pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
question-answering
null
<div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii
null
[ "kaggle", "rembert", "pytorch", "question-answering", "multilingual", "dataset:Commonlit-Readibility", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "multilingual" ]
TAGS #kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
![]() This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
[]
[ "TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n" ]
question-answering
null
<div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii
null
[ "kaggle", "rembert", "pytorch", "question-answering", "multilingual", "dataset:Commonlit-Readibility", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "multilingual" ]
TAGS #kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
![]() This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
[]
[ "TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n" ]
question-answering
null
<div align = "center"> <img src = "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true"> </div> This dataset contains the [**google/rembert**](https://huggingface.co/transformers/model_doc/rembert.html) model weights according to my team's experimentation strategy during the [**chaii - Hindi and Tamil Question Answering**](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition. They are listed below with their corresponding public LB score:- | Huggingface Hub Link | Public LB Score | | :---: | :---: | | [**SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-128-chaii) | 0.724 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-135-chaii) | 0.723 | | [**SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii) | 0.737 | | [**SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii**](https://huggingface.co/SauravMaheshkar/rembert-maxseq-384-docstride-128-chaii) | 0.725 |
{"language": "multilingual", "license": "cc0-1.0", "tags": ["kaggle", "rembert", "pytorch", "question-answering"], "datasets": ["Commonlit-Readibility"], "thumbnail": "https://github.com/SauravMaheshkar/chaii-Hindi-Tamil-QA/blob/main/assets/Coffee%20Banner.png?raw=true", "inference": false}
SauravMaheshkar/rembert-maxseq-400-docstride-135-chaii
null
[ "kaggle", "rembert", "pytorch", "question-answering", "multilingual", "dataset:Commonlit-Readibility", "license:cc0-1.0", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "multilingual" ]
TAGS #kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us
![]() This dataset contains the google/rembert model weights according to my team's experimentation strategy during the chaii - Hindi and Tamil Question Answering competition. They are listed below with their corresponding public LB score:-
[]
[ "TAGS\n#kaggle #rembert #pytorch #question-answering #multilingual #dataset-Commonlit-Readibility #license-cc0-1.0 #region-us \n" ]
image-classification
transformers
Practice/Demo repository following the tutorial `run_image_classification_flax.py` script
{}
SauravMaheshkar/vit-base-patch16-imagenette
null
[ "transformers", "jax", "tensorboard", "vit", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #jax #tensorboard #vit #image-classification #autotrain_compatible #endpoints_compatible #region-us
Practice/Demo repository following the tutorial 'run_image_classification_flax.py' script
[]
[ "TAGS\n#transformers #jax #tensorboard #vit #image-classification #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
Saviour/ChandlerBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# My Awesome Model
[ "# My Awesome Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# My Awesome Model" ]
text-generation
transformers
# Paimon DialoGPT Model
{"tags": ["conversational"]}
Saz/DialoGPT-small-paimon
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Paimon DialoGPT Model
[ "# Paimon DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Paimon DialoGPT Model" ]
text-generation
transformers
# Saz DialoGPT Model
{"tags": ["conversational"]}
Saz/DialoGPT-small-saz
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Saz DialoGPT Model
[ "# Saz DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Saz DialoGPT Model" ]
text-generation
transformers
#13th Doctor DialoGPT model
{"tags": ["conversational"]}
Science-geek32/DialoGPT-small-doctor
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#13th Doctor DialoGPT model
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
13th doctor model DialoGPT-small
{"tags": ["conversational"]}
Science-geek32/DialoGPT-small-doctor2.0
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
13th doctor model DialoGPT-small
[]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text-generation
transformers
# Sandal Bot Quick and dumb model for a discord chat bot. Based on DialoGPT-Medium
{"tags": ["conversational"]}
Scoops/SandalBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Sandal Bot Quick and dumb model for a discord chat bot. Based on DialoGPT-Medium
[ "# Sandal Bot\n\nQuick and dumb model for a discord chat bot. Based on DialoGPT-Medium" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Sandal Bot\n\nQuick and dumb model for a discord chat bot. Based on DialoGPT-Medium" ]
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-medium-Scott") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-medium-Scott") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
ScottaStrong/DialogGPT-medium-Scott
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on the Speech of a Game Character This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset. I built a Discord AI chatbot based on this model. Check out my GitHub repo. Chat with the model:
[ "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
ScottaStrong/DialogGPT-medium-joshua
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on the Speech of a Game Character This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset. I built a Discord AI chatbot based on this model. Check out my GitHub repo. Chat with the model:
[ "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-small-Scott") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-small-Scott") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
ScottaStrong/DialogGPT-small-Scott
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on the Speech of a Game Character This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset. I built a Discord AI chatbot based on this model. Check out my GitHub repo. Chat with the model:
[ "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("scottastrong/DialogGPT-small-joshua") model = AutoModelWithLMHead.from_pretrained("scottastrong/DialogGPT-small-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
ScottaStrong/DialogGPT-small-joshua
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# DialoGPT Trained on the Speech of a Game Character This is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset. I built a Discord AI chatbot based on this model. Check out my GitHub repo. Chat with the model:
[ "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# DialoGPT Trained on the Speech of a Game Character\nThis is an instance of microsoft/DialoGPT-medium trained on a game character, Joshua from The World Ends With You. The data comes from a Kaggle game script dataset.\nI built a Discord AI chatbot based on this model. Check out my GitHub repo.\nChat with the model:" ]
fill-mask
transformers
# dummy this is only a dummy model originally based on RoBERT model ## intended uses and limitations not intended to be used, same limitations as camembert-base model ## how to use it cant be used (lol) ## training data French subcorpus of the newly available multilingual corpus OSCAR ## training procedure evaluated on multiple downstream tasks ## variable and metrics not explicitly stated ## evaluation metrics maybe OSCAR ## evaluation results not explicitly stated
{"language": "fr", "license": "mit", "datasets": ["oscar"]}
SebastianS/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "fr", "dataset:oscar", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "fr" ]
TAGS #transformers #pytorch #camembert #fill-mask #fr #dataset-oscar #license-mit #autotrain_compatible #endpoints_compatible #region-us
# dummy this is only a dummy model originally based on RoBERT model ## intended uses and limitations not intended to be used, same limitations as camembert-base model ## how to use it cant be used (lol) ## training data French subcorpus of the newly available multilingual corpus OSCAR ## training procedure evaluated on multiple downstream tasks ## variable and metrics not explicitly stated ## evaluation metrics maybe OSCAR ## evaluation results not explicitly stated
[ "# dummy\nthis is only a dummy model originally based on RoBERT model", "## intended uses and limitations\nnot intended to be used, same limitations as camembert-base model", "## how to use\nit cant be used (lol)", "## training data\nFrench subcorpus of the newly available multilingual corpus OSCAR", "## training procedure\nevaluated on multiple downstream tasks", "## variable and metrics\nnot explicitly stated", "## evaluation metrics\nmaybe OSCAR", "## evaluation results\nnot explicitly stated" ]
[ "TAGS\n#transformers #pytorch #camembert #fill-mask #fr #dataset-oscar #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "# dummy\nthis is only a dummy model originally based on RoBERT model", "## intended uses and limitations\nnot intended to be used, same limitations as camembert-base model", "## how to use\nit cant be used (lol)", "## training data\nFrench subcorpus of the newly available multilingual corpus OSCAR", "## training procedure\nevaluated on multiple downstream tasks", "## variable and metrics\nnot explicitly stated", "## evaluation metrics\nmaybe OSCAR", "## evaluation results\nnot explicitly stated" ]
text-generation
transformers
# Melchior DialoGPT Model
{"tags": ["conversational"]}
Sebastianthecrab/DialoGPT-small-melchior
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Melchior DialoGPT Model
[ "# Melchior DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Melchior DialoGPT Model" ]
text-generation
transformers
# Sedged DialoGPT Model
{"tags": ["conversational"]}
Sedge/DialoGPT-small-Sedge
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Sedged DialoGPT Model
[ "# Sedged DialoGPT Model" ]
[ "TAGS\n#transformers #pytorch #gpt2 #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Sedged DialoGPT Model" ]
automatic-speech-recognition
transformers
# wav2vec2-irish-lite Speech to Text ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Semih/wav2vec2_Irish_Large") model = Wav2Vec2ForCTC.from_pretrained("Semih/wav2vec2_Irish_Large") resampler = torchaudio.transforms.Resample(48_000, 16_000) ``` Test Result: 55.11
{"language": "ga-IE", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech"], "datasets": ["common_voice"], "metrics": ["wer"]}
Semih/wav2vec2_Irish_Large
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "ga-IE" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-irish-lite Speech to Text ## Usage The model can be used directly (without a language model) as follows: Test Result: 55.11
[ "# wav2vec2-irish-lite Speech to Text", "## Usage\nThe model can be used directly (without a language model) as follows:\n\nTest Result: 55.11" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-irish-lite Speech to Text", "## Usage\nThe model can be used directly (without a language model) as follows:\n\nTest Result: 55.11" ]
image-classification
transformers
# dog Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### buldog ![buldog](images/buldog.jpg) #### golden ![golden](images/golden.jpg) #### pug ![pug](images/pug.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
Sena/dog
null
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# dog Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### buldog !buldog #### golden !golden #### pug !pug
[ "# dog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### buldog\n\n!buldog", "#### golden\n\n!golden", "#### pug\n\n!pug" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# dog\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### buldog\n\n!buldog", "#### golden\n\n!golden", "#### pug\n\n!pug" ]
image-classification
transformers
# flowers Autogenerated by HuggingPics🤗🖼️ Create your own image classifier for **anything** by running [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb). Report any issues with the demo at the [github repo](https://github.com/nateraw/huggingpics). ## Example Images #### karanfil ![karanfil](images/karanfil.jpg) #### leylak ![leylak](images/leylak.jpg) #### menekse ![menekse](images/menekse.jpg) #### nergis ![nergis](images/nergis.jpg) #### zambak ![zambak](images/zambak.jpg)
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
Sena/flowers
null
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us
