031482697, 0.11052685976028442, 0.09183930605649948, 0.07717660814523697, 0.11966480314731598, -0.012137973681092262, -0.1944984346628189, 0.05414506420493126, -0.10544569045305252, -0.07535713165998459, -0.05398515984416008, -0.0032376362942159176, 0.0028359328862279654, 0.011752390302717686, 0.03282412514090538, -0.11446859687566757, 0.02786155790090561, -0.01726183108985424, 0.025544188916683197, -0.04626081511378288, -0.08830887824296951, -0.0037000500597059727, 0.01559444796293974, -0.08127196133136749, 0.016056891530752182, -0.11038123816251755, -0.024125823751091957, -0.04184125363826752, 0.11182581633329391, -0.04333142936229706, 0.04469016194343567, -0.018456215038895607, -0.06086791679263115, -0.10239958018064499, -0.14613570272922516, 0.02104831486940384, -0.10544152557849884, 0.028356632217764854, 0.03762376308441162, 0.09953540563583374, 0.061967235058546066, 0.00956408865749836, 0.03634146600961685, -0.11421488970518112, -0.09471562504768372, -0.1037011668086052, -0.034942030906677246, 0.02655327506363392, 0.006409191992133856, 0.13629396259784698, -0.09988202154636383, 0.1040806993842125, -0.06366667151451111, -0.010846483521163464, 0.09315743297338486, 0.1726338118314743, -0.02413100004196167, 0.05922595039010048, 0.2885679602622986, -0.058673370629549026, -0.2738698422908783, -0.15558424592018127, -0.05333486944437027, -0.07104455679655075, 0.034761715680360794, -0.14803744852542877, 0.15683381259441376, 0.07298388332128525, -0.12116677314043045, 0.08671470731496811, -0.19958490133285522, -0.06005822867155075, 0.23213526606559753, 0.04793220013380051, 0.13127519190311432, -0.07333477586507797, -0.018944749608635902, 0.0023689179215580225, -0.06439045071601868, 0.11702506244182587, -0.2664079964160919, 0.047542452812194824, -0.059827614575624466, 0.07437486201524734, -0.03103511594235897, -0.020125823095440865, 0.16193297505378723, 0.06590867787599564, 0.07332422584295273, 0.02882777899503708, 0.05346100777387619, 0.16615332663059235, -0.04052380099892616, 0.21566937863826752, -0.12769445776939392, 0.06375128775835037, -0.1573183685541153, 0.02603279799222946, -0.12032640725374222, 0.11130540817975998, -0.03120977245271206, -0.08788519352674484, -0.0322660394012928, 0.01314326748251915, -0.011303981766104698, 0.06117323040962219, 0.07983603328466415, 0.07951698452234268, -0.04047119617462158, 0.24938389658927917, -0.061355721205472946, -0.13781465590000153, -0.13428106904029846, -0.051408715546131134, -0.07398856431245804, 0.08847924321889877, -0.24471178650856018, -0.039487648755311966, 0.06769808381795883, -0.007850425317883492, 0.07020395994186401, 0.009434361942112446, -0.1406150758266449, -0.04815946891903877, 0.10601788014173508, -0.15826675295829773, 0.012288725934922695, -0.0680159404873848, 0.05331863462924957, 0.07959460467100143, 0.002576580736786127, 0.09856247901916504, -0.07308654487133026, -0.02540702372789383, 0.024152139201760292, 0.02201623097062111, -0.18516021966934204, 0.04177964851260185, 0.1577765792608261, 0.005398416426032782, -0.09594416618347168, 0.1623588353395462, 0.004191004205495119, -0.01597641035914421, -0.033286046236753464, 0.054894451051950455, -0.10980181396007538, -0.15661054849624634, -0.066398486495018, 0.07079944014549255, -0.2186000645160675, -0.13613231480121613, -0.04759546369314194, -0.01797906495630741, -0.06068841367959976, -0.07009045034646988, 0.1379900574684143, 0.0016142373206093907, -0.004502117168158293, -0.07580222934484482, 0.03967421501874924, 0.004643372260034084, -0.04432586953043938, -0.006570763420313597, -0.08753562718629837, -0.07491312175989151, 0.08435468375682831, 0.1558544635772705, -0.04277219995856285, -0.014347618445754051, -0.036306146532297134, 0.05044792965054512, -0.29608026146888733, -0.022101931273937225, -0.027748076245188713, -0.023508772253990173, 0.027544524520635605, -0.008138183504343033, -0.014844252727925777, 0.07089107483625412, -0.15917453169822693, 0.025812212377786636, 0.017597906291484833, 0.09118077158927917, -0.05078848823904991, -0.05847209319472313, 0.05651429668068886, -0.02888128161430359, 0.09726527333259583, 0.17770910263061523, -0.00111975590698421, 0.12837277352809906, 0.12258710712194443, -0.08208336681127548, -0.0032474412582814693, 0.09962542355060577, 0.04331638291478157, 0.016018882393836975, -0.048993684351444244, -0.015457230620086193, -0.035687483847141266, -0.047667115926742554, 0.0185963436961174, -0.06948845088481903, -0.05486363172531128, 0.02874096855521202, 0.004579475615173578, -0.010633356869220734, -0.08181338757276535, 0.050356268882751465, 0.12171724438667297, 0.08466161042451859, 0.022313764318823814, 0.03048226423561573, -0.09518694877624512, -0.011256914585828781, -0.07757000625133514, -0.04585372284054756, -0.08340304344892502, -0.07545778155326843, -0.07876690477132797, -0.05365343019366264, 0.2754964828491211, 0.03133685514330864, -0.028901301324367523, -0.042732786387205124, 0.08811469376087189, 0.09522842615842819, -0.07149899005889893, 0.18358667194843292, -0.04079670086503029, 0.07673268765211105, -0.08505876362323761, 0.024199379608035088, 0.017821287736296654, -0.015578356571495533, 0.019716544076800346, -0.011475094594061375, 0.0728197768330574, 0.03489260748028755, 0.13854122161865234, -0.014954120852053165, -0.11101840436458588, -0.1645287126302719, 0.12904109060764313, 0.03572898730635643, -0.04474688693881035, 0.07967015355825424, 0.12367213517427444, -0.10141253471374512, 0.0038816281594336033, 0.07881972193717957, -0.0271750558167696, -0.12760812044143677, -0.10786184668540955, 0.003985189832746983, -0.20899741351604462, -0.010898404754698277, -0.026843691244721413, -0.11165343225002289, 0.1658567190170288, 0.007440075743943453, -0.022484783083200455, 0.07473346590995789, 0.01426660269498825, -0.1034521833062172, -0.006568766664713621, 0.016415810212492943, -0.08261008560657501, -0.10631797462701797, 0.0060270605608820915, -0.01760663464665413, -0.08243715018033981, -0.056487955152988434, -0.044729530811309814, 0.010446342639625072, 0.0585232712328434, -0.009183958172798157, -0.007594849914312363, -0.07194599509239197, 0.024114767089486122, -0.05612364038825035, 0.1679464876651764, 0.04808064177632332, -0.011801795102655888, 0.03197835385799408, 0.04804592579603195, -0.009904911741614342, -0.13787835836410522, -0.01847837306559086, 0.4769091010093689, -0.0509171187877655, 0.007536249700933695, 0.017261913046240807, 0.008629634976387024, -0.08448030799627304, 0.30471348762512207, 0.2701115906238556, -0.1617429256439209, -0.00813920795917511, -0.0019498465117067099, -0.00628465972840786, -0.07577706128358841, 0.15338589251041412, 0.11638553440570831, 0.11223569512367249, -0.05755629390478134, 0.030921848490834236, -0.13472935557365417, -0.0032646420877426863, -0.10311425477266312, -0.005064320284873247, 0.008863135240972042, -0.10784425586462021, 0.014644939452409744, 0.08869452774524689, -0.1415887027978897, -0.04168940335512161, -0.05359185114502907, -0.0008979516569525003, -0.02112370729446411, -0.06210501864552498, -0.033317361027002335, 0.07748162746429443, 0.03589388355612755, -0.1723281443119049, 0.05462275817990303, 0.13159209489822388, -0.03876496106386185, -0.16062387824058533, -0.13631294667720795, 0.18695655465126038, -0.14988814294338226, 0.2506152093410492, -0.01714021898806095, 0.08672767132520676, 0.011985024437308311, -0.02683739736676216, -0.09449834376573563, 0.06456568837165833, 0.026968251913785934, -0.06031881645321846, -0.0965573713183403, -0.08577754348516464, -0.04781287908554077, -0.1253247708082199, -0.07358479499816895, -0.04753667116165161, -0.034410517662763596, 0.19574511051177979, -0.06390275806188583, -0.07525192201137543, 0.00036678853211924434, -0.11505937576293945, 0.09687350690364838, 0.004242227412760258, -0.09144311398267746, -0.04043960943818092, -0.06394366174936295, 0.06529098004102707, 0.11618497967720032, -0.178668811917305, -0.0018155168509110808, 0.0270687285810709, 0.0069837807677686214, -0.026775088161230087, -0.04756593331694603, -0.04754519462585449, 0.030971357598900795, -0.044365547597408295, -0.052335552871227264, -0.0375949963927269, 0.06000424921512604, 0.04634043574333191, 0.05445088446140289, 0.03516571968793869, 0.06212128698825836, -0.1074247807264328, -0.030452119186520576, -0.14378808438777924, -0.14191941916942596 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
null
gmonsoon/TinyNesia-Base-Adapter
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
2024-02-06T13:38:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 31, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.06646376848220825, 0.2168014943599701, -0.00225935154594481, 0.023818302899599075, 0.1271018385887146, -0.001635765191167593, 0.04218708351254463, 0.13324736058712006, -0.020175931975245476, 0.11144465953111649, 0.046588581055402756, 0.09377603232860565, 0.09928803145885468, 0.18404334783554077, 0.04859916493296623, -0.2059975117444992, 0.007056170143187046, -0.09090408682823181, 0.014076028019189835, 0.1116579994559288, 0.13719257712364197, -0.10291384905576706, 0.08272874355316162, -0.04045208916068077, -0.02019004337489605, 0.00012576708104461432, -0.09259183704853058, -0.07032395154237747, 0.06885425746440887, 0.06264153122901917, 0.051234472543001175, 0.001456156256608665, 0.09140396863222122, -0.2864592671394348, 0.017265573143959045, 0.08406311273574829, 0.0027674848679453135, 0.06290827691555023, 0.07236549258232117, -0.07389893382787704, 0.11328595131635666, -0.08021481335163116, 0.13019037246704102, 0.08625296503305435, -0.062064990401268005, -0.23071379959583282, -0.07525765895843506, 0.0963398814201355, 0.12251301854848862, 0.06215599179267883, -0.022921854630112648, 0.15455181896686554, -0.06248689442873001, 0.012971068732440472, 0.1294165402650833, -0.11526761949062347, -0.05572471022605896, 0.061741601675748825, 0.11775490641593933, 0.10740239918231964, -0.14110268652439117, -0.0017287094378843904, 0.04900608956813812, 0.029121357947587967, 0.08589313924312592, 0.022661056369543076, 0.12003941088914871, 0.04652795568108559, -0.13695219159126282, -0.04037507623434067, 0.12011898308992386, 0.038862764835357666, -0.06446044892072678, -0.2168138176202774, -0.006778308190405369, -0.0601806715130806, -0.014732478186488152, -0.07019448280334473, 0.039128515869379044, -0.02470310963690281, 0.07317749410867691, -0.04465159401297569, -0.1063927412033081, -0.0421026237308979, 0.0892222449183464, 0.07748593389987946, 0.011527054943144321, -0.02519804798066616, 0.04627908393740654, 0.13455867767333984, 0.05402068421244621, -0.10399353504180908, -0.07017925381660461, -0.06942764669656754, -0.09420394152402878, -0.04035796597599983, 0.056760527193546295, 0.031942449510097504, 0.02665667235851288, 0.22703726589679718, 0.016653569415211678, 0.04155244305729866, 0.0224777739495039, 0.01032855175435543, 0.043662428855895996, 0.0955500528216362, -0.05303520709276199, -0.15660029649734497, -0.04072032496333122, 0.09077946096658707, -0.0027527001220732927, -0.036689214408397675, -0.03966725245118141, 0.03849169611930847, 0.06843466311693192, 0.13122352957725525, 0.07552056759595871, -0.017929591238498688, -0.04813180863857269, -0.030096933245658875, 0.23523783683776855, -0.1493375599384308, 0.04426715523004532, -0.02271856553852558, -0.01804111897945404, -0.03908449783921242, 0.03597262129187584, 0.022118929773569107, -0.000004518366949923802, 0.09706240892410278, -0.058981191366910934, -0.05378659814596176, -0.10168042778968811, -0.03272576630115509, 0.04088849574327469, -0.013975566253066063, -0.010589460842311382, -0.09025166928768158, -0.09490354359149933, -0.04766594246029854, 0.05537205561995506, -0.05123869329690933, -0.03770573064684868, 0.009465423412621021, -0.08151785284280777, -0.005444355774670839, -0.005417742300778627, 0.10699385404586792, -0.03222226724028587, 0.04445803165435791, -0.027600755915045738, 0.05225523188710213, 0.09919606149196625, 0.031576547771692276, -0.0773419588804245, 0.0561848059296608, -0.22559374570846558, 0.07503069192171097, -0.11481974273920059, 0.04335082694888115, -0.1704932004213333, -0.042439818382263184, 0.005444696638733149, 0.0139949731528759, 0.013206101022660732, 0.12720820307731628, -0.19255615770816803, -0.01654396951198578, 0.13260798156261444, -0.09212633967399597, -0.118110790848732, 0.07884611934423447, -0.029701577499508858, 0.1624738723039627, 0.04682036489248276, -0.027025915682315826, 0.09224298596382141, -0.16434773802757263, -0.07092688232660294, -0.00949116237461567, -0.01727987825870514, 0.12109188735485077, 0.07512219995260239, -0.05991523340344429, 0.046571120619773865, 0.02832140028476715, -0.038078423589468, -0.04424772411584854, -0.050857074558734894, -0.10884185880422592, -0.01070026308298111, -0.08987759798765182, 0.04065500199794769, -0.01250192429870367, -0.07916021347045898, -0.029885273426771164, -0.18612512946128845, -0.0030564051121473312, 0.10038342326879501, 0.0035033065360039473, -0.005652366206049919, -0.08666291832923889, 0.026358824223279953, -0.03112892620265484, -0.008404186926782131, -0.16764774918556213, -0.04399421438574791, 0.046902090311050415, -0.16094985604286194, 0.020117372274398804, -0.06413903087377548, 0.06334125250577927, 0.03641495108604431, -0.05590536445379257, -0.0248766727745533, -0.01730942726135254, 0.011945613659918308, -0.05083848536014557, -0.18994836509227753, -0.056277405470609665, -0.037882111966609955, 0.149809330701828, -0.25956398248672485, 0.032966937869787216, 0.051140617579221725, 0.14649195969104767, 0.00406361510977149, -0.05115427449345589, 0.01429014839231968, -0.05360214412212372, -0.054652128368616104, -0.06746816635131836, -0.006135428790003061, -0.027576493099331856, -0.05147203803062439, 0.019243421033024788, -0.1755700707435608, -0.021410830318927765, 0.09424154460430145, 0.12876708805561066, -0.1486445665359497, -0.018640631809830666, -0.048725154250860214, -0.06339836865663528, -0.0715010017156601, -0.07038594037294388, 0.10712739825248718, 0.0513901449739933, 0.04796046018600464, -0.07435787469148636, -0.07092321664094925, 0.02726263552904129, 0.006906150374561548, -0.03382374346256256, 0.08727246522903442, 0.05199531093239784, -0.09209315478801727, 0.0756213590502739, 0.1092359870672226, 0.07177663594484329, 0.09363535046577454, 0.01574566215276718, -0.11756632477045059, -0.028492970392107964, 0.036266472190618515, 0.02740776725113392, 0.1465986967086792, -0.05952361226081848, 0.04016614332795143, 0.04494241625070572, -0.04170418903231621, 0.022319864481687546, -0.08787637203931808, 0.024075502529740334, 0.025203049182891846, -0.0034381982404738665, 0.06284574419260025, -0.02525499276816845, -0.0050758360885083675, 0.07016654312610626, 0.047779910266399384, 0.04621000960469246, 0.009655474685132504, -0.01720241829752922, -0.1047825813293457, 0.16950392723083496, -0.0951867327094078, -0.269941508769989, -0.17632324993610382, 0.026197833940386772, 0.04035249724984169, -0.022378476336598396, 0.031619444489479065, -0.07056326419115067, -0.10630585998296738, -0.1060405746102333, -0.002429972169920802, 0.01714223250746727, -0.06364088505506516, -0.0741225928068161, 0.07348573952913284, 0.04382912442088127, -0.14902326464653015, 0.038552410900592804, 0.055694397538900375, -0.057955220341682434, -0.0233661737293005, 0.09118817001581192, 0.12397737801074982, 0.14583967626094818, -0.021366750821471214, -0.028626007959246635, 0.029004426673054695, 0.19620531797409058, -0.13469526171684265, 0.10371150821447372, 0.13814030587673187, -0.04545360431075096, 0.08360563963651657, 0.1560150384902954, 0.029186224564909935, -0.08317049592733383, 0.05044832453131676, 0.04082648828625679, -0.043159641325473785, -0.2666129767894745, -0.0534592866897583, 0.012832709588110447, -0.06255637854337692, 0.09786593168973923, 0.10183793306350708, 0.11542957276105881, 0.034910861402750015, -0.07166364789009094, -0.043925940990448, -0.0058974819257855415, 0.11737963557243347, -0.05490213260054588, -0.012639665976166725, 0.07686592638492584, -0.05086168646812439, 0.005355054512619972, 0.10266812145709991, 0.02973790094256401, 0.17442677915096283, 0.020399179309606552, 0.11231429129838943, 0.06195578724145889, 0.08633565157651901, 0.0007386076031252742, 0.02951662428677082, 0.05147615820169449, 0.017203815281391144, -0.002300140680745244, -0.10421168059110641, -0.006156572140753269, 0.1449710875749588, 0.028103826567530632, 0.029669636860489845, -0.0018948549404740334, -0.005003341939300299, 0.05121048167347908, 0.1746254414319992, -0.011592294089496136, -0.22072425484657288, -0.0845772922039032, 0.06936841458082199, -0.06218599155545235, -0.12968985736370087, -0.026130788028240204, 0.045467354357242584, -0.17519839107990265, 0.026703642681241035, -0.027433741837739944, 0.0919293761253357, -0.09345759451389313, -0.02221956104040146, 0.03687324374914169, 0.084866963326931, -0.014529162086546421, 0.08703910559415817, -0.14498743414878845, 0.11886418610811234, 0.02978132851421833, 0.09024628251791, -0.11081171780824661, 0.07909037172794342, -0.007550720125436783, 0.009180475026369095, 0.19379350543022156, -0.011335089802742004, -0.03514958545565605, -0.08774717897176743, -0.11210042238235474, -0.013537433929741383, 0.12687496840953827, -0.1243172138929367, 0.08773399889469147, -0.015198243781924248, -0.044079482555389404, 0.00937260314822197, -0.12100647389888763, -0.17273177206516266, -0.19628387689590454, 0.05585884302854538, -0.09575839340686798, 0.025643249973654747, -0.11914430558681488, -0.07089093327522278, -0.02952558360993862, 0.241120383143425, -0.1745356321334839, -0.06510113179683685, -0.1468164622783661, -0.046294767409563065, 0.1662203073501587, -0.04437198117375374, 0.0718095526099205, -0.0208172257989645, 0.20345525443553925, 0.005988610442727804, -0.004939318168908358, 0.06724198162555695, -0.08892562240362167, -0.16873881220817566, -0.06771010160446167, 0.1510489284992218, 0.11680185794830322, 0.04907919466495514, -0.002248800592496991, 0.0011772146681323647, -0.016943959519267082, -0.1137804463505745, -0.0033210667315870523, 0.16037839651107788, 0.03878779336810112, 0.025986969470977783, -0.05243593826889992, -0.08797456324100494, -0.06899320334196091, -0.06853509694337845, 0.06221301481127739, 0.19590823352336884, -0.10376439243555069, 0.1700313836336136, 0.147536963224411, -0.07305635511875153, -0.23175598680973053, 0.035342130810022354, 0.04983805492520332, 0.0014306638622656465, 0.04886869341135025, -0.18252557516098022, 0.10521943867206573, 0.019543392583727837, -0.05505957826972008, 0.13485197722911835, -0.1557481735944748, -0.1552847921848297, 0.0722852572798729, 0.03904085233807564, -0.22423844039440155, -0.1354004591703415, -0.09622503817081451, -0.05825018882751465, -0.14065024256706238, 0.06054598465561867, -0.002136280992999673, 0.015948504209518433, 0.03500790148973465, -0.0015643214574083686, 0.027123261243104935, -0.058935679495334625, 0.18609118461608887, -0.004065449349582195, 0.020676052197813988, -0.060264769941568375, -0.0478842556476593, 0.09839435666799545, -0.06130504235625267, 0.12208222597837448, 0.004057085141539574, 0.01594383642077446, -0.10362856835126877, -0.048314861953258514, -0.04328322783112526, 0.05154227837920189, -0.07548051327466965, -0.10070807486772537, -0.043625857681035995, 0.08841723203659058, 0.07005169242620468, -0.03383097052574158, 0.00549331633374095, -0.07189501076936722, 0.10019614547491074, 0.17795267701148987, 0.17573626339435577, 0.009926567785441875, -0.07241068035364151, 0.01677953451871872, -0.04142116755247116, 0.044231921434402466, -0.2513144314289093, 0.03756171092391014, 0.06098250672221184, 0.029438555240631104, 0.09217222779989243, -0.020435843616724014, -0.1820858269929886, -0.04050002992153168, 0.08094815909862518, -0.05452597141265869, -0.22617179155349731, -0.019085140898823738, 0.0954197570681572, -0.2020406424999237, -0.007372708059847355, 0.03995226323604584, -0.048725228756666183, -0.023169852793216705, 0.00010950004070764408, 0.06317184865474701, 0.002471912419423461, 0.09773622453212738, 0.0735151618719101, 0.09715340286493301, -0.08337292820215225, 0.10562895983457565, 0.10150538384914398, -0.09572599828243256, 0.03605884686112404, 0.06754924356937408, -0.05300498008728027, -0.043293699622154236, 0.03665391728281975, 0.033023297786712646, 0.005234600510448217, -0.060321882367134094, 0.013913018628954887, -0.036497246474027634, 0.044923391193151474, 0.08326134830713272, 0.03754979372024536, -0.013354414142668247, 0.06462216377258301, 0.03401726484298706, -0.10898099094629288, 0.10366570204496384, 0.01731540448963642, 0.04105307161808014, -0.08384523540735245, -0.019968897104263306, 0.035425446927547455, 0.030576206743717194, -0.01765924133360386, -0.02306121215224266, -0.02860277332365513, -0.01614218018949032, -0.14299540221691132, -0.023106401786208153, -0.07243485748767853, 0.006181265693157911, 0.014656842686235905, -0.031884219497442245, -0.011233693920075893, 0.02475680410861969, -0.06979699432849884, -0.07426341623067856, -0.006949664559215307, 0.09833318740129471, -0.15115703642368317, 0.008848577737808228, 0.06907843053340912, -0.11088496446609497, 0.08190931379795074, -0.008411259390413761, 0.016245156526565552, 0.022527478635311127, -0.15448406338691711, 0.05601610988378525, 0.0008648968650959432, 0.01916889287531376, 0.025886621326208115, -0.16471809148788452, 0.004104440100491047, -0.04661374166607857, -0.02149827405810356, -0.00004464812809601426, -0.02647159807384014, -0.12325995415449142, 0.06858719140291214, -0.015622655861079693, -0.035931166261434555, -0.02701525390148163, 0.0539589487016201, 0.07888586074113846, -0.027474910020828247, 0.10445091128349304, -0.008690856397151947, 0.04941811040043831, -0.16801609098911285, -0.02470702864229679, -0.04982255399227142, 0.019377702847123146, 0.009884213097393513, -0.007693959400057793, 0.04183054715394974, -0.00976533442735672, 0.21883612871170044, -0.05075952783226967, 0.1607085019350052, 0.05847611650824547, -0.017352959141135216, -0.0007513365126214921, 0.06180921941995621, 0.05997028574347496, 0.04658793285489082, 0.009480604901909828, 0.023740366101264954, -0.022450892254710197, -0.006695089396089315, -0.15932634472846985, 0.01890849508345127, 0.14999441802501678, 0.06301083415746689, 0.024745315313339233, 0.05866100639104843, -0.12775006890296936, -0.12135478109121323, 0.09311001747846603, -0.026755332946777344, 0.00928465835750103, -0.08245618641376495, 0.1358020007610321, 0.14980104565620422, -0.14000412821769714, 0.05256148427724838, -0.06134212389588356, -0.05217423290014267, -0.10388828068971634, -0.12032219022512436, -0.05887215584516525, -0.053666237741708755, 0.002330566756427288, -0.03760887682437897, 0.054546963423490524, 0.03344334661960602, -0.009351172484457493, -0.00022941511997487396, 0.13597318530082703, -0.019751882180571556, -0.0028988157864660025, 0.048313532024621964, 0.03693558648228645, 0.02373051457107067, -0.05275435373187065, 0.02940409444272518, 0.02539868652820587, 0.032232340425252914, 0.06546790152788162, 0.033412106335163116, -0.047448933124542236, 0.03804153576493263, -0.0025254099164158106, -0.11207924783229828, 0.019641218706965446, -0.00460948096588254, -0.0742158442735672, 0.1268945336341858, 0.0407399944961071, 0.010224059224128723, -0.03741471841931343, 0.24361543357372284, -0.06653323769569397, -0.06378097087144852, -0.13251738250255585, 0.10491154342889786, -0.0027236645109951496, 0.06476365029811859, 0.023412218317389488, -0.1284150779247284, 0.005243356805294752, 0.13858191668987274, 0.12181595712900162, 0.0045748427510261536, 0.009228081442415714, 0.0518609918653965, 0.0025186820421367884, -0.06998204439878464, 0.054019294679164886, 0.06992026418447495, 0.12919506430625916, -0.07847554981708527, 0.07680778950452805, 0.0006860480643808842, -0.08370215445756912, -0.02947772853076458, 0.11312682181596756, -0.0409729965031147, 0.03491825982928276, -0.047444481402635574, 0.10916327685117722, -0.05787910893559456, -0.29412412643432617, 0.02350960113108158, -0.09588567912578583, -0.15202060341835022, -0.018367812037467957, 0.05944539234042168, -0.02624768204987049, 0.018029648810625076, 0.06971040368080139, -0.06011629104614258, 0.20098382234573364, 0.0335683599114418, -0.07864278554916382, -0.0664360448718071, 0.04837050288915634, -0.06564252078533173, 0.2949807047843933, 0.008418165147304535, 0.02863333560526371, 0.10770907253026962, -0.03253700211644173, -0.18271861970424652, 0.010723991319537163, 0.1133992001414299, -0.08056149631738663, 0.08200647681951523, 0.19000613689422607, -0.012578671798110008, 0.1209007054567337, 0.05294662341475487, -0.047376248985528946, 0.04217283055186272, -0.03389401361346245, -0.051268599927425385, -0.10752558708190918, 0.058453381061553955, -0.05909625440835953, 0.15447644889354706, 0.10152646154165268, -0.05671518296003342, -0.004550917539745569, -0.05555408447980881, 0.04875178262591362, 0.01804669201374054, 0.12263146042823792, 0.02951994352042675, -0.1865430772304535, 0.032826557755470276, -0.01144319772720337, 0.10186848044395447, -0.25588861107826233, -0.08421015739440918, 0.08833149075508118, -0.011924264021217823, -0.05105875805020332, 0.10560628771781921, 0.057650718837976456, 0.04243382066488266, -0.043439045548439026, -0.10480839014053345, -0.02186836116015911, 0.14663739502429962, -0.1469624787569046, -0.025013303384184837 ]
null
null
transformers
# Uploaded model - **Developed by:** gmonsoon - **License:** apache-2.0 - **Finetuned from model :** vihangd/DopeyTinyLlama-1.1B-v1 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "vihangd/DopeyTinyLlama-1.1B-v1"}
text-generation
gmonsoon/TinyNesia-Base
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "en", "base_model:vihangd/DopeyTinyLlama-1.1B-v1", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T13:39:49+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-vihangd/DopeyTinyLlama-1.1B-v1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: gmonsoon - License: apache-2.0 - Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1 This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: gmonsoon\n- License: apache-2.0\n- Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-vihangd/DopeyTinyLlama-1.1B-v1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: gmonsoon\n- License: apache-2.0\n- Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 89, 81 ]
[ "passage: TAGS\n#transformers #safetensors #llama #text-generation #text-generation-inference #unsloth #trl #conversational #en #base_model-vihangd/DopeyTinyLlama-1.1B-v1 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: gmonsoon\n- License: apache-2.0\n- Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ -0.08357113599777222, 0.09285049140453339, -0.004209527745842934, 0.09728951007127762, 0.07495530694723129, 0.009386246092617512, 0.10957806557416916, 0.12974803149700165, -0.07895712554454803, -0.000808805983979255, 0.10604218393564224, 0.13199186325073242, 0.006301353685557842, -0.0012826018501073122, -0.024489879608154297, -0.16505353152751923, 0.09424532949924469, -0.04650238901376724, -0.06803782284259796, 0.05105393007397652, 0.06683439016342163, -0.014623738825321198, 0.07620695978403091, -0.04260050132870674, -0.012571792118251324, 0.01822393573820591, -0.023475421592593193, -0.04025350883603096, 0.058797694742679596, 0.056767161935567856, 0.039045143872499466, 0.052539072930812836, 0.0422227680683136, -0.11922359466552734, 0.047912340611219406, 0.05940618738532066, 0.004631615709513426, 0.0501280203461647, 0.012014531530439854, 0.04022398591041565, 0.13813240826129913, -0.004507144913077354, -0.006722844205796719, 0.04498128220438957, -0.033540911972522736, -0.07884285598993301, -0.03853471949696541, 0.07067509740591049, 0.039309632033109665, 0.053777843713760376, 0.02687382698059082, 0.11266912519931793, -0.031951963901519775, 0.07284563034772873, 0.16697657108306885, -0.30496469140052795, -0.08937104791402817, 0.1679333597421646, 0.05481347814202309, 0.03620443120598793, -0.04400620982050896, 0.04482289031147957, 0.051716167479753494, -0.020993271842598915, 0.07834994792938232, -0.058562129735946655, -0.17258447408676147, -0.005443491041660309, -0.10493753105401993, 0.03267233818769455, 0.1624021977186203, 0.04482953995466232, -0.0506199486553669, -0.005149538628757, -0.14182765781879425, 0.08411718159914017, -0.06472750753164291, -0.00008261794573627412, 0.054939452558755875, 0.05630594119429588, 0.02879241108894348, -0.12196512520313263, -0.07031667977571487, -0.037135377526283264, -0.05539903789758682, 0.09403172880411148, 0.07614177465438843, 0.07253242284059525, -0.027713630348443985, 0.06757144629955292, 0.000328379450365901, -0.12628257274627686, -0.026701126247644424, -0.04883122816681862, 0.05749473348259926, 0.03861137479543686, -0.029337244108319283, -0.03863095864653587, 0.14871779084205627, 0.10694214701652527, 0.10549391061067581, 0.05911972373723984, -0.05222826078534126, 0.00007857330638216808, -0.10199274122714996, 0.08869705349206924, -0.10366949439048767, -0.0603712797164917, 0.12122988700866699, 0.07398679852485657, 0.11605560034513474, 0.005865188781172037, -0.07622139155864716, -0.03140765428543091, -0.013359209522604942, 0.07987111061811447, 0.03888215497136116, 0.113529272377491, 0.005955530796200037, -0.03822222352027893, -0.003962430637329817, -0.10172967612743378, -0.03332136198878288, -0.005182243417948484, -0.03458627313375473, 0.13194508850574493, 0.08836473524570465, -0.004536279011517763, -0.06031126156449318, -0.07354657351970673, -0.0689302310347557, -0.02098059467971325, -0.0238682571798563, -0.03805486112833023, 0.04296375811100006, -0.057194218039512634, -0.013226587325334549, -0.17463289201259613, -0.2776886820793152, 0.040385495871305466, 0.12749549746513367, -0.0247822105884552, -0.03707863390445709, -0.08152887970209122, -0.04569734260439873, 0.027471600100398064, -0.02117580734193325, -0.03521016985177994, -0.07667406648397446, 0.05350499227643013, -0.019758528098464012, 0.092934750020504, -0.06520679593086243, 0.03164118528366089, -0.08730675280094147, 0.05552048981189728, -0.016405373811721802, 0.038764212280511856, -0.05590478703379631, 0.11014852672815323, -0.07890907675027847, 0.03309348598122597, -0.06594035029411316, 0.02582925744354725, 0.036461930721998215, 0.1652269959449768, -0.1763102263212204, 0.018749194219708443, 0.16891303658485413, -0.09804867208003998, -0.12059928476810455, 0.12456319481134415, 0.009139647707343102, 0.09457660466432571, 0.09329639375209808, 0.11020106077194214, 0.15400810539722443, -0.20620694756507874, 0.06146525964140892, 0.08038830757141113, -0.031596019864082336, -0.06975077837705612, 0.04780900478363037, 0.058880191296339035, -0.16956613957881927, 0.09483681619167328, -0.06840161234140396, 0.08828967064619064, 0.00406131986528635, -0.05617399886250496, -0.11440611630678177, -0.12384194135665894, 0.003637139918282628, -0.028995107859373093, 0.0013937860494479537, -0.031255364418029785, -0.045482609421014786, -0.01577308215200901, 0.18420954048633575, -0.07013767957687378, 0.0008266672375611961, -0.057653043419122696, 0.08209363371133804, -0.11204226315021515, 0.07159922271966934, -0.053535494953393936, -0.06897467374801636, -0.020167021080851555, -0.05896361172199249, 0.07146910578012466, 0.0638526976108551, 0.05877048149704933, -0.0037003168836236, -0.014663759618997574, 0.0063969772309064865, 0.04879264160990715, -0.011341540142893791, -0.03999239578843117, -0.0823209285736084, 0.06230292469263077, -0.031528081744909286, 0.1497238576412201, -0.0982644334435463, 0.06367161870002747, -0.09852682054042816, 0.07253996282815933, -0.009442157112061977, 0.04690828174352646, 0.05909430980682373, -0.07493744045495987, -0.025075452402234077, -0.09318258613348007, 0.08745450526475906, 0.0812227800488472, -0.02648223750293255, 0.08629939705133438, -0.10051411390304565, 0.1169007197022438, 0.14491616189479828, 0.03811940550804138, 0.011074414476752281, 0.03489573672413826, -0.006776344031095505, 0.006685406435281038, -0.023335300385951996, 0.012212967500090599, -0.025742890313267708, 0.017542464658617973, 0.18520784378051758, -0.11277808994054794, 0.012457044795155525, 0.023418519645929337, -0.10097961127758026, -0.012016656808555126, 0.06599237769842148, 0.11704801023006439, -0.04118477553129196, 0.04007769003510475, 0.24774466454982758, -0.10108796507120132, 0.1445232331752777, -0.0022061800118535757, -0.04453035071492195, -0.01438368484377861, 0.05957105755805969, 0.01491991151124239, 0.00614515645429492, -0.02721911482512951, 0.04870285466313362, 0.022423291578888893, 0.00012102189793949947, 0.04677671566605568, -0.1458306908607483, -0.02732321247458458, -0.00006177953036967665, -0.08263854682445526, 0.0660499557852745, 0.07195725291967392, -0.05653538182377815, 0.10409810394048691, -0.05190272629261017, -0.09492914378643036, 0.01808145083487034, 0.0328245647251606, -0.009418698959052563, 0.14246712625026703, -0.08729715645313263, -0.25398361682891846, -0.13030773401260376, -0.07452324032783508, -0.15953625738620758, 0.0077440389432013035, 0.07198315113782883, -0.06411586701869965, -0.08091065287590027, -0.09883717447519302, 0.04001248627901077, 0.04410431161522865, 0.029941940680146217, 0.07280158251523972, 0.06200574338436127, 0.07439343631267548, -0.1386670470237732, 0.006069481838494539, 0.007488736417144537, -0.1093091294169426, 0.021132394671440125, -0.07647120207548141, 0.06557413935661316, 0.11433340609073639, -0.00014640408335253596, -0.024765804409980774, 0.05145476385951042, 0.09567102044820786, 0.039959270507097244, 0.048414357006549835, 0.2617741525173187, 0.0646989643573761, 0.08904018253087997, 0.12156791239976883, -0.014078413136303425, -0.09623218327760696, 0.02522597834467888, 0.03149016201496124, -0.07152293622493744, -0.18656209111213684, -0.049904268234968185, -0.09005582332611084, 0.07075758278369904, 0.09784206002950668, 0.06345527619123459, 0.010312339290976524, 0.15074658393859863, -0.05500157177448273, 0.08337758481502533, 0.03262855485081673, 0.09365155547857285, 0.19833479821681976, -0.017556846141815186, 0.07361596077680588, -0.11308284103870392, -0.06431511789560318, 0.09728829562664032, 0.09908957034349442, 0.06177479773759842, 0.012853299267590046, -0.03524165228009224, 0.019049452617764473, 0.1704636663198471, -0.002140275202691555, 0.0831097960472107, -0.03053176775574684, -0.015355543233454227, -0.07161138206720352, -0.07791054993867874, -0.053276482969522476, 0.042367275804281235, -0.1383458822965622, -0.03443431481719017, -0.010393759235739708, 0.1318024843931198, 0.04956737533211708, 0.17696040868759155, 0.03550014644861221, -0.23885922133922577, -0.013404572382569313, 0.06134430691599846, 0.0010325816692784429, -0.06956879794597626, 0.07395229488611221, 0.009185745380818844, -0.0038969931192696095, 0.0712069422006607, -0.03652023524045944, 0.10783262550830841, 0.022162051871418953, 0.03466217592358589, -0.05454722046852112, 0.13736647367477417, 0.05063071846961975, 0.10958478599786758, -0.172914519906044, 0.057929933071136475, 0.01104277279227972, 0.04411804676055908, -0.0184065829962492, 0.00696365162730217, 0.0953175351023674, 0.10988821089267731, 0.07914473116397858, -0.02255711331963539, 0.0830395519733429, 0.000615698576439172, -0.1466129869222641, 0.047376759350299835, -0.0004958948120474815, 0.021749328821897507, 0.08535218238830566, -0.10192487388849258, -0.04355223476886749, -0.0000778192188590765, 0.07686184346675873, -0.06347569078207016, -0.10881561040878296, 0.0018174838041886687, 0.155160591006279, -0.012172582559287548, -0.04966767132282257, -0.01891033723950386, -0.13093647360801697, 0.16440951824188232, 0.053601741790771484, -0.0711314007639885, -0.0889313668012619, -0.05812545865774155, 0.11813124269247055, -0.05335703119635582, 0.03363436833024025, -0.09367131441831589, 0.07737218588590622, -0.010499709285795689, -0.18522144854068756, 0.010493424721062183, -0.11133547127246857, -0.05514414981007576, -0.017666632309556007, 0.08696749806404114, -0.15649043023586273, -0.03300424665212631, 0.026155507192015648, -0.04981536790728569, -0.07183074951171875, -0.09188690781593323, -0.1062363013625145, 0.1667022556066513, -0.08199238777160645, -0.03143375739455223, -0.12438017874956131, -0.05266427993774414, -0.0269903726875782, -0.0024890447966754436, 0.06431028991937637, 0.22783055901527405, -0.026126965880393982, 0.10832691937685013, 0.18172821402549744, -0.07181194424629211, -0.30045223236083984, -0.1313781589269638, -0.04330745339393616, -0.02303474023938179, -0.04755014181137085, -0.09023406356573105, 0.14539942145347595, 0.06711342930793762, -0.04967956617474556, 0.05671996250748634, -0.26786866784095764, -0.11390355229377747, 0.10756460577249527, 0.06317777186632156, 0.3109840452671051, -0.1446734219789505, -0.03554141893982887, -0.12039616703987122, -0.13640953600406647, 0.12132316082715988, -0.2143925577402115, 0.12143730372190475, -0.030589167028665543, 0.03773065283894539, 0.025653066113591194, -0.02266499027609825, 0.10079722851514816, -0.06624739617109299, 0.0585852712392807, -0.10758616030216217, 0.10463282465934753, 0.058099936693906784, -0.09517809748649597, 0.2062854766845703, -0.1511821150779724, 0.08583679795265198, -0.056163765490055084, -0.019174469634890556, -0.010628251358866692, 0.011967984028160572, 0.005135042127221823, -0.025124438107013702, -0.03378390893340111, -0.026048794388771057, 0.09233798086643219, -0.011278013698756695, 0.10319405049085617, 0.022940998896956444, -0.024671044200658798, 0.15303084254264832, 0.0013175857020542026, -0.09866796433925629, -0.010544725693762302, -0.05958816409111023, -0.03804969787597656, 0.07971685379743576, -0.22424395382404327, 0.06583311408758163, 0.052322786301374435, -0.05151957646012306, 0.055558182299137115, 0.011280564591288567, 0.03756031394004822, -0.011638705618679523, 0.057807501405477524, -0.1340782195329666, -0.0397203266620636, -0.020308488979935646, 0.11956584453582764, -0.060438670217990875, 0.06622210890054703, 0.20374822616577148, -0.08487161993980408, 0.010976608842611313, -0.011639338918030262, 0.022690117359161377, 0.00031225039856508374, 0.07267188280820847, 0.07127965986728668, -0.011276650242507458, -0.08837173134088516, 0.13987547159194946, 0.002654146170243621, -0.03571925312280655, 0.0006446050247177482, 0.04610626772046089, -0.12291870266199112, -0.08203055709600449, 0.023506660014390945, 0.1039397269487381, -0.1517183631658554, -0.03642422705888748, -0.10919611155986786, -0.06408850103616714, 0.019199317321181297, 0.07963410019874573, 0.05907662585377693, 0.026410428807139397, -0.04874951392412186, -0.04036810249090195, -0.06704236567020416, 0.06173985078930855, 0.08093249052762985, 0.03963642567396164, -0.2296966314315796, 0.004237078130245209, 0.002378886565566063, 0.03585965558886528, -0.044122274965047836, 0.0013424694770947099, -0.08942032605409622, -0.0160340815782547, -0.24303734302520752, 0.08725203573703766, -0.03469865396618843, 0.0476786307990551, 0.01637957990169525, -0.02556602470576763, -0.04954099655151367, 0.02442443184554577, -0.06687299907207489, -0.010482508689165115, -0.057627469301223755, 0.00498330220580101, -0.08245871961116791, -0.06892427057027817, 0.014089650474488735, -0.07214321196079254, 0.012713100761175156, 0.014230879954993725, -0.07439339905977249, 0.028562450781464577, -0.1921263039112091, -0.03912182152271271, 0.04832073673605919, 0.07324628531932831, -0.022417372092604637, 0.01950547657907009, 0.012954371981322765, 0.05612393468618393, 0.0427226647734642, -0.047009944915771484, 0.06363548338413239, -0.09204258024692535, -0.04623207077383995, -0.07631655782461166, -0.019670385867357254, -0.01861484907567501, -0.05036420002579689, 0.0841098353266716, 0.07529816031455994, 0.16544336080551147, -0.06432041525840759, -0.015813268721103668, -0.14734938740730286, -0.0005020308890379965, 0.0028475767467170954, -0.10583973675966263, -0.09132567048072815, -0.09551692008972168, 0.020784905180335045, -0.017942441627383232, 0.06143086031079292, 0.04189297929406166, 0.0070733679458498955, -0.011691493913531303, 0.02436194010078907, 0.05397963151335716, -0.03492031246423721, 0.21197941899299622, 0.056346796452999115, 0.07114670425653458, -0.07802657037973404, -0.028401566669344902, 0.13824044167995453, -0.005046653561294079, -0.024664582684636116, 0.10156422853469849, -0.04741533845663071, 0.14565828442573547, 0.04012328013777733, 0.05235636234283447, 0.013310441747307777, 0.023714659735560417, -0.08930167555809021, 0.08090315759181976, -0.05426526442170143, 0.13617846369743347, 0.15443983674049377, -0.03402576223015785, -0.0024824512656778097, -0.027884559705853462, -0.014970076270401478, -0.14407338201999664, -0.13250800967216492, -0.1315184086561203, -0.1659887731075287, 0.007712667807936668, -0.06904762983322144, 0.04880933091044426, 0.0352962501347065, 0.0275444183498621, 0.0558786541223526, 0.08398795872926712, -0.01918598636984825, -0.09921611100435257, 0.0556926354765892, -0.009665131568908691, -0.05666472017765045, 0.0906219333410263, -0.031682077795267105, 0.027706362307071686, 0.0007891785353422165, -0.007562182378023863, 0.044471509754657745, 0.11352494359016418, 0.049885865300893784, -0.0812719464302063, -0.0494907982647419, -0.04408237710595131, 0.016666442155838013, 0.035656001418828964, 0.05840383842587471, 0.04970792308449745, -0.042513225227594376, 0.02004457265138626, 0.20116811990737915, -0.07312740385532379, -0.1417016237974167, -0.11604201793670654, 0.06941840052604675, -0.046827640384435654, 0.04303279146552086, -0.03569250926375389, -0.01386493630707264, 0.003250672249123454, 0.3627937436103821, 0.13600343465805054, -0.09641270339488983, -0.011068716645240784, -0.06072544306516647, 0.014673290774226189, -0.04261137917637825, 0.14091986417770386, 0.13300319015979767, 0.12636111676692963, -0.04983791336417198, -0.02969237044453621, -0.0161071065813303, -0.0067227063700556755, -0.1274978220462799, 0.031839385628700256, -0.12093022465705872, -0.015757352113723755, -0.018630564212799072, 0.010969152674078941, -0.03779390826821327, -0.0678894966840744, -0.024479785934090614, -0.017152871936559677, -0.054179005324840546, -0.09084220230579376, 0.07340393215417862, 0.01648859493434429, 0.014156145974993706, -0.08318166434764862, 0.023538241162896156, 0.13130849599838257, -0.06147289648652077, -0.1349593698978424, -0.07499710470438004, 0.05162971839308739, 0.04641532525420189, 0.10484252870082855, 0.03965229168534279, 0.021308740600943565, 0.049660615622997284, -0.05996688827872276, -0.11497873812913895, 0.10751703381538391, -0.00513868872076273, -0.06821294873952866, 0.0519617460668087, -0.026534633710980415, -0.0674884170293808, 0.027952251955866814, 0.038030147552490234, 0.062260568141937256, -0.04977404326200485, 0.09341495484113693, -0.04963576793670654, -0.047870948910713196, 0.056315988302230835, -0.08546673506498337, 0.10725172609090805, 0.0912664607167244, -0.056315574795007706, -0.018592530861496925, -0.09664768725633621, 0.07127383351325989, -0.005998443812131882, -0.09641706198453903, 0.049076396971940994, -0.07763371616601944, -0.06067206338047981, -0.0014960488770157099, 0.056263331323862076, -0.18408013880252838, -0.06595325469970703, -0.05676489695906639, -0.01589314639568329, -0.09252449870109558, 0.09425044059753418, 0.15097923576831818, 0.02335207723081112, -0.023648913949728012, -0.11261153221130371, -0.015897715464234352, 0.06798985600471497, -0.016136465594172478, -0.11325719952583313 ]
null
null
null
# **Reinforce** Agent playing **Pixelcopter-PLE-v0** This is a trained model of a **Reinforce** agent playing **Pixelcopter-PLE-v0** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
{"tags": ["Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-PixelCopter", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Pixelcopter-PLE-v0", "type": "Pixelcopter-PLE-v0"}, "metrics": [{"type": "mean_reward", "value": "38.70 +/- 24.80", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
ramsi-k/Reinforce-PixelCopter
[ "Pixelcopter-PLE-v0", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
2024-02-06T13:42:06+00:00
[]
[]
TAGS #Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
# Reinforce Agent playing Pixelcopter-PLE-v0 This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
[ "# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ "TAGS\n#Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n", "# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 41, 58 ]
[ "passage: TAGS\n#Pixelcopter-PLE-v0 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing Pixelcopter-PLE-v0\n This is a trained model of a Reinforce agent playing Pixelcopter-PLE-v0 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL" ]
[ 0.0073175891302526, -0.2259262204170227, -0.0017347558168694377, 0.05054566636681557, 0.0658537745475769, -0.055378563702106476, 0.1412602812051773, 0.05916554853320122, -0.04990595206618309, 0.059261854737997055, 0.14166708290576935, 0.03996060788631439, 0.022112762555480003, 0.1513713151216507, 0.09764605015516281, -0.2469022423028946, 0.07438477873802185, 0.01641594059765339, 0.008152224123477936, 0.09583204984664917, 0.060265738517045975, -0.1405058205127716, 0.037032704800367355, -0.01332044042646885, -0.13650871813297272, 0.0010478810872882605, -0.021802188828587532, -0.03625129908323288, 0.15681709349155426, 0.006844013463705778, 0.09602472931146622, -0.001560068572871387, 0.06475798785686493, -0.12438877671957016, 0.05466329678893089, 0.06455880403518677, -0.06293967366218567, 0.058029334992170334, -0.057374246418476105, 0.11959903687238693, 0.04641333222389221, -0.01578129455447197, 0.054811324924230576, 0.010941818356513977, -0.14131468534469604, -0.006710252724587917, 0.007013716734945774, 0.15098218619823456, 0.1339312642812729, 0.01409265398979187, -0.0014771400019526482, 0.1363491266965866, -0.16774429380893707, 0.045684073120355606, 0.061802688986063004, -0.2633039951324463, -0.04168876260519028, 0.12259352207183838, 0.08951573073863983, 0.06848238408565521, -0.060910262167453766, 0.07636868953704834, 0.049813780933618546, 0.013985024765133858, 0.023094501346349716, -0.042509064078330994, -0.040479615330696106, 0.02289252169430256, -0.0921095609664917, -0.05999262258410454, 0.11517233401536942, -0.006806366611272097, 0.03735918551683426, -0.12476086616516113, -0.015330453403294086, -0.07314357161521912, -0.05917041376233101, -0.082573801279068, 0.07563583552837372, 0.030191516503691673, -0.048283837735652924, -0.08895846456289291, -0.056533291935920715, -0.11489585787057877, -0.023082571104168892, -0.07226225733757019, 0.005096882116049528, -0.03157244250178337, -0.035645097494125366, 0.09446526318788528, -0.0021088174544274807, -0.015028090216219425, -0.03452150896191597, -0.05930153280496597, -0.04213470220565796, -0.02359505370259285, -0.03510070592164993, -0.059062156826257706, 0.054655663669109344, 0.0680202916264534, 0.04938843473792076, 0.09133565425872803, -0.0467856265604496, 0.1667373925447464, -0.03256719931960106, 0.08078566938638687, -0.011897698976099491, 0.2012830525636673, 0.11370102316141129, 0.12129533290863037, 0.06716908514499664, -0.05294690653681755, -0.16726544499397278, 0.039163749665021896, 0.12641896307468414, 0.07664673775434494, -0.032492902129888535, 0.018162984400987625, -0.12440363317728043, 0.05439428985118866, -0.14826108515262604, -0.06745084375143051, 0.024251462891697884, 0.01822635903954506, -0.060682263225317, 0.03656952083110809, -0.0028792342636734247, 0.003339326474815607, 0.004654870834201574, -0.16432709991931915, -0.05568019300699234, 0.028964387252926826, -0.15712425112724304, -0.06656725704669952, 0.06277995556592941, -0.10113482922315598, -0.012132617644965649, -0.16982388496398926, -0.16305199265480042, -0.03628521412611008, 0.017857929691672325, -0.040613796561956406, -0.056917786598205566, -0.14010562002658844, -0.019415250048041344, -0.045320261269807816, -0.004312154371291399, 0.044072363525629044, 0.0020940210670232773, 0.04635847359895706, 0.0066573889926075935, 0.09289347380399704, 0.010714372619986534, -0.0014722738415002823, -0.04595406726002693, 0.0909833237528801, -0.30731555819511414, 0.07525643706321716, -0.08645553886890411, 0.05539081245660782, -0.057316381484270096, -0.0926317572593689, -0.007509906310588121, 0.06277763843536377, 0.060464419424533844, 0.20788121223449707, -0.2800109386444092, -0.07025618106126785, 0.13655538856983185, -0.09533236175775528, -0.13146020472049713, 0.0513952374458313, -0.050213608890771866, 0.07593657076358795, 0.027370907366275787, 0.140700101852417, -0.028026295825839043, -0.15554022789001465, 0.06281048059463501, 0.04586128890514374, -0.11356306821107864, 0.019295670092105865, 0.03597676753997803, 0.06723599135875702, 0.05744141340255737, -0.036986757069826126, -0.04105675220489502, 0.08096802979707718, -0.07076814025640488, -0.037564266473054886, 0.04588831216096878, -0.0579565204679966, 0.1630958467721939, 0.033971156924963, 0.09856503456830978, -0.04149768501520157, -0.07435470074415207, -0.005698562134057283, 0.038746561855077744, -0.08962973952293396, 0.025353478267788887, -0.18320298194885254, 0.2423991560935974, -0.02621818706393242, 0.027546977624297142, -0.16845986247062683, -0.0588528998196125, 0.011087946593761444, 0.21568740904331207, 0.030399197712540627, 0.12989304959774017, 0.07485637813806534, -0.01250512059777975, 0.014156299643218517, -0.06183977797627449, -0.1972363442182541, -0.03247830644249916, 0.008314179256558418, -0.058311350643634796, -0.04934588819742203, -0.0900716632604599, 0.10427892208099365, -0.19334633648395538, -0.005319371819496155, 0.08282599598169327, 0.023504555225372314, 0.03946567326784134, 0.0035407328978180885, -0.03634254261851311, 0.055148303508758545, 0.02030518464744091, -0.08980578929185867, 0.14668866991996765, 0.0035520538222044706, -0.03514726087450981, -0.03927676007151604, -0.03267495706677437, 0.05703731253743172, 0.08045367896556854, -0.18214593827724457, -0.0733821839094162, -0.0838410034775734, -0.02458474040031433, 0.050523869693279266, 0.036679428070783615, 0.02738112211227417, 0.44813573360443115, 0.057562243193387985, 0.09003535658121109, -0.08811535686254501, 0.039806611835956573, 0.012785476632416248, -0.031281858682632446, 0.013625281862914562, 0.04725322127342224, 0.11279468983411789, 0.028284218162298203, 0.01669839769601822, 0.03680038824677467, 0.01938779093325138, 0.08824212104082108, -0.10939645022153854, -0.003965397831052542, 0.002614045049995184, 0.038018375635147095, 0.03672022372484207, 0.07190682739019394, 0.015936892479658127, -0.09583546966314316, -0.030848123133182526, -0.11166880279779434, 0.015594755299389362, -0.20979784429073334, -0.025905707851052284, -0.029619399458169937, 0.0003502996696624905, 0.09109684824943542, 0.04222718998789787, -0.04444896802306175, 0.035467714071273804, 0.03947039321064949, -0.0861397460103035, 0.0594942644238472, -0.014317752793431282, -0.07008631527423859, 0.13023322820663452, -0.1002996563911438, -0.3153233230113983, -0.08797995746135712, 0.05698639526963234, 0.05295826122164726, 0.06816939264535904, -0.05876303091645241, -0.09240786731243134, 0.03294730558991432, -0.06836386770009995, -0.0017794050509110093, 0.0037346978206187487, -0.051060982048511505, 0.07253886014223099, 0.08541567623615265, -0.014505518600344658, -0.08911184966564178, -0.006620637606829405, -0.041561197489500046, -0.124965138733387, 0.044060997664928436, -0.03760828450322151, 0.00007921225915197283, 0.18620672821998596, 0.03724536672234535, 0.06256633251905441, -0.06291008740663528, 0.07596296072006226, -0.09150096774101257, 0.0004740063741337508, 0.18428465723991394, -0.015377625823020935, -0.004100616089999676, -0.03996327146887779, -0.0259257685393095, -0.10829219967126846, 0.053985193371772766, -0.07330703735351562, -0.07349077612161636, -0.0023273853585124016, -0.07770214974880219, -0.0351552739739418, 0.0012160884216427803, 0.07817990332841873, 0.029699061065912247, -0.09635239094495773, 0.04920589178800583, 0.1298678070306778, 0.0931883230805397, 0.03626195341348648, 0.023981640115380287, 0.13739009201526642, -0.11230582743883133, 0.019063033163547516, -0.05148853361606598, -0.1041760966181755, -0.042787205427885056, -0.0714287981390953, 0.07368279993534088, 0.06034531816840172, -0.09970010071992874, 0.05144011229276657, 0.041872985661029816, 0.0883496031165123, 0.1373600959777832, -0.04213863983750343, -0.11244629323482513, -0.041393622756004333, -0.022004956379532814, -0.1777329444885254, 0.0341336652636528, 0.22155584394931793, 0.0073304991237819195, -0.10497386753559113, 0.07876885682344437, -0.005956185050308704, 0.11527370661497116, 0.031222699210047722, -0.278682678937912, 0.016931315883994102, 0.00203216471709311, 0.042359162122011185, -0.047676295042037964, 0.10937416553497314, 0.11747439950704575, -0.14421136677265167, -0.06650938838720322, -0.03273930773139, 0.044137366116046906, -0.15618287026882172, 0.036923591047525406, -0.12602220475673676, 0.06240779533982277, 0.050940994173288345, 0.05090156942605972, -0.2197665423154831, 0.06881614029407501, -0.0274215005338192, 0.06763827055692673, -0.062248338013887405, -0.01823522336781025, 0.04473711550235748, 0.025079863145947456, 0.14955177903175354, -0.014347962103784084, 0.14454017579555511, -0.09031219780445099, -0.11753576993942261, 0.0027052261866629124, 0.08532248437404633, 0.013173088431358337, 0.013580933213233948, 0.0026939227245748043, 0.041669201105833054, -0.02811569906771183, 0.17063532769680023, -0.08147624880075455, -0.022407781332731247, -0.06592555344104767, -0.018158966675400734, 0.2039334923028946, -0.12064731866121292, -0.10121093690395355, -0.11619500070810318, 0.08663272857666016, -0.04296411573886871, 0.08175522089004517, -0.020344657823443413, 0.049704354256391525, -0.02509051002562046, 0.007178863976150751, 0.09594997018575668, 0.01950966566801071, 0.08983828872442245, -0.09791163355112076, -0.019585272297263145, 0.13838915526866913, -0.037155888974666595, -0.036971647292375565, -0.019425252452492714, 0.11054370552301407, -0.0358734093606472, 0.08033111691474915, 0.03929615020751953, 0.03664831817150116, 0.03428546339273453, -0.039165496826171875, 0.10309428721666336, 0.10041618347167969, -0.06291446089744568, 0.03864621743559837, -0.07954532653093338, 0.26597461104393005, 0.040773067623376846, 0.07301845401525497, 0.28390514850616455, 0.19391325116157532, -0.03036464750766754, 0.10683353990316391, -0.017607249319553375, -0.024403288960456848, -0.2950931787490845, 0.0006976581644266844, 0.027765681967139244, 0.11812873929738998, 0.01744898222386837, -0.20587195456027985, -0.1211688369512558, -0.03560304269194603, -0.007791717536747456, 0.0310499370098114, -0.2441052496433258, -0.06442268192768097, 0.06107868626713753, 0.13779635727405548, 0.15878525376319885, -0.05917542055249214, -0.007856467738747597, 0.029358724132180214, 0.07593556493520737, 0.017292039468884468, -0.11598441749811172, 0.11550791561603546, 0.025637371465563774, -0.05708931386470795, 0.0267958827316761, -0.044003549963235855, 0.04214555397629738, -0.17736166715621948, 0.10933554917573929, -0.05924695357680321, -0.08421005308628082, 0.07140472531318665, -0.02217724733054638, -0.048552993685007095, 0.0789642184972763, 0.020652711391448975, -0.13173207640647888, 0.038154006004333496, 0.005618774797767401, 0.04346654564142227, -0.004941361024975777, -0.019811764359474182, -0.029163256287574768, 0.07706235349178314, -0.03806605935096741, 0.09605937451124191, 0.19590972363948822, -0.0573095865547657, 0.03974950686097145, 0.085201695561409, 0.09593135863542557, -0.05523005872964859, -0.0809539332985878, -0.03812742978334427, -0.005277194548398256, 0.0674438327550888, -0.08598461747169495, -0.019085103645920753, 0.07938229292631149, 0.015313901007175446, 0.14910826086997986, 0.14389736950397491, -0.08835655450820923, 0.11321785300970078, 0.10694554448127747, -0.11366690695285797, -0.08583837002515793, -0.02963297814130783, 0.0009990704711526632, 0.04910186678171158, -0.048617590218782425, 0.05932905897498131, -0.1035301461815834, 0.012819357216358185, 0.03532040864229202, 0.0038119733799248934, -0.09975302964448929, 0.009764863178133965, 0.08645275235176086, 0.06119582802057266, -0.0567571222782135, 0.09250631928443909, -0.0019178141374140978, -0.10868195444345474, 0.07241881638765335, 0.009918469935655594, -0.021528873592615128, -0.06352251768112183, 0.03211374953389168, 0.2370220273733139, 0.13945111632347107, -0.04336636886000633, -0.12396618723869324, -0.15508891642093658, 0.037849195301532745, 0.024356422945857048, 0.051251959055662155, 0.0062240250408649445, -0.06906022876501083, 0.01234503649175167, -0.04392383247613907, 0.005266309250146151, -0.05930564925074577, -0.047703344374895096, -0.12081446498632431, 0.1154373437166214, 0.053290288895368576, 0.11705748736858368, -0.0842847004532814, -0.07057584822177887, -0.1921386867761612, 0.09190598875284195, 0.041707299649715424, -0.05532265454530716, 0.06002674251794815, -0.030134430155158043, 0.017344338819384575, 0.11256659775972366, -0.051967836916446686, 0.008543911390006542, -0.09269233793020248, 0.03236149623990059, 0.03133073076605797, 0.04903566092252731, -0.004612727556377649, -0.017903391271829605, 0.04399999976158142, -0.05730267986655235, 0.07619527727365494, -0.07757602632045746, -0.033709146082401276, 0.0645759105682373, -0.16051416099071503, -0.054324716329574585, 0.08708633482456207, 0.013749903067946434, 0.02590017393231392, -0.05825240537524223, 0.019142305478453636, -0.05566488951444626, -0.04483235627412796, 0.01169554702937603, -0.05552767962217331, -0.011517677456140518, 0.05293213203549385, -0.05287189036607742, -0.040493328124284744, -0.06794002652168274, 0.061874233186244965, -0.07247710227966309, 0.09816460311412811, 0.031187955290079117, -0.10892423242330551, 0.07648903876543045, -0.037552736699581146, -0.0049397205002605915, -0.009439278393983841, 0.039307788014411926, 0.15598824620246887, -0.1606634259223938, 0.05345672369003296, -0.0484454482793808, 0.13272921741008759, 0.046888746321201324, -0.04458791762590408, -0.020207170397043228, 0.02469455823302269, -0.05549024045467377, 0.06932897865772247, 0.15877580642700195, 0.09880131483078003, 0.02571805939078331, 0.008134597912430763, 0.10187267512083054, 0.1060529574751854, 0.08136752992868423, 0.08394161611795425, -0.03428563475608826, -0.11287897825241089, 0.14338994026184082, 0.09748584777116776, 0.024613093584775925, 0.21077860891819, 0.17944025993347168, 0.03125298395752907, 0.03018142655491829, -0.06512103229761124, 0.17325744032859802, 0.061261482536792755, -0.08229418843984604, 0.014424329623579979, 0.03221147879958153, -0.049809664487838745, -0.047004032880067825, -0.09757380187511444, -0.029556652531027794, -0.24085633456707, 0.10851483792066574, -0.057250600308179855, -0.09750643372535706, 0.022772664204239845, 0.02990041859447956, -0.018839845433831215, 0.11280566453933716, -0.07735858112573624, 0.012980576604604721, 0.18577688932418823, -0.03825045004487038, -0.022322099655866623, -0.1633504331111908, -0.11154003441333771, -0.014046176336705685, -0.11750495433807373, 0.025494296103715897, 0.06305963546037674, 0.01117965579032898, 0.04399528726935387, 0.028923438861966133, -0.020834028720855713, 0.019218796864151955, -0.05903913825750351, -0.042673509567976, -0.01891910657286644, 0.02202831581234932, -0.09593231230974197, -0.03627033904194832, 0.12151803076267242, -0.03246605768799782, -0.08207374066114426, -0.006544890813529491, 0.07848484069108963, -0.042620159685611725, 0.09450104832649231, -0.07687012106180191, -0.03479038178920746, -0.06794454902410507, 0.268902063369751, 0.09388194978237152, -0.20183001458644867, 0.03341769427061081, -0.030470456928014755, 0.026735708117485046, -0.09215684235095978, 0.16250114142894745, 0.0899243950843811, 0.049168527126312256, -0.12686687707901, -0.003401300171390176, -0.09992645680904388, -0.0028723697178065777, -0.12552696466445923, -0.14725084602832794, 0.12093491852283478, -0.003848524997010827, -0.06547791510820389, 0.02844911813735962, -0.15909899771213531, 0.06585367769002914, 0.0978507474064827, -0.1514272391796112, -0.038227714598178864, -0.06086801365017891, 0.06072385236620903, 0.026465637609362602, 0.13005392253398895, -0.05080926790833473, 0.012067130766808987, -0.0656723901629448, -0.011309894733130932, -0.0000654291216051206, -0.017478201538324356, 0.001532604917883873, -0.09828947484493256, 0.05038110539317131, -0.0835796371102333, 0.12184429168701172, 0.05709611251950264, 0.005326167680323124, 0.008464806713163853, 0.0648408755660057, -0.02414623089134693, -0.10202058404684067, -0.01877439208328724, 0.033475372940301895, 0.03998998552560806, 0.010373802855610847, 0.034506846219301224, 0.0006507808575406671, 0.07714920490980148, -0.011413984932005405, -0.027285432443022728, -0.058209117501974106, 0.03936338797211647, -0.10441672056913376, 0.10461361706256866, 0.0013552121818065643, -0.02240127883851528, -0.010913821868598461, -0.05532446503639221, 0.045815300196409225, 0.04572062939405441, 0.029743505641818047, -0.05261747166514397, -0.09262793511152267, -0.021781492978334427, 0.023900283500552177, -0.11539579927921295, -0.18497975170612335, -0.0664035826921463, -0.15038692951202393, -0.01633414439857006, -0.0620744526386261, 0.08902198076248169, 0.13558129966259003, 0.030392181128263474, -0.04822919890284538, -0.12171997129917145, 0.025026977062225342, 0.13544774055480957, -0.03851630911231041, -0.07532322406768799 ]
