pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
listlengths
0
201
languages
listlengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
listlengths
0
722
processed_texts
listlengths
1
723
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_lcquad1
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2108.07337" ]
[]
TAGS #transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This model is used in the paper Generative Relation Linking for Question Answering over Knowledge Bases. ArXiv, GitHub
[]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_lcquad2
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2108.07337" ]
[]
TAGS #transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This model is used in the paper Generative Relation Linking for Question Answering over Knowledge Bases. ArXiv, GitHub
[]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_qald9
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2108.07337" ]
[]
TAGS #transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This model is used in the paper Generative Relation Linking for Question Answering over Knowledge Bases. ArXiv, GitHub
[]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
text2text-generation
transformers
This model is used in the paper **Generative Relation Linking for Question Answering over Knowledge Bases**. [ArXiv](https://arxiv.org/abs/2108.07337), [GitHub](https://github.com/IBM/kbqa-relation-linking) ## Citation ```bibtex @inproceedings{rossiello-genrl-2021, title={Generative relation linking for question answering over knowledge bases}, author={Rossiello, Gaetano and Mihindukulasooriya, Nandana and Abdelaziz, Ibrahim and Bornea, Mihaela and Gliozzo, Alfio and Naseem, Tahira and Kapanipathi, Pavan}, booktitle={International Semantic Web Conference}, pages={321--337}, year={2021}, organization={Springer}, url = "https://link.springer.com/chapter/10.1007/978-3-030-88361-4_19", doi = "10.1007/978-3-030-88361-4_19" } ```
{"license": "apache-2.0"}
gaetangate/bart-large_genrl_simpleq
null
[ "transformers", "pytorch", "bart", "text2text-generation", "arxiv:2108.07337", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2108.07337" ]
[]
TAGS #transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
This model is used in the paper Generative Relation Linking for Question Answering over Knowledge Bases. ArXiv, GitHub
[]
[ "TAGS\n#transformers #pytorch #bart #text2text-generation #arxiv-2108.07337 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n" ]
null
null
test 123
{}
gaga42gaga42/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #region-us
test 123
[]
[ "TAGS\n#region-us \n" ]
text-generation
transformers
# Generating Right Wing News Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data from FOX news ### My model can be accessed at gagan3012/Fox-News-Generator Check the [BenchmarkTest](https://github.com/gagan3012/Fox-News-Generator/blob/master/BenchmarkTest.ipynb) notebook for results Find the model at [gagan3012/Fox-News-Generator](https://huggingface.co/gagan3012/Fox-News-Generator) ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/Fox-News-Generator") model = AutoModelWithLMHead.from_pretrained("gagan3012/Fox-News-Generator") ```
{}
gagan3012/Fox-News-Generator
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Generating Right Wing News Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data from FOX news ### My model can be accessed at gagan3012/Fox-News-Generator Check the BenchmarkTest notebook for results Find the model at gagan3012/Fox-News-Generator
[ "# Generating Right Wing News Using GPT2", "### I have built a custom model for it using data from Kaggle \n\nCreating a new finetuned model using data from FOX news", "### My model can be accessed at gagan3012/Fox-News-Generator\n\nCheck the BenchmarkTest notebook for results\n\nFind the model at gagan3012/Fox-News-Generator" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Generating Right Wing News Using GPT2", "### I have built a custom model for it using data from Kaggle \n\nCreating a new finetuned model using data from FOX news", "### My model can be accessed at gagan3012/Fox-News-Generator\n\nCheck the BenchmarkTest notebook for results\n\nFind the model at