Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-generation
transformers
{}
akhooli/gpt2-ar-poetry
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# GPT2-Small-Arabic-Poetry ## Model description Fine-tuned model of Arabic poetry dataset based on gpt2-small-arabic. ## Intended uses & limitations #### How to use An example is provided in this [colab notebook](https://colab.research.google.com/drive/1mRl7c-5v-Klx27EEAEOAbrfkustL4g7a?usp=sharing). #### Limitations and bias Both the GPT2-small-arabic (trained on Arabic Wikipedia) and this model have several limitations in terms of coverage and training performance. Use them as demonstrations or proof of concepts but not as production code. ## Training data This pretrained model used the [Arabic Poetry dataset](https://www.kaggle.com/ahmedabelal/arabic-poetry) from 9 different eras with a total of around 40k poems. The dataset was trained (fine-tuned) based on the [gpt2-small-arabic](https://huggingface.co/akhooli/gpt2-small-arabic) transformer model. ## Training procedure Training was done using [Simple Transformers](https://github.com/ThilinaRajapakse/simpletransformers) library on Kaggle, using free GPU. ## Eval results Final perplexity reached ws 76.3, loss: 4.33 ### BibTeX entry and citation info ```bibtex @inproceedings{Abed Khooli, year={2020} } ```
{"language": "ar", "tags": ["text-generation"], "datasets": ["Arabic poetry from several eras"]}
akhooli/gpt2-small-arabic-poetry
null
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "ar", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# GPT2-Small-Arabic ## Model description GPT2 model from Arabic Wikipedia dataset based on gpt2-small (using Fastai2). ## Intended uses & limitations #### How to use An example is provided in this [colab notebook](https://colab.research.google.com/drive/1mRl7c-5v-Klx27EEAEOAbrfkustL4g7a?usp=sharing). Both text and poetry (fine-tuned model) generation are included. #### Limitations and bias GPT2-small-arabic (trained on Arabic Wikipedia) has several limitations in terms of coverage (Arabic Wikipeedia quality, no diacritics) and training performance. Use as demonstration or proof of concepts but not as production code. ## Training data This pretrained model used the Arabic Wikipedia dump (around 900 MB). ## Training procedure Training was done using [Fastai2](https://github.com/fastai/fastai2/) library on Kaggle, using free GPU. ## Eval results Final perplexity reached was 72.19, loss: 4.28, accuracy: 0.307 ### BibTeX entry and citation info ```bibtex @inproceedings{Abed Khooli, year={2020} } ```
{"language": "ar", "datasets": ["Arabic Wikipedia"], "metrics": ["none"]}
akhooli/gpt2-small-arabic
null
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "ar", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
### mbart-large-ar-en This is mbart-large-cc25, finetuned on a subset of the OPUS corpus for ar_en. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production). Other models by me: [Abed Khooli](https://huggingface.co/akhooli)
{"language": ["ar", "en"], "license": "mit", "tags": ["translation"]}
akhooli/mbart-large-cc25-ar-en
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "ar", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
translation
transformers
### mbart-large-en-ar This is mbart-large-cc25, finetuned on a subset of the UN corpus for en_ar. Usage: see [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set, not fully trained (do not use for production).
{"language": ["en", "ar"], "license": "mit", "tags": ["translation"]}
akhooli/mbart-large-cc25-en-ar
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "translation", "en", "ar", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
## personachat-arabic (conversational AI) This is personachat-arabic, using a subset from the persona-chat validation dataset, machine translated to Arabic (from English) and fine-tuned from [akhooli/gpt2-small-arabic](https://huggingface.co/akhooli/gpt2-small-arabic) which is a limited text generation model. Usage: see the last section of this [example notebook](https://colab.research.google.com/drive/1I6RFOWMaTpPBX7saJYjnSTddW0TD6H1t?usp=sharing) Note: model has limited training set which was machine translated (do not use for production).