null
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
text-generation
Jayem-11/mistral_7b_malawi
[ "transformers", "safetensors", "mistral", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
2024-02-06T13:42:24+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 59, 6, 3, 82, 28, 3, 4, 9, 9, 10, 42, 20, 3, 4, 5, 9, 11, 13, 3, 12, 5, 4, 5, 3, 4, 9, 53, 9, 8, 6, 3, 14, 8, 7, 9, 4 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
[ -0.04788382723927498, 0.16171279549598694, -0.005352917592972517, 0.02136841043829918, 0.09686184674501419, 0.015111604705452919, 0.07137951999902725, 0.10955451428890228, -0.020038405433297157, 0.11244286596775055, 0.03330032527446747, 0.09441220015287399, 0.11357662081718445, 0.14772894978523254, -0.003575492650270462, -0.232261523604393, 0.05006932094693184, -0.1246371790766716, -0.03666049614548683, 0.11627218872308731, 0.15057805180549622, -0.10109459608793259, 0.0756460502743721, -0.030913641676306725, -0.009812407195568085, -0.033390406519174576, -0.05693698301911354, -0.04944330081343651, 0.05103539675474167, 0.07355327904224396, 0.06860782206058502, 0.004711335990577936, 0.09396199136972427, -0.2655787467956543, 0.020426444709300995, 0.07093948125839233, -0.0019974696915596724, 0.07591848820447922, 0.05331665277481079, -0.07516877353191376, 0.09268398582935333, -0.050851862877607346, 0.14750060439109802, 0.07999978214502335, -0.09178632497787476, -0.1916678249835968, -0.08780492842197418, 0.1011761948466301, 0.18467943370342255, 0.04421152547001839, -0.023150887340307236, 0.10070723295211792, -0.08664919435977936, 0.011689732782542706, 0.05446745082736015, -0.06747105717658997, -0.052418507635593414, 0.06491605937480927, 0.0793420672416687, 0.0767722949385643, -0.12429667264223099, -0.02174406498670578, 0.008611103519797325, 0.00887030828744173, 0.0814518854022026, 0.02427673526108265, 0.15523891150951385, 0.04025983437895775, -0.12765221297740936, -0.04938573017716408, 0.1069699227809906, 0.04103906825184822, -0.04726257547736168, -0.25091874599456787, -0.02940361201763153, -0.025307154282927513, -0.0306085217744112, -0.03984487056732178, 0.04118539020419121, -0.006947068031877279, 0.08044755458831787, -0.00699204858392477, -0.07604070007801056, -0.03760726749897003, 0.06074252352118492, 0.061373963952064514, 0.026066971942782402, -0.012132911942899227, 0.010845172218978405, 0.11657512187957764, 0.10491005331277847, -0.12471938878297806, -0.05219554528594017, -0.06468912214040756, -0.07947935909032822, -0.043697141110897064, 0.03412042558193207, 0.041996799409389496, 0.0503966324031353, 0.24876368045806885, 0.013237204402685165, 0.05510834604501724, 0.03997663035988808, 0.009734313935041428, 0.06435027718544006, 0.11203338205814362, -0.06008143350481987, -0.09627178311347961, -0.027062542736530304, 0.09033986181020737, 0.010054918937385082, -0.04071144387125969, -0.05739009380340576, 0.0623612105846405, 0.0185408778488636, 0.11882077902555466, 0.08993595838546753, 0.0032226061448454857, -0.07099147886037827, -0.06380297243595123, 0.1967260092496872, -0.16188356280326843, 0.047058627009391785, 0.0354633666574955, -0.038969624787569046, -0.0023125922307372093, 0.007358122151345015, 0.025436079129576683, -0.01989656314253807, 0.09119832515716553, -0.05659566447138786, -0.040517594665288925, -0.10913336277008057, -0.03569170460104942, 0.032513219863176346, 0.010858619585633278, -0.03217906504869461, -0.030786113813519478, -0.08418484032154083, -0.06755144894123077, 0.09449765086174011, -0.07364831864833832, -0.053648900240659714, -0.01785014383494854, -0.07429704070091248, 0.025341181084513664, 0.02034521847963333, 0.07678651064634323, -0.019926751032471657, 0.04245077818632126, -0.05644877254962921, 0.059700917452573776, 0.10742949694395065, 0.033078111708164215, -0.05497613549232483, 0.06192035973072052, -0.24182282388210297, 0.10019542276859283, -0.06878995895385742, 0.05493709444999695, -0.1513376086950302, -0.0262905303388834, 0.049252137541770935, 0.0076136840507388115, -0.010768214240670204, 0.13709646463394165, -0.21793904900550842, -0.028675777837634087, 0.16038778424263, -0.09573561698198318, -0.07581635564565659, 0.061356328427791595, -0.053495727479457855, 0.10603067278862, 0.041206974536180496, -0.0253668911755085, 0.06327881664037704, -0.1329721212387085, 0.0035808775573968887, -0.045546747744083405, -0.018045976758003235, 0.16059941053390503, 0.07648856192827225, -0.06927888095378876, 0.07070852816104889, 0.024078376591205597, -0.026113634929060936, -0.046159777790308, -0.018227294087409973, -0.1095207929611206, 0.010817212983965874, -0.060132887214422226, 0.02282119169831276, -0.025257518514990807, -0.09224134683609009, -0.028882192447781563, -0.17473143339157104, -0.01543671078979969, 0.0841502845287323, -0.008552714250981808, -0.019770942628383636, -0.11773128807544708, 0.014404429122805595, 0.038445498794317245, 0.0027449382469058037, -0.13180501759052277, -0.050576433539390564, 0.027280667796730995, -0.1619797945022583, 0.03360215947031975, -0.051585033535957336, 0.05001852661371231, 0.0318891666829586, -0.03249809890985489, -0.028068941086530685, 0.022396177053451538, 0.005391599610447884, -0.013861955143511295, -0.24684561789035797, -0.02524387463927269, -0.022996457293629646, 0.16599495708942413, -0.21521428227424622, 0.03807735815644264, 0.0733959823846817, 0.1517697423696518, 0.009051989763975143, -0.03698690980672836, 0.0017559787956997752, -0.07388318330049515, -0.03124045953154564, -0.05945143476128578, -0.007037308998405933, -0.03604515269398689, -0.05787331610918045, 0.047536347061395645, -0.16902238130569458, -0.02949199639260769, 0.10039274394512177, 0.06592373549938202, -0.13678009808063507, -0.022425442934036255, -0.034927621483802795, -0.04287220165133476, -0.05416050925850868, -0.05881212651729584, 0.10532104223966599, 0.05762924998998642, 0.04464157670736313, -0.0650712326169014, -0.07518194615840912, 0.00088359450455755, -0.020143218338489532, -0.023713968694210052, 0.09234753251075745, 0.07105407863855362, -0.126350998878479, 0.09208080917596817, 0.10551702976226807, 0.08511383831501007, 0.09815585613250732, -0.024149423465132713, -0.08191148191690445, -0.050659939646720886, 0.02379353903234005, 0.01600629836320877, 0.13259312510490417, -0.010838953778147697, 0.05292908474802971, 0.04124988242983818, -0.013232617639005184, 0.009245194494724274, -0.0925365537405014, 0.03198198601603508, 0.03315291553735733, -0.018429066985845566, 0.039537809789180756, -0.03881950303912163, 0.020082874223589897, 0.08976095914840698, 0.047349054366350174, 0.039120472967624664, 0.014505230821669102, -0.046636730432510376, -0.11192648112773895, 0.16611367464065552, -0.12793833017349243, -0.23291675746440887, -0.14571763575077057, 0.003718912834301591, 0.03641049191355705, -0.010390745475888252, 0.002204331336542964, -0.06504169851541519, -0.11800546944141388, -0.09107901155948639, 0.010856508277356625, 0.049631036818027496, -0.08566083759069443, -0.05643118917942047, 0.05523066222667694, 0.039479292929172516, -0.14542964100837708, 0.01921185478568077, 0.04928894340991974, -0.09167466312646866, -0.008233107626438141, 0.08074086904525757, 0.06674882769584656, 0.18043169379234314, 0.013242475688457489, -0.022343328222632408, 0.032658565789461136, 0.21998950839042664, -0.1353374421596527, 0.1128942146897316, 0.14020681381225586, -0.09332811832427979, 0.08355985581874847, 0.20060832798480988, 0.04187845438718796, -0.10058243572711945, 0.03296395763754845, 0.017997587099671364, -0.030420765280723572, -0.24256370961666107, -0.07092253863811493, -0.00026266687200404704, -0.0599735751748085, 0.07366035133600235, 0.08954169601202011, 0.09123681485652924, 0.01494339108467102, -0.0955287516117096, -0.080891452729702, 0.056770894676446915, 0.10385555773973465, 0.019311824813485146, -0.012641520239412785, 0.09103459119796753, -0.03278684988617897, 0.016931859776377678, 0.0904497355222702, 0.0008944828878156841, 0.17511117458343506, 0.058405566960573196, 0.18374158442020416, 0.0765325129032135, 0.07154922187328339, 0.015365427359938622, 0.009895091876387596, 0.017764348536729813, 0.02660132572054863, -0.0053646075539290905, -0.08453443646430969, -0.014433449134230614, 0.11945675313472748, 0.07353336364030838, 0.017197363078594208, 0.016192223876714706, -0.04000629484653473, 0.08344162255525589, 0.17407093942165375, -0.003780076280236244, -0.18052507936954498, -0.06431038677692413, 0.08350689709186554, -0.09346359968185425, -0.10017222911119461, -0.02494942955672741, 0.030767329037189484, -0.17044265568256378, 0.0249007735401392, -0.016930779442191124, 0.11206945031881332, -0.13528640568256378, -0.019095007330179214, 0.06340263038873672, 0.07177523523569107, -0.0006523873889818788, 0.058229442685842514, -0.16294988989830017, 0.10450614243745804, 0.012098570354282856, 0.06693841516971588, -0.09612328559160233, 0.09953869134187698, -0.005955029278993607, -0.010155374184250832, 0.1313311606645584, 0.009115277789533138, -0.07581817358732224, -0.07944932579994202, -0.09122282266616821, -0.009041238576173782, 0.126266211271286, -0.14647246897220612, 0.08482405543327332, -0.03597019985318184, -0.0416097566485405, 0.002930275397375226, -0.10596253722906113, -0.12220548838376999, -0.18631164729595184, 0.055513981729745865, -0.13507777452468872, 0.03854088857769966, -0.10657316446304321, -0.035541050136089325, -0.030116569250822067, 0.18516884744167328, -0.22976601123809814, -0.06906338781118393, -0.15047605335712433, -0.09873856604099274, 0.14586862921714783, -0.050321947783231735, 0.08481817692518234, -0.00589280528947711, 0.1804574877023697, 0.02166794426739216, -0.021489109843969345, 0.09810362011194229, -0.09247367084026337, -0.19692669808864594, -0.08017813414335251, 0.15722282230854034, 0.13640479743480682, 0.036161039024591446, -0.003470085794106126, 0.038310710340738297, -0.019128555431962013, -0.12300188839435577, 0.021808674558997154, 0.17748361825942993, 0.06226111575961113, 0.02378440462052822, -0.025610120967030525, -0.11692396551370621, -0.06900777667760849, -0.03363456577062607, 0.030739158391952515, 0.1859661191701889, -0.07158373296260834, 0.18602654337882996, 0.14774003624916077, -0.058341678231954575, -0.19670341908931732, 0.009590700268745422, 0.0356709361076355, 0.0062993373721838, 0.03402268886566162, -0.20171645283699036, 0.08260589838027954, -0.0000703737823641859, -0.05092230439186096, 0.12990811467170715, -0.1724688857793808, -0.15031461417675018, 0.07340911030769348, 0.036582015454769135, -0.191009521484375, -0.11979404836893082, -0.08877003937959671, -0.05305791646242142, -0.18255825340747833, 0.10235996544361115, 0.03505839407444, 0.007234846707433462, 0.033568330109119415, 0.030296791344881058, 0.016846131533384323, -0.03902881219983101, 0.19317437708377838, -0.025881100445985794, 0.03175598382949829, -0.08486942201852798, -0.0721178725361824, 0.04698624834418297, -0.05440608412027359, 0.07560842484235764, -0.02850610576570034, 0.010811456479132175, -0.10112031549215317, -0.04238447546958923, -0.02994711697101593, 0.014171373099088669, -0.09643256664276123, -0.0892103835940361, -0.04899745434522629, 0.09385206550359726, 0.09383191168308258, -0.03679990395903587, -0.033308759331703186, -0.0708332359790802, 0.04319954290986061, 0.1834612935781479, 0.1771630197763443, 0.04282272979617119, -0.07718019932508469, -0.004353965632617474, -0.012391943484544754, 0.04512987285852432, -0.216888889670372, 0.0646008849143982, 0.04998873919248581, 0.017488451674580574, 0.119838647544384, -0.02023271657526493, -0.15518377721309662, -0.06958208978176117, 0.06293158233165741, -0.05947147309780121, -0.19729353487491608, 0.005153949372470379, 0.05639190226793289, -0.16896353662014008, -0.04793788120150566, 0.04407742992043495, -0.004272493068128824, -0.04013913497328758, 0.019694777205586433, 0.08993566036224365, 0.003983452916145325, 0.06979537010192871, 0.057179566472768784, 0.08297405391931534, -0.10303977131843567, 0.07298099994659424, 0.08502772450447083, -0.07904176414012909, 0.02611508034169674, 0.09225213527679443, -0.05959508195519447, -0.03061521053314209, 0.024558385834097862, 0.08217264711856842, 0.011403042823076248, -0.04143837094306946, 0.011890463531017303, -0.10493540018796921, 0.061552610248327255, 0.0872589722275734, 0.033055905252695084, 0.014960144646465778, 0.0323425829410553, 0.04615075886249542, -0.06838563084602356, 0.12262481451034546, 0.028603000566363335, 0.01619773730635643, -0.039672788232564926, -0.04883408173918724, 0.023656455799937248, -0.03148266673088074, -0.006783190183341503, -0.034929223358631134, -0.07470342516899109, -0.017337948083877563, -0.16813358664512634, -0.015706919133663177, -0.04851626604795456, 0.01141374558210373, 0.030727919191122055, -0.039717670530080795, 0.008398020640015602, 0.007660517003387213, -0.0750393494963646, -0.06366884708404541, -0.022168075665831566, 0.09360232949256897, -0.16274383664131165, 0.0231650248169899, 0.08795329183340073, -0.12010334432125092, 0.093709796667099, 0.017991894856095314, -0.005580618511885405, 0.030415862798690796, -0.15203481912612915, 0.03863019123673439, -0.030480829998850822, 0.014001374132931232, 0.0430658757686615, -0.2246030569076538, -0.00014216898125596344, -0.03392428159713745, -0.06211007013916969, -0.008089113049209118, -0.03614491969347, -0.11279971152544022, 0.10460628569126129, 0.00755698699504137, -0.09058507531881332, -0.031222015619277954, 0.03175928816199303, 0.08461960405111313, -0.023131132125854492, 0.15904083847999573, -0.003058732021600008, 0.07367146760225296, -0.16738978028297424, -0.019550222903490067, -0.009911867789924145, 0.019858263432979584, -0.021036015823483467, -0.013049607165157795, 0.039891984313726425, -0.023009097203612328, 0.1832437962293625, -0.02614782750606537, 0.02115444466471672, 0.06662114709615707, 0.031309690326452255, -0.027116473764181137, 0.10507345199584961, 0.05415768921375275, 0.02187212184071541, 0.019098330289125443, 0.0009401091956533492, -0.04275880753993988, -0.026286903768777847, -0.20222914218902588, 0.06478860974311829, 0.14196400344371796, 0.09015882015228271, -0.019612208008766174, 0.082443006336689, -0.09847161918878555, -0.11266232281923294, 0.12008036673069, -0.05389230325818062, -0.005624994169920683, -0.06746947765350342, 0.1300724893808365, 0.1476544737815857, -0.19186675548553467, 0.07097877562046051, -0.06951600313186646, -0.049371387809515, -0.11596925556659698, -0.19563089311122894, -0.0579688623547554, -0.05182981118559837, -0.01601085439324379, -0.04734842851758003, 0.07465895265340805, 0.05611773207783699, 0.007687699515372515, -0.0008743742946535349, 0.06143457442522049, -0.025334985926747322, -0.00020855919865425676, 0.026871640235185623, 0.06543756276369095, 0.01277367677539587, -0.028740158304572105, 0.017883067950606346, -0.009029596112668514, 0.04200661554932594, 0.06335420906543732, 0.04628584161400795, -0.029481444507837296, 0.015326657332479954, -0.04012451693415642, -0.10723566263914108, 0.0419759564101696, -0.027193402871489525, -0.08225540816783905, 0.14785805344581604, 0.02399633452296257, 0.009130166843533516, -0.019807780161499977, 0.24066896736621857, -0.07349257171154022, -0.09820521622896194, -0.1490466147661209, 0.10572494566440582, -0.04344555735588074, 0.06301548331975937, 0.046267855912446976, -0.10314686596393585, 0.017511071637272835, 0.12181373685598373, 0.1645330935716629, -0.0424080528318882, 0.020746879279613495, 0.0270154420286417, 0.0042765699326992035, -0.03603396192193031, 0.05116730183362961, 0.06923956423997879, 0.15690730512142181, -0.04900969937443733, 0.09728439897298813, -0.0028536769095808268, -0.09575258195400238, -0.03706898167729378, 0.11544451117515564, -0.015991076827049255, 0.016934793442487717, -0.05673288553953171, 0.11960674822330475, -0.06204056739807129, -0.23141460120677948, 0.059825554490089417, -0.0669918954372406, -0.136424258351326, -0.021505871787667274, 0.08302503079175949, -0.012656555511057377, 0.027061283588409424, 0.07233231514692307, -0.07476846873760223, 0.1983826905488968, 0.036584943532943726, -0.05408371239900589, -0.05269603058695793, 0.08472228795289993, -0.10221095383167267, 0.2712222933769226, 0.01703515276312828, 0.05113283172249794, 0.10301852226257324, -0.012269208207726479, -0.13325491547584534, 0.021790657192468643, 0.09555859118700027, -0.09376159310340881, 0.04151248186826706, 0.19850991666316986, 0.00041501864325255156, 0.12115148454904556, 0.08070485293865204, -0.07617492228746414, 0.04874774441123009, -0.09502684324979782, -0.07229389250278473, -0.08947079628705978, 0.09731078147888184, -0.07675671577453613, 0.14196333289146423, 0.13027575612068176, -0.05282389745116234, 0.009622754529118538, -0.02872757986187935, 0.046359382569789886, 0.0037509698886424303, 0.1005694642663002, 0.008517593145370483, -0.18598082661628723, 0.021583275869488716, 0.013244304805994034, 0.10594569146633148, -0.1648784875869751, -0.09909144788980484, 0.03998237103223801, 0.0028793413657695055, -0.06011311709880829, 0.12933798134326935, 0.060960717499256134, 0.04498228803277016, -0.0423818863928318, -0.02333086170256138, -0.009747753851115704, 0.13612231612205505, -0.10099201649427414, 0.0027629989199340343 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # spatial_vit_temporal_vit-finetuned-ucf101-subset This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3172 - Accuracy: 0.68 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 148 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2165 | 0.26 | 38 | 2.0699 | 0.2667 | | 1.8229 | 1.26 | 76 | 1.8160 | 0.5 | | 1.4707 | 2.26 | 114 | 1.4157 | 0.7 | | 1.3886 | 3.23 | 148 | 1.3520 | 0.7333 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "spatial_vit_temporal_vit-finetuned-ucf101-subset", "results": []}]}
null
Tommidi/spatial_vit_temporal_vit-finetuned-ucf101-subset
[ "transformers", "tensorboard", "safetensors", "st_vit", "generated_from_trainer", "endpoints_compatible", "region:us" ]
2024-02-06T13:43:07+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #st_vit #generated_from_trainer #endpoints_compatible #region-us
spatial\_vit\_temporal\_vit-finetuned-ucf101-subset =================================================== This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.3172 * Accuracy: 0.68 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * training\_steps: 148 ### Training results ### Framework versions * Transformers 4.37.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 148", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #st_vit #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 148", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 37, 115, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #st_vit #generated_from_trainer #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* training\\_steps: 148### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.1047944501042366, 0.01597173698246479, -0.002030156785622239, 0.09372541308403015, 0.17473672330379486, 0.015961579978466034, 0.11173888295888901, 0.10733801126480103, -0.09389005601406097, 0.06035488098859787, 0.13192631304264069, 0.13304872810840607, 0.01471361331641674, 0.12595470249652863, -0.05287089943885803, -0.22470787167549133, -0.0068131908774375916, 0.02213064208626747, -0.13427120447158813, 0.13092727959156036, 0.0777023509144783, -0.16261304914951324, 0.07856481522321701, -0.03139336779713631, -0.1988767832517624, 0.02272067219018936, 0.05039335787296295, -0.041660599410533905, 0.147647887468338, -0.0007577957585453987, 0.16536471247673035, 0.03819854184985161, 0.12020409852266312, -0.1915566623210907, 0.015037770383059978, 0.09285788238048553, 0.017902424558997154, 0.07039511203765869, 0.06154976040124893, -0.014642957597970963, 0.0821090042591095, -0.1333419233560562, 0.06317654252052307, 0.016889745369553566, -0.14460061490535736, -0.23740234971046448, -0.10311587899923325, -0.034379757940769196, 0.07137598842382431, 0.08348727226257324, -0.011227111332118511, 0.14949078857898712, -0.08147741109132767, 0.10696789622306824, 0.2673071622848511, -0.2912444472312927, -0.07980063557624817, 0.06179134175181389, 0.03406399115920067, 0.11130839586257935, -0.12305352836847305, 0.01691768877208233, 0.06351101398468018, 0.03199191018939018, 0.15340109169483185, -0.02870764583349228, -0.0771249383687973, 0.04083090275526047, -0.15280257165431976, -0.0030756741762161255, 0.07345286011695862, 0.02550632506608963, -0.030074510723352432, -0.009401874616742134, -0.06495141237974167, -0.16967204213142395, -0.04454481974244118, -0.04748641327023506, 0.04875994101166725, -0.058634597808122635, -0.09345100820064545, -0.008143671788275242, -0.11567310243844986, -0.09844570606946945, -0.014232365414500237, 0.13838094472885132, 0.04241473600268364, 0.006428863387554884, -0.04174019768834114, 0.11040300875902176, -0.060494314879179, -0.12300106137990952, 0.02075064182281494, 0.03080652467906475, -0.060944996774196625, -0.0686628594994545, -0.06064767390489578, -0.15327557921409607, -0.006407670211046934, 0.06803860515356064, -0.08832299709320068, 0.06632446497678757, 0.027782298624515533, 0.0353693887591362, -0.13632221519947052, 0.1652824878692627, -0.06025421619415283, -0.0227417703717947, -0.011426081880927086, 0.06704270839691162, -0.007922576740384102, -0.005932528525590897, -0.06927099078893661, 0.0024445175658911467, 0.0871732085943222, 0.014946071431040764, -0.08175262808799744, 0.05804002657532692, -0.0284830704331398, 0.019368933513760567, -0.05640697851777077, -0.09803880751132965, 0.046408385038375854, 0.010515575297176838, -0.06513480097055435, -0.031009377911686897, 0.035815753042697906, -0.0037103842478245497, -0.00456641661003232, 0.1624184250831604, -0.09091553837060928, 0.050848282873630524, -0.1072537899017334, -0.12739861011505127, -0.0012611227575689554, -0.09225740283727646, 0.0022724680602550507, -0.07565460354089737, -0.12563198804855347, -0.033054810017347336, 0.05980750918388367, -0.03892195224761963, 0.03772960603237152, -0.05274513363838196, -0.09425557404756546, 0.018516892567276955, -0.013537716120481491, 0.12359403073787689, -0.05709976702928543, 0.11924942582845688, 0.03630713373422623, 0.07498365640640259, -0.011090642772614956, 0.028172524645924568, -0.06514407694339752, 0.02384253777563572, -0.24061982333660126, 0.014202868565917015, -0.06994600594043732, 0.06137774512171745, -0.09447494894266129, -0.11399485915899277, -0.012858867645263672, 0.006322105415165424, 0.11048762500286102, 0.12181518971920013, -0.207887202501297, -0.056015852838754654, 0.20259246230125427, -0.0816441997885704, -0.08924730867147446, 0.11818566918373108, -0.05057527497410774, 0.030918940901756287, 0.0638311579823494, 0.18198390305042267, 0.0679013803601265, -0.1251111924648285, 0.028115248307585716, -0.026440313085913658, 0.049094174057245255, -0.03200920298695564, 0.03250928223133087, 0.008544989861547947, 0.031131137162446976, 0.004840622190386057, -0.07700403034687042, 0.04105086997151375, -0.10936155915260315, -0.07224544137716293, -0.055262137204408646, -0.10564462840557098, 0.06779336929321289, 0.07499842345714569, 0.08277903497219086, -0.11892177909612656, -0.07638838142156601, 0.09534718096256256, 0.05829408019781113, -0.07759816944599152, 0.037958670407533646, -0.060773756355047226, 0.03992880508303642, -0.05907560884952545, -0.02422761730849743, -0.1811516284942627, -0.036474067717790604, -0.006248528603464365, 0.018096324056386948, 0.0044717732816934586, 0.02802918292582035, 0.12394597381353378, 0.0706106498837471, -0.09357668459415436, -0.016752351075410843, -0.04377177357673645, 0.0028380881994962692, -0.13684982061386108, -0.23027583956718445, -0.026510383933782578, -0.030776411294937134, 0.05281192064285278, -0.26387304067611694, 0.03367454931139946, 0.023591026663780212, 0.09074380248785019, 0.04787883907556534, -0.030094439163804054, -0.04397878423333168, 0.07752358913421631, -0.016056977212429047, -0.06418398767709732, 0.03575298562645912, -0.0334254615008831, -0.07631804049015045, -0.04021616652607918, -0.13391996920108795, 0.17832064628601074, 0.12059546262025833, -0.09498205780982971, -0.12286414206027985, 0.03279903531074524, -0.04726339876651764, -0.024339141324162483, -0.04853479191660881, 0.0485537052154541, 0.10311257839202881, 0.00398947112262249, 0.1360306590795517, -0.06754650175571442, -0.04454599693417549, 0.030909430235624313, -0.03441394120454788, 0.039654865860939026, 0.12324591726064682, 0.0955134704709053, -0.06952444463968277, 0.1205277144908905, 0.1478869467973709, -0.09219381958246231, 0.11817758530378342, -0.03708701208233833, -0.09184731543064117, -0.022693878039717674, 0.03398052975535393, 0.02768833562731743, 0.149736225605011, -0.0873907133936882, -0.007814534939825535, -0.012030272744596004, 0.035116154700517654, 0.0011555430246517062, -0.24312643706798553, -0.05138476938009262, 0.043145954608917236, -0.0435645654797554, -0.020067213103175163, -0.03362106531858444, 0.008473724126815796, 0.11209185421466827, -0.008244683966040611, -0.028833504766225815, -0.0016810880042612553, -0.00687424885109067, -0.07915030419826508, 0.2310679405927658, -0.0825434997677803, -0.10232265293598175, -0.09160631150007248, -0.03842245787382126, -0.0030658040195703506, 0.016366057097911835, 0.044540684670209885, -0.13531148433685303, -0.026812482625246048, -0.0700778141617775, 0.024743694812059402, 0.019621917977929115, 0.05716807767748833, -0.008462506346404552, 0.008734249509871006, 0.08580523729324341, -0.10094785690307617, 0.017753230407834053, -0.06269021332263947, -0.06733375787734985, 0.05055725574493408, 0.07894542813301086, 0.1126369833946228, 0.1474810540676117, -0.030031414702534676, 0.007006076630204916, -0.03096296638250351, 0.19143229722976685, -0.08812344819307327, -0.014158722013235092, 0.09828303009271622, -0.02205544151365757, 0.0428679957985878, 0.10200410336256027, 0.07043175399303436, -0.11188654601573944, 0.01841749995946884, 0.0456252358853817, -0.04635850340127945, -0.2342219054698944, -0.0010816736612468958, -0.043215226382017136, -0.029445195570588112, 0.07051112502813339, 0.022560935467481613, -0.00417471444234252, 0.05775346979498863, 0.05103291571140289, 0.04538006708025932, -0.015418712049722672, 0.04417990520596504, 0.02326107956469059, 0.029949642717838287, 0.1043708547949791, -0.05751235410571098, -0.05350659787654877, 0.025310169905424118, -0.03311796858906746, 0.24842147529125214, -0.0165113378316164, 0.09275568276643753, 0.059323329478502274, 0.19611769914627075, -0.022215336561203003, 0.09122370928525925, -0.0009159272303804755, -0.08401082456111908, 0.011196848005056381, -0.05221911519765854, -0.014580718241631985, 0.0316169299185276, -0.06928517669439316, 0.04723440110683441, -0.1090497225522995, 0.024982545524835587, 0.0667930543422699, 0.24337121844291687, 0.04921490326523781, -0.3035430610179901, -0.08326231688261032, 0.0008996882825158536, -0.011157313361763954, -0.0169075820595026, 0.006659900303930044, 0.20585334300994873, -0.048213742673397064, 0.031277451664209366, -0.09071992337703705, 0.06418351829051971, 0.014576923102140427, 0.03058510087430477, 0.06416656076908112, 0.11355887353420258, -0.024830276146531105, 0.044055379927158356, -0.3063139021396637, 0.3162611722946167, 0.01269122026860714, 0.1039758250117302, -0.04365061596035957, -0.0199845302850008, 0.011133645661175251, 0.08626046031713486, 0.09351538866758347, -0.005601638462394476, -0.0970434918999672, -0.19518405199050903, -0.030694931745529175, 0.01718035526573658, 0.16884244978427887, -0.007223541382700205, 0.11579492688179016, -0.020422566682100296, -0.01277773268520832, 0.09304323047399521, -0.05581841245293617, -0.06783097982406616, -0.05432399362325668, -0.020418649539351463, -0.005924193654209375, -0.05950477346777916, -0.09049475193023682, -0.10124913603067398, -0.10805666446685791, 0.14595770835876465, -0.03673649579286575, 0.01186261884868145, -0.13719958066940308, 0.09475601464509964, 0.08684518933296204, -0.06974486261606216, 0.0461052767932415, 0.04779435694217682, 0.04929741844534874, 0.041780080646276474, -0.040019333362579346, 0.13030724227428436, -0.06227213144302368, -0.17611852288246155, -0.06482726335525513, 0.10740341246128082, 0.045557815581560135, 0.051517460495233536, -0.02004840411245823, 0.025235990062355995, 0.02199424058198929, -0.08148189634084702, 0.050929661840200424, -0.00986437313258648, 0.05757743865251541, 0.020779374986886978, -0.03314865007996559, 0.012777723371982574, -0.043909188359975815, -0.029447028413414955, 0.15366937220096588, 0.2667921185493469, -0.10741312801837921, 0.02844184637069702, 0.02199125476181507, -0.06512179225683212, -0.2186802327632904, 0.13419188559055328, 0.057787489145994186, 0.0072685834020376205, 0.07590712606906891, -0.13877423107624054, 0.10962917655706406, 0.07595208287239075, -0.0023541476111859083, 0.12133914977312088, -0.3215602934360504, -0.14881128072738647, 0.06909356266260147, 0.19566963613033295, 0.10896177589893341, -0.14476175606250763, -0.025362398475408554, 0.007643896155059338, -0.09998373687267303, 0.06271708011627197, -0.11932513862848282, 0.10838717222213745, -0.00321606220677495, 0.05335008725523949, 0.02146708220243454, -0.0843333974480629, 0.11231468617916107, -0.026799846440553665, 0.1278221309185028, -0.06019263714551926, -0.006267132703214884, 0.05809132382273674, -0.05496599152684212, -0.007616161834448576, -0.04447120800614357, 0.020799219608306885, -0.0381464846432209, -0.015598799102008343, -0.09807310253381729, 0.030856508761644363, -0.040046192705631256, -0.05407846346497536, -0.033052682876586914, 0.033410828560590744, 0.04829399287700653, -0.0320427268743515, 0.14833411574363708, -0.0039812009781599045, 0.18359842896461487, 0.09269345551729202, 0.08661077171564102, -0.036233894526958466, -0.03297850117087364, 0.03165730461478233, -0.007540754042565823, 0.044738344848155975, -0.1733003854751587, 0.030870474874973297, 0.14003285765647888, 0.03588119149208069, 0.11434090882539749, 0.08070202171802521, -0.03679172322154045, 0.014011274091899395, 0.08201275765895844, -0.164131760597229, -0.1335344910621643, 0.021933196112513542, -0.07073187828063965, -0.09771493077278137, 0.08709349483251572, 0.10670903325080872, -0.08055618405342102, 0.011203422211110592, -0.018585827201604843, 0.020553939044475555, -0.06898301094770432, 0.24101939797401428, 0.07032831013202667, 0.059769805520772934, -0.08028164505958557, 0.07496944814920425, 0.02721276693046093, -0.11985253542661667, 0.012726189568638802, 0.0827401876449585, -0.08994192630052567, -0.01680608280003071, 0.12770946323871613, 0.13859431445598602, -0.00045104557648301125, -0.016293782740831375, -0.1545385718345642, -0.1224970668554306, 0.05460900068283081, 0.24501600861549377, 0.0724046602845192, 0.012191949412226677, -0.03078503906726837, 0.040994152426719666, -0.14682763814926147, 0.08666235953569412, 0.04499899223446846, 0.09077278524637222, -0.16187340021133423, 0.22194723784923553, -0.014070820063352585, 0.023198671638965607, -0.028383975848555565, 0.0640837773680687, -0.1278461217880249, 0.024614471942186356, -0.11330398172140121, -0.04374755173921585, -0.006033317185938358, -0.024529602378606796, -0.006216306239366531, -0.09345075488090515, -0.06682035326957703, 0.020695211365818977, -0.12854807078838348, -0.005560682620853186, 0.025230417028069496, 0.01996264047920704, -0.12433081865310669, -0.03425901383161545, 0.02621558867394924, -0.06745285540819168, 0.05058940500020981, 0.044373683631420135, 0.006340174004435539, 0.09565409272909164, -0.19202075898647308, 0.002100529847666621, 0.06230229511857033, -0.015367874875664711, 0.0714694932103157, -0.057390011847019196, -0.01858140528202057, -0.03165213391184807, 0.08578027039766312, 0.019202399998903275, 0.05884460732340813, -0.11649486422538757, 0.01772366277873516, -0.04837781935930252, -0.06495681405067444, -0.05861656367778778, 0.03293155878782272, 0.05975653976202011, 0.009970784187316895, 0.15636655688285828, -0.09770731627941132, 0.04696129634976387, -0.21797217428684235, -0.015263890847563744, -0.004315466620028019, -0.1091117337346077, -0.10523173958063126, -0.03822038695216179, 0.09821806848049164, -0.06251490116119385, 0.07679586112499237, -0.010432705283164978, 0.04815871641039848, 0.04129782319068909, -0.0937233567237854, 0.003917270340025425, 0.048317424952983856, 0.19630032777786255, 0.00874874833971262, -0.05261392891407013, 0.0394924059510231, 0.062799833714962, 0.09222396463155746, 0.07100026309490204, 0.2478199452161789, 0.18404266238212585, -0.03050363063812256, 0.11145841330289841, 0.015085024759173393, -0.06999357789754868, -0.13895556330680847, 0.0686732605099678, -0.09965908527374268, 0.08546633273363113, -0.03576895222067833, 0.20308169722557068, 0.09230548143386841, -0.17645780742168427, 0.04120657593011856, -0.08226727694272995, -0.10645151138305664, -0.1098826676607132, -0.006447779014706612, -0.08372864127159119, -0.1665528565645218, 0.011135460808873177, -0.1077248603105545, 0.04203275963664055, 0.09147028625011444, 0.03096211515367031, 0.016122426837682724, 0.24923312664031982, 0.05932812765240669, 0.05341732129454613, 0.05941394343972206, 0.017649773508310318, -0.020126724615693092, -0.046053316444158554, -0.07794711738824844, 0.007887788116931915, -0.04371337592601776, 0.022306326776742935, -0.062108248472213745, -0.0704391673207283, 0.041244059801101685, 0.018003150820732117, -0.09779886901378632, 0.021074440330266953, 0.03423826023936272, 0.057613976299762726, 0.0024109920486807823, 0.012703201733529568, 0.0014466954162344337, -0.0363333560526371, 0.25885048508644104, -0.09720473736524582, -0.05810178816318512, -0.09393582493066788, 0.25589004158973694, 0.06334662437438965, 0.023961301892995834, 0.003927682526409626, -0.08872967213392258, 0.03737606853246689, 0.22726687788963318, 0.15394806861877441, -0.07448818534612656, 0.007763394620269537, -0.011182061396539211, -0.008046803064644337, -0.0475769080221653, 0.115808866918087, 0.10963147133588791, 0.025967633351683617, -0.10005909204483032, -0.053871143609285355, -0.03242585435509682, -0.012362507171928883, -0.026194075122475624, 0.04237440228462219, 0.04448070749640465, 0.0357557013630867, -0.06154337897896767, 0.07791611552238464, -0.010300260968506336, -0.17966888844966888, 0.09635529667139053, -0.21863850951194763, -0.14128996431827545, -0.024521322920918465, 0.1463472694158554, -0.029911238700151443, 0.05048929154872894, -0.025188058614730835, -0.01945061795413494, 0.04335673898458481, -0.006305358838289976, -0.03984086215496063, -0.09814342111349106, 0.07543379068374634, -0.1396157294511795, 0.1996515542268753, -0.05026957765221596, 0.007638589479029179, 0.11697395890951157, 0.032596953213214874, -0.07162464410066605, 0.05005478858947754, 0.05062171816825867, -0.1276707649230957, -0.005624755285680294, 0.15337713062763214, -0.06054765358567238, 0.09368585050106049, 0.022064127027988434, -0.16454766690731049, 0.029256563633680344, -0.061452560126781464, -0.06896419823169708, -0.03496094420552254, -0.051400359719991684, -0.05237714573740959, 0.11542622745037079, 0.22095347940921783, -0.023524051532149315, 0.05552665889263153, -0.08168060332536697, 0.021597478538751602, 0.0485694445669651, 0.08151079714298248, -0.047535791993141174, -0.2661634683609009, 0.03465181961655617, 0.07632726430892944, -0.01801498979330063, -0.2225693315267563, -0.09916752576828003, 0.043464239686727524, -0.05644501745700836, -0.08450821042060852, 0.09394492208957672, 0.11446092277765274, 0.07609229534864426, -0.05604865401983261, -0.15872614085674286, -0.05444001033902168, 0.1959812492132187, -0.142632395029068, -0.08694855123758316 ]
null
null
transformers
# Uploaded model - **Developed by:** gmonsoon - **License:** apache-2.0 - **Finetuned from model :** vihangd/DopeyTinyLlama-1.1B-v1 This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "vihangd/DopeyTinyLlama-1.1B-v1"}
null
gmonsoon/TinyNesia-Base-GGUF
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:vihangd/DopeyTinyLlama-1.1B-v1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-06T13:43:08+00:00
[]
[ "en" ]
TAGS #transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-vihangd/DopeyTinyLlama-1.1B-v1 #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: gmonsoon - License: apache-2.0 - Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1 This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: gmonsoon\n- License: apache-2.0\n- Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-vihangd/DopeyTinyLlama-1.1B-v1 #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: gmonsoon\n- License: apache-2.0\n- Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 67, 81 ]
[ "passage: TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-vihangd/DopeyTinyLlama-1.1B-v1 #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: gmonsoon\n- License: apache-2.0\n- Finetuned from model : vihangd/DopeyTinyLlama-1.1B-v1\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ -0.08445487916469574, 0.10735845565795898, -0.0038191177882254124, 0.0815996527671814, 0.09137526154518127, 0.04289893060922623, 0.10147074609994888, 0.13071295619010925, -0.016551241278648376, -0.015750383958220482, 0.12663431465625763, 0.10893106460571289, 0.030589565634727478, -0.0500459298491478, 0.027487823739647865, -0.19767609238624573, 0.09736369550228119, -0.021845944225788116, -0.13764825463294983, 0.02756400778889656, 0.05551199987530708, 0.00889968778938055, 0.08648516237735748, -0.012963051907718182, -0.036225851625204086, 0.01874585635960102, -0.05796753615140915, -0.01001732051372528, 0.01319504901766777, 0.0789896547794342, -0.01623784936964512, 0.027048125863075256, 0.04447483271360397, -0.10483844578266144, 0.037044133991003036, 0.03859322890639305, -0.006532619241625071, 0.05761147290468216, 0.005061153322458267, 0.09005627781152725, 0.17101381719112396, -0.0127979451790452, -0.06762660294771194, 0.04258773475885391, -0.02241036854684353, -0.11565258353948593, -0.04290749877691269, 0.09293729066848755, 0.030265478417277336, 0.04967449605464935, 0.03468041867017746, 0.05025592818856239, -0.041422467678785324, 0.03190717101097107, 0.17694178223609924, -0.27486348152160645, -0.08649581670761108, 0.19799935817718506, 0.02783850021660328, 0.011846152134239674, -0.013972926884889603, 0.057863499969244, 0.05213629826903343, -0.01929265819489956, 0.00453955540433526, -0.04502776637673378, -0.10597869008779526, 0.03678693622350693, -0.0899338498711586, 0.00853933859616518, 0.18753798305988312, 0.07351969927549362, -0.030040010809898376, 0.025592193007469177, -0.11885547637939453, 0.10273101925849915, -0.08349314332008362, 0.03114478476345539, 0.081372931599617, 0.08519984036684036, 0.04629168286919594, -0.15091566741466522, -0.04237976297736168, -0.059685688465833664, -0.06073771044611931, 0.06301315128803253, 0.07345502823591232, 0.10001339018344879, -0.03300139680504799, 0.07704979181289673, -0.04617764428257942, -0.1269676238298416, -0.04703335091471672, -0.043097443878650665, 0.088740773499012, 0.06993089616298676, -0.040078070014715195, -0.013085883110761642, 0.16252493858337402, 0.09688370674848557, 0.1476350724697113, 0.060098208487033844, 0.009857524186372757, 0.02396230213344097, -0.09290210157632828, 0.1193951666355133, -0.1425323635339737, -0.054538141936063766, 0.11344552040100098, 0.019541878253221512, 0.0844373106956482, 0.0002860079985111952, -0.0843985453248024, -0.05844062939286232, -0.06004849821329117, 0.05317410081624985, 0.04773791879415512, 0.10768336057662964, 0.03594059869647026, -0.058038849383592606, 0.035370755940675735, -0.07172290235757828, -0.044444888830184937, -0.018879294395446777, -0.04775009676814079, 0.16949588060379028, 0.10377468913793564, -0.00962243601679802, -0.06640952825546265, -0.09556138515472412, -0.06910605728626251, -0.0074610342271625996, -0.019836856052279472, 0.018207432702183723, 0.05230644345283508, -0.058582719415426254, 0.007126361131668091, -0.12512488663196564, -0.2893221080303192, 0.03355243802070618, 0.15072673559188843, -0.03580581024289131, -0.05726522579789162, -0.06326375156641006, -0.033012326806783676, 0.030681641772389412, -0.022667402401566505, 0.009002558887004852, -0.08652007579803467, 0.03328593820333481, -0.03340517729520798, 0.07271391898393631, -0.09852932393550873, 0.04557359963655472, -0.06249383091926575, 0.056597065180540085, -0.02599906176328659, 0.06399494409561157, -0.07982736825942993, 0.11164811998605728, -0.09687210619449615, 0.030664214864373207, -0.06044888496398926, 0.02225090190768242, 0.04434366151690483, 0.16243502497673035, -0.13170652091503143, 0.012256122194230556, 0.13389424979686737, -0.047938816249370575, -0.10042788088321686, 0.09598755091428757, 0.02027592808008194, 0.08016206324100494, 0.07744520902633667, 0.10901274532079697, 0.1692572683095932, -0.1852128654718399, 0.0708761140704155, 0.12465346604585648, -0.022175466641783714, -0.1416841745376587, 0.05917613208293915, 0.019695179536938667, -0.15062303841114044, 0.11803486198186874, -0.14366817474365234, 0.12062698602676392, 0.00848859827965498, -0.05304323509335518, -0.13402004539966583, -0.11293141543865204, -0.06537443399429321, -0.01290537416934967, 0.017493490129709244, 0.023306483402848244, -0.04346824437379837, -0.02181280590593815, 0.18189974129199982, -0.07083561271429062, 0.01684870943427086, -0.04497950151562691, 0.08606626093387604, -0.13952983915805817, 0.09147409349679947, -0.03998429700732231, -0.03945546597242355, -0.03560777008533478, -0.0955762267112732, 0.09864417463541031, 0.044306766241788864, 0.04909626767039299, -0.04409268498420715, -0.01139947958290577, 0.028080441057682037, 0.03615018352866173, -0.01998983323574066, -0.028719475492835045, -0.08223889023065567, 0.04717576503753662, -0.0010848501697182655, 0.10569240897893906, -0.04291786998510361, 0.05052966997027397, -0.09423571825027466, 0.06804533302783966, -0.05044182762503624, 0.04208473116159439, 0.0687779039144516, -0.1094241738319397, 0.004446765407919884, -0.10312405973672867, 0.08099434524774551, 0.07704248279333115, -0.05274263024330139, 0.08385485410690308, 0.0106661356985569, 0.0810343325138092, 0.16040778160095215, 0.015644878149032593, 0.06303972005844116, 0.0595334954559803, -0.009771862998604774, 0.007952334359288216, 0.022869976237416267, 0.037786636501550674, -0.005996336229145527, 0.007356447633355856, 0.14408926665782928, -0.09764861315488815, 0.02505391277372837, 0.02763233706355095, -0.083504818379879, -0.01620946079492569, 0.044286299496889114, 0.2178364247083664, -0.05467318743467331, 0.03993459418416023, 0.2800541818141937, -0.08840718120336533, 0.1372230499982834, -0.03873343765735626, -0.0656072348356247, -0.017370358109474182, 0.03378571942448616, -0.017736053094267845, 0.030571818351745605, -0.08110862970352173, 0.04697088897228241, 0.02725188434123993, 0.013858652673661709, 0.0682462677359581, -0.13304686546325684, -0.02610858529806137, -0.017605317756533623, -0.09906265139579773, 0.030547307804226875, 0.07185528427362442, -0.09015455096960068, 0.06659848988056183, -0.027656743302941322, -0.044861726462841034, 0.041617829352617264, 0.028500135987997055, 0.0009633778245188296, 0.13400831818580627, -0.07775815576314926, -0.1773618757724762, -0.1493833065032959, -0.04313308373093605, -0.17480744421482086, -0.008635491132736206, 0.0556524284183979, -0.09513220191001892, -0.08132413029670715, -0.05936872959136963, 0.04948519542813301, 0.028232065960764885, 0.0358394980430603, 0.08809967339038849, 0.04129241034388542, 0.06920415163040161, -0.1391480416059494, -0.004691994283348322, -0.011573382653295994, -0.07421885430812836, -0.025448614731431007, -0.10678675025701523, 0.06649910658597946, 0.10289189964532852, 0.04105553403496742, -0.0024602392222732306, 0.08500088006258011, 0.1547204703092575, 0.013580665923655033, 0.02617151476442814, 0.2600385248661041, 0.10837699472904205, 0.0748300701379776, 0.08881445229053497, 0.008411099202930927, -0.09261927753686905, -0.016093149781227112, 0.03477895259857178, -0.07359114289283752, -0.16634158790111542, -0.026807229965925217, -0.10365665704011917, 0.035953763872385025, 0.0775945782661438, 0.06838774681091309, -0.025559281930327415, 0.1767229586839676, -0.05162132531404495, 0.1128203347325325, -0.008151605725288391, 0.07015575468540192, 0.20281849801540375, 0.006972212344408035, 0.035065777599811554, -0.13425981998443604, -0.02497216872870922, 0.12154839932918549, 0.1086927056312561, 0.10734732449054718, 0.03735999017953873, -0.013183671049773693, 0.03504670411348343, 0.16982926428318024, -0.008332441560924053, 0.06529094278812408, -0.02470412291586399, -0.006737767718732357, -0.07859545946121216, -0.06699411571025848, -0.04337695240974426, 0.05294959619641304, -0.11223705112934113, -0.09398995339870453, 0.0003224338870495558, 0.09010104835033417, 0.037594642490148544, 0.17593704164028168, 0.00772198336198926, -0.21721985936164856, -0.012988301925361156, 0.07640935480594635, 0.01792060025036335, -0.05603685975074768, 0.06762103736400604, -0.056562718003988266, -0.02025914378464222, 0.08128240704536438, -0.03634648397564888, 0.12636059522628784, 0.02796369418501854, 0.026907717809081078, 0.00026331274420954287, 0.12591108679771423, 0.07306793332099915, 0.11355891823768616, -0.13939350843429565, 0.053862378001213074, 0.009436838328838348, 0.03514104709029198, -0.03183344006538391, 0.018134580925107002, 0.12200139462947845, 0.12657728791236877, 0.09155643731355667, -0.004794621374458075, 0.04135323315858841, 0.04534261301159859, -0.13477857410907745, 0.07871828228235245, -0.019601598381996155, 0.011042675003409386, 0.06255966424942017, -0.07867620885372162, -0.023915138095617294, -0.002496439730748534, 0.10620865970849991, -0.06908180564641953, -0.11735425144433975, 0.013339411467313766, 0.13010720908641815, -0.02011311799287796, -0.03835242614150047, 0.0013765422627329826, -0.13430477678775787, 0.17104892432689667, 0.059421684592962265, -0.09275850653648376, -0.09183111786842346, -0.02606693096458912, 0.15091022849082947, -0.06797360628843307, 0.023477977141737938, -0.10614767670631409, 0.02071388065814972, 0.020878832787275314, -0.20466208457946777, 0.018626932054758072, -0.09798947721719742, -0.026186609640717506, 0.0026974999345839024, 0.048890918493270874, -0.15852050483226776, -0.0432671494781971, 0.007942380383610725, -0.05415353178977966, -0.09479344636201859, -0.1314278244972229, -0.07943577319383621, 0.15094555914402008, -0.11081646382808685, -0.02960149198770523, -0.08945620805025101, 0.03594324365258217, -0.004526172298938036, -0.0014142333529889584, 0.019732749089598656, 0.19350388646125793, -0.014527611434459686, 0.08953181654214859, 0.1702120453119278, -0.0852576419711113, -0.278571754693985, -0.13694266974925995, -0.03714417666196823, -0.028112590312957764, -0.05890195444226265, -0.1437118649482727, 0.1775655448436737, 0.07228543609380722, -0.0569843053817749, 0.08473724126815796, -0.2801951467990875, -0.09900007396936417, 0.10844641923904419, 0.041440192610025406, 0.3380436599254608, -0.14257274568080902, -0.05381271615624428, -0.11713576316833496, -0.21615462005138397, 0.10693592578172684, -0.15961003303527832, 0.1297868937253952, -0.04446571692824364, 0.044895607978105545, 0.008556665852665901, -0.015513594262301922, 0.13747794926166534, -0.021662896499037743, 0.05537120997905731, -0.10478270798921585, 0.11409281194210052, 0.06854268163442612, -0.07786509394645691, 0.2055055946111679, -0.15214803814888, 0.07965108752250671, -0.07150719314813614, -0.028455253690481186, -0.011987375095486641, 0.005008422303944826, 0.012745648622512817, -0.014868201687932014, -0.0528741255402565, -0.01623748056590557, 0.07881030440330505, 0.005111471749842167, 0.1284729242324829, 0.04655839502811432, -0.12418923527002335, 0.08254390954971313, -0.05735145881772041, -0.12873287498950958, -0.05389077588915825, -0.07690075039863586, -0.028296172618865967, 0.09046787023544312, -0.27760884165763855, 0.05038529261946678, 0.04616102576255798, -0.0524817556142807, 0.021716058254241943, 0.0050311945378780365, 0.02624335326254368, -0.00603523151949048, 0.048053618520498276, -0.10538724809885025, -0.05778142809867859, -0.03705925866961479, 0.021777037531137466, -0.026304295286536217, 0.0666610598564148, 0.17962168157100677, -0.05965176969766617, 0.017485426738858223, -0.0016684163128957152, 0.026854392141103745, -0.03454793617129326, 0.052740003913640976, 0.07864254713058472, -0.039786700159311295, -0.10263729840517044, 0.1446799784898758, 0.00045874068746343255, 0.0014160003047436476, -0.0016088805859908462, 0.03421205282211304, -0.12817677855491638, -0.07008615881204605, -0.011169303208589554, 0.09462925791740417, -0.1923719197511673, -0.05359677970409393, -0.11340974271297455, -0.054930780082941055, 0.03642669692635536, -0.023681603372097015, 0.08025580644607544, 0.009479856118559837, -0.05080288648605347, -0.041179873049259186, -0.03832706809043884, 0.019674165174365044, 0.06515166908502579, 0.03238938748836517, -0.21780209243297577, -0.085556261241436, 0.012493377551436424, 0.07721704989671707, -0.037268608808517456, 0.00897485762834549, -0.06747662276029587, -0.009393144398927689, -0.26661500334739685, 0.04650379344820976, -0.05453495681285858, 0.04889114946126938, 0.008349006995558739, -0.045202165842056274, -0.06687718629837036, 0.04872748628258705, -0.07924896478652954, -0.03918975219130516, -0.06241169571876526, 0.01829720288515091, -0.07305152714252472, -0.051828429102897644, 0.03567269444465637, -0.058254875242710114, 0.007765325251966715, 0.026957103982567787, -0.06031906604766846, 0.04161948710680008, -0.15727142989635468, -0.04547454044222832, 0.03101697377860546, 0.07703181356191635, -0.031663525849580765, 0.04061076417565346, 0.021504413336515427, 0.04527858644723892, 0.053009554743766785, -0.06466467678546906, 0.03567301481962204, -0.09857936203479767, -0.09199987351894379, -0.09452838450670242, 0.010135965421795845, -0.02205735072493553, -0.03347673639655113, 0.10439863055944443, 0.10611798614263535, 0.14711424708366394, -0.028382135555148125, -0.029110535979270935, -0.13248147070407867, 0.00514360424131155, 0.014445217326283455, -0.08276037871837616, -0.0825713500380516, -0.11783033609390259, 0.010548099875450134, -0.023225007578730583, 0.11414103955030441, 0.031385816633701324, -0.020558679476380348, -0.022307097911834717, 0.06879126280546188, 0.09172707051038742, -0.05584355443716049, 0.23967309296131134, 0.07182715833187103, 0.08885295689105988, -0.041775576770305634, 0.004627619404345751, 0.12569676339626312, -0.000898265338037163, -0.03656485676765442, 0.07594436407089233, -0.013878025114536285, 0.17319323122501373, 0.03381159529089928, 0.0515698678791523, 0.018691973760724068, 0.0774717852473259, -0.05479469522833824, 0.09448181837797165, -0.051982004195451736, 0.1253308653831482, 0.1253632754087448, -0.04964876547455788, 0.001527810818515718, 0.004415178205817938, -0.010700213722884655, -0.12359648197889328, -0.17830361425876617, -0.11294565349817276, -0.2085079699754715, 0.03843751549720764, -0.05764678120613098, 0.05142689868807793, 0.07036878913640976, 0.014366674236953259, 0.031824566423892975, 0.05441850796341896, -0.009518644772469997, -0.11005671322345734, 0.05607655271887779, -0.02369662933051586, -0.0929926410317421, 0.07404335588216782, -0.021051622927188873, 0.03054252825677395, -0.0013834974961355329, -0.014254952780902386, 0.044167421758174896, 0.09803491085767746, 0.053985659033060074, -0.06963883340358734, -0.025815296918153763, -0.07083656638860703, 0.028431786224246025, 0.02349427528679371, 0.06848166137933731, 0.031463950872421265, -0.038175068795681, 0.02340737171471119, 0.12887945771217346, -0.06641366332769394, -0.12721048295497894, -0.10939403623342514, 0.015210258774459362, -0.0479256808757782, 0.02003791369497776, -0.030127817764878273, -0.014255826361477375, -0.005343705881386995, 0.3675279915332794, 0.12274191528558731, -0.12293129414319992, -0.04146166890859604, -0.026116829365491867, 0.0030724669340997934, -0.031182503327727318, 0.15151835978031158, 0.1259637326002121, 0.09939797967672348, -0.05379646643996239, -0.04751047492027283, -0.03098965995013714, -0.023429734632372856, -0.12933070957660675, 0.04963863268494606, -0.0954798236489296, -0.04774963855743408, -0.012447867542505264, 0.022052453830838203, -0.0827990174293518, -0.06974993646144867, 0.02018783614039421, 0.019599944353103638, -0.04004771634936333, -0.09975946694612503, 0.02228918857872486, 0.05048742890357971, 0.009147144854068756, -0.10065798461437225, 0.029916411265730858, 0.15688449144363403, -0.04941174387931824, -0.17461930215358734, -0.09003480523824692, 0.056217972189188004, 0.049109697341918945, 0.13446779549121857, 0.05589793995022774, 0.00801476277410984, 0.043100059032440186, -0.04795217514038086, -0.13145065307617188, 0.07680903375148773, -0.010748426429927349, -0.05482438951730728, 0.024745440110564232, -0.08870814740657806, -0.06827883422374725, -0.01564490795135498, 0.02916460670530796, 0.11761172115802765, -0.05335894227027893, 0.0940740630030632, -0.032010242342948914, -0.07302069664001465, 0.02598252333700657, -0.12828437983989716, 0.1030874252319336, 0.07904889434576035, -0.051213573664426804, -0.05548175424337387, -0.10999125242233276, 0.09904936701059341, -0.007202325854450464, -0.10285472869873047, 0.029359176754951477, -0.0029513968620449305, -0.05981616675853729, 0.027223894372582436, 0.0583457387983799, -0.0854870155453682, -0.06992202252149582, -0.04268122836947441, -0.013256075792014599, -0.03925827145576477, 0.09741469472646713, 0.14668779075145721, 0.005158299580216408, -0.020248737186193466, -0.11033433675765991, -0.028993409126996994, 0.03602350875735283, -0.01648704521358013, -0.1143229752779007 ]
null
null
transformers
# Reproduced Japanese Stable LM Instruct Gamma 7B ## Model Description This is a reproduction of 7B-parameter decoder-only Japanese language model fine-tuned on instruction-following datasets, built on top of the base model [Japanese Stable LM Base Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-base-gamma-7b). This model is trained with [notus](https://github.com/argilla-io/notus) code base. *If you are in search of the official model, please check [Japanese Stable LM Instruct Gamma 7B](https://huggingface.co/stabilityai/japanese-stablelm-instruct-gamma-7b).* ## Model Details ### Training Datasets - [Japanese translation of the Databricks Dolly-15k dataset](https://huggingface.co/datasets/kunishou/databricks-dolly-15k-ja) - [Japanese translation of the subset of the Anthropic HH dataset](https://huggingface.co/datasets/fujiki/japanese_hh-rlhf-49k) - [Wikinews](https://ja.wikinews.org/wi) [subset](https://huggingface.co/datasets/fujiki/llm-japanese-dataset_wikinews) of the [izumi-lab/llm-japanese-dataset](https://huggingface.co/datasets/izumi-lab/llm-japanese-dataset) ### Benchmarks The result is evaluated by [Nejumi-leaderboard Neo](https://github.com/wandb/llm-leaderboard/tree/b2723944d4955768cb93c18ffe162a8ff4e88955). - llm-jp-eval: |AVG |EL |FA |MC |MR |NLI |QA |RC |chabsa|jamp |janli|jcommonsenseqa|jemhopqa|jnli |jsem |jsick|jsquad |mawps |niilc |wiki_coreference|wiki_dependency|wiki_ner|wiki_pas|wiki_reading| |------|---|----|-----|----|------|-------|-------|------|-----|-----|--------------|--------|-----|-----|-----|-------|------|------|----------------|---------------|--------|--------|------------| |0.26 |0 |0.14|0.27 |0.1 |0.302 |0.2619 |0.7464 |0.0 |0.15 |0.5 |0.27 |0.2528 |0.04 |0.67 |0.15 |0.7464 |0.1 |0.271 |0.0 |0.0 |0.0 |0.0 |0.7 | - Japanese Mt-Bench: |coding|extraction|humanities|math|reasoning|roleplay|stem|writing| |------|----------|----------|----|---------|--------|----|-------| |1.3 |1.75 |2.35 |1.45|3.4 |5.8 |4.3 |3.1 | - Overall Average: 0.283125
{"language": ["ja"], "license": "apache-2.0", "tags": ["japanese-stablelm", "causal-lm"], "pipeline_tag": "text-generation", "base_model": "stabilityai/japanese-stablelm-base-gamma-7b", "extra_gated_fields": {"Name": "text", "Email": "text", "Country": "text", "Organization or Affiliation": "text", "I allow Stability AI to contact me about information related to its models and research": "checkbox"}}
text-generation
ohwi/japanese-stablelm-instruct-gamma-7b-repro
[ "transformers", "safetensors", "mistral", "text-generation", "japanese-stablelm", "causal-lm", "conversational", "ja", "base_model:stabilityai/japanese-stablelm-base-gamma-7b", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:43:50+00:00
[]
[ "ja" ]
TAGS #transformers #safetensors #mistral #text-generation #japanese-stablelm #causal-lm #conversational #ja #base_model-stabilityai/japanese-stablelm-base-gamma-7b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
Reproduced Japanese Stable LM Instruct Gamma 7B =============================================== Model Description ----------------- This is a reproduction of 7B-parameter decoder-only Japanese language model fine-tuned on instruction-following datasets, built on top of the base model Japanese Stable LM Base Gamma 7B. This model is trained with notus code base. *If you are in search of the official model, please check Japanese Stable LM Instruct Gamma 7B.* Model Details ------------- ### Training Datasets * Japanese translation of the Databricks Dolly-15k dataset * Japanese translation of the subset of the Anthropic HH dataset * Wikinews subset of the izumi-lab/llm-japanese-dataset ### Benchmarks The result is evaluated by Nejumi-leaderboard Neo. * llm-jp-eval: * Japanese Mt-Bench: * Overall Average: 0.283125