gagan3012/Fox-News-Generator" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2I2A This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the vizwiz dataset. It achieves the following results on the evaluation set: - Loss: 0.0708 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1528 | 0.17 | 1000 | 0.0869 | | 0.0899 | 0.34 | 2000 | 0.0817 | | 0.084 | 0.51 | 3000 | 0.0790 | | 0.0814 | 0.68 | 4000 | 0.0773 | | 0.0803 | 0.85 | 5000 | 0.0757 | | 0.077 | 1.02 | 6000 | 0.0745 | | 0.0739 | 1.19 | 7000 | 0.0740 | | 0.0719 | 1.37 | 8000 | 0.0737 | | 0.0717 | 1.54 | 9000 | 0.0730 | | 0.0731 | 1.71 | 10000 | 0.0727 | | 0.0708 | 1.88 | 11000 | 0.0720 | | 0.0697 | 2.05 | 12000 | 0.0717 | | 0.0655 | 2.22 | 13000 | 0.0719 | | 0.0653 | 2.39 | 14000 | 0.0719 | | 0.0657 | 2.56 | 15000 | 0.0712 | | 0.0663 | 2.73 | 16000 | 0.0710 | | 0.0654 | 2.9 | 17000 | 0.0708 | | 0.0645 | 3.07 | 18000 | 0.0716 | | 0.0616 | 3.24 | 19000 | 0.0712 | | 0.0607 | 3.41 | 20000 | 0.0712 | | 0.0611 | 3.58 | 21000 | 0.0711 | | 0.0615 | 3.76 | 22000 | 0.0711 | | 0.0614 | 3.93 | 23000 | 0.0710 | | 0.0594 | 4.1 | 24000 | 0.0716 | | 0.0587 | 4.27 | 25000 | 0.0715 | | 0.0574 | 4.44 | 26000 | 0.0715 | | 0.0579 | 4.61 | 27000 | 0.0715 | | 0.0581 | 4.78 | 28000 | 0.0715 | | 0.0579 | 4.95 | 29000 | 0.0715 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["image-captioning", "generated_from_trainer"], "model-index": [{"name": "ViTGPT2I2A", "results": []}]}
gagan3012/ViTGPT2I2A
null
[ "transformers", "pytorch", "vision-encoder-decoder", "image-captioning", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #vision-encoder-decoder #image-captioning #generated_from_trainer #license-apache-2.0 #endpoints_compatible #has_space #region-us
ViTGPT2I2A ========== This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the vizwiz dataset. It achieves the following results on the evaluation set: * Loss: 0.0708 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 2 * total\_train\_batch\_size: 4 * total\_eval\_batch\_size: 4 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* total\\_train\\_batch\\_size: 4\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #vision-encoder-decoder #image-captioning #generated_from_trainer #license-apache-2.0 #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* total\\_train\\_batch\\_size: 4\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2_VW This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 4 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1256 | 0.03 | 1000 | 0.0928 | | 0.0947 | 0.07 | 2000 | 0.0897 | | 0.0889 | 0.1 | 3000 | 0.0859 | | 0.0888 | 0.14 | 4000 | 0.0842 | | 0.0866 | 0.17 | 5000 | 0.0831 | | 0.0852 | 0.2 | 6000 | 0.0819 | | 0.0833 | 0.24 | 7000 | 0.0810 | | 0.0835 | 0.27 | 8000 | 0.0802 | | 0.081 | 0.31 | 9000 | 0.0796 | | 0.0803 | 0.34 | 10000 | 0.0789 | | 0.0814 | 0.38 | 11000 | 0.0785 | | 0.0799 | 0.41 | 12000 | 0.0780 | | 0.0786 | 0.44 | 13000 | 0.0776 | | 0.0796 | 0.48 | 14000 | 0.0771 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2+cu113 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "ViTGPT2_VW", "results": []}]}
gagan3012/ViTGPT2_VW
null
[ "transformers", "pytorch", "vision-encoder-decoder", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #vision-encoder-decoder #generated_from_trainer #endpoints_compatible #region-us
ViTGPT2\_VW =========== This model is a fine-tuned version of [](URL on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0771 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 2 * total\_train\_batch\_size: 4 * total\_eval\_batch\_size: 4 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 1.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.16.2 * Pytorch 1.10.2+cu113 * Datasets 1.18.3 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* total\\_train\\_batch\\_size: 4\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #vision-encoder-decoder #generated_from_trainer #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 2\n* total\\_train\\_batch\\_size: 4\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 1.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.10.2+cu113\n* Datasets 1.18.3\n* Tokenizers 0.11.0" ]
image-to-text