{"language": ["ar"], "license": "mit", "tags": ["conversational"]}
akhooli/personachat-arabic
null
[ "transformers", "pytorch", "safetensors", "gpt2", "conversational", "ar", "license:mit", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
### xlm-r-large-arabic-sent Multilingual sentiment classification (Label_0: mixed, Label_1: negative, Label_2: positive) of Arabic reviews by fine-tuning XLM-Roberta-Large. Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Mixed category is not accurate and may confuse other classes (was based on a rate of 3 out of 5 in reviews). Usage: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
{"language": ["ar", "en", "multilingual"], "license": "mit"}
akhooli/xlm-r-large-arabic-sent
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "ar", "en", "multilingual", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
### xlm-r-large-arabic-toxic (toxic/hate speech classifier) Toxic (hate speech) classification (Label_0: non-toxic, Label_1: toxic) of Arabic comments by fine-tuning XLM-Roberta-Large. Zero shot classification of other languages (also works in mixed languages - ex. Arabic & English). Usage and further info: see last section in this [Colab notebook](https://lnkd.in/d3bCFyZ)
{"language": ["ar", "en"], "license": "mit"}
akhooli/xlm-r-large-arabic-toxic
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "ar", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 529614927 - CO2 Emissions (in grams): 5.999771405025692 ## Validation Metrics - Loss: 0.7582379579544067 - Accuracy: 0.7636103151862464 - Macro F1: 0.770630619486531 - Micro F1: 0.7636103151862464 - Weighted F1: 0.765233270165301 - Macro Precision: 0.7746285216467107 - Micro Precision: 0.7636103151862464 - Weighted Precision: 0.7683270753840836 - Macro Recall: 0.7680576576961138 - Micro Recall: 0.7636103151862464 - Weighted Recall: 0.7636103151862464 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/akilesh96/autonlp-mrcooper_text_classification-529614927 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("akilesh96/autonlp-mrcooper_text_classification-529614927", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["akilesh96/autonlp-data-mrcooper_text_classification"], "widget": [{"text": "Not Many People Know About The City 1200 Feet Below Detroit"}, {"text": "Bob accepts the challenge, and the next week they're standing in Saint Peters square. 'This isnt gonna work, he's never going to see me here when theres this much people. You stay here, I'll go talk to him and you'll see me on the balcony, the guards know me too.' Half an hour later, Bob and the pope appear side by side on the balcony. Bobs boss gets a heart attack, and Bob goes to visit him in the hospital."}, {"text": "I\u2019m sorry if you made it this far, but I\u2019m just genuinely idk, I feel like I shouldn\u2019t give up, it\u2019s just getting harder to come back from stuff like this."}], "co2_eq_emissions": 5.999771405025692}
akilesh96/autonlp-mrcooper_text_classification-529614927
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "en", "dataset:akilesh96/autonlp-data-mrcooper_text_classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akirasho/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
akivo4ka/ruGPT3medium_psy
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
akoksal/MTMB
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
akoshel/made-ai-dungeon-rugpt3-small
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
akoshel/made-ai-dungeon
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
hello
{}
akozlo/con_bal60k
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # conserv_fulltext_model This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3 unbalanced_texts gpt2
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "conserv_fulltext_model", "results": []}]}
akozlo/conserv_fulltext_1_18_22
null
[ "transformers", "pytorch", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
akr/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
akrathi007/akk213text
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akrathi007/akk2text
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akrathi007/k2t-testx
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-bert Changes: use old format for `pytorch_model.bin`.
{}
akreal/tiny-random-bert
null
[ "transformers", "pytorch", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-gpt2 Changes: use old format for `pytorch_model.bin`.
{}
akreal/tiny-random-gpt2
null
[ "transformers", "pytorch", "tf", "gpt2", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mbart Changes: use old format for `pytorch_model.bin`.
{}
akreal/tiny-random-mbart
null
[ "transformers", "pytorch", "tf", "mbart", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-mpnet Changes: use old format for `pytorch_model.bin`.
{}
akreal/tiny-random-mpnet
null
[ "transformers", "pytorch", "tf", "mpnet", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-t5 Changes: use old format for `pytorch_model.bin`.
{}
akreal/tiny-random-t5
null
[ "transformers", "pytorch", "tf", "t5", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
This is a copy of: https://huggingface.co/hf-internal-testing/tiny-random-xlnet Changes: use old format for `pytorch_model.bin`.