[ "### Training Datasets\n\n\n* Japanese translation of the Databricks Dolly-15k dataset\n* Japanese translation of the subset of the Anthropic HH dataset\n* Wikinews subset of the izumi-lab/llm-japanese-dataset", "### Benchmarks\n\n\nThe result is evaluated by Nejumi-leaderboard Neo.\n\n\n* llm-jp-eval:\n* Japanese Mt-Bench:\n* Overall Average: 0.283125" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #japanese-stablelm #causal-lm #conversational #ja #base_model-stabilityai/japanese-stablelm-base-gamma-7b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training Datasets\n\n\n* Japanese translation of the Databricks Dolly-15k dataset\n* Japanese translation of the subset of the Anthropic HH dataset\n* Wikinews subset of the izumi-lab/llm-japanese-dataset", "### Benchmarks\n\n\nThe result is evaluated by Nejumi-leaderboard Neo.\n\n\n* llm-jp-eval:\n* Japanese Mt-Bench:\n* Overall Average: 0.283125" ]
[ 98, 57, 45 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #japanese-stablelm #causal-lm #conversational #ja #base_model-stabilityai/japanese-stablelm-base-gamma-7b #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training Datasets\n\n\n* Japanese translation of the Databricks Dolly-15k dataset\n* Japanese translation of the subset of the Anthropic HH dataset\n* Wikinews subset of the izumi-lab/llm-japanese-dataset### Benchmarks\n\n\nThe result is evaluated by Nejumi-leaderboard Neo.\n\n\n* llm-jp-eval:\n* Japanese Mt-Bench:\n* Overall Average: 0.283125" ]
[ -0.06459913402795792, 0.17642363905906677, 0.0012146547669544816, 0.04901433736085892, 0.09838337451219559, 0.029223470017313957, 0.15123245120048523, 0.13484156131744385, -0.04276352748274803, 0.03301619365811348, 0.05085132271051407, 0.002622869098559022, 0.06822598725557327, 0.15267787873744965, -0.07740447670221329, -0.2572126090526581, 0.08380361646413803, 0.03913886100053787, 0.035326987504959106, 0.0814981535077095, 0.08006185293197632, -0.0930979773402214, 0.06370969861745834, 0.027157053351402283, -0.12144329398870468, 0.013816568069159985, 0.04362256079912186, -0.099815733730793, 0.08276938647031784, 0.03886616602540016, 0.0650167241692543, -0.0035562398843467236, 0.043438639491796494, -0.1417415291070938, 0.030895715579390526, 0.025092441588640213, 0.004705356899648905, 0.061814382672309875, 0.04125931113958359, -0.022333629429340363, 0.11527377367019653, -0.05028170347213745, -0.017410049214959145, 0.05135975778102875, -0.0552808903157711, -0.12658809125423431, -0.08689995855093002, -0.006361620035022497, 0.16897933185100555, 0.07269714027643204, -0.06108744442462921, 0.13067002594470978, -0.16930454969406128, 0.04281012713909149, 0.21298514306545258, -0.2460705041885376, -0.04716561362147331, 0.030929071828722954, -0.0829046219587326, 0.07414370775222778, -0.10300564020872116, -0.007347194477915764, 0.11070047318935394, -0.02117224410176277, 0.006373524200171232, -0.031434327363967896, 0.026922132819890976, 0.07080595940351486, -0.10456278175115585, 0.11692558974027634, 0.32118675112724304, 0.08896974474191666, -0.007058090064674616, -0.03822986036539078, -0.003700164845213294, 0.06801159679889679, -0.04184718057513237, 0.013048834167420864, -0.004249321296811104, -0.1026279628276825, 0.0512339323759079, 0.03467630222439766, -0.09508164972066879, -0.10178031027317047, -0.07120603322982788, 0.1619846522808075, 0.04595920816063881, 0.027197597548365593, -0.0501142293214798, 0.06812747567892075, -0.06700579822063446, -0.13522163033485413, -0.04895520955324173, -0.049742020666599274, -0.03249106556177139, 0.03332320228219032, -0.011757854372262955, -0.1264951378107071, 0.08688527345657349, 0.04476183280348778, -0.07532531023025513, 0.05293172970414162, 0.0012722359970211983, -0.006688375025987625, 0.05133052542805672, 0.08434077352285385, -0.10762915015220642, -0.10229893028736115, 0.06274086236953735, 0.0783982127904892, 0.044990815222263336, 0.02377464808523655, -0.038214750587940216, -0.034991394728422165, 0.09834878891706467, 0.011762624606490135, -0.06929261237382889, 0.06971818953752518, -0.03422239050269127, -0.020240353420376778, 0.13368681073188782, -0.18966816365718842, -0.05243644490838051, -0.008491597138345242, -0.0919894203543663, 0.08666445314884186, 0.017388388514518738, -0.0024407377932220697, 0.03482181951403618, 0.05123010277748108, -0.09441347420215607, -0.02743043750524521, -0.03881325572729111, -0.014635428786277771, 0.026233026757836342, 0.022373439744114876, 0.021706853061914444, -0.09207779914140701, -0.22045162320137024, -0.04396410286426544, -0.020605672150850296, -0.03037487156689167, 0.013370328582823277, -0.08229083567857742, -0.014315054751932621, 0.030161108821630478, -0.010298985056579113, -0.001037784037180245, -0.06835823506116867, 0.04076226055622101, 0.04788484796881676, 0.06784210354089737, -0.016075095161795616, -0.013292213901877403, -0.10980869084596634, 0.04528231546282768, -0.1993468552827835, -0.016585951671004295, -0.09415193647146225, 0.03652958571910858, -0.09318985044956207, 0.007701573893427849, -0.014942188747227192, 0.03289671987295151, 0.0025546608958393335, 0.21053658425807953, -0.15264353156089783, -0.08962585031986237, 0.161446213722229, -0.11639147996902466, -0.13925938308238983, 0.09509673714637756, -0.06012801080942154, 0.09599901735782623, 0.07671848684549332, 0.19322404265403748, -0.07033517956733704, -0.029831964522600174, -0.06683936715126038, -0.05929703637957573, 0.008449011482298374, -0.02083403430879116, 0.06395354866981506, 0.05705110356211662, -0.1075509563088417, 0.10300907492637634, -0.08925044536590576, 0.030338358134031296, -0.052704520523548126, -0.08639440685510635, -0.010043954476714134, -0.09970884025096893, 0.0011441067326813936, 0.015536099672317505, 0.10153105854988098, -0.06903965771198273, -0.06815782189369202, 0.09945347160100937, 0.1221151053905487, -0.047840654850006104, -0.008031390607357025, -0.04415929690003395, 0.07582208514213562, -0.09413265436887741, -0.006644312292337418, -0.05307399109005928, -0.039170827716588974, -0.0009356950758956373, 0.013242854736745358, 0.04066001623868942, -0.016491705551743507, 0.04074080288410187, 0.017712855711579323, -0.08877569437026978, -0.04276656731963158, 0.05640416964888573, 0.025747638195753098, 0.017237409949302673, -0.2256309688091278, 0.09343131631612778, -0.024645833298563957, 0.1556350290775299, -0.18623007833957672, 0.004381811711937189, -0.041985027492046356, 0.1821509450674057, -0.0075568100437521935, 0.03288887441158295, 0.07381551712751389, 0.00707710487768054, -0.04560680687427521, 0.001961050322279334, 0.007872135378420353, 0.005402148235589266, -0.10270892083644867, 0.17355449497699738, -0.126607283949852, 0.07792376726865768, 0.13284142315387726, 0.04618670046329498, -0.05420876666903496, -0.05905843898653984, 0.007712623104453087, -0.08266036212444305, -0.03176421672105789, 0.010345561429858208, -0.01719120517373085, -0.005292791407555342, 0.11285750567913055, -0.11712787300348282, -0.03047320432960987, 0.017197512090206146, -0.11020780354738235, -0.05846087634563446, 0.07335670292377472, 0.07252676784992218, -0.21577848494052887, 0.14570114016532898, 0.05156439170241356, -0.17157238721847534, 0.3104380667209625, -0.04513746127486229, -0.08634577691555023, -0.012552772648632526, -0.03979893773794174, -0.006316952873021364, 0.1879417896270752, -0.052321746945381165, -0.006242383271455765, 0.037010397762060165, 0.023107117041945457, 0.054386187344789505, -0.10499374568462372, -0.06256438791751862, -0.02490297518670559, -0.008654256351292133, 0.06846354156732559, 0.06820479035377502, -0.0015583892818540335, 0.12685532867908478, -0.03721018135547638, 0.050654247403144836, -0.049629032611846924, -0.001428294344805181, -0.1015576496720314, 0.18625035881996155, -0.13423782587051392, -0.2123117297887802, -0.10557353496551514, -0.015454412437975407, -0.09201716631650925, -0.051359549164772034, -0.004545961506664753, -0.19691328704357147, -0.05723319947719574, -0.10329239070415497, 0.03991956263780594, 0.020330119878053665, -0.014760113321244717, -0.0527275875210762, 0.02372850477695465, -0.007688364014029503, -0.11053042858839035, 0.008010393008589745, -0.010112478397786617, 0.016345465555787086, 0.0595666840672493, -0.09134563058614731, 0.12044697254896164, 0.11744599044322968, 0.036842092871665955, 0.0033150375820696354, -0.0035795869771391153, 0.13721045851707458, -0.10445626825094223, 0.05593562871217728, 0.030110448598861694, -0.000964828475844115, -0.012557754293084145, 0.10794813185930252, 0.020558854565024376, -0.07343348860740662, 0.060133595019578934, 0.03253653645515442, -0.014478569850325584, -0.2683074176311493, -0.04459824040532112, -0.06298704445362091, 0.053070660680532455, -0.05238455906510353, 0.030414417386054993, 0.03736541420221329, 0.0291299968957901, -0.008880672045052052, -0.002291744342073798, 0.006444265600293875, 0.04922395572066307, 0.029037484899163246, 0.022401273250579834, 0.10346240550279617, -0.042397450655698776, 0.013575607910752296, 0.09862986207008362, 0.007164780516177416, 0.12196195870637894, -0.0907813310623169, 0.1382453292608261, 0.07064975798130035, 0.18107037246227264, 0.06437946856021881, 0.02471652254462242, 0.04644319787621498, -0.029050905257463455, 0.014049170538783073, -0.08604635298252106, -0.015278533101081848, 0.12165533006191254, -0.060134097933769226, 0.04890291392803192, -0.0012031013611704111, 0.008101208135485649, 0.06701002269983292, 0.11659665405750275, 0.04079800099134445, -0.2043384462594986, -0.010138584300875664, 0.06368260085582733, -0.028653079643845558, -0.009111955761909485, 0.07164257764816284, 0.011800420470535755, -0.10380563884973526, 0.10305290669202805, -0.016720496118068695, 0.0710376724600792, -0.047834303230047226, -0.058200884610414505, -0.09093951433897018, 0.06014220416545868, -0.07696559280157089, 0.08187571167945862, -0.2238171547651291, 0.2033357471227646, 0.053993336856365204, 0.04643251374363899, 0.008441954851150513, -0.05651026591658592, 0.06950722634792328, 0.06146290898323059, 0.09534402936697006, 0.00284454133361578, -0.028217120096087456, -0.02179074101150036, -0.03307879716157913, 0.06199413537979126, 0.03478558361530304, 0.07843377441167831, 0.05689890682697296, 0.013080345466732979, -0.028492396697402, -0.005440148059278727, -0.030301595106720924, -0.19117605686187744, -0.08588895201683044, -0.020702335983514786, 0.046053942292928696, -0.04067704826593399, -0.058155883103609085, -0.08608965575695038, -0.06916124373674393, 0.1406318098306656, 0.03505066782236099, -0.014008432626724243, -0.13811875879764557, 0.026909828186035156, 0.13696984946727753, -0.09948364645242691, 0.002634461037814617, -0.05248066037893295, 0.10393404215574265, 0.035224176943302155, -0.08012469857931137, 0.030620424076914787, -0.057946186512708664, -0.0940789058804512, -0.05436267331242561, 0.0906359925866127, 0.0731610581278801, 0.020548462867736816, -0.024093518033623695, -0.00917905755341053, 0.04411781579256058, -0.06908608973026276, -0.01267935335636139, 0.1508505791425705, 0.10569191724061966, 0.046608924865722656, -0.08318980038166046, -0.04771025851368904, -0.11581997573375702, -0.12206976860761642, 0.0850420817732811, 0.25279954075813293, -0.01605856977403164, 0.04880601167678833, 0.1412343978881836, -0.05629761517047882, -0.15475599467754364, 0.02813240885734558, 0.0005559601122513413, 0.10367562621831894, -0.03391136974096298, -0.0645800307393074, 0.15504541993141174, 0.09931978583335876, -0.06299877911806107, 0.0524028018116951, -0.04173609986901283, -0.15185879170894623, 0.12405308336019516, 0.14587432146072388, 0.16236014664173126, -0.09925942867994308, -0.002054427983239293, -0.0285435002297163, -0.16915453970432281, 0.035140156745910645, -0.09863738715648651, 0.05563800781965256, -0.06531777232885361, 0.038134004920721054, 0.00041739389416761696, -0.05142521858215332, 0.163213849067688, -0.04144378751516342, 0.026091914623975754, -0.05863635987043381, -0.0016642455011606216, -0.0009258707868866622, -0.05808956176042557, 0.1361856460571289, -0.09707173705101013, 0.036063067615032196, -0.044762272387742996, -0.04822758212685585, -0.1104573905467987, 0.0058850799687206745, -0.025939276441931725, -0.10736056417226791, -0.08213471621274948, 0.13151250779628754, -0.01751188561320305, -0.004411742556840181, 0.15343433618545532, -0.036519765853881836, 0.04585430026054382, 0.11383190006017685, 0.12229667603969574, -0.05246619135141373, 0.08441714942455292, -0.011104075238108635, -0.03283656761050224, 0.06030012294650078, -0.22720961272716522, 0.0430096834897995, 0.05603482574224472, 0.03048999235033989, 0.16401931643486023, -0.00241181836463511, -0.15848010778427124, -0.012646647170186043, 0.1133522242307663, -0.13612711429595947, -0.013022396713495255, -0.036834243685007095, -0.040165577083826065, -0.018143747001886368, 0.028476834297180176, 0.1257554441690445, -0.08969593793153763, -0.03022874891757965, 0.0034704008139669895, 0.016196195036172867, -0.02943926863372326, 0.15277104079723358, 0.10186942666769028, 0.033240970224142075, -0.09006832540035248, 0.11258488148450851, 0.019713211804628372, 0.015420171432197094, 0.04300309345126152, 0.0824318528175354, -0.10026075690984726, -0.03496934473514557, 0.09972517937421799, 0.23319417238235474, -0.04024987667798996, -0.1158796101808548, -0.19524165987968445, -0.08020666241645813, -0.005554783158004284, 0.12202885746955872, 0.08946651965379715, 0.034361984580755234, 0.03819224238395691, -0.07744374126195908, -0.08791105449199677, 0.12635575234889984, 0.11087270081043243, 0.05902090296149254, -0.1143907830119133, -0.07244869321584702, 0.06491149961948395, 0.07323335111141205, -0.05302189290523529, -0.01759239099919796, -0.14198623597621918, 0.018889809027314186, -0.15883749723434448, 0.02324201725423336, -0.11501160264015198, -0.04430847615003586, -0.03546636179089546, -0.07982973009347916, -0.08931619673967361, 0.004582780878990889, -0.06317422538995743, 0.038317449390888214, -0.027984656393527985, 0.08900102972984314, -0.05725223198533058, 0.0071241543628275394, 0.09064020216464996, -0.04073942452669144, -0.015853308141231537, 0.03619828075170517, -0.02169790491461754, 0.17112775146961212, -0.04381082206964493, 0.06605476886034012, 0.04780779033899307, 0.008672276511788368, 0.06695809960365295, -0.08239971846342087, -0.034154560416936874, 0.06500180065631866, 0.0914750024676323, -0.003148453077301383, -0.04184794798493385, -0.08106650412082672, -0.016233371570706367, -0.10588400065898895, -0.06368857622146606, -0.0864759087562561, 0.03818635269999504, 0.13887979090213776, 0.015563138760626316, 0.11457706987857819, -0.06216376647353172, -0.004831304773688316, -0.1542401760816574, -0.02247759886085987, -0.0031029642559587955, -0.11612467467784882, -0.01697063259780407, 0.015220282599329948, 0.04494430869817734, -0.01492577139288187, 0.2215401530265808, -0.03366204351186752, -0.09645667672157288, 0.02866184338927269, -0.07305000722408295, 0.051975082606077194, 0.04914020374417305, 0.20077672600746155, -0.011080825701355934, 0.012700026854872704, -0.041525449603796005, 0.02376779355108738, 0.007080921437591314, 0.043710365891456604, 0.07144315540790558, 0.12218254804611206, 0.010812965221703053, 0.10692750662565231, -0.016569850966334343, -0.005332226864993572, 0.07183171808719635, 0.1221502348780632, -0.15413014590740204, 0.04032502323389053, 0.08037857711315155, 0.12219396978616714, 0.2791518568992615, -0.1580062210559845, 0.025943100452423096, -0.006527415476739407, -0.10425535589456558, -0.14527355134487152, -0.11105957627296448, -0.1313578188419342, -0.17475242912769318, 0.07734379917383194, -0.11035630106925964, 0.0014173127710819244, 0.07708876579999924, 0.11472512036561966, -0.04255203157663345, 0.13359294831752777, 0.14361079037189484, -0.031691212207078934, 0.09209039807319641, 0.003771926974877715, -0.07938680052757263, 0.01430402509868145, -0.016163373365998268, -0.003820646321401, -0.06391995400190353, -0.03586985543370247, -0.01780461147427559, -0.07498077303171158, 0.08414092659950256, 0.017381863668560982, -0.09213308244943619, 0.04319906607270241, 0.015050939284265041, 0.07795076072216034, 0.06091506406664848, 0.05251646786928177, -0.014397175051271915, 0.020269041880965233, 0.2367548793554306, 0.0027374778874218464, -0.005526357796043158, -0.17883670330047607, 0.12391098588705063, 0.018449321389198303, -0.043305106461048126, 0.030629290267825127, -0.11179865151643753, 0.02486761286854744, 0.20060937106609344, 0.1628827005624771, -0.03831173852086067, -0.018792998045682907, -0.09652331471443176, -0.009420034475624561, -0.045695964246988297, 0.09300705790519714, 0.03481217101216316, 0.09065726399421692, -0.02742735855281353, -0.05385538935661316, -0.1275145560503006, -0.101006418466568, 0.03528212383389473, 0.08193781971931458, 0.09883934259414673, -0.08516567200422287, -0.09084896743297577, 0.06254655867815018, -0.1059907078742981, -0.11256033182144165, -0.09624428302049637, -0.0816933661699295, -0.17587785422801971, -0.05849035456776619, 0.07085520029067993, -0.03094448335468769, -0.02289307862520218, -0.04142242297530174, 0.0490928553044796, 0.053835365921258926, 0.00526390690356493, -0.06985887885093689, -0.10949501395225525, 0.04534877836704254, 0.006890362594276667, 0.12258163094520569, 0.01341229397803545, 0.006314813159406185, 0.06452978402376175, 0.008549826219677925, -0.040627215057611465, 0.12240603566169739, 0.023267509415745735, -0.03325371444225311, 0.026138383895158768, 0.189402237534523, 0.010911066085100174, 0.08365367352962494, 0.06270378082990646, -0.09487982094287872, 0.0700371116399765, -0.03115934506058693, -0.1217581182718277, -0.13446593284606934, 0.1068815216422081, -0.08869853615760803, 0.14181441068649292, 0.1701854020357132, -0.04435862973332405, -0.005394703708589077, -0.056220393627882004, 0.13863524794578552, 0.013689549639821053, 0.004823680501431227, 0.029652202501893044, -0.18264497816562653, -0.03313925117254257, 0.018885884433984756, -0.0513669028878212, -0.2600184977054596, -0.024507416412234306, -0.08345025777816772, -0.06330690532922745, -0.06332776695489883, 0.08682992309331894, 0.07928083091974258, 0.034810617566108704, -0.026829387992620468, -0.1789177805185318, -0.006349161267280579, 0.0664229616522789, -0.10525976866483688, -0.12344848364591599 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # robust_llm_pythia-imdb-1.4b-mz-v1 This model is a fine-tuned version of [EleutherAI/pythia-1.4b-deduped](https://huggingface.co/EleutherAI/pythia-1.4b-deduped) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "EleutherAI/pythia-1.4b-deduped", "model-index": [{"name": "robust_llm_pythia-imdb-1.4b-mz-v1", "results": []}]}
text-classification
AlignmentResearch/robust_llm_pythia-imdb-1.4b-mz-v1
[ "transformers", "tensorboard", "safetensors", "gpt_neox", "text-classification", "generated_from_trainer", "base_model:EleutherAI/pythia-1.4b-deduped", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:47:04+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1.4b-deduped #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# robust_llm_pythia-imdb-1.4b-mz-v1 This model is a fine-tuned version of EleutherAI/pythia-1.4b-deduped on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.37.1 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# robust_llm_pythia-imdb-1.4b-mz-v1\n\nThis model is a fine-tuned version of EleutherAI/pythia-1.4b-deduped on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.37.1\n- Pytorch 2.1.2\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1.4b-deduped #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# robust_llm_pythia-imdb-1.4b-mz-v1\n\nThis model is a fine-tuned version of EleutherAI/pythia-1.4b-deduped on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.37.1\n- Pytorch 2.1.2\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 88, 52, 6, 12, 8, 3, 90, 4, 30 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #gpt_neox #text-classification #generated_from_trainer #base_model-EleutherAI/pythia-1.4b-deduped #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# robust_llm_pythia-imdb-1.4b-mz-v1\n\nThis model is a fine-tuned version of EleutherAI/pythia-1.4b-deduped on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.37.1\n- Pytorch 2.1.2\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.09966104477643967, 0.16167999804019928, -0.003100479021668434, 0.07408289611339569, 0.13500754535198212, 0.009587863460183144, 0.1282457858324051, 0.15336589515209198, -0.08835804462432861, 0.09701106697320938, 0.08720390498638153, 0.08459966629743576, 0.06042373552918434, 0.1431938260793686, -0.03161242604255676, -0.23809215426445007, 0.02984539046883583, 0.008286473341286182, -0.033714957535266876, 0.10071305930614471, 0.11562123149633408, -0.07871289551258087, 0.09237980842590332, 0.042682308703660965, -0.12896539270877838, 0.016069648787379265, -0.031193848699331284, -0.08515401184558868, 0.077845498919487, 0.013139710761606693, 0.0402095653116703, 0.006825492717325687, 0.0605645515024662, -0.19690996408462524, -0.004230986349284649, 0.06071078032255173, 0.009782221168279648, 0.09603820741176605, 0.053420547395944595, 0.016363998875021935, 0.054618675261735916, -0.14696352183818817, 0.0813121348619461, 0.038413289934396744, -0.07694032788276672, -0.20739595592021942, -0.09329733997583389, 0.09026345610618591, 0.06678524613380432, 0.08801712095737457, 0.0110807865858078, 0.2016390562057495, 0.022053932771086693, 0.07862552255392075, 0.19582010805606842, -0.2911854088306427, -0.04343533515930176, 0.006862725131213665, 0.07414387166500092, 0.07946883887052536, -0.08576852828264236, 0.008513001725077629, 0.045190345495939255, 0.02943938784301281, 0.10381674021482468, -0.009395645000040531, -0.0006574352155439556, -0.04807962477207184, -0.12155413627624512, -0.060856275260448456, 0.210480734705925, 0.06264083832502365, -0.07056169956922531, -0.13212424516677856, -0.06699039787054062, -0.096568763256073, -0.02753094770014286, -0.05025661364197731, 0.02853621169924736, -0.03532842919230461, -0.04817637801170349, -0.0614117756485939, -0.06343308091163635, -0.027035685256123543, 0.02419321797788143, 0.14923305809497833, 0.05310400202870369, 0.02680342085659504, -0.0190097875893116, 0.0779719352722168, -0.029772888869047165, -0.15159712731838226, -0.048473671078681946, 0.00500330189242959, -0.022445151582360268, -0.045769739896059036, -0.024485940113663673, -0.020916437730193138, 0.02063242346048355, 0.16698704659938812, -0.06638406217098236, 0.06581812351942062, 0.012227083556354046, -0.002771227154880762, -0.0159729216247797, 0.1446833312511444, -0.02660030871629715, -0.02621171437203884, 0.03638024628162384, 0.10497667640447617, 0.0519440658390522, -0.019425218924880028, -0.08602157980203629, -0.010322785004973412, 0.14193026721477509, 0.06576130539178848, -0.002099277451634407, 0.03533107787370682, -0.05781874433159828, -0.05670461058616638, 0.1127040758728981, -0.12824474275112152, 0.02030475065112114, -0.031840138137340546, -0.07168211787939072, -0.06329061836004257, 0.029206151142716408, 0.004427817650139332, -0.05252721160650253, -0.0035615903325378895, -0.0852297767996788, -0.023440850898623466, -0.04716893658041954, -0.04287349432706833, 0.01056732889264822, -0.0666927844285965, 0.01471986249089241, -0.08888430893421173, -0.19051022827625275, -0.01871304400265217, 0.014043433591723442, -0.058271754533052444, -0.0790439248085022, 0.004120307508856058, -0.057775888592004776, 0.029316892847418785, -0.01340171042829752, 0.04395505413413048, -0.03738268092274666, 0.05710019916296005, 0.06092812120914459, 0.01983477547764778, 0.03900181129574776, 0.04924564063549042, -0.09968366473913193, 0.051273901015520096, -0.10976722091436386, 0.09868413954973221, -0.07508402317762375, 0.02892596274614334, -0.14033935964107513, -0.09205564111471176, 0.023675836622714996, -0.033470652997493744, 0.06697820127010345, 0.11660673469305038, -0.08315079659223557, -0.030496325343847275, 0.11781831085681915, -0.09050648659467697, -0.14113634824752808, 0.08707121759653091, -0.00504421629011631, 0.02885887585580349, 0.056899141520261765, 0.14993992447853088, 0.11622468382120132, -0.11295443773269653, -0.05909348651766777, 0.021022101864218712, 0.06329277902841568, 0.0004708677006419748, 0.08662176132202148, -0.0032635251991450787, 0.03630860894918442, 0.02022797241806984, -0.055185236036777496, -0.029801029711961746, -0.0651135966181755, -0.08118346333503723, -0.07511777430772781, -0.06733310222625732, 0.0316392220556736, 0.0177508145570755, 0.03535273298621178, -0.06977041810750961, -0.12407054752111435, 0.08363058418035507, 0.1401386857032776, -0.056158244609832764, 0.019594460725784302, -0.09145084768533707, 0.054627809673547745, -0.06882687658071518, -0.013613050803542137, -0.20310960710048676, -0.11264107376337051, 0.0717795193195343, -0.11653696745634079, 0.02639918401837349, -0.03399895504117012, 0.046194471418857574, 0.08146961033344269, -0.026683609932661057, -0.05750845745205879, -0.0837559923529625, -0.01035147625952959, -0.1016005203127861, -0.14315088093280792, -0.0552436001598835, -0.0342140756547451, 0.11352194845676422, -0.16809329390525818, 0.03361036628484726, 0.04942173883318901, 0.136592835187912, 0.029908260330557823, -0.05681375041604042, 0.02561895363032818, 0.003908215090632439, -0.015626749023795128, -0.10924321413040161, 0.027975814417004585, 0.019626770168542862, -0.10731204599142075, -0.015132630243897438, -0.16459441184997559, 0.1272525042295456, 0.07864263653755188, 0.09583979099988937, -0.05131250247359276, -0.014435064047574997, -0.05672832578420639, -0.05449565872550011, -0.04238611459732056, -0.018968969583511353, 0.17568156123161316, 0.00587861705571413, 0.13847795128822327, -0.07690365612506866, -0.06449267268180847, 0.021112477406859398, -0.008829060941934586, -0.05428970977663994, 0.05838282033801079, -0.032929614186286926, -0.17754843831062317, 0.11879096925258636, 0.10824554413557053, -0.0068948413245379925, 0.12824715673923492, -0.060830410569906235, -0.07543061673641205, -0.043663330376148224, 0.017514197155833244, 0.017465589568018913, 0.07542017847299576, -0.08722137659788132, 0.008306002244353294, 0.05549423024058342, 0.011782941408455372, 0.019757049158215523, -0.13387733697891235, 0.021406106650829315, 0.028813436627388, -0.04830201342701912, 0.0378975085914135, 0.009214936755597591, -0.008967334404587746, 0.06554888933897018, 0.02634272165596485, 0.0021738894283771515, 0.0492904894053936, 0.0005554666859097779, -0.07071758806705475, 0.1715383529663086, -0.11482085287570953, -0.192353293299675, -0.15269003808498383, 0.034304916858673096, -0.09407950937747955, -0.010796276852488518, 0.040458813309669495, -0.04819934815168381, -0.07078014314174652, -0.08230447769165039, -0.0379205159842968, -0.05059685930609703, 0.0028153052553534508, 0.07929105311632156, 0.0031223255209624767, 0.12422896921634674, -0.13494303822517395, -0.002921463456004858, 0.017039265483617783, -0.06479401141405106, -0.016111262142658234, 0.04346119612455368, 0.10027259588241577, 0.06328760087490082, -0.012468795292079449, 0.011907310225069523, -0.023348260670900345, 0.2637304961681366, -0.07961472868919373, -0.012147856876254082, 0.1767970621585846, 0.012824664823710918, 0.09215310215950012, 0.09838410466909409, 0.026642346754670143, -0.08745229244232178, 0.02039274200797081, 0.029365040361881256, -0.014320546761155128, -0.2469870001077652, -0.03187941387295723, -0.016554193571209908, -0.05485658347606659, 0.11508317291736603, 0.07356873154640198, 0.07508014142513275, 0.07626435905694962, -0.056919652968645096, 0.06563954055309296, -0.021138913929462433, 0.12139127403497696, 0.14583392441272736, 0.05869944766163826, 0.1008232831954956, -0.030519280582666397, -0.021997207775712013, 0.06020105630159378, 0.03914511948823929, 0.2155323475599289, -0.008632916957139969, 0.21699029207229614, 0.018836529925465584, 0.14021818339824677, -0.003855818184092641, 0.020058689638972282, 0.019675036892294884, 0.021760767325758934, 0.011087233200669289, -0.07209472358226776, -0.030770737677812576, 0.037542179226875305, -0.04880101606249809, 0.0529446043074131, -0.07097167521715164, 0.05989452823996544, 0.022259093821048737, 0.25498634576797485, 0.020527595654129982, -0.32653555274009705, -0.09600897878408432, 0.024420958012342453, -0.028232695534825325, -0.08734644204378128, -0.01697384938597679, 0.062392208725214005, -0.13407427072525024, 0.09389474242925644, -0.07384412735700607, 0.09087327122688293, -0.08308842033147812, -0.0006404370069503784, 0.057534679770469666, 0.12031660228967667, 0.002495679771527648, 0.09747054427862167, -0.18950174748897552, 0.17325757443904877, 0.040858861058950424, 0.08904380351305008, -0.07153438776731491, 0.061344798654317856, 0.00612602150067687, 0.09113655239343643, 0.11164292693138123, -0.009984759613871574, -0.07041877508163452, -0.14984634518623352, -0.12375933676958084, 0.007456915453076363, 0.10453381389379501, -0.05822954699397087, 0.07382989674806595, -0.04574514552950859, 0.008708604611456394, 0.019750863313674927, -0.08900225907564163, -0.1550290435552597, -0.13128837943077087, 0.05351436510682106, 0.03177546337246895, 0.005858875811100006, -0.08812420815229416, -0.10439545661211014, -0.016308069229125977, 0.1834932416677475, -0.003507851390168071, -0.09138178825378418, -0.1501014530658722, 0.061568863689899445, 0.11970458924770355, -0.09242487698793411, 0.02949764020740986, -0.01437111385166645, 0.15661777555942535, 0.031252145767211914, -0.08498222380876541, 0.06011096388101578, -0.0685616284608841, -0.18287613987922668, -0.01923934929072857, 0.12997032701969147, 0.01031896285712719, 0.03012818470597267, 0.0039051510393619537, 0.029791422188282013, -0.00037742379936389625, -0.07834269106388092, 0.011135113425552845, 0.03259708359837532, 0.08997871726751328, 0.029633767902851105, -0.025407500565052032, 0.0387764535844326, -0.0642942413687706, -0.01131468452513218, 0.11117537319660187, 0.22191715240478516, -0.06422808021306992, 0.057179853320121765, 0.07835758477449417, -0.06929146498441696, -0.15532039105892181, 0.001759059727191925, 0.11351218074560165, 0.0030405696015805006, 0.059202950447797775, -0.17163290083408356, 0.08295437693595886, 0.08914469927549362, -0.04355810955166817, 0.07010027021169662, -0.2833786606788635, -0.13413548469543457, 0.07201133668422699, 0.11270689219236374, 0.027837606146931648, -0.15510860085487366, -0.077059805393219, -0.029056647792458534, -0.08014117926359177, 0.07620515674352646, -0.043667249381542206, 0.10964270681142807, -0.036508772522211075, 0.051126543432474136, 0.021519893780350685, -0.023961158469319344, 0.16225312650203705, 0.021450893953442574, 0.06672679632902145, -0.06733950972557068, 0.0683358907699585, 0.12864799797534943, -0.08065897226333618, 0.09852063655853271, -0.07136093080043793, 0.07900647819042206, -0.15715815126895905, -0.016051186248660088, -0.03736165538430214, 0.06910659372806549, -0.0482553169131279, -0.045836806297302246, -0.03753999248147011, 0.020410161465406418, 0.039192646741867065, -0.033341389149427414, 0.15754778683185577, 0.06469383835792542, 0.062433697283267975, 0.17861592769622803, 0.07296419888734818, 0.007021766155958176, -0.16294783353805542, -0.02730420045554638, -0.022291274741292, 0.06740408390760422, -0.12161292135715485, 0.023966316133737564, 0.09012332558631897, 0.02428928017616272, 0.11706787347793579, 0.00973533932119608, -0.08566340804100037, 0.005336557514965534, 0.027502840384840965, -0.10281360894441605, -0.16954168677330017, -0.05218364670872688, 0.02092025987803936, -0.14859993755817413, 0.04952002689242363, 0.13809257745742798, -0.05058552697300911, -0.027496693655848503, -0.0122013408690691, 0.01662437804043293, 0.008569211699068546, 0.16363222897052765, 0.051410891115665436, 0.07444652169942856, -0.08113986998796463, 0.12912172079086304, 0.08717900514602661, -0.05263754352927208, 0.06566295772790909, 0.04797148331999779, -0.08841989189386368, -0.02750251814723015, 0.041434213519096375, 0.11255622655153275, -0.03144817799329758, -0.058992188423871994, -0.08346959948539734, -0.05758846178650856, 0.04424617066979408, 0.047957643866539, 0.06295764446258545, -0.00270664575509727, -0.025800589472055435, -0.0031692837364971638, -0.11782404035329819, 0.11563479155302048, 0.02939961850643158, 0.0874054878950119, -0.19833333790302277, 0.0024231900461018085, 0.023305723443627357, 0.05916047468781471, -0.01608986407518387, -0.005290187895298004, -0.06464402377605438, -0.04283307492733002, -0.1020725816488266, 0.02049458585679531, -0.03899380564689636, 0.007890412583947182, -0.026163434609770775, -0.062115028500556946, -0.04102971404790878, 0.07480400055646896, -0.04610126465559006, -0.08748842030763626, 0.015244167298078537, 0.05756082013249397, -0.13418656587600708, -0.016557924449443817, 0.02061544358730316, -0.10720169544219971, 0.10042260587215424, 0.04920654371380806, 0.0198708176612854, -0.006528431549668312, 0.013767723925411701, 0.03470485657453537, 0.04650598391890526, 0.024058513343334198, 0.03989871218800545, -0.11229786276817322, -0.008296268992125988, -0.01866886205971241, 0.007724706549197435, 0.004031017422676086, 0.09049376845359802, -0.14284831285476685, -0.05243413522839546, -0.04820764809846878, -0.018417159095406532, -0.06331826001405716, 0.0526035875082016, 0.10263032466173172, 0.00477117532864213, 0.16800372302532196, -0.055694133043289185, 0.023374218493700027, -0.20083005726337433, -0.008807336911559105, -0.0008191704982891679, -0.07106029242277145, -0.04930165782570839, -0.023510171100497246, 0.06060890853404999, -0.05480560287833214, 0.11035404354333878, -0.022163618355989456, 0.10511035472154617, 0.045201756060123444, 0.010106591507792473, -0.011193721555173397, -0.0042022340930998325, 0.16358034312725067, 0.05854787677526474, 0.00630375649780035, 0.10994698852300644, -0.021606849506497383, 0.07216133177280426, -0.002199627924710512, 0.07542958110570908, 0.11954183131456375, -0.042892422527074814, 0.0748894214630127, 0.06559624522924423, -0.06183965876698494, -0.2015063762664795, 0.05103886127471924, -0.013153265230357647, 0.1201116293668747, -0.010520926676690578, 0.08237462490797043, 0.1307227462530136, -0.14486292004585266, 0.03343018889427185, -0.02478225715458393, -0.09444375336170197, -0.09958220273256302, -0.10237015038728714, -0.0920121893286705, -0.1262165904045105, 0.010908728465437889, -0.12278817594051361, 0.012939904816448689, 0.06488658487796783, -0.015873709693551064, -0.009173772297799587, 0.15863394737243652, -0.010769953019917011, -0.010994868353009224, 0.04916778579354286, -0.002512244740501046, -0.017519017681479454, -0.01163016352802515, -0.060198478400707245, 0.047682903707027435, 0.039998847991228104, 0.0787309855222702, -0.024361468851566315, 0.023447033017873764, 0.049242231994867325, -0.03217066451907158, -0.09813938289880753, 0.011429591104388237, 0.03768729791045189, -0.0006345890578813851, 0.03802105784416199, 0.03222557529807091, -0.005386580713093281, -0.037197861820459366, 0.23877212405204773, -0.05088294669985771, -0.04053150862455368, -0.11142825335264206, 0.14584936201572418, 0.04233388230204582, -0.028319215402007103, 0.07752584666013718, -0.09847929328680038, -0.005329925566911697, 0.11628031730651855, 0.12037593126296997, -0.012935838662087917, -0.016707483679056168, -0.017286211252212524, -0.022839177399873734, -0.0335194431245327, 0.08869262039661407, 0.09513751417398453, -0.014274129644036293, -0.04810463264584541, 0.013461786322295666, -0.012049440294504166, -0.029440902173519135, -0.09915146976709366, 0.0704713761806488, -0.0061806077137589455, 0.01426703017205, -0.02154109813272953, 0.06026076525449753, 0.020590465515851974, -0.13967736065387726, 0.02475547231733799, -0.13827383518218994, -0.16845138370990753, -0.009838515892624855, 0.06582682579755783, -0.004418059717863798, 0.04355186969041824, 0.02409336157143116, -0.00015395980153698474, 0.10712900012731552, -0.014608857221901417, -0.08544785529375076, -0.07344061881303787, 0.08156760782003403, -0.10703182220458984, 0.21016012132167816, -0.000844078604131937, 0.07740569114685059, 0.10903815180063248, -0.011059315875172615, -0.16569416224956512, 0.03485575318336487, 0.060052815824747086, -0.012609601952135563, 0.05011671036481857, 0.15271979570388794, -0.0207591000944376, 0.054912373423576355, 0.04117027670145035, -0.11582036316394806, -0.07342662662267685, -0.03522340580821037, 0.022057458758354187, -0.072943314909935, -0.007832564413547516, -0.06588481366634369, 0.1564721316099167, 0.16055093705654144, -0.059712741523981094, -0.022785170003771782, -0.0484941303730011, 0.03548677638173103, 0.06764659285545349, 0.04337954521179199, 0.000995385809801519, -0.21216031908988953, 0.006731064524501562, 0.041202373802661896, 0.0346040353178978, -0.22039249539375305, -0.10922595858573914, 0.03587924316525459, -0.05300119146704674, -0.07232590764760971, 0.09042919427156448, 0.04212234169244766, 0.0015074866823852062, -0.04277965426445007, -0.07070953398942947, -0.07316642999649048, 0.12594173848628998, -0.16505591571331024, -0.05219319462776184 ]
null
null
diffusers
# SDXL LoRA DreamBooth - litvan/SDXL_finetuned_for_russian_churches <Gallery /> ## Model description These are litvan/SDXL_finetuned_for_russian_churches LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The main purpose of the model: Generate Orthodox churches in different cultural and architectural codes of countries The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. Dataset for finetuning: litvan/russian_churches_with_blip_captioning For training were used: 3 GPU A100(80Gb) ## Trigger words You should use Orthodox church to trigger the image generation. ## Download model You can do this using the following lines of code: ``` from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").cuda() pipeline.load_lora_weights("litvan/SDXL_finetuned_for_russian_churches") ``` ### For using refiner ``` refiner = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-refiner-1.0", text_encoder_2=pipeline.text_encoder_2, vae=pipeline.vae, torch_dtype=torch.float32, use_safetensors=True, ).cuda() ```
{"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "widget": [{"text": "Orthodox church in the style of African buildings of the 6th century", "output": {"url": "image_0.png"}}, {"text": "Orthodox church in the style of African buildings of the 6th century", "output": {"url": "image_1.png"}}, {"text": "Orthodox church in the style of African buildings of the 6th century", "output": {"url": "image_2.png"}}, {"text": "Orthodox church in the style of African buildings of the 6th century", "output": {"url": "image_3.png"}}], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Orthodox church"}
text-to-image
litvan/SDXL_finetuned_for_russian_churches
[ "diffusers", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "lora", "template:sd-lora", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
2024-02-06T13:47:35+00:00
[]
[]
TAGS #diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - litvan/SDXL_finetuned_for_russian_churches <Gallery /> ## Model description These are litvan/SDXL_finetuned_for_russian_churches LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The main purpose of the model: Generate Orthodox churches in different cultural and architectural codes of countries The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. Dataset for finetuning: litvan/russian_churches_with_blip_captioning For training were used: 3 GPU A100(80Gb) ## Trigger words You should use Orthodox church to trigger the image generation. ## Download model You can do this using the following lines of code: ### For using refiner
[ "# SDXL LoRA DreamBooth - litvan/SDXL_finetuned_for_russian_churches\n\n<Gallery />", "## Model description\n\nThese are litvan/SDXL_finetuned_for_russian_churches LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe main purpose of the model: Generate Orthodox churches in different cultural and architectural codes of countries\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.\n\nDataset for finetuning: litvan/russian_churches_with_blip_captioning\n\nFor training were used: 3 GPU A100(80Gb)", "## Trigger words\n\nYou should use Orthodox church to trigger the image generation.", "## Download model\n\nYou can do this using the following lines of code:", "### For using refiner" ]
[ "TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - litvan/SDXL_finetuned_for_russian_churches\n\n<Gallery />", "## Model description\n\nThese are litvan/SDXL_finetuned_for_russian_churches LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe main purpose of the model: Generate Orthodox churches in different cultural and architectural codes of countries\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.\n\nDataset for finetuning: litvan/russian_churches_with_blip_captioning\n\nFor training were used: 3 GPU A100(80Gb)", "## Trigger words\n\nYou should use Orthodox church to trigger the image generation.", "## Download model\n\nYou can do this using the following lines of code:", "### For using refiner" ]
[ 78, 32, 160, 17, 14, 6 ]
[ "passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - litvan/SDXL_finetuned_for_russian_churches\n\n<Gallery />## Model description\n\nThese are litvan/SDXL_finetuned_for_russian_churches LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe main purpose of the model: Generate Orthodox churches in different cultural and architectural codes of countries\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.\n\nDataset for finetuning: litvan/russian_churches_with_blip_captioning\n\nFor training were used: 3 GPU A100(80Gb)## Trigger words\n\nYou should use Orthodox church to trigger the image generation.## Download model\n\nYou can do this using the following lines of code:### For using refiner" ]
[ -0.08785629272460938, 0.18828079104423523, -0.005983823910355568, 0.07682296633720398, 0.13488997519016266, 0.06980466842651367, 0.18265891075134277, 0.05439954623579979, 0.12289465218782425, 0.08974909037351608, 0.01421453058719635, 0.03125305473804474, 0.08012230694293976, 0.11992625892162323, -0.00015152986452449113, -0.17092719674110413, -0.018456095829606056, -0.03757026419043541, -0.10231327265501022, 0.02189265377819538, 0.04323090612888336, -0.06115476414561272, 0.07765746861696243, -0.07422075420618057, -0.11204647272825241, 0.08075136691331863, -0.020463136956095695, 0.03369750455021858, 0.002530904719606042, 0.10033717751502991, 0.016549818217754364, 0.01586776226758957, 0.02187267877161503, -0.18750692903995514, 0.01043740939348936, 0.049070149660110474, -0.0772252231836319, -0.020556919276714325, 0.09177906811237335, -0.07324247062206268, 0.11533667892217636, -0.11050407588481903, -0.02505791187286377, 0.06325553357601166, -0.07447686791419983, -0.1280631124973297, -0.09450004249811172, 0.05530671030282974, 0.035327550023794174, 0.09789006412029266, -0.023132704198360443, -0.018039941787719727, 0.01889410987496376, 0.10806414484977722, 0.11184606701135635, -0.14200568199157715, -0.06849715858697891, 0.22356151044368744, 0.009841772727668285, 0.1763322949409485, -0.04194410890340805, 0.080598384141922, 0.034158412367105484, 0.0071255420334637165, 0.025879357010126114, -0.0374513678252697, 0.017498282715678215, -0.06248563528060913, -0.11723385006189346, -0.07982200384140015, 0.23132501542568207, -0.018359802663326263, 0.015412380918860435, -0.12609238922595978, -0.027676811441779137, 0.06836573779582977, -0.011939105577766895, -0.03089616633951664, -0.00002242401023977436, 0.015665872022509575, 0.08571165055036545, -0.16618728637695312, -0.060673151165246964, -0.05981452763080597, 0.062443189322948456, 0.16330963373184204, 0.02394893765449524, -0.008961019106209278, 0.027299316599965096, 0.1348702609539032, -0.06167615205049515, -0.14827601611614227, -0.03296518325805664, -0.02735019102692604, -0.05106554552912712, 0.01769600808620453, -0.03243175894021988, -0.021727295592427254, -0.014983948320150375, 0.1374358981847763, 0.01297746878117323, 0.055142126977443695, -0.017483800649642944, 0.00024109697551466525, -0.020344804972410202, 0.09415087103843689, 0.016327964141964912, -0.046873174607753754, 0.005255897995084524, 0.03995606303215027, -0.0016298072878271341, 0.012025374919176102, -0.09076042473316193, -0.13945819437503815, -0.09069536626338959, 0.1232808530330658, -0.003783557331189513, 0.0013994050677865744, -0.03985477611422539, -0.06137792393565178, 0.13494014739990234, -0.130394846200943, 0.0531817190349102, -0.018526708707213402, 0.0154273621737957, 0.053835827857255936, 0.08056796342134476, -0.06570687144994736, -0.08731603622436523, 0.012498216703534126, 0.022569473832845688, 0.00981483981013298, -0.0841355100274086, -0.08068501949310303, 0.01183333620429039, -0.1663481742143631, -0.030691683292388916, -0.05078672617673874, -0.17806820571422577, -0.08047022670507431, 0.0325215682387352, -0.055913448333740234, -0.002371045993641019, -0.05797860771417618, -0.07587751746177673, -0.028326114639639854, 0.04138626530766487, -0.002435272792354226, 0.0094741340726614, 0.054061297327280045, -0.033501315861940384, 0.054529014974832535, 0.028071565553545952, 0.04132009297609329, -0.017572185024619102, 0.0022415451239794493, -0.11234427243471146, 0.20804700255393982, -0.12851478159427643, 0.022769497707486153, -0.023752903565764427, 0.001278743613511324, -0.04133109003305435, 0.022489050403237343, 0.04363203048706055, 0.13382524251937866, -0.21776354312896729, -0.06676239520311356, 0.17889940738677979, -0.14162904024124146, -0.04511367157101631, 0.0389513298869133, 0.010915125720202923, 0.05948636308312416, 0.08375758677721024, 0.09938517957925797, 0.22640742361545563, -0.1523691713809967, -0.08087106049060822, -0.029932808130979538, -0.038424741476774216, -0.002863431815057993, 0.0013572510797530413, 0.018003327772021294, 0.10022909194231033, 0.06030033528804779, -0.08554872125387192, 0.04380817711353302, -0.004964572377502918, -0.03820840269327164, -0.042676281183958054, -0.047096461057662964, -0.06503245234489441, -0.00006298692460404709, -0.038894474506378174, 0.011396736837923527, -0.037310488522052765, 0.05182913318276405, 0.09931273013353348, -0.0791139304637909, 0.026506155729293823, -0.017890339717268944, 0.05806080251932144, -0.05757943168282509, 0.04967658221721649, -0.11449263989925385, -0.13509753346443176, 0.05516656115651131, 0.049062248319387436, 0.10017968714237213, -0.06060323491692543, 0.09417420625686646, 0.015481604263186455, -0.0705791786313057, -0.060580696910619736, -0.0004867104871664196, -0.08358345180749893, -0.046325474977493286, -0.07125584781169891, -0.07630353420972824, -0.030708063393831253, 0.09348447620868683, -0.20171059668064117, 0.08718718588352203, 0.12170296907424927, 0.13808196783065796, 0.009894064627587795, -0.03827763348817825, 0.0061028762720525265, -0.01921115443110466, -0.011134982109069824, -0.09312324225902557, -0.022330082952976227, -0.020633285865187645, -0.032973963767290115, 0.060550231486558914, -0.13457003235816956, -0.049983516335487366, 0.0944201648235321, 0.06434085965156555, -0.01391442958265543, -0.05107525736093521, 0.0016807304928079247, -0.004988139495253563, -0.007571198511868715, -0.034711845219135284, 0.0460985004901886, 0.03444460779428482, 0.024397946894168854, -0.04262522608041763, -0.04653303697705269, 0.014895271509885788, -0.004347573965787888, -0.1082158088684082, 0.09200254827737808, -0.0010209574829787016, -0.009983067400753498, 0.11171644181013107, 0.058484598994255066, -0.029599612578749657, 0.17573635280132294, 0.009307700209319592, -0.06580816954374313, -0.005559200886636972, 0.04311535507440567, 0.032378293573856354, 0.047272033989429474, 0.04526457190513611, 0.04850396513938904, 0.03163030743598938, -0.042022477835416794, 0.023913968354463577, -0.09161332994699478, 0.007585437037050724, 0.043978918343782425, -0.11550727486610413, 0.092560775578022, 0.06665340065956116, -0.02502223290503025, 0.038538794964551926, -0.11221306025981903, 0.12442173808813095, 0.02223675139248371, -0.030930638313293457, -0.06744443625211716, 0.06207828223705292, -0.10472720861434937, -0.1760943979024887, -0.19861629605293274, 0.013905269093811512, -0.06299669295549393, 0.018222765997052193, 0.03983128443360329, -0.1074608787894249, -0.05960160866379738, -0.05980787053704262, 0.038550782948732376, -0.023123284801840782, -0.05520397052168846, -0.11910853534936905, -0.018398791551589966, 0.014693964272737503, -0.09752295911312103, 0.004037505481392145, 0.0071470788680016994, -0.12227202951908112, 0.07000193744897842, -0.007027304731309414, 0.08183123171329498, 0.030200866982340813, 0.0289778970181942, 0.06757251918315887, -0.006591787561774254, 0.1742544323205948, -0.10985660552978516, 0.09922939538955688, 0.21405692398548126, 0.0714246854186058, 0.10857345908880234, 0.13715556263923645, 0.00026096246438100934, -0.11107275635004044, 0.016787990927696228, 0.07354012131690979, -0.0764971524477005, -0.23482444882392883, -0.09127861261367798, -0.10712645947933197, -0.11296900361776352, 0.05707686394453049, 0.08732161670923233, 0.03526470810174942, 0.09635297954082489, -0.10390539467334747, -0.005894498899579048, 0.0660773292183876, 0.09159812331199646, 0.16927418112754822, 0.02443743497133255, 0.034246377646923065, -0.06965625286102295, 0.04317200183868408, 0.11696197092533112, 0.006523109506815672, 0.18859264254570007, -0.0866905227303505, 0.08838701993227005, 0.032355982810258865, 0.08905226737260818, 0.016894852742552757, 0.010073155164718628, 0.0008250512764789164, 0.03941207379102707, 0.019964106380939484, -0.10523045063018799, 0.016808168962597847, 0.0758938118815422, 0.008995465002954006, -0.07990982383489609, 0.016553664579987526, -0.0009122785995714366, 0.030965914949774742, 0.16042271256446838, -0.04612887650728226, -0.2507306933403015, -0.0285843163728714, 0.04127401113510132, 0.09036119282245636, -0.11413393914699554, -0.06960929185152054, 0.15351757407188416, -0.07731273770332336, 0.12100259959697723, -0.014550036750733852, 0.09113351255655289, 0.03941784426569939, -0.06947271525859833, 0.05116932466626167, 0.15042348206043243, -0.03160644322633743, 0.09310489892959595, -0.28079554438591003, 0.015027492307126522, 0.03229876980185509, 0.07221102714538574, -0.03643961250782013, 0.06263644248247147, 0.04273832216858864, 0.07232111692428589, 0.09493432193994522, 0.021711688488721848, 0.06704819947481155, -0.09610248357057571, -0.019670717418193817, -0.013406580314040184, 0.08008379489183426, -0.11740066111087799, 0.03804761916399002, 0.024513093754649162, -0.02866492047905922, -0.045635584741830826, -0.10850037634372711, -0.13420763611793518, -0.1788065880537033, 0.03415868058800697, 0.09140997380018234, 0.03564887121319771, -0.02975175902247429, -0.05224880576133728, -0.09817951917648315, 0.12741810083389282, -0.01371160801500082, -0.11975029110908508, -0.1348000168800354, -0.014424866065382957, 0.15020537376403809, -0.09816617518663406, 0.05754374712705612, 0.014749519526958466, 0.11822490394115448, -0.11550761014223099, -0.06149206683039665, 0.006870776880532503, -0.05661579221487045, -0.10325482487678528, 0.03488617390394211, 0.20212459564208984, 0.046052105724811554, -0.0030956310220062733, -0.03075079806149006, 0.014147319830954075, 0.043451469391584396, -0.07556893676519394, 0.029355213046073914, 0.2052426040172577, -0.015845604240894318, 0.1162421852350235, -0.03236580640077591, -0.13309988379478455, -0.08127804100513458, 0.020270898938179016, -0.008564234711229801, 0.2797517478466034, -0.058299470692873, 0.05007562413811684, 0.015700563788414, -0.10820275545120239, -0.1551470011472702, 0.014174217358231544, 0.046769432723522186, 0.06601504981517792, 0.04241590201854706, -0.2369735836982727, 0.07551699876785278, 0.0037186259869486094, 0.0005988818011246622, 0.13111120462417603, -0.20046845078468323, -0.12366387993097305, -0.008012311533093452, 0.08690998703241348, -0.05850062519311905, -0.07120297849178314, -0.059806689620018005, -0.03800144046545029, -0.07976016402244568, 0.08129327744245529, 0.02248990349471569, 0.058270882815122604, 0.023599645122885704, 0.024680450558662415, 0.053726810961961746, -0.020613932982087135, 0.12640732526779175, 0.053716372698545456, 0.09357581287622452, -0.060363348573446274, 0.024837763980031013, 0.11016672849655151, -0.06987940520048141, 0.05078843608498573, -0.1316121518611908, 0.02197900414466858, -0.08494390547275543, -0.06339149177074432, 0.010005606338381767, 0.08073866367340088, -0.04936462640762329, -0.01651761308312416, -0.035785190761089325, 0.03448082506656647, 0.0786580815911293, 0.02228006348013878, -0.1308733969926834, -0.07671761512756348, -0.14407144486904144, 0.15727511048316956, 0.09311734884977341, 0.0661444216966629, -0.01586770825088024, -0.047848962247371674, 0.02447137050330639, 0.08223138749599457, -0.013327972032129765, 0.057405050843954086, 0.11004609614610672, 0.0025397094432264566, 0.1028093546628952, -0.003651845268905163, -0.08179813623428345, -0.005467012524604797, 0.011905787512660027, -0.0847092941403389, -0.15182626247406006, -0.06417609751224518, -0.1524745523929596, -0.04049818962812424, -0.03351948410272598, 0.10212317854166031, 0.009937449358403683, 0.004411288537085056, -0.006630687974393368, -0.000465592835098505, 0.005279089789837599, 0.10057749599218369, -0.0398554652929306, -0.018611164763569832, -0.07611683756113052, 0.067097969353199, 0.04209179803729057, -0.09055688232183456, 0.01866886578500271, 0.13079363107681274, -0.07726578414440155, -0.057790227234363556, -0.01577388308942318, 0.04572870209813118, -0.04046883434057236, 0.0014868940925225616, 0.024075038731098175, -0.07203119248151779, 0.04150775447487831, 0.05537043884396553, 0.052028339356184006, -0.0462358184158802, -0.04134901240468025, 0.01093691773712635, -0.0898786336183548, 0.10544013231992722, 0.10735964775085449, 0.044961653649806976, -0.1764194667339325, 0.02764119580388069, 0.01540552731603384, -0.04181529954075813, -0.02670019306242466, -0.05777754634618759, -0.02025383524596691, 0.012365265749394894, 0.05823869630694389, 0.06603449583053589, -0.05679379031062126, 0.017331693321466446, -0.05123303458094597, -0.05998287349939346, 0.001151464181020856, 0.05579281598329544, -0.07556114345788956, -0.06714334338903427, -0.020962761715054512, 0.11259783059358597, -0.1261269748210907, -0.07574062794446945, 0.03059310093522072, -0.08466124534606934, 0.09019491821527481, 0.06864295154809952, -0.030264412984251976, 0.002363634994253516, -0.16494332253932953, -0.02496287040412426, 0.057878293097019196, 0.07914689183235168, -0.03511684760451317, 0.05083131790161133, 0.021191522479057312, -0.005385075230151415, -0.03518768027424812, -0.01799241080880165, -0.03097427263855934, -0.09368953853845596, 0.05599651858210564, -0.04426001384854317, -0.044791389256715775, -0.021579403430223465, 0.12896943092346191, 0.08208524435758591, 0.09697231650352478, 0.0771176815032959, -0.07923920452594757, 0.045142028480768204, -0.16716355085372925, -0.002410734770819545, 0.02263631857931614, -0.03852458298206329, -0.06232708320021629, -0.08805441856384277, 0.07658185064792633, 0.023159993812441826, 0.08272060751914978, 0.025576116517186165, -0.07927699387073517, -0.04685976728796959, 0.02199167013168335, 0.05110930651426315, -0.022162850946187973, 0.15708117187023163, 0.028645018115639687, 0.029889419674873352, 0.051449064165353775, -0.00499341357499361, 0.001730840071104467, 0.04842442646622658, 0.057836782187223434, 0.1249256432056427, 0.013407944701611996, 0.04695592075586319, 0.06008908525109291, -0.05520220473408699, -0.011841579340398312, 0.04327990487217903, -0.07597214728593826, 0.02917167916893959, -0.10221168398857117, 0.0831218883395195, 0.08230274170637131, -0.17399901151657104, 0.08053716272115707, 0.12676389515399933, -0.051058392971754074, -0.06410089880228043, -0.268777072429657, -0.04119030758738518, -0.07758171856403351, 0.03858555480837822, -0.06290540844202042, 0.09518424421548843, 0.02841668576002121, 0.01415499672293663, -0.006335470825433731, 0.13152047991752625, -0.061202917248010635, -0.04931291192770004, 0.03201865032315254, -0.03778935223817825, 0.030736654996871948, -0.006650550756603479, -0.03799521178007126, 0.08773687481880188, 0.011695624329149723, 0.0036088693886995316, 0.03765588998794556, 0.0776548981666565, 0.012797853909432888, -0.05681939050555229, -0.04329072684049606, -0.029677821323275566, 0.06193339452147484, 0.004412295762449503, 0.08769992738962173, 0.06405559182167053, -0.029036767780780792, -0.0470728725194931, 0.1053754910826683, -0.015910524874925613, -0.06895845383405685, -0.03628392145037651, 0.02258067950606346, 0.014750792644917965, 0.016638370230793953, 0.0019612170290201902, -0.07188574224710464, 0.02325144037604332, 0.07846496254205704, 0.15693752467632294, 0.000019895858713425696, 0.020679987967014313, 0.0031660329550504684, 0.009353932924568653, 0.0005126422038301826, 0.03813725337386131, -0.029273100197315216, 0.1234561949968338, -0.037559449672698975, 0.07444905489683151, -0.0556219257414341, -0.07172076404094696, -0.0003580391057766974, 0.011478523723781109, -0.09270520508289337, -0.0720997303724289, 0.053447406738996506, 0.06104032322764397, -0.013839377090334892, -0.05156493932008743, 0.13454993069171906, -0.029915612190961838, -0.0369933545589447, -0.027975069358944893, -0.04513087123632431, 0.05928512290120125, -0.00445215031504631, -0.06490568816661835, -0.036789149045944214, 0.17725616693496704, -0.008612251840531826, -0.09884621948003769, -0.08145012706518173, 0.031958527863025665, -0.18059436976909637, 0.18876248598098755, -0.027823682874441147, 0.06635116040706635, 0.04595324024558067, 0.025368787348270416, -0.08417323231697083, 0.022452576085925102, 0.0104892048984766, -0.07240807265043259, 0.018865954130887985, 0.0966341644525528, -0.05985734239220619, 0.09506648778915405, 0.043876972049474716, -0.0997721403837204, 0.03308408334851265, 0.027110617607831955, -0.019808998331427574, -0.06416372209787369, 0.022258667275309563, -0.11653286963701248, 0.06602896004915237, 0.1706806719303131, 0.023445645347237587, -0.017858989536762238, -0.04654429852962494, 0.012544614262878895, 0.06753864139318466, 0.14357997477054596, 0.03158283978700638, -0.06197689473628998, -0.021896442398428917, 0.019107330590486526, 0.029120204970240593, -0.04727882891893387, -0.07565697282552719, -0.09638823568820953, -0.011496291495859623, -0.042817749083042145, 0.09899882972240448, 0.10417255759239197, 0.040636155754327774, 0.011441485024988651, -0.17896977066993713, -0.0033412466291338205, 0.11759134382009506, -0.12588895857334137, 0.020053129643201828 ]
null
null
ml-agents
# **ppo** Agent playing **Pyramids** This is a trained model of a **ppo** agent playing **Pyramids** using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents). ## Usage (with ML-Agents) The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/ We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction - A *longer tutorial* to understand how works ML-Agents: https://huggingface.co/learn/deep-rl-course/unit5/introduction ### Resume the training ```bash mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume ``` ### Watch your Agent play You can watch your agent **playing directly in your browser** 1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity 2. Step 1: Find your model_id: thisiswooyeol/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play 👀
{"library_name": "ml-agents", "tags": ["Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids"]}