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ViTGPT2_vizwiz This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0719 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.1207 | 0.07 | 1000 | 0.0906 | | 0.0916 | 0.14 | 2000 | 0.0861 | | 0.0879 | 0.2 | 3000 | 0.0840 | | 0.0856 | 0.27 | 4000 | 0.0822 | | 0.0834 | 0.34 | 5000 | 0.0806 | | 0.0817 | 0.41 | 6000 | 0.0795 | | 0.0812 | 0.48 | 7000 | 0.0785 | | 0.0808 | 0.55 | 8000 | 0.0779 | | 0.0796 | 0.61 | 9000 | 0.0771 | | 0.0786 | 0.68 | 10000 | 0.0767 | | 0.0774 | 0.75 | 11000 | 0.0762 | | 0.0772 | 0.82 | 12000 | 0.0758 | | 0.0756 | 0.89 | 13000 | 0.0754 | | 0.0759 | 0.96 | 14000 | 0.0750 | | 0.0756 | 1.02 | 15000 | 0.0748 | | 0.0726 | 1.09 | 16000 | 0.0745 | | 0.0727 | 1.16 | 17000 | 0.0745 | | 0.0715 | 1.23 | 18000 | 0.0742 | | 0.0726 | 1.3 | 19000 | 0.0741 | | 0.072 | 1.37 | 20000 | 0.0738 | | 0.0723 | 1.43 | 21000 | 0.0735 | | 0.0715 | 1.5 | 22000 | 0.0734 | | 0.0724 | 1.57 | 23000 | 0.0732 | | 0.0723 | 1.64 | 24000 | 0.0730 | | 0.0718 | 1.71 | 25000 | 0.0729 | | 0.07 | 1.78 | 26000 | 0.0728 | | 0.0702 | 1.84 | 27000 | 0.0726 | | 0.0704 | 1.91 | 28000 | 0.0725 | | 0.0703 | 1.98 | 29000 | 0.0725 | | 0.0686 | 2.05 | 30000 | 0.0726 | | 0.0687 | 2.12 | 31000 | 0.0726 | | 0.0688 | 2.19 | 32000 | 0.0724 | | 0.0677 | 2.25 | 33000 | 0.0724 | | 0.0665 | 2.32 | 34000 | 0.0725 | | 0.0684 | 2.39 | 35000 | 0.0723 | | 0.0678 | 2.46 | 36000 | 0.0722 | | 0.0686 | 2.53 | 37000 | 0.0722 | | 0.067 | 2.59 | 38000 | 0.0721 | | 0.0669 | 2.66 | 39000 | 0.0721 | | 0.0673 | 2.73 | 40000 | 0.0721 | | 0.0673 | 2.8 | 41000 | 0.0720 | | 0.0662 | 2.87 | 42000 | 0.0720 | | 0.0681 | 2.94 | 43000 | 0.0719 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer", "image-to-text"], "model-index": [{"name": "ViTGPT2_vizwiz", "results": []}]}
gagan3012/ViTGPT2_vizwiz
null
[ "transformers", "pytorch", "vision-encoder-decoder", "generated_from_trainer", "image-to-text", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #vision-encoder-decoder #generated_from_trainer #image-to-text #endpoints_compatible #has_space #region-us
ViTGPT2\_vizwiz =============== This model is a fine-tuned version of [](URL on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0719 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * distributed\_type: multi-GPU * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #vision-encoder-decoder #generated_from_trainer #image-to-text #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* distributed\\_type: multi-GPU\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-tiny-finetuned-ner This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Precision: 0.8083 - Recall: 0.8274 - F1: 0.8177 - Accuracy: 0.9598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0355 | 1.0 | 878 | 0.1692 | 0.8072 | 0.8248 | 0.8159 | 0.9594 | | 0.0411 | 2.0 | 1756 | 0.1678 | 0.8101 | 0.8277 | 0.8188 | 0.9600 | | 0.0386 | 3.0 | 2634 | 0.1697 | 0.8103 | 0.8269 | 0.8186 | 0.9599 | | 0.0373 | 4.0 | 3512 | 0.1694 | 0.8106 | 0.8263 | 0.8183 | 0.9600 | | 0.0383 | 5.0 | 4390 | 0.1689 | 0.8083 | 0.8274 | 0.8177 | 0.9598 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-tiny-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.8083060109289617, "name": "Precision"}, {"type": "recall", "value": 0.8273856136033113, "name": "Recall"}, {"type": "f1", "value": 0.8177345348001547, "name": "F1"}, {"type": "accuracy", "value": 0.9597597979252387, "name": "Accuracy"}]}]}]}
gagan3012/bert-tiny-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
bert-tiny-finetuned-ner ======================= This model is a fine-tuned version of prajjwal1/bert-tiny on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.1689 * Precision: 0.8083 * Recall: 0.8274 * F1: 0.8177 * Accuracy: 0.9598 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.10.0 * Pytorch 1.9.0+cu102 * Datasets 1.11.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #token-classification #generated_from_trainer #dataset-conll2003 #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.0\n* Pytorch 1.9.0+cu102\n* Datasets 1.11.0\n* Tokenizers 0.10.3" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0614 - Precision: 0.9274 - Recall: 0.9363 - F1: 0.9319 - Accuracy: 0.9840 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2403 | 1.0 | 878 | 0.0701 | 0.9101 | 0.9202 | 0.9151 | 0.9805 | | 0.0508 | 2.0 | 1756 | 0.0600 | 0.9220 | 0.9350 | 0.9285 | 0.9833 | | 0.0301 | 3.0 | 2634 | 0.0614 | 0.9274 | 0.9363 | 0.9319 | 0.9840 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9274238227146815, "name": "Precision"}, {"type": "recall", "value": 0.9363463474661595, "name": "Recall"}, {"type": "f1", "value": 0.9318637274549098, "name": "F1"}, {"type": "accuracy", "value": 0.9839865283492462, "name": "Accuracy"}]}]}]}