# flowers Autogenerated by HuggingPics️ Create your own image classifier for anything by running the demo on Google Colab. Report any issues with the demo at the github repo. ## Example Images #### karanfil !karanfil #### leylak !leylak #### menekse !menekse #### nergis !nergis #### zambak !zambak
[ "# flowers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### karanfil\n\n!karanfil", "#### leylak\n\n!leylak", "#### menekse\n\n!menekse", "#### nergis\n\n!nergis", "#### zambak\n\n!zambak" ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "# flowers\n\n\nAutogenerated by HuggingPics️\n\nCreate your own image classifier for anything by running the demo on Google Colab.\n\nReport any issues with the demo at the github repo.", "## Example Images", "#### karanfil\n\n!karanfil", "#### leylak\n\n!leylak", "#### menekse\n\n!menekse", "#### nergis\n\n!nergis", "#### zambak\n\n!zambak" ]
image-classification
null
# UniFormer (image model) UniFormer models are trained on ImageNet at resolution 224x224. It was introduced in the paper [UniFormer: Unifying Convolution and Self-attention for Visual Recognition](https://arxiv.org/abs/2201.09450) by Li et al, and first released in [this repository](https://github.com/Sense-X/UniFormer). ## Model description The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format. It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation. Without any extra training data, UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks. UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600, and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks. It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task, **50.8** mIoU on ADE20K semantic segmentation task, and **77.4** AP on COCO pose estimation task. ![teaser](framework.png) [Source](https://paperswithcode.com/paper/uniformer-unifying-convolution-and-self) ## Intended uses & limitations You can use the raw model for image classification. We now only upload the models trained without Token Labeling and Layer Scale. More powerful models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/image_classification). ### ImageNet | Model | Pretrain | Resolution | Top-1 | #Param. | FLOPs | | --------------- | ----------- | ---------- | ----- | ------- | ----- | | UniFormer-S | ImageNet-1K | 224x224 | 82.9 | 22M | 3.6G | | UniFormer-S† | ImageNet-1K | 224x224 | 83.4 | 24M | 4.2G | | UniFormer-B | ImageNet-1K | 224x224 | 83.8 | 50M | 8.3G | ### How to use You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_image_demo/tree/main) to use our models. ```python from uniformer import uniformer_small from imagenet_class_index import imagenet_classnames model = uniformer_small() # load state model_path = hf_hub_download(repo_id="Sense-X/uniformer_image", filename="uniformer_small_in1k.pth") state_dict = torch.load(model_path, map_location='cpu') model.load_state_dict(state_dict) # set to eval mode model = model.to(device) model = model.eval() # process image image = img image_transform = T.Compose( [ T.Resize(224), T.CenterCrop(224), T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ] ) image = image_transform(image) image = image.unsqueeze(0) # model predicts one of the 1000 ImageNet classes prediction = model(image) predicted_class_idx = prediction.flatten().argmax(-1).item() print("Predicted class:", imagenet_classnames[str(predicted_class_idx)][1]) ``` ### BibTeX entry and citation info ```bibtex @misc{li2022uniformer, title={UniFormer: Unifying Convolution and Self-attention for Visual Recognition}, author={Kunchang Li and Yali Wang and Junhao Zhang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao}, year={2022}, eprint={2201.09450}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "mit", "tags": ["vision", "image-classification"], "datasets": ["imagenet"]}
Sense-X/uniformer_image
null
[ "vision", "image-classification", "dataset:imagenet", "arxiv:2201.09450", "license:mit", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2201.09450" ]
[]
TAGS #vision #image-classification #dataset-imagenet #arxiv-2201.09450 #license-mit #has_space #region-us
UniFormer (image model) ======================= UniFormer models are trained on ImageNet at resolution 224x224. It was introduced in the paper UniFormer: Unifying Convolution and Self-attention for Visual Recognition by Li et al, and first released in this repository. Model description ----------------- The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format. It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation. Without any extra training data, UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks. UniFormer obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600, and 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks. It also achieves 53.8 box AP and 46.4 mask AP on COCO object detection task, 50.8 mIoU on ADE20K semantic segmentation task, and 77.4 AP on COCO pose estimation task. !teaser Source Intended uses & limitations --------------------------- You can use the raw model for image classification. We now only upload the models trained without Token Labeling and Layer Scale. More powerful models can be found in the model hub. ### ImageNet ### How to use You can followed our demo to use our models. ### BibTeX entry and citation info
[ "### ImageNet", "### How to use\n\n\nYou can followed our demo to use our models.", "### BibTeX entry and citation info" ]
[ "TAGS\n#vision #image-classification #dataset-imagenet #arxiv-2201.09450 #license-mit #has_space #region-us \n", "### ImageNet", "### How to use\n\n\nYou can followed our demo to use our models.", "### BibTeX entry and citation info" ]
video-classification
null
# UniFormer (video model) UniFormer models are trained on [Kinetics](https://deepmind.com/research/open-source/kinetics) and [Something-Something](https://20bn.com/datasets/something-something) at resolution 224x224. It was introduced in the paper [UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning](https://arxiv.org/abs/2201.04676) by Li et al, and first released in [this repository](https://github.com/Sense-X/UniFormer). ## Model description The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format. It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation. Without any extra training data, UniFormer achieves **86.3** top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks. UniFormer obtains **82.9/84.8** top-1 accuracy on Kinetics-400/600, and **60.9/71.2** top-1 accuracy on Something-Something V1/V2 video classification tasks. It also achieves **53.8** box AP and **46.4** mask AP on COCO object detection task, **50.8** mIoU on ADE20K semantic segmentation task, and **77.4** AP on COCO pose estimation task. ![teaser](framework.png) [Source](https://paperswithcode.com/paper/uniformer-unified-transformer-for-efficient) ## Intended uses & limitations You can use the raw model for video classification. We now only upload the powerful models with **single clip**. More models can be found in [the model hub](https://github.com/Sense-X/UniFormer/tree/main/video_classification). ### Kinetics | Model | #Frame | Sampling Stride | FLOPs | K400 Top-1 | K600 Top-1 | | ----------- | ------ | --------------- | ----- | ---------- | ---------- | | UniFormer-S | 16x1x1 | 8 | 41.8G | 78.4 | 80.8 | | UniFormer-B | 16x1x1 | 8 | 96.7G | 79.3 | 81.7 | | UniFormer-B | 32x1x1 | 4 | 259G | 80.9 | 82.4 | ### Something-Something | Model | #Frame | FLOPs | SSV1 Top-1 | SSV2 Top-1 | | ----------- | ------ | ----- | ---------- | ---------- | | UniFormer-S | 16x1x1 | 41.8G | 54.4 | 65.0 | | UniFormer-B | 32x1x1 | 259G | 58.0 | 67.5 | ### How to use You can followed our [demo](https://huggingface.co/spaces/Sense-X/uniformer_video_demo/tree/main) to use our models. ```python from uniformer import uniformer_small from kinetics_class_index import kinetics_classnames model = uniformer_small() # load state model_path = hf_hub_download(repo_id="Sense-X/uniformer_video", filename="uniformer_small_k400_16x8.pth") state_dict = torch.load(model_path, map_location='cpu') model.load_state_dict(state_dict) # set to eval mode model = model.to(device) model = model.eval() # please refer to the following url to process video of Kinetics: # https://huggingface.co/spaces/Sense-X/uniformer_video_demo/blob/main/app.py vid = load_video(video) # model predicts one of the 400 Kintics classes prediction = model(vid) predicted_class_idx = prediction.flatten().argmax(-1).item() print("Predicted class:", kinetics_classnames[str(predicted_class_idx)]) ``` ### BibTeX entry and citation info ```bibtex @misc{li2022uniformer, title={UniFormer: Unified Transformer for Efficient Spatiotemporal Representation Learning}, author={Kunchang Li and Yali Wang and Peng Gao and Guanglu Song and Yu Liu and Hongsheng Li and Yu Qiao}, year={2022}, eprint={2201.04676}, archivePrefix={arXiv}, primaryClass={cs.CV} } ```
{"license": "mit", "tags": ["vision", "video-classification"], "datasets": ["kinetics-400", "kinetics-600", "something-something-v1", "something-something-v2"]}
Sense-X/uniformer_video
null
[ "vision", "video-classification", "dataset:kinetics-400", "dataset:kinetics-600", "dataset:something-something-v1", "dataset:something-something-v2", "arxiv:2201.04676", "license:mit", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
[ "2201.04676" ]
[]
TAGS #vision #video-classification #dataset-kinetics-400 #dataset-kinetics-600 #dataset-something-something-v1 #dataset-something-something-v2 #arxiv-2201.04676 #license-mit #has_space #region-us
UniFormer (video model) ======================= UniFormer models are trained on Kinetics and Something-Something at resolution 224x224. It was introduced in the paper UniFormer: Unified Transformer for Efficient Spatial-Temporal Representation Learning by Li et al, and first released in this repository. Model description ----------------- The UniFormer is a type of Vision Transformer, which can seamlessly integrate merits of convolution and self-attention in a concise transformer format. It adopt local MHRA in shallow layers to largely reduce computation burden and global MHRA in deep layers to learn global token relation. Without any extra training data, UniFormer achieves 86.3 top-1 accuracy on ImageNet-1K classification. With only ImageNet-1K pre-training, it can simply achieve state-of-the-art performance in a broad range of downstream tasks. UniFormer obtains 82.9/84.8 top-1 accuracy on Kinetics-400/600, and 60.9/71.2 top-1 accuracy on Something-Something V1/V2 video classification tasks. It also achieves 53.8 box AP and 46.4 mask AP on COCO object detection task, 50.8 mIoU on ADE20K semantic segmentation task, and 77.4 AP on COCO pose estimation task. !teaser Source Intended uses & limitations --------------------------- You can use the raw model for video classification. We now only upload the powerful models with single clip. More models can be found in the model hub. ### Kinetics ### Something-Something ### How to use You can followed our demo to use our models. ### BibTeX entry and citation info
[ "### Kinetics", "### Something-Something", "### How to use\n\n\nYou can followed our demo to use our models.", "### BibTeX entry and citation info" ]
[ "TAGS\n#vision #video-classification #dataset-kinetics-400 #dataset-kinetics-600 #dataset-something-something-v1 #dataset-something-something-v2 #arxiv-2201.04676 #license-mit #has_space #region-us \n", "### Kinetics", "### Something-Something", "### How to use\n\n\nYou can followed our demo to use our models.", "### BibTeX entry and citation info" ]
text-generation
transformers
GPyT is a GPT2 model trained from scratch (not fine tuned) on Python code from Github. Overall, it was ~80GB of pure Python code, the current GPyT model is a mere 2 epochs through this data, so it may benefit greatly from continued training and/or fine-tuning. Newlines are replaced by `<N>` Input to the model is code, up to the context length of 1024, with newlines replaced by `<N>` Here's a quick example of using this model: ```py from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Sentdex/GPyT") model = AutoModelWithLMHead.from_pretrained("Sentdex/GPyT") # copy and paste some code in here inp = """import""" newlinechar = "<N>" converted = inp.replace("\n", newlinechar) tokenized = tokenizer.encode(converted, return_tensors='pt') resp = model.generate(tokenized) decoded = tokenizer.decode(resp[0]) reformatted = decoded.replace("<N>","\n") print(reformatted) ``` Should produce: ``` import numpy as np import pytest import pandas as pd<N ``` This model does a ton more than just imports, however. For a bunch of examples and a better understanding of the model's capabilities: https://pythonprogramming.net/GPT-python-code-transformer-model-GPyT/ Considerations: 1. This model is intended for educational and research use only. Do not trust model outputs. 2. Model is highly likely to regurgitate code almost exactly as it saw it. It's up to you to determine licensing if you intend to actually use the generated code. 3. All Python code was blindly pulled from github. This means included code is both Python 2 and 3, among other more subtle differences, such as tabs being 2 spaces in some cases and 4 in others...and more non-homologous things. 4. Along with the above, this means the code generated could wind up doing or suggesting just about anything. Run the generated code at own risk...it could be *anything*
{"language": "code", "license": "mit", "tags": ["Code", "GPyT", "code generator"]}
Sentdex/GPyT
null
[ "transformers", "pytorch", "tf", "gpt2", "text-generation", "Code", "GPyT", "code generator", "code", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[ "code" ]