reinforcement-learning
thisiswooyeol/ppo-Pyramids
[ "ml-agents", "tensorboard", "onnx", "Pyramids", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Pyramids", "region:us" ]
2024-02-06T13:48:54+00:00
[]
[]
TAGS #ml-agents #tensorboard #onnx #Pyramids #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Pyramids #region-us
# ppo Agent playing Pyramids This is a trained model of a ppo agent playing Pyramids using the Unity ML-Agents Library. ## Usage (with ML-Agents) The Documentation: URL We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub: - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your browser: URL - A *longer tutorial* to understand how works ML-Agents: URL ### Resume the training ### Watch your Agent play You can watch your agent playing directly in your browser 1. If the environment is part of ML-Agents official environments, go to URL 2. Step 1: Find your model_id: thisiswooyeol/ppo-Pyramids 3. Step 2: Select your *.nn /*.onnx file 4. Click on Watch the agent play
[ "# ppo Agent playing Pyramids\n This is a trained model of a ppo agent playing Pyramids\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: thisiswooyeol/ppo-Pyramids\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ "TAGS\n#ml-agents #tensorboard #onnx #Pyramids #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Pyramids #region-us \n", "# ppo Agent playing Pyramids\n This is a trained model of a ppo agent playing Pyramids\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: thisiswooyeol/ppo-Pyramids\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ 48, 206 ]
[ "passage: TAGS\n#ml-agents #tensorboard #onnx #Pyramids #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Pyramids #region-us \n# ppo Agent playing Pyramids\n This is a trained model of a ppo agent playing Pyramids\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: thisiswooyeol/ppo-Pyramids\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play" ]
[ -0.012155571952462196, 0.05351940542459488, -0.0036686542443931103, 0.054667167365550995, 0.1665465384721756, -0.03547290712594986, 0.1671762317419052, 0.13160721957683563, 0.20279981195926666, 0.0902945026755333, 0.008963804692029953, 0.09233493357896805, 0.0734906941652298, 0.1310586929321289, 0.09608694165945053, -0.18262635171413422, -0.03673339635133743, -0.05271533131599426, 0.07949640601873398, 0.09101564437150955, 0.04291701316833496, -0.08768714964389801, 0.06914953142404556, 0.04451126232743263, -0.017782533541321754, -0.005848008673638105, -0.11200519651174545, -0.02848471701145172, 0.0334511436522007, -0.03655245155096054, -0.013872587122023106, -0.035046059638261795, 0.07733023911714554, -0.16652101278305054, 0.025385595858097076, 0.08874864131212234, -0.004974996671080589, -0.0007350329542532563, 0.1537441909313202, -0.006944539025425911, 0.0549139678478241, -0.08027854561805725, 0.033213939517736435, 0.05328632891178131, -0.0661608949303627, -0.013135255314409733, -0.10801877826452255, 0.07090584188699722, 0.20617730915546417, 0.15295545756816864, 0.002042825799435377, 0.12847889959812164, -0.010548719204962254, 0.041744787245988846, 0.19490644335746765, -0.2556562125682831, -0.06452301889657974, 0.0975121408700943, -0.0023723698686808348, 0.012272271327674389, -0.018644968047738075, 0.04095505177974701, -0.04730996489524841, 0.02568136900663376, 0.0038229518104344606, -0.028755901381373405, 0.21710549294948578, -0.02517315372824669, -0.08829966187477112, -0.0736420601606369, 0.07870059460401535, 0.05916986241936684, -0.02727113477885723, -0.17160339653491974, -0.008532704785466194, 0.12444392591714859, -0.01990385353565216, 0.04476994648575783, 0.06396988034248352, -0.0013983758399263024, 0.0061606792733073235, -0.11389157176017761, -0.043471693992614746, -0.047229643911123276, 0.028629986569285393, 0.1371781975030899, 0.004292503464967012, -0.026659298688173294, 0.07171133905649185, 0.05213768035173416, 0.08265897631645203, -0.06432487070560455, -0.03291282802820206, 0.0033944861497730017, -0.13119228184223175, -0.04400552064180374, 0.019622590392827988, -0.03222304955124855, 0.03698018565773964, 0.04023773968219757, 0.07737542688846588, 0.01883772574365139, 0.008457386866211891, 0.06529621034860611, 0.02468370459973812, 0.13072505593299866, -0.00019901181804016232, 0.04553387314081192, 0.018509933724999428, 0.06798811256885529, 0.02493259869515896, -0.05609450116753578, -0.0638788565993309, 0.07751721888780594, -0.08784003555774689, 0.09244644641876221, 0.14614224433898926, 0.0038320606108754873, -0.031386468559503555, -0.05580626428127289, -0.0305966604501009, -0.14980633556842804, 0.06893617659807205, 0.04996468499302864, -0.03174955025315285, -0.026003360748291016, -0.012996665202081203, 0.009198718704283237, -0.1114286333322525, 0.016857897862792015, -0.02231086790561676, 0.08197837322950363, -0.02374649979174137, -0.02254823036491871, 0.051816172897815704, -0.04638710245490074, -0.027147814631462097, -0.1719561666250229, -0.1977185606956482, -0.08173083513975143, 0.03323587402701378, -0.060614440590143204, -0.06405644863843918, -0.045117780566215515, 0.029719864949584007, -0.09426812082529068, 0.006595282815396786, -0.026300400495529175, -0.06719768792390823, -0.002650336129590869, -0.06135032698512077, 0.05105108395218849, 0.2041407823562622, 0.04464595392346382, -0.04547594487667084, 0.05453212186694145, -0.1509871631860733, 0.13089872896671295, -0.11242452263832092, 0.19029252231121063, -0.10072991997003555, 0.03512609750032425, 0.04587424546480179, 0.01858106441795826, 0.015854746103286743, 0.1707758605480194, -0.11194200068712234, -0.08713283389806747, 0.10046522319316864, -0.0354120209813118, -0.15479181706905365, 0.04042358696460724, 0.029044242575764656, 0.10487489402294159, 0.05888703092932701, 0.22677180171012878, 0.1296665370464325, -0.2093942016363144, 0.02180660329759121, -0.0059601725079119205, -0.06682830303907394, -0.010010438971221447, 0.1121542751789093, -0.11585664749145508, -0.018627071753144264, -0.023099452257156372, -0.1829315423965454, 0.07430794090032578, -0.027202358469367027, -0.04214610159397125, 0.04418035224080086, -0.052724454551935196, -0.0548185333609581, 0.021180687472224236, 0.05305027961730957, -0.0019847366493195295, -0.0669221580028534, -0.09022632986307144, 0.08000341802835464, -0.029021821916103363, 0.04735296219587326, -0.04420856386423111, 0.1753774732351303, -0.016047053039073944, 0.05025981739163399, -0.13897815346717834, -0.06880947947502136, 0.010573042556643486, 0.032688289880752563, 0.07713492959737778, -0.12877027690410614, 0.07197288423776627, 0.0713634118437767, 0.060786496847867966, -0.08289183676242828, -0.06550003588199615, 0.003474158700555563, -0.09515206515789032, -0.09652984142303467, -0.05649399757385254, -0.049907878041267395, 0.04680725932121277, -0.04873466491699219, 0.04527648910880089, -0.11646436899900436, 0.1081627681851387, -0.004034887067973614, -0.04698348045349121, 0.03955097123980522, 0.030382126569747925, 0.02934405207633972, -0.07964884489774704, 0.08882590383291245, 0.015131611377000809, -0.0390305258333683, 0.025241559371352196, -0.030468620359897614, -0.07952314615249634, 0.11053027957677841, -0.016779765486717224, 0.0044470299035310745, -0.003961832728236914, -0.048246365040540695, 0.015455867163836956, -0.0675438940525055, -0.0050229295156896114, 0.21681518852710724, 0.11264357715845108, 0.10564713925123215, -0.05319342389702797, -0.038258254528045654, -0.02963540144264698, -0.05038364604115486, -0.03574798256158829, 0.13468465209007263, 0.05053882673382759, -0.018605172634124756, 0.07189042121171951, 0.07881511002779007, 0.07935135066509247, 0.06869401782751083, -0.013056326657533646, -0.12036453187465668, 0.003220341866835952, 0.07661620527505875, 0.04693690314888954, 0.01508957240730524, -0.003527989611029625, -0.017853062599897385, 0.014894816093146801, -0.044196080416440964, -0.004134348127990961, -0.0964997187256813, -0.05177365988492966, 0.03503460809588432, -0.002775926375761628, 0.03253236413002014, -0.042493730783462524, -0.029550595209002495, 0.06136966124176979, 0.06406999379396439, 0.004876414779573679, -0.011882031336426735, -0.06386864930391312, -0.1064513772726059, 0.07434580475091934, -0.08271417021751404, -0.2763075530529022, -0.09671802818775177, -0.10250328481197357, -0.05496198683977127, 0.031103285029530525, 0.04737463966012001, -0.14557471871376038, -0.012946274131536484, -0.08170149475336075, -0.010146253742277622, 0.035774655640125275, -0.04545107111334801, 0.21066409349441528, 0.08688658475875854, 0.01377435028553009, -0.06175130605697632, -0.01768064871430397, 0.013034461066126823, -0.0757257267832756, 0.011211715638637543, 0.04869437590241432, 0.08649473637342453, 0.09388742595911026, 0.08650615066289902, 0.06817974150180817, -0.004554246086627245, 0.10273000597953796, -0.07530179619789124, -0.02431732416152954, 0.11079917103052139, 0.015018822625279427, 0.06836868077516556, 0.025912504643201828, 0.037651002407073975, -0.00941799022257328, 0.006235036067664623, 0.011524658650159836, -0.04694414138793945, -0.18055972456932068, -0.10339251905679703, -0.028532395139336586, 0.12087786197662354, 0.11810705065727234, 0.09237080812454224, -0.0668218731880188, -0.007300713565200567, 0.008905538357794285, -0.023637812584638596, 0.08054943382740021, 0.11454180628061295, -0.0837324783205986, -0.029586944729089737, -0.018352609127759933, -0.05005386471748352, 0.023228229954838753, 0.05201302468776703, 0.016532324254512787, 0.1335373967885971, 0.042323701083660126, 0.0345829576253891, 0.021699044853448868, -0.061361782252788544, -0.060484692454338074, 0.08509724587202072, 0.039833914488554, 0.0033770378213375807, 0.007046567276120186, -0.08920939266681671, -0.03789838030934334, 0.08167323470115662, 0.13080792129039764, -0.017282092943787575, -0.09885448962450027, 0.08486618101596832, 0.10837148129940033, 0.13496707379817963, -0.01164830569177866, -0.16792592406272888, -0.03137770667672157, 0.008820862509310246, -0.08809655159711838, 0.0258280411362648, 0.0006538101588375866, -0.036816660314798355, -0.17769992351531982, 0.046329088509082794, 0.02303447388112545, 0.13126280903816223, -0.04205648973584175, -0.0012165260268375278, 0.034912966191768646, 0.034557003527879715, -0.017169924452900887, 0.06959564983844757, -0.1542518138885498, 0.11520714312791824, 0.0029308469966053963, 0.08976216614246368, -0.06580788642168045, 0.013771113008260727, 0.08725033700466156, -0.02671445719897747, 0.20946291089057922, 0.033850185573101044, 0.02749861590564251, -0.11209622770547867, -0.19251832365989685, -0.06560108065605164, -0.03849519044160843, -0.1204802617430687, 0.08337253332138062, 0.038349736481904984, -0.0470828153192997, -0.10022000223398209, 0.06641699373722076, -0.033870138227939606, -0.06659097224473953, -0.006585597060620785, -0.07025409489870071, -0.03133303299546242, -0.05627354979515076, -0.025225749239325523, -0.13879887759685516, 0.1830577850341797, 0.06423971801996231, -0.057089827954769135, -0.10156499594449997, -0.02529580518603325, -0.045988962054252625, -0.05042637139558792, -0.014670071192085743, 0.013615035451948643, 0.08847314864397049, -0.06216611713171005, -0.09022599458694458, -0.012355395592749119, -0.12358735501766205, -0.06617085635662079, -0.04650183767080307, 0.19274073839187622, 0.022495364770293236, 0.07031387090682983, -0.015447656624019146, 0.03755205124616623, -0.030519254505634308, -0.07639645040035248, 0.17533892393112183, 0.1735278218984604, -0.015376240946352482, 0.09357332438230515, -0.04355797544121742, 0.03173873946070671, -0.12475890666246414, 0.003862847341224551, 0.18773795664310455, 0.2696097791194916, -0.0398099459707737, 0.1599855273962021, 0.021896176040172577, -0.07723551243543625, -0.1836523711681366, -0.05305694416165352, 0.02310343272984028, -0.02672881819307804, 0.10183479636907578, -0.1930926889181137, 0.060909952968358994, 0.020853295922279358, -0.025578230619430542, -0.011876696720719337, -0.2670591473579407, -0.07597550749778748, 0.03842402622103691, 0.0650828406214714, -0.05468869209289551, -0.11812807619571686, -0.07782158255577087, 0.013093511573970318, -0.11986908316612244, 0.039014190435409546, -0.1739194095134735, 0.04978703334927559, -0.004100203048437834, 0.03933478146791458, 0.052957117557525635, -0.0387861542403698, 0.11600009351968765, -0.01885882019996643, -0.0358886793255806, -0.05863654240965843, 0.033601853996515274, 0.014759914018213749, -0.08295756578445435, 0.039833348244428635, 0.01615864224731922, -0.037032030522823334, -0.22058898210525513, -0.02229241468012333, -0.027927078306674957, 0.04334976524114609, -0.012169982306659222, -0.011371784843504429, 0.014395613223314285, 0.06704209744930267, 0.10379228740930557, 0.04872943460941315, 0.12125106900930405, 0.014993853867053986, 0.02092246152460575, 0.09456395357847214, 0.04089115932583809, 0.04175927862524986, -0.17313110828399658, -0.0597357302904129, -0.03522629663348198, -0.01023903302848339, -0.05043599009513855, 0.0058830175548791885, 0.061573635786771774, 0.029443684965372086, 0.0283147394657135, 0.06704973429441452, -0.12287510931491852, 0.003358361078426242, 0.061377398669719696, -0.1072663813829422, -0.19645282626152039, -0.0792120024561882, -0.06821728497743607, 0.013182980008423328, -0.0694216713309288, 0.034706778824329376, -0.024074122309684753, 0.0009653393644839525, 0.03024960309267044, 0.042841896414756775, -0.05220355466008186, 0.04000846669077873, -0.02293001301586628, 0.029430648311972618, -0.06845832616090775, 0.16868004202842712, 0.0793699398636818, -0.0033816038630902767, 0.017396973446011543, 0.20303422212600708, -0.07137974351644516, -0.09871741384267807, -0.03309042006731033, 0.10532042384147644, 0.0987180843949318, -0.013302432373166084, -0.04116981104016304, -0.0649721696972847, 0.07545432448387146, -0.1440073400735855, 0.016241081058979034, -0.13361993432044983, 0.02746485359966755, 0.03871234506368637, -0.06884069740772247, 0.08556980639696121, -0.023138508200645447, -0.0390823557972908, -0.12647219002246857, 0.06846893578767776, 0.027711249887943268, 0.14921650290489197, -0.01946040615439415, -0.06268386542797089, -0.13268393278121948, 0.051739081740379333, 0.003126750933006406, -0.006234404165297747, -0.2077491730451584, -0.045300185680389404, -0.0007437843014486134, 0.04089698567986488, 0.005835824180394411, 0.05136774852871895, -0.05645441263914108, -0.09299689531326294, -0.02239534631371498, 0.09895757585763931, -0.067059226334095, -0.03996974602341652, 0.02244785986840725, -0.08302035182714462, 0.06156948581337929, 0.07010328024625778, -0.008254053071141243, -0.03771953284740448, -0.0767444372177124, -0.0604567751288414, -0.00926503911614418, -0.0015797845553606749, 0.06494855880737305, -0.1541927605867386, 0.026380402967333794, -0.043711498379707336, -0.10601241141557693, 0.004167582839727402, 0.10725729912519455, -0.07605605572462082, 0.040666334331035614, 0.03476528823375702, -0.04216582700610161, -0.07209537923336029, 0.04039636626839638, 0.049478452652692795, 0.06719847768545151, 0.06764297932386398, -0.06958038359880447, 0.17988944053649902, -0.11622081696987152, -0.018630286678671837, 0.004477960057556629, 0.02710241824388504, 0.05314931273460388, -0.08836017549037933, 0.04570327699184418, -0.04410012438893318, 0.09906736016273499, 0.0745496153831482, 0.03742776811122894, 0.03456002473831177, 0.00443099532276392, 0.09444984048604965, 0.013163553550839424, 0.04054707661271095, -0.02062069997191429, 0.007698778063058853, 0.10160622000694275, -0.009877204895019531, 0.06944066286087036, -0.049213577061891556, 0.10806866735219955, 0.10232634097337723, 0.1341117024421692, 0.054554857313632965, 0.08440647274255753, -0.12447130680084229, -0.2038620114326477, -0.10675892978906631, 0.009838146157562733, 0.044923264533281326, -0.06771538406610489, 0.1314466893672943, 0.09588856995105743, -0.1989227831363678, 0.06248348578810692, -0.01490432396531105, 0.02781812474131584, -0.06316706538200378, -0.12273311614990234, 0.007528183050453663, -0.15039317309856415, 0.06466630846261978, -0.03271295875310898, 0.0009203636436723173, -0.026673046872019768, -0.029152723029255867, -0.011585583910346031, 0.08355901390314102, -0.04684983938932419, -0.03763001784682274, 0.0730755627155304, -0.042666297405958176, 0.01849946565926075, -0.08324785530567169, -0.009286342188715935, -0.049435727298259735, -0.08870968222618103, 0.012961621396243572, 0.05139021947979927, -0.02303442358970642, 0.08270805329084396, -0.04741422459483147, -0.08188512176275253, 0.04905881732702255, -0.026744088158011436, -0.03842318803071976, 0.11353033035993576, 0.09175927937030792, -0.07627870887517929, -0.025910967960953712, 0.20250540971755981, -0.0362761989235878, 0.007176384329795837, -0.06665799766778946, 0.19678816199302673, 0.0014010975137352943, -0.07728132605552673, -0.013377920724451542, -0.15149784088134766, -0.06306459754705429, 0.23926174640655518, 0.1438428908586502, -0.07232958823442459, 0.028202127665281296, -0.04437630996108055, 0.009347164072096348, -0.003552360227331519, 0.0775894969701767, 0.08166158944368362, 0.12459005415439606, -0.0836532786488533, 0.0310959629714489, -0.020518068224191666, -0.0871569812297821, -0.18664297461509705, -0.0035854224115610123, 0.036052361130714417, -0.025987794622778893, -0.02508540451526642, 0.09165196865797043, -0.15841342508792877, -0.08610906451940536, 0.09938347339630127, -0.09464795887470245, -0.0896691307425499, -0.028577446937561035, -0.00591296749189496, 0.03595592826604843, 0.1028861403465271, 0.023959845304489136, 0.02061370573937893, 0.07794276624917984, -0.014677340164780617, -0.05197862163186073, -0.010843323543667793, 0.06569068133831024, -0.14241404831409454, 0.2430393099784851, -0.031929973512887955, 0.023674704134464264, 0.0634041577577591, 0.045323695987463, -0.17906513810157776, 0.016706624999642372, 0.04322919622063637, -0.1429348587989807, 0.028577791526913643, 0.09006916731595993, -0.047659192234277725, -0.015111701563000679, 0.07850006222724915, 0.011284698732197285, 0.012641980312764645, 0.09875015914440155, 0.05849866941571236, -0.04395220801234245, 0.0496053472161293, -0.1379900723695755, 0.1038694679737091, 0.10744521021842957, -0.06296710669994354, 0.007765601854771376, -0.01925491914153099, 0.025872601196169853, 0.023083597421646118, 0.0655844658613205, -0.05734822899103165, -0.11656755954027176, 0.003479357110336423, -0.009480808861553669, 0.06386822462081909, -0.23588845133781433, -0.1055014431476593, -0.03971569240093231, -0.09281613677740097, -0.040954239666461945, 0.09878256171941757, 0.15612392127513885, -0.017773708328604698, -0.023704657331109047, -0.11982791870832443, 0.0234783086925745, 0.15851017832756042, -0.08945188671350479, -0.03182942047715187 ]
null
null
diffusers
# Fruits and Vegetables gone bad - SDXL LoRA <Gallery /> ([CivitAI](https://civitai.com/models/294004)) ## Model description <p>What happens when Fruits and Vegetables go bad?</p><p>Prompt as "&lt;name of fruit / vegetable&gt; <strong>FaVGoneBad</strong>" and find out :)</p> ## Trigger words You should use `FaVGoneBad` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/Norod78/fruits-and-vegetables-gone-bad-sdxl-lora/tree/main) them in the Files & versions tab. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('Norod78/fruits-and-vegetables-gone-bad-sdxl-lora', weight_name='Fruits_and_Vegetables_gone_bad_-_SDXL_LoRA-000007.safetensors') image = pipeline('A banana FaVGoneBad on the sandy beach floor ').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
{"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "concept", "vegetable", "fruit", "rotten"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=True&allowDifferentLicense=False", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "FaVGoneBad", "widget": [{"text": "A bunch of Cherries FaVGoneBad on the tree are barking at each other ", "output": {"url": "6326319.jpeg"}}, {"text": "blueberry FaVGoneBad Ice-skating on a frozen yogurt surface ", "output": {"url": "6326312.jpeg"}}, {"text": "A watermelon FaVGoneBad on a rooftop ", "output": {"url": "6326320.jpeg"}}, {"text": "A Strawberry FaVGoneBad ", "output": {"url": "6326311.jpeg"}}, {"text": "A banana FaVGoneBad on the sandy beach floor ", "output": {"url": "6326316.jpeg"}}, {"text": "A potato FaVGoneBad on shelve in the supermarket ", "output": {"url": "6326313.jpeg"}}, {"text": "A pickle FaVGoneBad in the street ", "output": {"url": "6326310.jpeg"}}, {"text": "A cute peach FaVGoneBad dancing on the dance floor at the disco ", "output": {"url": "6326317.jpeg"}}, {"text": "Heavily chained Cherries FaVGoneBad on the tree are barking ", "output": {"url": "6326318.jpeg"}}, {"text": "A banana FaVGoneBad on the sandy beach floor ", "output": {"url": "6326315.jpeg"}}]}
text-to-image
Norod78/fruits-and-vegetables-gone-bad-sdxl-lora
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "concept", "vegetable", "fruit", "rotten", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "has_space", "region:us" ]
2024-02-06T13:50:18+00:00
[]
[]
TAGS #diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #vegetable #fruit #rotten #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us
# Fruits and Vegetables gone bad - SDXL LoRA <Gallery /> (CivitAI) ## Model description <p>What happens when Fruits and Vegetables go bad?</p><p>Prompt as "&lt;name of fruit / vegetable&gt; <strong>FaVGoneBad</strong>" and find out :)</p> ## Trigger words You should use 'FaVGoneBad' to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Use it with the diffusers library For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
[ "# Fruits and Vegetables gone bad - SDXL LoRA \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p>What happens when Fruits and Vegetables go bad?</p><p>Prompt as \"&lt;name of fruit / vegetable&gt; <strong>FaVGoneBad</strong>\" and find out :)</p>", "## Trigger words\nYou should use 'FaVGoneBad' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ "TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #vegetable #fruit #rotten #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n", "# Fruits and Vegetables gone bad - SDXL LoRA \n\n<Gallery />\n\n\n\n(CivitAI)", "## Model description\n\n<p>What happens when Fruits and Vegetables go bad?</p><p>Prompt as \"&lt;name of fruit / vegetable&gt; <strong>FaVGoneBad</strong>\" and find out :)</p>", "## Trigger words\nYou should use 'FaVGoneBad' to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ 78, 23, 59, 19, 28, 38 ]
[ "passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #concept #vegetable #fruit #rotten #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #has_space #region-us \n# Fruits and Vegetables gone bad - SDXL LoRA \n\n<Gallery />\n\n\n\n(CivitAI)## Model description\n\n<p>What happens when Fruits and Vegetables go bad?</p><p>Prompt as \"&lt;name of fruit / vegetable&gt; <strong>FaVGoneBad</strong>\" and find out :)</p>## Trigger words\nYou should use 'FaVGoneBad' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers" ]
[ -0.00040965271182358265, 0.03854702040553093, -0.0020304243080317974, 0.05150690674781799, 0.14911502599716187, -0.014828729443252087, 0.020787151530385017, 0.08896461129188538, 0.07595504075288773, 0.15071839094161987, 0.03924986347556114, 0.10001341998577118, 0.00938395131379366, 0.1949380487203598, -0.02188461273908615, -0.1793203502893448, 0.001023998949676752, -0.04989141970872879, -0.06660954654216766, 0.0707683265209198, 0.10543200373649597, -0.06100066751241684, 0.13054311275482178, -0.019384242594242096, -0.16589564085006714, 0.0371449813246727, -0.02344653382897377, 0.0152505561709404, 0.05567486584186554, 0.07338909059762955, -0.0022957490291446447, -0.026548100635409355, 0.03525356575846672, -0.19831545650959015, 0.04810889810323715, 0.06524647772312164, 0.00703425845131278, 0.0733274295926094, -0.015038730576634407, -0.013058454729616642, 0.18572796881198883, -0.14871235191822052, 0.028677912428975105, 0.06358206272125244, -0.06354643404483795, -0.15514546632766724, -0.11115457862615585, -0.029404444620013237, 0.01477392204105854, 0.016069069504737854, 0.029345426708459854, -0.01775527186691761, -0.005200316198170185, 0.05692712962627411, 0.3299746513366699, -0.18361343443393707, 0.007564734201878309, 0.12075848132371902, 0.04992661997675896, 0.09853687882423401, -0.11665485799312592, 0.06316257268190384, 0.08988644182682037, -0.017332108691334724, 0.0457930862903595, -0.013682893477380276, -0.007176995277404785, -0.033390481024980545, -0.12796704471111298, -0.0037174292374402285, 0.2136206179857254, 0.036085162311792374, -0.030772101134061813, -0.15938925743103027, -0.06175604835152626, 0.04596836119890213, -0.028896769508719444, -0.061222143471241, 0.09720709174871445, -0.013527295552194118, 0.13653524219989777, -0.15058274567127228, -0.054491158574819565, -0.042363956570625305, -0.007271333131939173, 0.16003111004829407, 0.0019267139723524451, 0.005835320800542831, 0.08332043886184692, 0.002738540293648839, -0.15284569561481476, -0.1166706457734108, -0.0010376886930316687, -0.01187583152204752, -0.04019119217991829, -0.0603162907063961, 0.00709019647911191, -0.007897673174738884, 0.124134361743927, 0.05236930772662163, -0.08030477166175842, -0.0033421581611037254, -0.14255255460739136, 0.01938549242913723, 0.12145594507455826, 0.06580109149217606, -0.10323445498943329, -0.034113623201847076, 0.08034561574459076, -0.006589511409401894, 0.04226471856236458, 0.0044764745980501175, -0.06593957543373108, -0.036566127091646194, -0.012732701376080513, 0.10188562422990799, 0.08048149198293686, -0.05180169641971588, -0.08344780653715134, -0.05422312021255493, 0.12814421951770782, -0.13218671083450317, -0.0012707335408776999, -0.04321298748254776, -0.06486813724040985, 0.1580606997013092, 0.033792644739151, 0.003718932857736945, 0.014973786659538746, 0.07653805613517761, -0.11667321622371674, -0.01794404163956642, -0.04894227534532547, -0.060275208204984665, 0.05369352549314499, -0.14690911769866943, -0.00017642056627664715, -0.07734371721744537, -0.20964200794696808, -0.06398613005876541, -0.034289032220840454, -0.05330706015229225, -0.003888662438839674, 0.02432333491742611, 0.008035020902752876, -0.06318777054548264, 0.05852590873837471, 0.06304562091827393, 0.006610455457121134, 0.08875175565481186, 0.00993872620165348, 0.06953639537096024, 0.052783090621232986, 0.040706273168325424, -0.05354607477784157, 0.05978766828775406, -0.20641689002513885, 0.08363394439220428, -0.13985686004161835, 0.006137476302683353, -0.2029270976781845, 0.009468721225857735, 0.04783957079052925, -0.023390764370560646, -0.0473339818418026, 0.1130136176943779, -0.20674879848957062, -0.026030108332633972, 0.0022315869573503733, -0.13828523457050323, -0.06809131056070328, 0.13997294008731842, 0.0009612924186512828, 0.03430674597620964, 0.12355472147464752, 0.13183847069740295, 0.03027717024087906, -0.1916755884885788, 0.010962450876832008, 0.007830946706235409, -0.05382242053747177, 0.11218541115522385, 0.04329802840948105, 0.001254381611943245, -0.06966651231050491, 0.06270156800746918, -0.2247168868780136, 0.03942640870809555, -0.026422161608934402, -0.038910068571567535, -0.07995902001857758, -0.10887028276920319, 0.08945363759994507, -0.027762528508901596, -0.03587344288825989, 0.0911150872707367, 0.0010278194677084684, 0.0627455934882164, 0.09632065892219543, -0.027978142723441124, 0.05450357124209404, -0.014051972888410091, 0.22655907273292542, -0.10602739453315735, 0.014875268563628197, -0.14392244815826416, -0.12864266335964203, 0.009996011853218079, 0.13755309581756592, 0.05560784786939621, -0.03845317289233208, 0.037411339581012726, 0.04690657556056976, -0.020369956269860268, 0.028971686959266663, 0.00624510832130909, -0.0031604673713445663, -0.03583333641290665, -0.1413637399673462, -0.049613624811172485, -0.04857219010591507, 0.05879891291260719, -0.09835723787546158, -0.022117875516414642, 0.07128271460533142, 0.1433892846107483, 0.05778685584664345, -0.07491142302751541, 0.03512212261557579, -0.027634864673018456, 0.005120718851685524, -0.0645909532904625, -0.032521337270736694, -0.05848587676882744, -0.07037456333637238, 0.038708411157131195, 0.009096884168684483, 0.1311180293560028, 0.09870173037052155, 0.12651805579662323, -0.12367607653141022, -0.15664945542812347, 0.001284813741222024, 0.016371356323361397, -0.12417078763246536, -0.0464848056435585, -0.029085036367177963, 0.01504739560186863, 0.09217359870672226, -0.07752509415149689, -0.02204115502536297, 0.03717600926756859, -0.010100304149091244, -0.0833018347620964, 0.06990945339202881, -0.031247662380337715, -0.06747355312108994, 0.0675061047077179, 0.15590445697307587, -0.020794687792658806, 0.029276177287101746, -0.04570835828781128, -0.07597634196281433, -0.09253274649381638, 0.10956118255853653, 0.01135143544524908, 0.015911627560853958, 0.06310035288333893, 0.0643916204571724, 0.008851258084177971, -0.09211678057909012, 0.011944757774472237, -0.036433372646570206, 0.011170921847224236, 0.03498871251940727, -0.05760448798537254, 0.24338699877262115, 0.04991137981414795, -0.04799278825521469, 0.049338534474372864, 0.04332522302865982, 0.046589892357587814, -0.03717014193534851, 0.010768935084342957, -0.01952180452644825, 0.13338319957256317, -0.12354525178670883, -0.17577846348285675, -0.1015460416674614, -0.019404035061597824, -0.010035943239927292, 0.027075141668319702, -0.036087650805711746, -0.05797282233834267, -0.11418222635984421, -0.03340290114283562, 0.138419970870018, 0.02690751664340496, -0.01296399999409914, -0.010059953667223454, 0.009978392161428928, -0.027079572901129723, -0.0948750302195549, 0.02076864428818226, 0.021034203469753265, -0.04565029218792915, -0.07882712781429291, 0.02690894715487957, 0.10740185528993607, 0.029077785089612007, 0.019499043002724648, 0.025642139837145805, 0.016593173146247864, 0.18174846470355988, -0.051436375826597214, 0.07947392016649246, 0.25979378819465637, 0.07475922256708145, 0.0560007207095623, 0.02085832692682743, 0.023215334862470627, -0.07098808884620667, 0.03811638802289963, 0.07152430713176727, -0.046983808279037476, -0.18810369074344635, -0.1402117758989334, -0.06156986206769943, -0.04010993242263794, 0.05234812945127487, 0.06748111546039581, 0.06657646596431732, 0.06044149771332741, -0.028841117396950722, 0.05434992164373398, 0.04815981537103653, 0.06515679508447647, 0.17938381433486938, -0.04813619330525398, -0.02631460316479206, -0.0038586619775742292, -0.010905398987233639, 0.1462942212820053, 0.03497365489602089, 0.13406623899936676, 0.006120264995843172, 0.19768089056015015, 0.0842408835887909, 0.028294919058680534, 0.010670408606529236, -0.03462127596139908, -0.0681520327925682, 0.02749764546751976, -0.021104564890265465, -0.11443272233009338, -0.008372521959245205, 0.04456178843975067, 0.05701753497123718, -0.053075600415468216, 0.008035133592784405, -0.038585029542446136, 0.036051347851753235, 0.013398728333413601, -0.09637080132961273, -0.11375655978918076, 0.03397562354803085, 0.08719246834516525, 0.030716534703969955, -0.015228485688567162, 0.0074320905841887, 0.05057286098599434, -0.14113685488700867, -0.02572055347263813, -0.016122180968523026, 0.08040757477283478, -0.1078173890709877, -0.059224165976047516, -0.03208242729306221, 0.14491957426071167, 0.03932664915919304, 0.05421886220574379, -0.11807434260845184, -0.016149451956152916, 0.031005339697003365, -0.022289011627435684, -0.019763806834816933, 0.00902575720101595, 0.022593695670366287, 0.11044284701347351, 0.16187986731529236, -0.011516041122376919, 0.11851547658443451, -0.13320910930633545, -0.03354921191930771, -0.09053730219602585, 0.03880777209997177, -0.04807155951857567, 0.03720986843109131, -0.04707137495279312, -0.02875889092683792, -0.0084168566390872, 0.007374125998467207, -0.12286093086004257, -0.14401747286319733, 0.006899199448525906, -0.018880659714341164, 0.09188246726989746, -0.049788836389780045, -0.06106376275420189, -0.10554925352334976, 0.17364917695522308, -0.07363183796405792, -0.11028926074504852, -0.1550556719303131, 0.050508029758930206, 0.17296098172664642, -0.033676628023386, 0.04370279982686043, -0.025590278208255768, 0.19585244357585907, -0.12759031355381012, -0.0594758577644825, -0.0001151316100731492, -0.004879687447100878, -0.15585719048976898, -0.0013052308931946754, 0.13691405951976776, 0.04158676788210869, -0.03436499461531639, 0.03112432174384594, 0.0833938866853714, -0.013437307439744473, -0.12157364189624786, -0.02697920985519886, 0.21933743357658386, 0.03470233827829361, 0.1793355494737625, -0.06898485124111176, -0.016449833288788795, -0.01216806285083294, 0.015832366421818733, 0.11424970626831055, 0.18122078478336334, -0.06448625773191452, 0.16243447363376617, 0.04040555655956268, -0.08811981230974197, -0.14965413510799408, 0.000039651811675867066, 0.041702792048454285, 0.027553657069802284, 0.09350918978452682, -0.10738268494606018, 0.15155094861984253, 0.14597465097904205, -0.030902011319994926, 0.16397905349731445, -0.346872478723526, -0.09570956975221634, -0.014402849599719048, 0.06370003521442413, -0.10822689533233643, -0.1414426565170288, -0.09047403186559677, -0.10645594447851181, -0.07376977801322937, 0.11537455022335052, -0.04780247434973717, 0.06928698718547821, -0.03669469803571701, 0.018977830186486244, 0.048934292048215866, -0.03212707117199898, 0.16294972598552704, -0.026379534974694252, 0.050147999078035355, -0.02438325807452202, -0.12142043560743332, 0.06710022687911987, -0.005795686040073633, 0.10099263489246368, -0.07738951593637466, 0.042537104338407516, -0.0874018520116806, -0.028622915968298912, -0.05577835813164711, 0.1420927196741104, -0.07927313446998596, -0.013735683634877205, -0.08137557655572891, 0.10415875166654587, 0.027557898312807083, 0.008888129144906998, 0.07402067631483078, -0.041970446705818176, 0.03781695291399956, 0.2140219807624817, -0.028598014265298843, 0.15696397423744202, -0.14825426042079926, 0.0008315327577292919, -0.05178486555814743, 0.04068479314446449, -0.18278859555721283, 0.02239888720214367, 0.060391899198293686, 0.07923433184623718, 0.1089482456445694, -0.02283337526023388, -0.0807546079158783, -0.002357464749366045, 0.040489841252565384, -0.05337253957986832, -0.1627364605665207, -0.04091610386967659, -0.057554248720407486, -0.08047324419021606, -0.09096314013004303, 0.14410041272640228, -0.04890928789973259, -0.033106476068496704, 0.03125152736902237, 0.10122070461511612, -0.021730413660407066, 0.08944399654865265, 0.1446879804134369, 0.007775953970849514, -0.12261597067117691, 0.044449374079704285, 0.12503933906555176, -0.008392232470214367, -0.04365898296236992, 0.0985354408621788, -0.06377754360437393, -0.035204898566007614, -0.005896944086998701, 0.051130592823028564, -0.08242928981781006, 0.05959475785493851, 0.03633558005094528, -0.06899186223745346, -0.03660934790968895, 0.10681066662073135, 0.08586572855710983, 0.08834140747785568, -0.02125903218984604, -0.047383327037096024, -0.06685128808021545, 0.10263334959745407, 0.06653068959712982, 0.0678209662437439, -0.15395550429821014, -0.05970852077007294, -0.052350230515003204, 0.0656791552901268, -0.05464828014373779, -0.014454941265285015, -0.09752178937196732, -0.06936203688383102, -0.03547811880707741, 0.12843815982341766, -0.07226105034351349, 0.002614869037643075, -0.02052651159465313, -0.006153844762593508, 0.03973190113902092, 0.062483783811330795, 0.0070668053813278675, -0.0910780280828476, -0.03258856385946274, 0.07476694881916046, -0.2080637514591217, -0.06725352257490158, 0.08856775611639023, -0.051753804087638855, 0.02755734510719776, -0.0626353919506073, 0.055908944457769394, -0.01581459306180477, -0.11115549504756927, 0.0009028668864630163, 0.09548143297433853, -0.022943994030356407, 0.025701291859149933, -0.17645788192749023, 0.021836087107658386, -0.059412308037281036, 0.0076034474186599255, -0.004282457288354635, 0.0928720086812973, -0.18836459517478943, -0.020647065714001656, -0.07560063898563385, -0.004334359895437956, -0.052468255162239075, 0.023296644911170006, 0.10522650927305222, 0.039608996361494064, 0.07838204503059387, -0.025592532008886337, 0.07921048998832703, -0.06789257377386093, 0.00590134272351861, -0.033202290534973145, -0.05803253501653671, -0.07903549075126648, 0.029608668759465218, 0.02453378215432167, -0.022753572091460228, 0.10393297672271729, 0.06693759560585022, 0.04424401745200157, 0.06858865171670914, 0.05346260219812393, 0.048799097537994385, -0.002018071012571454, 0.06590693444013596, 0.011632598005235195, 0.047506824135780334, 0.01742970570921898, 0.005675335414707661, 0.006045193411409855, -0.13653045892715454, -0.027607085183262825, 0.11684554815292358, -0.09565936774015427, -0.026273272931575775, 0.01302444376051426, -0.00892658345401287, -0.0156618170440197, 0.08431290090084076, -0.04368267208337784, -0.01478234026581049, -0.05121971666812897, -0.035326533019542694, 0.1081414446234703, -0.20589344203472137, 0.08512822538614273, 0.10820820927619934, -0.0727657824754715, -0.04598958417773247, -0.10803250968456268, -0.07115369290113449, -0.07721057534217834, 0.06127540022134781, -0.1427571326494217, 0.05137964338064194, -0.0225320253521204, -0.03764985501766205, 0.014478227123618126, 0.10371124744415283, -0.08900183439254761, -0.10207096487283707, 0.06378509104251862, 0.029741857200860977, -0.0013698118273168802, 0.010853003710508347, 0.014755791053175926, 0.03916099667549133, -0.01298022922128439, -0.0026593380607664585, 0.04028765484690666, 0.06508420407772064, 0.03956903889775276, -0.08957748115062714, -0.0609649159014225, 0.011534234508872032, 0.023278839886188507, 0.008367888629436493, 0.11954698711633682, 0.01233053021132946, -0.05633419007062912, -0.0738886222243309, 0.21399441361427307, -0.009096214547753334, -0.03552300110459328, -0.06144537031650543, 0.07437363266944885, 0.0027996841818094254, 0.026148054748773575, -0.05364158749580383, -0.07976193726062775, 0.005716234911233187, 0.14441710710525513, 0.09248322248458862, -0.030379382893443108, 0.019826354458928108, 0.011578052304685116, 0.0004621545085683465, 0.050317492336034775, 0.009007800370454788, 0.04796301946043968, 0.14943581819534302, -0.08965776115655899, 0.09188771992921829, -0.024352557957172394, -0.05291980132460594, -0.1574496328830719, -0.03779704123735428, -0.051184605807065964, -0.054332271218299866, -0.0340552031993866, 0.10134316980838776, -0.042114101350307465, -0.22678601741790771, 0.08699972927570343, -0.03758141025900841, -0.10288412123918533, -0.10566308349370956, -0.0029389585833996534, 0.04404502362012863, -0.017628047615289688, 0.01283981092274189, -0.016160139814019203, 0.0919431820511818, 0.024010641500353813, -0.13601823151111603, -0.02749660424888134, 0.0457749143242836, 0.027209904044866562, 0.03418264538049698, -0.010289802215993404, -0.0010769914370030165, 0.027528857812285423, -0.02925441786646843, -0.13647371530532837, 0.0033085914328694344, 0.03881267085671425, -0.11966803669929504, 0.053269002586603165, 0.09912344813346863, 0.03156117722392082, 0.05733634904026985, 0.025244254618883133, -0.09763253480195999, -0.0007665397715754807, 0.19668997824192047, 0.03266787528991699, -0.055114686489105225, 0.085309699177742, -0.11983060836791992, 0.13168345391750336, 0.1464584916830063, -0.04708154499530792, -0.00802297331392765, -0.06804723292589188, 0.06704578548669815, 0.08540922403335571, 0.060345955193042755, -0.013287568464875221, -0.0583607517182827, -0.0618332177400589, 0.09975206106901169, -0.03237099573016167, -0.08129820227622986, -0.0851910337805748, -0.07081937044858932, -0.02686348557472229, -0.010997242294251919, 0.10226007550954819, 0.12421755492687225, -0.013182329013943672, 0.03705237805843353, -0.2536848187446594, 0.04498542100191116, 0.06568119674921036, -0.09791302680969238, -0.0042046597227454185 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2110 - Wer: 7.8855 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.5451 | 0.49 | 30 | 0.2331 | 9.3771 | | 0.299 | 0.98 | 60 | 0.1932 | 11.1867 | | 0.1459 | 1.48 | 90 | 0.1867 | 11.2415 | | 0.1368 | 1.97 | 120 | 0.1862 | 10.0022 | | 0.0654 | 2.46 | 150 | 0.1957 | 13.2156 | | 0.0592 | 2.95 | 180 | 0.1975 | 9.3222 | | 0.031 | 3.44 | 210 | 0.2102 | 8.1377 | | 0.0226 | 3.93 | 240 | 0.1986 | 7.8965 | | 0.0119 | 4.43 | 270 | 0.2104 | 8.0061 | | 0.0094 | 4.92 | 300 | 0.2110 | 7.8855 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0
{"language": ["nl"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "openai/whisper-large-v2", "model-index": [{"name": "Whisper Large V2", "results": []}]}
automatic-speech-recognition
golesheed/whisper-native-elderly-8-dutch
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "nl", "base_model:openai/whisper-large-v2", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-02-06T13:50:25+00:00
[]
[ "nl" ]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #nl #base_model-openai/whisper-large-v2 #license-apache-2.0 #endpoints_compatible #region-us
Whisper Large V2 ================ This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2110 * Wer: 7.8855 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 3e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 20 * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.38.0.dev0 * Pytorch 2.1.0+cu121 * Datasets 2.14.6 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #nl #base_model-openai/whisper-large-v2 #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ 74, 116, 4, 38 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #nl #base_model-openai/whisper-large-v2 #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 20\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.1.0+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.0" ]
[ -0.13621632754802704, 0.15968677401542664, -0.001858389237895608, 0.08833666890859604, 0.08782155066728592, -0.012314315885305405, 0.1681707203388214, 0.12549269199371338, -0.0416557751595974, 0.10454203933477402, 0.11453307420015335, 0.07736121118068695, 0.04561321437358856, 0.19964902102947235, -0.06639396399259567, -0.18399325013160706, 0.06508026272058487, -0.01929723657667637, -0.012141751125454903, 0.10182169824838638, 0.06421684473752975, -0.12256090342998505, 0.06952235847711563, -0.005073512438684702, -0.12787765264511108, -0.04992425814270973, -0.003603593911975622, -0.08829036355018616, 0.10478577762842178, 0.011877073906362057, 0.07441696524620056, 0.055234555155038834, 0.0800032690167427, -0.20251408219337463, 0.008391182869672775, 0.03783120587468147, 0.020442096516489983, 0.06881789863109589, 0.023107007145881653, 0.002746920334175229, 0.017535895109176636, -0.09417406469583511, 0.06630997359752655, 0.024000227451324463, -0.09732259809970856, -0.2184467762708664, -0.10026310384273529, 0.03434481471776962, 0.08626585453748703, 0.07408887147903442, -0.013106338679790497, 0.1581668108701706, -0.012119011022150517, 0.09104708582162857, 0.23101380467414856, -0.3176605999469757, -0.04742036387324333, -0.014271175488829613, 0.026294108480215073, 0.06450144946575165, -0.07825247943401337, -0.004888627678155899, 0.050102706998586655, 0.031746502965688705, 0.10774286836385727, -0.004931247793138027, -0.06233746558427811, -0.02886657603085041, -0.14197440445423126, -0.05681544914841652, 0.15547265112400055, 0.045779261738061905, -0.06491699069738388, -0.09191487729549408, -0.07131195068359375, -0.1496184766292572, -0.04956618696451187, -0.0026261198800057173, 0.040708139538764954, -0.04003528878092766, -0.10001271963119507, -0.006219570990651846, -0.06729330122470856, -0.08073122799396515, -0.03193339332938194, 0.14468765258789062, 0.03321274742484093, 0.009420378133654594, -0.014335672371089458, 0.05693294107913971, -0.0019842665642499924, -0.16536004841327667, -0.03401283174753189, 0.033182013779878616, -0.021878091618418694, -0.020712248980998993, -0.03135780245065689, -0.03883081674575806, 0.06537950783967972, 0.15842470526695251, -0.04659705609083176, 0.06207548454403877, -0.0385638028383255, 0.023183785378932953, -0.09648232907056808, 0.18515583872795105, -0.044731661677360535, -0.04666309803724289, 0.029621554538607597, 0.1070999950170517, 0.09432975202798843, -0.03299562633037567, -0.09444667398929596, 0.03328503668308258, 0.11510292440652847, 0.05439945310354233, -0.02153661474585533, 0.05379653349518776, -0.037912797182798386, 0.004595438949763775, 0.04724494367837906, -0.1189795732498169, 0.013170532882213593, 0.012636043131351471, -0.043195948004722595, -0.055782828480005264, 0.029871907085180283, 0.015721013769507408, -0.01764751970767975, 0.04835459217429161, -0.06849675625562668, -0.011128749698400497, -0.03830641880631447, -0.10412869602441788, 0.03652309626340866, -0.08999405056238174, -0.004184857476502657, -0.1197713240981102, -0.14654004573822021, -0.010356196202337742, 0.02779223397374153, -0.03712131455540657, -0.03228628262877464, -0.09426835924386978, -0.11704937368631363, 0.032112982124090195, -0.02710411697626114, 0.014512862078845501, -0.07628854364156723, 0.08355537056922913, 0.04701763018965721, 0.09049330651760101, -0.03954431042075157, 0.01878131553530693, -0.08150075376033783, 0.04918791353702545, -0.17111089825630188, 0.07168842107057571, -0.08916273713111877, 0.07433856278657913, -0.11224762350320816, -0.07275255769491196, 0.043903231620788574, -0.023215988650918007, 0.102077417075634, 0.11524751782417297, -0.19717739522457123, -0.04972013831138611, 0.21730080246925354, -0.1178780272603035, -0.15726397931575775, 0.15235035121440887, -0.01904238387942314, -0.018581777811050415, 0.06867604702711105, 0.24456007778644562, 0.06123080849647522, -0.1375725120306015, -0.056367188692092896, -0.0261027030646801, 0.07121604681015015, -0.05355974659323692, 0.07951906323432922, -0.004325232934206724, 0.04291364923119545, 0.010138435289263725, -0.01653929427266121, 0.04194147512316704, -0.07492784410715103, -0.09569421410560608, -0.04744570702314377, -0.11836248636245728, 0.01733187958598137, 0.002287462819367647, 0.02962525747716427, -0.12062839418649673, -0.08092740178108215, 0.0054471115581691265, 0.11621628701686859, -0.09865685552358627, 0.026550618931651115, -0.1331365555524826, 0.11432939022779465, -0.07463306933641434, -0.010850919410586357, -0.1483161598443985, -0.018835563212633133, 0.044661860913038254, -0.03598916903138161, 0.02147132158279419, -0.0885128602385521, 0.07264025509357452, 0.07467518001794815, -0.02658570371568203, -0.04248100146651268, -0.0021844636648893356, 0.011659912765026093, -0.08558013290166855, -0.20805923640727997, -0.02916303463280201, -0.05072628706693649, 0.13512323796749115, -0.16510847210884094, 0.026289111003279686, 0.036941152065992355, 0.10755885392427444, 0.050888173282146454, -0.028413690626621246, 0.012378765270113945, 0.0576338954269886, -0.021883849054574966, -0.07558631896972656, 0.028089145198464394, 0.03416816145181656, -0.09576820582151413, 0.017973311245441437, -0.1792900711297989, 0.13350984454154968, 0.13961872458457947, 0.05354544147849083, -0.03920949250459671, 0.026662219315767288, -0.03780747950077057, -0.03187672048807144, -0.026316704228520393, 0.004363284446299076, 0.1465822458267212, 0.0021496822591871023, 0.12176033109426498, -0.09753876179456711, -0.02674207277595997, 0.045568548142910004, -0.03195665404200554, -0.012703437358140945, 0.09416963160037994, 0.021390480920672417, -0.07712744921445847, 0.11574635654687881, 0.1106874868273735, -0.07978503406047821, 0.11232184618711472, -0.07221370190382004, -0.05422946438193321, -0.02878420613706112, 0.027434226125478745, 0.043337490409612656, 0.12183227390050888, -0.09068036079406738, -0.01438656821846962, 0.02515447698533535, 0.012049616314470768, 0.006123725324869156, -0.1886918991804123, 0.005767221562564373, 0.016797926276922226, -0.09008780866861343, -0.025112684816122055, -0.006492929067462683, -0.011711121536791325, 0.09337366372346878, -0.00300964480265975, -0.10617176443338394, 0.014498971402645111, -0.017466768622398376, -0.07522863149642944, 0.17250363528728485, -0.09990600496530533, -0.15192309021949768, -0.11562493443489075, -0.048458099365234375, -0.04277130961418152, 0.020420284941792488, 0.06840915232896805, -0.06886673718690872, -0.04794713854789734, -0.12919248640537262, -0.04088391363620758, 0.06478952616453171, 0.04791481792926788, 0.08473362773656845, -0.0035977375227957964, 0.0837816372513771, -0.10559368878602982, -0.008524681441485882, -0.028159063309431076, -0.01048053614795208, 0.014065103605389595, 0.03254552185535431, 0.11960489302873611, 0.1376330703496933, -0.000840022403281182, 0.019899478182196617, -0.028172969818115234, 0.2301720380783081, -0.07224448770284653, -0.031108040362596512, 0.12259376049041748, -0.02640325389802456, 0.051638029515743256, 0.17324084043502808, 0.030002977699041367, -0.11868065595626831, -0.00007048338738968596, -0.023971926420927048, -0.04381057620048523, -0.21067218482494354, -0.06343332678079605, -0.038883596658706665, 0.04803768917918205, 0.07741225510835648, 0.03194250538945198, 0.01576736941933632, 0.0287628173828125, 0.010801567696034908, 0.03336828202009201, -0.000778556102886796, 0.07745110988616943, 0.10073007643222809, 0.053871072828769684, 0.11427044123411179, -0.04864861071109772, -0.03424227237701416, 0.0309415552765131, 0.008827924728393555, 0.21411235630512238, -0.006806745659559965, 0.1936895102262497, 0.031086552888154984, 0.14399775862693787, 0.03124992921948433, 0.05868235230445862, -0.004321998450905085, -0.0014536561211571097, 0.00011419778456911445, -0.06801947951316833, -0.049581386148929596, 0.026712197810411453, -0.027490390464663506, 0.04718725383281708, -0.09096401929855347, 0.06585752964019775, 0.06531890481710434, 0.291382759809494, 0.08233320713043213, -0.35608431696891785, -0.10410318523645401, 0.013939191587269306, -0.04568859934806824, -0.010707268491387367, 0.04109747335314751, 0.1676306277513504, -0.035800375044345856, 0.05957348644733429, -0.04908604547381401, 0.07021871209144592, -0.07418491691350937, 0.031817398965358734, 0.02570035308599472, 0.0855240598320961, 0.0018178020836785436, 0.023594986647367477, -0.2272135466337204, 0.28047269582748413, 0.012436628341674805, 0.10276336967945099, -0.0487116314470768, 0.0020353891886770725, 0.02182648703455925, 0.016720861196517944, 0.10008277744054794, -0.015368645079433918, -0.12311194837093353, -0.1574331372976303, -0.1477552056312561, 0.045148614794015884, 0.09810465574264526, 0.0223187617957592, 0.11414927989244461, -0.014110207557678223, -0.032044459134340286, 0.04537680372595787, -0.06469541043043137, -0.053272537887096405, -0.07595355063676834, 0.006568394135683775, 0.11694630980491638, 0.004027381539344788, -0.07790198922157288, -0.09135306626558304, -0.09162882715463638, 0.11549058556556702, -0.04482784494757652, -0.03849310800433159, -0.09641735255718231, 0.003951740451157093, 0.11544102430343628, -0.08045060932636261, 0.044089674949645996, 0.018454937264323235, 0.10842259973287582, 0.01175297424197197, -0.05085345357656479, 0.10011888295412064, -0.08017635345458984, -0.1976318061351776, -0.04278148338198662, 0.14413614571094513, 0.007582133635878563, 0.0570187009871006, 0.016380207613110542, 0.03411366418004036, 0.002453245222568512, -0.0755670964717865, 0.03509826213121414, 0.05489535257220268, 0.017490698024630547, 0.005914448760449886, 0.014068059623241425, -0.05549638345837593, -0.07103073596954346, -0.026736579835414886, 0.16581539809703827, 0.29358914494514465, -0.07713106274604797, 0.07019561529159546, 0.10554484277963638, -0.033897191286087036, -0.20164474844932556, -0.01919488050043583, 0.044733766466379166, 0.014007529243826866, -0.03216458484530449, -0.13453763723373413, 0.07363015413284302, 0.06231628358364105, -0.048025429248809814, 0.07798503339290619, -0.29027286171913147, -0.14117367565631866, 0.11903156340122223, 0.10698550939559937, 0.09159891307353973, -0.13823311030864716, -0.06350408494472504, -0.03951125591993332, -0.10792451351881027, 0.0806211605668068, -0.13480418920516968, 0.11504227668046951, 0.011054912582039833, 0.054707806557416916, 0.009646838530898094, -0.06326767057180405, 0.1307542473077774, 0.011582973413169384, 0.07547330111265182, -0.04929868131875992, 0.01807730831205845, 0.026336537674069405, -0.07765660434961319, 0.06403639912605286, -0.1037367582321167, 0.06644802540540695, -0.01571423001587391, -0.02818179689347744, -0.05265707150101662, 0.0024104963522404432, -0.001534575829282403, -0.030629007145762444, -0.024864450097084045, 0.017817918211221695, 0.07605646550655365, 0.003878478892147541, 0.12219811975955963, 0.003997919615358114, 0.10227310657501221, 0.14183922111988068, 0.11386533826589584, -0.08582790940999985, -0.0023103870917111635, 0.017696576192975044, -0.05048684403300285, 0.056129369884729385, -0.12267884612083435, 0.05080711469054222, 0.1187099888920784, 0.02622661180794239, 0.11883791536092758, 0.05286730080842972, -0.05940454453229904, 0.034165505319833755, 0.05844949930906296, -0.14980162680149078, -0.1553071290254593, 0.023392148315906525, 0.03544645383954048, -0.1201973706483841, 0.08259966224431992, 0.14752541482448578, -0.0755700096487999, 0.0036739788483828306, -0.01621028408408165, 0.031722839921712875, -0.02674170583486557, 0.2017463594675064, 0.04023810103535652, 0.0588664673268795, -0.11580227315425873, 0.0918835923075676, 0.04340014234185219, -0.09641899168491364, 0.07375139743089676, 0.05963040515780449, -0.11412306874990463, -0.029042372480034828, 0.012517434544861317, 0.1298513263463974, 0.023425843566656113, -0.0739997997879982, -0.13419552147388458, -0.11811395734548569, 0.07012086361646652, 0.2163677215576172, 0.06164073571562767, 0.03168521821498871, -0.017447616904973984, 0.008418331854045391, -0.11339852213859558, 0.11061214655637741, 0.04519093409180641, 0.06823432445526123, -0.14646613597869873, 0.11587050557136536, -0.015727465972304344, 0.02495487593114376, -0.02533199079334736, 0.026403261348605156, -0.11744826287031174, 0.01147575955837965, -0.14627821743488312, 0.05394823104143143, -0.05587800592184067, 0.004396585747599602, 0.00706110754981637, -0.056114312261343, -0.0706772431731224, 0.034763094037771225, -0.09286361187696457, -0.030004320666193962, 0.0049022468738257885, 0.03647990897297859, -0.13249318301677704, -0.03307902812957764, 0.018925711512565613, -0.09960555285215378, 0.1019238755106926, 0.05885067582130432, -0.018056461587548256, 0.04574736952781677, -0.1150609701871872, -0.03010399267077446, 0.07337243109941483, 0.014473870396614075, 0.05624442547559738, -0.12246954441070557, -0.03631245344877243, 0.01771981082856655, 0.022298045456409454, 0.01760168746113777, 0.11799582093954086, -0.09618406742811203, 0.01204153336584568, -0.022656630724668503, -0.01208792719990015, -0.05695350468158722, 0.01780855469405651, 0.11104132980108261, 0.022894855588674545, 0.15558363497257233, -0.09993931651115417, 0.008565147407352924, -0.1832948923110962, -0.0005412423051893711, -0.019095033407211304, -0.11106836795806885, -0.11574822664260864, -0.0049544572830200195, 0.08544056117534637, -0.07203175127506256, 0.11254741251468658, -0.05579017847776413, 0.01858634501695633, 0.02793101966381073, -0.052619196474552155, -0.03907065838575363, 0.05091674625873566, 0.20321890711784363, 0.04325638338923454, -0.03485757112503052, 0.06155044957995415, -0.014558817259967327, 0.09744757413864136, 0.09995421022176743, 0.15737716853618622, 0.15704390406608582, 0.07030757516622543, 0.12281396985054016, 0.08372491598129272, -0.05185065045952797, -0.15671880543231964, 0.05434349551796913, -0.07844970375299454, 0.11937134712934494, -0.003698879387229681, 0.19599823653697968, 0.10510700941085815, -0.12325511127710342, 0.017096078023314476, -0.04304680973291397, -0.08304844051599503, -0.10995044559240341, -0.06291265785694122, -0.10993708670139313, -0.13319607079029083, 0.0006502840551547706, -0.11679433286190033, 0.02228342927992344, 0.08178167790174484, 0.02289886213839054, 0.019076641649007797, 0.1472093164920807, -0.008880493231117725, 0.05105264112353325, 0.07077731937170029, -0.009628964588046074, -0.05563129484653473, -0.016096483916044235, -0.10109423100948334, 0.04725433886051178, 0.025623423978686333, 0.05894210562109947, -0.009952942840754986, -0.035064611583948135, 0.07017426937818527, -0.02025395818054676, -0.11677761375904083, 0.014983261935412884, 0.00980759970843792, 0.056707728654146194, 0.029363341629505157, 0.05678620934486389, -0.013942847959697247, 0.01449260301887989, 0.20588436722755432, -0.09717857837677002, -0.11521829664707184, -0.14177344739437103, 0.18006600439548492, -0.013315352611243725, -0.014675081707537174, 0.014569193124771118, -0.08950605243444443, -0.02605634182691574, 0.17809627950191498, 0.19374603033065796, -0.05199835076928139, 0.003235545242205262, -0.03814956545829773, -0.002785347169265151, -0.07368181645870209, 0.0733838677406311, 0.12397715449333191, 0.07091996818780899, -0.05419512465596199, -0.05520976334810257, -0.03642336651682854, -0.030847154557704926, -0.0404658168554306, 0.03606013208627701, -0.028954196721315384, -0.006494378205388784, -0.04469893127679825, 0.057992979884147644, -0.09258225560188293, -0.10527916252613068, -0.00040223964606411755, -0.20833276212215424, -0.1687675267457962, 0.00417300732806325, 0.07911945879459381, 0.03212394937872887, 0.028318211436271667, -0.012253234162926674, 0.00021580942848231643, 0.08203965425491333, -0.029652435332536697, -0.06635201722383499, -0.04245767742395401, 0.0534469336271286, -0.09109541773796082, 0.21040211617946625, -0.019157133996486664, 0.06370812654495239, 0.12168209254741669, 0.06113966926932335, -0.11188666522502899, 0.08761792629957199, 0.06347261369228363, -0.10575605183839798, 0.029891571030020714, 0.14618797600269318, -0.06277395039796829, 0.13370433449745178, 0.05734676495194435, -0.1043623760342598, -0.03006412647664547, -0.02347303181886673, -0.03269651532173157, -0.061209358274936676, -0.05205981805920601, -0.053864605724811554, 0.1346656084060669, 0.1382024586200714, -0.07198037952184677, 0.003933044616132975, -0.009475797414779663, 0.024455105885863304, 0.041742440313100815, 0.0062119378708302975, -0.03529017046093941, -0.2672055959701538, 0.009498773142695427, 0.004874990321695805, 0.017476601526141167, -0.2497686743736267, -0.07322251796722412, -0.007318982854485512, -0.031901322305202484, -0.07763360440731049, 0.09062253683805466, 0.11694224178791046, 0.03633561730384827, -0.06715060025453568, -0.022874874994158745, -0.031744956970214844, 0.1601707637310028, -0.15446433424949646, -0.10832486301660538 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # cse499Kaggle This model is a fine-tuned version of [google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7604 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 3.2633 | 1.1 | 6000 | 3.1751 | | 2.8667 | 2.19 | 12000 | 2.7604 | ### Framework versions - Transformers 4.37.0 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/t5-v1_1-small", "model-index": [{"name": "cse499Kaggle", "results": []}]}