gagan3012/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-ner ===================================== This model is a fine-tuned version of distilbert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set: * Loss: 0.0614 * Precision: 0.9274 * Recall: 0.9363 * F1: 0.9319 * Accuracy: 0.9840 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3 ### Training results ### Framework versions * Transformers 4.10.2 * Pytorch 1.9.0+cu102 * Datasets 1.12.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #token-classification #generated_from_trainer #dataset-conll2003 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3", "### Training results", "### Framework versions\n\n\n* Transformers 4.10.2\n* Pytorch 1.9.0+cu102\n* Datasets 1.12.0\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t-base", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t-base", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #t5 #text2text-generation #keytotext #k2t-base #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# keytotext !keytotext (1) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface ![pypi Version](URL ![Downloads](URL ![Open In Colab](URL ![Streamlit App](URL ## Model: Keytotext is based on the Amazing T5 Model: - 'k2t': Model - 'k2t-tiny': Model - 'k2t-base': Model Training Notebooks can be found in the 'Training Notebooks' Folder ## Usage: Example usage: ![Open In Colab](URL Example Notebooks can be found in the 'Notebooks' Folder !carbon (3) ## UI: UI: ![Streamlit App](URL This uses a custom streamlit component built by me: GitHub !image
[ "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #keytotext #k2t-base #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["common_gen"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-new
null
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:common_gen", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #jax #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-common_gen #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# keytotext !keytotext (1) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface ![pypi Version](URL ![Downloads](URL ![Open In Colab](URL ![Streamlit App](URL ## Model: Keytotext is based on the Amazing T5 Model: - 'k2t': Model - 'k2t-tiny': Model - 'k2t-base': Model Training Notebooks can be found in the 'Training Notebooks' Folder ## Usage: Example usage: ![Open In Colab](URL Example Notebooks can be found in the 'Notebooks' Folder !carbon (3) ## UI: UI: ![Streamlit App](URL This uses a custom streamlit component built by me: GitHub !image
[ "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
[ "TAGS\n#transformers #pytorch #jax #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-common_gen #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
text2text-generation
transformers
<h1 align="center">keytotext</h1> [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
{"language": "en", "license": "MIT", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-test
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<h1 align="center">keytotext</h1> ![pypi Version](URL ![Downloads](URL ![Open In Colab](URL ![Streamlit App](URL ![API Call](URL ![Docker Call](URL ![HuggingFace](URL ![Documentation Status](URL ![Code style: black](URL !keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text2text-generation
transformers
#keytotext [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/notebooks/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) [![API Call](https://img.shields.io/badge/-FastAPI-red?logo=fastapi&labelColor=white)](https://github.com/gagan3012/keytotext#api) [![Docker Call](https://img.shields.io/badge/-Docker%20Image-blue?logo=docker&labelColor=white)](https://hub.docker.com/r/gagan30/keytotext) [![HuggingFace](https://img.shields.io/badge/%F0%9F%A4%97-Models%20on%20Hub-yellow)](https://huggingface.co/models?filter=keytotext) [![Documentation Status](https://readthedocs.org/projects/keytotext/badge/?version=latest)](https://keytotext.readthedocs.io/en/latest/?badge=latest) [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) ![keytotext](https://socialify.git.ci/gagan3012/keytotext/image?description=1&forks=1&language=1&owner=1&stargazers=1&theme=Light) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