{}
akreal/tiny-random-xlnet
null
[ "transformers", "pytorch", "tf", "xlnet", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
akshara23/Pegasus_for_Here
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
akshara23/Terra-Classification
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.0475 - Matthews Correlation: 0.6290 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 16 | 1.3863 | 0.0 | | No log | 2.0 | 32 | 1.2695 | 0.4503 | | No log | 3.0 | 48 | 1.1563 | 0.6110 | | No log | 4.0 | 64 | 1.0757 | 0.6290 | | No log | 5.0 | 80 | 1.0475 | 0.6290 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["matthews_correlation"], "model_index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.6290322580645161}}]}]}
akshara23/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akshara23/xyz
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akshat2301/distilbert-base-cased-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0812 - Precision: 0.8975 - Recall: 0.9080 - F1: 0.9027 - Accuracy: 0.9703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.1326 | 0.7990 | 0.8043 | 0.8017 | 0.9338 | | No log | 2.0 | 332 | 0.0925 | 0.8770 | 0.8946 | 0.8858 | 0.9618 | | No log | 3.0 | 498 | 0.0812 | 0.8975 | 0.9080 | 0.9027 | 0.9703 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud-ner", "results": []}]}
akshaychaudhary/distilbert-base-uncased-finetuned-cloud-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud1-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0074 - Precision: 0.9714 - Recall: 0.9855 - F1: 0.9784 - Accuracy: 0.9972 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 166 | 0.0160 | 0.9653 | 0.9420 | 0.9535 | 0.9945 | | No log | 2.0 | 332 | 0.0089 | 0.9623 | 0.9855 | 0.9737 | 0.9965 | | No log | 3.0 | 498 | 0.0074 | 0.9714 | 0.9855 | 0.9784 | 0.9972 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud1-ner", "results": []}]}
akshaychaudhary/distilbert-base-uncased-finetuned-cloud1-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cloud2-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8866 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 - Accuracy: 0.8453 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:| | No log | 1.0 | 162 | 0.7804 | 0.0 | 0.0 | 0.0 | 0.8447 | | No log | 2.0 | 324 | 0.8303 | 0.0 | 0.0 | 0.0 | 0.8465 | | No log | 3.0 | 486 | 0.8866 | 0.0 | 0.0 | 0.0 | 0.8453 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cloud2-ner", "results": []}]}
akshaychaudhary/distilbert-base-uncased-finetuned-cloud2-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-hypertuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5683 - Precision: 0.3398 - Recall: 0.6481 - F1: 0.4459 - Accuracy: 0.8762 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.3566 | 0.2913 | 0.5556 | 0.3822 | 0.8585 | | No log | 2.0 | 168 | 0.4698 | 0.3366 | 0.6296 | 0.4387 | 0.8730 | | No log | 3.0 | 252 | 0.5683 | 0.3398 | 0.6481 | 0.4459 | 0.8762 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-hypertuned-ner", "results": []}]}
akshaychaudhary/distilbert-base-uncased-finetuned-hypertuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9988 - Precision: 0.3 - Recall: 0.6 - F1: 0.4 - Accuracy: 0.7870 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 84 | 0.8399 | 0.2105 | 0.4 | 0.2759 | 0.75 | | No log | 2.0 | 168 | 0.9664 | 0.3 | 0.6 | 0.4 | 0.7870 | | No log | 3.0 | 252 | 0.9988 | 0.3 | 0.6 | 0.4 | 0.7870 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": []}]}
akshaychaudhary/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akshaychaudhary/distilbert-base-uncased-finetunedHyperTuning-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akshayvr/DialoGPT-rickmorty
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akshayvr/DialoGPT-rickndmorty
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
akshayvr/DialoGPT-rickymorty
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akshayvr/DialoGPT-small-Rickandmorty
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
akuma/DialoGPT-small-Harry
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 - Precision: 0.9250 - Recall: 0.9321 - F1: 0.9285 - Accuracy: 0.9834 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2399 | 1.0 | 878 | 0.0702 | 0.9118 | 0.9208 | 0.9163 | 0.9805 | | 0.0503 | 2.0 | 1756 | 0.0614 | 0.9176 | 0.9311 | 0.9243 | 0.9824 | | 0.0304 | 3.0 | 2634 | 0.0611 | 0.9250 | 0.9321 | 0.9285 | 0.9834 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9833669595056158}}]}]}
al00014/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alaabashayreh/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alaansn/Jarvis
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# BART Pretrained [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 BART Pretrain 단계를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
{"language": ["ko"], "widget": [{"text": "[BOS]\ubb50 \ud574?[SEP][MASK]\ud558\ub2e4\uac00 \uc774\uc81c [MASK]\ub824\uace0[EOS]"}], "inference": {"parameters": {"max_length": 64}}}
alaggung/bart-pretrained
null
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
summarization
transformers
# BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-pretrained](https://huggingface.co/alaggung/bart-pretrained) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 R3F를 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
{"language": ["ko"], "tags": ["summarization"], "widget": [{"text": "[BOS]\ubc25 \u3131?[SEP]\uace0\uace0\uace0\uace0 \ubb50 \uba39\uc744\uae4c?[SEP]\uc5b4\uc81c \uae40\uce58\ucc0c\uac1c \uba39\uc5b4\uc11c \ud55c\uc2dd\ub9d0\uace0 \ub534 \uac70[SEP]\uadf8\ub7fc \ub3c8\uae4c\uc2a4 \uc5b4\ub54c?[SEP]\uc624 \uc88b\ub2e4 1\uc2dc \ud559\uad00 \uc55e\uc73c\ub85c \uc624\uc148[SEP]\u3147\u314b[EOS]"}], "inference": {"parameters": {"max_length": 64, "top_k": 5}}}
alaggung/bart-r3f
null
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "summarization", "ko", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
summarization
transformers
# BART R3F [2021 훈민정음 한국어 음성•자연어 인공지능 경진대회] 대화요약 부문 알라꿍달라꿍 팀의 대화요약 학습 샘플 모델을 공유합니다. [bart-r3f](https://huggingface.co/alaggung/bart-r3f) 모델에 [2021-dialogue-summary-competition](https://github.com/cosmoquester/2021-dialogue-summary-competition) 레포지토리의 RL 기법을 적용해 대화요약 Task를 학습한 모델입니다. 데이터는 [AIHub 한국어 대화요약](https://aihub.or.kr/aidata/30714) 데이터를 사용하였습니다.