text2text-generation
OmarHaroon01/cse499Kaggle
[ "transformers", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/t5-v1_1-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:50:48+00:00
[]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/t5-v1_1-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
cse499Kaggle ============ This model is a fine-tuned version of google/t5-v1\_1-small on the None dataset. It achieves the following results on the evaluation set: * Loss: 2.7604 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.001 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 200 * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.37.0 * Pytorch 2.1.2 * Datasets 2.1.0 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 200\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/t5-v1_1-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 200\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ 79, 115, 4, 30 ]
[ "passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/t5-v1_1-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.001\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 200\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1" ]
[ -0.10616952925920486, 0.12364950031042099, -0.0026193237863481045, 0.09935956448316574, 0.09261144697666168, -0.01839611679315567, 0.1851331740617752, 0.1560874581336975, -0.11216992884874344, 0.05798390135169029, 0.15356458723545074, 0.11210208386182785, 0.03272123262286186, 0.2109704464673996, -0.07633611559867859, -0.2177833616733551, 0.052157074213027954, 0.011245109140872955, -0.0036189977545291185, 0.1264350712299347, 0.09126346558332443, -0.11938994377851486, 0.1047535240650177, 0.014656881801784039, -0.1379479318857193, -0.019956156611442566, 0.018735021352767944, -0.08353561162948608, 0.1096106469631195, 0.010783339850604534, 0.06469694525003433, 0.06812804192304611, 0.05270813778042793, -0.16830825805664062, 0.009519960731267929, 0.05376522243022919, 0.0013922537909820676, 0.08875179290771484, 0.04025571793317795, -0.024711303412914276, 0.06979287415742874, -0.07224219292402267, 0.06979154795408249, 0.03230959177017212, -0.1282355785369873, -0.2788856625556946, -0.11142486333847046, 0.04763651639223099, 0.0931997299194336, 0.07473338395357132, -0.008893867023289204, 0.19610971212387085, -0.013750442303717136, 0.10892288386821747, 0.26903700828552246, -0.32052916288375854, -0.049793511629104614, -0.0024696928448975086, 0.04417797550559044, 0.09367899596691132, -0.0740894004702568, -0.00825415551662445, 0.03921716660261154, 0.02988697960972786, 0.15156793594360352, -0.01608811318874359, -0.0019975961185991764, -0.027042152360081673, -0.11726213246583939, -0.07239899039268494, 0.18823730945587158, 0.03842104598879814, -0.07052680104970932, -0.09101120382547379, -0.08283681422472, -0.1486113965511322, -0.046552982181310654, -0.009593192487955093, 0.04740633815526962, -0.03531331568956375, -0.10231781005859375, -0.03187762200832367, -0.08785506337881088, -0.05261193588376045, -0.01128954254090786, 0.15802575647830963, 0.04112210497260094, 0.016765929758548737, -0.05476813390851021, 0.08276383578777313, -0.018363237380981445, -0.17695017158985138, -0.032545655965805054, 0.0005670302780345082, 0.046285342425107956, -0.04631246253848076, -0.03746068850159645, -0.09820278733968735, 0.03387198597192764, 0.19061167538166046, -0.11150290817022324, 0.07729443162679672, -0.03193376958370209, 0.023847753182053566, -0.07630646228790283, 0.1587056815624237, 0.0026794488076120615, -0.01037668902426958, 0.054050154983997345, 0.09920284897089005, 0.10739155113697052, -0.020821139216423035, -0.11466141790151596, 0.04610513895750046, 0.12285847216844559, 0.046392474323511124, -0.024207085371017456, 0.057854581624269485, -0.047909047454595566, -0.006126920692622662, 0.07252321392297745, -0.09965105354785919, 0.021568799391388893, -0.0009964334312826395, -0.04785657301545143, -0.0896146222949028, 0.02049272693693638, 0.015901383012533188, -0.016360651701688766, 0.06024938076734543, -0.0760587826371193, 0.0016457431484013796, -0.046847712248563766, -0.11664517223834991, 0.025877153500914574, -0.08283842355012894, 0.009758398868143559, -0.12125895172357559, -0.17838174104690552, 0.0057977912947535515, 0.05769974738359451, -0.04411732032895088, -0.05038353055715561, -0.055130042135715485, -0.09227700531482697, 0.04102503880858421, -0.02549615502357483, 0.04252341762185097, -0.08629492670297623, 0.09541021287441254, 0.06425595283508301, 0.07900405675172806, -0.03355201706290245, 0.018913816660642624, -0.1095077246427536, 0.05462603643536568, -0.22633051872253418, 0.05576653778553009, -0.04457392916083336, 0.077771857380867, -0.10365099459886551, -0.0816473662853241, 0.028953859582543373, -0.028208330273628235, 0.09146151691675186, 0.13834184408187866, -0.15441253781318665, -0.06060880422592163, 0.2047223597764969, -0.1253812164068222, -0.19560077786445618, 0.13558462262153625, -0.03198458254337311, 0.0494559220969677, 0.06754191964864731, 0.22474350035190582, 0.06720898300409317, -0.11289939284324646, -0.015737712383270264, -0.04936714842915535, 0.06189363822340965, -0.054470133036375046, 0.08016248047351837, 0.004446052014827728, 0.04243043065071106, 0.004928813315927982, -0.028132425621151924, 0.034348003566265106, -0.07511033862829208, -0.08007518947124481, -0.05719835311174393, -0.09025383740663528, 0.025683755055069923, 0.02417617291212082, 0.0661579966545105, -0.15615591406822205, -0.0982784703373909, 0.021984845399856567, 0.07020126283168793, -0.08072242140769958, 0.04251565784215927, -0.1060691550374031, 0.12766550481319427, -0.07494507730007172, 0.0009452035883441567, -0.1505381166934967, -0.050165873020887375, 0.04857706278562546, -0.004726805258542299, -0.009317328222095966, -0.09405340999364853, 0.0848795548081398, 0.0936586782336235, -0.06613822281360626, -0.05624660849571228, -0.012219798751175404, 0.017749695107340813, -0.1101580560207367, -0.19007806479930878, -0.02553541213274002, -0.0471295528113842, 0.10757765918970108, -0.1533096879720688, 0.0511452853679657, 0.06707842648029327, 0.10782182216644287, 0.06102295219898224, -0.03256053477525711, 0.0026407563127577305, 0.02936762385070324, -0.05067925527691841, -0.08511073887348175, 0.0490218885242939, 0.04034922271966934, -0.08826854825019836, 0.021880779415369034, -0.16681350767612457, 0.19472743570804596, 0.13808280229568481, 0.03617309778928757, -0.06245763227343559, -0.005260673817247152, -0.05415566638112068, -0.018113134428858757, -0.04441910982131958, 0.011181431822478771, 0.1078290343284607, 0.015871545299887657, 0.15864339470863342, -0.11948081851005554, -0.04929644614458084, 0.05232483148574829, -0.04882196709513664, -0.013948856852948666, 0.09275566041469574, -0.014316778630018234, -0.14377713203430176, 0.1367502510547638, 0.16307923197746277, -0.02514280006289482, 0.11471948772668839, -0.06973248720169067, -0.04663772135972977, -0.03562457859516144, 0.0248587466776371, 0.03944598510861397, 0.1108967512845993, -0.07155220955610275, -0.00477907620370388, 0.021818822249770164, 0.02760472521185875, -0.009031640365719795, -0.18314963579177856, -0.004916912876069546, 0.04564680531620979, -0.06954745948314667, -0.0397547148168087, -0.007427637930959463, -0.015057209879159927, 0.09223774075508118, 0.012836761772632599, -0.04854098707437515, 0.04589397460222244, 0.01741671748459339, -0.08252251148223877, 0.18669666349887848, -0.08843383938074112, -0.15218114852905273, -0.11405526846647263, -0.07533286511898041, -0.0725724920630455, 0.02350648120045662, 0.10330910235643387, -0.0716286301612854, -0.05373690277338028, -0.14618392288684845, -0.03832225501537323, 0.03518685698509216, 0.0298576969653368, 0.04340175911784172, -0.003554979106411338, 0.08464076370000839, -0.10203716903924942, -0.034268077462911606, -0.001931666280142963, 0.019349856302142143, 0.059096675366163254, 0.005978303030133247, 0.10028630495071411, 0.08638497442007065, -0.017943643033504486, 0.0415714792907238, -0.04093334451317787, 0.2461085170507431, -0.06157257780432701, -0.00707760127261281, 0.1551099717617035, 0.0001672686485107988, 0.08294513821601868, 0.13171671330928802, 0.028617829084396362, -0.10945542901754379, 0.017115021124482155, -0.008736160583794117, -0.04506753757596016, -0.19845838844776154, -0.006944684311747551, -0.028605567291378975, 0.021338539198040962, 0.11267921328544617, 0.04084160178899765, 0.010528077371418476, 0.061519939452409744, -0.004059529863297939, 0.03701998293399811, 0.029113024473190308, 0.12054244428873062, 0.10980848222970963, 0.0591774620115757, 0.12822367250919342, -0.055581118911504745, -0.021021012216806412, 0.045672327280044556, 0.0021677056793123484, 0.18331554532051086, -0.011230484582483768, 0.18618875741958618, 0.03396857529878616, 0.15061484277248383, 0.01791122741997242, 0.07492448389530182, 0.0011692277621477842, -0.013668438419699669, -0.012600073590874672, -0.061641957610845566, -0.049177203327417374, 0.03342035040259361, -0.08481653779745102, 0.04510948434472084, -0.11762520670890808, 0.06095404922962189, 0.06475329399108887, 0.32167375087738037, 0.05979200080037117, -0.3820081651210785, -0.12093830853700638, 0.030876386910676956, -0.02888331189751625, -0.038407884538173676, 0.021540626883506775, 0.12409605830907822, -0.06165511533617973, 0.08604679256677628, -0.07730573415756226, 0.08338093012571335, -0.046711862087249756, 0.034123022109270096, 0.03266849368810654, 0.061906032264232635, -0.016964932903647423, 0.03851679340004921, -0.2652881443500519, 0.2635469436645508, 0.028330886736512184, 0.08205916732549667, -0.05556096136569977, 0.012537042610347271, 0.013340464793145657, 0.07020539790391922, 0.08618004620075226, -0.009871729649603367, -0.12799309194087982, -0.15693135559558868, -0.12251750379800797, 0.015834923833608627, 0.0935072973370552, -0.0191063042730093, 0.12304066866636276, -0.02684500813484192, -0.014649031683802605, 0.044802263379096985, -0.023441292345523834, -0.06839801371097565, -0.08697487413883209, 0.003642217256128788, 0.050123702734708786, 0.0055574229918420315, -0.09299452602863312, -0.09545447677373886, -0.049119871109724045, 0.16761021316051483, 0.030629269778728485, -0.08569777011871338, -0.12299461662769318, 0.015301749110221863, 0.05637888237833977, -0.0878230556845665, 0.037416137754917145, -0.008626168593764305, 0.12207774072885513, -0.004657064098864794, -0.06815440207719803, 0.11819622665643692, -0.07311705499887466, -0.20470480620861053, -0.044261425733566284, 0.13685336709022522, -0.004995047114789486, 0.03922329843044281, 0.006592950783669949, 0.042370911687612534, -0.014855614863336086, -0.06510671228170395, 0.04256438463926315, -0.003736109472811222, 0.09587133675813675, -0.04493836686015129, -0.0017930421745404601, 0.030719053000211716, -0.06209973990917206, -0.028773993253707886, 0.1611081212759018, 0.3300371468067169, -0.08012083917856216, 0.06898996978998184, 0.0603380911052227, -0.02834535390138626, -0.16259044408798218, -0.011596940457820892, 0.03349579498171806, -0.01792452111840248, 0.028969261795282364, -0.13947516679763794, 0.02508012019097805, 0.07488082349300385, -0.03885975852608681, 0.07400114834308624, -0.2883656919002533, -0.1334322988986969, 0.08671819418668747, 0.15231859683990479, 0.12439853698015213, -0.1681985706090927, -0.061742980033159256, -0.04117484390735626, -0.13183508813381195, 0.11568033695220947, -0.12871113419532776, 0.10485316812992096, -0.01933714561164379, 0.05043437331914902, 0.011907664127647877, -0.0616733580827713, 0.12242653220891953, -0.03902648016810417, 0.08690754324197769, -0.07178305089473724, 0.03913595899939537, 0.10951168835163116, -0.10965652763843536, 0.0665876567363739, -0.12055174261331558, 0.06216833367943764, -0.06011229380965233, -0.01660291850566864, -0.05593053996562958, 0.014050181955099106, -0.02965509332716465, -0.04077077656984329, -0.040980707854032516, 0.0011720872716978192, 0.07711794972419739, -0.029103698208928108, 0.20977415144443512, 0.025791354477405548, 0.1436196267604828, 0.18375977873802185, 0.10111938416957855, -0.1243278905749321, -0.010067650116980076, 0.005681516602635384, -0.052824389189481735, 0.03180943429470062, -0.1652941107749939, 0.05939960852265358, 0.09292405843734741, 0.001328055514022708, 0.1135435402393341, 0.0570211187005043, -0.04761091247200966, 0.032246168702840805, 0.05836733430624008, -0.18940982222557068, -0.13106845319271088, -0.015368547290563583, 0.025272149592638016, -0.12744955718517303, 0.06824348121881485, 0.143453449010849, -0.07059323042631149, -0.009726514108479023, -0.012577892281115055, 0.03491020202636719, 0.004332166630774736, 0.16546086966991425, 0.027760077267885208, 0.06597694009542465, -0.10178308933973312, 0.10478726774454117, 0.042864978313446045, -0.0809754803776741, 0.060082439333200455, 0.07900125533342361, -0.11787578463554382, -0.029523374512791634, 0.040642160922288895, 0.1496516466140747, -0.02712065912783146, -0.053799621760845184, -0.17850945889949799, -0.12301280349493027, 0.06466437131166458, 0.16990984976291656, 0.06564880162477493, 0.02377147227525711, -0.0012415735982358456, -0.001083720475435257, -0.11144909262657166, 0.1225552037358284, 0.046679042279720306, 0.0899161696434021, -0.15381266176700592, 0.08704733103513718, -0.012903695926070213, 0.02714807540178299, -0.015775732696056366, 0.02514581009745598, -0.11762133240699768, 0.0022873925045132637, -0.14987769722938538, 0.026810558512806892, -0.05084652826189995, 0.002586256479844451, -0.021694323047995567, -0.040567100048065186, -0.0630570501089096, 0.025705641135573387, -0.10339760780334473, -0.035212162882089615, 0.01557199191302061, 0.031351882964372635, -0.1369263082742691, -0.026429308578372, 0.009689340367913246, -0.10343209654092789, 0.09418605268001556, 0.04723460599780083, -0.016310960054397583, 0.013791175559163094, -0.05525067448616028, 0.0024849125184118748, 0.06178220361471176, -0.01225501112639904, 0.05671553686261177, -0.13236549496650696, -0.025654727593064308, 0.027265334501862526, 0.004113123752176762, 0.029305918142199516, 0.14556485414505005, -0.1071101725101471, 0.011708550155162811, 0.00566569110378623, -0.048990100622177124, -0.05952156335115433, 0.039907149970531464, 0.1004205197095871, -0.010252337902784348, 0.20484977960586548, -0.10223177075386047, 0.0049417102709412575, -0.19108402729034424, -0.0065660299733281136, 0.011708592064678669, -0.14991545677185059, -0.1269046515226364, -0.02636105567216873, 0.06063728407025337, -0.06631942093372345, 0.10658494383096695, -0.016559060662984848, 0.04246417060494423, 0.049355801194906235, -0.04423239454627037, 0.019962046295404434, 0.01859945058822632, 0.18550172448158264, 0.00540789682418108, -0.047714851796627045, 0.07773441076278687, 0.013729478232562542, 0.1056780219078064, 0.055545300245285034, 0.18735504150390625, 0.12744663655757904, 0.011625297367572784, 0.11700022965669632, 0.023584945127367973, -0.02162909507751465, -0.18220876157283783, 0.029293084517121315, -0.037838902324438095, 0.13184404373168945, -0.0031600689981132746, 0.16779069602489471, 0.14504267275333405, -0.15386247634887695, 0.011595449410378933, -0.04737958312034607, -0.06616824120283127, -0.11834292113780975, -0.09541017562150955, -0.11304239928722382, -0.16539563238620758, -0.004479312337934971, -0.11243323981761932, 0.0240633524954319, 0.04154231399297714, 0.005918086040765047, -0.0023414315655827522, 0.14241254329681396, 0.02612905204296112, 0.01600673981010914, 0.04241672903299332, -0.009139382280409336, -0.0533301904797554, -0.012239934876561165, -0.10539653897285461, 0.019380684942007065, -0.006561862770467997, 0.03650205209851265, 0.004420164506882429, -0.011107075959444046, 0.04687932878732681, -0.025606263428926468, -0.12468976527452469, 0.012585937045514584, 0.037183728069067, 0.06397737562656403, 0.01469794474542141, 0.023117298260331154, -0.007227159105241299, 0.004227107856422663, 0.21912240982055664, -0.07762937992811203, -0.06316204369068146, -0.10957429558038712, 0.24151493608951569, 0.015030157752335072, -0.024548286572098732, 0.027450161054730415, -0.09078801423311234, -0.0019555212929844856, 0.17659041285514832, 0.17313483357429504, -0.024279426783323288, -0.0013486463576555252, -0.04876270145177841, -0.013330493122339249, -0.023888636380434036, 0.09823459386825562, 0.11180605739355087, -0.011101377196609974, -0.058600541204214096, -0.022192930802702904, -0.04015522822737694, -0.015654465183615685, -0.06463489681482315, 0.10086582601070404, -0.010719344951212406, 0.012851986102759838, -0.04721573367714882, 0.05938349664211273, -0.02648051083087921, -0.05998264253139496, 0.017079224810004234, -0.19933480024337769, -0.14214909076690674, 0.0025824105832725763, 0.08136395364999771, -0.010095217265188694, 0.05549822375178337, 0.004094647243618965, 0.011181293055415154, 0.06386139988899231, -0.022934138774871826, -0.06912099570035934, -0.07362264394760132, 0.08454456925392151, -0.16550715267658234, 0.23900189995765686, -0.02495652437210083, 0.01668788120150566, 0.1365649700164795, 0.016102977097034454, -0.13562406599521637, 0.08787941932678223, 0.051964856684207916, -0.05593292415142059, 0.018571071326732635, 0.11702770739793777, -0.03591560199856758, 0.10418731719255447, 0.04741920903325081, -0.1037473976612091, -0.018899764865636826, -0.036785513162612915, -0.031035123392939568, -0.040308889001607895, -0.055454377084970474, -0.044752951711416245, 0.1221875324845314, 0.14839515089988708, -0.06223248690366745, 0.009349682368338108, -0.04995891824364662, 0.04012926667928696, 0.08007083088159561, -0.025468137115240097, -0.021571019664406776, -0.2873144745826721, 0.008961375802755356, 0.11742137372493744, 0.0022896279115229845, -0.2869754433631897, -0.08825802057981491, -0.010879910551011562, -0.027739476412534714, -0.10464886575937271, 0.0889173150062561, 0.10333990305662155, 0.042528506368398666, -0.06867062300443649, -0.019558480009436607, -0.07191391289234161, 0.17706464231014252, -0.12835478782653809, -0.07951325178146362 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # SMIDS_5x_beit_large_RMSProp_lr00001_fold3 This model is a fine-tuned version of [microsoft/beit-large-patch16-224](https://huggingface.co/microsoft/beit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9369 - Accuracy: 0.93 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.1575 | 1.0 | 750 | 0.2268 | 0.9267 | | 0.1238 | 2.0 | 1500 | 0.3643 | 0.915 | | 0.035 | 3.0 | 2250 | 0.5304 | 0.9233 | | 0.0169 | 4.0 | 3000 | 0.5781 | 0.9233 | | 0.0316 | 5.0 | 3750 | 0.5413 | 0.9233 | | 0.0012 | 6.0 | 4500 | 0.6539 | 0.9217 | | 0.0 | 7.0 | 5250 | 0.6308 | 0.9267 | | 0.0002 | 8.0 | 6000 | 0.7416 | 0.9067 | | 0.0013 | 9.0 | 6750 | 0.8024 | 0.9117 | | 0.008 | 10.0 | 7500 | 0.8066 | 0.9133 | | 0.0215 | 11.0 | 8250 | 0.9715 | 0.8933 | | 0.0 | 12.0 | 9000 | 0.7614 | 0.905 | | 0.0 | 13.0 | 9750 | 0.7051 | 0.9283 | | 0.0 | 14.0 | 10500 | 0.7255 | 0.9117 | | 0.0286 | 15.0 | 11250 | 0.6931 | 0.9217 | | 0.0 | 16.0 | 12000 | 0.7128 | 0.9233 | | 0.0143 | 17.0 | 12750 | 1.0738 | 0.905 | | 0.0 | 18.0 | 13500 | 0.9735 | 0.915 | | 0.0002 | 19.0 | 14250 | 0.8969 | 0.9183 | | 0.0 | 20.0 | 15000 | 0.7993 | 0.925 | | 0.0057 | 21.0 | 15750 | 0.7570 | 0.925 | | 0.0 | 22.0 | 16500 | 0.7679 | 0.9317 | | 0.0 | 23.0 | 17250 | 0.8761 | 0.9283 | | 0.0 | 24.0 | 18000 | 0.9300 | 0.9083 | | 0.0001 | 25.0 | 18750 | 0.8335 | 0.9183 | | 0.0 | 26.0 | 19500 | 0.7853 | 0.9267 | | 0.0 | 27.0 | 20250 | 0.8555 | 0.9283 | | 0.0 | 28.0 | 21000 | 0.7815 | 0.9267 | | 0.0 | 29.0 | 21750 | 0.8761 | 0.915 | | 0.0 | 30.0 | 22500 | 0.7865 | 0.9217 | | 0.0 | 31.0 | 23250 | 0.8877 | 0.9183 | | 0.0 | 32.0 | 24000 | 0.9241 | 0.9233 | | 0.0 | 33.0 | 24750 | 0.9657 | 0.92 | | 0.0 | 34.0 | 25500 | 0.9177 | 0.9233 | | 0.0 | 35.0 | 26250 | 0.9965 | 0.9217 | | 0.0051 | 36.0 | 27000 | 0.9433 | 0.925 | | 0.0 | 37.0 | 27750 | 0.9408 | 0.9233 | | 0.0 | 38.0 | 28500 | 1.0177 | 0.925 | | 0.0 | 39.0 | 29250 | 0.9743 | 0.9233 | | 0.0 | 40.0 | 30000 | 0.9171 | 0.9317 | | 0.0 | 41.0 | 30750 | 0.9316 | 0.9317 | | 0.0 | 42.0 | 31500 | 0.9187 | 0.93 | | 0.0 | 43.0 | 32250 | 0.8924 | 0.9283 | | 0.0 | 44.0 | 33000 | 0.9153 | 0.93 | | 0.0 | 45.0 | 33750 | 0.9646 | 0.9267 | | 0.0 | 46.0 | 34500 | 0.9528 | 0.93 | | 0.0 | 47.0 | 35250 | 0.9375 | 0.9317 | | 0.0 | 48.0 | 36000 | 0.9250 | 0.93 | | 0.0 | 49.0 | 36750 | 0.9269 | 0.93 | | 0.0 | 50.0 | 37500 | 0.9369 | 0.93 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-large-patch16-224", "model-index": [{"name": "SMIDS_5x_beit_large_RMSProp_lr00001_fold3", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.93, "name": "Accuracy"}]}]}]}
image-classification
onizukal/SMIDS_5x_beit_large_RMSProp_lr00001_fold3
[ "transformers", "pytorch", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-large-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-06T13:52:52+00:00
[]
[]
TAGS #transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
SMIDS\_5x\_beit\_large\_RMSProp\_lr00001\_fold3 =============================================== This model is a fine-tuned version of microsoft/beit-large-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 0.9369 * Accuracy: 0.93 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 50 ### Training results ### Framework versions * Transformers 4.32.1 * Pytorch 2.0.1 * Datasets 2.12.0 * Tokenizers 0.13.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ "TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50", "### Training results", "### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ 81, 116, 4, 30 ]
[ "passage: TAGS\n#transformers #pytorch #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-large-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 50### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1\n* Datasets 2.12.0\n* Tokenizers 0.13.2" ]
[ -0.1292150914669037, 0.17132072150707245, -0.002415567170828581, 0.13183215260505676, 0.11657863855361938, 0.020753253251314163, 0.1335890144109726, 0.16620413959026337, -0.08238927274942398, 0.04929587244987488, 0.13697229325771332, 0.1357421576976776, 0.04955337569117546, 0.20790311694145203, -0.053285520523786545, -0.26080378890037537, 0.0391765721142292, 0.03443576768040657, -0.020672276616096497, 0.12494900077581406, 0.09484300017356873, -0.1312379240989685, 0.11272566765546799, 0.025938162580132484, -0.20840293169021606, -0.033587437123060226, -0.01026944164186716, -0.06854863464832306, 0.10221196711063385, 0.001568986801430583, 0.0741027221083641, 0.037979885935783386, 0.08491890877485275, -0.12677186727523804, 0.000941311358474195, 0.04326357692480087, 0.0062435888685286045, 0.1065368577837944, 0.062226198613643646, -0.008521218784153461, 0.06926212459802628, -0.07453521341085434, 0.06115834787487984, 0.008060229010879993, -0.11478453874588013, -0.2692618668079376, -0.09817449003458023, 0.07377522438764572, 0.08109822124242783, 0.06491127610206604, 0.006432840134948492, 0.16222304105758667, -0.015434488654136658, 0.1024109497666359, 0.23076069355010986, -0.2713507413864136, -0.054792311042547226, 0.022649891674518585, 0.0155020197853446, 0.06252340972423553, -0.10333037376403809, -0.01993185468018055, 0.019141921773552895, 0.042880840599536896, 0.14450453221797943, -0.012332411482930183, -0.03331032395362854, -0.02637922763824463, -0.11139829456806183, -0.08930420875549316, 0.18604889512062073, 0.06140090152621269, -0.04917457327246666, -0.07841385900974274, -0.07612120360136032, -0.17419220507144928, -0.03924720734357834, 0.008911197073757648, 0.046679239720106125, -0.04711441695690155, -0.10239296406507492, -0.03511375933885574, -0.07504668086767197, -0.05196268856525421, -0.026160720735788345, 0.1420334428548813, 0.03879573196172714, 0.05471520125865936, -0.027205273509025574, 0.10149593651294708, 0.010796112939715385, -0.1717151701450348, -0.02661297097802162, 0.0005703883362002671, 0.010487399995326996, -0.01821139082312584, -0.029929913580417633, -0.06737607717514038, -0.003975129686295986, 0.15347014367580414, -0.07002666592597961, 0.058850113302469254, -0.0054583000019192696, 0.041531506925821304, -0.049319881945848465, 0.1874888390302658, -0.029916515573859215, -0.016198426485061646, 0.019476165995001793, 0.08928463608026505, 0.0656052976846695, -0.030047036707401276, -0.12371734529733658, 0.021691862493753433, 0.13241209089756012, 0.006458523217588663, -0.022870952263474464, 0.054544735699892044, -0.0711979940533638, -0.0584990456700325, 0.09274657070636749, -0.09275025129318237, 0.035496871918439865, -0.011692462489008904, -0.08981472253799438, -0.06787234544754028, 0.029122935608029366, 0.011931490153074265, -0.009771439246833324, 0.06940538436174393, -0.09093258529901505, 0.01846885494887829, -0.06650768965482712, -0.09852384030818939, 0.01388985849916935, -0.11549968272447586, 0.010918805375695229, -0.10079170018434525, -0.19154705107212067, 0.0032797311432659626, 0.07527101784944534, -0.06246669217944145, -0.06951755285263062, -0.033377837389707565, -0.07729615271091461, 0.03790769353508949, -0.01523390132933855, 0.07408059388399124, -0.07056254893541336, 0.09071778506040573, 0.02892814762890339, 0.09002465009689331, -0.052364569157361984, 0.048610031604766846, -0.09854818880558014, 0.05158581584692001, -0.19896768033504486, 0.0824570581316948, -0.04529954120516777, 0.05730293318629265, -0.10005063563585281, -0.10804302245378494, 0.029095064848661423, -0.0466112419962883, 0.07224688678979874, 0.09985066950321198, -0.16068536043167114, -0.05396431311964989, 0.14283035695552826, -0.09281232208013535, -0.14269256591796875, 0.09829698503017426, -0.045770496129989624, 0.014614340849220753, 0.04329100251197815, 0.2130173146724701, 0.04901750758290291, -0.08417420834302902, -0.023242823779582977, -0.02969830296933651, 0.03785223513841629, -0.0668954998254776, 0.10032020509243011, 0.025215676054358482, 0.05325069651007652, 0.02284027636051178, -0.029413679614663124, 0.04126512631773949, -0.08672589063644409, -0.09880872070789337, -0.053216658532619476, -0.0853687971830368, 0.03892384096980095, 0.05334646999835968, 0.0614997074007988, -0.10279879719018936, -0.09344549477100372, 0.0453280434012413, 0.09495674818754196, -0.07567895948886871, 0.02865210548043251, -0.08989366888999939, 0.10926083475351334, -0.08635354787111282, -0.02427433431148529, -0.18316780030727386, -0.041861772537231445, 0.04194685444235802, -0.025394707918167114, -0.007599220145493746, -0.05216266214847565, 0.06521623581647873, 0.0848059430718422, -0.05379978567361832, -0.05897609516978264, -0.05670713260769844, 0.002749721286818385, -0.10883764177560806, -0.17341645061969757, -0.08353621512651443, -0.03381705656647682, 0.14265403151512146, -0.15880316495895386, 0.019960513338446617, 0.05115775763988495, 0.12808771431446075, 0.060330405831336975, -0.044940851628780365, -0.0009795452933758497, 0.02373526245355606, -0.05278978496789932, -0.09012233465909958, 0.059676408767700195, 0.0331520177423954, -0.07579167187213898, -0.016548609361052513, -0.09850107133388519, 0.1460651308298111, 0.1280234009027481, -0.010448831133544445, -0.04986010119318962, -0.011923554353415966, -0.06967874616384506, -0.030430803075432777, -0.036602724343538284, 0.019139016047120094, 0.09450183063745499, 0.012393946759402752, 0.14818525314331055, -0.09332848340272903, -0.034156475216150284, 0.05024607852101326, -0.028047295287251472, -0.03259625658392906, 0.0731319710612297, 0.025664178654551506, -0.14941470324993134, 0.14837577939033508, 0.14845694601535797, -0.04714515432715416, 0.12564225494861603, -0.03889495134353638, -0.06329566240310669, -0.04632000997662544, -0.02844901941716671, 0.013190032914280891, 0.13346467912197113, -0.076783187687397, -0.004412572830915451, 0.05686868354678154, 0.017921162769198418, -0.004722983110696077, -0.1827412098646164, 0.003951311111450195, 0.0321657620370388, -0.05121494084596634, -0.011695281602442265, -0.017026077955961227, 0.003609517589211464, 0.09151934087276459, 0.02040533348917961, -0.06441836804151535, 0.05384209007024765, 0.012033452279865742, -0.05366513133049011, 0.1677880585193634, -0.07823625206947327, -0.20364677906036377, -0.12268579006195068, -0.06752478331327438, -0.10258819162845612, 0.012170074507594109, 0.06315170973539352, -0.04569438472390175, -0.050954580307006836, -0.0997823104262352, -0.037851084023714066, 0.021281057968735695, 0.026625970378518105, 0.05139283835887909, -0.005415658466517925, 0.09185726940631866, -0.09241294115781784, -0.030897676944732666, -0.01631389558315277, 0.009287231601774693, 0.06772445887327194, 0.019780615344643593, 0.1102219671010971, 0.07713042199611664, -0.029881305992603302, 0.05137522891163826, -0.013354548253118992, 0.2620471715927124, -0.06917091459035873, -0.002909549279138446, 0.1375615894794464, -0.015162656083703041, 0.08283410966396332, 0.1273423582315445, 0.041794080287218094, -0.09746479243040085, -0.011291430331766605, -0.0008301159832626581, -0.049490246921777725, -0.16143162548542023, -0.04317644611001015, -0.0434197373688221, -0.010716320015490055, 0.1416788250207901, 0.03848205506801605, 0.024626927450299263, 0.07702240347862244, 0.015813151374459267, 0.057987019419670105, -0.02077260985970497, 0.1017511859536171, 0.0805719867348671, 0.06816057115793228, 0.13305824995040894, -0.036980245262384415, -0.02092074789106846, 0.057033997029066086, 0.04002218693494797, 0.21362732350826263, -0.02804172970354557, 0.15433214604854584, 0.026679744943976402, 0.1909136176109314, 0.019870078191161156, 0.07247955352067947, -0.010095180943608284, 0.0028269465547055006, -0.018500015139579773, -0.04554403945803642, -0.05979170650243759, 0.03185109794139862, -0.016015755012631416, 0.05207211896777153, -0.09269700944423676, 0.028567379340529442, 0.06037893891334534, 0.3028397262096405, 0.061388690024614334, -0.41139692068099976, -0.09273239970207214, 0.009406263940036297, -0.002105827210471034, -0.06053102761507034, -0.011343861930072308, 0.09683393687009811, -0.09968853741884232, 0.08300996571779251, -0.09414921700954437, 0.08760150521993637, -0.08863518387079239, 0.016419410705566406, 0.07728815078735352, 0.06722814589738846, 0.01766069419682026, 0.057678405195474625, -0.22131015360355377, 0.2517315745353699, 0.02006395347416401, 0.04867706075310707, -0.08515261113643646, 0.013813616707921028, 0.029918700456619263, 0.058915551751852036, 0.08619558066129684, 0.0083828279748559, -0.09208258241415024, -0.19043345749378204, -0.12182265520095825, -0.0015020827995613217, 0.06677291542291641, -0.03118232637643814, 0.0942893773317337, -0.01760665327310562, -0.012930129654705524, 0.019664883613586426, 0.00020212549134157598, -0.039232417941093445, -0.09916181117296219, 0.019594477489590645, 0.03770963475108147, -0.0040510352700948715, -0.06473120301961899, -0.1088499054312706, -0.027749689295887947, 0.1611177921295166, 0.0489477813243866, -0.07595206052064896, -0.14163517951965332, 0.0831608697772026, 0.0844789668917656, -0.08478974550962448, 0.046326830983161926, -0.015740465372800827, 0.14427345991134644, 0.02813553437590599, -0.08791226893663406, 0.10567717254161835, -0.05589807406067848, -0.18345315754413605, -0.035460758954286575, 0.09823724627494812, 0.006449915003031492, 0.047238387167453766, 0.0029976284131407738, 0.05834325775504112, -0.03208146244287491, -0.05784951522946358, 0.06896662712097168, -0.0034485149662941694, 0.1075923964381218, -0.0061480943113565445, -0.0032397336326539516, 0.02182089537382126, -0.04197082296013832, -0.0014782516518607736, 0.1645156890153885, 0.23995232582092285, -0.10496784001588821, 0.055536478757858276, 0.030249565839767456, -0.03645236790180206, -0.18277540802955627, 0.009984065778553486, 0.08414819091558456, 0.0021475672256201506, 0.040169790387153625, -0.1663118302822113, 0.05386544391512871, 0.10983236879110336, -0.04191310703754425, 0.07995743304491043, -0.2803034782409668, -0.1190505102276802, 0.08906996995210648, 0.13602600991725922, 0.06884066760540009, -0.13274545967578888, -0.045290667563676834, -0.039063699543476105, -0.16666166484355927, 0.1351267695426941, -0.04754851385951042, 0.11997194588184357, -0.040666740387678146, 0.06989686191082001, 0.015085658058524132, -0.05448267608880997, 0.14587333798408508, 0.00877679605036974, 0.0857420563697815, -0.07118549197912216, 0.0021252231672406197, 0.10074540972709656, -0.0982399731874466, 0.07668103277683258, -0.08308075368404388, 0.06399426609277725, -0.11283876746892929, -0.007322354707866907, -0.07328318059444427, 0.015542288310825825, -0.012007588520646095, -0.043488435447216034, -0.04113076627254486, 0.03472091257572174, 0.06403200328350067, -0.015996064990758896, 0.20271754264831543, 0.0629286915063858, 0.08313194662332535, 0.17939580976963043, 0.04974674805998802, -0.096995510160923, -0.09814400225877762, -0.04502987116575241, -0.028452320024371147, 0.06312472373247147, -0.13321243226528168, 0.05335186421871185, 0.1209464818239212, 0.008661448024213314, 0.12983813881874084, 0.054849762469530106, -0.0316605418920517, 0.033173978328704834, 0.06366948038339615, -0.16513317823410034, -0.08843576163053513, -0.011303714476525784, 0.01758752204477787, -0.12545546889305115, 0.0447046272456646, 0.12079240381717682, -0.057224519550800323, -0.015418118797242641, -0.0026640621945261955, 0.03586487099528313, -0.00886022113263607, 0.16030296683311462, 0.05005719140172005, 0.05675157532095909, -0.11541767418384552, 0.1181424930691719, 0.06067226454615593, -0.0710521712899208, 0.031696248799562454, 0.05698402598500252, -0.10586927086114883, -0.022646361961960793, 0.03662630170583725, 0.14154238998889923, -0.06414706259965897, -0.04990902543067932, -0.13196614384651184, -0.0909038558602333, 0.07024894654750824, 0.0724560096859932, 0.09284354001283646, 0.016252439469099045, -0.031063025817275047, -0.014114780351519585, -0.10623957961797714, 0.10545456409454346, 0.04753988981246948, 0.09451808035373688, -0.17563696205615997, 0.06374634802341461, 0.0007657874375581741, 0.07206296175718307, -0.024532334879040718, 0.005616967566311359, -0.09020458161830902, -0.0008940583793446422, -0.10660925507545471, 0.025940274819731712, -0.04968960955739021, 0.0027822551783174276, -0.020955873653292656, -0.058104176074266434, -0.06385789811611176, 0.02704726532101631, -0.11796805262565613, -0.05728267878293991, 0.01832517236471176, 0.029680335894227028, -0.11609132587909698, -0.04758497327566147, 0.014494677074253559, -0.09034118801355362, 0.09993617236614227, 0.05929066613316536, -0.006737631745636463, 0.0029803363140672445, 0.011042662896215916, -0.02363271825015545, 0.06827948242425919, 0.006517379079014063, 0.07795335352420807, -0.11366859823465347, -0.018052512779831886, 0.017967568710446358, -0.002112566027790308, 0.011524608358740807, 0.15499049425125122, -0.12699781358242035, -0.0033930845092982054, -0.022802060469985008, -0.06095515564084053, -0.06754840165376663, 0.06765563786029816, 0.10613249987363815, 0.0214694757014513, 0.2064255326986313, -0.054858945310115814, 0.01148067507892847, -0.21229742467403412, -0.011367390863597393, 0.0014767643297091126, -0.1394193321466446, -0.10240225493907928, -0.03432944789528847, 0.0646229088306427, -0.07021024078130722, 0.1212792620062828, 0.036924295127391815, 0.015180133283138275, 0.028698688372969627, 0.025451842695474625, -0.009322993457317352, 0.01828060857951641, 0.16467928886413574, 0.014544252306222916, -0.030929861590266228, 0.12307319045066833, 0.026831358671188354, 0.0918813943862915, 0.11550118029117584, 0.17162561416625977, 0.1226300448179245, 0.042329173535108566, 0.09527058154344559, 0.05073356628417969, -0.032373297959566116, -0.2198440134525299, 0.04109371080994606, -0.043747998774051666, 0.14987531304359436, -0.0034218686632812023, 0.15886609256267548, 0.08696271479129791, -0.1824999451637268, 0.04266338422894478, -0.02988567017018795, -0.08202743530273438, -0.08238054066896439, -0.1163601353764534, -0.10495591163635254, -0.15148837864398956, 0.0012598474277183414, -0.10238117724657059, 0.02373862825334072, 0.11528778076171875, -0.010980993509292603, -0.00952758826315403, 0.1250862330198288, -0.01644187793135643, 0.019042596220970154, 0.04508042708039284, 0.007425562012940645, -0.05218745768070221, -0.04613304138183594, -0.08413935452699661, 0.015972480177879333, 0.0363130047917366, 0.05680973082780838, -0.03208919242024422, -0.008708061650395393, 0.03847881406545639, -0.008026620373129845, -0.12142552435398102, 0.013289375230669975, 0.007551861461251974, 0.04767835885286331, -0.004989264067262411, 0.007813788950443268, 0.026865217834711075, -0.01780105195939541, 0.195222407579422, -0.06977689266204834, -0.02860948257148266, -0.12041912227869034, 0.17737813293933868, 0.00569287920370698, -0.048185933381319046, 0.05394943431019783, -0.09105358272790909, -0.02213868498802185, 0.15108588337898254, 0.18787547945976257, -0.06683575361967087, -0.017941389232873917, -0.014669668860733509, -0.01477136928588152, -0.01832989603281021, 0.10442051291465759, 0.09986825287342072, -0.004740583244711161, -0.07264549285173416, -0.024389909580349922, -0.06369390338659286, -0.032235804945230484, -0.04127946496009827, 0.07026855647563934, -0.001124961650930345, 0.005972458980977535, -0.07571399211883545, 0.03954308480024338, -0.020357538014650345, -0.06112333759665489, 0.07204564660787582, -0.21083933115005493, -0.1802441030740738, 0.0017737408634275198, 0.07683850824832916, 0.0021866720635443926, 0.04613208398222923, -0.012570524588227272, 0.018509654328227043, 0.07427240163087845, -0.02333001233637333, -0.08794470131397247, -0.09525144845247269, 0.1020299568772316, -0.13951729238033295, 0.24700812995433807, -0.03552914783358574, 0.0377071388065815, 0.1201176866889, 0.03583609312772751, -0.13580889999866486, 0.03513867408037186, 0.03722600266337395, -0.02918340638279915, 0.0181744247674942, 0.14616045355796814, -0.03901152312755585, 0.07440102845430374, 0.04275068640708923, -0.10678882896900177, -0.04424819350242615, -0.04619530588388443, -0.015570126473903656, -0.02712010033428669, -0.05963090807199478, -0.04089967906475067, 0.12949442863464355, 0.17410574853420258, -0.04094170406460762, -0.021948745474219322, -0.06438223272562027, 0.035308949649333954, 0.08067496865987778, -0.026465818285942078, -0.04482371732592583, -0.2364819198846817, 0.0028874515555799007, 0.050913918763399124, -0.008316555991768837, -0.19871793687343597, -0.10607530176639557, -0.00044736277777701616, -0.05943094193935394, -0.08227076381444931, 0.09325046092271805, 0.06211918964982033, 0.03563893958926201, -0.06190048158168793, 0.02738066203892231, -0.07750356942415237, 0.14178979396820068, -0.14600589871406555, -0.07656177133321762 ]
null
null
null
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CDAgpt-sqlCoder-7b This model is a fine-tuned version of [defog/sqlcoder-7b-2](https://huggingface.co/defog/sqlcoder-7b-2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "cc-by-sa-4.0", "tags": ["generated_from_trainer"], "base_model": "defog/sqlcoder-7b-2", "model-index": [{"name": "CDAgpt-sqlCoder-7b", "results": []}]}
null
Federic/CDAgpt-sqlCoder-7b
[ "safetensors", "generated_from_trainer", "base_model:defog/sqlcoder-7b-2", "license:cc-by-sa-4.0", "region:us" ]
2024-02-06T13:52:52+00:00
[]
[]
TAGS #safetensors #generated_from_trainer #base_model-defog/sqlcoder-7b-2 #license-cc-by-sa-4.0 #region-us
# CDAgpt-sqlCoder-7b This model is a fine-tuned version of defog/sqlcoder-7b-2 on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 3 - total_train_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
[ "# CDAgpt-sqlCoder-7b\n\nThis model is a fine-tuned version of defog/sqlcoder-7b-2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- gradient_accumulation_steps: 3\n- total_train_batch_size: 12\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ "TAGS\n#safetensors #generated_from_trainer #base_model-defog/sqlcoder-7b-2 #license-cc-by-sa-4.0 #region-us \n", "# CDAgpt-sqlCoder-7b\n\nThis model is a fine-tuned version of defog/sqlcoder-7b-2 on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- gradient_accumulation_steps: 3\n- total_train_batch_size: 12\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ 44, 39, 6, 12, 8, 3, 141, 33 ]
[ "passage: TAGS\n#safetensors #generated_from_trainer #base_model-defog/sqlcoder-7b-2 #license-cc-by-sa-4.0 #region-us \n# CDAgpt-sqlCoder-7b\n\nThis model is a fine-tuned version of defog/sqlcoder-7b-2 on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- gradient_accumulation_steps: 3\n- total_train_batch_size: 12\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1" ]
[ -0.12927480041980743, 0.15742374956607819, -0.003177208825945854, 0.07168164104223251, 0.12965640425682068, 0.039805032312870026, 0.0739503726363182, 0.11502132564783096, -0.06874877214431763, 0.11021393537521362, 0.09774687886238098, 0.02584507130086422, 0.05441807210445404, 0.14915314316749573, -0.028555801138281822, -0.19934605062007904, 0.021170208230614662, -0.04155531898140907, -0.05112744867801666, 0.09309183061122894, 0.10741586238145828, -0.08429884910583496, 0.06526808440685272, -0.0025382530875504017, -0.12971028685569763, -0.009748307056725025, -0.045388925820589066, -0.04506129398941994, 0.08841254562139511, -0.0032323545310646296, 0.06999511271715164, 0.020057525485754013, 0.1387043297290802, -0.2123207151889801, -0.0004629174363799393, 0.07121288031339645, 0.02770446054637432, 0.09044995903968811, 0.06660813093185425, -0.011174372397363186, 0.07949142903089523, -0.1467018574476242, 0.06864029169082642, 0.0354837141931057, -0.07546431571245193, -0.13759352266788483, -0.08949612081050873, 0.07102960348129272, 0.08115409314632416, 0.07561647891998291, 0.02038736827671528, 0.09746681153774261, -0.10515733808279037, 0.05949772894382477, 0.1579703688621521, -0.28844892978668213, -0.04254377260804176, 0.06703106313943863, 0.024278799071907997, 0.04548276960849762, -0.11188196390867233, -0.02776188962161541, 0.03607277572154999, 0.020663361996412277, 0.10793210566043854, 0.013873717747628689, -0.06443707644939423, -0.00527016818523407, -0.1099802702665329, -0.03978516161441803, 0.13769835233688354, 0.045149363577365875, -0.05073164403438568, -0.1179928332567215, -0.050699856132268906, -0.14434321224689484, -0.015012736432254314, -0.008020628243684769, 0.023822858929634094, -0.03789122402667999, -0.046703848987817764, -0.03972587361931801, -0.062038302421569824, -0.08249066770076752, -0.001142411958426237, 0.09648171067237854, 0.039557237178087234, 0.015133495442569256, 0.01768512837588787, 0.1302599161863327, -0.04663761705160141, -0.11404331773519516, -0.03679874166846275, -0.006224059499800205, -0.11911164969205856, -0.035852156579494476, -0.03755050152540207, 0.029628077521920204, 0.03100903332233429, 0.1664171665906906, -0.05070890113711357, 0.05864296108484268, 0.03644708916544914, -0.011493522673845291, -0.016245650127530098, 0.14719562232494354, -0.0501357838511467, -0.04136643558740616, 0.03192795813083649, 0.11557336151599884, 0.02881253883242607, -0.004160852171480656, -0.07912229001522064, -0.05212129279971123, 0.11155277490615845, 0.06726797670125961, -0.048516664654016495, 0.02319142036139965, -0.0496835820376873, -0.010473858565092087, 0.08396850526332855, -0.12163632363080978, 0.022951243445277214, 0.03618183359503746, -0.06582726538181305, -0.05766656994819641, 0.019015319645404816, -0.00454366859048605, -0.031741466373205185, 0.059803154319524765, -0.07571566104888916, -0.024172130972146988, -0.053693704307079315, -0.04732422158122063, 0.004479580093175173, -0.09054388850927353, -0.009077390655875206, -0.06326513737440109, -0.19008052349090576, -0.036094971001148224, 0.014819745905697346, -0.07737171649932861, -0.06705930083990097, -0.033516138792037964, -0.08440840244293213, 0.02892165072262287, -0.010619205422699451, 0.09152400493621826, -0.06102146580815315, 0.07687874883413315, 0.009909084998071194, 0.0021755117923021317, 0.025941040366888046, 0.02788696624338627, -0.07656662166118622, 0.051539551466703415, -0.11727473139762878, 0.10828084498643875, -0.08789565414190292, -0.013865253888070583, -0.124062679708004, -0.080253466963768, 0.000053504150855587795, -0.036811403930187225, 0.08044777810573578, 0.15740758180618286, -0.1604025661945343, 0.013040474615991116, 0.14514410495758057, -0.06264258921146393, -0.06769918650388718, 0.09109146147966385, -0.024742551147937775, -0.0405496321618557, 0.03351369500160217, 0.12548311054706573, 0.12060989439487457, -0.14114637672901154, -0.02219352312386036, 0.0647798404097557, 0.07571391016244888, -0.0009773045312613249, 0.08679726719856262, -0.02137756161391735, 0.009521432220935822, 0.029293818399310112, -0.06897730380296707, -0.009911070577800274, -0.08025959134101868, -0.07100570946931839, -0.06296681612730026, -0.08924644440412521, 0.031641885638237, -0.007401441223919392, -0.003349587321281433, -0.050895266234874725, -0.12002310156822205, 0.029474647715687752, 0.15051834285259247, -0.046241600066423416, -0.012473003938794136, -0.0685282051563263, 0.04906617850065231, -0.054533109068870544, -0.023761671036481857, -0.17836108803749084, -0.1513732224702835, 0.04332348704338074, -0.04498603194952011, 0.011582639999687672, 0.004113210365176201, 0.054202303290367126, 0.07479476928710938, -0.03361204266548157, -0.04520489275455475, -0.08193686604499817, -0.0068877157755196095, -0.09237449616193771, -0.1499253809452057, -0.057434938848018646, -0.04058390110731125, 0.22839167714118958, -0.2274663746356964, 0.010487610474228859, -0.00790776964277029, 0.11601050943136215, 0.01963096484541893, -0.06739825755357742, 0.020631320774555206, 0.01922733336687088, -0.006551350001245737, -0.09903514385223389, 0.013514017686247826, 0.018747074529528618, -0.12670588493347168, -0.018371915444731712, -0.13967275619506836, 0.055483609437942505, 0.05440615862607956, 0.17287538945674896, -0.100843146443367, -0.10301768034696579, -0.06501957774162292, -0.0432295948266983, -0.05852624028921127, -0.0091788275167346, 0.17496085166931152, 0.03333061560988426, 0.12158343940973282, -0.06307363510131836, -0.056058917194604874, 0.009871192276477814, 0.01413756888359785, -0.006167890504002571, 0.09093096852302551, 0.03677872568368912, -0.0748739019036293, 0.07559486478567123, 0.08068974316120148, -0.03747040033340454, 0.055692605674266815, -0.054582834243774414, -0.093368299305439, -0.030749399214982986, 0.04566557705402374, -0.009871392510831356, 0.12974701821804047, -0.021107014268636703, 0.03519725054502487, 0.04037832096219063, 0.018397409468889236, 0.01660926453769207, -0.14937356114387512, 0.0004931188304908574, 0.015235618688166142, -0.058121055364608765, -0.04296836629509926, -0.005725780501961708, 0.03313278779387474, 0.07830656319856644, 0.02926112525165081, -0.03917638584971428, 0.02460932917892933, -0.008056356571614742, -0.06520233303308487, 0.20148007571697235, -0.11623083055019379, -0.11748525500297546, -0.11103308945894241, 0.10638824850320816, -0.06479622423648834, -0.02436397410929203, -0.004988835193216801, -0.0452398806810379, -0.05854373425245285, -0.10629142820835114, -0.05319817364215851, -0.02753336727619171, -0.005622106604278088, 0.0183323435485363, 0.0007891471032053232, 0.09977933764457703, -0.12434789538383484, 0.015268536284565926, -0.00426847068592906, -0.09226532280445099, 0.014348828233778477, 0.0833490863442421, 0.08570320904254913, 0.10535156726837158, 0.0035149704199284315, 0.006042837630957365, -0.020779656246304512, 0.23299400508403778, -0.055394068360328674, -0.0176816638559103, 0.10887841135263443, 0.010338175110518932, 0.055570367723703384, 0.12039436399936676, 0.023911695927381516, -0.0806717723608017, 0.01437819842249155, 0.05815724655985832, -0.020374534651637077, -0.2385905534029007, -0.056565217673778534, -0.02375071682035923, -0.06290772557258606, 0.07769200950860977, 0.06002277880907059, -0.06965979188680649, 0.047105129808187485, -0.03476838394999504, 0.002498053479939699, -0.010712806135416031, 0.07241357117891312, 0.05634529888629913, 0.041480425745248795, 0.08022509515285492, -0.010961526073515415, 0.0007985112024471164, 0.0553797110915184, 0.05161553993821144, 0.1954321265220642, -0.07662130147218704, 0.12687349319458008, 0.0009568199166096747, 0.16785874962806702, -0.04006118327379227, 0.026958024129271507, 0.004392633680254221, 0.01395437028259039, 0.00935601070523262, -0.05747081711888313, -0.057528719305992126, 0.02117101661860943, 0.0010495297610759735, 0.04251941666007042, -0.10286448150873184, 0.06698639690876007, 0.01673181727528572, 0.25999483466148376, 0.06380140036344528, -0.3022811710834503, -0.07991863787174225, 0.004825676325708628, 0.004475384019315243, -0.08669665455818176, 0.011138161644339561, 0.11243664473295212, -0.12624236941337585, 0.0307902954518795, -0.045466579496860504, 0.07705920934677124, -0.05421378090977669, -0.002399526769295335, 0.03998570516705513, 0.1510522961616516, 0.008617214858531952, 0.09189633280038834, -0.17090007662773132, 0.1620001494884491, 0.035173043608665466, 0.08912260830402374, -0.0556156262755394, 0.03742879629135132, -0.015359323471784592, 0.061784353107213974, 0.11168055236339569, -0.0019879324827343225, -0.026004567742347717, -0.1611136496067047, -0.15277378261089325, 0.035768892616033554, 0.12093053013086319, -0.0478254072368145, 0.07718125730752945, -0.036791443824768066, 0.0033690682612359524, 0.026788095012307167, -0.0910659208893776, -0.1419815570116043, -0.1340280920267105, 0.031095948070287704, 0.013361322693526745, 0.007783079985529184, -0.07933476567268372, -0.07065153121948242, -0.0278338436037302, 0.18353159725666046, -0.04993879050016403, -0.05071825906634331, -0.14509417116641998, 0.04852040857076645, 0.15748527646064758, -0.06248070299625397, 0.031384821981191635, -0.00935081485658884, 0.13264045119285583, 0.04566003009676933, -0.06690875440835953, 0.0564894862473011, -0.06976154446601868, -0.18352197110652924, -0.045982033014297485, 0.14317986369132996, 0.04168309271335602, 0.04231578856706619, 0.0062118214555084705, 0.011573979631066322, 0.005318154580891132, -0.09191185235977173, 0.01592966727912426, 0.09171638637781143, 0.08025913685560226, 0.09076714515686035, -0.07703741639852524, 0.03120223432779312, -0.002407911466434598, 0.0027290312573313713, 0.11519528925418854, 0.2522401213645935, -0.09037898480892181, 0.09679167717695236, 0.0677802711725235, -0.038873448967933655, -0.18167532980442047, 0.016837501898407936, 0.12386637926101685, 0.04493296891450882, 0.04437491297721863, -0.17327216267585754, 0.09335844218730927, 0.12448965013027191, -0.03634529933333397, 0.06580033153295517, -0.3242177963256836, -0.11191066354513168, 0.08466122299432755, 0.06065834313631058, 0.01158998068422079, -0.12687207758426666, -0.050186123698949814, -0.037902720272541046, -0.1219327449798584, 0.09509384632110596, -0.09879304468631744, 0.10492456704378128, -0.021759456023573875, 0.06696493923664093, 0.05193633213639259, -0.05078466609120369, 0.15540017187595367, 0.026158267632126808, 0.05883385241031647, -0.04105904698371887, 0.058757487684488297, 0.04069958254694939, -0.07990848273038864, 0.07334727793931961, -0.0925908163189888, 0.10192890465259552, -0.15229009091854095, -0.004642327316105366, -0.05275816470384598, 0.07333672791719437, -0.05061376467347145, -0.04793794825673103, -0.03699338436126709, 0.04089238494634628, 0.061350684612989426, -0.0411280132830143, 0.05960840731859207, 0.02986280806362629, 0.060581907629966736, 0.1434420943260193, 0.07129640132188797, 0.03950568288564682, -0.10070515424013138, -0.0008317340980283916, -0.01791660487651825, 0.04619568586349487, -0.08333814889192581, 0.033064547926187515, 0.11320393532514572, 0.03997049853205681, 0.11080778390169144, 0.021438419818878174, -0.05633487552404404, -0.006888860836625099, 0.027639353647828102, -0.11010841280221939, -0.14309172332286835, 0.0009250216535292566, -0.000449580344138667, -0.15393926203250885, 0.031550340354442596, 0.11259572952985764, -0.04152801260352135, -0.02138056419789791, -0.0124710313975811, 0.041751228272914886, -0.0030659139156341553, 0.17803260684013367, 0.029522553086280823, 0.070738784968853, -0.07851210236549377, 0.13554143905639648, 0.06836536526679993, -0.07253959029912949, 0.047033146023750305, 0.028549285605549812, -0.10163555294275284, -0.019983939826488495, 0.09500053524971008, 0.09046722948551178, -0.028794769197702408, -0.022173702716827393, -0.058213382959365845, -0.10405497252941132, 0.03762205317616463, 0.07002179324626923, 0.03368908166885376, 0.01649259217083454, -0.0013652731431648135, 0.0051571824587881565, -0.12939901649951935, 0.09973681718111038, 0.05183948576450348, 0.07596263289451599, -0.1423843950033188, 0.08494258671998978, -0.02576267160475254, 0.05028602108359337, -0.005273446440696716, 0.029126105830073357, -0.09428524971008301, -0.03149029240012169, -0.1303720921278, 0.023362567648291588, -0.02371544949710369, 0.018329551443457603, -0.00851008016616106, -0.025617143139243126, -0.00874161347746849, 0.03861921280622482, -0.05537610501050949, -0.07384315878152847, -0.012188738211989403, 0.058056022971868515, -0.13838037848472595, -0.014802978374063969, 0.012038405984640121, -0.10451395064592361, 0.11967183649539948, 0.07608241587877274, 0.043232277035713196, 0.01375340111553669, -0.09960582107305527, -0.0018300205701962113, 0.024563219398260117, 0.03030322678387165, 0.04374534264206886, -0.08647417277097702, -0.008586137555539608, -0.032732024788856506, -0.011970764957368374, 0.0008386522531509399, 0.08173929154872894, -0.1276397854089737, -0.0692831352353096, -0.055895786732435226, -0.016337234526872635, -0.07386203110218048, 0.036151185631752014, 0.0977575033903122, 0.04335910454392433, 0.14884896576404572, -0.07300729304552078, 0.031926561146974564, -0.17277711629867554, -0.03728022798895836, -0.011073984205722809, 0.0002164787583751604, -0.10163594037294388, 0.00015873379015829414, 0.09609903395175934, -0.0518035814166069, 0.10759913176298141, -0.05206555500626564, 0.07005132734775543, 0.013177512213587761, -0.03234371915459633, 0.006175401620566845, 0.010588360019028187, 0.16681309044361115, 0.07599478960037231, -0.012499074451625347, 0.08251020312309265, -0.026888122782111168, 0.041401080787181854, 0.044558219611644745, 0.13796764612197876, 0.12207726389169693, -0.003056533867493272, 0.06439034640789032, 0.07258126139640808, -0.15019281208515167, -0.10619962215423584, 0.11433535814285278, -0.04768136143684387, 0.1017153337597847, -0.05008280649781227, 0.17007574439048767, 0.09225859493017197, -0.16404907405376434, 0.02379617840051651, -0.05020206794142723, -0.11640913039445877, -0.1115088239312172, -0.04476477950811386, -0.08091553300619125, -0.09236069023609161, 0.02659761719405651, -0.11011529713869095, 0.027686821296811104, 0.06863221526145935, -0.00023844532552175224, 0.02262282930314541, 0.1341240108013153, -0.012406179681420326, -0.00023732629779260606, 0.035282790660858154, 0.04108096659183502, 0.009657809510827065, 0.0057263788767158985, -0.07710189372301102, 0.07827798277139664, 0.001556356786750257, 0.09652823954820633, -0.039088211953639984, 0.0462837740778923, 0.05464409291744232, -0.005604401230812073, -0.064907506108284, 0.022004781290888786, 0.017238836735486984, 0.03033112734556198, 0.07847341150045395, 0.05673649534583092, -0.00217074085958302, -0.05596986413002014, 0.26306286454200745, -0.07275425642728806, -0.0484316311776638, -0.1303739696741104, 0.20605722069740295, 0.0306701622903347, -0.002684128237888217, 0.06682011485099792, -0.1272171288728714, -0.006979868747293949, 0.09486830979585648, 0.13511961698532104, -0.10021715611219406, -0.01930122822523117, -0.018815485760569572, -0.023207293823361397, -0.054238900542259216, 0.11478838324546814, 0.08641553670167923, 0.058555811643600464, -0.060241855680942535, 0.011556318029761314, -0.006050514057278633, -0.02127556875348091, -0.08382979780435562, 0.08073842525482178, -0.039352431893348694, 0.010613695718348026, -0.032144855707883835, 0.04679742455482483, -0.019832121208310127, -0.18712525069713593, 0.0370626300573349, -0.10031776875257492, -0.18356375396251678, -0.034741081297397614, 0.02545199729502201, 0.0012686693808063865, 0.04529711231589317, -0.02856876142323017, 0.0036607503425329924, 0.14279606938362122, -0.038168031722307205, -0.02827533334493637, -0.07647155970335007, 0.04465904459357262, 0.011078723706305027, 0.2257755696773529, 0.017867228016257286, 0.08472338318824768, 0.10181731730699539, 0.021217921748757362, -0.17628596723079681, 0.04569767415523529, 0.07463809847831726, -0.07929239422082901, 0.046864163130521774, 0.14310365915298462, -0.052154071629047394, 0.092830128967762, 0.04774988815188408, -0.07792624086141586, -0.029659409075975418, -0.011830171570181847, -0.02168591506779194, -0.08439167588949203, -0.0031484407372772694, -0.0389106459915638, 0.16010862588882446, 0.1844320297241211, -0.04382015019655228, 0.00403643399477005, -0.06317287683486938, 0.031754638999700546, 0.03375035524368286, 0.07479565590620041, 0.0033062156289815903, -0.18059390783309937, 0.04384180158376694, 0.06779800355434418, 0.038379449397325516, -0.2068108767271042, -0.07551412284374237, 0.02823975682258606, -0.04652504250407219, -0.04509006813168526, 0.12213986366987228, 0.03578997030854225, 0.021265199407935143, -0.042504433542490005, -0.056816466152668, -0.055257849395275116, 0.1257544904947281, -0.1606004238128662, -0.07048764824867249 ]
null
null
transformers
# MemGPT DPO uncensored 6.0bpw exl2 - Model creator: [Starlette!](https://huggingface.co/starsnatched) - Original model: [MemGPT-DPO-uncensored](https://huggingface.co/starsnatched/MemGPT-DPO-uncensored) This is an quantized, uncensored release of DPO version of a Language Model, intended to be used with [MemGPT](https://github.com/cpacker/MemGPT). # WARNING This model is **UNCENSORED**. That means this model is highly compliant to any requests, even unethical and potentially dangerous ones. I do not take any responsibility whatsoever for any damage caused by the model in this repo. # Model Description This repository contains an uncensored, finetuned model of [Mistral 7B Instruct](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2). This model is specifically designed for operating within function calling environment in MemGPT. It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT. # Key Features * Function calling * Dedicated to working with MemGPT * Supports medium-length context, up to sequences of 8,192 # Prompt Format This model uses **ChatML** prompt format: ``` <|im_start|>system {system_instruction}<|im_end|> <|im_start|>user {user_message}<|im_end|> <|im_start|>assistant {assistant_response}<|im_end|> ``` # Usage This model is designed to be ran on multiple backends, such as [oogabooga's textgen WebUI](https://github.com/oobabooga/text-generation-webui). Simply install your preferred backend, and then load up this model. Then, configure MemGPT using `memgpt configure`, and chat with MemGPT via `memgpt run` command! # Model Details * Developed by: @starsnatched * Model type: This repo contains a language model based on the transformer decoder architecture. * Language: English * Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched. # Training Infrastructure * Hardware: The model in this repo was trained on 2x A100 80GB GPUs. # Intended Use The model is designed to be used as the base model for MemGPT agents. # Limitations and Risks The model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce.