{"language": "en", "license": "MIT", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-test3
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
#keytotext ![pypi Version](URL ![Downloads](URL ![Open In Colab](URL ![Streamlit App](URL ![API Call](URL ![Docker Call](URL ![HuggingFace](URL ![Documentation Status](URL ![Code style: black](URL !keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: - Marketing - Search Engine Optimization - Topic generation etc. - Fine tuning of topic modeling models
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n" ]
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t-tiny", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t-tiny
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t-tiny", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #t5 #text2text-generation #keytotext #k2t-tiny #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# keytotext !keytotext (1) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface ![pypi Version](URL ![Downloads](URL ![Open In Colab](URL ![Streamlit App](URL ## Model: Keytotext is based on the Amazing T5 Model: - 'k2t': Model - 'k2t-tiny': Model - 'k2t-base': Model Training Notebooks can be found in the 'Training Notebooks' Folder ## Usage: Example usage: ![Open In Colab](URL Example Notebooks can be found in the 'Notebooks' Folder !carbon (3) ## UI: UI: ![Streamlit App](URL This uses a custom streamlit component built by me: GitHub !image
[ "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #keytotext #k2t-tiny #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
text2text-generation
transformers
# keytotext ![keytotext (1)](https://user-images.githubusercontent.com/49101362/116334480-f5e57a00-a7dd-11eb-987c-186477f94b6e.png) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface 🤗 [![pypi Version](https://img.shields.io/pypi/v/keytotext.svg?style=flat-square&logo=pypi&logoColor=white)](https://pypi.org/project/keytotext/) [![Downloads](https://static.pepy.tech/personalized-badge/keytotext?period=total&units=none&left_color=grey&right_color=orange&left_text=Pip%20Downloads)](https://pepy.tech/project/keytotext) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ## Model: Keytotext is based on the Amazing T5 Model: - `k2t`: [Model](https://huggingface.co/gagan3012/k2t) - `k2t-tiny`: [Model](https://huggingface.co/gagan3012/k2t-tiny) - `k2t-base`: [Model](https://huggingface.co/gagan3012/k2t-base) Training Notebooks can be found in the [`Training Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Training%20Notebooks) Folder ## Usage: Example usage: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/gagan3012/keytotext/blob/master/Examples/K2T.ipynb) Example Notebooks can be found in the [`Notebooks`](https://github.com/gagan3012/keytotext/tree/master/Examples) Folder ``` pip install keytotext ``` ![carbon (3)](https://user-images.githubusercontent.com/49101362/116220679-90e64180-a755-11eb-9246-82d93d924a6c.png) ## UI: UI: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/UI/app.py) ``` pip install streamlit-tags ``` This uses a custom streamlit component built by me: [GitHub](https://github.com/gagan3012/streamlit-tags) ![image](https://user-images.githubusercontent.com/49101362/116162205-fc042980-a6fd-11eb-892e-8f6902f193f4.png)
{"language": "en", "license": "mit", "tags": ["keytotext", "k2t", "Keywords to Sentences"], "datasets": ["WebNLG", "Dart"], "metrics": ["NLG"], "thumbnail": "Keywords to Sentences"}
gagan3012/k2t
null