{"language": ["ko"], "tags": ["summarization"], "widget": [{"text": "[BOS]\ubc25 \u3131?[SEP]\uace0\uace0\uace0\uace0 \ubb50 \uba39\uc744\uae4c?[SEP]\uc5b4\uc81c \uae40\uce58\ucc0c\uac1c \uba39\uc5b4\uc11c \ud55c\uc2dd\ub9d0\uace0 \ub534 \uac70[SEP]\uadf8\ub7fc \ub3c8\uae4c\uc2a4 \uc5b4\ub54c?[SEP]\uc624 \uc88b\ub2e4 1\uc2dc \ud559\uad00 \uc55e\uc73c\ub85c \uc624\uc148[SEP]\u3147\u314b[EOS]"}], "inference": {"parameters": {"max_length": 64, "top_k": 5}}}
alaggung/bart-rl
null
[ "transformers", "pytorch", "tf", "bart", "text2text-generation", "summarization", "ko", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
# mt5-large-finetuned-mnli-xtreme-xnli ## Model Description This model takes a pretrained large [multilingual-t5](https://github.com/google-research/multilingual-t5) (also available from [models](https://huggingface.co/google/mt5-large)) and fine-tunes it on English MNLI and the [xtreme_xnli](https://www.tensorflow.org/datasets/catalog/xtreme_xnli) training set. It is intended to be used for zero-shot text classification, inspired by [xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli). ## Intended Use This model is intended to be used for zero-shot text classification, especially in languages other than English. It is fine-tuned on English MNLI and the [xtreme_xnli](https://www.tensorflow.org/datasets/catalog/xtreme_xnli) training set, a multilingual NLI dataset. The model can therefore be used with any of the languages in the XNLI corpus: - Arabic - Bulgarian - Chinese - English - French - German - Greek - Hindi - Russian - Spanish - Swahili - Thai - Turkish - Urdu - Vietnamese As per recommendations in [xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli), for English-only classification, you might want to check out: - [bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) - [a distilled bart MNLI model](https://huggingface.co/models?filter=pipeline_tag%3Azero-shot-classification&search=valhalla). ### Zero-shot example: The model retains its text-to-text characteristic after fine-tuning. This means that our expected outputs will be text. During fine-tuning, the model learns to respond to the NLI task with a series of single token responses that map to entailment, neutral, or contradiction. The NLI task is indicated with a fixed prefix, "xnli:". Below is an example, using PyTorch, of the model's use in a similar fashion to the `zero-shot-classification` pipeline. We use the logits from the LM output at the first token to represent confidence. ```python from torch.nn.functional import softmax from transformers import MT5ForConditionalGeneration, MT5Tokenizer model_name = "alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli" tokenizer = MT5Tokenizer.from_pretrained(model_name) model = MT5ForConditionalGeneration.from_pretrained(model_name) model.eval() sequence_to_classify = "¿A quién vas a votar en 2020?" candidate_labels = ["Europa", "salud pública", "política"] hypothesis_template = "Este ejemplo es {}." ENTAILS_LABEL = "▁0" NEUTRAL_LABEL = "▁1" CONTRADICTS_LABEL = "▁2" label_inds = tokenizer.convert_tokens_to_ids( [ENTAILS_LABEL, NEUTRAL_LABEL, CONTRADICTS_LABEL]) def process_nli(premise: str, hypothesis: str): """ process to required xnli format with task prefix """ return "".join(['xnli: premise: ', premise, ' hypothesis: ', hypothesis]) # construct sequence of premise, hypothesis pairs pairs = [(sequence_to_classify, hypothesis_template.format(label)) for label in candidate_labels] # format for mt5 xnli task seqs = [process_nli(premise=premise, hypothesis=hypothesis) for premise, hypothesis in pairs] print(seqs) # ['xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es Europa.', # 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es salud pública.', # 'xnli: premise: ¿A quién vas a votar en 2020? hypothesis: Este ejemplo es política.'] inputs = tokenizer.batch_encode_plus(seqs, return_tensors="pt", padding=True) out = model.generate(**inputs, output_scores=True, return_dict_in_generate=True, num_beams=1) # sanity check that our sequences are expected length (1 + start token + end token = 3) for i, seq in enumerate(out.sequences): assert len( seq) == 3, f"generated sequence {i} not of expected length, 3." \\\\ f" Actual length: {len(seq)}" # get the scores for our only token of interest # we'll now treat these like the output logits of a `*ForSequenceClassification` model scores = out.scores[0] # scores has a size of the model's vocab. # However, for this task we have a fixed set of labels # sanity check that these labels are always the top 3 scoring for i, sequence_scores in enumerate(scores): top_scores = sequence_scores.argsort()[-3:] assert set(top_scores.tolist()) == set(label_inds), \\\\ f"top