TAGS #transformers #pytorch #tf #gpt2 #text-generation #Code #GPyT #code generator #code #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
GPyT is a GPT2 model trained from scratch (not fine tuned) on Python code from Github. Overall, it was ~80GB of pure Python code, the current GPyT model is a mere 2 epochs through this data, so it may benefit greatly from continued training and/or fine-tuning. Newlines are replaced by '<N>' Input to the model is code, up to the context length of 1024, with newlines replaced by '<N>' Here's a quick example of using this model: Should produce: This model does a ton more than just imports, however. For a bunch of examples and a better understanding of the model's capabilities: URL Considerations: 1. This model is intended for educational and research use only. Do not trust model outputs. 2. Model is highly likely to regurgitate code almost exactly as it saw it. It's up to you to determine licensing if you intend to actually use the generated code. 3. All Python code was blindly pulled from github. This means included code is both Python 2 and 3, among other more subtle differences, such as tabs being 2 spaces in some cases and 4 in others...and more non-homologous things. 4. Along with the above, this means the code generated could wind up doing or suggesting just about anything. Run the generated code at own risk...it could be *anything*
[]
[ "TAGS\n#transformers #pytorch #tf #gpt2 #text-generation #Code #GPyT #code generator #code #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-squad This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.0458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.0179 | 1.0 | 6194 | 0.9548 | | 0.7277 | 2.0 | 12388 | 0.9717 | | 0.507 | 3.0 | 18582 | 1.0458 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "bert-base-cased-finetuned-squad", "results": []}]}
Seongkyu/bert-base-cased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us
bert-base-cased-finetuned-squad =============================== This model is a fine-tuned version of bert-base-cased on the squad dataset. It achieves the following results on the evaluation set: * Loss: 1.0458 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #question-answering #generated_from_trainer #dataset-squad #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # MiniLM-L12-H384-uncased__sst2__all-train This model is a fine-tuned version of [microsoft/MiniLM-L12-H384-uncased](https://huggingface.co/microsoft/MiniLM-L12-H384-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2632 - Accuracy: 0.9055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.4183 | 1.0 | 433 | 0.3456 | 0.8720 | | 0.2714 | 2.0 | 866 | 0.2632 | 0.9055 | | 0.2016 | 3.0 | 1299 | 0.3357 | 0.8990 | | 0.1501 | 4.0 | 1732 | 0.4474 | 0.8863 | | 0.1119 | 5.0 | 2165 | 0.3998 | 0.8979 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "MiniLM-L12-H384-uncased__sst2__all-train", "results": []}]}
SetFit/MiniLM-L12-H384-uncased__sst2__all-train
null
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
MiniLM-L12-H384-uncased\_\_sst2\_\_all-train ============================================ This model is a fine-tuned version of microsoft/MiniLM-L12-H384-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.2632 * Accuracy: 0.9055 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu102 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-base__sst2__all-train This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6964 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 7 | 0.6964 | 0.49 | | No log | 2.0 | 14 | 0.7010 | 0.49 | | No log | 3.0 | 21 | 0.7031 | 0.49 | | No log | 4.0 | 28 | 0.7054 | 0.49 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-base__sst2__all-train", "results": []}]}
SetFit/deberta-v3-base__sst2__all-train
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-base\_\_sst2\_\_all-train ==================================== This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6964 * Accuracy: 0.49 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9917 - Accuracy: 0.7705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7001 | 1.0 | 7 | 0.7327 | 0.2857 | | 0.6326 | 2.0 | 14 | 0.6479 | 0.5714 | | 0.5232 | 3.0 | 21 | 0.5714 | 0.5714 | | 0.3313 | 4.0 | 28 | 0.6340 | 0.7143 | | 0.3161 | 5.0 | 35 | 0.6304 | 0.7143 | | 0.0943 | 6.0 | 42 | 0.4719 | 0.8571 | | 0.0593 | 7.0 | 49 | 0.5000 | 0.7143 | | 0.0402 | 8.0 | 56 | 0.3530 | 0.8571 | | 0.0307 | 9.0 | 63 | 0.3499 | 0.8571 | | 0.0033 | 10.0 | 70 | 0.3258 | 0.8571 | | 0.0021 | 11.0 | 77 | 0.3362 | 0.8571 | | 0.0012 | 12.0 | 84 | 0.4591 | 0.8571 | | 0.0036 | 13.0 | 91 | 0.4661 | 0.8571 | | 0.001 | 14.0 | 98 | 0.5084 | 0.8571 | | 0.0017 | 15.0 | 105 | 0.5844 | 0.8571 | | 0.0005 | 16.0 | 112 | 0.6645 | 0.8571 | | 0.002 | 17.0 | 119 | 0.7422 | 0.8571 | | 0.0006 | 18.0 | 126 | 0.7354 | 0.8571 | | 0.0005 | 19.0 | 133 | 0.7265 | 0.8571 | | 0.0005 | 20.0 | 140 | 0.7207 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-0", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-0
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-0 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9917 * Accuracy: 0.7705 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6804 - Accuracy: 0.5497 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7086 | 1.0 | 7 | 0.7176 | 0.2857 | | 0.6897 | 2.0 | 14 | 0.7057 | 0.2857 | | 0.6491 | 3.0 | 21 | 0.6582 | 0.8571 | | 0.567 | 4.0 | 28 | 0.4480 | 0.8571 | | 0.4304 | 5.0 | 35 | 0.5465 | 0.7143 | | 0.0684 | 6.0 | 42 | 0.5408 | 0.8571 | | 0.0339 | 7.0 | 49 | 0.6501 | 0.8571 | | 0.0082 | 8.0 | 56 | 0.9152 | 0.8571 | | 0.0067 | 9.0 | 63 | 2.5162 | 0.5714 | | 0.0045 | 10.0 | 70 | 1.1136 | 0.8571 | | 0.0012 | 11.0 | 77 | 1.1668 | 0.8571 | | 0.0007 | 12.0 | 84 | 1.2071 | 0.8571 | | 0.0005 | 13.0 | 91 | 1.2310 | 0.8571 | | 0.0006 | 14.0 | 98 | 1.2476 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-1", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-1
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-1 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6804 * Accuracy: 0.5497 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6959 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7079 | 1.0 | 7 | 0.7361 | 0.2857 | | 0.6815 | 2.0 | 14 | 0.7659 | 0.2857 | | 0.6938 | 3.0 | 21 | 0.7944 | 0.2857 | | 0.4584 | 4.0 | 28 | 1.2441 | 0.2857 | | 0.4949 | 5.0 | 35 | 1.2285 | 0.5714 | | 0.0574 | 6.0 | 42 | 1.7796 | 0.5714 | | 0.0156 | 7.0 | 49 | 2.6027 | 0.5714 | | 0.0051 | 8.0 | 56 | 2.8717 | 0.5714 | | 0.0017 | 9.0 | 63 | 2.8491 | 0.5714 | | 0.0023 | 10.0 | 70 | 1.7149 | 0.7143 | | 0.001 | 11.0 | 77 | 1.1101 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-2", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-2
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-2 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6959 * Accuracy: 0.5008 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6286 - Accuracy: 0.7068 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6955 | 1.0 | 7 | 0.7370 | 0.2857 | | 0.6919 | 2.0 | 14 | 0.6855 | 0.4286 | | 0.6347 | 3.0 | 21 | 0.5872 | 0.7143 | | 0.4016 | 4.0 | 28 | 0.6644 | 0.7143 | | 0.3097 | 5.0 | 35 | 0.5120 | 0.7143 | | 0.0785 | 6.0 | 42 | 0.5845 | 0.7143 | | 0.024 | 7.0 | 49 | 0.6951 | 0.7143 | | 0.0132 | 8.0 | 56 | 0.8972 | 0.7143 | | 0.0037 | 9.0 | 63 | 1.5798 | 0.7143 | | 0.0034 | 10.0 | 70 | 1.5178 | 0.7143 | | 0.003 | 11.0 | 77 | 1.3511 | 0.7143 | | 0.0012 | 12.0 | 84 | 1.1346 | 0.7143 | | 0.0007 | 13.0 | 91 | 0.9752 | 0.7143 | | 0.0008 | 14.0 | 98 | 0.8531 | 0.7143 | | 0.0007 | 15.0 | 105 | 0.8149 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-3", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-3
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-3 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6286 * Accuracy: 0.7068 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6329 - Accuracy: 0.6392 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6945 | 1.0 | 7 | 0.7381 | 0.2857 | | 0.7072 | 2.0 | 14 | 0.7465 | 0.2857 | | 0.6548 | 3.0 | 21 | 0.7277 | 0.4286 | | 0.5695 | 4.0 | 28 | 0.6738 | 0.5714 | | 0.4615 | 5.0 | 35 | 0.8559 | 0.5714 | | 0.0823 | 6.0 | 42 | 1.0983 | 0.5714 | | 0.0274 | 7.0 | 49 | 1.9937 | 0.5714 | | 0.0106 | 8.0 | 56 | 2.2209 | 0.5714 | | 0.0039 | 9.0 | 63 | 2.2114 | 0.5714 | | 0.0031 | 10.0 | 70 | 2.2808 | 0.5714 | | 0.0013 | 11.0 | 77 | 2.3707 | 0.5714 | | 0.0008 | 12.0 | 84 | 2.4902 | 0.5714 | | 0.0005 | 13.0 | 91 | 2.5208 | 0.5714 | | 0.0007 | 14.0 | 98 | 2.5683 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-4", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-4
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-4 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6329 * Accuracy: 0.6392 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5433 - Accuracy: 0.7924 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6774 | 1.0 | 7 | 0.7450 | 0.2857 | | 0.7017 | 2.0 | 14 | 0.7552 | 0.2857 | | 0.6438 | 3.0 | 21 | 0.7140 | 0.4286 | | 0.3525 | 4.0 | 28 | 0.5570 | 0.7143 | | 0.2061 | 5.0 | 35 | 0.5303 | 0.8571 | | 0.0205 | 6.0 | 42 | 0.6706 | 0.8571 | | 0.0068 | 7.0 | 49 | 0.8284 | 0.8571 | | 0.0029 | 8.0 | 56 | 0.9281 | 0.8571 | | 0.0015 | 9.0 | 63 | 0.9871 | 0.8571 | | 0.0013 | 10.0 | 70 | 1.0208 | 0.8571 | | 0.0008 | 11.0 | 77 | 1.0329 | 0.8571 | | 0.0005 | 12.0 | 84 | 1.0348 | 0.8571 | | 0.0004 | 13.0 | 91 | 1.0437 | 0.8571 | | 0.0005 | 14.0 | 98 | 1.0512 | 0.8571 | | 0.0004 | 15.0 | 105 | 1.0639 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-5", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-5
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-5 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5433 * Accuracy: 0.7924 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6846 - Accuracy: 0.5058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6673 | 1.0 | 7 | 0.7580 | 0.2857 | | 0.5896 | 2.0 | 14 | 0.7885 | 0.5714 | | 0.5294 | 3.0 | 21 | 1.0040 | 0.4286 | | 0.3163 | 4.0 | 28 | 1.1761 | 0.5714 | | 0.1315 | 5.0 | 35 | 1.4315 | 0.4286 | | 0.0312 | 6.0 | 42 | 2.6115 | 0.2857 | | 0.1774 | 7.0 | 49 | 2.1631 | 0.5714 | | 0.0052 | 8.0 | 56 | 2.3838 | 0.4286 | | 0.0043 | 9.0 | 63 | 2.6553 | 0.4286 | | 0.0032 | 10.0 | 70 | 2.2774 | 0.4286 | | 0.0015 | 11.0 | 77 | 1.9467 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-6", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-6
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-6 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6846 * Accuracy: 0.5058 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.5063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6911 | 1.0 | 7 | 0.7455 | 0.2857 | | 0.6844 | 2.0 | 14 | 0.7242 | 0.2857 | | 0.6137 | 3.0 | 21 | 0.7341 | 0.4286 | | 0.3805 | 4.0 | 28 | 1.0217 | 0.4286 | | 0.2201 | 5.0 | 35 | 1.1437 | 0.2857 | | 0.0296 | 6.0 | 42 | 1.5997 | 0.4286 | | 0.0103 | 7.0 | 49 | 2.6835 | 0.4286 | | 0.0046 | 8.0 | 56 | 3.3521 | 0.4286 | | 0.002 | 9.0 | 63 | 3.7846 | 0.4286 | | 0.0017 | 10.0 | 70 | 4.0088 | 0.4286 | | 0.0018 | 11.0 | 77 | 4.1483 | 0.4286 | | 0.0006 | 12.0 | 84 | 4.2235 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-7", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-7
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-7 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6953 * Accuracy: 0.5063 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.6579 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7129 | 1.0 | 7 | 0.7309 | 0.2857 | | 0.6549 | 2.0 | 14 | 0.7316 | 0.4286 | | 0.621 | 3.0 | 21 | 0.7131 | 0.5714 | | 0.3472 | 4.0 | 28 | 0.5703 | 0.4286 | | 0.2041 | 5.0 | 35 | 0.6675 | 0.5714 | | 0.031 | 6.0 | 42 | 1.6750 | 0.5714 | | 0.0141 | 7.0 | 49 | 1.8743 | 0.5714 | | 0.0055 | 8.0 | 56 | 1.1778 | 0.5714 | | 0.0024 | 9.0 | 63 | 1.0699 | 0.5714 | | 0.0019 | 10.0 | 70 | 1.0933 | 0.5714 | | 0.0012 | 11.0 | 77 | 1.1218 | 0.7143 | | 0.0007 | 12.0 | 84 | 1.1468 | 0.7143 | | 0.0006 | 13.0 | 91 | 1.1584 | 0.7143 | | 0.0006 | 14.0 | 98 | 1.3092 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-16-8", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-8