[ "transformers", "pytorch", "t5", "text2text-generation", "keytotext", "k2t", "Keywords to Sentences", "en", "dataset:WebNLG", "dataset:Dart", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# keytotext !keytotext (1) Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Keytotext is powered by Huggingface ![pypi Version](URL ![Downloads](URL ![Open In Colab](URL ![Streamlit App](URL ## Model: Keytotext is based on the Amazing T5 Model: - 'k2t': Model - 'k2t-tiny': Model - 'k2t-base': Model Training Notebooks can be found in the 'Training Notebooks' Folder ## Usage: Example usage: ![Open In Colab](URL Example Notebooks can be found in the 'Notebooks' Folder !carbon (3) ## UI: UI: ![Streamlit App](URL This uses a custom streamlit component built by me: GitHub !image
[ "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #keytotext #k2t #Keywords to Sentences #en #dataset-WebNLG #dataset-Dart #license-mit #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# keytotext\n\n!keytotext (1)\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Keytotext is powered by Huggingface \n\n![pypi Version](URL\n![Downloads](URL\n![Open In Colab](URL\n![Streamlit App](URL", "## Model:\n\nKeytotext is based on the Amazing T5 Model: \n\n- 'k2t': Model\n- 'k2t-tiny': Model\n- 'k2t-base': Model\n\nTraining Notebooks can be found in the 'Training Notebooks' Folder", "## Usage:\n\nExample usage: ![Open In Colab](URL\n\nExample Notebooks can be found in the 'Notebooks' Folder\n\n\n\n!carbon (3)", "## UI:\n\nUI: ![Streamlit App](URL\n\n\nThis uses a custom streamlit component built by me: GitHub\n\n!image" ]
text2text-generation
transformers
# keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Model: Two Models have been built: - Using T5-base size = 850 MB can be found here: https://huggingface.co/gagan3012/keytotext - Using T5-small size = 230 MB can be found here: https://huggingface.co/gagan3012/keytotext-small #### Usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/keytotext-small") model = AutoModelWithLMHead.from_pretrained("gagan3012/keytotext-small") ``` ### Demo: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/app.py) https://share.streamlit.io/gagan3012/keytotext/app.py ![image](https://user-images.githubusercontent.com/49101362/110660053-3b20fe80-81d4-11eb-9275-ba402134e8d9.png) ### Example: ['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties.
{}
gagan3012/keytotext-small
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Model: Two Models have been built: - Using T5-base size = 850 MB can be found here: URL - Using T5-small size = 230 MB can be found here: URL #### Usage: ### Demo: ![Streamlit App](URL URL !image ### Example: ['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties.
[ "# keytotext\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Model:\n\nTwo Models have been built: \n\n- Using T5-base size = 850 MB can be found here: URL\n- Using T5-small size = 230 MB can be found here: URL", "#### Usage:", "### Demo:\n\n![Streamlit App](URL\n\nURL\n\n!image", "### Example: \n\n['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# keytotext\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Model:\n\nTwo Models have been built: \n\n- Using T5-base size = 850 MB can be found here: URL\n- Using T5-small size = 230 MB can be found here: URL", "#### Usage:", "### Demo:\n\n![Streamlit App](URL\n\nURL\n\n!image", "### Example: \n\n['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties." ]
text2text-generation
transformers
# keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Model: Two Models have been built: - Using T5-base size = 850 MB can be found here: https://huggingface.co/gagan3012/keytotext - Using T5-small size = 230 MB can be found here: https://huggingface.co/gagan3012/keytotext-small #### Usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/keytotext-small") model = AutoModelWithLMHead.from_pretrained("gagan3012/keytotext-small") ``` ### Demo: [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/keytotext/app.py) https://share.streamlit.io/gagan3012/keytotext/app.py ![image](https://user-images.githubusercontent.com/49101362/110660053-3b20fe80-81d4-11eb-9275-ba402134e8d9.png) ### Example: ['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties.
{}
gagan3012/keytotext
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. ### Model: Two Models have been built: - Using T5-base size = 850 MB can be found here: URL - Using T5-small size = 230 MB can be found here: URL #### Usage: ### Demo: ![Streamlit App](URL URL !image ### Example: ['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties.