scoring tokens are not expected for this task." \\\\ f" Expected: {label_inds}. Got: {top_scores.tolist()}." # cut down scores to our task labels scores = scores[:, label_inds] print(scores) # tensor([[-2.5697, 1.0618, 0.2088], # [-5.4492, -2.1805, -0.1473], # [ 2.2973, 3.7595, -0.1769]]) # new indices of entailment and contradiction in scores entailment_ind = 0 contradiction_ind = 2 # we can show, per item, the entailment vs contradiction probas entail_vs_contra_scores = scores[:, [entailment_ind, contradiction_ind]] entail_vs_contra_probas = softmax(entail_vs_contra_scores, dim=1) print(entail_vs_contra_probas) # tensor([[0.0585, 0.9415], # [0.0050, 0.9950], # [0.9223, 0.0777]]) # or we can show probas similar to `ZeroShotClassificationPipeline` # this gives a zero-shot classification style output across labels entail_scores = scores[:, entailment_ind] entail_probas = softmax(entail_scores, dim=0) print(entail_probas) # tensor([7.6341e-03, 4.2873e-04, 9.9194e-01]) print(dict(zip(candidate_labels, entail_probas.tolist()))) # {'Europa': 0.007634134963154793, # 'salud pública': 0.0004287279152777046, # 'política': 0.9919371604919434} ``` Unfortunately, the `generate` function for the TF equivalent model doesn't exactly mirror the PyTorch version so the above code won't directly transfer. The model is currently not compatible with the existing `zero-shot-classification` pipeline. ## Training This model was pre-trained on a set of 101 languages in the mC4, as described in [the mt5 paper](https://arxiv.org/abs/2010.11934). It was then fine-tuned on the [mt5_xnli_translate_train](https://github.com/google-research/multilingual-t5/blob/78d102c830d76bd68f27596a97617e2db2bfc887/multilingual_t5/tasks.py#L190) task for 8k steps in a similar manner to that described in the [offical repo](https://github.com/google-research/multilingual-t5#fine-tuning), with guidance from [Stephen Mayhew's notebook](https://github.com/mayhewsw/multilingual-t5/blob/master/notebooks/mt5-xnli.ipynb). The resulting model was then converted to :hugging_face: format. ## Eval results Accuracy over XNLI test set: | ar | bg | de | el | en | es | fr | hi | ru | sw | th | tr | ur | vi | zh | average | |------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | 81.0 | 85.0 | 84.3 | 84.3 | 88.8 | 85.3 | 83.9 | 79.9 | 82.6 | 78.0 | 81.0 | 81.6 | 76.4 | 81.7 | 82.3 | 82.4 |
{"language": ["multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur"], "license": "apache-2.0", "tags": ["pytorch"], "datasets": ["multi_nli", "xnli"], "metrics": ["xnli"]}
alan-turing-institute/mt5-large-finetuned-mnli-xtreme-xnli
null
[ "transformers", "pytorch", "tf", "safetensors", "mt5", "text2text-generation", "multilingual", "en", "fr", "es", "de", "el", "bg", "ru", "tr", "ar", "vi", "th", "zh", "hi", "sw", "ur", "dataset:multi_nli", "dataset:xnli", "arxiv:2010.11934", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alanakbik/test-serialization
null
[ "pytorch", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
alangganggang/transformer_exercise_01
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick Sanchez DialoGPT Model
{"tags": ["conversational"]}
alankar/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
albererre/comments-playground
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
albertbn/gpt2-medium-finetuned-ads-fp16-blocksz512
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 1311135 ## Validation Metrics - Loss: 0.35616958141326904 - Accuracy: 0.8979447200566973 - Macro F1: 0.8545383956197669 - Micro F1: 0.8979447200566975 - Weighted F1: 0.8983951947775538 - Macro Precision: 0.8615833774439791 - Micro Precision: 0.8979447200566973 - Weighted Precision: 0.9013559365881655 - Macro Recall: 0.8516503001777104 - Micro Recall: 0.8979447200566973 - Weighted Recall: 0.8979447200566973 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "bn", "tags": "autonlp", "datasets": ["albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
albertvillanova/autonlp-indic_glue-multi_class_classification-1e67664-1311135
null
[ "transformers", "pytorch", "albert", "text-classification", "autonlp", "bn", "dataset:albertvillanova/autonlp-data-indic_glue-multi_class_classification-1e67664", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
# Model Trained Using AutoNLP - Problem type: Entity Extraction - Model ID: 1301123 ## Validation Metrics - Loss: 0.14097803831100464 - Accuracy: 0.9740097463451206 - Precision: 0.0 - Recall: 0.0 - F1: 0.0 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123 ``` Or Python API: ``` from transformers import AutoModelForTokenClassification, AutoTokenizer model = AutoModelForTokenClassification.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "bn", "tags": "autonlp", "datasets": ["albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}]}
albertvillanova/autonlp-wikiann-entity_extraction-1e67664-1301123