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-8 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6915 * Accuracy: 0.6579 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-16-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2598 - Accuracy: 0.7809 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6887 | 1.0 | 7 | 0.7452 | 0.2857 | | 0.6889 | 2.0 | 14 | 0.7988 | 0.2857 | | 0.6501 | 3.0 | 21 | 0.8987 | 0.2857 | | 0.4286 | 4.0 | 28 | 0.9186 | 0.4286 | | 0.3591 | 5.0 | 35 | 0.5566 | 0.7143 | | 0.0339 | 6.0 | 42 | 1.1130 | 0.5714 | | 0.013 | 7.0 | 49 | 1.8296 | 0.7143 | | 0.0041 | 8.0 | 56 | 1.7069 | 0.7143 | | 0.0023 | 9.0 | 63 | 1.1942 | 0.7143 | | 0.0022 | 10.0 | 70 | 0.6054 | 0.7143 | | 0.0011 | 11.0 | 77 | 0.3872 | 0.7143 | | 0.0006 | 12.0 | 84 | 0.3217 | 0.7143 | | 0.0005 | 13.0 | 91 | 0.2879 | 0.8571 | | 0.0005 | 14.0 | 98 | 0.2640 | 0.8571 | | 0.0004 | 15.0 | 105 | 0.2531 | 0.8571 | | 0.0003 | 16.0 | 112 | 0.2384 | 0.8571 | | 0.0004 | 17.0 | 119 | 0.2338 | 0.8571 | | 0.0003 | 18.0 | 126 | 0.2314 | 0.8571 | | 0.0003 | 19.0 | 133 | 0.2276 | 0.8571 | | 0.0003 | 20.0 | 140 | 0.2172 | 0.8571 | | 0.0003 | 21.0 | 147 | 0.2069 | 0.8571 | | 0.0002 | 22.0 | 154 | 0.2018 | 0.8571 | | 0.0002 | 23.0 | 161 | 0.2005 | 0.8571 | | 0.0002 | 24.0 | 168 | 0.1985 | 0.8571 | | 0.0002 | 25.0 | 175 | 0.1985 | 1.0 | | 0.0002 | 26.0 | 182 | 0.1955 | 1.0 | | 0.0002 | 27.0 | 189 | 0.1967 | 1.0 | | 0.0002 | 28.0 | 196 | 0.1918 | 1.0 | | 0.0002 | 29.0 | 203 | 0.1888 | 1.0 | | 0.0002 | 30.0 | 210 | 0.1864 | 1.0 | | 0.0002 | 31.0 | 217 | 0.1870 | 1.0 | | 0.0002 | 32.0 | 224 | 0.1892 | 1.0 | | 0.0002 | 33.0 | 231 | 0.1917 | 1.0 | | 0.0002 | 34.0 | 238 | 0.1869 | 1.0 | | 0.0002 | 35.0 | 245 | 0.1812 | 1.0 | | 0.0001 | 36.0 | 252 | 0.1777 | 1.0 | | 0.0002 | 37.0 | 259 | 0.1798 | 1.0 | | 0.0002 | 38.0 | 266 | 0.1824 | 0.8571 | | 0.0002 | 39.0 | 273 | 0.1846 | 0.8571 | | 0.0002 | 40.0 | 280 | 0.1839 | 0.8571 | | 0.0001 | 41.0 | 287 | 0.1826 | 0.8571 | | 0.0001 | 42.0 | 294 | 0.1779 | 0.8571 | | 0.0002 | 43.0 | 301 | 0.1762 | 0.8571 | | 0.0001 | 44.0 | 308 | 0.1742 | 1.0 | | 0.0002 | 45.0 | 315 | 0.1708 | 1.0 | | 0.0001 | 46.0 | 322 | 0.1702 | 1.0 | | 0.0001 | 47.0 | 329 | 0.1699 | 1.0 | | 0.0001 | 48.0 | 336 | 0.1695 | 1.0 | | 0.0001 | 49.0 | 343 | 0.1683 | 1.0 | | 0.0001 | 50.0 | 350 | 0.1681 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-16-9", "results": []}]}
SetFit/deberta-v3-large__sst2__train-16-9
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-16-9 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.2598 * Accuracy: 0.7809 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-32-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4849 - Accuracy: 0.7716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7059 | 1.0 | 13 | 0.6840 | 0.5385 | | 0.6595 | 2.0 | 26 | 0.6214 | 0.6923 | | 0.4153 | 3.0 | 39 | 0.1981 | 0.9231 | | 0.0733 | 4.0 | 52 | 0.5068 | 0.9231 | | 0.2092 | 5.0 | 65 | 1.3114 | 0.6923 | | 0.003 | 6.0 | 78 | 1.1062 | 0.8462 | | 0.0012 | 7.0 | 91 | 1.5948 | 0.7692 | | 0.0008 | 8.0 | 104 | 1.6913 | 0.7692 | | 0.0006 | 9.0 | 117 | 1.7191 | 0.7692 | | 0.0005 | 10.0 | 130 | 1.6527 | 0.7692 | | 0.0003 | 11.0 | 143 | 1.4840 | 0.7692 | | 0.0002 | 12.0 | 156 | 1.3076 | 0.8462 | | 0.0002 | 13.0 | 169 | 1.3130 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-32-0", "results": []}]}
SetFit/deberta-v3-large__sst2__train-32-0
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-32-0 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4849 * Accuracy: 0.7716 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-32-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4201 - Accuracy: 0.8759 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7162 | 1.0 | 13 | 0.6832 | 0.5385 | | 0.6561 | 2.0 | 26 | 0.7270 | 0.4615 | | 0.4685 | 3.0 | 39 | 1.0674 | 0.5385 | | 0.2837 | 4.0 | 52 | 1.0841 | 0.5385 | | 0.1129 | 5.0 | 65 | 0.3502 | 0.9231 | | 0.0118 | 6.0 | 78 | 0.4829 | 0.9231 | | 0.0022 | 7.0 | 91 | 0.7430 | 0.8462 | | 0.0007 | 8.0 | 104 | 0.8219 | 0.8462 | | 0.0005 | 9.0 | 117 | 0.8787 | 0.8462 | | 0.0003 | 10.0 | 130 | 0.8713 | 0.8462 | | 0.0003 | 11.0 | 143 | 0.8473 | 0.8462 | | 0.0002 | 12.0 | 156 | 0.8482 | 0.8462 | | 0.0002 | 13.0 | 169 | 0.8494 | 0.8462 | | 0.0002 | 14.0 | 182 | 0.8638 | 0.8462 | | 0.0002 | 15.0 | 195 | 0.8492 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-32-1", "results": []}]}
SetFit/deberta-v3-large__sst2__train-32-1
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-32-1 ====================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4201 * Accuracy: 0.8759 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-0 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7088 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6705 | 1.0 | 3 | 0.7961 | 0.25 | | 0.6571 | 2.0 | 6 | 0.8092 | 0.25 | | 0.7043 | 3.0 | 9 | 0.7977 | 0.25 | | 0.6207 | 4.0 | 12 | 0.8478 | 0.25 | | 0.5181 | 5.0 | 15 | 0.9782 | 0.25 | | 0.4136 | 6.0 | 18 | 1.3151 | 0.25 | | 0.3702 | 7.0 | 21 | 1.8633 | 0.25 | | 0.338 | 8.0 | 24 | 2.2119 | 0.25 | | 0.2812 | 9.0 | 27 | 2.3058 | 0.25 | | 0.2563 | 10.0 | 30 | 2.3353 | 0.25 | | 0.2132 | 11.0 | 33 | 2.5921 | 0.25 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-large", "model-index": [{"name": "deberta-v3-large__sst2__train-8-0", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-0
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "base_model:microsoft/deberta-v3-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-0 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7088 * Accuracy: 0.5008 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-large #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7020 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6773 | 1.0 | 3 | 0.7822 | 0.25 | | 0.6587 | 2.0 | 6 | 0.8033 | 0.25 | | 0.693 | 3.0 | 9 | 0.8101 | 0.25 | | 0.5979 | 4.0 | 12 | 1.1235 | 0.25 | | 0.4095 | 5.0 | 15 | 1.3563 | 0.25 | | 0.2836 | 6.0 | 18 | 1.5325 | 0.5 | | 0.1627 | 7.0 | 21 | 1.7786 | 0.25 | | 0.0956 | 8.0 | 24 | 2.0067 | 0.5 | | 0.0535 | 9.0 | 27 | 2.3351 | 0.5 | | 0.0315 | 10.0 | 30 | 2.6204 | 0.5 | | 0.0182 | 11.0 | 33 | 2.8483 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-1", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-1
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-1 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7020 * Accuracy: 0.5008 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6794 - Accuracy: 0.6063 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6942 | 1.0 | 3 | 0.7940 | 0.25 | | 0.6068 | 2.0 | 6 | 0.9326 | 0.25 | | 0.6553 | 3.0 | 9 | 0.7979 | 0.25 | | 0.475 | 4.0 | 12 | 0.7775 | 0.25 | | 0.377 | 5.0 | 15 | 0.7477 | 0.25 | | 0.3176 | 6.0 | 18 | 0.6856 | 0.75 | | 0.2708 | 7.0 | 21 | 0.6554 | 0.75 | | 0.2855 | 8.0 | 24 | 0.8129 | 0.5 | | 0.148 | 9.0 | 27 | 0.7074 | 0.75 | | 0.0947 | 10.0 | 30 | 0.7090 | 0.75 | | 0.049 | 11.0 | 33 | 0.7885 | 0.75 | | 0.0252 | 12.0 | 36 | 0.9203 | 0.75 | | 0.0165 | 13.0 | 39 | 1.0937 | 0.75 | | 0.0084 | 14.0 | 42 | 1.2502 | 0.75 | | 0.0059 | 15.0 | 45 | 1.3726 | 0.75 | | 0.0037 | 16.0 | 48 | 1.4784 | 0.75 | | 0.003 | 17.0 | 51 | 1.5615 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-2", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-2
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-2 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6794 * Accuracy: 0.6063 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-3 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6421 - Accuracy: 0.6310 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6696 | 1.0 | 3 | 0.7917 | 0.25 | | 0.6436 | 2.0 | 6 | 0.8107 | 0.25 | | 0.6923 | 3.0 | 9 | 0.8302 | 0.25 | | 0.5051 | 4.0 | 12 | 0.9828 | 0.25 | | 0.3688 | 5.0 | 15 | 0.7402 | 0.25 | | 0.2671 | 6.0 | 18 | 0.5820 | 0.75 | | 0.1935 | 7.0 | 21 | 0.8356 | 0.5 | | 0.0815 | 8.0 | 24 | 1.0431 | 0.25 | | 0.0591 | 9.0 | 27 | 0.9679 | 0.75 | | 0.0276 | 10.0 | 30 | 1.0659 | 0.75 | | 0.0175 | 11.0 | 33 | 0.9689 | 0.75 | | 0.0152 | 12.0 | 36 | 0.8820 | 0.75 | | 0.006 | 13.0 | 39 | 0.8337 | 0.75 | | 0.0041 | 14.0 | 42 | 0.7650 | 0.75 | | 0.0036 | 15.0 | 45 | 0.6960 | 0.75 | | 0.0034 | 16.0 | 48 | 0.6548 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-3", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-3
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-3 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6421 * Accuracy: 0.6310 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-4 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3023 - Accuracy: 0.7057 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6816 | 1.0 | 3 | 0.8072 | 0.25 | | 0.6672 | 2.0 | 6 | 0.8740 | 0.25 | | 0.6667 | 3.0 | 9 | 0.8578 | 0.25 | | 0.5346 | 4.0 | 12 | 1.0353 | 0.25 | | 0.4517 | 5.0 | 15 | 1.1030 | 0.25 | | 0.3095 | 6.0 | 18 | 0.9986 | 0.25 | | 0.2464 | 7.0 | 21 | 0.9286 | 0.5 | | 0.1342 | 8.0 | 24 | 0.4063 | 1.0 | | 0.0851 | 9.0 | 27 | 0.2210 | 1.0 | | 0.0491 | 10.0 | 30 | 0.2302 | 1.0 | | 0.0211 | 11.0 | 33 | 0.4020 | 0.75 | | 0.017 | 12.0 | 36 | 0.2382 | 1.0 | | 0.0084 | 13.0 | 39 | 0.0852 | 1.0 | | 0.0051 | 14.0 | 42 | 0.0354 | 1.0 | | 0.0047 | 15.0 | 45 | 0.0208 | 1.0 | | 0.0029 | 16.0 | 48 | 0.0155 | 1.0 | | 0.0022 | 17.0 | 51 | 0.0139 | 1.0 | | 0.0019 | 18.0 | 54 | 0.0144 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0168 | 1.0 | | 0.0013 | 20.0 | 60 | 0.0231 | 1.0 | | 0.0011 | 21.0 | 63 | 0.0369 | 1.0 | | 0.0009 | 22.0 | 66 | 0.0528 | 1.0 | | 0.001 | 23.0 | 69 | 0.0639 | 1.0 | | 0.0009 | 24.0 | 72 | 0.0670 | 1.0 | | 0.0009 | 25.0 | 75 | 0.0526 | 1.0 | | 0.0008 | 26.0 | 78 | 0.0425 | 1.0 | | 0.0011 | 27.0 | 81 | 0.0135 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0076 | 1.0 | | 0.0007 | 29.0 | 87 | 0.0057 | 1.0 | | 0.0007 | 30.0 | 90 | 0.0049 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0045 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0044 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0043 | 1.0 | | 0.0005 | 34.0 | 102 | 0.0044 | 1.0 | | 0.0006 | 35.0 | 105 | 0.0045 | 1.0 | | 0.0006 | 36.0 | 108 | 0.0046 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0048 | 1.0 | | 0.0006 | 38.0 | 114 | 0.0049 | 1.0 | | 0.0005 | 39.0 | 117 | 0.0050 | 1.0 | | 0.0005 | 40.0 | 120 | 0.0050 | 1.0 | | 0.0004 | 41.0 | 123 | 0.0051 | 1.0 | | 0.0005 | 42.0 | 126 | 0.0051 | 1.0 | | 0.0004 | 43.0 | 129 | 0.0051 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-4", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-4
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-4 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.3023 * Accuracy: 0.7057 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-5 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3078 - Accuracy: 0.6930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6813 | 1.0 | 3 | 0.7842 | 0.25 | | 0.6617 | 2.0 | 6 | 0.7968 | 0.25 | | 0.6945 | 3.0 | 9 | 0.7746 | 0.25 | | 0.5967 | 4.0 | 12 | 0.7557 | 0.25 | | 0.4824 | 5.0 | 15 | 0.6920 | 0.25 | | 0.3037 | 6.0 | 18 | 0.6958 | 0.5 | | 0.2329 | 7.0 | 21 | 0.6736 | 0.5 | | 0.1441 | 8.0 | 24 | 0.3749 | 1.0 | | 0.0875 | 9.0 | 27 | 0.3263 | 0.75 | | 0.0655 | 10.0 | 30 | 0.3525 | 0.75 | | 0.0373 | 11.0 | 33 | 0.1993 | 1.0 | | 0.0173 | 12.0 | 36 | 0.1396 | 1.0 | | 0.0147 | 13.0 | 39 | 0.0655 | 1.0 | | 0.0084 | 14.0 | 42 | 0.0343 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0225 | 1.0 | | 0.004 | 16.0 | 48 | 0.0167 | 1.0 | | 0.003 | 17.0 | 51 | 0.0134 | 1.0 | | 0.0027 | 18.0 | 54 | 0.0114 | 1.0 | | 0.002 | 19.0 | 57 | 0.0104 | 1.0 | | 0.0015 | 20.0 | 60 | 0.0099 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0095 | 1.0 | | 0.0013 | 22.0 | 66 | 0.0095 | 1.0 | | 0.0012 | 23.0 | 69 | 0.0091 | 1.0 | | 0.0011 | 24.0 | 72 | 0.0085 | 1.0 | | 0.0009 | 25.0 | 75 | 0.0081 | 1.0 | | 0.001 | 26.0 | 78 | 0.0077 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0074 | 1.0 | | 0.0009 | 28.0 | 84 | 0.0071 | 1.0 | | 0.0007 | 29.0 | 87 | 0.0068 | 1.0 | | 0.0008 | 30.0 | 90 | 0.0064 | 1.0 | | 0.0007 | 31.0 | 93 | 0.0062 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0059 | 1.0 | | 0.0007 | 33.0 | 99 | 0.0056 | 1.0 | | 0.0005 | 34.0 | 102 | 0.0054 | 1.0 | | 0.0006 | 35.0 | 105 | 0.0053 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0050 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0049 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0048 | 1.0 | | 0.0005 | 40.0 | 120 | 0.0048 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0048 | 1.0 | | 0.0005 | 42.0 | 126 | 0.0047 | 1.0 | | 0.0005 | 43.0 | 129 | 0.0047 | 1.0 | | 0.0005 | 44.0 | 132 | 0.0047 | 1.0 | | 0.0006 | 45.0 | 135 | 0.0047 | 1.0 | | 0.0005 | 46.0 | 138 | 0.0047 | 1.0 | | 0.0005 | 47.0 | 141 | 0.0047 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0047 | 1.0 | | 0.0005 | 49.0 | 147 | 0.0047 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0047 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-5", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-5
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-5 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.3078 * Accuracy: 0.6930 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-6 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4331 - Accuracy: 0.7106 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6486 | 1.0 | 3 | 0.7901 | 0.25 | | 0.6418 | 2.0 | 6 | 0.9259 | 0.25 | | 0.6169 | 3.0 | 9 | 1.0574 | 0.25 | | 0.5639 | 4.0 | 12 | 1.1372 | 0.25 | | 0.4562 | 5.0 | 15 | 0.6090 | 0.5 | | 0.3105 | 6.0 | 18 | 0.4435 | 1.0 | | 0.2303 | 7.0 | 21 | 0.2804 | 1.0 | | 0.1388 | 8.0 | 24 | 0.2205 | 1.0 | | 0.0918 | 9.0 | 27 | 0.1282 | 1.0 | | 0.0447 | 10.0 | 30 | 0.0643 | 1.0 | | 0.0297 | 11.0 | 33 | 0.0361 | 1.0 | | 0.0159 | 12.0 | 36 | 0.0211 | 1.0 | | 0.0102 | 13.0 | 39 | 0.0155 | 1.0 | | 0.0061 | 14.0 | 42 | 0.0158 | 1.0 | | 0.0049 | 15.0 | 45 | 0.0189 | 1.0 | | 0.0035 | 16.0 | 48 | 0.0254 | 1.0 | | 0.0027 | 17.0 | 51 | 0.0305 | 1.0 | | 0.0021 | 18.0 | 54 | 0.0287 | 1.0 | | 0.0016 | 19.0 | 57 | 0.0215 | 1.0 | | 0.0016 | 20.0 | 60 | 0.0163 | 1.0 | | 0.0014 | 21.0 | 63 | 0.0138 | 1.0 | | 0.0015 | 22.0 | 66 | 0.0131 | 1.0 | | 0.001 | 23.0 | 69 | 0.0132 | 1.0 | | 0.0014 | 24.0 | 72 | 0.0126 | 1.0 | | 0.0011 | 25.0 | 75 | 0.0125 | 1.0 | | 0.001 | 26.0 | 78 | 0.0119 | 1.0 | | 0.0008 | 27.0 | 81 | 0.0110 | 1.0 | | 0.0007 | 28.0 | 84 | 0.0106 | 1.0 | | 0.0008 | 29.0 | 87 | 0.0095 | 1.0 | | 0.0009 | 30.0 | 90 | 0.0089 | 1.0 | | 0.0008 | 31.0 | 93 | 0.0083 | 1.0 | | 0.0007 | 32.0 | 96 | 0.0075 | 1.0 | | 0.0008 | 33.0 | 99 | 0.0066 | 1.0 | | 0.0006 | 34.0 | 102 | 0.0059 | 1.0 | | 0.0007 | 35.0 | 105 | 0.0054 | 1.0 | | 0.0008 | 36.0 | 108 | 0.0051 | 1.0 | | 0.0007 | 37.0 | 111 | 0.0049 | 1.0 | | 0.0007 | 38.0 | 114 | 0.0047 | 1.0 | | 0.0006 | 39.0 | 117 | 0.0045 | 1.0 | | 0.0006 | 40.0 | 120 | 0.0046 | 1.0 | | 0.0005 | 41.0 | 123 | 0.0045 | 1.0 | | 0.0006 | 42.0 | 126 | 0.0044 | 1.0 | | 0.0006 | 43.0 | 129 | 0.0043 | 1.0 | | 0.0006 | 44.0 | 132 | 0.0044 | 1.0 | | 0.0005 | 45.0 | 135 | 0.0045 | 1.0 | | 0.0006 | 46.0 | 138 | 0.0043 | 1.0 | | 0.0006 | 47.0 | 141 | 0.0043 | 1.0 | | 0.0006 | 48.0 | 144 | 0.0041 | 1.0 | | 0.0007 | 49.0 | 147 | 0.0042 | 1.0 | | 0.0005 | 50.0 | 150 | 0.0042 | 1.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-6", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-6