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["MemGPT", "function", "function calling"]}
text-generation
Fukurokun/MemGPT-DPO-uncensored-6.0bpw-exl2
[ "transformers", "safetensors", "mistral", "text-generation", "MemGPT", "function", "function calling", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T13:59:25+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #MemGPT #function #function calling #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# MemGPT DPO uncensored 6.0bpw exl2 - Model creator: Starlette! - Original model: MemGPT-DPO-uncensored This is an quantized, uncensored release of DPO version of a Language Model, intended to be used with MemGPT. # WARNING This model is UNCENSORED. That means this model is highly compliant to any requests, even unethical and potentially dangerous ones. I do not take any responsibility whatsoever for any damage caused by the model in this repo. # Model Description This repository contains an uncensored, finetuned model of Mistral 7B Instruct. This model is specifically designed for operating within function calling environment in MemGPT. It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT. # Key Features * Function calling * Dedicated to working with MemGPT * Supports medium-length context, up to sequences of 8,192 # Prompt Format This model uses ChatML prompt format: # Usage This model is designed to be ran on multiple backends, such as oogabooga's textgen WebUI. Simply install your preferred backend, and then load up this model. Then, configure MemGPT using 'memgpt configure', and chat with MemGPT via 'memgpt run' command! # Model Details * Developed by: @starsnatched * Model type: This repo contains a language model based on the transformer decoder architecture. * Language: English * Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched. # Training Infrastructure * Hardware: The model in this repo was trained on 2x A100 80GB GPUs. # Intended Use The model is designed to be used as the base model for MemGPT agents. # Limitations and Risks The model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce.
[ "# MemGPT DPO uncensored 6.0bpw exl2 \n- Model creator: Starlette!\n- Original model: MemGPT-DPO-uncensored\n\nThis is an quantized, uncensored release of DPO version of a Language Model, intended to be used with MemGPT.", "# WARNING\nThis model is UNCENSORED. That means this model is highly compliant to any requests, even unethical and potentially dangerous ones. I do not take any responsibility whatsoever for any damage caused by the model in this repo.", "# Model Description\nThis repository contains an uncensored, finetuned model of Mistral 7B Instruct. This model is specifically designed for operating within function calling environment in MemGPT. It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT.", "# Key Features\n* Function calling\n* Dedicated to working with MemGPT\n* Supports medium-length context, up to sequences of 8,192", "# Prompt Format\nThis model uses ChatML prompt format:", "# Usage\nThis model is designed to be ran on multiple backends, such as oogabooga's textgen WebUI.\nSimply install your preferred backend, and then load up this model.\nThen, configure MemGPT using 'memgpt configure', and chat with MemGPT via 'memgpt run' command!", "# Model Details\n* Developed by: @starsnatched\n* Model type: This repo contains a language model based on the transformer decoder architecture.\n* Language: English\n* Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched.", "# Training Infrastructure\n* Hardware: The model in this repo was trained on 2x A100 80GB GPUs.", "# Intended Use\nThe model is designed to be used as the base model for MemGPT agents.", "# Limitations and Risks\nThe model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce." ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #MemGPT #function #function calling #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# MemGPT DPO uncensored 6.0bpw exl2 \n- Model creator: Starlette!\n- Original model: MemGPT-DPO-uncensored\n\nThis is an quantized, uncensored release of DPO version of a Language Model, intended to be used with MemGPT.", "# WARNING\nThis model is UNCENSORED. That means this model is highly compliant to any requests, even unethical and potentially dangerous ones. I do not take any responsibility whatsoever for any damage caused by the model in this repo.", "# Model Description\nThis repository contains an uncensored, finetuned model of Mistral 7B Instruct. This model is specifically designed for operating within function calling environment in MemGPT. It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT.", "# Key Features\n* Function calling\n* Dedicated to working with MemGPT\n* Supports medium-length context, up to sequences of 8,192", "# Prompt Format\nThis model uses ChatML prompt format:", "# Usage\nThis model is designed to be ran on multiple backends, such as oogabooga's textgen WebUI.\nSimply install your preferred backend, and then load up this model.\nThen, configure MemGPT using 'memgpt configure', and chat with MemGPT via 'memgpt run' command!", "# Model Details\n* Developed by: @starsnatched\n* Model type: This repo contains a language model based on the transformer decoder architecture.\n* Language: English\n* Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched.", "# Training Infrastructure\n* Hardware: The model in this repo was trained on 2x A100 80GB GPUs.", "# Intended Use\nThe model is designed to be used as the base model for MemGPT agents.", "# Limitations and Risks\nThe model may exhibit unreliable, unsafe, or biased behaviours. Please double check the results this model may produce." ]
[ 67, 66, 56, 62, 36, 14, 73, 67, 25, 22, 35 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #MemGPT #function #function calling #en #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# MemGPT DPO uncensored 6.0bpw exl2 \n- Model creator: Starlette!\n- Original model: MemGPT-DPO-uncensored\n\nThis is an quantized, uncensored release of DPO version of a Language Model, intended to be used with MemGPT.# WARNING\nThis model is UNCENSORED. That means this model is highly compliant to any requests, even unethical and potentially dangerous ones. I do not take any responsibility whatsoever for any damage caused by the model in this repo.# Model Description\nThis repository contains an uncensored, finetuned model of Mistral 7B Instruct. This model is specifically designed for operating within function calling environment in MemGPT. It demonstrates comparable performances to GPT-4 when it comes to working with MemGPT.# Key Features\n* Function calling\n* Dedicated to working with MemGPT\n* Supports medium-length context, up to sequences of 8,192# Prompt Format\nThis model uses ChatML prompt format:# Usage\nThis model is designed to be ran on multiple backends, such as oogabooga's textgen WebUI.\nSimply install your preferred backend, and then load up this model.\nThen, configure MemGPT using 'memgpt configure', and chat with MemGPT via 'memgpt run' command!# Model Details\n* Developed by: @starsnatched\n* Model type: This repo contains a language model based on the transformer decoder architecture.\n* Language: English\n* Contact: For any questions, concerns or comments about this model, please contact me at Discord, @starsnatched.# Training Infrastructure\n* Hardware: The model in this repo was trained on 2x A100 80GB GPUs.# Intended Use\nThe model is designed to be used as the base model for MemGPT agents." ]
[ -0.12481563538312912, 0.05472481995820999, -0.005336794536560774, 0.019374389201402664, 0.10230829566717148, 0.034876737743616104, 0.07927855104207993, 0.03089074045419693, -0.024667413905262947, 0.09575507044792175, 0.023636892437934875, -0.04258470609784126, 0.06730332970619202, 0.1515769511461258, 0.1467728614807129, -0.21240022778511047, 0.08174406737089157, -0.11354492604732513, 0.03452172502875328, 0.03489559888839722, 0.07251065224409103, -0.005922022275626659, 0.11370796710252762, -0.015974663197994232, -0.09355276823043823, -0.039877790957689285, 0.026918822899460793, 0.017134124413132668, 0.04743822664022446, 0.05802256986498833, 0.005653856322169304, -0.08542487025260925, 0.019709432497620583, -0.17886289954185486, 0.027278957888484, 0.09727167338132858, -0.053236450999975204, -0.004946047440171242, 0.09881825745105743, -0.007075313478708267, 0.2107098549604416, -0.04307100176811218, 0.03449855372309685, 0.0922314003109932, -0.09771179407835007, -0.10945494472980499, -0.09759438037872314, 0.024996785447001457, 0.08009981364011765, 0.07735072076320648, -0.010521321557462215, 0.022492261603474617, 0.03296913206577301, 0.04222165793180466, 0.07179011404514313, -0.1334022879600525, -0.029598454013466835, 0.10568631440401077, 0.01817045733332634, 0.10622399300336838, -0.03547688573598862, -0.017465315759181976, -0.004319305066019297, 0.06876031309366226, 0.018302708864212036, -0.06233161687850952, 0.13003072142601013, -0.022091124206781387, -0.0732155591249466, -0.026070041581988335, 0.1375233381986618, -0.043291524052619934, -0.07018248736858368, -0.10986938327550888, -0.0709480494260788, -0.06562846153974533, 0.011387447826564312, 0.0343942865729332, 0.06700348109006882, 0.05791247636079788, 0.15460844337940216, -0.06878500431776047, -0.091218501329422, -0.10352452844381332, -0.08055610209703445, 0.12246038764715195, -0.010099400766193867, 0.05604522302746773, -0.05648136883974075, 0.10410049557685852, -0.2290596067905426, -0.0163792185485363, -0.12038847804069519, -0.06408804655075073, -0.13099297881126404, 0.012850040569901466, -0.019421465694904327, -0.13728995621204376, 0.022994328290224075, 0.11478838324546814, -0.13989824056625366, 0.09581343829631805, 0.03312710300087929, -0.004064955748617649, 0.05150461196899414, 0.15747259557247162, -0.061150744557380676, -0.04302539676427841, -0.0008871608879417181, -0.012528647668659687, 0.050463296473026276, -0.006610026583075523, -0.0037091346457600594, 0.01874733902513981, -0.013793290592730045, 0.05279621481895447, 0.05174092575907707, 0.06456506997346878, -0.06715846061706543, -0.06825081259012222, 0.2112225741147995, -0.11088797450065613, 0.07994647324085236, 0.03477408364415169, -0.006585897412151098, 0.003011855063959956, 0.07261139154434204, -0.023087909445166588, -0.06104831397533417, -0.04403026029467583, -0.05029090493917465, 0.004867623560130596, -0.15143771469593048, -0.05148699879646301, 0.07089198380708694, 0.032721929252147675, -0.08622895181179047, -0.1351039856672287, -0.17855502665042877, -0.10848574340343475, 0.043417319655418396, -0.000986741273663938, 0.05163583531975746, -0.01591930352151394, -0.024326173588633537, 0.026920540258288383, 0.03652295842766762, 0.03847673535346985, -0.02502431534230709, -0.030429009348154068, -0.056113459169864655, 0.03310714662075043, -0.09387312829494476, 0.04360993951559067, -0.07225562632083893, 0.07635491341352463, -0.2374730259180069, 0.04384291544556618, -0.07555437833070755, 0.010073257610201836, -0.010347429662942886, 0.03366013616323471, -0.08767754584550858, 0.01778315380215645, 0.013572773896157742, 0.10985903441905975, -0.15138594806194305, 0.011004804633557796, 0.2012203186750412, -0.15972959995269775, -0.012434856034815311, 0.06413892656564713, 0.02664455585181713, 0.033131781965494156, 0.07837146520614624, 0.011138947680592537, 0.12962384521961212, -0.07738342881202698, -0.06788546591997147, -0.04788169264793396, -0.10823632776737213, 0.011113708838820457, 0.06467977166175842, -0.12853194773197174, -0.01617525704205036, 0.05017241835594177, -0.06628121435642242, -0.018468188121914864, 0.07883220911026001, 0.011036948300898075, -0.0039327857084572315, -0.02062312141060829, 0.0006770077161490917, -0.04321833327412605, -0.08152822405099869, -0.055908266454935074, -0.0820249542593956, 0.014785015024244785, 0.09281423687934875, -0.01953376643359661, 0.05371621623635292, -0.07081393152475357, -0.030951110646128654, -0.009027923457324505, 0.04928705468773842, -0.14306385815143585, -0.11247704923152924, 0.058709517121315, -0.06539063155651093, 0.06489872932434082, -0.09150069206953049, 0.09598692506551743, 0.08336745202541351, -0.005952082108706236, -0.06306816637516022, -0.08545726537704468, 0.005789725575596094, -0.03272000327706337, -0.07819093018770218, 0.004392390139400959, -0.08879310637712479, 0.1143607497215271, -0.08053866773843765, 0.039839766919612885, 0.10656124353408813, 0.029859958216547966, 0.041181329637765884, -0.08798884600400925, 0.041309621185064316, -0.017993144690990448, 0.04506415128707886, -0.07734284549951553, 0.037982165813446045, 0.02903217263519764, 0.05136442556977272, 0.10805452615022659, -0.30932095646858215, -0.12451081722974777, 0.09155785292387009, 0.07682839781045914, -0.023350216448307037, -0.03591953217983246, 0.019986974075436592, -0.038862500339746475, -0.010567122139036655, -0.1320149153470993, 0.1829570084810257, 0.016725555062294006, 0.05402672290802002, -0.04728811979293823, 0.013822016306221485, 0.012729842215776443, -0.016756875440478325, -0.07309982180595398, 0.024796845391392708, 0.09357114136219025, -0.0481012761592865, 0.04075825959444046, 0.04818524047732353, 0.016216475516557693, 0.17780134081840515, 0.0541086420416832, -0.035788387060165405, -0.050543203949928284, 0.0388043187558651, 0.04526804760098457, 0.12224554270505905, -0.07097738981246948, -0.018437249585986137, 0.023607371374964714, 0.06621824204921722, 0.10560907423496246, -0.10722693800926208, 0.08025269955396652, 0.024846818298101425, -0.003285788232460618, 0.05528939142823219, 0.012631217949092388, -0.025569716468453407, 0.06598583608865738, 0.0036028150934726, 0.0774628221988678, -0.013407512567937374, -0.03174644336104393, -0.18458755314350128, 0.16958636045455933, -0.20808351039886475, -0.1356114000082016, -0.18443416059017181, 0.04377581551671028, -0.06030822545289993, 0.03882715851068497, -0.030720697715878487, -0.08010208606719971, -0.032931677997112274, -0.11383441090583801, 0.04020935669541359, -0.032866962254047394, -0.044752996414899826, -0.03416270762681961, -0.02521466836333275, 0.017592929303646088, -0.10465296357870102, -0.06340158730745316, 0.028232000768184662, -0.1120106503367424, 0.04564579948782921, -0.004660647828131914, 0.08292710036039352, 0.16474877297878265, 0.026449937373399734, -0.023321539163589478, 0.0003591722634155303, 0.15020419657230377, -0.031055180355906487, 0.16847489774227142, 0.20144343376159668, 0.05410601943731308, 0.08547273278236389, 0.09999563544988632, -0.018605180084705353, -0.06801076233386993, 0.04538700357079506, -0.003123148577287793, -0.09845118969678879, -0.15010520815849304, -0.07926186919212341, -0.06382045894861221, 0.10137185454368591, 0.036181263625621796, 0.03936592489480972, 0.03390913084149361, 0.029323337599635124, -0.007001924328505993, 0.028886156156659126, 0.048184335231781006, 0.08687759190797806, 0.024571286514401436, -0.02680022083222866, 0.007495800498872995, -0.06448335200548172, 0.12247385084629059, 0.11195924133062363, 0.0040457770228385925, 0.17491313815116882, 0.00016287465405184776, 0.1542961299419403, 0.10415894538164139, -0.07965535670518875, 0.024395890533924103, 0.029007714241743088, -0.018987737596035004, 0.04778707027435303, 0.002356843324378133, -0.0899910181760788, -0.07026752829551697, 0.10446139425039291, -0.04882831871509552, 0.004297626670449972, -0.057821858674287796, 0.06298253685235977, 0.023449668660759926, 0.027244489639997482, -0.04412326216697693, -0.17329472303390503, -0.05051880329847336, 0.0735974982380867, 0.03408283367753029, -0.07915139198303223, -0.01692103035748005, 0.13785409927368164, -0.12838150560855865, 0.03774023428559303, -0.02957700751721859, 0.05348804593086243, -0.020482001826167107, -0.029499053955078125, 0.07252872735261917, 0.18650032579898834, -0.005572592373937368, 0.04213536158204079, -0.11284784972667694, 0.03711599484086037, 0.004490728490054607, 0.10520206391811371, -0.03681294620037079, 0.059452179819345474, 0.041335996240377426, 0.10982778668403625, 0.010247701779007912, 0.0644744411110878, -0.18759146332740784, 0.011528294533491135, -0.06973850727081299, 0.024778882041573524, 0.09065215289592743, -0.03252943605184555, 0.06657528877258301, 0.009063297882676125, 0.001241288147866726, -0.0443677119910717, -0.018538111820816994, -0.12073659151792526, -0.15073125064373016, 0.056705180555582047, 0.013778740540146828, 0.06117577105760574, -0.13047514855861664, 0.04355896636843681, -0.020540647208690643, 0.12366201728582382, -0.09289688616991043, -0.07127604633569717, -0.12762828171253204, -0.13931633532047272, 0.06198576092720032, -0.10085438936948776, 0.00335229211486876, -0.06161719933152199, 0.07153534144163132, -0.042339496314525604, -0.09841739386320114, 0.07733180373907089, -0.12803883850574493, -0.1113065704703331, -0.046142857521772385, 0.1104302629828453, 0.05805719271302223, 0.03842033073306084, -0.03335744887590408, 0.032548725605010986, 0.003642470808699727, -0.14346709847450256, 0.048177074640989304, 0.29816222190856934, 0.0042233881540596485, 0.041830893605947495, -0.035706907510757446, -0.12029937654733658, 0.029169393703341484, 0.005540063139051199, 0.003888112725690007, 0.1109207421541214, -0.031611550599336624, 0.10927000641822815, 0.1256919652223587, -0.12738950550556183, -0.20897749066352844, 0.030519980937242508, 0.0009629378328099847, 0.024614976719021797, -0.026954248547554016, -0.2092267870903015, 0.08162420988082886, 0.05003215745091438, 0.0029774405993521214, 0.11237139254808426, -0.2018236368894577, -0.13419345021247864, -0.011548363603651524, 0.06662710011005402, -0.004171503242105246, -0.09567029029130936, -0.042029041796922684, -0.005208841525018215, -0.16240531206130981, 0.07390034943819046, -0.19227002561092377, 0.04050716012716293, 0.014237111434340477, 0.044200632721185684, -0.009405351243913174, -0.08144813030958176, 0.1437610536813736, -0.024686627089977264, 0.04557696357369423, -0.045629799365997314, -0.00323276175186038, 0.02400340512394905, -0.06729932874441147, 0.1490604132413864, -0.004442522302269936, -0.00931350514292717, -0.12822319567203522, -0.009049194864928722, -0.0897039845585823, 0.018333062529563904, -0.036263357847929, -0.04843531548976898, -0.033447545021772385, 0.0936347097158432, 0.03873065859079361, -0.020276127383112907, -0.13673199713230133, -0.0666748583316803, 0.0014793570153415203, 0.19539479911327362, 0.11851247400045395, -0.06837743520736694, -0.15133759379386902, -0.04269784316420555, -0.007822583429515362, 0.06899695098400116, -0.08578784018754959, 0.02434549108147621, 0.023423785343766212, -0.01717577874660492, 0.07879024744033813, -0.0015189425321295857, -0.18121734261512756, 0.0030930167995393276, 0.0757952407002449, -0.009208845905959606, -0.14511989057064056, -0.00034112611319869757, 0.1321471482515335, -0.059549376368522644, 0.03563579171895981, 0.12836860120296478, -0.028686335310339928, 0.02535184659063816, -0.02924358658492565, 0.08091331273317337, -0.025371339172124863, 0.10228651762008667, 0.034374214708805084, -0.00771577563136816, -0.046513840556144714, 0.11885767430067062, 0.012117816135287285, -0.07986210286617279, 0.027624672278761864, 0.1105242446064949, -0.10514020174741745, -0.059423789381980896, -0.06977575272321701, -0.018226955085992813, 0.02773251198232174, -0.11824246495962143, -0.001794973504729569, -0.0345207042992115, 0.034466132521629333, -0.0011056986404582858, 0.030831940472126007, 0.03825994208455086, -0.004239101894199848, 0.030598120763897896, -0.0012688523856922984, 0.034188829362392426, -0.04221523553133011, 0.06260119378566742, -0.05868235602974892, 0.13015305995941162, 0.03213334456086159, 0.0200449600815773, 0.012299998663365841, -0.05604633688926697, -0.08345642685890198, -0.030117379501461983, -0.10502339154481888, -0.04314732924103737, -0.0914192646741867, -0.023185743018984795, 0.010409760288894176, 0.07086330652236938, 0.0007536470075137913, 0.0689658597111702, -0.04239184036850929, -0.05581812188029289, -0.09813794493675232, 0.031029729172587395, -0.07397636771202087, 0.02131740376353264, 0.07281173765659332, -0.033175934106111526, 0.05423568934202194, 0.018804486840963364, -0.005529846530407667, -0.032914064824581146, -0.13886910676956177, 0.016085654497146606, -0.042839717119932175, 0.005486978217959404, 0.012885878793895245, -0.09549517929553986, -0.010527541860938072, -0.011604828760027885, -0.03922242298722267, 0.0044836909510195255, 0.08481943607330322, -0.07456213235855103, 0.17565681040287018, -0.010256621986627579, 0.005027273669838905, -0.07030456513166428, 0.02712572179734707, -0.002363472245633602, -0.016779454424977303, 0.05937078222632408, -0.034325771033763885, 0.006813499145209789, -0.10439182817935944, -0.009548190981149673, 0.023958560079336166, 0.07077393680810928, 0.06575141847133636, 0.0018977976869791746, 0.040562257170677185, 0.04363507777452469, 0.10478557646274567, 0.0008625189657323062, -0.038728438317775726, 0.04099898785352707, 0.03977852687239647, -0.016201959922909737, 0.02733292244374752, -0.08486533910036087, -0.053856294602155685, 0.018909122794866562, 0.028983868658542633, 0.05976593866944313, 0.03497884422540665, -0.04397662729024887, 0.1740798056125641, 0.05404651165008545, 0.10275263339281082, 0.0887090191245079, 0.012410289607942104, -0.06375451385974884, -0.11378474533557892, -0.023429378867149353, -0.0923146978020668, 0.02880151942372322, -0.12868982553482056, 0.08662837743759155, 0.11444017291069031, -0.1336621642112732, 0.09730114042758942, 0.03690410405397415, -0.0519518107175827, -0.05075354874134064, -0.22151094675064087, -0.017759554088115692, -0.07296548038721085, -0.03866889700293541, -0.029180504381656647, 0.011809144169092178, 0.047583792358636856, 0.0009457558626309037, 0.003603714518249035, 0.18668434023857117, -0.19235196709632874, -0.06059109419584274, 0.01701383851468563, -0.0182352215051651, 0.07774785906076431, 0.1675313264131546, 0.014399250037968159, 0.04432148113846779, -0.04525827616453171, 0.09995725750923157, 0.07758317142724991, 0.03827831894159317, 0.01839720644056797, 0.019794084131717682, -0.0179656483232975, 0.000029936069040559232, 0.026686599478125572, -0.0947234258055687, 0.1535104215145111, 0.08304066210985184, -0.04095413163304329, 0.022148190066218376, 0.09456802159547806, -0.058198168873786926, -0.07481426000595093, -0.1282278597354889, 0.024388793855905533, -0.02841929718852043, 0.04260648414492607, -0.03184100612998009, -0.13077089190483093, -0.0026400878559798002, 0.12222133576869965, 0.1632101833820343, -0.04591239616274834, 0.008370245806872845, 0.005806292872875929, 0.009208688512444496, -0.008923539891839027, 0.17566311359405518, 0.011007800698280334, 0.2962792217731476, -0.006291002966463566, 0.12312678247690201, -0.01895272545516491, -0.05556803569197655, -0.12175747752189636, -0.003425594652071595, -0.08474370092153549, 0.03376917541027069, 0.00822302047163248, 0.05294764041900635, 0.020208265632390976, -0.13914917409420013, -0.014400627464056015, 0.01174185425043106, -0.030903594568371773, 0.021098123863339424, 0.07987270504236221, -0.0009786587907001376, 0.10227775573730469, 0.01223768200725317, -0.013728244230151176, 0.17046895623207092, 0.015498243272304535, -0.14304974675178528, -0.05936824902892113, 0.04072878137230873, -0.037452470511198044, 0.23127198219299316, -0.025629287585616112, 0.06755319237709045, 0.09022203832864761, -0.052778128534555435, -0.14816071093082428, 0.11081377416849136, 0.023877166211605072, -0.12771394848823547, 0.021285545080900192, 0.08032277971506119, 0.0041830469854176044, 0.04647452011704445, 0.01987180858850479, 0.06286963820457458, 0.039531584829092026, 0.06171967089176178, -0.03332168236374855, -0.10989508777856827, 0.06389299780130386, -0.1465529054403305, 0.1441067010164261, 0.13453054428100586, 0.018193963915109634, -0.01239038910716772, -0.03687960281968117, 0.04344285652041435, -0.0013428846141323447, 0.09296609461307526, -0.021963022649288177, -0.06532078236341476, 0.012464017607271671, 0.02409439906477928, 0.09412814676761627, -0.15818634629249573, -0.06733227521181107, -0.0024629111867398024, 0.019944852218031883, 0.012838993221521378, 0.08155511319637299, 0.027618346735835075, 0.00838699471205473, -0.056021761149168015, -0.01357497088611126, -0.021057115867733955, 0.08436775207519531, -0.055188022553920746, -0.09503645449876785 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-large-lora-4.72M-snli-model3 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6287 - Accuracy: 0.795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 10 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.356 | 1.0 | 4292 | 0.2713 | 0.9038 | | 0.3305 | 2.0 | 8584 | 0.2606 | 0.9075 | | 0.3271 | 3.0 | 12876 | 0.2571 | 0.9106 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "t5-large", "model-index": [{"name": "t5-large-lora-4.72M-snli-model3", "results": []}]}
text-classification
varun-v-rao/t5-large-lora-4.72M-snli-model3
[ "transformers", "tensorboard", "safetensors", "t5", "text-classification", "generated_from_trainer", "base_model:t5-large", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T14:01:30+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-t5-large #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-large-lora-4.72M-snli-model3 =============================== This model is a fine-tuned version of t5-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6287 * Accuracy: 0.795 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 128 * eval\_batch\_size: 128 * seed: 10 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-t5-large #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 75, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text-classification #generated_from_trainer #base_model-t5-large #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 10\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.08922667056322098, 0.08848173171281815, -0.0020684110932052135, 0.10850801318883896, 0.14522677659988403, 0.0051343911327421665, 0.15795645117759705, 0.11886855959892273, -0.06876257807016373, 0.04545469582080841, 0.12283948063850403, 0.12142372131347656, 0.032998621463775635, 0.14526790380477905, -0.08089949190616608, -0.22114409506320953, 0.02008492685854435, 0.020333182066679, -0.06402604281902313, 0.12577669322490692, 0.09775583446025848, -0.11596816778182983, 0.10332139581441879, -0.016530003398656845, -0.14273777604103088, 0.004668055102229118, 0.020076338201761246, -0.07064706087112427, 0.13247479498386383, 0.04602178558707237, 0.1101197600364685, 0.03127819299697876, 0.06828588247299194, -0.19485996663570404, 0.01240954827517271, 0.07186219096183777, -0.009926818311214447, 0.0852021649479866, 0.04530398175120354, 0.010708233341574669, 0.09126909077167511, -0.10811521112918854, 0.05688861757516861, 0.028033897280693054, -0.1241467073559761, -0.2031802386045456, -0.07129117846488953, 0.0400509312748909, 0.1022217646241188, 0.0854497030377388, -0.01625153422355652, 0.1371513456106186, -0.03442109376192093, 0.10325110703706741, 0.20974507927894592, -0.32552409172058105, -0.05753805860877037, 0.05408237501978874, 0.03825414553284645, 0.10333815962076187, -0.09185455739498138, -0.008972249925136566, 0.058871444314718246, 0.023890230804681778, 0.14655233919620514, -0.01946203038096428, -0.04649472236633301, -0.0017084003193303943, -0.14585931599140167, -0.03676030412316322, 0.177560955286026, 0.06402484327554703, -0.04637395963072777, -0.06853310018777847, -0.07865294814109802, -0.14542388916015625, -0.02897942066192627, -0.008548280224204063, 0.050540145486593246, -0.016618749126791954, -0.048122603446245193, -0.026967231184244156, -0.10709572583436966, -0.06184360757470131, -0.048833414912223816, 0.1050124317407608, 0.03353887423872948, -0.0008987958426587284, -0.02850799448788166, 0.09434071183204651, -0.016484037041664124, -0.13320182263851166, 0.015195428393781185, 0.022689124569296837, 0.0039015887305140495, -0.049605414271354675, -0.04283938929438591, -0.09655357152223587, 0.028647530823946, 0.1177913025021553, -0.06522352248430252, 0.053420934826135635, -0.010371200740337372, 0.04658301919698715, -0.10416758060455322, 0.16629056632518768, -0.04318668693304062, -0.03165838122367859, 0.03229547291994095, 0.0947403609752655, 0.06707039475440979, -0.015205899253487587, -0.1397758275270462, 0.020073262974619865, 0.12534600496292114, 0.034962162375450134, -0.05163413658738136, 0.08403851091861725, -0.037748999893665314, -0.010624196380376816, 0.042309828102588654, -0.09367894381284714, 0.009844368323683739, 0.00252510909922421, -0.04987963289022446, -0.06875453144311905, 0.030134988948702812, 0.01721935160458088, -0.01525067538022995, 0.08894769847393036, -0.08134737610816956, -0.003696574829518795, -0.07498662173748016, -0.1277337223291397, 0.025090349838137627, -0.0719088688492775, 0.012516523711383343, -0.12346311658620834, -0.17799384891986847, -0.00031364112510345876, 0.05135999992489815, -0.025131305679678917, -0.05357278883457184, -0.05527283623814583, -0.09090827405452728, 0.016818687319755554, -0.02116754651069641, 0.09005378931760788, -0.074282705783844, 0.09514418989419937, 0.033795762807130814, 0.05851180478930473, -0.056921981275081635, 0.031901877373456955, -0.10161270201206207, 0.039887186139822006, -0.17970719933509827, 0.02493029460310936, -0.03771095722913742, 0.07574581354856491, -0.0947142243385315, -0.07929600775241852, -0.0004485309182200581, 0.0006704646511934698, 0.05611514300107956, 0.09521936625242233, -0.16492417454719543, -0.05134520307183266, 0.1794426590204239, -0.09188909083604813, -0.17217803001403809, 0.14448747038841248, -0.046506356447935104, 0.03550552576780319, 0.06884484738111496, 0.1908443570137024, 0.06433948129415512, -0.08598470687866211, 0.00410588039085269, 0.004672617185860872, 0.05943385139107704, -0.05651572346687317, 0.09234735369682312, -0.006932317744940519, -0.005081412382423878, 0.006331245880573988, -0.05226902291178703, 0.058662787079811096, -0.059383563697338104, -0.08000478148460388, -0.04264771565794945, -0.09861581027507782, 0.039302002638578415, 0.04463379830121994, 0.0561828687787056, -0.12314682453870773, -0.09608718007802963, 0.04209733009338379, 0.07142321765422821, -0.07580313831567764, 0.027348386123776436, -0.07544437795877457, 0.08723897486925125, -0.0668080598115921, -0.006404881365597248, -0.14911945164203644, -0.04949752613902092, 0.018875814974308014, -0.006472199223935604, 0.00630138348788023, -0.0026236181147396564, 0.0654066950082779, 0.074494369328022, -0.07194117456674576, -0.032622627913951874, -0.003784474451094866, 0.01655699498951435, -0.12071144580841064, -0.196096733212471, -0.013771205209195614, -0.025423826649785042, 0.14836159348487854, -0.23958685994148254, 0.057407721877098083, 0.011738896369934082, 0.07317116111516953, 0.0428815595805645, -0.0006863286253064871, -0.02403608337044716, 0.05535102263092995, -0.05625699460506439, -0.0685412734746933, 0.062239326536655426, 0.016100004315376282, -0.10582052171230316, -0.013841640204191208, -0.18084412813186646, 0.18886235356330872, 0.13761800527572632, -0.061148256063461304, -0.06783843785524368, 0.0050658127292990685, -0.037324052304029465, -0.024762596935033798, -0.037245042622089386, -0.009035041555762291, 0.11559461802244186, -0.007575847674161196, 0.16738924384117126, -0.10338706523180008, -0.04039645567536354, 0.0287515539675951, -0.041840504854917526, 0.007633740082383156, 0.11743374913930893, 0.08916802704334259, -0.14468351006507874, 0.15486587584018707, 0.19397294521331787, -0.07486821711063385, 0.1421133279800415, -0.05239357054233551, -0.05422241613268852, -0.018710365518927574, 0.03055836632847786, 0.022673474624753, 0.10218541324138641, -0.10594947636127472, 0.007897067815065384, 0.014277860522270203, 0.02325328253209591, 0.010551750659942627, -0.2045648843050003, -0.019867636263370514, 0.04495174437761307, -0.06294979155063629, -0.00023745506769046187, -0.018495097756385803, -0.007923954166471958, 0.10448667407035828, 0.00428349431604147, -0.08347612619400024, 0.04695817828178406, -0.006949582602828741, -0.0915079116821289, 0.20992407202720642, -0.07435955107212067, -0.1796029657125473, -0.14119192957878113, -0.04600219801068306, -0.057894881814718246, 0.029166588559746742, 0.06782124936580658, -0.06881225109100342, -0.043484922498464584, -0.13920219242572784, -0.004721436183899641, 0.01777983270585537, 0.02660086192190647, 0.005912485998123884, 0.011715416796505451, 0.0858827531337738, -0.09845581650733948, -0.012544647790491581, -0.02815120667219162, -0.04554583132266998, 0.027686400339007378, 0.013281000778079033, 0.11319869756698608, 0.15016719698905945, -0.027999838814139366, -0.0010714397067204118, -0.04454541206359863, 0.21249406039714813, -0.06498400121927261, 0.002230606507509947, 0.14429971575737, -0.025783661752939224, 0.051025860011577606, 0.14595845341682434, 0.0432383194565773, -0.09576228260993958, 0.032854799181222916, 0.02473815344274044, -0.03521942347288132, -0.22058337926864624, -0.028982143849134445, -0.05009584501385689, 0.03207121044397354, 0.089767225086689, 0.03720245882868767, 0.04176696017384529, 0.05622521787881851, 0.008465388789772987, 0.07479475438594818, 0.010825413279235363, 0.07867728173732758, 0.11707402765750885, 0.04985647648572922, 0.12593810260295868, -0.06299006938934326, -0.04733577370643616, 0.04209883138537407, 0.0019097119802609086, 0.1880345493555069, 0.014292699284851551, 0.17308402061462402, 0.045243799686431885, 0.14011019468307495, 0.0021295726764947176, 0.07130030542612076, -0.011734277941286564, -0.029979756101965904, -0.022158771753311157, -0.05117543786764145, -0.02355850115418434, 0.0296675655990839, -0.08883097767829895, 0.06211341172456741, -0.11408890783786774, 0.0231173038482666, 0.06228676438331604, 0.24094119668006897, 0.05173930153250694, -0.33439865708351135, -0.08980577439069748, 0.034591883420944214, -0.02380404807627201, -0.030261307954788208, 0.032965000718832016, 0.1415206491947174, -0.05558167025446892, 0.04752402752637863, -0.07683072239160538, 0.08487670123577118, -0.04295345023274422, 0.04944869875907898, 0.05307263880968094, 0.07747436314821243, -0.018703462556004524, 0.07869564741849899, -0.2871946096420288, 0.2643170952796936, 0.014820183627307415, 0.06329787522554398, -0.05663260817527771, 0.00644454313442111, 0.02769959717988968, 0.09927235543727875, 0.08042361587285995, -0.018808037042617798, -0.07354110479354858, -0.17432324588298798, -0.07036302238702774, 0.027230028063058853, 0.08579808473587036, -0.04375527799129486, 0.10544541478157043, -0.04647591710090637, -0.004489292856305838, 0.08632832765579224, 0.00290209730155766, -0.0643005296587944, -0.09926564991474152, -0.012080569751560688, 0.05288667604327202, -0.03580845147371292, -0.08386534452438354, -0.08977723866701126, -0.12702013552188873, 0.15052267909049988, -0.06532593816518784, -0.044911954551935196, -0.09725116193294525, 0.04956936836242676, 0.041829586029052734, -0.08209474384784698, 0.04165450483560562, -0.0013910031411796808, 0.097834013402462, 0.02199699729681015, -0.06600848585367203, 0.135456845164299, -0.07184651494026184, -0.1855030655860901, -0.06007697805762291, 0.11962885409593582, -0.010377324186265469, 0.04049637168645859, -0.0022189852315932512, 0.005768171977251768, -0.014286967925727367, -0.0728188306093216, 0.014298849739134312, -0.0013436571462079883, 0.06364760547876358, 0.011960051022469997, -0.05167220160365105, -0.020137373358011246, -0.05940088629722595, -0.037354975938797, 0.16988147795200348, 0.2887239158153534, -0.07835600525140762, 0.008690239861607552, 0.04640057310461998, -0.06070025637745857, -0.1880282759666443, 0.029987310990691185, 0.00963298138231039, -0.0033682016655802727, 0.05326477438211441, -0.1284438669681549, 0.08172658830881119, 0.08628476411104202, -0.02912510186433792, 0.10200800001621246, -0.3041652739048004, -0.13878154754638672, 0.11619038879871368, 0.15378567576408386, 0.11722525954246521, -0.16887639462947845, -0.03930780664086342, -0.045996733009815216, -0.09775017946958542, 0.12135382741689682, -0.1414567083120346, 0.10499022901058197, -0.0022881063632667065, 0.029655782505869865, 0.005898080766201019, -0.05360639467835426, 0.1252918392419815, -0.02779483050107956, 0.1056586503982544, -0.07534937560558319, 0.0003556628944352269, 0.06319517642259598, -0.06802618503570557, 0.040443290024995804, -0.1507454216480255, 0.036497123539447784, -0.0677088275551796, -0.031878117471933365, -0.0470469668507576, 0.03305351361632347, -0.03845055028796196, -0.05847664922475815, -0.045724622905254364, 0.02312283031642437, 0.0595705546438694, -0.008303031325340271, 0.1732761263847351, 0.007259743753820658, 0.1484583020210266, 0.15600351989269257, 0.09816332906484604, -0.053534138947725296, -0.013986226171255112, 0.00043637826456688344, -0.0366639569401741, 0.05538984015583992, -0.1670161336660385, 0.042133577167987823, 0.11031921207904816, -0.007828561589121819, 0.1448262631893158, 0.0721624493598938, -0.03387683257460594, 0.002840505912899971, 0.06641624122858047, -0.169185608625412, -0.13385145366191864, -0.01955629140138626, -0.012290769256651402, -0.12556834518909454, 0.06133487448096275, 0.12569782137870789, -0.07624983042478561, 0.012711234390735626, -0.002492502797394991, 0.026300201192498207, -0.023548463359475136, 0.1551501303911209, 0.06349361687898636, 0.056376535445451736, -0.0773809626698494, 0.09397005289793015, 0.06858963519334793, -0.08188661187887192, 0.026053521782159805, 0.054719965904951096, -0.10234764218330383, -0.04878680035471916, 0.051245950162410736, 0.1738475114107132, -0.017072150483727455, -0.06776662915945053, -0.15233509242534637, -0.12762415409088135, 0.05486179143190384, 0.17912797629833221, 0.08906848728656769, 0.011650916188955307, -0.021698927506804466, 0.0015316634671762586, -0.11479809880256653, 0.13166199624538422, 0.023602884262800217, 0.08620785176753998, -0.1674019992351532, 0.11789923161268234, -0.002529257908463478, 0.012658854015171528, -0.018854906782507896, 0.05189109221100807, -0.11013157665729523, -0.006249425001442432, -0.1236157938838005, 0.005912625230848789, -0.018737047910690308, 0.005015910137444735, -0.0016268992330878973, -0.043337564915418625, -0.05982760339975357, 0.012402827851474285, -0.09742206335067749, -0.027008000761270523, 0.026562420651316643, 0.06326710432767868, -0.12116105854511261, -0.04539927840232849, 0.017736176028847694, -0.07768861204385757, 0.08151686936616898, -0.0034110387787222862, 0.008121870458126068, 0.04978425055742264, -0.16092896461486816, 0.035957448184490204, 0.0627342015504837, 0.018421215936541557, 0.036985255777835846, -0.08759146928787231, -0.0122437858954072, 0.0028054919093847275, 0.0356612354516983, 0.0242612361907959, 0.08541713654994965, -0.125325009226799, 0.01138027012348175, -0.017595667392015457, -0.04894409701228142, -0.048154961317777634, 0.0332537479698658, 0.06341972202062607, 0.0006655222969129682, 0.21257363259792328, -0.09553078562021255, 0.006065626163035631, -0.20826633274555206, 0.007776146754622459, 0.0016583489486947656, -0.12205763906240463, -0.11593980342149734, -0.05121897906064987, 0.05295944958925247, -0.06411571055650711, 0.12834569811820984, 0.019593430683016777, 0.04015333205461502, 0.04435792565345764, -0.03306593373417854, 0.055232271552085876, 0.03315640240907669, 0.23546016216278076, 0.011467068456113338, -0.046806007623672485, 0.03511437773704529, 0.010848334059119225, 0.11807811260223389, 0.07830324023962021, 0.18817687034606934, 0.1684967577457428, -0.056536801159381866, 0.10655038058757782, 0.03673659265041351, -0.04217510297894478, -0.13605332374572754, 0.049367859959602356, -0.0434839203953743, 0.12297910451889038, -0.013277994468808174, 0.20758751034736633, 0.11366294324398041, -0.15312252938747406, 0.00645883334800601, -0.06574080884456635, -0.07498937845230103, -0.1143684908747673, -0.07592643052339554, -0.10056172311306, -0.13960029184818268, -0.014997009187936783, -0.11387801915407181, 0.0062815602868795395, 0.11443562805652618, 0.007844013161957264, -0.024261394515633583, 0.16783127188682556, 0.013068310916423798, 0.01712338626384735, 0.05977065488696098, 0.002284698188304901, -0.035765670239925385, -0.07246813178062439, -0.09253331273794174, 0.012125194072723389, -0.021214280277490616, 0.024745648726820946, -0.03954438492655754, -0.021111994981765747, 0.04973399266600609, -0.014772734604775906, -0.1041354238986969, 0.013284064829349518, 0.027955111116170883, 0.049874432384967804, 0.05751509591937065, 0.020347781479358673, -0.0046646264381706715, 0.0075939423404634, 0.2321704775094986, -0.07866267114877701, -0.07134146243333817, -0.09152611345052719, 0.2083885222673416, 0.02484954707324505, 0.00016431223775725812, 0.011975332163274288, -0.09560900181531906, 0.024975823238492012, 0.21698415279388428, 0.19085471332073212, -0.0817788764834404, -0.0009019895805977285, -0.027925189584493637, -0.007581803482025862, -0.026297107338905334, 0.10979627817869186, 0.11956287920475006, 0.010875939391553402, -0.06772486120462418, -0.025996655225753784, -0.030776692554354668, 0.007957514375448227, -0.04985888674855232, 0.07349139451980591, 0.026554878801107407, 0.007489012088626623, -0.03507788106799126, 0.06914164125919342, -0.03535336256027222, -0.11430815607309341, 0.01300208829343319, -0.1980850249528885, -0.14482508599758148, -0.024470597505569458, 0.12093071639537811, -0.014916936866939068, 0.0420745313167572, -0.03340008854866028, 0.007637685164809227, 0.044933125376701355, -0.020013418048620224, -0.06932689249515533, -0.05850546434521675, 0.057562872767448425, -0.11850942671298981, 0.2298678457736969, -0.0339876152575016, 0.03371262922883034, 0.13320031762123108, 0.025291450321674347, -0.08444352447986603, 0.09714686125516891, 0.049575116485357285, -0.030469059944152832, 0.05109257996082306, 0.07626009732484818, -0.038848645985126495, 0.11209161579608917, 0.05991115793585777, -0.12205568701028824, 0.005310267675668001, -0.05563466623425484, -0.07577531784772873, -0.057797275483608246, -0.037171877920627594, -0.06143006309866905, 0.1310238093137741, 0.17542611062526703, -0.05036810040473938, 0.00870184600353241, -0.05053623765707016, 0.010702979750931263, 0.06358984112739563, 0.019540362060070038, -0.022036613896489143, -0.22162947058677673, 0.017960427328944206, 0.0553838275372982, 0.007629360072314739, -0.3116234838962555, -0.07026399672031403, -0.022110484540462494, -0.04072596877813339, -0.11549467593431473, 0.08791863918304443, 0.12852312624454498, 0.04505443572998047, -0.06958956271409988, -0.052850935608148575, -0.07682483643293381, 0.16349636018276215, -0.12970763444900513, -0.09799947589635849 ]
null
null
diffusers
### technoalbum Dreambooth model trained by Junghans with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) Sample pictures of this concept:
{"license": "creativeml-openrail-m", "tags": ["text-to-image", "stable-diffusion"]}
text-to-image
Junghans/technoalbum
[ "diffusers", "safetensors", "text-to-image", "stable-diffusion", "license:creativeml-openrail-m", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
2024-02-06T14:02:58+00:00
[]
[]
TAGS #diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
### technoalbum Dreambooth model trained by Junghans with TheLastBen's fast-DreamBooth notebook Test the concept via A1111 Colab fast-Colab-A1111 Sample pictures of this concept:
[ "### technoalbum Dreambooth model trained by Junghans with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:" ]
[ "TAGS\n#diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n", "### technoalbum Dreambooth model trained by Junghans with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:" ]
[ 61, 49 ]
[ "passage: TAGS\n#diffusers #safetensors #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### technoalbum Dreambooth model trained by Junghans with TheLastBen's fast-DreamBooth notebook\n\n\nTest the concept via A1111 Colab fast-Colab-A1111\n\nSample pictures of this concept:" ]
[ -0.08980503678321838, 0.025722913444042206, -0.0024922024458646774, 0.059736210852861404, -0.010115981101989746, -0.04530906304717064, 0.14762678742408752, -0.024780353531241417, 0.0022248385939747095, 0.03956025838851929, 0.14421513676643372, 0.001959629822522402, -0.0130176255479455, 0.18071316182613373, -0.06384292989969254, -0.14654801785945892, 0.03842353820800781, 0.031076915562152863, -0.04888581112027168, 0.09037577360868454, 0.08422891050577164, -0.09543879330158234, 0.10072455555200577, -0.02769935503602028, -0.09265425056219101, -0.0030270544812083244, -0.05205775424838066, -0.060582153499126434, 0.05924973264336586, 0.035709939897060394, 0.08310558646917343, 0.12892617285251617, 0.006470362190157175, -0.05786147341132164, 0.048211462795734406, -0.022689109668135643, -0.010992281138896942, 0.03310708329081535, 0.004516285378485918, 0.04502764344215393, 0.059803977608680725, 0.09643233567476273, 0.002142352284863591, 0.0061873747035861015, -0.06684418022632599, 0.07620393484830856, 0.0029179207049310207, 0.08577266335487366, 0.06530550867319107, 0.031896378844976425, 0.0001928203710122034, 0.09956094622612, -0.012460759840905666, 0.11866727471351624, 0.1456986963748932, -0.2421969771385193, -0.10178393870592117, 0.21542134881019592, 0.14183349907398224, -0.06131236255168915, -0.03211713582277298, 0.07419777661561966, 0.07552890479564667, 0.02017844468355179, -0.000294623663648963, -0.10061203688383102, -0.07606439292430878, -0.08546601980924606, -0.07652635127305984, 0.031205909326672554, 0.17851875722408295, 0.01931844837963581, -0.06009732931852341, -0.044360172003507614, -0.08844669908285141, 0.08147387206554413, -0.04572828486561775, -0.06702190637588501, -0.017523204907774925, -0.014816073700785637, -0.02394920401275158, -0.022120200097560883, -0.10712916404008865, -0.04814949259161949, -0.04304876551032066, 0.14633189141750336, -0.035961464047431946, 0.033042360097169876, -0.05467500910162926, 0.14609545469284058, 0.005435118451714516, -0.1539636254310608, -0.0015712874010205269, -0.11191976070404053, 0.07250215858221054, 0.0012009134516119957, 0.00955077912658453, -0.06081090122461319, 0.06446907669305801, 0.03612323850393295, 0.11881735920906067, -0.023431051522493362, 0.0825038030743599, 0.07999861240386963, 0.004865977447479963, -0.03114926815032959, 0.0009114372078329325, -0.11755257844924927, -0.011257085017859936, 0.01922747492790222, 0.03825084865093231, -0.02954629436135292, -0.06836368143558502, -0.003516929689794779, -0.02170775830745697, 0.01178257167339325, 0.019276322796940804, 0.00909443199634552, -0.0641460046172142, -0.010833632200956345, 0.1036527007818222, -0.0008834731415845454, -0.030078774318099022, -0.07452324032783508, -0.0632547065615654, 0.00039661629125475883, 0.12104097753763199, -0.017598384991288185, 0.012718348763883114, 0.1373784989118576, -0.07626403868198395, -0.022322023287415504, -0.03129401057958603, -0.019778180867433548, 0.012478294782340527, -0.10227508097887039, 0.05906471610069275, -0.1397356539964676, -0.21410901844501495, -0.0020243374165147543, 0.08266809582710266, -0.05328703671693802, -0.014066733419895172, -0.03434477373957634, -0.11323634535074234, -0.003373058745637536, 0.0019840302411466837, -0.004287421703338623, -0.02114771492779255, 0.04556341469287872, 0.04945049434900284, 0.11127150058746338, -0.09503001719713211, -0.030244283378124237, -0.11888469755649567, 0.04602491483092308, -0.11904450505971909, -0.004952205810695887, -0.08971509337425232, 0.12168584018945694, -0.012223618105053902, -0.04593034088611603, 0.02092422917485237, 0.03303477540612221, 0.0006750508327968419, 0.21546214818954468, -0.16110220551490784, -0.005563635379076004, 0.12135139107704163, -0.16580423712730408, -0.2282286286354065, 0.06242001801729202, 0.010458340868353844, 0.18656840920448303, 0.035408250987529755, 0.053677067160606384, 0.09856437146663666, -0.3212827742099762, -0.027555156499147415, 0.03717372566461563, -0.08529498428106308, -0.06956230849027634, 0.029951423406600952, 0.1274181604385376, 0.009708027355372906, 0.031210768967866898, -0.04593898355960846, 0.06334881484508514, -0.09110540896654129, -0.0453287735581398, -0.057541623711586, -0.06275436282157898, 0.013157185167074203, 0.0059453812427818775, 0.041055820882320404, -0.07673954218626022, 0.020472528412938118, 0.029411468654870987, -0.008054312318563461, 0.02467055432498455, -0.04674724116921425, -0.0982661023736, 0.045669473707675934, -0.04703938588500023, -0.030427491292357445, -0.024279681965708733, -0.08675739169120789, -0.004236172419041395, 0.1079612448811531, -0.015407085418701172, 0.1721567064523697, 0.07971280068159103, 0.0759652778506279, -0.0233480054885149, -0.0427665077149868, 0.07005040347576141, 0.038927238434553146, -0.03290567174553871, -0.1410287320613861, 0.09277819097042084, -0.0648883655667305, -0.030812840908765793, -0.09755557775497437, 0.024437284097075462, 0.059897519648075104, 0.17974555492401123, 0.0688219889998436, 0.017131837084889412, 0.02596413902938366, 0.002642658306285739, -0.03407064080238342, -0.048304587602615356, 0.037428367882966995, 0.025732871145009995, -0.020521903410553932, 0.09470170736312866, -0.052336178719997406, 0.3132633864879608, 0.09466281533241272, 0.0037117362953722477, -0.07014750689268112, -0.03801422938704491, -0.03545317426323891, -0.02724452316761017, -0.031948626041412354, 0.04507262259721756, 0.017936451360583305, -0.03226758539676666, 0.13291902840137482, -0.06246086210012436, -0.004460033029317856, 0.04477887228131294, -0.08536848425865173, -0.03591723367571831, 0.07533521950244904, -0.060931410640478134, -0.09762919694185257, 0.06518980860710144, 0.18509148061275482, -0.024069957435131073, 0.16554027795791626, -0.007268700748682022, 0.013329296372830868, -0.08358120173215866, 0.05596190318465233, -0.020302370190620422, 0.23095561563968658, -0.08315492421388626, 0.0344964824616909, 0.009005127474665642, -0.014233301393687725, 0.026010513305664062, -0.08061429113149643, -0.047391269356012344, 0.025608154013752937, 0.005692649632692337, 0.15702033042907715, 0.0804230123758316, -0.11349328607320786, 0.0448080413043499, -0.07412376254796982, -0.1696881651878357, 0.037137582898139954, -0.00733122369274497, -0.0014620539732277393, 0.121833935379982, -0.025317849591374397, -0.2483472228050232, -0.09831126779317856, -0.06377021223306656, 0.009009059518575668, -0.03001962974667549, 0.051984693855047226, 0.022091828286647797, -0.06374848634004593, -0.07228640466928482, 0.016980232670903206, 0.03561728075146675, 0.014317152090370655, 0.041269510984420776, 0.031344830989837646, -0.04669072851538658, -0.030143817886710167, -0.009488335810601711, -0.01621457189321518, 0.1323983073234558, 0.13790635764598846, -0.03184102103114128, 0.11589068919420242, 0.07720987498760223, -0.02104511298239231, 0.006405836436897516, 0.02339239791035652, 0.26718369126319885, -0.04454456642270088, 0.12305466085672379, 0.17611947655677795, 0.07006368786096573, 0.03714914247393608, 0.16770486533641815, 0.027934636920690536, -0.0617821104824543, 0.08753467351198196, -0.07654181122779846, -0.08209394663572311, -0.0559849850833416, -0.1061110720038414, -0.012144145555794239, 0.08378659933805466, -0.01575320027768612, 0.04346340522170067, 0.03885475546121597, 0.14313386380672455, 0.0804627314209938, -0.018591873347759247, -0.04426136612892151, 0.0659824013710022, 0.09394843131303787, -0.08323919028043747, 0.036603957414627075, -0.07337570190429688, -0.10771007090806961, 0.0940403938293457, 0.02077620103955269, 0.02499839849770069, -0.038823746144771576, -0.07396131753921509, 0.06565003097057343, 0.10405294597148895, 0.11426559090614319, 0.13290110230445862, -0.00642972020432353, -0.09229911863803864, -0.029529022052884102, -0.10096214711666107, 0.06536277383565903, 0.08123011887073517, -0.11120221763849258, -0.011499378830194473, 0.033204641193151474, 0.0837460309267044, 0.0029011426959186792, 0.021379055455327034, 0.15797074139118195, -0.23553240299224854, -0.04150839149951935, -0.010495426133275032, 0.0734238475561142, -0.09038432687520981, 0.025153448805212975, 0.2491104006767273, -0.007084208074957132, 0.03393610939383507, -0.07971874624490738, 0.057349421083927155, 0.0963139608502388, 0.01574728637933731, -0.06263042986392975, -0.035570114850997925, -0.015884168446063995, 0.03131699189543724, -0.21339906752109528, 0.10774414241313934, -0.028073426336050034, 0.09414272755384445, 0.014261392876505852, -0.02077825739979744, 0.012020330876111984, 0.16230694949626923, 0.19331958889961243, -0.01687634363770485, 0.05407719686627388, 0.018423108384013176, -0.1418137103319168, 0.0033077786210924387, 0.05853482708334923, 0.09110306203365326, 0.035184234380722046, 0.04554587975144386, -0.025835154578089714, 0.019104180857539177, -0.04673517122864723, -0.17364078760147095, -0.03090779110789299, 0.034876614809036255, 0.07488230615854263, 0.04334135353565216, -0.07235649228096008, -0.05645180493593216, 0.03121771663427353, 0.1432207077741623, -0.11272682249546051, -0.0480039119720459, -0.09003555774688721, -0.10015637427568436, 0.0604000985622406, -0.02247391827404499, 0.06146332621574402, -0.0833551362156868, 0.019080108031630516, -0.04014785587787628, -0.08130660653114319, 0.05575988441705704, -0.15448719263076782, -0.09048207104206085, -0.13858239352703094, 0.022891080006957054, -0.023238932713866234, -0.01972416788339615, 0.035496700555086136, -0.03802856057882309, -0.0945143848657608, -0.08894827216863632, -0.01899293065071106, -0.026317253708839417, -0.07450289279222488, -0.01574227213859558, 0.01680263876914978, -0.015458007343113422, 0.034745652228593826, -0.01480911672115326, 0.020748717710375786, 0.2755952775478363, -0.04585614427924156, 0.055790189653635025, 0.16803282499313354, -0.017365384846925735, -0.279130756855011, -0.11330030858516693, -0.06768856197595596, 0.018403781577944756, -0.04769632965326309, -0.028802333399653435, 0.19968236982822418, -0.000029976561563671567, -0.053656987845897675, 0.18591049313545227, -0.3005525767803192, -0.09862866997718811, 0.11931002140045166, 0.10248533636331558, 0.33414673805236816, -0.11375956982374191, -0.05213039368391037, -0.02817995660007, -0.23417238891124725, 0.12412841618061066, 0.0011661506723612547, 0.047166384756565094, -0.08063790947198868, -0.014395952224731445, -0.020003780722618103, -0.06368554383516312, 0.12529800832271576, -0.09517519176006317, 0.07400909811258316, -0.105599045753479, 0.010662071406841278, 0.13698247075080872, -0.035289011895656586, 0.08983559161424637, -0.06380239129066467, 0.10256830602884293, -0.0173665601760149, -0.03204064443707466, -0.022847577929496765, 0.10772678256034851, -0.07375472784042358, -0.10614284873008728, -0.0718136802315712, 0.044921793043613434, -0.04093027114868164, -0.01670977473258972, -0.10384669154882431, -0.0033171360846608877, -0.07291346788406372, 0.22500023245811462, 0.0011448698351159692, -0.11718163639307022, -0.02437254786491394, 0.003287285566329956, -0.0460827611386776, 0.08571121096611023, -0.03732303902506828, -0.05837269872426987, 0.18241633474826813, 0.03574975207448006, 0.062076907604932785, 0.0366109237074852, -0.015822840854525566, 0.003428134834393859, 0.11576078087091446, -0.19016768038272858, -0.0385630801320076, -0.054256290197372437, 0.10899535566568375, 0.04903729632496834, 0.021701661869883537, 0.13428564369678497, -0.12525604665279388, 0.06389176845550537, -0.045064859092235565, -0.0212404765188694, -0.011303856037557125, 0.11706152558326721, 0.011691154912114143, 0.05099610984325409, -0.04620474949479103, 0.061636827886104584, -0.06658342480659485, -0.15718893706798553, -0.09193744510412216, 0.06551072001457214, -0.0995989590883255, -0.06033731997013092, 0.052796460688114166, 0.18443208932876587, -0.1717478483915329, -0.028184233233332634, -0.12230180948972702, -0.1404983550310135, 0.022086113691329956, 0.2092849314212799, 0.08338669687509537, 0.06474599242210388, 0.02117764577269554, -0.052974287420511246, 0.0022878064773976803, 0.0922878235578537, 0.07097729295492172, 0.08683660626411438, -0.2132221907377243, -0.023326326161623, -0.03415653854608536, 0.036137282848358154, -0.10310237109661102, -0.007926324382424355, -0.09846099466085434, 0.00779421441257, -0.06497831642627716, 0.10103210806846619, -0.0654468834400177, -0.056288495659828186, -0.004087467677891254, -0.0061995480209589005, -0.014575991779565811, 0.002843387657776475, -0.03672780096530914, 0.06683629006147385, 0.016530407592654228, -0.010480650700628757, -0.06263148784637451, -0.051125869154930115, 0.050766412168741226, -0.05328099802136421, 0.06289603561162949, -0.027068059891462326, -0.10375037044286728, -0.027214016765356064, -0.2140224725008011, -0.003208230948075652, 0.1293688714504242, -0.011964190751314163, 0.029345884919166565, 0.052250105887651443, -0.036698825657367706, 0.025121232494711876, 0.06647981703281403, 0.007686332333832979, 0.047259725630283356, -0.1022995263338089, -0.05416673421859741, -0.021232303231954575, -0.04185505211353302, -0.09835240989923477, 0.008647994138300419, 0.13329026103019714, 0.05866159126162529, 0.1372951865196228, -0.1239599883556366, 0.03741871565580368, -0.028031131252646446, 0.0006466000922955573, 0.06038841977715492, -0.10247109830379486, 0.010793746449053288, 0.002073545940220356, -0.017011547461152077, 0.008412744849920273, 0.12335805594921112, 0.010084099136292934, -0.1957094818353653, -0.0012980788014829159, -0.15832942724227905, -0.031620677560567856, 0.0345078781247139, 0.22797156870365143, 0.01661144755780697, 0.026562124490737915, -0.1582179218530655, 0.0644054114818573, 0.06944989413022995, 0.06810111552476883, 0.0571637824177742, 0.13363121449947357, -0.019143007695674896, 0.14926911890506744, -0.0016566663980484009, 0.0423121452331543, -0.02914552576839924, 0.009154271334409714, -0.10265172272920609, 0.14174117147922516, -0.04304777830839157, -0.01063437107950449, 0.07298478484153748, -0.009452737867832184, -0.040424592792987823, 0.0023404150269925594, -0.06388019770383835, -0.02423868514597416, -0.018411636352539062, -0.07764610648155212, -0.07767916470766068, 0.02961425669491291, -0.07599249482154846, -0.022430600598454475, 0.021051719784736633, 0.053189076483249664, -0.036250002682209015, 0.15874916315078735, -0.06091299653053284, 0.008228463120758533, 0.14229197800159454, -0.02111711911857128, -0.05412754416465759, -0.009173806756734848, 0.046549566090106964, -0.07486352324485779, 0.08354085683822632, -0.078360415995121, 0.03836723417043686, -0.028015853837132454, -0.003284630598500371, 0.041996490210294724, -0.05418701842427254, -0.03021479770541191, 0.018847154453396797, 0.03715776279568672, 0.049167193472385406, 0.023670922964811325, 0.015034181997179985, 0.001577448914758861, 0.17487852275371552, -0.053008656948804855, -0.18542584776878357, -0.08326730877161026, 0.07424873858690262, -0.11308208853006363, 0.10242654383182526, -0.026430495083332062, -0.008376525714993477, -0.04882899671792984, 0.17192354798316956, 0.1326112598180771, -0.1124262586236, 0.0017169323982670903, -0.039632655680179596, 0.007002925965934992, -0.05941025912761688, 0.04374421387910843, 0.015375901944935322, 0.286847859621048, -0.08102518320083618, -0.04419038072228432, -0.07954747974872589, -0.09093911945819855, -0.024058090522885323, -0.13296213746070862, 0.05210854858160019, -0.013962594792246819, -0.12626424431800842, 0.08808229118585587, -0.14581258594989777, -0.04428581893444061, 0.1816328763961792, -0.07613413035869598, -0.042301010340452194, -0.040229432284832, 0.1311589926481247, 0.02863725647330284, 0.052164703607559204, -0.10971157997846603, -0.0003612440195865929, 0.005095521919429302, -0.023924337700009346, -0.09665223956108093, 0.06348617374897003, 0.015441485680639744, -0.17373093962669373, 0.1616952270269394, 0.006200658623129129, 0.06709130853414536, 0.07499806582927704, -0.05227953940629959, -0.11839060485363007, 0.06929024308919907, 0.014296704903244972, -0.10118894279003143, -0.01371906977146864, 0.07072245329618454, 0.0416882298886776, 0.03854960575699806, 0.003440369153395295, -0.14088334143161774, -0.020972324535250664, 0.14887768030166626, -0.009402638301253319, -0.1429561823606491, 0.07550005614757538, -0.005727574694901705, 0.08880047500133514, 0.05497010797262192, -0.050443947315216064, 0.010248576290905476, -0.01927219331264496, 0.0907481238245964, 0.007526712957769632, -0.05645803362131119, 0.07240975648164749, -0.044512271881103516, 0.008550772443413734, -0.0036116645205765963, -0.023065835237503052, -0.23178799450397491, -0.05874099209904671, -0.1708059310913086, 0.029831424355506897, -0.0016686433227732778, 0.0720968022942543, 0.19451004266738892, 0.059730466455221176, 0.01971522718667984, -0.003639464033767581, -0.030370544642210007, 0.016604147851467133, 0.0036348870489746332, -0.1299724131822586 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-TQuad2-50Epoch This model is a fine-tuned version of [IProject-10/xlm-roberta-base-finetuned-squad2](https://huggingface.co/IProject-10/xlm-roberta-base-finetuned-squad2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.3034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.2966 | 1.0 | 593 | 1.3424 | | 1.1301 | 2.0 | 1186 | 1.3069 | | 1.111 | 3.0 | 1779 | 1.3034 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "IProject-10/xlm-roberta-base-finetuned-squad2", "model-index": [{"name": "xlm-roberta-base-finetuned-TQuad2-50Epoch", "results": []}]}