null
[ "transformers", "pytorch", "safetensors", "albert", "token-classification", "autonlp", "bn", "dataset:albertvillanova/autonlp-data-wikiann-entity_extraction-1e67664", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
albertvillanova/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aldoaj/MorningGlory
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
{"title": "clip", "emoji": "\ud83d\udc41", "colorFrom": "indigo", "colorTo": "blue", "sdk": "streamlit", "app_file": "app.py", "pinned": true}
allen0s/clip
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 441411446 - CO2 Emissions (in grams): 0.4362732160754736 ## Validation Metrics - Loss: 0.7598486542701721 - Accuracy: 0.8222222222222222 - Macro F1: 0.2912091747693842 - Micro F1: 0.8222222222222222 - Weighted F1: 0.7707160863181806 - Macro Precision: 0.29631463146314635 - Micro Precision: 0.8222222222222222 - Weighted Precision: 0.7341339689524508 - Macro Recall: 0.30174603174603176 - Micro Recall: 0.8222222222222222 - Weighted Recall: 0.8222222222222222 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/alecmullen/autonlp-group-classification-441411446 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("alecmullen/autonlp-group-classification-441411446", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["alecmullen/autonlp-data-group-classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 0.4362732160754736}
alecmullen/autonlp-group-classification-441411446
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:alecmullen/autonlp-data-group-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aleksi/bert-base-finnish-cased-v1-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alemihai1/distilbert-fake-news
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
alenusch/mt5base-ruparaphraser
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
alenusch/mt5large-ruparaphraser
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
alenusch/mt5small-ruparaphraser
null
[ "transformers", "pytorch", "jax", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
## Classifier to check if two sequences are paraphrase or not Trained based on ruBert by DeepPavlov. Use this way: ``` import torch import torch.nn as nn import os import copy import random import numpy as np import pandas as pd from torch.utils.data import DataLoader, Dataset from torch.cuda.amp import autocast, GradScaler from tqdm import tqdm from transformers import AutoTokenizer, AutoModel, AdamW, get_linear_schedule_with_warmup from transformers.file_utils import ( cached_path, hf_bucket_url, is_remote_url, ) archive_file = hf_bucket_url( "alenusch/par_cls_bert", filename="rubert-base-cased_lr_2e-05_val_loss_0.66143_ep_4.pt", revision=None, mirror=None, ) resolved_archive_file = cached_path( archive_file, cache_dir=None, force_download=False, proxies=None, resume_download=False, local_files_only=False, ) os.environ["TOKENIZERS_PARALLELISM"] = "false" class SentencePairClassifier(nn.Module): def __init__(self, bert_model): super(SentencePairClassifier, self).__init__() self.bert_layer = AutoModel.from_pretrained(bert_model) self.cls_layer = nn.Linear(768, 1) self.dropout = nn.Dropout(p=0.1) @autocast() def forward(self, input_ids, attn_masks, token_type_ids): cont_reps, pooler_output = self.bert_layer(input_ids, attn_masks, token_type_ids, return_dict=False) logits = self.cls_layer(self.dropout(pooler_output)) return logits class CustomDataset(Dataset): def __init__(self, data, maxlen, bert_model): self.data = data self.tokenizer = AutoTokenizer.from_pretrained(bert_model) self.maxlen = maxlen self.targets = False def __len__(self): return len(self.data) def __getitem__(self, index): sent1 = str(self.data[index][0]) sent2 = str(self.data[index][1]) encoded_pair = self.tokenizer(sent1, sent2, padding='max_length', # Pad to max_length truncation=True, # Truncate to max_length max_length=self.maxlen, return_tensors='pt') # Return torch.Tensor objects token_ids = encoded_pair['input_ids'].squeeze(0) # tensor of token ids attn_masks = encoded_pair['attention_mask'].squeeze(0) # binary tensor with "0" for padded values and "1" for the other values token_type_ids = encoded_pair['token_type_ids'].squeeze(0) # binary tensor with "0" for the 1st sentence tokens & "1" for the 2nd sentence tokens return token_ids, attn_masks, token_type_ids def get_probs_from_logits(logits): probs = torch.sigmoid(logits.unsqueeze(-1)) return probs.detach().cpu().numpy() def test_prediction(net, device, dataloader, with_labels=False): net.eval() probs_all = [] with torch.no_grad(): for