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-6 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.4331 * Accuracy: 0.7106 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-7 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7037 - Accuracy: 0.5008 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6864 | 1.0 | 3 | 0.7800 | 0.25 | | 0.6483 | 2.0 | 6 | 0.8067 | 0.25 | | 0.6028 | 3.0 | 9 | 0.8500 | 0.25 | | 0.4086 | 4.0 | 12 | 1.0661 | 0.25 | | 0.2923 | 5.0 | 15 | 1.2302 | 0.25 | | 0.2059 | 6.0 | 18 | 1.0312 | 0.5 | | 0.1238 | 7.0 | 21 | 1.1271 | 0.5 | | 0.0711 | 8.0 | 24 | 1.3100 | 0.5 | | 0.0453 | 9.0 | 27 | 1.4208 | 0.5 | | 0.0198 | 10.0 | 30 | 1.5988 | 0.5 | | 0.0135 | 11.0 | 33 | 1.9174 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-7", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-7
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-7 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7037 * Accuracy: 0.5008 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-8 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7414 - Accuracy: 0.5623 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6597 | 1.0 | 3 | 0.7716 | 0.25 | | 0.6376 | 2.0 | 6 | 0.7802 | 0.25 | | 0.5857 | 3.0 | 9 | 0.6625 | 0.75 | | 0.4024 | 4.0 | 12 | 0.5195 | 0.75 | | 0.2635 | 5.0 | 15 | 0.4222 | 1.0 | | 0.1714 | 6.0 | 18 | 0.4410 | 0.5 | | 0.1267 | 7.0 | 21 | 0.7773 | 0.75 | | 0.0582 | 8.0 | 24 | 0.9070 | 0.75 | | 0.0374 | 9.0 | 27 | 0.9539 | 0.75 | | 0.0204 | 10.0 | 30 | 1.0507 | 0.75 | | 0.012 | 11.0 | 33 | 1.2802 | 0.5 | | 0.0086 | 12.0 | 36 | 1.4272 | 0.5 | | 0.0049 | 13.0 | 39 | 1.4803 | 0.5 | | 0.0039 | 14.0 | 42 | 1.4912 | 0.5 | | 0.0031 | 15.0 | 45 | 1.5231 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-8", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-8
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-8 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7414 * Accuracy: 0.5623 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-v3-large__sst2__train-8-9 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6013 - Accuracy: 0.7210 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6757 | 1.0 | 3 | 0.7810 | 0.25 | | 0.6506 | 2.0 | 6 | 0.8102 | 0.25 | | 0.6463 | 3.0 | 9 | 0.8313 | 0.25 | | 0.5813 | 4.0 | 12 | 0.8858 | 0.25 | | 0.4635 | 5.0 | 15 | 0.8220 | 0.25 | | 0.3992 | 6.0 | 18 | 0.7226 | 0.5 | | 0.3281 | 7.0 | 21 | 0.6707 | 0.75 | | 0.2276 | 8.0 | 24 | 0.7515 | 0.75 | | 0.1674 | 9.0 | 27 | 0.6971 | 0.75 | | 0.0873 | 10.0 | 30 | 0.5419 | 0.75 | | 0.0525 | 11.0 | 33 | 0.5025 | 0.75 | | 0.0286 | 12.0 | 36 | 0.5229 | 0.75 | | 0.0149 | 13.0 | 39 | 0.5660 | 0.75 | | 0.0082 | 14.0 | 42 | 0.6954 | 0.75 | | 0.006 | 15.0 | 45 | 0.8649 | 0.75 | | 0.0043 | 16.0 | 48 | 1.0011 | 0.75 | | 0.0035 | 17.0 | 51 | 1.0909 | 0.75 | | 0.0021 | 18.0 | 54 | 1.1615 | 0.75 | | 0.0017 | 19.0 | 57 | 1.2147 | 0.75 | | 0.0013 | 20.0 | 60 | 1.2585 | 0.75 | | 0.0016 | 21.0 | 63 | 1.2917 | 0.75 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "deberta-v3-large__sst2__train-8-9", "results": []}]}
SetFit/deberta-v3-large__sst2__train-8-9
null
[ "transformers", "pytorch", "deberta-v2", "text-classification", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
deberta-v3-large\_\_sst2\_\_train-8-9 ===================================== This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6013 * Accuracy: 0.7210 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #deberta-v2 #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2707 - Accuracy: 0.517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0943 | 1.0 | 10 | 1.1095 | 0.3 | | 1.0602 | 2.0 | 20 | 1.1086 | 0.4 | | 1.0159 | 3.0 | 30 | 1.1165 | 0.4 | | 0.9027 | 4.0 | 40 | 1.1377 | 0.4 | | 0.8364 | 5.0 | 50 | 1.0126 | 0.5 | | 0.6653 | 6.0 | 60 | 0.9298 | 0.5 | | 0.535 | 7.0 | 70 | 0.9555 | 0.5 | | 0.3713 | 8.0 | 80 | 0.8543 | 0.4 | | 0.1633 | 9.0 | 90 | 0.9876 | 0.4 | | 0.1069 | 10.0 | 100 | 0.8383 | 0.6 | | 0.0591 | 11.0 | 110 | 0.8056 | 0.6 | | 0.0344 | 12.0 | 120 | 0.8915 | 0.6 | | 0.0265 | 13.0 | 130 | 0.8722 | 0.6 | | 0.0196 | 14.0 | 140 | 1.0064 | 0.6 | | 0.0158 | 15.0 | 150 | 1.0479 | 0.6 | | 0.0128 | 16.0 | 160 | 1.0723 | 0.6 | | 0.0121 | 17.0 | 170 | 1.0758 | 0.6 | | 0.0093 | 18.0 | 180 | 1.1236 | 0.6 | | 0.0085 | 19.0 | 190 | 1.1480 | 0.6 | | 0.0084 | 20.0 | 200 | 1.1651 | 0.6 | | 0.0077 | 21.0 | 210 | 1.1832 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-0", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-0 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.2707 * Accuracy: 0.517 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0424 - Accuracy: 0.5355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 10 | 1.1049 | 0.1 | | 1.0641 | 2.0 | 20 | 1.0768 | 0.3 | | 0.9742 | 3.0 | 30 | 1.0430 | 0.4 | | 0.8765 | 4.0 | 40 | 1.0058 | 0.4 | | 0.6979 | 5.0 | 50 | 0.8488 | 0.7 | | 0.563 | 6.0 | 60 | 0.7221 | 0.7 | | 0.4135 | 7.0 | 70 | 0.6587 | 0.8 | | 0.2509 | 8.0 | 80 | 0.5577 | 0.7 | | 0.0943 | 9.0 | 90 | 0.5840 | 0.7 | | 0.0541 | 10.0 | 100 | 0.6959 | 0.7 | | 0.0362 | 11.0 | 110 | 0.6884 | 0.6 | | 0.0254 | 12.0 | 120 | 0.9263 | 0.6 | | 0.0184 | 13.0 | 130 | 0.7992 | 0.6 | | 0.0172 | 14.0 | 140 | 0.7351 | 0.6 | | 0.0131 | 15.0 | 150 | 0.7664 | 0.6 | | 0.0117 | 16.0 | 160 | 0.8262 | 0.6 | | 0.0101 | 17.0 | 170 | 0.8839 | 0.6 | | 0.0089 | 18.0 | 180 | 0.9018 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-1", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-1 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0424 * Accuracy: 0.5355 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9210 - Accuracy: 0.5635 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0915 | 1.0 | 10 | 1.1051 | 0.4 | | 1.0663 | 2.0 | 20 | 1.0794 | 0.3 | | 1.0307 | 3.0 | 30 | 1.0664 | 0.5 | | 0.9443 | 4.0 | 40 | 1.0729 | 0.5 | | 0.8373 | 5.0 | 50 | 1.0175 | 0.4 | | 0.6892 | 6.0 | 60 | 0.9624 | 0.5 | | 0.538 | 7.0 | 70 | 0.9924 | 0.5 | | 0.4173 | 8.0 | 80 | 1.0136 | 0.6 | | 0.1846 | 9.0 | 90 | 1.0683 | 0.6 | | 0.1125 | 10.0 | 100 | 1.2376 | 0.6 | | 0.0754 | 11.0 | 110 | 1.2537 | 0.6 | | 0.0401 | 12.0 | 120 | 1.4387 | 0.6 | | 0.0285 | 13.0 | 130 | 1.5702 | 0.6 | | 0.0241 | 14.0 | 140 | 1.6795 | 0.6 | | 0.0175 | 15.0 | 150 | 1.7228 | 0.6 | | 0.0147 | 16.0 | 160 | 1.7892 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-2", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-2 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9210 * Accuracy: 0.5635 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0675 - Accuracy: 0.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0951 | 1.0 | 10 | 1.1346 | 0.1 | | 1.0424 | 2.0 | 20 | 1.1120 | 0.2 | | 0.957 | 3.0 | 30 | 1.1002 | 0.3 | | 0.7889 | 4.0 | 40 | 1.0838 | 0.4 | | 0.6162 | 5.0 | 50 | 1.0935 | 0.5 | | 0.4849 | 6.0 | 60 | 1.0867 | 0.5 | | 0.3089 | 7.0 | 70 | 1.1145 | 0.5 | | 0.2145 | 8.0 | 80 | 1.1278 | 0.6 | | 0.0805 | 9.0 | 90 | 1.2801 | 0.6 | | 0.0497 | 10.0 | 100 | 1.3296 | 0.6 | | 0.0328 | 11.0 | 110 | 1.2913 | 0.6 | | 0.0229 | 12.0 | 120 | 1.3692 | 0.6 | | 0.0186 | 13.0 | 130 | 1.4642 | 0.6 | | 0.0161 | 14.0 | 140 | 1.5568 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-3", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-3 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0675 * Accuracy: 0.44 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0903 - Accuracy: 0.4805 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0974 | 1.0 | 10 | 1.1139 | 0.1 | | 1.0637 | 2.0 | 20 | 1.0988 | 0.1 | | 0.9758 | 3.0 | 30 | 1.1013 | 0.1 | | 0.9012 | 4.0 | 40 | 1.0769 | 0.3 | | 0.6993 | 5.0 | 50 | 1.0484 | 0.6 | | 0.5676 | 6.0 | 60 | 1.0223 | 0.6 | | 0.4069 | 7.0 | 70 | 0.9190 | 0.6 | | 0.3192 | 8.0 | 80 | 1.1370 | 0.6 | | 0.1112 | 9.0 | 90 | 1.1728 | 0.6 | | 0.07 | 10.0 | 100 | 1.1998 | 0.6 | | 0.0397 | 11.0 | 110 | 1.3700 | 0.6 | | 0.027 | 12.0 | 120 | 1.3329 | 0.6 | | 0.021 | 13.0 | 130 | 1.2697 | 0.6 | | 0.0177 | 14.0 | 140 | 1.4195 | 0.6 | | 0.0142 | 15.0 | 150 | 1.5342 | 0.6 | | 0.0118 | 16.0 | 160 | 1.5999 | 0.6 | | 0.0108 | 17.0 | 170 | 1.6327 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-4", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-4 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0903 * Accuracy: 0.4805 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9907 - Accuracy: 0.49 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 10 | 1.1287 | 0.2 | | 1.0481 | 2.0 | 20 | 1.1136 | 0.2 | | 0.9498 | 3.0 | 30 | 1.1200 | 0.2 | | 0.8157 | 4.0 | 40 | 1.0771 | 0.2 | | 0.65 | 5.0 | 50 | 0.9733 | 0.4 | | 0.5021 | 6.0 | 60 | 1.0626 | 0.4 | | 0.3358 | 7.0 | 70 | 1.0787 | 0.4 | | 0.2017 | 8.0 | 80 | 1.3183 | 0.4 | | 0.088 | 9.0 | 90 | 1.2204 | 0.5 | | 0.0527 | 10.0 | 100 | 1.6892 | 0.4 | | 0.0337 | 11.0 | 110 | 1.6967 | 0.5 | | 0.0238 | 12.0 | 120 | 1.5436 | 0.5 | | 0.0183 | 13.0 | 130 | 1.7447 | 0.4 | | 0.0159 | 14.0 | 140 | 1.8999 | 0.4 | | 0.014 | 15.0 | 150 | 1.9004 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-5", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-5 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9907 * Accuracy: 0.49 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8331 - Accuracy: 0.625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0881 | 1.0 | 10 | 1.1248 | 0.1 | | 1.0586 | 2.0 | 20 | 1.1162 | 0.2 | | 0.9834 | 3.0 | 30 | 1.1199 | 0.3 | | 0.9271 | 4.0 | 40 | 1.0740 | 0.3 | | 0.7663 | 5.0 | 50 | 1.0183 | 0.5 | | 0.6042 | 6.0 | 60 | 1.0259 | 0.5 | | 0.4482 | 7.0 | 70 | 0.8699 | 0.7 | | 0.3072 | 8.0 | 80 | 1.0615 | 0.5 | | 0.1458 | 9.0 | 90 | 1.0164 | 0.5 | | 0.0838 | 10.0 | 100 | 1.0620 | 0.5 | | 0.055 | 11.0 | 110 | 1.1829 | 0.5 | | 0.0347 | 12.0 | 120 | 1.2815 | 0.4 | | 0.0244 | 13.0 | 130 | 1.2607 | 0.6 | | 0.0213 | 14.0 | 140 | 1.3695 | 0.5 | | 0.0169 | 15.0 | 150 | 1.4397 | 0.5 | | 0.0141 | 16.0 | 160 | 1.4388 | 0.6 | | 0.0122 | 17.0 | 170 | 1.4242 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-6", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-6 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8331 * Accuracy: 0.625 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9011 - Accuracy: 0.578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0968 | 1.0 | 10 | 1.1309 | 0.0 | | 1.0709 | 2.0 | 20 | 1.1237 | 0.1 | | 0.9929 | 3.0 | 30 | 1.1254 | 0.1 | | 0.878 | 4.0 | 40 | 1.1206 | 0.5 | | 0.7409 | 5.0 | 50 | 1.0831 | 0.1 | | 0.5663 | 6.0 | 60 | 0.9830 | 0.6 | | 0.4105 | 7.0 | 70 | 0.9919 | 0.5 | | 0.2912 | 8.0 | 80 | 1.0472 | 0.6 | | 0.1013 | 9.0 | 90 | 1.1617 | 0.4 | | 0.0611 | 10.0 | 100 | 1.2789 | 0.6 | | 0.039 | 11.0 | 110 | 1.4091 | 0.4 | | 0.0272 | 12.0 | 120 | 1.4974 | 0.4 | | 0.0189 | 13.0 | 130 | 1.4845 | 0.5 | | 0.018 | 14.0 | 140 | 1.4924 | 0.5 | | 0.0131 | 15.0 | 150 | 1.5206 | 0.6 | | 0.0116 | 16.0 | 160 | 1.5858 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-7", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-7 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9011 * Accuracy: 0.578 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0704 - Accuracy: 0.394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1031 | 1.0 | 10 | 1.1286 | 0.1 | | 1.0648 | 2.0 | 20 | 1.1157 | 0.3 | | 0.9982 | 3.0 | 30 | 1.1412 | 0.2 | | 0.9283 | 4.0 | 40 | 1.2053 | 0.2 | | 0.7958 | 5.0 | 50 | 1.1466 | 0.2 | | 0.6668 | 6.0 | 60 | 1.1783 | 0.3 | | 0.5068 | 7.0 | 70 | 1.2992 | 0.3 | | 0.3741 | 8.0 | 80 | 1.3483 | 0.3 | | 0.1653 | 9.0 | 90 | 1.4533 | 0.2 | | 0.0946 | 10.0 | 100 | 1.6292 | 0.2 | | 0.0569 | 11.0 | 110 | 1.8381 | 0.2 | | 0.0346 | 12.0 | 120 | 2.0781 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-8", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-8 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0704 * Accuracy: 0.394 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1121 - Accuracy: 0.16 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1038 | 1.0 | 10 | 1.1243 | 0.1 | | 1.0859 | 2.0 | 20 | 1.1182 | 0.2 | | 1.0234 | 3.0 | 30 | 1.1442 | 0.3 | | 0.9493 | 4.0 | 40 | 1.2239 | 0.1 | | 0.8114 | 5.0 | 50 | 1.2023 | 0.4 | | 0.6464 | 6.0 | 60 | 1.2329 | 0.4 | | 0.4731 | 7.0 | 70 | 1.2971 | 0.5 | | 0.3355 | 8.0 | 80 | 1.3913 | 0.4 | | 0.1268 | 9.0 | 90 | 1.4670 | 0.5 | | 0.0747 | 10.0 | 100 | 1.7961 | 0.4 | | 0.0449 | 11.0 | 110 | 1.8168 | 0.5 | | 0.0307 | 12.0 | 120 | 1.9307 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-16-9", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-16-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-16-9 