question-answering
erdometo/xlm-roberta-base-finetuned-TQuad2-50Epoch
[ "transformers", "tensorboard", "safetensors", "xlm-roberta", "question-answering", "generated_from_trainer", "base_model:IProject-10/xlm-roberta-base-finetuned-squad2", "license:mit", "endpoints_compatible", "region:us" ]
2024-02-06T14:04:05+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #xlm-roberta #question-answering #generated_from_trainer #base_model-IProject-10/xlm-roberta-base-finetuned-squad2 #license-mit #endpoints_compatible #region-us
xlm-roberta-base-finetuned-TQuad2-50Epoch ========================================= This model is a fine-tuned version of IProject-10/xlm-roberta-base-finetuned-squad2 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.3034 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-06 * train\_batch\_size: 24 * eval\_batch\_size: 24 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.0+cu121 * Datasets 2.16.1 * Tokenizers 0.15.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #xlm-roberta #question-answering #generated_from_trainer #base_model-IProject-10/xlm-roberta-base-finetuned-squad2 #license-mit #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ 74, 98, 4, 33 ]
[ "passage: TAGS\n#transformers #tensorboard #safetensors #xlm-roberta #question-answering #generated_from_trainer #base_model-IProject-10/xlm-roberta-base-finetuned-squad2 #license-mit #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-06\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1" ]
[ -0.11153175681829453, 0.0849732831120491, -0.0026237433776259422, 0.09600576758384705, 0.11724942922592163, 0.011461061425507069, 0.14948582649230957, 0.11957532167434692, -0.05429540574550629, 0.06935891509056091, 0.13375632464885712, 0.12022989243268967, 0.008517961017787457, 0.12002196162939072, -0.07412026077508926, -0.18524983525276184, 0.006701716221868992, 0.03886082395911217, -0.051574986428022385, 0.12347323447465897, 0.08624356985092163, -0.13931018114089966, 0.0857488363981247, -0.013914210721850395, -0.16789211332798004, 0.016261834651231766, 0.015306131914258003, -0.03432639315724373, 0.12453232705593109, 0.027241243049502373, 0.13606849312782288, 0.032675888389348984, 0.06565334647893906, -0.18760167062282562, 0.021552763879299164, 0.04908996447920799, -0.00860059354454279, 0.08259357511997223, 0.028578514233231544, 0.0059799812734127045, 0.06294581294059753, -0.09744655340909958, 0.04745921492576599, 0.019207468256354332, -0.14620792865753174, -0.23320157825946808, -0.10195283591747284, 0.033328644931316376, 0.09728380292654037, 0.08827680349349976, -0.025898922234773636, 0.1846812218427658, -0.049061477184295654, 0.09869665652513504, 0.23817777633666992, -0.3302627205848694, -0.07775603234767914, 0.0615309439599514, 0.055334072560071945, 0.09649888426065445, -0.1014624685049057, -0.012446947395801544, 0.06391888856887817, 0.019786866381764412, 0.09588419646024704, -0.04853934422135353, -0.01103364210575819, 0.017485596239566803, -0.14565080404281616, -0.02486414462327957, 0.1658380627632141, 0.07888442277908325, -0.05840348079800606, -0.05513697862625122, -0.050541914999485016, -0.11475776135921478, -0.03660605475306511, -0.02541940100491047, 0.04272209107875824, -0.05156746506690979, -0.10645780712366104, -0.014700734056532383, -0.10310059040784836, -0.08686951547861099, -0.03694901615381241, 0.1533832848072052, 0.029882576316595078, 0.009032156318426132, -0.03184609115123749, 0.09229601174592972, -0.042957182973623276, -0.13659724593162537, -0.0075133624486625195, 0.03137597441673279, -0.016102662310004234, -0.055787552148103714, -0.0346108041703701, -0.07855979353189468, 0.03326337784528732, 0.15325896441936493, -0.06722022593021393, 0.043607909232378006, 0.020230742171406746, 0.03904927521944046, -0.08326800167560577, 0.15946660935878754, -0.05994424223899841, -0.03756863996386528, -0.0002890627074521035, 0.09434530138969421, 0.03237011283636093, 0.0047699869610369205, -0.10225269198417664, 0.016604220494627953, 0.10041732341051102, 0.030299143865704536, -0.03637072443962097, 0.06000847369432449, -0.03837263584136963, -0.005977972410619259, 0.018303317949175835, -0.07319943606853485, 0.018715523183345795, -0.0034498197492212057, -0.05942197144031525, -0.061040133237838745, 0.002346823224797845, 0.018853329122066498, 0.02703038416802883, 0.07706049829721451, -0.10344390571117401, 0.014165853150188923, -0.0759747102856636, -0.1265879124403, 0.011310265399515629, -0.08368771523237228, 0.030133889988064766, -0.10373495519161224, -0.14980235695838928, -0.026331055909395218, 0.046595893800258636, -0.037310946732759476, -0.006630946882069111, -0.04518335685133934, -0.08353771269321442, -0.007196982856839895, -0.010474336333572865, 0.08575743436813354, -0.059195831418037415, 0.106416717171669, 0.06694996356964111, 0.07135099172592163, -0.047579191625118256, 0.023128721863031387, -0.10504274070262909, 0.05244463309645653, -0.1756385862827301, 0.004507114645093679, -0.05534837022423744, 0.06676661968231201, -0.09860216081142426, -0.09068718552589417, -0.00022934694425202906, 0.00038549088640138507, 0.08001411706209183, 0.10068726539611816, -0.13995812833309174, -0.048213813453912735, 0.1780315488576889, -0.07529868185520172, -0.18389037251472473, 0.1307634860277176, -0.05874041095376015, 0.06667999178171158, 0.05391210317611694, 0.20256483554840088, 0.04702103137969971, -0.12390013039112091, -0.012374311685562134, -0.018676601350307465, 0.04918006807565689, -0.04166733846068382, 0.08159466832876205, 0.0006952705443836749, 0.029823889955878258, -0.001792176510207355, -0.07649145275354385, 0.031066840514540672, -0.09846054762601852, -0.07900898158550262, -0.03134023770689964, -0.1034935787320137, 0.02989678643643856, 0.06301303952932358, 0.05541937053203583, -0.13008293509483337, -0.08335430920124054, 0.045879803597927094, 0.07730338722467422, -0.05707341060042381, 0.007134913466870785, -0.09163884818553925, 0.08992300927639008, -0.11940783262252808, -0.0336853563785553, -0.14692151546478271, -0.055346883833408356, 0.0036558036226779222, 0.02650800533592701, 0.011707845143973827, 0.04643074423074722, 0.08317935466766357, 0.06306925415992737, -0.06254997849464417, -0.04600885510444641, -0.03400446102023125, 0.011315224692225456, -0.12293870002031326, -0.18309657275676727, -0.03439335897564888, -0.043421171605587006, 0.12789791822433472, -0.23202461004257202, 0.03892069682478905, -0.012767569161951542, 0.07993517071008682, 0.04955409839749336, -0.023842375725507736, -0.023789774626493454, 0.05842314660549164, -0.021202340722084045, -0.06029808521270752, 0.05647989362478256, 0.004747698083519936, -0.10148987919092178, -0.056770820170640945, -0.1545553207397461, 0.18924227356910706, 0.11873771995306015, -0.05529525876045227, -0.08424071222543716, -0.015674851834774017, -0.051627449691295624, -0.022567762061953545, -0.03141751140356064, 0.00235143955796957, 0.11389490962028503, 0.0009760910179466009, 0.13176017999649048, -0.09469601511955261, -0.034506477415561676, 0.021880410611629486, -0.06330332159996033, 0.010219726711511612, 0.12707556784152985, 0.0753849595785141, -0.1421886533498764, 0.13775911927223206, 0.16855488717556, -0.06401221454143524, 0.13169710338115692, -0.05245162174105644, -0.07414079457521439, -0.05724211037158966, 0.040494404733181, 0.02150970697402954, 0.15822142362594604, -0.09644492715597153, 0.010780288837850094, 0.015460625290870667, 0.008298061788082123, 0.007282237522304058, -0.2128722071647644, -0.05846116691827774, 0.03883076086640358, -0.04343609884381294, -0.030179403722286224, -0.0005405826377682388, 0.0011932563502341509, 0.0978522077202797, 0.0007793825934641063, -0.06439341604709625, 0.022218920290470123, -0.01047248300164938, -0.07603424787521362, 0.20184221863746643, -0.03847130760550499, -0.10501737892627716, -0.1131754070520401, -0.04219276085495949, -0.035225506871938705, 0.00889830943197012, 0.055152103304862976, -0.0652083158493042, -0.021003777161240578, -0.10985767096281052, 0.0033540104050189257, 0.010800313204526901, 0.008851624093949795, 0.021635036915540695, -0.003455283585935831, 0.07964808493852615, -0.10230465978384018, -0.0013516895705834031, -0.05308591574430466, -0.051069244742393494, 0.04368073493242264, 0.014519786462187767, 0.1418355405330658, 0.10815484821796417, -0.019218018278479576, 0.007878641597926617, -0.032498471438884735, 0.26120665669441223, -0.08308759331703186, -0.01977841928601265, 0.13296617567539215, -0.005989075172692537, 0.044422123581171036, 0.13566753268241882, 0.05933878570795059, -0.10788541287183762, 0.015074892900884151, 0.039803486317396164, -0.034699827432632446, -0.20486345887184143, -0.005411928985267878, -0.045185573399066925, 0.006097809411585331, 0.07761255651712418, 0.025326082482933998, 0.02812744490802288, 0.07311657816171646, 0.019351612776517868, 0.029971813783049583, -0.047372400760650635, 0.07725627720355988, 0.07082342356443405, 0.03985120356082916, 0.12202893942594528, -0.056663960218429565, -0.06431559473276138, 0.019949274137616158, 0.018508676439523697, 0.22041289508342743, 0.026054903864860535, 0.14863954484462738, 0.0740102231502533, 0.16772830486297607, -0.009478413499891758, 0.05285562202334404, -0.0237664133310318, -0.06961406022310257, -0.011627287603914738, -0.04563825577497482, -0.00589226046577096, 0.03294160217046738, -0.05543292686343193, 0.07391823083162308, -0.09389330446720123, 0.0002854762424249202, 0.05942238122224808, 0.20432458817958832, 0.060330312699079514, -0.3111093044281006, -0.09045010805130005, 0.02458367682993412, -0.014911803416907787, -0.016697295010089874, 0.011600282043218613, 0.15013812482357025, -0.05303173139691353, 0.00664221728220582, -0.08131901174783707, 0.0835992768406868, -0.005881472025066614, 0.038711510598659515, 0.034849803894758224, 0.0771908238530159, -0.02623933181166649, 0.06189534440636635, -0.24818457663059235, 0.29474687576293945, 0.0278632789850235, 0.08618268370628357, -0.040811896324157715, -0.021894298493862152, 0.0012641457142308354, 0.056233495473861694, 0.11330290138721466, -0.019352562725543976, -0.05273958668112755, -0.2079293429851532, -0.03493674099445343, 0.04191135615110397, 0.10309982299804688, -0.03146935999393463, 0.13550400733947754, -0.013264892622828484, 0.010200101882219315, 0.07422798871994019, 0.016729502007365227, -0.06281017512083054, -0.07073083519935608, -0.005586319603025913, 0.030751176178455353, -0.051945727318525314, -0.08912603557109833, -0.07962509989738464, -0.11291254311800003, 0.1293206512928009, -0.019703058525919914, -0.020341360941529274, -0.09981480240821838, 0.07273060083389282, 0.07689747214317322, -0.08129943162202835, 0.015516025014221668, 0.012093279510736465, 0.058239784091711044, 0.022743921726942062, -0.025506334379315376, 0.11579626798629761, -0.06802679598331451, -0.15947051346302032, -0.060958679765462875, 0.12245423346757889, 0.01807541586458683, 0.04771066829562187, 0.005921056494116783, 0.02050148881971836, -0.025781525298953056, -0.0798662006855011, 0.05158649757504463, -0.06819795817136765, 0.06484106183052063, 0.00045178038999438286, -0.02088179811835289, 0.05310654267668724, -0.0708269476890564, -0.0260319747030735, 0.14609965682029724, 0.31986647844314575, -0.08432091027498245, -0.025054387748241425, 0.036776699125766754, -0.040630850940942764, -0.1616666465997696, 0.0642554759979248, 0.015168660320341587, 0.00409877672791481, 0.06603020429611206, -0.1135452389717102, 0.09264140576124191, 0.09882594645023346, -0.019073892384767532, 0.12489490956068039, -0.31060656905174255, -0.11768198013305664, 0.1049593910574913, 0.17779162526130676, 0.12241716682910919, -0.18032261729240417, -0.03576966002583504, 0.0038681947626173496, -0.144981250166893, 0.0751347690820694, -0.13122792541980743, 0.11065950989723206, -0.013144571334123611, 0.06780050694942474, 0.013146412558853626, -0.06913816183805466, 0.1431894749403, -0.012821976095438004, 0.13134554028511047, -0.049571167677640915, -0.0482867956161499, 0.06374941021203995, -0.047920648008584976, 0.036087751388549805, -0.0951361432671547, 0.04200514033436775, -0.08372212201356888, -0.02282380312681198, -0.07085790485143661, 0.024675456807017326, -0.045396070927381516, -0.06212260201573372, -0.05494943633675575, 0.04833904281258583, 0.025672035291790962, -0.007464576046913862, 0.1569504737854004, -0.010360457934439182, 0.1676308810710907, 0.11383794248104095, 0.07362972944974899, -0.049184564501047134, -0.05153657868504524, 0.010393301956355572, -0.025590483099222183, 0.059888601303100586, -0.13007360696792603, 0.02621380053460598, 0.12568913400173187, 0.03588102385401726, 0.14799563586711884, 0.059847719967365265, -0.04507198557257652, 0.025945482775568962, 0.05214357003569603, -0.15367601811885834, -0.16025882959365845, 0.006236995104700327, -0.030885960906744003, -0.13747017085552216, 0.07065360993146896, 0.11486204713582993, -0.057342175394296646, 0.002559222048148513, -0.013813737779855728, 0.002291369717568159, -0.03704763203859329, 0.17844729125499725, 0.08939498662948608, 0.05659201741218567, -0.07290970534086227, 0.05057679861783981, 0.03396020457148552, -0.06318990886211395, 0.004148081410676241, 0.02620791457593441, -0.06329439580440521, -0.044524725526571274, 0.028191452845931053, 0.18951797485351562, -0.03548170253634453, -0.032307129353284836, -0.1724342405796051, -0.09724068641662598, 0.04111547768115997, 0.1823543906211853, 0.0852527990937233, -0.010260908864438534, -0.00902610830962658, 0.014459727331995964, -0.121985524892807, 0.11629080772399902, 0.02927093580365181, 0.08323817700147629, -0.141971617937088, 0.12705041468143463, -0.018924418836832047, 0.014229885302484035, -0.018096396699547768, 0.04316447302699089, -0.12728431820869446, 0.008507052436470985, -0.12428649514913559, -0.019250787794589996, -0.045242588967084885, -0.007554538547992706, -0.0005685770302079618, -0.075077585875988, -0.07404740899801254, 0.010689056478440762, -0.1039532721042633, -0.015934932976961136, 0.05751466006040573, 0.04104464128613472, -0.1287229359149933, -0.04282455891370773, 0.025788119062781334, -0.060995277017354965, 0.05091097950935364, 0.016271816566586494, 0.030196309089660645, 0.03554607555270195, -0.17172162234783173, 0.03142816945910454, 0.032760631293058395, 0.0024451499339193106, 0.05617158114910126, -0.10085813701152802, -0.022722406312823296, -0.010878573171794415, 0.05786224082112312, 0.021071018651127815, 0.041412219405174255, -0.12404076755046844, -0.0020853171590715647, -0.03172440081834793, -0.0534881129860878, -0.06261676549911499, 0.0247211754322052, 0.08399205654859543, 0.016970044001936913, 0.18986451625823975, -0.08360796421766281, 0.0337190106511116, -0.22462232410907745, -0.00684373127296567, 0.010375181213021278, -0.10047074407339096, -0.07513941824436188, -0.04970482364296913, 0.05757096782326698, -0.0620938278734684, 0.1216239482164383, -0.01746678538620472, 0.028300900012254715, 0.03939571976661682, -0.04604373127222061, 0.07039660960435867, 0.008481178432703018, 0.2304321974515915, 0.010448331944644451, -0.041821081191301346, 0.028587602078914642, 0.036792654544115067, 0.08083173632621765, 0.07967909425497055, 0.1818450391292572, 0.20479218661785126, -0.018135102465748787, 0.08044392615556717, 0.04936479032039642, -0.03906603530049324, -0.10468529164791107, 0.04465609788894653, -0.012658625841140747, 0.06331236660480499, -0.010023144073784351, 0.20096763968467712, 0.13958792388439178, -0.15896214544773102, 0.014888182282447815, -0.06009349599480629, -0.07702187448740005, -0.08550574630498886, -0.04829924553632736, -0.09508046507835388, -0.13028620183467865, 0.012353877536952496, -0.12125808000564575, 0.010032093152403831, 0.10838199406862259, 0.007687245029956102, -0.011806875467300415, 0.20198418200016022, 0.02939619868993759, 0.03808644413948059, 0.048307307064533234, -0.0034573443699628115, -0.02258513681590557, -0.0608539842069149, -0.0529850497841835, 0.0323229543864727, -0.049364618957042694, 0.029861342161893845, -0.05193498730659485, -0.037898287177085876, 0.02538253180682659, -0.009853576309978962, -0.11431515961885452, -0.003463716246187687, 0.04620648920536041, 0.06466621905565262, 0.05516902729868889, 0.019934918731451035, 0.025721203535795212, -0.020848192274570465, 0.21543453633785248, -0.06253146380186081, -0.04895447939634323, -0.10049789398908615, 0.186942458152771, 0.01101123820990324, 0.00040402670856565237, 0.006222976371645927, -0.09705580025911331, 0.06503815948963165, 0.20492978394031525, 0.1684350222349167, -0.09177957475185394, 0.007666394580155611, -0.008035918697714806, -0.0045232935808598995, -0.04926101118326187, 0.056393373757600784, 0.0972825214266777, 0.021041275933384895, -0.08128438144922256, -0.044183604419231415, -0.06395795196294785, -0.003750177565962076, -0.01566578634083271, 0.04205220565199852, 0.06441130489110947, 0.022062649950385094, -0.05810217931866646, 0.07120808959007263, -0.012619242072105408, -0.13253526389598846, 0.07443711906671524, -0.19115322828292847, -0.1428750455379486, -0.022658171132206917, 0.09877922385931015, -0.007929706014692783, 0.0640750378370285, -0.05419575050473213, 0.003995211329311132, 0.03875194862484932, -0.015105907805263996, -0.05515691637992859, -0.08924085646867752, 0.088639035820961, -0.09266028553247452, 0.2147061973810196, -0.040356140583753586, 0.05773734673857689, 0.13956141471862793, 0.009780662134289742, -0.08257551491260529, 0.104558065533638, 0.07139021158218384, -0.07410690933465958, 0.021036632359027863, 0.09715495258569717, -0.02101832441985607, 0.13498006761074066, 0.06581954658031464, -0.15266157686710358, 0.009512902237474918, -0.040102485567331314, -0.06903703510761261, -0.07615203410387039, -0.029072793200612068, -0.0606641061604023, 0.14601628482341766, 0.1874699741601944, -0.05126147344708443, 0.010810347273945808, -0.03482605889439583, 0.03778793662786484, 0.0966959148645401, 0.04098483920097351, -0.039541810750961304, -0.21464498341083527, 0.03155404329299927, 0.05711272358894348, -0.02664428949356079, -0.30016085505485535, -0.08380915224552155, -0.00157100276555866, -0.05648687854409218, -0.057906024158000946, 0.06675302237272263, 0.13015082478523254, 0.0670531690120697, -0.06086854264140129, -0.09960535913705826, -0.07194359600543976, 0.1619969606399536, -0.1137528270483017, -0.09000638872385025 ]
null
null
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "272.67 +/- 18.56", "name": "mean_reward", "verified": false}]}]}]}
reinforcement-learning
houssamhh/ppo-LunarLander-v2
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
2024-02-06T14:05:08+00:00
[]
[]
TAGS #stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
# PPO Agent playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library. ## Usage (with Stable-baselines3) TODO: Add your code
[ "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ "TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n", "# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.", "## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 39, 41, 17 ]
[ "passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code" ]
[ 0.03942384943366051, 0.04900386184453964, -0.005304091144353151, 0.026427261531352997, 0.107408307492733, -0.026511888951063156, 0.11188238859176636, 0.0814051404595375, 0.10722193866968155, 0.04762078449130058, 0.08338645845651627, 0.06030960753560066, 0.05080918222665787, 0.2571701407432556, 0.04754156619310379, -0.22987541556358337, 0.036159250885248184, -0.04869936779141426, 0.12395193427801132, 0.07178173214197159, -0.0038484656251966953, -0.06485428661108017, 0.020415637642145157, -0.013290755450725555, 0.05367108806967735, 0.04282612353563309, -0.01716216839849949, -0.08207534998655319, 0.07169748842716217, -0.06345846503973007, 0.06986866891384125, 0.07677983492612839, 0.13218913972377777, -0.17832116782665253, 0.029566360637545586, 0.02571309357881546, -0.07189024239778519, 0.01342033501714468, 0.008019951172173023, 0.05120139941573143, 0.17303818464279175, 0.019879888743162155, 0.07844575494527817, -0.0025605305563658476, -0.15412317216396332, -0.018950799480080605, 0.0436202734708786, 0.12546207010746002, 0.08808347582817078, 0.04605821147561073, 0.01970590092241764, 0.17503218352794647, -0.054352790117263794, -0.028833400458097458, 0.21759237349033356, -0.2881564497947693, -0.031460098922252655, 0.321048766374588, 0.06997483223676682, 0.09725230932235718, -0.07540661096572876, -0.03619609400629997, 0.007783263456076384, -0.013137873262166977, -0.028666524216532707, -0.07447073608636856, 0.17313385009765625, 0.05152064561843872, -0.05057951435446739, -0.09541505575180054, 0.16948209702968597, 0.006921638268977404, 0.0018855923553928733, -0.019282981753349304, 0.009060598909854889, 0.07402525842189789, -0.016097044572234154, -0.07255112379789352, 0.057438433170318604, 0.05330665782094002, 0.019649166613817215, -0.1435653269290924, -0.10762494057416916, -0.022740179672837257, -0.008012006990611553, 0.17786912620067596, -0.009255532175302505, 0.042902372777462006, 0.003065188182517886, 0.10384012013673782, -0.12480384111404419, -0.03354184702038765, -0.0454259067773819, -0.07565800100564957, -0.0223417766392231, -0.02058211714029312, -0.03580251708626747, 0.07184842973947525, 0.11971849203109741, 0.027368178591132164, 0.09350208193063736, 0.047715865075588226, -0.03206788748502731, 0.06343851238489151, 0.05555703118443489, 0.14222665131092072, 0.05807621404528618, 0.012854371219873428, 0.13179877400398254, 0.055213116109371185, 0.033023182302713394, -0.0613492950797081, -0.18252409994602203, 0.07489913702011108, -0.07031869143247604, 0.007941240444779396, 0.12051256000995636, -0.04480670019984245, -0.1183447614312172, -0.037500523030757904, -0.017392054200172424, -0.06224250793457031, -0.025395862758159637, 0.0547584593296051, -0.02883218228816986, -0.03973718360066414, 0.0011496668448671699, 0.09384800493717194, 0.00953749567270279, -0.1752052903175354, 0.03303423151373863, -0.025042934343218803, -0.10782608389854431, 0.009975161403417587, 0.0022444494534283876, 0.03394931182265282, 0.04408763721585274, -0.11822668462991714, -0.30899152159690857, -0.07652641832828522, 0.05490870401263237, -0.06516939401626587, -0.18425025045871735, -0.13193942606449127, 0.02454492449760437, -0.09037084132432938, -0.044885024428367615, -0.12759265303611755, -0.028549788519740105, 0.01743689924478531, 0.011519349180161953, 0.10758619755506516, -0.0106219332665205, -0.012188062071800232, -0.1571401208639145, 0.008273907005786896, -0.20951123535633087, 0.0890483483672142, -0.019150104373693466, 0.037884220480918884, -0.032381169497966766, -0.07404014468193054, 0.030707746744155884, 0.052499737590551376, -0.01474119070917368, 0.13510210812091827, -0.15592676401138306, -0.03691192343831062, -0.007996266707777977, -0.13611900806427002, -0.04786273464560509, -0.10358831286430359, -0.04357128217816353, 0.13354332745075226, 0.018664736300706863, 0.15356586873531342, -0.08709818124771118, -0.0722038671374321, 0.20489206910133362, -0.010411538183689117, -0.12820468842983246, -0.076752208173275, 0.10165707021951675, 0.021510310471057892, -0.056606587022542953, -0.02523270808160305, -0.1839766949415207, -0.0152357779443264, -0.04550420492887497, -0.047039128839969635, 0.01796751655638218, -0.010888241231441498, 0.13837894797325134, 0.08494598418474197, 0.05018039792776108, -0.06086122244596481, -0.006730288732796907, 0.10779471695423126, 0.08823856711387634, 0.008680110797286034, 0.023406028747558594, -0.05774238705635071, 0.09552932530641556, -0.04003755748271942, -0.0142367510125041, -0.08283266425132751, -0.036246106028556824, -0.026256313547492027, 0.17507147789001465, 0.09440762549638748, 0.2257927656173706, 0.09567736834287643, 0.039160262793302536, 0.031270865350961685, -0.13181598484516144, -0.1425403207540512, -0.0017254541162401438, 0.09020978957414627, -0.14270411431789398, -0.04119925573468208, -0.08974775671958923, -0.17768175899982452, -0.12202505767345428, 0.0006432619411498308, -0.17960017919540405, 0.06390921026468277, 0.05408334732055664, -0.035177867859601974, 0.03272094577550888, 0.13032332062721252, -0.011533179320394993, -0.03967514634132385, 0.0831870287656784, 0.0379033200442791, -0.041234664618968964, -0.021742934361100197, 0.11885567009449005, 0.15673065185546875, 0.13124459981918335, -0.03511447086930275, 0.004914294462651014, 0.07076404243707657, -0.02309088408946991, 0.06539414077997208, 0.0558244064450264, 0.20973342657089233, 0.188301220536232, 0.038996949791908264, 0.008822928182780743, -0.07048165798187256, 0.0855446457862854, -0.0742373839020729, -0.14302679896354675, -0.05579735338687897, 0.08729292452335358, 0.016605578362941742, 0.023469142615795135, 0.08711627870798111, 0.024545932188630104, 0.09132762253284454, 0.15968108177185059, 0.01990218088030815, -0.09659269452095032, -0.050218869000673294, 0.01175848301500082, 0.027713103219866753, 0.04794301092624664, -0.04514073207974434, -0.00937939714640379, 0.017020760104060173, -0.10303554683923721, 0.031789086759090424, -0.1413339376449585, -0.1358717679977417, 0.044326696544885635, 0.003906996920704842, 0.010907664895057678, 0.02786896750330925, -0.0038291432429105043, 0.019039705395698547, 0.04351753741502762, -0.06975466758012772, 0.047416772693395615, -0.024745507165789604, -0.020031947642564774, 0.03340689837932587, -0.057257164269685745, -0.205775648355484, -0.17696654796600342, 0.00013708483311347663, -0.09910997003316879, 0.10194740444421768, 0.018308809027075768, -0.12373185902833939, 0.047737859189510345, -0.05822649225592613, 0.027574289590120316, -0.01875593699514866, -0.049130141735076904, 0.10507171601057053, 0.1525275856256485, -0.016146350651979446, 0.018018173053860664, -0.04865182936191559, -0.10157987475395203, -0.19632206857204437, 0.0691583976149559, 0.04680244252085686, 0.014610917307436466, 0.10669491440057755, 0.018072687089443207, 0.02367905154824257, -0.007674071006476879, -0.016521066427230835, -0.011659215204417706, -0.08781040459871292, 0.31909599900245667, 0.04510033503174782, -0.025173069909214973, 0.02041010931134224, -0.0043001663871109486, -0.028083480894565582, 0.03263787180185318, -0.0985708013176918, -0.07548979669809341, -0.08774089068174362, -0.04367410019040108, -0.09784720093011856, 0.053299110382795334, 0.05916472524404526, 0.003188040340319276, -0.07727594673633575, 0.04221395403146744, 0.11369874328374863, -0.0923808291554451, -0.07137343287467957, 0.07477962225675583, 0.0972946360707283, -0.07331304252147675, 0.00012658814375754446, 0.00874367356300354, 0.023951783776283264, 0.037102166563272476, 0.06778035312891006, -0.03966575115919113, 0.08589404821395874, -0.19917890429496765, 0.0372927263379097, 0.106058269739151, 0.023754918947815895, 0.0638108178973198, 0.07643651217222214, -0.1058402881026268, -0.008500572293996811, -0.032518330961465836, -0.21341575682163239, 0.1668180525302887, 0.1355515867471695, 0.06788124144077301, -0.025637222453951836, -0.00461410591378808, -0.0649740919470787, 0.05773647129535675, 0.02723747305572033, -0.14758841693401337, 0.004883295856416225, 0.06064270809292793, 0.026899009943008423, 0.01614922471344471, 0.07971042394638062, 0.014697225764393806, -0.1801026314496994, -0.014406266622245312, 0.10730406641960144, 0.002390873385593295, 0.0053148469887673855, -0.03175045922398567, -0.1755964607000351, 0.0751047357916832, 0.004285442177206278, 0.07233936339616776, -0.1676585078239441, 0.14297930896282196, -0.10089799761772156, 0.07726949453353882, -0.004285062663257122, -0.021311495453119278, 0.02507244050502777, -0.0541163794696331, 0.15163759887218475, 0.01058570109307766, -0.021810131147503853, -0.1200498715043068, -0.1717042326927185, -0.019227758049964905, -0.11788936704397202, -0.11679866164922714, 0.050424277782440186, 0.062185097485780716, 0.04923136904835701, -0.061147067695856094, 0.1518532931804657, -0.047422297298908234, 0.060713399201631546, -0.06893875449895859, -0.06755045056343079, 0.03764858841896057, -0.12588608264923096, -0.08176055550575256, 0.05573027580976486, 0.19166934490203857, 0.15833087265491486, -0.02816431224346161, -0.03472423925995827, -0.047419581562280655, -0.006212298292666674, -0.007802055217325687, 0.0275666993111372, 0.023223137483000755, 0.07315318286418915, -0.07681374251842499, -0.11649256944656372, 0.033787861466407776, -0.06713802367448807, -0.055589709430933, -0.015439179725944996, 0.1513158082962036, 0.04671623185276985, 0.07720734924077988, -0.018946662545204163, 0.03887668624520302, -0.001724981120787561, -0.056474871933460236, 0.16197094321250916, 0.03885216265916824, -0.05193585529923439, 0.06837689876556396, 0.053174007683992386, 0.043745119124650955, 0.03011113777756691, -0.026783017441630363, 0.206032395362854, 0.1980147808790207, 0.014206883497536182, 0.2175983190536499, 0.03177616000175476, -0.03772832080721855, -0.1300560086965561, -0.065880686044693, -0.006372632458806038, 0.03559038043022156, 0.08070417493581772, -0.18207235634326935, -0.015011128038167953, -0.05689644813537598, -0.034518610686063766, -0.15059494972229004, -0.28553900122642517, -0.05957856774330139, 0.20075850188732147, 0.14706264436244965, 0.27519428730010986, -0.10432573407888412, 0.035197313874959946, 0.02663275972008705, -0.04912831634283066, -0.006501141935586929, 0.00018665487004909664, 0.10268618166446686, -0.15421873331069946, 0.1176437959074974, 0.08486983180046082, -0.019002694636583328, 0.01058861706405878, -0.1619086116552353, 0.00936629343777895, -0.12191236019134521, 0.05354422330856323, 0.1400289237499237, -0.048128653317689896, -0.054873593151569366, 0.14033560454845428, -0.024562934413552284, -0.22685599327087402, -0.04648222774267197, -0.043600670993328094, -0.010640020482242107, 0.026607351377606392, -0.1013401448726654, 0.04101909324526787, 0.1330099105834961, 0.009380043484270573, 0.1147187277674675, 0.11749245226383209, -0.052566803991794586, 0.10792597383260727, 0.2257719188928604, -0.018785694614052773, 0.04689010605216026, -0.12743118405342102, -0.0012336712097749114, -0.028270328417420387, 0.013657891191542149, -0.09504974633455276, -0.09938385337591171, 0.02366873063147068, 0.02872389927506447, 0.009118586778640747, 0.0921793207526207, -0.029922157526016235, 0.0759170651435852, 0.06817561388015747, -0.13014446198940277, -0.16288450360298157, 0.015828335657715797, -0.007344507612287998, 0.08354310691356659, 0.00027861111448146403, 0.08878035843372345, -0.11932205408811569, -0.018093237653374672, -0.03153328225016594, -0.03319635987281799, -0.130486860871315, -0.07138993591070175, 0.06156524643301964, 0.028095467016100883, -0.06602972000837326, 0.1398407518863678, 0.026440169662237167, 0.15942534804344177, 0.049197953194379807, 0.012499804608523846, 0.07227300107479095, -0.05345509201288223, 0.1283530443906784, 0.13818155229091644, -0.00868943240493536, -0.05460423603653908, -0.1013643890619278, -0.10236792266368866, 0.08925779908895493, -0.05773641914129257, 0.07476430386304855, -0.14885357022285461, -0.06675903499126434, 0.015772046521306038, 0.016141414642333984, -0.09562095999717712, 0.02571965754032135, -0.01625603251159191, -0.18119946122169495, 0.056570518761873245, -0.048285093158483505, 0.0440407395362854, -0.06347788125276566, -0.1110161691904068, -0.17226378619670868, 0.06091433763504028, 0.08593481779098511, -0.053876690566539764, -0.12229149043560028, 0.011023230850696564, -0.00012518465518951416, -0.06341652572154999, -0.05023367330431938, 0.09722746908664703, -0.11020902544260025, 0.031452205032110214, -0.012567701749503613, 0.08853451162576675, -0.03510405123233795, -0.011538895778357983, 0.044220831245183945, -0.08039166033267975, -0.009481523185968399, 0.03534642979502678, -0.026372017338871956, -0.04127239063382149, -0.2689029574394226, 0.0036654395516961813, 0.0341104120016098, 0.02497158572077751, 0.07856601476669312, 0.011906822212040424, 0.021174922585487366, 0.03993808850646019, -0.15396519005298615, -0.013395369984209538, 0.14574195444583893, -0.07689505815505981, -0.022186370566487312, 0.05703273415565491, -0.09054436534643173, 0.013882770203053951, -0.030287226662039757, 0.1345842480659485, 0.023923413828015327, 0.06404478847980499, -0.0851147472858429, 0.10106813907623291, -0.1451139897108078, -0.04998219385743141, -0.01244612317532301, 0.09761348366737366, 0.07019034773111343, -0.10272270441055298, 0.014697125181555748, 0.04210108891129494, 0.19416837394237518, 0.016384804621338844, -0.0356343574821949, -0.03396720811724663, 0.004015897400677204, 0.22076453268527985, 0.03044266067445278, 0.10457023978233337, 0.07281364500522614, -0.026583973318338394, 0.12624378502368927, 0.09929762035608292, 0.11280370503664017, -0.055645186454057693, 0.13904185593128204, 0.04667386785149574, 0.038641396909952164, 0.0614289753139019, 0.06836545467376709, 0.09098632633686066, -0.0008288522367365658, 0.1138714924454689, 0.013811973854899406, -0.02422109805047512, -0.021335409954190254, 0.17759373784065247, 0.10501719266176224, -0.14769648015499115, 0.029047364369034767, -0.01258957851678133, 0.039933037012815475, -0.014194529503583908, -0.15634691715240479, -0.07240267097949982, -0.3315149247646332, 0.1226184144616127, -0.07119352370500565, 0.019930170848965645, 0.007913772016763687, -0.037425633519887924, -0.03296699747443199, -0.04477746784687042, 0.13151589035987854, -0.013641550205647945, -0.006079165264964104, -0.04815853759646416, -0.015360191464424133, -0.11607866734266281, -0.11200575530529022, -0.013207737356424332, -0.13671602308750153, -0.010119039565324783, 0.05595948174595833, 0.003977729007601738, 0.01821410097181797, -0.03142618387937546, 0.0024383175186812878, 0.06541839241981506, -0.05751744285225868, 0.056182678788900375, 0.12097269296646118, 0.08766137808561325, -0.1058853268623352, 0.031048951670527458, 0.2011747509241104, 0.04359564557671547, -0.12483977526426315, 0.01449228823184967, 0.1819491684436798, 0.004885740112513304, 0.017068125307559967, -0.006097703706473112, -0.0540788508951664, -0.07554277032613754, 0.1251034289598465, 0.08296554535627365, -0.09985227137804031, 0.015833314508199692, -0.0726347416639328, -0.01594804972410202, -0.06374675035476685, 0.10130585730075836, 0.09538925439119339, 0.04440245032310486, -0.10621760785579681, -0.08487539738416672, -0.10891728103160858, 0.040588874369859695, -0.08629853278398514, -0.07311757653951645, 0.09629398584365845, -0.07057105004787445, -0.07029950618743896, 0.025521177798509598, -0.17978744208812714, -0.009467960335314274, 0.1711762249469757, -0.24654000997543335, -0.0916430801153183, -0.10857923328876495, 0.14477859437465668, 0.016497576609253883, 0.1013975441455841, -0.006207061931490898, -0.007889035157859325, -0.20577777922153473, 0.024890204891562462, -0.05293011665344238, -0.02073732763528824, 0.07814782857894897, -0.09476397186517715, 0.22629831731319427, -0.08276885002851486, 0.020940175279974937, 0.012659613974392414, 0.0870661810040474, -0.030675338581204414, 0.09283176809549332, -0.03660329803824425, -0.12576518952846527, -0.03620953485369682, 0.03001813031733036, 0.013904244638979435, 0.10071761906147003, 0.09772487729787827, -0.03414725139737129, 0.03389119729399681, 0.09747414290904999, 0.04172342270612717, -0.023843804374337196, 0.0360250361263752, -0.17077107727527618, 0.02182629331946373, -0.018498148769140244, -0.06935930997133255, 0.03687669709324837, -0.06603235751390457, 0.1639697551727295, 0.04022442549467087, 0.0670473501086235, -0.036152735352516174, 0.0073931049555540085, -0.014454689808189869, -0.013775371946394444, -0.026180334389209747, -0.17259705066680908, -0.10422050207853317, -0.1347656100988388, -0.012701659463346004, -0.034971047192811966, 0.04591470584273338, 0.023234914988279343, -0.0003200018545612693, -0.014577031135559082, -0.12090865522623062, 0.04360328987240791, 0.11146783083677292, -0.04631396010518074, -0.026193076744675636 ]
null
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # original_glue_boolq This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on the super_glue dataset. It achieves the following results on the evaluation set: - Loss: 0.3297 - Accuracy: 0.8700 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 2 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4632 | 0.05 | 50 | 0.4840 | 0.7958 | | 0.3453 | 0.1 | 100 | 0.3888 | 0.8226 | | 0.2722 | 0.15 | 150 | 0.3590 | 0.8396 | | 0.3266 | 0.2 | 200 | 0.3811 | 0.8459 | | 0.3699 | 0.25 | 250 | 0.3534 | 0.8438 | | 0.3554 | 0.3 | 300 | 0.3378 | 0.8565 | | 0.1229 | 0.35 | 350 | 0.3368 | 0.8643 | | 0.3522 | 0.4 | 400 | 0.3424 | 0.8643 | | 0.2548 | 0.45 | 450 | 0.3467 | 0.8664 | | 0.2119 | 0.5 | 500 | 0.3439 | 0.8714 | | 0.2113 | 0.55 | 550 | 0.3518 | 0.8657 | | 0.2122 | 0.6 | 600 | 0.3110 | 0.8770 | | 0.3251 | 0.65 | 650 | 0.3323 | 0.8728 | | 0.2904 | 0.7 | 700 | 0.3152 | 0.8792 | | 0.6366 | 0.75 | 750 | 0.3502 | 0.8763 | | 0.4161 | 0.8 | 800 | 0.3250 | 0.8806 | | 0.1605 | 0.85 | 850 | 0.3258 | 0.8834 | | 0.271 | 0.9 | 900 | 0.3330 | 0.8848 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["super_glue"], "metrics": ["accuracy"], "base_model": "mistralai/Mistral-7B-Instruct-v0.1", "model-index": [{"name": "original_glue_boolq", "results": []}]}
null
thrunlab/original_glue_boolq
[ "transformers", "safetensors", "mistral", "trl", "sft", "generated_from_trainer", "dataset:super_glue", "base_model:mistralai/Mistral-7B-Instruct-v0.1", "license:apache-2.0", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T14:06:08+00:00
[]
[]
TAGS #transformers #safetensors #mistral #trl #sft #generated_from_trainer #dataset-super_glue #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us
original\_glue\_boolq ===================== This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the super\_glue dataset. It achieves the following results on the evaluation set: * Loss: 0.3297 * Accuracy: 0.8700 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 2 * eval\_batch\_size: 4 * seed: 2 * distributed\_type: multi-GPU * num\_devices: 2 * gradient\_accumulation\_steps: 2 * total\_train\_batch\_size: 8 * total\_eval\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 ### Training results ### Framework versions * Transformers 4.35.2 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 2\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #safetensors #mistral #trl #sft #generated_from_trainer #dataset-super_glue #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 2\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10", "### Training results", "### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 82, 160, 4, 33 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #trl #sft #generated_from_trainer #dataset-super_glue #base_model-mistralai/Mistral-7B-Instruct-v0.1 #license-apache-2.0 #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 4\n* seed: 2\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ -0.10031022876501083, 0.11488094925880432, -0.003783967113122344, 0.08768825978040695, 0.1139359101653099, 0.040022630244493484, 0.13835585117340088, 0.13573963940143585, -0.02864006906747818, 0.11624462902545929, 0.11470543593168259, 0.06875406950712204, 0.06030135601758957, 0.18673042953014374, -0.028515126556158066, -0.236954465508461, 0.043174054473638535, -0.030621375888586044, -0.10068538784980774, 0.09289117902517319, 0.07859983295202255, -0.11647582054138184, 0.08539415150880814, -0.022555693984031677, -0.10324807465076447, -0.024521008133888245, -0.020669128745794296, -0.030265778303146362, 0.10167492181062698, 0.03864484652876854, 0.06986579298973083, 0.030993549153208733, 0.11090730130672455, -0.2225974202156067, -0.0011213120305910707, 0.07109031081199646, 0.0162113755941391, 0.0770438015460968, 0.08944088220596313, 0.009156809188425541, 0.05889265984296799, -0.10558158904314041, 0.046584825962781906, 0.024863990023732185, -0.11350961774587631, -0.24219368398189545, -0.08888991922140121, 0.05457234010100365, 0.12365105003118515, 0.0353570356965065, -0.015412057749927044, 0.08159099519252777, -0.03169267624616623, 0.07446210086345673, 0.23727747797966003, -0.28433066606521606, -0.053818926215171814, 0.05906029790639877, 0.02596527896821499, 0.061224743723869324, -0.08932884782552719, -0.024916455149650574, 0.03299031779170036, 0.01639215275645256, 0.12619349360466003, -0.0009198877960443497, 0.03775450587272644, 0.02000746689736843, -0.14709635078907013, -0.05100544914603233, 0.14511322975158691, 0.06904853135347366, -0.0344536118209362, -0.08777131140232086, -0.06764505058526993, -0.1339498907327652, -0.021343735978007317, -0.018284671008586884, 0.04331620782613754, -0.03744767606258392, -0.031264618039131165, 0.02824505791068077, -0.05131074786186218, -0.09897959977388382, 0.004657221958041191, 0.12187118828296661, 0.06473680585622787, 0.007916060276329517, 0.017697041854262352, 0.12432722747325897, -0.04092390835285187, -0.14785413444042206, -0.020828889682888985, 0.013219437561929226, -0.08940439671278, -0.01957903616130352, -0.0028308408800512552, 0.0422007292509079, 0.046680059283971786, 0.19585570693016052, -0.04520043358206749, 0.0631428211927414, 0.06739047914743423, 0.00832604430615902, -0.060718949884176254, 0.1277056336402893, -0.07950758934020996, -0.08295994251966476, -0.02054782584309578, 0.11074092984199524, 0.046236708760261536, -0.0043768989853560925, -0.06501244008541107, 0.031758878380060196, 0.08900947123765945, 0.030019912868738174, -0.008674893528223038, 0.05517447739839554, -0.07053440064191818, -0.018438052386045456, 0.0861186757683754, -0.11604766547679901, 0.036274947226047516, 0.020142965018749237, -0.05846618115901947, -0.016202621161937714, 0.001560996868647635, -0.007101146504282951, -0.005197206046432257, 0.1031617596745491, -0.08466553688049316, -0.02592507004737854, -0.06968683749437332, -0.09534747898578644, 0.02127103880047798, -0.05004874989390373, -0.008489709347486496, -0.06591653823852539, -0.18723970651626587, -0.0194587130099535, 0.04641668498516083, -0.07390154153108597, -0.04393390938639641, -0.049955617636442184, -0.07881934195756912, 0.03740252926945686, -0.018673699349164963, 0.06962442398071289, -0.07192572206258774, 0.06924830377101898, 0.047259554266929626, 0.07248526811599731, 0.065438412129879, 0.028679542243480682, -0.06593602895736694, 0.07308495789766312, -0.19969108700752258, 0.03529379516839981, -0.08877328038215637, 0.06911899894475937, -0.11691424995660782, -0.08431161940097809, 0.010400967672467232, -0.0105257797986269, 0.07595447450876236, 0.13146959245204926, -0.14089296758174896, -0.061874885112047195, 0.19379360973834991, -0.11509020626544952, -0.14273624122142792, 0.13359753787517548, -0.008980602957308292, -0.05010352283716202, 0.03741295635700226, 0.164225772023201, 0.09124141931533813, -0.09622690081596375, -0.04172724485397339, -0.015035266056656837, 0.09061411768198013, 0.020947221666574478, 0.11871197074651718, -0.011810322292149067, 0.03646322339773178, 0.020892970263957977, -0.08821605145931244, 0.028126217424869537, -0.08752944320440292, -0.07395311444997787, -0.052941519767045975, -0.07670742273330688, 0.02555272914469242, 0.030979705974459648, 0.02597089298069477, -0.09362184256315231, -0.11781677603721619, 0.003424235386773944, 0.12380734086036682, -0.08654998987913132, 0.00896551925688982, -0.0716179683804512, 0.1093813106417656, -0.049827609211206436, 0.009805402718484402, -0.14456841349601746, -0.0806867852807045, 0.05058294162154198, -0.07743220031261444, -0.022976072505116463, -0.023811280727386475, 0.06488946825265884, 0.10142210870981216, -0.06166204810142517, -0.07247249782085419, -0.019483104348182678, 0.006059647537767887, -0.07474422454833984, -0.22786210477352142, -0.06581591069698334, -0.04358458146452904, 0.09331364184617996, -0.20980650186538696, 0.03118405118584633, 0.03565732017159462, 0.13088791072368622, 0.03683572635054588, -0.038229431957006454, -0.015336924232542515, 0.029932314530014992, -0.052747905254364014, -0.09368289262056351, 0.022264201194047928, -0.010711207054555416, -0.09026508778333664, -0.0463845394551754, -0.13512568175792694, 0.1564384549856186, 0.0854153037071228, 0.032417986541986465, -0.08119414001703262, -0.010854389518499374, -0.04759535193443298, -0.05349748581647873, -0.04984575882554054, -0.028953276574611664, 0.09596656262874603, 0.006086492445319891, 0.09791601449251175, -0.0715688169002533, -0.051322899758815765, 0.02375755086541176, -0.01663227193057537, -0.010039624758064747, 0.120521679520607, 0.04568828269839287, -0.09974386543035507, 0.13476508855819702, 0.14749781787395477, -0.043680109083652496, 0.10683310776948929, -0.06790891289710999, -0.07141029089689255, -0.06425794214010239, 0.03394307941198349, 0.026080463081598282, 0.12465692311525345, -0.06427229940891266, 0.0020395906176418066, 0.01639745756983757, 0.041963160037994385, -0.002507481724023819, -0.17832159996032715, -0.00398767227306962, 0.02985311858355999, -0.09162887930870056, 0.01799435168504715, -0.031184304505586624, -0.02889750525355339, 0.09242662787437439, -0.0037383439484983683, -0.04598291590809822, 0.0009447374613955617, -0.01712878979742527, -0.08310219645500183, 0.20552024245262146, -0.08184587210416794, -0.09761852025985718, -0.1251756101846695, 0.011401060968637466, -0.04714379459619522, 0.0035303370095789433, 0.0402599535882473, -0.06290145963430405, -0.06441659480333328, -0.10671752691268921, 0.018764685839414597, 0.0273017268627882, 0.03431200981140137, 0.048652227967977524, -0.008829128928482533, 0.07532969862222672, -0.09300023317337036, -0.002188213402405381, 0.0036962542217224836, -0.04913035407662392, 0.025823894888162613, 0.04554523900151253, 0.11025763303041458, 0.12070303410291672, 0.03817661479115486, 0.016408275812864304, -0.019020406529307365, 0.19012941420078278, -0.06346068531274796, 0.01450931467115879, 0.10902413725852966, 0.00937238335609436, 0.06184486299753189, 0.1501564383506775, 0.041085708886384964, -0.08427219837903976, 0.009999956004321575, 0.027462327852845192, -0.02146037481725216, -0.20551566779613495, -0.03674483671784401, -0.030592752620577812, 0.046044982969760895, 0.09181750565767288, 0.04435989633202553, -0.044868018478155136, 0.04602564126253128, -0.012079615145921707, 0.021133026108145714, 0.01766112446784973, 0.07130210846662521, 0.03850003704428673, 0.05206400528550148, 0.1128082424402237, -0.04262973740696907, -0.024006932973861694, 0.053972262889146805, 0.021619359031319618, 0.24812859296798706, -0.020355138927698135, 0.166827991604805, 0.03302713483572006, 0.14896567165851593, -0.01735662668943405, 0.06807393580675125, 0.012792736291885376, -0.008500948548316956, -0.01567244529724121, -0.04802028834819794, 0.009290005080401897, 0.048045843839645386, -0.031383104622364044, 0.04298694059252739, -0.09911374002695084, 0.038188185542821884, 0.08719907701015472, 0.2601780593395233, 0.07183752954006195, -0.31871047616004944, -0.09524659812450409, 0.057325899600982666, -0.026674872264266014, -0.0028792547527700663, 0.02137666381895542, 0.1504456251859665, -0.06421695649623871, 0.08859400451183319, -0.0700080618262291, 0.0611007921397686, -0.058927156031131744, 0.023886600509285927, 0.11370577663183212, 0.11094127595424652, 0.004097912926226854, 0.06296847760677338, -0.22431625425815582, 0.25723370909690857, 0.0034122734796255827, 0.05628255382180214, -0.038926463574171066, 0.043906547129154205, 0.018407830968499184, 0.04806730896234512, 0.1039639562368393, -0.0066751171834766865, -0.160683274269104, -0.18748483061790466, -0.10064487159252167, 0.020640438422560692, 0.10873212665319443, -0.08092736452817917, 0.12205414474010468, -0.036424923688173294, -0.022057339549064636, 0.04877324402332306, -0.037678468972444534, -0.08583007752895355, -0.07531154155731201, 0.030559172853827477, -0.029940765351057053, -0.007307443767786026, -0.089106485247612, -0.08978205174207687, -0.11933378875255585, 0.15048585832118988, -0.10941879451274872, -0.031754836440086365, -0.12405683100223541, 0.06212907284498215, 0.12434510886669159, -0.10096190869808197, 0.03817260265350342, 0.012738853693008423, 0.08269473165273666, 0.04666997864842415, -0.05378269776701927, 0.12083988636732101, -0.08023534715175629, -0.2283642590045929, -0.04997417703270912, 0.09329593926668167, 0.016340823844075203, 0.04400017485022545, -0.03499523550271988, 0.02892163023352623, 0.01166544295847416, -0.11352642625570297, 0.057409897446632385, 0.0711967945098877, 0.05913538113236427, 0.06342358887195587, -0.03747781366109848, -0.024148324504494667, -0.027953339740633965, -0.04401557520031929, 0.07940969616174698, 0.33047938346862793, -0.09728489071130753, 0.022172225639224052, 0.060242004692554474, -0.06891975551843643, -0.18452289700508118, -0.020771756768226624, 0.0397818498313427, 0.029322095215320587, 0.0537332147359848, -0.1452227681875229, 0.07284675538539886, 0.1119786724448204, -0.03841036930680275, 0.07168874889612198, -0.3143894672393799, -0.1364043951034546, 0.07636302709579468, 0.11957447975873947, 0.0087189432233572, -0.19498863816261292, -0.06188533082604408, -0.006768850609660149, -0.12240900844335556, 0.06507796049118042, -0.0646609216928482, 0.09564419835805893, -0.019042139872908592, -0.018218496814370155, 0.006906083319336176, -0.06662003695964813, 0.1760309338569641, 0.024473432451486588, 0.09149082750082016, -0.03470539674162865, 0.01212026085704565, 0.06808529049158096, -0.07679951190948486, 0.04811941087245941, -0.10127995163202286, 0.053745485842227936, -0.0730016678571701, -0.02327435277402401, -0.0427003912627697, 0.003422231413424015, -0.039730004966259, -0.04087163880467415, -0.04813703894615173, 0.0622171014547348, 0.07001189142465591, -0.022234400734305382, 0.13447967171669006, 0.02952996827661991, 0.12615157663822174, 0.14081789553165436, 0.04838550090789795, 0.0015636344905942678, -0.08363376557826996, -0.008304703049361706, -0.009431985206902027, 0.023375598713755608, -0.15239636600017548, 0.048167742788791656, 0.14435634016990662, 0.015268169343471527, 0.13463686406612396, 0.06309894472360611, -0.056105922907590866, 0.010466751642525196, 0.07469337433576584, -0.15307076275348663, -0.17738276720046997, 0.007087835110723972, -0.049442410469055176, -0.1393742710351944, 0.06551498919725418, 0.11320685595273972, -0.03963373228907585, 0.0014604938914999366, -0.008123432286083698, 0.07685388624668121, -0.030262555927038193, 0.2252281904220581, 0.02468586154282093, 0.08027133345603943, -0.07798243314027786, 0.10809510946273804, 0.04794924706220627, -0.0978158637881279, 0.00959128700196743, 0.06347422301769257, -0.09079373627901077, -0.027008047327399254, 0.04939839243888855, 0.12497090548276901, 0.0017382082296535373, -0.03933017700910568, -0.15080691874027252, -0.13101354241371155, 0.06437360495328903, 0.06578151881694794, 0.06764102727174759, 0.04593091830611229, 0.0001527521962998435, 0.020826430991292, -0.07071080058813095, 0.1367768943309784, 0.1073344498872757, 0.0861084833741188, -0.18261019885540009, 0.09014420211315155, -0.009247546084225178, 0.007348072715103626, -0.015959061682224274, 0.05653455853462219, -0.14533428847789764, -0.023993434384465218, -0.09969756007194519, 0.011224283836781979, -0.07480905205011368, 0.001325713936239481, 0.007050241809338331, -0.06037943437695503, -0.042718954384326935, 0.010678119957447052, -0.0834956094622612, -0.04074621573090553, -0.005155258812010288, 0.07708743959665298, -0.12073089182376862, -0.032102975994348526, 0.037073250859975815, -0.10662265866994858, 0.10289955884218216, 0.021014804020524025, 0.03752443566918373, 0.014124683104455471, -0.09463553130626678, 0.042789287865161896, 0.03322245553135872, 0.006436763796955347, 0.024380691349506378, -0.16288913786411285, -0.007295253686606884, -0.02776734158396721, 0.00222858227789402, 0.004884028807282448, 0.04143473505973816, -0.11480344831943512, 0.02747638151049614, -0.05625635385513306, -0.04521789029240608, -0.05878421291708946, 0.025199098512530327, 0.10180917382240295, -0.00692042987793684, 0.15785707533359528, -0.08619894832372665, 0.027529733255505562, -0.24037078022956848, -0.009663713164627552, 0.017896896228194237, -0.0957743227481842, -0.10507650673389435, -0.02082165889441967, 0.07571433484554291, -0.05178356170654297, 0.1347719132900238, -0.0517248660326004, 0.023570984601974487, 0.02859952114522457, -0.05617969110608101, 0.04330876097083092, 0.058415137231349945, 0.15220880508422852, 0.008923085406422615, -0.035388026386499405, 0.026918400079011917, 0.002361213555559516, 0.06715217977762222, 0.040844060480594635, 0.1712903082370758, 0.14211101830005646, -0.0042749750427901745, 0.08203616738319397, 0.049608174711465836, -0.1298719197511673, -0.15512703359127045, 0.1090926006436348, -0.07547261565923691, 0.11371836066246033, -0.0193671602755785, 0.1509384959936142, 0.09578075259923935, -0.20383121073246002, 0.0259252842515707, -0.05249853432178497, -0.08979310095310211, -0.10705503821372986, -0.10514099150896072, -0.085919588804245, -0.17520464956760406, -0.00458788825199008, -0.1218065395951271, 0.03524065762758255, 0.12158668786287308, 0.017621006816625595, 0.022792788222432137, 0.13351528346538544, 0.04224150627851486, 0.04987245425581932, 0.037793222814798355, 0.03156040236353874, -0.03360000252723694, -0.0037141263019293547, -0.08981742709875107, 0.013089899905025959, -0.012140899896621704, 0.043583184480667114, -0.033023182302713394, -0.03452596068382263, 0.07371876388788223, 0.006956927943974733, -0.08569636195898056, 0.004243530798703432, -0.002023919252678752, 0.008891741745173931, 0.040646739304065704, 0.030887871980667114, -0.01402765791863203, -0.012219542637467384, 0.19763486087322235, -0.09133584052324295, -0.04121449589729309, -0.11905878037214279, 0.2114172726869583, 0.005957175977528095, 0.009585085324943066, 0.05223255604505539, -0.08561955392360687, -0.001971110701560974, 0.12677761912345886, 0.1771456003189087, -0.039006490260362625, -0.01590331271290779, -0.005601250100880861, -0.017927153035998344, -0.008484408259391785, 0.07829888164997101, 0.09640385955572128, 0.05901208892464638, -0.05031030625104904, -0.01091023813933134, -0.017189636826515198, -0.025471264496445656, -0.04157009720802307, 0.04603708162903786, 0.018250111490488052, 0.030821556225419044, -0.033926721662282944, 0.05921913683414459, -0.034430064260959625, -0.10553454607725143, 0.0620112419128418, -0.18801480531692505, -0.16460183262825012, -0.026775991544127464, 0.09044251590967178, 0.005257633980363607, 0.05761667340993881, -0.02016107179224491, -0.024619009345769882, 0.10612670332193375, -0.010262980125844479, -0.07549583166837692, -0.08704083412885666, 0.045333415269851685, -0.08319438993930817, 0.21331605315208435, -0.027771854773163795, 0.02975902333855629, 0.13254034519195557, -0.000798929191660136, -0.14365254342556, 0.05062137544155121, 0.058231230825185776, -0.07999386638402939, 0.02574693039059639, 0.11609142273664474, -0.045503925532102585, 0.1292944848537445, 0.04779251292347908, -0.08090905845165253, -0.009420034475624561, 0.008138451725244522, -0.040474146604537964, -0.05498235300183296, -0.02604643814265728, -0.05760391801595688, 0.1580238938331604, 0.18147757649421692, -0.057629216462373734, 0.01044655591249466, -0.015942789614200592, 0.06373316794633865, 0.030068356543779373, 0.12645743787288666, 0.0023312601260840893, -0.2572450041770935, 0.05359847471117973, 0.019593026489019394, 0.035551559180021286, -0.20175738632678986, -0.11710934340953827, 0.02233658917248249, -0.028838109225034714, -0.10025051981210709, 0.12450825423002243, 0.11290465295314789, 0.055669233202934265, -0.06869127601385117, -0.1312090903520584, -0.07424905151128769, 0.16703221201896667, -0.14092674851417542, -0.10213904827833176 ]
null
null
transformers
THIS MODEL IS NOT INTENDED FOR USE: It was merge fodder The following models were included in the merge: * [NeverSleep/Noromaid-7B-0.4-DPO](https://huggingface.co/NeverSleep/Noromaid-7B-0.4-DPO) * [Epiculous/Fett-uccine-7B](https://huggingface.co/Epiculous/Fett-uccine-7B) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: Epiculous/Fett-uccine-7B layer_range: [0, 32] - model: NeverSleep/Noromaid-7B-0.4-DPO layer_range: [0, 32] merge_method: slerp base_model: Epiculous/Fett-uccine-7B parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["NeverSleep/Noromaid-7B-0.4-DPO", "Epiculous/Fett-uccine-7B"]}