seq, attn_masks, token_type_ids in tqdm(dataloader): seq, attn_masks, token_type_ids = seq.to(device), attn_masks.to(device), token_type_ids.to(device) logits = net(seq, attn_masks, token_type_ids) probs = get_probs_from_logits(logits.squeeze(-1)).squeeze(-1) probs_all += probs.tolist() return probs_all device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") cls_model = SentencePairClassifier(bert_model="alenusch/par_cls_bert") if torch.cuda.device_count() > 1: cls_model = nn.DataParallel(model) cls_model.load_state_dict(torch.load(resolved_archive_file)) cls_model.to(device) variants = [["sentence1", "sentence2"]] test_set = CustomDataset(variants, maxlen=512, bert_model="alenusch/par_cls_bert") test_loader = DataLoader(test_set, batch_size=16, num_workers=5) res = test_prediction(net=cls_model, device=device, dataloader=test_loader, with_labels=False) ```
{}
alenusch/par_cls_bert
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
alenusch/rugpt2-paraphraser
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
alenusch/rugpt3-paraphraser
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "afl-3.0"}
alex0224/Transformer1
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
alex6095/SanctiMoly-Bart
null
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
alex6095/SanctiMolyOH_Cpu
{}
alex6095/SanctiMolyOH_Cpu
null
[ "transformers", "pytorch", "distilbert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
alex6095/SanctiMolyTopic
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
alexLopatin/alex-ai
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
alexaapo/greek_legal_bert_v1
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
alexaapo/greek_legal_bert_v2
null
[ "transformers", "pytorch", "bert", "pretraining", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
alexander-karpov/bert-eatable-classification-en-ru
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# DanBERT ## Model description DanBERT is a danish pre-trained model based on BERT-Base. The pre-trained model has been trained on more than 2 million sentences and 40 millions, danish words. The training has been conducted as part of a thesis. The model can be found at: * [danbert-da](https://huggingface.co/alexanderfalk/danbert-small-cased) ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("alexanderfalk/danbert-small-cased") model = AutoModel.from_pretrained("alexanderfalk/danbert-small-cased") ``` ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Anonymization of Danish, Real-Time Data, and Personalized Modelling}, author={Alexander Falk}, } ```
{"language": ["da", "en"], "license": "apache-2.0", "tags": ["named entity recognition", "token criticality"], "datasets": ["custom danish dataset"], "metrics": ["array of metric identifiers"], "inference": false}
alexanderfalk/danbert-small-cased
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "named entity recognition", "token criticality", "da", "en", "license:apache-2.0", "autotrain_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexandrudaia1305/signal_of_change_next_10_years_Romania
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
# ArcheoBERTje-NER A Dutch BERT model for Named Entity Recognition in the Archaeology domain This is the [ArcheoBERTje](https://huggingface.co/alexbrandsen/ArcheoBERTje) model finetuned for NER, targeting the following entities: - Time periods - Places - Artefacts - Contexts - Materials - Species
{}
alexbrandsen/ArcheoBERTje-NER
null
[ "transformers", "pytorch", "jax", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ArcheoBERTje A Dutch BERT model for the Archaeology domain This model is based on the Dutch BERTje model by wietsedv (https://github.com/wietsedv/bertje). We further finetuned BERTje with a corpus of roughly 60k Dutch excavation reports (~650 million tokens) from the DANS data archive (https://easy.dans.knaw.nl/ui/home).
{}
alexbrandsen/ArcheoBERTje
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
alexcg1/models
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
alexcg1/trekbot
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# wav2vec2-large-xlsr-polish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Polish using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pl", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") model = Wav2Vec2ForCTC.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Turkish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pl", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") model = Wav2Vec2ForCTC.from_pretrained("alexcleu/wav2vec2-large-xlsr-polish") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 24.846030 ## Training The Common Voice `train`, `validation` datasets were used for training.