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1121 * Accuracy: 0.16 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7714 - Accuracy: 0.705 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0871 | 1.0 | 19 | 1.0704 | 0.45 | | 1.0019 | 2.0 | 38 | 1.0167 | 0.55 | | 0.8412 | 3.0 | 57 | 0.9134 | 0.55 | | 0.6047 | 4.0 | 76 | 0.8430 | 0.6 | | 0.3746 | 5.0 | 95 | 0.8315 | 0.6 | | 0.1885 | 6.0 | 114 | 0.8585 | 0.6 | | 0.0772 | 7.0 | 133 | 0.9443 | 0.65 | | 0.0312 | 8.0 | 152 | 1.1019 | 0.65 | | 0.0161 | 9.0 | 171 | 1.1420 | 0.65 | | 0.0102 | 10.0 | 190 | 1.2773 | 0.65 | | 0.0077 | 11.0 | 209 | 1.2454 | 0.65 | | 0.0064 | 12.0 | 228 | 1.2785 | 0.65 | | 0.006 | 13.0 | 247 | 1.3834 | 0.65 | | 0.0045 | 14.0 | 266 | 1.4139 | 0.65 | | 0.0043 | 15.0 | 285 | 1.4056 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-0", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-0 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7714 * Accuracy: 0.705 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0606 - Accuracy: 0.4745 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0941 | 1.0 | 19 | 1.1045 | 0.2 | | 0.9967 | 2.0 | 38 | 1.1164 | 0.35 | | 0.8164 | 3.0 | 57 | 1.1570 | 0.4 | | 0.5884 | 4.0 | 76 | 1.2403 | 0.35 | | 0.3322 | 5.0 | 95 | 1.3815 | 0.35 | | 0.156 | 6.0 | 114 | 1.8102 | 0.3 | | 0.0576 | 7.0 | 133 | 2.1439 | 0.4 | | 0.0227 | 8.0 | 152 | 2.4368 | 0.3 | | 0.0133 | 9.0 | 171 | 2.5994 | 0.4 | | 0.009 | 10.0 | 190 | 2.7388 | 0.35 | | 0.0072 | 11.0 | 209 | 2.8287 | 0.35 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-1", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-1 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0606 * Accuracy: 0.4745 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7136 - Accuracy: 0.679 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1052 | 1.0 | 19 | 1.0726 | 0.45 | | 1.0421 | 2.0 | 38 | 1.0225 | 0.5 | | 0.9173 | 3.0 | 57 | 0.9164 | 0.6 | | 0.6822 | 4.0 | 76 | 0.8251 | 0.7 | | 0.4407 | 5.0 | 95 | 0.8908 | 0.5 | | 0.2367 | 6.0 | 114 | 0.6772 | 0.75 | | 0.1145 | 7.0 | 133 | 0.7792 | 0.65 | | 0.0479 | 8.0 | 152 | 1.0657 | 0.6 | | 0.0186 | 9.0 | 171 | 1.2228 | 0.65 | | 0.0111 | 10.0 | 190 | 1.1100 | 0.6 | | 0.0083 | 11.0 | 209 | 1.1991 | 0.65 | | 0.0067 | 12.0 | 228 | 1.2654 | 0.65 | | 0.0061 | 13.0 | 247 | 1.2837 | 0.65 | | 0.0046 | 14.0 | 266 | 1.2860 | 0.6 | | 0.0043 | 15.0 | 285 | 1.3160 | 0.65 | | 0.0037 | 16.0 | 304 | 1.3323 | 0.65 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-2", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-2 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7136 * Accuracy: 0.679 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 - Accuracy: 0.661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1041 | 1.0 | 19 | 1.0658 | 0.5 | | 1.009 | 2.0 | 38 | 0.9892 | 0.7 | | 0.7925 | 3.0 | 57 | 0.8516 | 0.7 | | 0.5279 | 4.0 | 76 | 0.7877 | 0.65 | | 0.2932 | 5.0 | 95 | 0.7592 | 0.65 | | 0.1166 | 6.0 | 114 | 0.9437 | 0.65 | | 0.044 | 7.0 | 133 | 1.0315 | 0.75 | | 0.0197 | 8.0 | 152 | 1.3513 | 0.55 | | 0.0126 | 9.0 | 171 | 1.1702 | 0.7 | | 0.0083 | 10.0 | 190 | 1.2272 | 0.7 | | 0.0068 | 11.0 | 209 | 1.2889 | 0.7 | | 0.0059 | 12.0 | 228 | 1.3073 | 0.7 | | 0.0052 | 13.0 | 247 | 1.3595 | 0.7 | | 0.0041 | 14.0 | 266 | 1.4443 | 0.7 | | 0.0038 | 15.0 | 285 | 1.4709 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-3", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-3 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8286 * Accuracy: 0.661 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7384 - Accuracy: 0.724 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1013 | 1.0 | 19 | 1.0733 | 0.55 | | 1.0226 | 2.0 | 38 | 1.0064 | 0.65 | | 0.8539 | 3.0 | 57 | 0.8758 | 0.75 | | 0.584 | 4.0 | 76 | 0.6941 | 0.7 | | 0.2813 | 5.0 | 95 | 0.5151 | 0.7 | | 0.1122 | 6.0 | 114 | 0.4351 | 0.8 | | 0.0432 | 7.0 | 133 | 0.4896 | 0.85 | | 0.0199 | 8.0 | 152 | 0.5391 | 0.85 | | 0.0126 | 9.0 | 171 | 0.5200 | 0.85 | | 0.0085 | 10.0 | 190 | 0.5622 | 0.85 | | 0.0069 | 11.0 | 209 | 0.5950 | 0.85 | | 0.0058 | 12.0 | 228 | 0.6015 | 0.85 | | 0.0053 | 13.0 | 247 | 0.6120 | 0.85 | | 0.0042 | 14.0 | 266 | 0.6347 | 0.85 | | 0.0039 | 15.0 | 285 | 0.6453 | 0.85 | | 0.0034 | 16.0 | 304 | 0.6660 | 0.85 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-4", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-4 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7384 * Accuracy: 0.724 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1327 - Accuracy: 0.57 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0972 | 1.0 | 19 | 1.0470 | 0.45 | | 0.9738 | 2.0 | 38 | 0.9244 | 0.65 | | 0.7722 | 3.0 | 57 | 0.8612 | 0.65 | | 0.4929 | 4.0 | 76 | 0.6759 | 0.75 | | 0.2435 | 5.0 | 95 | 0.7273 | 0.7 | | 0.0929 | 6.0 | 114 | 0.6444 | 0.85 | | 0.0357 | 7.0 | 133 | 0.7671 | 0.8 | | 0.0173 | 8.0 | 152 | 0.7599 | 0.75 | | 0.0121 | 9.0 | 171 | 0.8140 | 0.8 | | 0.0081 | 10.0 | 190 | 0.7861 | 0.8 | | 0.0066 | 11.0 | 209 | 0.8318 | 0.8 | | 0.0057 | 12.0 | 228 | 0.8777 | 0.8 | | 0.0053 | 13.0 | 247 | 0.8501 | 0.8 | | 0.004 | 14.0 | 266 | 0.8603 | 0.8 | | 0.004 | 15.0 | 285 | 0.8787 | 0.8 | | 0.0034 | 16.0 | 304 | 0.8969 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-5", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-5 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1327 * Accuracy: 0.57 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0523 - Accuracy: 0.663 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0957 | 1.0 | 19 | 1.0696 | 0.6 | | 1.0107 | 2.0 | 38 | 1.0047 | 0.55 | | 0.8257 | 3.0 | 57 | 0.8358 | 0.8 | | 0.6006 | 4.0 | 76 | 0.7641 | 0.6 | | 0.4172 | 5.0 | 95 | 0.5931 | 0.8 | | 0.2639 | 6.0 | 114 | 0.5570 | 0.7 | | 0.1314 | 7.0 | 133 | 0.5017 | 0.65 | | 0.0503 | 8.0 | 152 | 0.3115 | 0.75 | | 0.023 | 9.0 | 171 | 0.4353 | 0.85 | | 0.0128 | 10.0 | 190 | 0.5461 | 0.75 | | 0.0092 | 11.0 | 209 | 0.5045 | 0.8 | | 0.007 | 12.0 | 228 | 0.5014 | 0.8 | | 0.0064 | 13.0 | 247 | 0.5070 | 0.8 | | 0.0049 | 14.0 | 266 | 0.4681 | 0.8 | | 0.0044 | 15.0 | 285 | 0.4701 | 0.8 | | 0.0039 | 16.0 | 304 | 0.4862 | 0.8 | | 0.0036 | 17.0 | 323 | 0.4742 | 0.8 | | 0.0035 | 18.0 | 342 | 0.4652 | 0.8 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-6", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-6 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0523 * Accuracy: 0.663 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8210 - Accuracy: 0.6305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0989 | 1.0 | 19 | 1.0655 | 0.4 | | 1.0102 | 2.0 | 38 | 0.9927 | 0.6 | | 0.8063 | 3.0 | 57 | 0.9117 | 0.5 | | 0.5284 | 4.0 | 76 | 0.8058 | 0.55 | | 0.2447 | 5.0 | 95 | 0.8393 | 0.45 | | 0.098 | 6.0 | 114 | 0.8438 | 0.6 | | 0.0388 | 7.0 | 133 | 1.1901 | 0.45 | | 0.0188 | 8.0 | 152 | 1.4429 | 0.45 | | 0.0121 | 9.0 | 171 | 1.3648 | 0.4 | | 0.0082 | 10.0 | 190 | 1.4768 | 0.4 | | 0.0066 | 11.0 | 209 | 1.4830 | 0.45 | | 0.0057 | 12.0 | 228 | 1.4936 | 0.45 | | 0.0053 | 13.0 | 247 | 1.5649 | 0.4 | | 0.0041 | 14.0 | 266 | 1.6306 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-7", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-7 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8210 * Accuracy: 0.6305 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9191 - Accuracy: 0.632 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1008 | 1.0 | 19 | 1.0877 | 0.4 | | 1.0354 | 2.0 | 38 | 1.0593 | 0.35 | | 0.8765 | 3.0 | 57 | 0.9722 | 0.5 | | 0.6365 | 4.0 | 76 | 0.9271 | 0.55 | | 0.3944 | 5.0 | 95 | 0.7852 | 0.5 | | 0.2219 | 6.0 | 114 | 0.9360 | 0.55 | | 0.126 | 7.0 | 133 | 1.0610 | 0.55 | | 0.0389 | 8.0 | 152 | 1.0884 | 0.6 | | 0.0191 | 9.0 | 171 | 1.3483 | 0.55 | | 0.0108 | 10.0 | 190 | 1.4226 | 0.55 | | 0.0082 | 11.0 | 209 | 1.4270 | 0.55 | | 0.0065 | 12.0 | 228 | 1.5074 | 0.55 | | 0.0059 | 13.0 | 247 | 1.5577 | 0.55 | | 0.0044 | 14.0 | 266 | 1.5798 | 0.55 | | 0.0042 | 15.0 | 285 | 1.6196 | 0.55 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-8", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-8 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9191 * Accuracy: 0.632 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7075 - Accuracy: 0.692 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1054 | 1.0 | 19 | 1.0938 | 0.35 | | 1.0338 | 2.0 | 38 | 1.0563 | 0.65 | | 0.8622 | 3.0 | 57 | 0.9372 | 0.6 | | 0.5919 | 4.0 | 76 | 0.8461 | 0.6 | | 0.3357 | 5.0 | 95 | 1.0206 | 0.45 | | 0.1621 | 6.0 | 114 | 0.9802 | 0.7 | | 0.0637 | 7.0 | 133 | 1.2434 | 0.65 | | 0.0261 | 8.0 | 152 | 1.3865 | 0.65 | | 0.0156 | 9.0 | 171 | 1.4414 | 0.7 | | 0.01 | 10.0 | 190 | 1.5502 | 0.7 | | 0.0079 | 11.0 | 209 | 1.6102 | 0.7 | | 0.0062 | 12.0 | 228 | 1.6525 | 0.7 | | 0.0058 | 13.0 | 247 | 1.6884 | 0.7 | | 0.0046 | 14.0 | 266 | 1.7479 | 0.7 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-32-9", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-32-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-32-9 ================================================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7075 * Accuracy: 0.692 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1097 - Accuracy: 0.132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1065 | 1.0 | 5 | 1.1287 | 0.0 | | 1.0592 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0059 | 3.0 | 15 | 1.1959 | 0.0 | | 0.9129 | 4.0 | 20 | 1.2410 | 0.0 | | 0.8231 | 5.0 | 25 | 1.2820 | 0.0 | | 0.7192 | 6.0 | 30 | 1.3361 | 0.0 | | 0.6121 | 7.0 | 35 | 1.4176 | 0.0 | | 0.5055 | 8.0 | 40 | 1.5111 | 0.0 | | 0.4002 | 9.0 | 45 | 1.5572 | 0.0 | | 0.3788 | 10.0 | 50 | 1.6733 | 0.0 | | 0.2755 | 11.0 | 55 | 1.7381 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-0", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-0 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1097 * Accuracy: 0.132 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1013 - Accuracy: 0.0915 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0866 | 1.0 | 5 | 1.1363 | 0.0 | | 1.0439 | 2.0 | 10 | 1.1803 | 0.0 | | 1.0227 | 3.0 | 15 | 1.2162 | 0.2 | | 0.9111 | 4.0 | 20 | 1.2619 | 0.0 | | 0.8243 | 5.0 | 25 | 1.2929 | 0.2 | | 0.7488 | 6.0 | 30 | 1.3010 | 0.2 | | 0.62 | 7.0 | 35 | 1.3011 | 0.2 | | 0.5054 | 8.0 | 40 | 1.2931 | 0.4 | | 0.4191 | 9.0 | 45 | 1.3274 | 0.4 | | 0.4107 | 10.0 | 50 | 1.3259 | 0.4 | | 0.3376 | 11.0 | 55 | 1.2800 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-1", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-1 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1013 * Accuracy: 0.0915 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1019 - Accuracy: 0.139 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1082 | 1.0 | 5 | 1.1432 | 0.0 | | 1.0524 | 2.0 | 10 | 1.1613 | 0.0 | | 1.0641 | 3.0 | 15 | 1.1547 | 0.0 | | 0.9592 | 4.0 | 20 | 1.1680 | 0.0 | | 0.9085 | 5.0 | 25 | 1.1762 | 0.0 | | 0.8508 | 6.0 | 30 | 1.1809 | 0.2 | | 0.7263 | 7.0 | 35 | 1.1912 | 0.2 | | 0.6448 | 8.0 | 40 | 1.2100 | 0.2 | | 0.5378 | 9.0 | 45 | 1.2037 | 0.2 | | 0.5031 | 10.0 | 50 | 1.2096 | 0.2 | | 0.4041 | 11.0 | 55 | 1.2203 | 0.2 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-2", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-2 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1019 * Accuracy: 0.139 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.9681 - Accuracy: 0.549 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1073 | 1.0 | 5 | 1.1393 | 0.0 | | 1.0392 | 2.0 | 10 | 1.1729 | 0.0 | | 1.0302 | 3.0 | 15 | 1.1694 | 0.2 | | 0.9176 | 4.0 | 20 | 1.1846 | 0.2 | | 0.8339 | 5.0 | 25 | 1.1663 | 0.2 | | 0.7533 | 6.0 | 30 | 1.1513 | 0.4 | | 0.6327 | 7.0 | 35 | 1.1474 | 0.4 | | 0.4402 | 8.0 | 40 | 1.1385 | 0.4 | | 0.3752 | 9.0 | 45 | 1.0965 | 0.2 | | 0.3448 | 10.0 | 50 | 1.0357 | 0.2 | | 0.2582 | 11.0 | 55 | 1.0438 | 0.2 | | 0.1903 | 12.0 | 60 | 1.0561 | 0.2 | | 0.1479 | 13.0 | 65 | 1.0569 | 0.2 | | 0.1129 | 14.0 | 70 | 1.0455 | 0.2 | | 0.1071 | 15.0 | 75 | 1.0416 | 0.4 | | 0.0672 | 16.0 | 80 | 1.1164 | 0.4 | | 0.0561 | 17.0 | 85 | 1.1846 | 0.6 | | 0.0463 | 18.0 | 90 | 1.2040 | 0.6 | | 0.0431 | 19.0 | 95 | 1.2078 | 0.6 | | 0.0314 | 20.0 | 100 | 1.2368 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-3", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-3 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.9681 * Accuracy: 0.549 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1045 - Accuracy: 0.128 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1115 | 1.0 | 5 | 1.1174 | 0.0 | | 1.0518 | 2.0 | 10 | 1.1379 | 0.0 | | 1.0445 | 3.0 | 15 | 1.1287 | 0.0 | | 0.9306 | 4.0 | 20 | 1.1324 | 0.2 | | 0.8242 | 5.0 | 25 | 1.1219 | 0.2 | | 0.7986 | 6.0 | 30 | 1.1369 | 0.4 | | 0.7369 | 7.0 | 35 | 1.1732 | 0.2 | | 0.534 | 8.0 | 40 | 1.1828 | 0.6 | | 0.4285 | 9.0 | 45 | 1.1482 | 0.6 | | 0.3691 | 10.0 | 50 | 1.1401 | 0.6 | | 0.3215 | 11.0 | 55 | 1.1286 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-4", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-4 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1045 * Accuracy: 0.128 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7214 - Accuracy: 0.37 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0995 | 1.0 | 5 | 1.1301 | 0.0 | | 1.0227 | 2.0 | 10 | 1.1727 | 0.0 | | 1.0337 | 3.0 | 15 | 1.1734 | 0.2 | | 0.9137 | 4.0 | 20 | 1.1829 | 0.2 | | 0.8065 | 5.0 | 25 | 1.1496 | 0.4 | | 0.7038 | 6.0 | 30 | 