text-generation
Test157t/Pasta-Made_7b
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:NeverSleep/Noromaid-7B-0.4-DPO", "base_model:Epiculous/Fett-uccine-7B", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
2024-02-06T14:08:07+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NeverSleep/Noromaid-7B-0.4-DPO #base_model-Epiculous/Fett-uccine-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
THIS MODEL IS NOT INTENDED FOR USE: It was merge fodder The following models were included in the merge: * NeverSleep/Noromaid-7B-0.4-DPO * Epiculous/Fett-uccine-7B ### Configuration The following YAML configuration was used to produce this model:
[ "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NeverSleep/Noromaid-7B-0.4-DPO #base_model-Epiculous/Fett-uccine-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ 96, 17 ]
[ "passage: TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #conversational #base_model-NeverSleep/Noromaid-7B-0.4-DPO #base_model-Epiculous/Fett-uccine-7B #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ -0.05403595417737961, -0.02506602182984352, -0.004461308475583792, -0.0028958958573639393, 0.10363581031560898, 0.030165886506438255, 0.18058805167675018, 0.05410993844270706, -0.06879764050245285, -0.028314782306551933, 0.11345502734184265, 0.058104258030653, 0.04163604602217674, 0.15176305174827576, -0.042108204215765, -0.19935975968837738, 0.06197177991271019, 0.022199971601366997, -0.12619926035404205, 0.07148217409849167, 0.09315686672925949, -0.031366072595119476, 0.07525418698787689, -0.018364956602454185, -0.1584641933441162, 0.025971967726945877, -0.08588919788599014, -0.02132967859506607, 0.06336728483438492, 0.08176596462726593, 0.10723503679037094, 0.11842850595712662, -0.025967039167881012, -0.13515716791152954, 0.042774494737386703, 0.009744186885654926, -0.01812845468521118, 0.014342707581818104, 0.029504336416721344, -0.013784263283014297, 0.05109337344765663, -0.027813509106636047, -0.022095249965786934, -0.011816347017884254, -0.08394261449575424, -0.03772681951522827, 0.00742139620706439, 0.12056943029165268, 0.11135047674179077, 0.0735008716583252, -0.022133376449346542, 0.010626835748553276, -0.03633373603224754, 0.06483310461044312, 0.04362623393535614, -0.21739688515663147, -0.01822049543261528, 0.12344402819871902, 0.04158738628029823, -0.01907198876142502, 0.0574130155146122, -0.014676878228783607, 0.05620234087109566, -0.0353287048637867, -0.04030678793787956, -0.0433010533452034, 0.2300165295600891, -0.053139183670282364, -0.10098343342542648, 0.021703645586967468, 0.23797717690467834, 0.005118930246680975, 0.01573042757809162, -0.02652117982506752, -0.12409684807062149, 0.045551598072052, -0.04065830260515213, -0.02688329853117466, -0.002701247576624155, 0.04335764795541763, 0.06108700484037399, -0.030477844178676605, -0.07934510707855225, -0.03903871029615402, -0.14524392783641815, 0.19392886757850647, 0.03001273423433304, 0.00667976588010788, -0.09749056398868561, 0.09303317964076996, -0.06559186428785324, -0.1417602300643921, 0.014280330389738083, -0.11134940385818481, 0.05170673504471779, -0.03547481447458267, -0.07672662287950516, -0.06679824739694595, 0.1692863255739212, 0.12245732545852661, 0.033411551266908646, 0.027619127184152603, 0.033010173588991165, 0.03938097506761551, 0.021545782685279846, 0.018670154735445976, -0.11082329601049423, -0.12037645280361176, 0.05017293617129326, 0.023454824462532997, 0.06633267551660538, 0.005384085699915886, -0.15055251121520996, -0.025697780773043633, 0.05123370140790939, -0.0031131396535784006, 0.08345581591129303, 0.14136628806591034, -0.023274123668670654, -0.06587361544370651, 0.13268256187438965, -0.07085489481687546, -0.02165941521525383, 0.016121290624141693, -0.0023248004727065563, 0.010089024901390076, 0.06808454543352127, 0.0623210072517395, -0.020171409472823143, 0.0425373874604702, -0.03861628472805023, -0.04540961980819702, -0.08262038230895996, -0.05109739303588867, -0.013552804477512836, 0.023815248161554337, 0.06621570885181427, -0.11187916249036789, -0.272726446390152, -0.023198189213871956, 0.07164634764194489, -0.029420461505651474, -0.08368482440710068, -0.10339035093784332, -0.014420934952795506, -0.015040421858429909, -0.047367602586746216, -0.03594130277633667, -0.025892555713653564, 0.01842343993484974, 0.023417411372065544, 0.05384786054491997, -0.1625853329896927, 0.0637219250202179, -0.08922736346721649, 0.07936817407608032, -0.09550491720438004, 0.1264863908290863, 0.021378222852945328, 0.13176274299621582, 0.006003717891871929, 0.014619547873735428, -0.0906386747956276, 0.043595634400844574, 0.03988334536552429, 0.19566373527050018, -0.08498667180538177, -0.08813710510730743, 0.13298285007476807, -0.1278587430715561, -0.16310983896255493, 0.04616258665919304, 0.014726831577718258, 0.056161604821681976, 0.08473293483257294, 0.20034287869930267, 0.08446063846349716, 0.03290817141532898, 0.04846227541565895, 0.002884507179260254, -0.06517735868692398, -0.0545242577791214, 0.03936685249209404, 0.032697711139917374, -0.1678653359413147, 0.049870532006025314, 0.08862294256687164, 0.10049554705619812, -0.03662710264325142, -0.05499890446662903, -0.059826597571372986, -0.05238781124353409, 0.014789756387472153, -0.0049149938859045506, 0.0315389521420002, -0.05529983341693878, -0.010114926844835281, 0.09912708401679993, 0.05730634927749634, -0.056628234684467316, -0.008883336558938026, -0.010990533046424389, 0.09798978269100189, -0.09595061838626862, 0.07162278145551682, -0.06706889718770981, -0.0496685616672039, -0.0462714284658432, 0.12821148335933685, 0.01875114254653454, 0.06250441074371338, 0.090065136551857, 0.02521469257771969, -0.04351337254047394, -0.044888488948345184, 0.1523483842611313, 0.05182380601763725, -0.019979799166321754, -0.17604443430900574, 0.05705495923757553, -0.06286957859992981, 0.22466698288917542, -0.08984174579381943, 0.05252987891435623, -0.07575923204421997, 0.20178094506263733, -0.021002795547246933, 0.08512389659881592, 0.03453190252184868, 0.04600368067622185, -0.03174064680933952, -0.00824127346277237, 0.1064969003200531, 0.03193918615579605, -0.11110351234674454, 0.11588270217180252, -0.17545630037784576, 0.15226280689239502, 0.15030324459075928, -0.035593073815107346, -0.004317150451242924, -0.0856107845902443, -0.03885394707322121, -0.04568734019994736, 0.1059357151389122, -0.034860435873270035, 0.07087129354476929, -0.05540570244193077, 0.12641680240631104, -0.05085312947630882, 0.03476975858211517, -0.015419297851622105, -0.08631792664527893, -0.04907665029168129, 0.07097984850406647, -0.05001140013337135, -0.1673097014427185, 0.16236574947834015, 0.104917973279953, -0.006680753547698259, 0.19718337059020996, -0.012892341241240501, 0.015396512113511562, -0.006548005156219006, 0.015473936684429646, -0.0369286835193634, 0.0021601910702884197, -0.14736387133598328, 0.029486272484064102, 0.04572039842605591, -0.02336038090288639, 0.12012636661529541, -0.08717244863510132, 0.004116605501621962, 0.055619630962610245, -0.007321137469261885, 0.015636740252375603, 0.06157798320055008, -0.00016819042502902448, 0.06701476126909256, -0.0014754944713786244, -0.10374854505062103, 0.09214893728494644, 0.022432371973991394, -0.06915522366762161, 0.15045103430747986, -0.13921552896499634, -0.21491150557994843, -0.10633736103773117, -0.09522554278373718, -0.13835009932518005, 0.05423763394355774, 0.08735226094722748, -0.0326295904815197, -0.007612908724695444, -0.061673957854509354, 0.06087649613618851, 0.024060729891061783, 0.03629421070218086, 0.006689373403787613, 0.015967493876814842, 0.015918826684355736, -0.02945585735142231, -0.03273490071296692, -0.024995282292366028, 0.030067117884755135, 0.1039259284734726, -0.13487957417964935, 0.05434933304786682, 0.15361498296260834, 0.024273477494716644, 0.003885382553562522, 0.03286116570234299, 0.17695756256580353, -0.04320700839161873, 0.04775533080101013, 0.1367320567369461, -0.014976218342781067, 0.05813593789935112, 0.32517173886299133, -0.004635511431843042, -0.005512714385986328, 0.03014310635626316, -0.0572308674454689, -0.0676024854183197, -0.13038013875484467, -0.11571505665779114, -0.10079897940158844, 0.009765866212546825, 0.012375269085168839, 0.037150297313928604, 0.12641379237174988, 0.10058314353227615, -0.05630279332399368, 0.03054525889456272, 0.026448501273989677, 0.053086962550878525, 0.188634991645813, -0.015578730031847954, 0.09261780232191086, -0.01657668687403202, -0.1445142924785614, 0.03559577465057373, 0.05547189712524414, 0.10019538551568985, 0.03775892034173012, 0.002447195816785097, 0.0461333692073822, 0.012961276806890965, 0.10053110867738724, 0.09642721712589264, -0.004240824840962887, -0.02940223552286625, -0.026454005390405655, -0.06904742121696472, -0.0006264574476517737, 0.07368461787700653, -0.014723268337547779, -0.019844135269522667, -0.031102802604436874, -0.04802168905735016, 0.0659179836511612, 0.09729010611772537, 0.09716282039880753, -0.266183465719223, -0.002585600595921278, 0.05477984994649887, 0.05545138195157051, -0.06386564671993256, -0.011767507530748844, -0.07868708670139313, 0.015137901529669762, 0.1568891555070877, 0.02549036778509617, 0.09677113592624664, 0.04092850536108017, 0.06136126071214676, -0.11166172474622726, 0.08321968466043472, -0.02111361175775528, 0.0826498493552208, -0.24649065732955933, 0.16790181398391724, -0.0029360377229750156, 0.0036037021782249212, -0.009305868297815323, 0.01553098950535059, 0.0391276553273201, 0.2391735315322876, 0.013835703954100609, -0.004476535599678755, 0.02231467328965664, 0.04242129251360893, -0.13605520129203796, 0.036060065031051636, -0.020061401650309563, -0.05839228257536888, 0.06329512596130371, 0.013572582975029945, -0.03133897855877876, 0.020725995302200317, 0.07798688858747482, -0.10805104672908783, -0.12047876417636871, 0.07370845973491669, 0.08509090542793274, 0.08599568158388138, -0.048473745584487915, -0.0126095125451684, -0.049285221844911575, 0.24353602528572083, 0.04949850216507912, -0.14104914665222168, -0.10279979556798935, -0.07380127906799316, 0.058921318501234055, -0.03123031184077263, 0.011138608679175377, -0.050178948789834976, 0.028856348246335983, -0.012863226234912872, -0.19117215275764465, 0.10168624669313431, -0.09265821427106857, -0.019034987315535545, -0.04904964566230774, 0.12195932865142822, -0.05094905570149422, -0.020333057269454002, 0.01108868233859539, -0.011307508684694767, -0.13515865802764893, -0.039282895624637604, -0.03680388629436493, 0.09122882038354874, 0.023971563205122948, 0.04914022982120514, -0.027116406708955765, -0.09785021096467972, -0.0030476434621959925, 0.004326576832681894, 0.11232112348079681, 0.19253858923912048, 0.0054590413346886635, 0.0830390527844429, 0.17262229323387146, -0.04881712794303894, -0.25765618681907654, -0.15087419748306274, -0.0007800021558068693, 0.0320608951151371, -0.13372953236103058, -0.11368510127067566, 0.0684066116809845, 0.03746805340051651, -0.009002815000712872, 0.04276517033576965, -0.13671717047691345, -0.14160297811031342, 0.1755710244178772, 0.03207896277308464, 0.4109857380390167, -0.10179304331541061, -0.05937876179814339, -0.09957197308540344, -0.06396377831697464, 0.06520131975412369, -0.1571054756641388, 0.09517192095518112, -0.028707217425107956, 0.033851321786642075, 0.0380745530128479, -0.03497723489999771, 0.12851126492023468, -0.03135678544640541, 0.01160343922674656, -0.1370067298412323, 0.053726471960544586, 0.0028207518626004457, -0.056828323751688004, 0.052933480590581894, -0.12807749211788177, 0.05319807305932045, 0.0018504655454307795, -0.07757298648357391, -0.03163241595029831, 0.027122922241687775, -0.006312230601906776, -0.07706306129693985, -0.01848747581243515, -0.024069655686616898, 0.03304877504706383, 0.0007071149884723127, 0.0887039452791214, -0.06929385662078857, 0.06549634039402008, 0.23981449007987976, 0.07393473386764526, -0.15781332552433014, 0.08708575367927551, 0.01948094740509987, -0.07635965943336487, 0.07048788666725159, -0.07105722278356552, 0.01955481804907322, 0.11484155058860779, -0.05021679401397705, 0.0987187996506691, 0.05873129516839981, -0.010607993230223656, -0.0691133365035057, 0.14471261203289032, -0.18141154944896698, -0.13640978932380676, -0.09324414283037186, -0.04949071630835533, -0.028088469058275223, 0.06588234007358551, 0.1633310616016388, -0.057110659778118134, 0.006181568372994661, 0.021474435925483704, -0.0069111003540456295, -0.08975275605916977, 0.10878098011016846, 0.006627432070672512, 0.03696267306804657, -0.10151920467615128, 0.032890684902668, 0.006664147134870291, -0.01701921597123146, -0.015612760558724403, 0.02981811948120594, -0.12913596630096436, -0.0989261046051979, 0.0006765631260350347, 0.21297989785671234, -0.09095808118581772, -0.10059037804603577, -0.11368108540773392, -0.1560211032629013, 0.045049119740724564, 0.05843813717365265, 0.04654521122574806, 0.04551544040441513, 0.02450411207973957, -0.05252430588006973, -0.060410257428884506, 0.08690963685512543, 0.0410844050347805, 0.07552404701709747, -0.11049071699380875, -0.004030966199934483, -0.0595131479203701, 0.054346855729818344, -0.08663223683834076, -0.0014554712688550353, -0.14704303443431854, -0.02313646860420704, -0.18085868656635284, -0.03960564732551575, -0.12171854078769684, -0.02248620241880417, 0.021041762083768845, -0.00403894716873765, -0.026734311133623123, 0.010519673116505146, -0.0588449165225029, 0.004662206396460533, -0.027147972956299782, 0.005937138106673956, -0.005122771020978689, -0.06532976776361465, -0.0077036842703819275, -0.06396135687828064, 0.032074522227048874, 0.1172804981470108, -0.06739938259124756, -0.04782528057694435, -0.12877792119979858, -0.045438751578330994, 0.04648537188768387, 0.0255828108638525, 0.02315620519220829, -0.06978154182434082, -0.030347546562552452, 0.09785415232181549, -0.06434477120637894, -0.019714094698429108, 0.050278786569833755, -0.05978775396943092, -0.01960206776857376, -0.05704031139612198, -0.062209177762269974, -0.0019347770139575005, -0.048819269984960556, 0.04792118817567825, 0.07638494670391083, 0.10273899137973785, -0.08224910497665405, 0.015963084995746613, -0.11088022589683533, -0.008088348433375359, -0.0007951892330311239, -0.10901464521884918, 0.0523013100028038, -0.100527822971344, 0.006399259436875582, 0.021528080105781555, 0.19892828166484833, -0.034941673278808594, -0.08766642957925797, -0.011003457009792328, -0.02440650202333927, 0.12160830944776535, 0.05200302228331566, 0.30308255553245544, 0.06409387290477753, 0.01292614359408617, -0.10352250933647156, 0.08291323482990265, 0.0537322573363781, 0.06852290034294128, 0.007288771215826273, 0.015972135588526726, 0.0000069462334977288265, 0.06402076780796051, 0.04354063794016838, 0.029992731288075447, -0.008274395950138569, -0.07004968076944351, -0.04495668411254883, 0.03255496919155121, -0.01306116208434105, 0.04822329059243202, 0.1746114194393158, -0.0226750411093235, 0.0015009830240160227, -0.004686008207499981, -0.044620271772146225, -0.07607395946979523, -0.05486999824643135, -0.1280808448791504, -0.2107580453157425, -0.03084939904510975, -0.08498521149158478, -0.07916761189699173, 0.0134888282045722, 0.014099880121648312, -0.019785061478614807, 0.14324121177196503, 0.08812906593084335, -0.0511033795773983, 0.024335650727152824, -0.042796541005373, -0.009066972881555557, 0.018561555072665215, -0.058531519025564194, -0.01705966889858246, -0.006849853787571192, -0.04371052607893944, 0.014432599768042564, 0.03611316531896591, 0.0697057694196701, -0.004100273363292217, -0.07054649293422699, -0.021771330386400223, 0.04553625360131264, 0.05946345254778862, 0.05847494676709175, -0.011632717214524746, -0.057746052742004395, 0.027360567823052406, 0.11644680798053741, -0.028838766738772392, -0.16086512804031372, -0.09923755377531052, 0.17275510728359222, 0.00040696305222809315, 0.058925144374370575, 0.01735728792846203, -0.06848715245723724, -0.02373836189508438, 0.1682065725326538, 0.299100399017334, -0.04712047427892685, 0.003373855957761407, -0.03955778479576111, 0.016539456322789192, 0.026159241795539856, 0.05169138312339783, 0.06469057500362396, 0.11659226566553116, -0.036207251250743866, -0.011574573814868927, -0.03760363534092903, -0.03035793825984001, -0.11692149937152863, 0.028625357896089554, 0.05874192714691162, -0.09391056001186371, 0.004313046578317881, 0.07638899981975555, -0.15101206302642822, 0.04357650876045227, 0.01667313650250435, -0.0954478308558464, -0.09516314417123795, -0.07004288583993912, 0.1129390224814415, -0.015973564237356186, 0.04817775636911392, -0.0701126679778099, -0.007655028253793716, 0.08421392738819122, -0.03406662493944168, -0.09958936274051666, 0.008221134543418884, 0.012757036834955215, 0.03128940612077713, -0.018003208562731743, -0.014929909259080887, 0.03622095286846161, 0.10449810326099396, 0.032308392226696014, -0.07242986559867859, 0.07940667867660522, -0.018456842750310898, -0.058739304542541504, 0.0921882763504982, -0.012875479646027088, -0.03975111246109009, -0.11540383845567703, 0.05521398037672043, -0.15901178121566772, -0.012127990834414959, 0.06458909809589386, -0.05558114871382713, -0.05990348756313324, 0.08216261118650436, -0.05481458455324173, 0.08517289906740189, 0.0829380601644516, -0.035490915179252625, 0.010896285995841026, -0.013049056753516197, 0.05040440708398819, 0.015093766152858734, 0.03700365871191025, -0.015358134172856808, -0.15921016037464142, -0.04972700774669647, 0.07601325213909149, 0.024727240204811096, -0.24126990139484406, -0.057035379111766815, -0.1327735334634781, -0.006316960323601961, -0.08743522316217422, 0.07399781793355942, 0.14774401485919952, 0.01858443021774292, -0.028857216238975525, -0.023286843672394753, -0.016849691048264503, 0.04868083447217941, -0.07643786817789078, -0.14020293951034546 ]
null
null
keras
## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: | Hyperparameters | Value | | :-- | :-- | | name | Adam | | learning_rate | 4.0000002627493814e-05 | | decay | 0.0 | | beta_1 | 0.8999999761581421 | | beta_2 | 0.9990000128746033 | | epsilon | 1e-07 | | amsgrad | False | | training_precision | float32 | ## Model Plot <details> <summary>View Model Plot</summary> ![Model Image](./model.png) </details>
{"library_name": "keras", "tags": ["Image Classification"]}
null
AiresPucrs/CNN-Conv2d
[ "keras", "Image Classification", "region:us" ]
2024-02-06T14:08:24+00:00
[]
[]
TAGS #keras #Image Classification #region-us
Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: Model Plot ---------- View Model Plot !Model Image
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ "TAGS\n#keras #Image Classification #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ 13, 28 ]
[ "passage: TAGS\n#keras #Image Classification #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n\nModel Plot\n----------\n\n\n\nView Model Plot\n!Model Image" ]
[ -0.008613414131104946, -0.017148947343230247, -0.003299595322459936, 0.037948329001665115, 0.22494842112064362, 0.06916946172714233, 0.11896741390228271, 0.07941845804452896, -0.05234717205166817, -0.0044382610358297825, 0.08838625252246857, 0.09911753237247467, -0.011547647416591644, 0.05432282015681267, 0.009014259092509747, -0.32014939188957214, -0.011310363188385963, -0.03674379736185074, -0.09268166124820709, 0.13397562503814697, 0.0676635354757309, -0.14834116399288177, 0.06700510531663895, -0.006961048115044832, -0.328052818775177, 0.029999395832419395, 0.015826290473341942, -0.051881372928619385, 0.14237233996391296, -0.06960535049438477, 0.1752753108739853, -0.03346320614218712, 0.11775106936693192, -0.19551031291484833, 0.029702769592404366, 0.09365708380937576, -0.015060593374073505, 0.030713524669408798, 0.026775090023875237, 0.022628288716077805, 0.11278727650642395, -0.04252016916871071, 0.06532105803489685, -0.017205828800797462, -0.20123572647571564, -0.10766235738992691, -0.019578086212277412, -0.03173784166574478, 0.132454052567482, 0.07539763301610947, -0.015965651720762253, 0.11079064756631851, -0.20449988543987274, 0.04778006300330162, 0.10786724090576172, -0.15368764102458954, -0.0773327499628067, 0.19023467600345612, 0.004017214756458998, 0.08715105056762695, -0.14025895297527313, 0.09775208681821823, 0.07268884778022766, -0.015185713768005371, 0.004402568563818932, -0.02096427232027054, -0.12381021678447723, 0.050682466477155685, -0.14729897677898407, 0.017358509823679924, 0.035415004938840866, 0.019829384982585907, 0.049979645758867264, 0.021722298115491867, -0.024264033883810043, -0.00626493152230978, -0.02721797302365303, -0.03725249320268631, 0.09438620507717133, 0.028293561190366745, 0.0011395454639568925, -0.04249297082424164, -0.11072953790426254, -0.0604945607483387, -0.04892220348119736, 0.003808604320511222, -0.020254550501704216, 0.05109397694468498, -0.10786876827478409, 0.05459412559866905, -0.20002135634422302, -0.06564338505268097, 0.08469598740339279, -0.041684139519929886, -0.07041338086128235, -0.1012498289346695, -0.04202723875641823, -0.09682091325521469, 0.0221340861171484, -0.054113052785396576, 0.09132512658834457, 0.06330736726522446, -0.044758398085832596, 0.0744009017944336, 0.019755197688937187, 0.11753226071596146, -0.07132925093173981, -0.014780841767787933, -0.06389004737138748, 0.025245316326618195, -0.06724517792463303, -0.019103409722447395, -0.09102431684732437, 0.04266362264752388, 0.010888238437473774, 0.026958679780364037, -0.14606311917304993, 0.01853181980550289, -0.02805596962571144, -0.004565231502056122, -0.08988548070192337, -0.03680238500237465, 0.03494967520236969, -0.03626659885048866, -0.057460635900497437, -0.0018105448689311743, -0.018475191667675972, 0.06785225123167038, 0.03661379590630531, 0.14709964394569397, -0.07283075153827667, 0.08942488580942154, -0.1300644725561142, -0.042650897055864334, -0.04895339533686638, -0.04766009747982025, 0.015083649195730686, -0.020527251064777374, -0.1450272649526596, -0.023419443517923355, 0.09814229607582092, -0.051172446459531784, 0.10509763658046722, -0.04811570793390274, -0.04361680522561073, -0.03362523019313812, 0.052745066583156586, 0.14489373564720154, -0.03731444478034973, 0.06882970780134201, -0.02992658130824566, 0.12214069068431854, -0.013696215115487576, 0.03240598738193512, -0.09243601560592651, 0.01625497080385685, -0.35059937834739685, 0.042962051928043365, -0.03071920946240425, 0.15390779078006744, -0.006425219122320414, -0.050850994884967804, -0.04413885995745659, 0.0436352975666523, -0.003031298751011491, 0.12493889778852463, -0.31135493516921997, -0.046436332166194916, 0.15550076961517334, -0.10449188947677612, -0.04126357659697533, -0.012090918608009815, -0.12205497175455093, 0.13276474177837372, 0.0735412985086441, 0.39010098576545715, -0.03257255256175995, -0.1176186352968216, 0.11218719184398651, -0.05750766396522522, -0.07779917120933533, 0.037950437515974045, -0.02996697463095188, -0.0360921286046505, 0.01933009922504425, -0.018965518102049828, -0.06117120385169983, 0.016822578385472298, -0.12874539196491241, -0.09040030092000961, -0.0003095742722507566, -0.08926283568143845, 0.034010306000709534, 0.0657733678817749, 0.05932050198316574, -0.09425989538431168, 0.024761825799942017, 0.08587707579135895, 0.04053483158349991, 0.00374401337467134, -0.04609258472919464, -0.016476349905133247, -0.0561501607298851, -0.017104467377066612, -0.04953251779079437, -0.12099655717611313, -0.0709785595536232, -0.01745142601430416, 0.1136438399553299, 0.054027922451496124, 0.053058650344610214, 0.08839143067598343, 0.02720586396753788, -0.039249591529369354, 0.025535011664032936, -0.03377152606844902, 0.023548083379864693, -0.12482312321662903, -0.1804482787847519, 0.05039482191205025, -0.03854086995124817, 0.09995196759700775, -0.2734202444553375, -0.01621324196457863, -0.005829017609357834, 0.09438733011484146, 0.04328696057200432, -0.04060693457722664, -0.021889133378863335, 0.010223550722002983, 0.0019362113671377301, -0.07007385790348053, 0.07401386648416519, -0.06615869700908661, 0.006604940164834261, -0.04755699262022972, -0.07247625291347504, -0.010507429949939251, 0.1398182064294815, -0.3637028932571411, -0.1312381476163864, -0.039548762142658234, -0.026356922462582588, 0.005989375524222851, -0.05479738488793373, 0.012155869044363499, 0.08613400906324387, -0.03869990259408951, 0.09462389349937439, 0.023055532947182655, -0.00022548437118530273, -0.003927887883037329, -0.07129005342721939, 0.024589797481894493, -0.002341149840503931, 0.22886420786380768, -0.16210903227329254, 0.09717586636543274, 0.21965299546718597, 0.004774011671543121, 0.18540328741073608, 0.013438901863992214, -0.02440197393298149, -0.012486419640481472, -0.01949785277247429, -0.03637249767780304, 0.1810263693332672, -0.1897064596414566, -0.015448479913175106, -0.035229675471782684, 0.020721904933452606, 0.05242443457245827, -0.24166397750377655, -0.08453386276960373, 0.006204799748957157, -0.024902062490582466, 0.009636402130126953, -0.03253844380378723, -0.02237146720290184, 0.101112499833107, -0.006259364541620016, -0.0610332116484642, 0.02588576450943947, -0.04293518140912056, -0.03856971859931946, 0.18428918719291687, -0.07884292304515839, -0.10247491300106049, 0.01887410879135132, -0.041722480207681656, 0.07647296786308289, 0.04645824432373047, 0.01216595433652401, -0.2357005923986435, -0.008678699843585491, 0.02720889449119568, -0.0427752286195755, -0.008524320088326931, 0.0003483759064693004, 0.009200522676110268, 0.06410864740610123, -0.022369278594851494, -0.05729222297668457, -0.0468071773648262, -0.1168878898024559, -0.06026178598403931, 0.04493435099720955, 0.0026462541427463293, 0.07580515742301941, 0.21646694839000702, -0.0145542211830616, 0.03805536776781082, -0.000030220879125408828, 0.246808260679245, -0.1458732932806015, -0.013203752227127552, 0.029201878234744072, -0.03239366039633751, 0.03671916946768761, 0.12870074808597565, 0.055788200348615646, -0.1665356457233429, 0.005616013426333666, 0.07696676254272461, -0.1116534024477005, -0.14086435735225677, -0.03100421093404293, -0.0480169877409935, -0.1313653588294983, 0.005189324263483286, 0.017504900693893433, 0.07591056078672409, 0.041514329612255096, 0.15444757044315338, -0.01588938944041729, -0.021029943600296974, -0.04151255264878273, -0.04742022231221199, -0.03025149740278721, 0.04405241459608078, -0.04909982532262802, -0.10103469341993332, 0.06879492104053497, -0.037487566471099854, 0.3853922486305237, 0.13800309598445892, -0.09944050759077072, 0.08324452489614487, 0.004531786777079105, 0.04779774323105812, 0.01676783338189125, -0.014303797855973244, -0.10889941453933716, -0.049490418285131454, -0.04768072068691254, 0.02985704131424427, 0.052624039351940155, -0.00021252367878332734, -0.10484740138053894, -0.07509690523147583, -0.036902278661727905, 0.1469552218914032, 0.06288401037454605, 0.07913027703762054, -0.20139256119728088, 0.11044912040233612, 0.020854929462075233, 0.02251470275223255, -0.004350152797996998, 0.03422587737441063, 0.10776512324810028, -0.12651920318603516, 0.046748727560043335, -0.004324642010033131, 0.0699455663561821, -0.058114051818847656, 0.07175130397081375, 0.06021016463637352, -0.007192455232143402, -0.03626471757888794, 0.04431649670004845, -0.18478313088417053, 0.33655673265457153, 0.003175900084897876, 0.04552534595131874, -0.06857480108737946, -0.09411896765232086, 0.09249518811702728, 0.1062791720032692, 0.10822732746601105, 0.03313307836651802, -0.12012524157762527, -0.14317774772644043, 0.011265953071415424, -0.008783245459198952, 0.21251694858074188, -0.039999160915613174, 0.012195246294140816, 0.021200738847255707, 0.029958078637719154, 0.042960796505212784, 0.01506755780428648, -0.12967124581336975, -0.010795490816235542, -0.07488226145505905, -0.035390838980674744, -0.06563257426023483, -0.022412575781345367, -0.0053027779795229435, -0.042348749935626984, 0.12430083006620407, 0.17696477472782135, 0.03289134055376053, -0.10803305357694626, 0.09260175377130508, 0.025394845753908157, 0.04150492325425148, 0.06776836514472961, 0.026792185381054878, 0.015167461708188057, 0.045292049646377563, -0.06198396533727646, 0.14146669209003448, -0.05280093476176262, -0.008248676545917988, -0.12870052456855774, 0.09980377554893494, 0.028415391221642494, 0.016042280942201614, 0.05199708417057991, 0.042955540120601654, 0.03060215525329113, -0.07053683698177338, 0.13597095012664795, -0.05772407352924347, -0.01563316397368908, 0.12678827345371246, -0.11167171597480774, 0.036839719861745834, -0.051413871347904205, -0.0030918160919100046, 0.23158785700798035, 0.23407897353172302, -0.07301220297813416, 0.040700413286685944, 0.024352796375751495, -0.09259306639432907, -0.21914809942245483, 0.21923154592514038, 0.007412961684167385, -0.0395815335214138, 0.1421777904033661, -0.17289692163467407, 0.12241023033857346, 0.15803736448287964, 0.00016527349362149835, 0.1240738034248352, -0.3649008572101593, -0.06945746392011642, -0.009159281849861145, 0.12263403832912445, 0.18531624972820282, -0.16600878536701202, -0.035872962325811386, -0.06221514940261841, -0.029897838830947876, 0.1160484328866005, -0.13929086923599243, 0.11228521168231964, 0.03740857541561127, 0.04837185516953468, 0.017584053799510002, -0.06900198012590408, 0.19187535345554352, 0.07314902544021606, 0.1503308117389679, -0.12120138108730316, -0.15606258809566498, 0.13580958545207977, -0.00012226236867718399, -0.07840651273727417, 0.14295925199985504, -0.0050156316719949245, -0.170575812458992, 0.009166136384010315, -0.07880432158708572, -0.022930482402443886, -0.018314268440008163, -0.08403271436691284, -0.04338333383202553, 0.06493404507637024, 0.006131118629127741, 0.024433372542262077, -0.001541352248750627, -0.04348430410027504, 0.10750240832567215, 0.0014828761341050267, 0.024195564910769463, 0.04832400381565094, -0.07452811300754547, -0.04122817516326904, 0.016165802255272865, 0.05965789034962654, -0.18175175786018372, 0.016698114573955536, 0.1089530736207962, 0.03892061859369278, 0.13833975791931152, 0.10042271018028259, 0.014008954167366028, 0.05381915718317032, 0.13248693943023682, -0.15137438476085663, -0.09140805900096893, 0.013253291137516499, -0.07913213223218918, 0.09544289857149124, 0.018375195562839508, 0.02556179277598858, -0.009957323782145977, 0.02281743660569191, -0.006183161865919828, -0.008928264491260052, -0.1369905024766922, 0.16290925443172455, 0.12226299941539764, 0.006304970942437649, -0.061238426715135574, 0.09128591418266296, 0.05038325488567352, 0.004892793018370867, 0.010671176947653294, 0.0891355648636818, -0.06654918193817139, -0.04644525423645973, 0.12633490562438965, 0.342820942401886, -0.06895709782838821, 0.0018977380823343992, -0.00600734818726778, -0.04356789588928223, 0.0002919495163951069, 0.1228586733341217, 0.11839915066957474, -0.03460463881492615, 0.019571030512452126, 0.046279314905405045, -0.08856728672981262, -0.027478016912937164, -0.05210937559604645, 0.036979347467422485, -0.11053349077701569, 0.11396422982215881, 0.017918437719345093, 0.027170218527317047, -0.08139114081859589, -0.020237943157553673, -0.17268036305904388, 0.07447811216115952, -0.022236214950680733, -0.06425117701292038, 0.07786063104867935, -0.0651342049241066, 0.03600341081619263, -0.02000162936747074, -0.06266112625598907, -0.03547574579715729, -0.13792967796325684, 0.0014944026479497552, 0.03520774096250534, -0.009669776074588299, -0.0917644277215004, -0.038984861224889755, 0.052368469536304474, -0.004403462167829275, 0.059646282345056534, 0.023062793537974358, 0.031162763014435768, 0.08092542737722397, -0.22653885185718536, -0.09533680975437164, 0.10875119268894196, -0.034709375351667404, 0.08025595545768738, 0.05291718989610672, -0.021489517763257027, -0.06590966880321503, 0.08750037103891373, 0.05650624632835388, 0.0572582446038723, -0.11119940876960754, -0.007296132855117321, -0.017609955742955208, -0.16966527700424194, 0.016577839851379395, 0.00047304894542321563, 0.08134151995182037, 0.003924586810171604, 0.09466727823019028, -0.026697710156440735, 0.05848827213048935, -0.1381051391363144, -0.03499414771795273, -0.03490113839507103, -0.04792344942688942, 0.052039120346307755, -0.030403615906834602, 0.043116968125104904, -0.10235950350761414, 0.22956575453281403, 0.14714476466178894, 0.03174209222197533, 0.04218272864818573, 0.0467052198946476, -0.03533897548913956, 0.07906042039394379, 0.2404135763645172, 0.09850989282131195, -0.040802426636219025, 0.03457210958003998, 0.1061423122882843, 0.06281065195798874, 0.015522314235568047, 0.19643086194992065, 0.14929218590259552, -0.0754069834947586, 0.025472024455666542, 0.06830011308193207, -0.0216617863625288, -0.08166903257369995, 0.10028862208127975, -0.007911885157227516, 0.07266267389059067, -0.058361757546663284, 0.04809600114822388, 0.09945331513881683, -0.16115233302116394, 0.08624378591775894, -0.0912795141339302, -0.08696338534355164, -0.0644255205988884, 0.04486219212412834, -0.04867706820368767, -0.14518915116786957, 0.0646270364522934, -0.06057760864496231, 0.07049652189016342, 0.2660270631313324, 0.023922160267829895, -0.0033913333900272846, 0.24942970275878906, -0.059397224336862564, 0.020861228927969933, 0.09509965777397156, -0.023317765444517136, -0.05533444136381149, -0.1607612818479538, -0.039385806769132614, -0.05175206437706947, -0.029023446142673492, -0.04955955222249031, -0.02248380519449711, -0.09563314914703369, -0.04046238958835602, -0.07030847668647766, -0.07513567060232162, 0.019547801464796066, -0.021523404866456985, 0.0032019640784710646, -0.1116679310798645, 0.005917842965573072, -0.001887116814032197, -0.02261279709637165, 0.27843618392944336, -0.06798786669969559, -0.08577565103769302, -0.09336090087890625, 0.16130594909191132, -0.010031608864665031, 0.09799591451883316, -0.09559842944145203, -0.0855172872543335, 0.013096238486468792, 0.24947410821914673, 0.2491479068994522, -0.2740340232849121, -0.021589459851384163, -0.030715258792042732, 0.007879480719566345, 0.03923993557691574, 0.18219128251075745, 0.04848029464483261, -0.01513440627604723, -0.10774341225624084, -0.03663727641105652, -0.06171388551592827, -0.05137735977768898, -0.055705875158309937, 0.04377070069313049, 0.16834066808223724, 0.039957195520401, -0.12074056267738342, 0.18206605315208435, -0.011657447554171085, -0.07319896668195724, 0.11398763954639435, -0.24608871340751648, -0.14599990844726562, -0.004977068863809109, 0.1511579006910324, -0.0015002117725089192, 0.04770537465810776, -0.0746241956949234, -0.09614302217960358, -0.08052893728017807, 0.01213108655065298, -0.10406037420034409, -0.19747212529182434, 0.04682004824280739, -0.12941482663154602, 0.21445444226264954, -0.04709649085998535, 0.02306734211742878, 0.06538025289773941, 0.004066432360559702, 0.0238967202603817, 0.03323497995734215, 0.03510943427681923, -0.02712160535156727, -0.10502152144908905, 0.11773011833429337, -0.071999691426754, -0.09674263000488281, 0.04418297857046127, -0.20681026577949524, 0.04979250580072403, -0.0038244922179728746, -0.06602249294519424, -0.033566877245903015, 0.0028180889785289764, -0.11725525557994843, 0.09290669858455658, 0.14868727326393127, 0.024759305641055107, 0.1030106469988823, -0.08668499439954758, 0.036105312407016754, 0.055068936198949814, 0.037265025079250336, -0.13638350367546082, -0.13704590499401093, -0.02633427456021309, 0.09487244486808777, -0.06316032260656357, -0.09548532962799072, -0.08509773015975952, -0.040193840861320496, 0.0015846564201638103, -0.040459997951984406, 0.09324640780687332, 0.192625492811203, 0.04499564319849014, -0.03898285701870918, -0.1449424773454666, 0.0061094192788004875, 0.14894050359725952, -0.07796458899974823, -0.0880957692861557 ]
null
null
transformers
# Quyen <img src="quyen.webp" width="512" height="512" alt="Quyen"> # Model Description Quyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions: - **Quyen-SE (0.5B)** - **Quyen-Mini (1.8B)** - **Quyen (4B)** - **Quyen-Plus (7B)** - **Quyen-Pro (14B)** - **Quyen-Pro-Max (72B)** All models were trained with SFT and DPO using the following dataset: - *OpenHermes-2.5* by **Teknium** - *Capyabara* by **LDJ** - *distilabel-intel-orca-dpo-pairs* by **argilla** - *orca_dpo_pairs* by **Intel** - and Private Data by **Ontocord** & **BEE-spoke-data** # Prompt Template - All Quyen models use ChatML as the default template: ``` <|im_start|>system You are a sentient, superintelligent artificial general intelligence, here to teach and assist me.<|im_end|> <|im_start|>user Hello world.<|im_end|> <|im_start|>assistant ``` - You can also use `apply_chat_template`: ```python messages = [ {"role": "system", "content": "You are a sentient, superintelligent artificial general intelligence, here to teach and assist me."}, {"role": "user", "content": "Hello world."} ] gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") model.generate(**gen_input) ``` # Benchmarks: - Coming Soon! We will update the benchmarks later # Acknowledgement - We're incredibly grateful to **Tensoic** and **Ontocord** for their generous support with compute and data preparation.
{"language": ["en"], "license": "other", "library_name": "transformers", "datasets": ["teknium/OpenHermes-2.5", "LDJnr/Capybara", "Intel/orca_dpo_pairs", "argilla/distilabel-intel-orca-dpo-pairs"]}
null
vilm/Quyen-Mini-v0.1-GGUF
[ "transformers", "gguf", "en", "dataset:teknium/OpenHermes-2.5", "dataset:LDJnr/Capybara", "dataset:Intel/orca_dpo_pairs", "dataset:argilla/distilabel-intel-orca-dpo-pairs", "license:other", "endpoints_compatible", "region:us" ]
2024-02-06T14:08:29+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #dataset-teknium/OpenHermes-2.5 #dataset-LDJnr/Capybara #dataset-Intel/orca_dpo_pairs #dataset-argilla/distilabel-intel-orca-dpo-pairs #license-other #endpoints_compatible #region-us
# Quyen <img src="URL" width="512" height="512" alt="Quyen"> # Model Description Quyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions: - Quyen-SE (0.5B) - Quyen-Mini (1.8B) - Quyen (4B) - Quyen-Plus (7B) - Quyen-Pro (14B) - Quyen-Pro-Max (72B) All models were trained with SFT and DPO using the following dataset: - *OpenHermes-2.5* by Teknium - *Capyabara* by LDJ - *distilabel-intel-orca-dpo-pairs* by argilla - *orca_dpo_pairs* by Intel - and Private Data by Ontocord & BEE-spoke-data # Prompt Template - All Quyen models use ChatML as the default template: - You can also use 'apply_chat_template': # Benchmarks: - Coming Soon! We will update the benchmarks later # Acknowledgement - We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation.
[ "# Quyen\n<img src=\"URL\" width=\"512\" height=\"512\" alt=\"Quyen\">", "# Model Description\nQuyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions:\n\n- Quyen-SE (0.5B)\n- Quyen-Mini (1.8B)\n- Quyen (4B)\n- Quyen-Plus (7B)\n- Quyen-Pro (14B)\n- Quyen-Pro-Max (72B)\n\nAll models were trained with SFT and DPO using the following dataset:\n\n- *OpenHermes-2.5* by Teknium\n- *Capyabara* by LDJ\n- *distilabel-intel-orca-dpo-pairs* by argilla\n- *orca_dpo_pairs* by Intel\n- and Private Data by Ontocord & BEE-spoke-data", "# Prompt Template\n- All Quyen models use ChatML as the default template:\n\n\n\n- You can also use 'apply_chat_template':", "# Benchmarks:\n\n- Coming Soon! We will update the benchmarks later", "# Acknowledgement\n- We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation." ]
[ "TAGS\n#transformers #gguf #en #dataset-teknium/OpenHermes-2.5 #dataset-LDJnr/Capybara #dataset-Intel/orca_dpo_pairs #dataset-argilla/distilabel-intel-orca-dpo-pairs #license-other #endpoints_compatible #region-us \n", "# Quyen\n<img src=\"URL\" width=\"512\" height=\"512\" alt=\"Quyen\">", "# Model Description\nQuyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions:\n\n- Quyen-SE (0.5B)\n- Quyen-Mini (1.8B)\n- Quyen (4B)\n- Quyen-Plus (7B)\n- Quyen-Pro (14B)\n- Quyen-Pro-Max (72B)\n\nAll models were trained with SFT and DPO using the following dataset:\n\n- *OpenHermes-2.5* by Teknium\n- *Capyabara* by LDJ\n- *distilabel-intel-orca-dpo-pairs* by argilla\n- *orca_dpo_pairs* by Intel\n- and Private Data by Ontocord & BEE-spoke-data", "# Prompt Template\n- All Quyen models use ChatML as the default template:\n\n\n\n- You can also use 'apply_chat_template':", "# Benchmarks:\n\n- Coming Soon! We will update the benchmarks later", "# Acknowledgement\n- We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation." ]
[ 86, 27, 167, 33, 18, 31 ]
[ "passage: TAGS\n#transformers #gguf #en #dataset-teknium/OpenHermes-2.5 #dataset-LDJnr/Capybara #dataset-Intel/orca_dpo_pairs #dataset-argilla/distilabel-intel-orca-dpo-pairs #license-other #endpoints_compatible #region-us \n# Quyen\n<img src=\"URL\" width=\"512\" height=\"512\" alt=\"Quyen\"># Model Description\nQuyen is our first flagship LLM series based on the Qwen1.5 family. We introduced 6 different versions:\n\n- Quyen-SE (0.5B)\n- Quyen-Mini (1.8B)\n- Quyen (4B)\n- Quyen-Plus (7B)\n- Quyen-Pro (14B)\n- Quyen-Pro-Max (72B)\n\nAll models were trained with SFT and DPO using the following dataset:\n\n- *OpenHermes-2.5* by Teknium\n- *Capyabara* by LDJ\n- *distilabel-intel-orca-dpo-pairs* by argilla\n- *orca_dpo_pairs* by Intel\n- and Private Data by Ontocord & BEE-spoke-data# Prompt Template\n- All Quyen models use ChatML as the default template:\n\n\n\n- You can also use 'apply_chat_template':# Benchmarks:\n\n- Coming Soon! We will update the benchmarks later# Acknowledgement\n- We're incredibly grateful to Tensoic and Ontocord for their generous support with compute and data preparation." ]
[ -0.08241596817970276, 0.17704914510250092, -0.005115823820233345, 0.054202403873205185, 0.08191234618425369, 0.027829596772789955, 0.13450995087623596, 0.14404238760471344, 0.09382212162017822, 0.024123258888721466, -0.027554595842957497, 0.08816935122013092, 0.10143426060676575, 0.08653288334608078, -0.03833650425076485, -0.22907765209674835, 0.022974522784352303, -0.04337107017636299, -0.07243666052818298, 0.048438381403684616, 0.08493779599666595, -0.03868303820490837, 0.08002032339572906, -0.002390362322330475, -0.04258319362998009, -0.04906371980905533, -0.03994647040963173, -0.05558367818593979, 0.10323192924261093, 0.049231499433517456, 0.06840138882398605, 0.05292508006095886, 0.020774969831109047, -0.20465146005153656, 0.036949798464775085, 0.017969006672501564, 0.009362658485770226, 0.05341649800539017, 0.0634971484541893, 0.03142356500029564, 0.03977608680725098, -0.026056664064526558, -0.008614745922386646, 0.03864794969558716, -0.07364128530025482, -0.1432935744524002, -0.14917518198490143, 0.000294844969175756, 0.06303980201482773, 0.010726256296038628, 0.01257536094635725, 0.12021616101264954, -0.021879930049180984, 0.014460205100476742, 0.10910627245903015, -0.28992173075675964, -0.05649101734161377, 0.06788551807403564, 0.06326276808977127, 0.037448711693286896, -0.07041046023368835, -0.0343715101480484, -0.0011932600755244493, 0.05501973256468773, -0.004159764852374792, -0.04138375073671341, 0.034263480454683304, -0.025746090337634087, -0.08300238102674484, 0.007697196677327156, 0.16187240183353424, 0.018105320632457733, -0.04718604311347008, -0.10543636977672577, -0.05528343841433525, 0.03675153851509094, -0.021381800994277, -0.045366596430540085, 0.022942449897527695, -0.01733294129371643, 0.04371338710188866, -0.051947031170129776, -0.09210672974586487, 0.018283870071172714, -0.036810584366321564, 0.04527071490883827, 0.047353487461805344, 0.023844365030527115, -0.07118111103773117, 0.03648730367422104, -0.04148034751415253, -0.07646043598651886, -0.08460193127393723, -0.15056882798671722, -0.07595515996217728, -0.045154232531785965, -0.008266876451671124, -0.04869196191430092, 0.15393534302711487, 0.2029474824666977, 0.007046973332762718, 0.05257083848118782, 0.020208237692713737, -0.045426059514284134, 0.04380594938993454, 0.07746673375368118, -0.02966717630624771, -0.11745826154947281, 0.04071582853794098, 0.0002810619480442256, -0.027748173102736473, -0.001601836527697742, -0.04133254662156105, 0.008485506288707256, -0.08584926277399063, 0.03522634878754616, 0.1010245829820633, 0.03843998163938522, -0.00016862609481904656, -0.10033022612333298, 0.24435043334960938, -0.08769360184669495, -0.007520397659391165, 0.0021234690211713314, -0.028065381571650505, 0.010625649243593216, -0.04058653861284256, 0.04789526388049126, -0.014423167333006859, -0.008146259002387524, -0.010828766971826553, -0.05823429301381111, -0.03370235860347748, -0.01872624270617962, 0.04746297374367714, 0.00563754653558135, -0.02268546260893345, -0.13803426921367645, -0.014958005398511887, -0.008053727447986603, 0.06083222106099129, -0.034222207963466644, -0.04475631192326546, 0.03906112536787987, -0.04396308213472366, -0.017977233976125717, -0.014631245285272598, -0.016755474731326103, -0.05411424860358238, -0.005889630876481533, 0.028445348143577576, 0.02401777356863022, -0.10299807786941528, 0.038701802492141724, -0.030226726084947586, 0.05392752215266228, -0.1475636065006256, 0.12852755188941956, -0.09084001183509827, 0.01683516800403595, -0.1044430136680603, -0.015562236309051514, 0.006436609197407961, -0.06369651108980179, 0.02216469869017601, 0.12031763792037964, -0.18424956500530243, 0.0008291446720249951, 0.24188566207885742, -0.10211645811796188, -0.10207367688417435, 0.0836123451590538, -0.004284481052309275, -0.040952593088150024, 0.024539893493056297, 0.11121833324432373, 0.23925291001796722, -0.10789503157138824, -0.0929478108882904, -0.03690730035305023, 0.0694771260023117, -0.058260299265384674, 0.07567410171031952, 0.021390067413449287, 0.06409772485494614, 0.043696753680706024, -0.03550591692328453, 0.012067093513906002, -0.004460887983441353, -0.06745374947786331, -0.04328180477023125, -0.06426037102937698, 0.005815625656396151, -0.056594368070364, -0.03910912573337555, 0.01760503649711609, 0.03335732966661453, -0.019344978034496307, 0.11623521894216537, -0.01780158467590809, -0.015314625576138496, -0.1512223780155182, 0.09963805973529816, 0.03238927572965622, 0.020250853151082993, -0.10662460327148438, -0.13406558334827423, 0.08814816921949387, -0.16925817728042603, 0.023425886407494545, 0.05892546847462654, 0.039804477244615555, 0.04489467665553093, -0.015618403442203999, 0.014358190819621086, 0.0017543371068313718, -0.004719902761280537, 0.013056538999080658, -0.10491770505905151, -0.05594053491950035, -0.06072906404733658, 0.18044301867485046, -0.10167668014764786, 0.02261943556368351, 0.008348854258656502, 0.12435939162969589, 0.07136468589305878, -0.017210161313414574, 0.004708246327936649, 0.027654379606246948, 0.019487496465444565, -0.036378778517246246, -0.0035834808368235826, 0.03625870496034622, -0.05030972883105278, 0.08444802463054657, -0.09784500300884247, -0.08822253346443176, 0.05597715824842453, 0.08471211791038513, 0.0441555418074131, -0.06954461336135864, -0.07291582226753235, -0.053830839693546295, 0.019088583067059517, 0.004229357466101646, 0.13335035741329193, 0.06006662920117378, 0.03856484964489937, -0.07011665403842926, -0.013388090766966343, 0.01575738936662674, -0.022834058851003647, -0.014758246950805187, 0.038934849202632904, 0.12043652683496475, -0.08580347150564194, -0.010679688304662704, 0.12471969425678253, 0.06106320023536682, 0.043712593615055084, -0.006405763328075409, -0.031169624999165535, -0.05103795975446701, 0.04254986718297005, 0.00618509529158473, 0.09332283586263657, -0.002828348893672228, 0.054318737238645554, 0.05965059995651245, 0.012544910423457623, 0.03963380679488182, -0.08014263212680817, 0.03201013058423996, -0.025502517819404602, -0.05948091670870781, 0.0036276821047067642, 0.014221299439668655, 0.02403154969215393, 0.05132260173559189, 0.016199862584471703, 0.03506600484251976, 0.028450101613998413, -0.02837951108813286, -0.051795896142721176, 0.09671992063522339, -0.12279609590768814, -0.19963225722312927, -0.14018766582012177, -0.11858129501342773, -0.09962455928325653, -0.009556918404996395, 0.04767255485057831, -0.04682767763733864, -0.047191884368658066, -0.01686401106417179, 0.021234124898910522, 0.08540137112140656, -0.053933847695589066, -0.033127520233392715, 0.0422472320497036, 0.05546629801392555, -0.08622017502784729, 0.01005023904144764, 0.012596234679222107, -0.10402458161115646, 0.08880980312824249, 0.005309234373271465, 0.04317294433712959, 0.034346386790275574, 0.013486063107848167, -0.04155591130256653, -0.010851351544260979, 0.26639074087142944, -0.0506381094455719, 0.08327928930521011, 0.1838780790567398, 0.026278385892510414, 0.08807969093322754, 0.21431474387645721, 0.05606831610202789, -0.05752544850111008, -0.018218936398625374, 0.0699121505022049, -0.012401261366903782, -0.3115815818309784, -0.06868534535169601, -0.05305670574307442, -0.005214734934270382, -0.012419546954333782, 0.07116840034723282, 0.02451052889227867, 0.08516693860292435, -0.07007773220539093, -0.0017609498463571072, 0.0017930760513991117, 0.05233985185623169, 0.12325511872768402, 0.04513584077358246, 0.04336918517947197, -0.04285123944282532, 0.013242682442069054, 0.11604632437229156, 0.16691215336322784, 0.20420107245445251, 0.03127991408109665, 0.10407627373933792, 0.0706987977027893, 0.207412987947464, 0.01712275855243206, -0.018567806109786034, 0.022552451118826866, 0.03227968513965607, 0.012523631565272808, -0.07222183793783188, -0.05959600955247879, 0.01625845953822136, 0.043821364641189575, -0.07381048053503036, 0.0005725399241782725, 0.09865844249725342, 0.027975035831332207, 0.2889106571674347, 0.020233845338225365, -0.10557883232831955, -0.04279773682355881, 0.01821688376367092, -0.06144505366683006, -0.0426069051027298, 0.017034318298101425, 0.09044087678194046, -0.1128825694322586, 0.07813624292612076, -0.05938553810119629, 0.08928870409727097, -0.15085075795650482, -0.009352874010801315, 0.09701502323150635, 0.0804106816649437, 0.055478472262620926, 0.03741033375263214, -0.1927531361579895, 0.14301957190036774, 0.01153501681983471, 0.012639941647648811, -0.04905383288860321, 0.07084374129772186, 0.016040081158280373, -0.033939462155103683, 0.03815900534391403, 0.020456165075302124, -0.1655920445919037, -0.023892434313893318, -0.12663142383098602, 0.0894237607717514, 0.07597852498292923, -0.08333862572908401, 0.10190830379724503, -0.050472091883420944, -0.02169138193130493, -0.05549709498882294, 0.03438656032085419, -0.11146543174982071, -0.14633727073669434, 0.10109435766935349, 0.047066692262887955, -0.010023443028330803, -0.058333706110715866, -0.0035571178887039423, -0.13095566630363464, 0.052765846252441406, -0.0885683000087738, -0.0838993489742279, -0.07182624936103821, -0.08168557286262512, 0.14303278923034668, -0.0664927139878273, 0.006201982498168945, -0.023980187252163887, 0.0897810235619545, 0.009252618998289108, -0.1016683503985405, -0.011838562786579132, -0.08294370025396347, -0.11452499032020569, -0.02400120161473751, 0.09432800114154816, 0.025637095794081688, 0.007162803318351507, 0.034940578043460846, -0.01875189319252968, -0.0038035293109714985, -0.09836413711309433, -0.041553303599357605, 0.10357347130775452, -0.0010327143827453256, 0.03309422731399536, -0.11225760728120804, -0.11793653666973114, -0.11822111904621124, 0.0014852792955935001, 0.016757618635892868, 0.2136375606060028, -0.04518335312604904, 0.12434062361717224, 0.11394590139389038, -0.0678911805152893, -0.11614397913217545, -0.07606751471757889, 0.06107373163104057, -0.03718484193086624, 0.0008627994102425873, -0.24030891060829163, 0.13089820742607117, 0.09257525950670242, -0.029591701924800873, 0.023252833634614944, -0.2067413330078125, -0.06853623688220978, -0.02414323389530182, 0.003207946429029107, -0.014263908378779888, -0.08721692115068436, -0.09505797177553177, -0.032070718705654144, -0.17680880427360535, 0.11796322464942932, -0.03007618896663189, 0.08488939702510834, 0.009758231230080128, 0.10347788780927658, 0.02424505352973938, -0.009312797337770462, 0.15800067782402039, 0.008715951815247536, 0.0024662145879119635, -0.07575114071369171, 0.051098182797431946, -0.019256647676229477, -0.0865151584148407, 0.003370290622115135, 0.0014271148247644305, 0.04140980914235115, -0.13050764799118042, -0.016678839921951294, -0.02181030809879303, 0.04349769651889801, -0.014995569363236427, -0.013876502402126789, -0.010481263510882854, 0.05755825713276863, 0.07159941643476486, 0.023757176473736763, -0.03433099761605263, -0.028949245810508728, 0.03311064839363098, 0.06108498573303223, 0.10212326049804688, -0.06016748026013374, -0.02016100101172924, -0.07748381793498993, 0.0017400016076862812, 0.005968110635876656, -0.011511104181408882, 0.06806117296218872, 0.1066201850771904, -0.02780047617852688, 0.0429064966738224, -0.0017028372967615724, -0.06971851736307144, 0.04399111121892929, 0.07818123698234558, -0.12828530371189117, -0.23412030935287476, 0.01252909004688263, 0.138489231467247, -0.09356674551963806, 0.06843234598636627, 0.18950824439525604, 0.03461794555187225, -0.04202612489461899, 0.016540182754397392, 0.04304691031575203, -0.019856378436088562, 0.07559946179389954, -0.02131710760295391, 0.009110678918659687, -0.10890913009643555, 0.05639263242483139, 0.11841265112161636, -0.06515998393297195, -0.022997887805104256, 0.08857689797878265, -0.06910122185945511, -0.07733882963657379, -0.06972035765647888, 0.023418858647346497, -0.051342688500881195, -0.07303622364997864, 0.02338344231247902, -0.04500037804245949, -0.004576331470161676, 0.06545556336641312, 0.014300958253443241, 0.04842321574687958, 0.0806935653090477, 0.00031221238896250725, -0.08824770897626877, 0.07843630760908127, -0.040014591068029404, 0.04705232009291649, -0.12553159892559052, -0.07583460956811905, -0.02828647568821907, 0.08064588159322739, -0.001742006978020072, -0.008393446914851665, -0.04047372564673424, -0.07198265194892883, -0.18042625486850739, 0.0839739739894867, -0.08773598074913025, 0.07115688920021057, 0.004376295488327742, -0.015690520405769348, -0.03725161403417587, -0.0023731824476271868, -0.07649145275354385, -0.025133969262242317, -0.05420948565006256, 0.11009913682937622, -0.14724762737751007, 0.0012375597143545747, 0.059791188687086105, -0.06001647561788559, 0.14508242905139923, 0.0336434431374073, -0.06011578440666199, -0.003127067117020488, 0.0035036997869610786, -0.01222183182835579, -0.05104536563158035, 0.10121192038059235, 0.056858960539102554, -0.11240363866090775, 0.009996742941439152, 0.015381714329123497, -0.05085635557770729, -0.01516815647482872, 0.07450099289417267, -0.11584896594285965, -0.0314539335668087, -0.015070977620780468, -0.06152841076254845, -0.013237904757261276, -0.007040270604193211, 0.09673471748828888, 0.009053109213709831, 0.07955413311719894, -0.0145075349137187, 0.03516872227191925, -0.13256317377090454, -0.025315890088677406, 0.0014439605874940753, 0.004485465586185455, -0.027168236672878265, -0.03265722095966339, 0.05264929309487343, 0.01993723399937153, 0.13312150537967682, -0.04193384200334549, 0.06775148212909698, -0.006613265722990036, -0.08820730447769165, -0.052845027297735214, 0.023099076002836227, 0.1372942328453064, 0.05187849700450897, -0.010623016394674778, 0.0421052947640419, -0.012264695018529892, -0.09167814254760742, 0.03580370545387268, 0.11109509319067001, 0.2328713983297348, 0.12679333984851837, -0.006819752510637045, 0.12411529570817947, -0.03637218102812767, -0.047449011355638504, 0.04944223910570145, -0.05435720458626747, 0.07107033580541611, -0.07843425869941711, 0.0851907804608345, 0.024070126935839653, -0.1542349010705948, 0.05494750291109085, -0.05213843658566475, -0.03421837463974953, -0.08429410308599472, -0.10596223920583725, -0.0807747021317482, -0.08672847598791122, -0.024954112246632576, -0.12488957494497299, -0.018379710614681244, 0.059492409229278564, 0.014041431248188019, -0.0462997741997242, 0.05212491378188133, -0.051641855388879776, -0.0197734497487545, 0.05131949856877327, 0.026835361495614052, 0.027124641463160515, 0.024597404524683952, -0.04111402481794357, 0.021261490881443024, 0.11612506210803986, 0.008048728108406067, 0.048244304955005646, 0.04689142107963562, 0.035622090101242065, -0.08253145217895508, -0.06426530331373215, 0.0020954562351107597, -0.005119883455336094, -0.02080199494957924, 0.08184769749641418, 0.041877079755067825, -0.02007703296840191, 0.016828395426273346, 0.221194326877594, -0.021165695041418076, -0.07431882619857788, -0.21880890429019928, 0.06542686372995377, -0.06769536435604095, -0.0014478685334324837, 0.025014767423272133, -0.06211712956428528, -0.032998085021972656, 0.1399465948343277, 0.17340317368507385, -0.038494110107421875, -0.012253183871507645, 0.04506656154990196, 0.006874479353427887, -0.05526340380311012, 0.1308419555425644, 0.06942156702280045, 0.18003951013088226, -0.00534792011603713, -0.03142224997282028, 0.021878190338611603, 0.05216270685195923, -0.0675194263458252, 0.09643951058387756, -0.05853044614195824, -0.03806279972195625, -0.012934587895870209, 0.11425376683473587, -0.11061606556177139, -0.14471641182899475, -0.01764051988720894, -0.07524852454662323, -0.15347826480865479, -0.027810219675302505, 0.07139234244823456, 0.029088499024510384, 0.027159763500094414, -0.003883250756189227, -0.03387387469410896, 0.2789854109287262, -0.014482018537819386, -0.041938986629247665, -0.002742263488471508, 0.10929696261882782, -0.03589166700839996, 0.16480275988578796, 0.013247150927782059, 0.07234005630016327, 0.09624138474464417, 0.010956378653645515, -0.16076651215553284, -0.027053801342844963, 0.06752904504537582, -0.1468294858932495, 0.008389963768422604, 0.09194505214691162, -0.011189359240233898, 0.07708672434091568, 0.10826843231916428, -0.01607423461973667, -0.015678800642490387, 0.04290756583213806, 0.0489739328622818, -0.07021696865558624, 0.10854464769363403, -0.1128375381231308, 0.11316053569316864, 0.1564047485589981, -0.04611745849251747, 0.032297033816576004, -0.03350384905934334, 0.049889881163835526, 0.0029359685722738504, 0.04426666349172592, -0.07480607181787491, -0.20871344208717346, -0.00511335302144289, -0.04353155195713043, 0.0866110771894455, -0.1165713518857956, -0.06817077845335007, 0.0330418199300766, -0.0012268655700609088, -0.020321698859333992, 0.13532480597496033, 0.07682805508375168, 0.011480361223220825, -0.058042146265506744, -0.02356351725757122, -0.0650835782289505, 0.10330601781606674, -0.12620407342910767, -0.059224922209978104 ]