{"language": "pl", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2vec2 Large 53 Polish by Alex Leu", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pl", "type": "common_voice", "args": "pl"}, "metrics": [{"type": "wer", "value": 24.84603, "name": "Test WER"}]}]}]}
alexcleu/wav2vec2-large-xlsr-polish
null
[ "transformers", "pytorch", "jax", "safetensors", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "pl", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
t5_boolq
{}
alexcruz0202/t5_boolq
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexdor/wizard-express
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexrfelicio/mbart-large-cc25-finetuned-en-to-cs
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexrfelicio/t5-small-finetuned-en-to-cs
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 136 | 1.7446 | 9.0564 | 17.8356 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned-en-to-de", "results": []}]}
alexrfelicio/t5-small-finetuned-en-to-de
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexrfelicio/t5-small-finetuned-hiper1-16-en-to-de
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexrfelicio/t5-small-finetuned-length300-en-to-de
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned128-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned128-en-to-de", "results": []}]}
alexrfelicio/t5-small-finetuned128-en-to-de
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned16-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 2.1906 | 23.3821 | 12.956 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned16-en-to-de", "results": []}]}
alexrfelicio/t5-small-finetuned16-en-to-de
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexrfelicio/t5-small-finetuned2-en-to-de
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned300-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 1.1454 | 14.2319 | 17.8329 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned300-en-to-de", "results": []}]}
alexrfelicio/t5-small-finetuned300-en-to-de
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned32-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | No log | 1.0 | 136 | 1.4226 | 21.9554 | 17.8089 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned32-en-to-de", "results": []}]}
alexrfelicio/t5-small-finetuned32-en-to-de
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned8-en-to-de This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the wmt16 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:| | No log | 1.0 | 136 | 3.6717 | 3.9127 | 4.0207 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["wmt16"], "model-index": [{"name": "t5-small-finetuned8-en-to-de", "results": []}]}
alexrfelicio/t5-small-finetuned8-en-to-de
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:wmt16", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
alexrink/distilbert-base-uncased-finetuned-emotion
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # alexrink/t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 5.6399 - Validation Loss: 6.0028 - Epoch: 19 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 0.2, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 11.4991 | 6.9902 | 0 | | 6.5958 | 6.2502 | 1 | | 6.1443 | 6.1638 | 2 | | 5.9379 | 6.0765 | 3 | | 5.7739 | 5.9393 | 4 | | 5.7033 | 6.0061 | 5 | | 5.7070 | 5.9305 | 6 | | 5.7000 | 5.9698 | 7 | | 5.6888 | 5.9223 | 8 | | 5.6657 | 5.9773 | 9 | | 5.6827 | 5.9734 | 10 | | 5.6380 | 5.9428 | 11 | | 5.6532 | 5.9799 | 12 | | 5.6617 | 5.9974 | 13 | | 5.6402 | 5.9563 | 14 | | 5.6710 | 5.9926 | 15 | | 5.6999 | 5.9764 | 16 | | 5.6573 | 5.9557 | 17 | | 5.6297 | 5.9678 | 18 | | 5.6399 | 6.0028 | 19 | ### Framework versions - Transformers 4.26.1 - TensorFlow 2.11.0 - Datasets 2.9.0 - Tokenizers 0.13.2
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "alexrink/t5-small-finetuned-xsum", "results": []}]}
alexrink/t5-small-finetuned-xsum
null
[ "transformers", "tf", "tensorboard", "t5", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
Paper: https://arxiv.org/abs/2204.03951 Code: https://github.com/alexyalunin/RuBioRoBERTa
{}
alexyalunin/RuBioBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "arxiv:2204.03951", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
### Contact [email protected] https://t.me/pavel_blinoff ### Paper https://arxiv.org/abs/2204.03951 ### Code https://github.com/alexyalunin/RuBioRoBERTa ### Citation ``` @misc{alex2022rubioroberta, title={RuBioRoBERTa: a pre-trained biomedical language model for Russian language biomedical text mining}, author={Alexander Yalunin and Alexander Nesterov and Dmitriy Umerenkov}, year={2022}, eprint={2204.03951}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"language": ["ru"], "multilinguality": ["monolingual"], "widget": [{"text": "\u0416\u0430\u043b\u043e\u0431\u044b \u043d\u0430 \u0431\u043e\u043b\u044c \u0432\u043d\u0438\u0437\u0443 <mask> \u043f\u043e\u0441\u043b\u0435 \u043f\u0440\u0438\u0451\u043c\u0430 \u043f\u0438\u0449\u0438.", "example_title": "pain_example"}, {"text": "\u041f\u0430\u0446\u0438\u0435\u043d\u0442\u043a\u0430 \u043d\u0430\u0431\u043b\u044e\u0434\u0430\u043b\u0430\u0441\u044c \u0443 <mask> \u043f\u043e \u043f\u043e\u0432\u043e\u0434\u0443 \u0433\u0440\u0438\u0431\u043a\u043e\u0432\u043e\u0433\u043e \u043f\u043e\u0440\u0430\u0436\u0435\u043d\u0438\u044f \u043a\u043e\u0436\u0438.", "example_title": "spec_example"}, {"text": "\u041f\u043e\u044f\u0432\u0438\u043b\u0441\u044f \u0437\u0443\u0434 \u0442\u0435\u043b\u0430, <mask> \u0432\u0435\u0441\u0430, \u043f\u043e\u0442\u043b\u0438\u0432\u043e\u0441\u0442\u044c, \u043f\u0440\u043e\u0432\u043e\u0434\u0438\u043b \u043a\u043e\u043d\u0442\u0440\u043e\u043b\u044c \u0441\u0430\u0445\u0430\u0440\u0430 \u043a\u0440\u043e\u0432\u0438.", "example_title": "weight_example"}]}
alexyalunin/RuBioRoBERTa
null
[ "transformers", "pytorch", "roberta", "fill-mask", "ru", "arxiv:2204.03951", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00