1.1101 | 0.4 | | 0.6246 | 7.0 | 35 | 1.0982 | 0.2 | | 0.4481 | 8.0 | 40 | 1.0913 | 0.2 | | 0.3696 | 9.0 | 45 | 1.0585 | 0.4 | | 0.3137 | 10.0 | 50 | 1.0418 | 0.4 | | 0.2482 | 11.0 | 55 | 1.0078 | 0.4 | | 0.196 | 12.0 | 60 | 0.9887 | 0.6 | | 0.1344 | 13.0 | 65 | 0.9719 | 0.6 | | 0.1014 | 14.0 | 70 | 1.0053 | 0.6 | | 0.111 | 15.0 | 75 | 0.9653 | 0.6 | | 0.0643 | 16.0 | 80 | 0.9018 | 0.6 | | 0.0559 | 17.0 | 85 | 0.9393 | 0.6 | | 0.0412 | 18.0 | 90 | 1.0210 | 0.6 | | 0.0465 | 19.0 | 95 | 0.9965 | 0.6 | | 0.0328 | 20.0 | 100 | 0.9739 | 0.6 | | 0.0289 | 21.0 | 105 | 0.9796 | 0.6 | | 0.0271 | 22.0 | 110 | 0.9968 | 0.6 | | 0.0239 | 23.0 | 115 | 1.0143 | 0.6 | | 0.0201 | 24.0 | 120 | 1.0459 | 0.6 | | 0.0185 | 25.0 | 125 | 1.0698 | 0.6 | | 0.0183 | 26.0 | 130 | 1.0970 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-5", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-5 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.7214 * Accuracy: 0.37 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1275 - Accuracy: 0.3795 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.11 | 1.0 | 5 | 1.1184 | 0.0 | | 1.0608 | 2.0 | 10 | 1.1227 | 0.0 | | 1.0484 | 3.0 | 15 | 1.1009 | 0.2 | | 0.9614 | 4.0 | 20 | 1.1009 | 0.2 | | 0.8545 | 5.0 | 25 | 1.0772 | 0.2 | | 0.8241 | 6.0 | 30 | 1.0457 | 0.2 | | 0.708 | 7.0 | 35 | 1.0301 | 0.4 | | 0.5045 | 8.0 | 40 | 1.0325 | 0.4 | | 0.4175 | 9.0 | 45 | 1.0051 | 0.4 | | 0.3446 | 10.0 | 50 | 0.9610 | 0.4 | | 0.2851 | 11.0 | 55 | 0.9954 | 0.4 | | 0.1808 | 12.0 | 60 | 1.0561 | 0.4 | | 0.1435 | 13.0 | 65 | 1.0218 | 0.4 | | 0.1019 | 14.0 | 70 | 1.0254 | 0.4 | | 0.0908 | 15.0 | 75 | 0.9935 | 0.4 | | 0.0591 | 16.0 | 80 | 1.0090 | 0.4 | | 0.0512 | 17.0 | 85 | 1.0884 | 0.4 | | 0.0397 | 18.0 | 90 | 1.2732 | 0.4 | | 0.039 | 19.0 | 95 | 1.2979 | 0.6 | | 0.0325 | 20.0 | 100 | 1.2705 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-6", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-6 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1275 * Accuracy: 0.3795 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1206 - Accuracy: 0.0555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1186 | 1.0 | 5 | 1.1631 | 0.0 | | 1.058 | 2.0 | 10 | 1.1986 | 0.0 | | 1.081 | 3.0 | 15 | 1.2111 | 0.0 | | 1.0118 | 4.0 | 20 | 1.2373 | 0.0 | | 0.9404 | 5.0 | 25 | 1.2645 | 0.0 | | 0.9146 | 6.0 | 30 | 1.3258 | 0.0 | | 0.8285 | 7.0 | 35 | 1.3789 | 0.0 | | 0.6422 | 8.0 | 40 | 1.3783 | 0.0 | | 0.6156 | 9.0 | 45 | 1.3691 | 0.0 | | 0.5321 | 10.0 | 50 | 1.3693 | 0.0 | | 0.4504 | 11.0 | 55 | 1.4000 | 0.0 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-7", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-7 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1206 * Accuracy: 0.0555 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0005 - Accuracy: 0.518 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1029 | 1.0 | 5 | 1.1295 | 0.0 | | 1.0472 | 2.0 | 10 | 1.1531 | 0.0 | | 1.054 | 3.0 | 15 | 1.1475 | 0.0 | | 0.9366 | 4.0 | 20 | 1.1515 | 0.0 | | 0.8698 | 5.0 | 25 | 1.1236 | 0.4 | | 0.8148 | 6.0 | 30 | 1.0716 | 0.6 | | 0.6884 | 7.0 | 35 | 1.0662 | 0.6 | | 0.5641 | 8.0 | 40 | 1.0671 | 0.6 | | 0.5 | 9.0 | 45 | 1.0282 | 0.6 | | 0.3882 | 10.0 | 50 | 1.0500 | 0.6 | | 0.3522 | 11.0 | 55 | 1.1381 | 0.6 | | 0.2492 | 12.0 | 60 | 1.1278 | 0.6 | | 0.2063 | 13.0 | 65 | 1.0731 | 0.6 | | 0.1608 | 14.0 | 70 | 1.1339 | 0.6 | | 0.1448 | 15.0 | 75 | 1.1892 | 0.6 | | 0.0925 | 16.0 | 80 | 1.1840 | 0.6 | | 0.0768 | 17.0 | 85 | 1.0608 | 0.6 | | 0.0585 | 18.0 | 90 | 1.1073 | 0.6 | | 0.0592 | 19.0 | 95 | 1.3134 | 0.6 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-8", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-8 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0005 * Accuracy: 0.518 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__hate_speech_offensive__train-8-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0959 - Accuracy: 0.093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1068 | 1.0 | 5 | 1.1545 | 0.0 | | 1.0494 | 2.0 | 10 | 1.1971 | 0.0 | | 1.0612 | 3.0 | 15 | 1.2164 | 0.0 | | 0.9517 | 4.0 | 20 | 1.2545 | 0.0 | | 0.8874 | 5.0 | 25 | 1.2699 | 0.0 | | 0.8598 | 6.0 | 30 | 1.2835 | 0.0 | | 0.7006 | 7.0 | 35 | 1.3139 | 0.0 | | 0.5969 | 8.0 | 40 | 1.3116 | 0.2 | | 0.4769 | 9.0 | 45 | 1.3124 | 0.4 | | 0.4352 | 10.0 | 50 | 1.3541 | 0.4 | | 0.3231 | 11.0 | 55 | 1.3919 | 0.4 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__hate_speech_offensive__train-8-9", "results": []}]}
SetFit/distilbert-base-uncased__hate_speech_offensive__train-8-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_hate\_speech\_offensive\_\_train-8-9 =============================================================== This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.0959 * Accuracy: 0.093 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__all-train This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2496 - Accuracy: 0.8962 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3643 | 1.0 | 433 | 0.2496 | 0.8962 | | 0.196 | 2.0 | 866 | 0.2548 | 0.9110 | | 0.0915 | 3.0 | 1299 | 0.4483 | 0.8957 | | 0.0505 | 4.0 | 1732 | 0.4968 | 0.9044 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1+cu102 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased__sst2__all-train", "results": []}]}
SetFit/distilbert-base-uncased__sst2__all-train
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_all-train ============================================ This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.2496 * Accuracy: 0.8962 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.1+cu102 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.1+cu102\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6903 - Accuracy: 0.5091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6934 | 1.0 | 7 | 0.7142 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7379 | 0.2857 | | 0.6282 | 3.0 | 21 | 0.7769 | 0.2857 | | 0.5193 | 4.0 | 28 | 0.8799 | 0.2857 | | 0.5104 | 5.0 | 35 | 0.8380 | 0.4286 | | 0.2504 | 6.0 | 42 | 0.8622 | 0.4286 | | 0.1794 | 7.0 | 49 | 0.9227 | 0.4286 | | 0.1156 | 8.0 | 56 | 0.8479 | 0.4286 | | 0.0709 | 9.0 | 63 | 1.0929 | 0.2857 | | 0.0471 | 10.0 | 70 | 1.2189 | 0.2857 | | 0.0288 | 11.0 | 77 | 1.2026 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-0", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-0 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6903 * Accuracy: 0.5091 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6012 - Accuracy: 0.6766 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6983 | 1.0 | 7 | 0.7036 | 0.2857 | | 0.6836 | 2.0 | 14 | 0.7181 | 0.2857 | | 0.645 | 3.0 | 21 | 0.7381 | 0.2857 | | 0.5902 | 4.0 | 28 | 0.7746 | 0.2857 | | 0.5799 | 5.0 | 35 | 0.7242 | 0.5714 | | 0.3584 | 6.0 | 42 | 0.6935 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.7041 | 0.5714 | | 0.1815 | 8.0 | 56 | 0.5930 | 0.7143 | | 0.0827 | 9.0 | 63 | 0.6976 | 0.7143 | | 0.0613 | 10.0 | 70 | 0.7346 | 0.7143 | | 0.0356 | 11.0 | 77 | 0.6992 | 0.5714 | | 0.0158 | 12.0 | 84 | 0.7328 | 0.5714 | | 0.013 | 13.0 | 91 | 0.7819 | 0.5714 | | 0.0103 | 14.0 | 98 | 0.8589 | 0.5714 | | 0.0087 | 15.0 | 105 | 0.9177 | 0.5714 | | 0.0076 | 16.0 | 112 | 0.9519 | 0.5714 | | 0.0078 | 17.0 | 119 | 0.9556 | 0.5714 | | 0.006 | 18.0 | 126 | 0.9542 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-1", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-1 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6012 * Accuracy: 0.6766 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6748 - Accuracy: 0.6315 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7054 | 0.2857 | | 0.6711 | 2.0 | 14 | 0.7208 | 0.2857 | | 0.6311 | 3.0 | 21 | 0.7365 | 0.2857 | | 0.551 | 4.0 | 28 | 0.7657 | 0.5714 | | 0.5599 | 5.0 | 35 | 0.6915 | 0.5714 | | 0.3167 | 6.0 | 42 | 0.7134 | 0.5714 | | 0.2489 | 7.0 | 49 | 0.7892 | 0.5714 | | 0.1985 | 8.0 | 56 | 0.6756 | 0.7143 | | 0.0864 | 9.0 | 63 | 0.8059 | 0.5714 | | 0.0903 | 10.0 | 70 | 0.8165 | 0.7143 | | 0.0429 | 11.0 | 77 | 0.7947 | 0.7143 | | 0.0186 | 12.0 | 84 | 0.8570 | 0.7143 | | 0.0146 | 13.0 | 91 | 0.9346 | 0.7143 | | 0.011 | 14.0 | 98 | 0.9804 | 0.7143 | | 0.0098 | 15.0 | 105 | 1.0136 | 0.7143 | | 0.0086 | 16.0 | 112 | 1.0424 | 0.7143 | | 0.0089 | 17.0 | 119 | 1.0736 | 0.7143 | | 0.0068 | 18.0 | 126 | 1.0808 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-2", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-2 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6748 * Accuracy: 0.6315 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7887 - Accuracy: 0.6458 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6928 | 1.0 | 7 | 0.6973 | 0.4286 | | 0.675 | 2.0 | 14 | 0.7001 | 0.4286 | | 0.6513 | 3.0 | 21 | 0.6959 | 0.4286 | | 0.5702 | 4.0 | 28 | 0.6993 | 0.4286 | | 0.5389 | 5.0 | 35 | 0.6020 | 0.7143 | | 0.3386 | 6.0 | 42 | 0.5326 | 0.5714 | | 0.2596 | 7.0 | 49 | 0.4943 | 0.7143 | | 0.1633 | 8.0 | 56 | 0.3589 | 0.8571 | | 0.1086 | 9.0 | 63 | 0.2924 | 0.8571 | | 0.0641 | 10.0 | 70 | 0.2687 | 0.8571 | | 0.0409 | 11.0 | 77 | 0.2202 | 0.8571 | | 0.0181 | 12.0 | 84 | 0.2445 | 0.8571 | | 0.0141 | 13.0 | 91 | 0.2885 | 0.8571 | | 0.0108 | 14.0 | 98 | 0.3069 | 0.8571 | | 0.009 | 15.0 | 105 | 0.3006 | 0.8571 | | 0.0084 | 16.0 | 112 | 0.2834 | 0.8571 | | 0.0088 | 17.0 | 119 | 0.2736 | 0.8571 | | 0.0062 | 18.0 | 126 | 0.2579 | 0.8571 | | 0.0058 | 19.0 | 133 | 0.2609 | 0.8571 | | 0.0057 | 20.0 | 140 | 0.2563 | 0.8571 | | 0.0049 | 21.0 | 147 | 0.2582 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-3", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-3 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.7887 * Accuracy: 0.6458 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1501 - Accuracy: 0.6387 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7043 | 1.0 | 7 | 0.7139 | 0.2857 | | 0.68 | 2.0 | 14 | 0.7398 | 0.2857 | | 0.641 | 3.0 | 21 | 0.7723 | 0.2857 | | 0.5424 | 4.0 | 28 | 0.8391 | 0.2857 | | 0.5988 | 5.0 | 35 | 0.7761 | 0.2857 | | 0.3698 | 6.0 | 42 | 0.7707 | 0.4286 | | 0.3204 | 7.0 | 49 | 0.8290 | 0.4286 | | 0.2882 | 8.0 | 56 | 0.6551 | 0.5714 | | 0.1512 | 9.0 | 63 | 0.5652 | 0.5714 | | 0.1302 | 10.0 | 70 | 0.5278 | 0.5714 | | 0.1043 | 11.0 | 77 | 0.4987 | 0.7143 | | 0.0272 | 12.0 | 84 | 0.5278 | 0.5714 | | 0.0201 | 13.0 | 91 | 0.5307 | 0.5714 | | 0.0129 | 14.0 | 98 | 0.5382 | 0.5714 | | 0.0117 | 15.0 | 105 | 0.5227 | 0.5714 | | 0.0094 | 16.0 | 112 | 0.5066 | 0.7143 | | 0.0104 | 17.0 | 119 | 0.4869 | 0.7143 | | 0.0069 | 18.0 | 126 | 0.4786 | 0.7143 | | 0.0062 | 19.0 | 133 | 0.4707 | 0.7143 | | 0.0065 | 20.0 | 140 | 0.4669 | 0.7143 | | 0.0051 | 21.0 | 147 | 0.4686 | 0.7143 | | 0.0049 | 22.0 | 154 | 0.4784 | 0.7143 | | 0.0046 | 23.0 | 161 | 0.4839 | 0.7143 | | 0.0039 | 24.0 | 168 | 0.4823 | 0.7143 | | 0.0044 | 25.0 | 175 | 0.4791 | 0.7143 | | 0.0037 | 26.0 | 182 | 0.4778 | 0.7143 | | 0.0038 | 27.0 | 189 | 0.4770 | 0.7143 | | 0.0036 | 28.0 | 196 | 0.4750 | 0.7143 | | 0.0031 | 29.0 | 203 | 0.4766 | 0.7143 | | 0.0031 | 30.0 | 210 | 0.4754 | 0.7143 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-4", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-4 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 1.1501 * Accuracy: 0.6387 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6537 - Accuracy: 0.6332 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6925 | 1.0 | 7 | 0.6966 | 0.2857 | | 0.6703 | 2.0 | 14 | 0.7045 | 0.2857 | | 0.6404 | 3.0 | 21 | 0.7205 | 0.2857 | | 0.555 | 4.0 | 28 | 0.7548 | 0.2857 | | 0.5179 | 5.0 | 35 | 0.6745 | 0.5714 | | 0.3038 | 6.0 | 42 | 0.7260 | 0.5714 | | 0.2089 | 7.0 | 49 | 0.8016 | 0.5714 | | 0.1303 | 8.0 | 56 | 0.8202 | 0.5714 | | 0.0899 | 9.0 | 63 | 0.9966 | 0.5714 | | 0.0552 | 10.0 | 70 | 1.1887 | 0.5714 | | 0.0333 | 11.0 | 77 | 1.2163 | 0.5714 | | 0.0169 | 12.0 | 84 | 1.2874 | 0.5714 | | 0.0136 | 13.0 | 91 | 1.3598 | 0.5714 | | 0.0103 | 14.0 | 98 | 1.4237 | 0.5714 | | 0.0089 | 15.0 | 105 | 1.4758 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-5", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-5 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6537 * Accuracy: 0.6332 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8356 - Accuracy: 0.6480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6978 | 1.0 | 7 | 0.6807 | 0.4286 | | 0.6482 | 2.0 | 14 | 0.6775 | 0.4286 | | 0.6051 | 3.0 | 21 | 0.6623 | 0.5714 | | 0.486 | 4.0 | 28 | 0.6710 | 0.5714 | | 0.4612 | 5.0 | 35 | 0.5325 | 0.7143 | | 0.2233 | 6.0 | 42 | 0.4992 | 0.7143 | | 0.1328 | 7.0 | 49 | 0.4753 | 0.7143 | | 0.0905 | 8.0 | 56 | 0.2416 | 1.0 | | 0.0413 | 9.0 | 63 | 0.2079 | 1.0 | | 0.0356 | 10.0 | 70 | 0.2234 | 0.8571 | | 0.0217 | 11.0 | 77 | 0.2639 | 0.8571 | | 0.0121 | 12.0 | 84 | 0.2977 | 0.8571 | | 0.0105 | 13.0 | 91 | 0.3468 | 0.8571 | | 0.0085 | 14.0 | 98 | 0.3912 | 0.8571 | | 0.0077 | 15.0 | 105 | 0.4000 | 0.8571 | | 0.0071 | 16.0 | 112 | 0.4015 | 0.8571 | | 0.0078 | 17.0 | 119 | 0.3865 | 0.8571 | | 0.0059 | 18.0 | 126 | 0.3603 | 0.8571 | | 0.0051 | 19.0 | 133 | 0.3231 | 0.8571 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-6", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-6 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8356 * Accuracy: 0.6480 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6952 - Accuracy: 0.5025 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6949 | 1.0 | 7 | 0.7252 | 0.2857 | | 0.6678 | 2.0 | 14 | 0.7550 | 0.2857 | | 0.6299 | 3.0 | 21 | 0.8004 | 0.2857 | | 0.5596 | 4.0 | 28 | 0.8508 | 0.2857 | | 0.5667 | 5.0 | 35 | 0.8464 | 0.2857 | | 0.367 | 6.0 | 42 | 0.8515 | 0.2857 | | 0.2706 | 7.0 | 49 | 0.9574 | 0.2857 | | 0.2163 | 8.0 | 56 | 0.9710 | 0.4286 | | 0.1024 | 9.0 | 63 | 1.1607 | 0.1429 | | 0.1046 | 10.0 | 70 | 1.3779 | 0.1429 | | 0.0483 | 11.0 | 77 | 1.4876 | 0.1429 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-7", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-7 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6952 * Accuracy: 0.5025 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6895 - Accuracy: 0.5222 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6899 | 1.0 | 7 | 0.7055 | 0.2857 | | 0.6793 | 2.0 | 14 | 0.7205 | 0.2857 | | 0.6291 | 3.0 | 21 | 0.7460 | 0.2857 | | 0.5659 | 4.0 | 28 | 0.8041 | 0.2857 | | 0.5607 | 5.0 | 35 | 0.7785 | 0.4286 | | 0.3349 | 6.0 | 42 | 0.8163 | 0.4286 | | 0.2436 | 7.0 | 49 | 0.9101 | 0.2857 | | 0.1734 | 8.0 | 56 | 0.8632 | 0.5714 | | 0.1122 | 9.0 | 63 | 0.9851 | 0.5714 | | 0.0661 | 10.0 | 70 | 1.0835 | 0.5714 | | 0.0407 | 11.0 | 77 | 1.1656 | 0.5714 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-8", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-8 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6895 * Accuracy: 0.5222 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-16-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6915 - Accuracy: 0.5157 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6868 | 1.0 | 7 | 0.7121 | 0.1429 | | 0.6755 | 2.0 | 14 | 0.7234 | 0.1429 | | 0.6389 | 3.0 | 21 | 0.7384 | 0.2857 | | 0.5575 | 4.0 | 28 | 0.7884 | 0.2857 | | 0.4972 | 5.0 | 35 | 0.7767 | 0.4286 | | 0.2821 | 6.0 | 42 | 0.8275 | 0.4286 | | 0.1859 | 7.0 | 49 | 0.9283 | 0.2857 | | 0.1388 | 8.0 | 56 | 0.9384 | 0.4286 | | 0.078 | 9.0 | 63 | 1.1973 | 0.4286 | | 0.0462 | 10.0 | 70 | 1.4016 | 0.4286 | | 0.0319 | 11.0 | 77 | 1.4087 | 0.4286 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-16-9", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-16-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-16-9 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6915 * Accuracy: 0.5157 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8558 - Accuracy: 0.7183 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7088 | 1.0 | 13 | 0.6819 | 0.6154 | | 0.635 | 2.0 | 26 | 0.6318 | 0.7692 | | 0.547 | 3.0 | 39 | 0.5356 | 0.7692 | | 0.3497 | 4.0 | 52 | 0.4456 | 0.6923 | | 0.1979 | 5.0 | 65 | 0.3993 | 0.7692 | | 0.098 | 6.0 | 78 | 0.3613 | 0.7692 | | 0.0268 | 7.0 | 91 | 0.3561 | 0.9231 | | 0.0137 | 8.0 | 104 | 0.3755 | 0.9231 | | 0.0083 | 9.0 | 117 | 0.4194 | 0.7692 | | 0.0065 | 10.0 | 130 | 0.4446 | 0.7692 | | 0.005 | 11.0 | 143 | 0.4527 | 0.7692 | | 0.0038 | 12.0 | 156 | 0.4645 | 0.7692 | | 0.0033 | 13.0 | 169 | 0.4735 | 0.7692 | | 0.0033 | 14.0 | 182 | 0.4874 | 0.7692 | | 0.0029 | 15.0 | 195 | 0.5041 | 0.7692 | | 0.0025 | 16.0 | 208 | 0.5148 | 0.7692 | | 0.0024 | 17.0 | 221 | 0.5228 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-0", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-0 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.8558 * Accuracy: 0.7183 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6492 - Accuracy: 0.6551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7106 | 1.0 | 13 | 0.6850 | 0.6154 | | 0.631 | 2.0 | 26 | 0.6632 | 0.6923 | | 0.5643 | 3.0 | 39 | 0.6247 | 0.7692 | | 0.3992 | 4.0 | 52 | 0.5948 | 0.7692 | | 0.1928 | 5.0 | 65 | 0.5803 | 0.7692 | | 0.0821 | 6.0 | 78 | 0.6404 | 0.6923 | | 0.0294 | 7.0 | 91 | 0.7387 | 0.6923 | | 0.0141 | 8.0 | 104 | 0.8270 | 0.6923 | | 0.0082 | 9.0 | 117 | 0.8496 | 0.6923 | | 0.0064 | 10.0 | 130 | 0.8679 | 0.6923 | | 0.005 | 11.0 | 143 | 0.8914 | 0.6923 | | 0.0036 | 12.0 | 156 | 0.9278 | 0.6923 | | 0.0031 | 13.0 | 169 | 0.9552 | 0.6923 | | 0.0029 | 14.0 | 182 | 0.9745 | 0.6923 | | 0.0028 | 15.0 | 195 | 0.9785 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-1", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-1 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6492 * Accuracy: 0.6551 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4805 - Accuracy: 0.7699 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7124 | 1.0 | 13 | 0.6882 | 0.5385 | | 0.6502 | 2.0 | 26 | 0.6715 | 0.5385 | | 0.6001 | 3.0 | 39 | 0.6342 | 0.6154 | | 0.455 | 4.0 | 52 | 0.5713 | 0.7692 | | 0.2605 | 5.0 | 65 | 0.5562 | 0.7692 | | 0.1258 | 6.0 | 78 | 0.6799 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.8096 | 0.7692 | | 0.0175 | 8.0 | 104 | 0.9281 | 0.6923 | | 0.0106 | 9.0 | 117 | 0.9826 | 0.6923 | | 0.0077 | 10.0 | 130 | 1.0254 | 0.7692 | | 0.0056 | 11.0 | 143 | 1.0667 | 0.7692 | | 0.0042 | 12.0 | 156 | 1.1003 | 0.7692 | | 0.0036 | 13.0 | 169 | 1.1299 | 0.7692 | | 0.0034 | 14.0 | 182 | 1.1623 | 0.6923 | | 0.003 | 15.0 | 195 | 1.1938 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-2", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-2 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.4805 * Accuracy: 0.7699 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-3 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5694 - Accuracy: 0.7073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7118 | 1.0 | 13 | 0.6844 | 0.5385 | | 0.6587 | 2.0 | 26 | 0.6707 | 0.6154 | | 0.6067 | 3.0 | 39 | 0.6295 | 0.5385 | | 0.4714 | 4.0 | 52 | 0.5811 | 0.6923 | | 0.2444 | 5.0 | 65 | 0.5932 | 0.7692 | | 0.1007 | 6.0 | 78 | 0.7386 | 0.6923 | | 0.0332 | 7.0 | 91 | 0.6962 | 0.6154 | | 0.0147 | 8.0 | 104 | 0.8200 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.9250 | 0.7692 | | 0.0066 | 10.0 | 130 | 0.9345 | 0.7692 | | 0.005 | 11.0 | 143 | 0.9313 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.9356 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.9395 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.9504 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-3", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-3
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-3 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5694 * Accuracy: 0.7073 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-4 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5001 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7175 | 1.0 | 13 | 0.6822 | 0.5385 | | 0.6559 | 2.0 | 26 | 0.6533 | 0.6154 | | 0.6052 | 3.0 | 39 | 0.5762 | 0.7692 | | 0.4587 | 4.0 | 52 | 0.4477 | 0.8462 | | 0.2459 | 5.0 | 65 | 0.4288 | 0.7692 | | 0.1001 | 6.0 | 78 | 0.5219 | 0.7692 | | 0.0308 | 7.0 | 91 | 0.8540 | 0.7692 | | 0.014 | 8.0 | 104 | 0.7789 | 0.7692 | | 0.0083 | 9.0 | 117 | 0.7996 | 0.7692 | | 0.0064 | 10.0 | 130 | 0.8342 | 0.7692 | | 0.0049 | 11.0 | 143 | 0.8612 | 0.7692 | | 0.0036 | 12.0 | 156 | 0.8834 | 0.7692 | | 0.0032 | 13.0 | 169 | 0.9067 | 0.7692 | | 0.003 | 14.0 | 182 | 0.9332 | 0.7692 | | 0.0028 | 15.0 | 195 | 0.9511 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-4", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-4
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-4 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5001 * Accuracy: 0.7650 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-5 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6248 - Accuracy: 0.6826 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7136 | 1.0 | 13 | 0.6850 | 0.5385 | | 0.6496 | 2.0 | 26 | 0.6670 | 0.6154 | | 0.5895 | 3.0 | 39 | 0.6464 | 0.7692 | | 0.4271 | 4.0 | 52 | 0.6478 | 0.7692 | | 0.2182 | 5.0 | 65 | 0.6809 | 0.6923 | | 0.103 | 6.0 | 78 | 0.9119 | 0.6923 | | 0.0326 | 7.0 | 91 | 1.0718 | 0.6923 | | 0.0154 | 8.0 | 104 | 1.0721 | 0.7692 | | 0.0087 | 9.0 | 117 | 1.1416 | 0.7692 | | 0.0067 | 10.0 | 130 | 1.2088 | 0.7692 | | 0.005 | 11.0 | 143 | 1.2656 | 0.7692 | | 0.0037 | 12.0 | 156 | 1.3104 | 0.7692 | | 0.0032 | 13.0 | 169 | 1.3428 | 0.6923 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-5", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-5
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-5 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6248 * Accuracy: 0.6826 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-6 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5072 - Accuracy: 0.7650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6704 | 0.6923 | | 0.6489 | 2.0 | 26 | 0.6228 | 0.8462 | | 0.5475 | 3.0 | 39 | 0.5079 | 0.8462 | | 0.4014 | 4.0 | 52 | 0.4203 | 0.8462 | | 0.1923 | 5.0 | 65 | 0.3872 | 0.8462 | | 0.1014 | 6.0 | 78 | 0.4909 | 0.8462 | | 0.0349 | 7.0 | 91 | 0.5460 | 0.8462 | | 0.0173 | 8.0 | 104 | 0.4867 | 0.8462 | | 0.0098 | 9.0 | 117 | 0.5274 | 0.8462 | | 0.0075 | 10.0 | 130 | 0.6086 | 0.8462 | | 0.0057 | 11.0 | 143 | 0.6604 | 0.8462 | | 0.0041 | 12.0 | 156 | 0.6904 | 0.8462 | | 0.0037 | 13.0 | 169 | 0.7164 | 0.8462 | | 0.0034 | 14.0 | 182 | 0.7368 | 0.8462 | | 0.0031 | 15.0 | 195 | 0.7565 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-6", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-6
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-6 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5072 * Accuracy: 0.7650 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-7 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6736 - Accuracy: 0.5931 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7094 | 1.0 | 13 | 0.6887 | 0.5385 | | 0.651 | 2.0 | 26 | 0.6682 | 0.6923 | | 0.6084 | 3.0 | 39 | 0.6412 | 0.6923 | | 0.4547 | 4.0 | 52 | 0.6095 | 0.6923 | | 0.2903 | 5.0 | 65 | 0.6621 | 0.6923 | | 0.1407 | 6.0 | 78 | 0.7130 | 0.7692 | | 0.0444 | 7.0 | 91 | 0.9007 | 0.6923 | | 0.0176 | 8.0 | 104 | 0.9525 | 0.7692 | | 0.0098 | 9.0 | 117 | 1.0289 | 0.7692 | | 0.0071 | 10.0 | 130 | 1.0876 | 0.7692 | | 0.0052 | 11.0 | 143 | 1.1431 | 0.6923 | | 0.0038 | 12.0 | 156 | 1.1687 | 0.7692 | | 0.0034 | 13.0 | 169 | 1.1792 | 0.7692 | | 0.0031 | 14.0 | 182 | 1.2033 | 0.7692 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-7", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-7
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-7 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6736 * Accuracy: 0.5931 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-8 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6880 - Accuracy: 0.5014 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.712 | 1.0 | 13 | 0.6936 | 0.5385 | | 0.665 | 2.0 | 26 | 0.6960 | 0.3846 | | 0.6112 | 3.0 | 39 | 0.7138 | 0.3846 | | 0.4521 | 4.0 | 52 | 0.8243 | 0.4615 | | 0.2627 | 5.0 | 65 | 0.7723 | 0.6154 | | 0.0928 | 6.0 | 78 | 1.2666 | 0.5385 | | 0.0312 | 7.0 | 91 | 1.2306 | 0.6154 | | 0.0132 | 8.0 | 104 | 1.3385 | 0.6154 | | 0.0082 | 9.0 | 117 | 1.4584 | 0.6154 | | 0.0063 | 10.0 | 130 | 1.5429 | 0.6154 | | 0.0049 | 11.0 | 143 | 1.5913 | 0.6154 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-8", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-8
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-8 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6880 * Accuracy: 0.5014 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-32-9 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5625 - Accuracy: 0.7353 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7057 | 1.0 | 13 | 0.6805 | 0.5385 | | 0.6642 | 2.0 | 26 | 0.6526 | 0.7692 | | 0.5869 | 3.0 | 39 | 0.5773 | 0.8462 | | 0.4085 | 4.0 | 52 | 0.4959 | 0.8462 | | 0.2181 | 5.0 | 65 | 0.4902 | 0.6923 | | 0.069 | 6.0 | 78 | 0.5065 | 0.8462 | | 0.0522 | 7.0 | 91 | 0.6082 | 0.7692 | | 0.0135 | 8.0 | 104 | 0.6924 | 0.7692 | | 0.0084 | 9.0 | 117 | 0.5921 | 0.7692 | | 0.0061 | 10.0 | 130 | 0.6477 | 0.7692 | | 0.0047 | 11.0 | 143 | 0.6648 | 0.7692 | | 0.0035 | 12.0 | 156 | 0.6640 | 0.7692 | | 0.0031 | 13.0 | 169 | 0.6615 | 0.7692 | | 0.0029 | 14.0 | 182 | 0.6605 | 0.7692 | | 0.0026 | 15.0 | 195 | 0.6538 | 0.8462 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-32-9", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-32-9
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-32-9 ============================================= This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.5625 * Accuracy: 0.7353 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased__sst2__train-8-0 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6920 - Accuracy: 0.5189 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6916 | 1.0 | 3 | 0.7035 | 0.25 | | 0.6852 | 2.0 | 6 | 0.7139 | 0.25 | | 0.6533 | 3.0 | 9 | 0.7192 | 0.25 | | 0.6211 | 4.0 | 12 | 0.7322 | 0.25 | | 0.5522 | 5.0 | 15 | 0.7561 | 0.25 | | 0.488 | 6.0 | 18 | 0.7883 | 0.25 | | 0.48 | 7.0 | 21 | 0.8224 | 0.25 | | 0.3948 | 8.0 | 24 | 0.8605 | 0.25 | | 0.3478 | 9.0 | 27 | 0.8726 | 0.25 | | 0.2723 | 10.0 | 30 | 0.8885 | 0.25 | | 0.2174 | 11.0 | 33 | 0.8984 | 0.5 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "distilbert-base-uncased__sst2__train-8-0", "results": []}]}
SetFit/distilbert-base-uncased__sst2__train-8-0
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased\_\_sst2\_\_train-8-0 ============================================ This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.6920 * Accuracy: 0.5189 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 50 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 50\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2\n* Tokenizers 0.10.3" ]