[ "# keytotext\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Model:\n\nTwo Models have been built: \n\n- Using T5-base size = 850 MB can be found here: URL\n- Using T5-small size = 230 MB can be found here: URL", "#### Usage:", "### Demo:\n\n![Streamlit App](URL\n\nURL\n\n!image", "### Example: \n\n['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties." ]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# keytotext\n\nIdea is to build a model which will take keywords as inputs and generate sentences as outputs.", "### Model:\n\nTwo Models have been built: \n\n- Using T5-base size = 850 MB can be found here: URL\n- Using T5-small size = 230 MB can be found here: URL", "#### Usage:", "### Demo:\n\n![Streamlit App](URL\n\nURL\n\n!image", "### Example: \n\n['India', 'Wedding'] -> We are celebrating today in New Delhi with three wedding anniversary parties." ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # model This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "model", "results": []}]}
gagan3012/model
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# model This model is a fine-tuned version of distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.6250 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
[ "# model\n\nThis model is a fine-tuned version of distilgpt2 on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 3.6250", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# model\n\nThis model is a fine-tuned version of distilgpt2 on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 3.6250", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0", "### Training results", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pickuplines This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "pickuplines", "results": []}]}
gagan3012/pickuplines
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# pickuplines This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 5.7873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 100.0 ### Training results ### Framework versions - Transformers 4.12.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
[ "# pickuplines\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 5.7873", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 100.0", "### Training results", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #gpt2 #text-generation #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# pickuplines\n\nThis model is a fine-tuned version of gpt2 on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 5.7873", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 100.0", "### Training results", "### Framework versions\n\n- Transformers 4.12.0.dev0\n- Pytorch 1.9.0+cu111\n- Datasets 1.13.3\n- Tokenizers 0.10.3" ]
text-generation
transformers
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python **Note**: the Answers might not make sense in some cases because of the bias in GPT-2 **Contribtuions:** If you would like to make the model better contributions are welcome Check out [CONTRIBUTIONS.md](https://github.com/gagan3012/project-code-py/blob/master/CONTRIBUTIONS.md) ### 📢 Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at https://huggingface.co/gagan3012 The model weights can be found here: [GPT-2](https://huggingface.co/gagan3012/project-code-py) and [DistilGPT-2](https://huggingface.co/gagan3012/project-code-py-small) ### Example usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/project-code-py") model = AutoModelWithLMHead.from_pretrained("gagan3012/project-code-py") ``` ## Demo [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/project-code-py/app.py) A streamlit webapp has been setup to use the model: https://share.streamlit.io/gagan3012/project-code-py/app.py ![image](https://user-images.githubusercontent.com/49101362/110356042-e69e4780-804a-11eb-94c6-a47fa3cd66b3.png) ## Example results: ### Question: ``` Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. ``` ### Answer: ```python """ Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. For example, a = 1->2->3 b = 3->1->2 t = ListNode(-1, 1) Note: The lexicographic ordering of the nodes in a tree matters. Do not assign values to nodes in a tree. Example 1: Input: [1,2,3] Output: 1->2->5 Explanation: 1->2->3->3->4, then 1->2->5[2] and then 5->1->3->4. Note: The length of a linked list will be in the range [1, 1000]. Node.val must be a valid LinkedListNode type. Both the length and the value of the nodes in a linked list will be in the range [-1000, 1000]. All nodes are distinct. """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteNode(self, head: ListNode, val: int) -> None: """ BFS Linked List :param head: ListNode :param val: int :return: ListNode """ if head is not None: return head dummy = ListNode(-1, 1) dummy.next = head dummy.next.val = val dummy.next.next = head dummy.val = "" s1 = Solution() print(s1.deleteNode(head)) print(s1.deleteNode(-1)) print(s1.deleteNode(-1)) ```
{}
gagan3012/project-code-py-small
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python Note: the Answers might not make sense in some cases because of the bias in GPT-2 Contribtuions: If you would like to make the model better contributions are welcome Check out URL ### Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at URL The model weights can be found here: GPT-2 and DistilGPT-2 ### Example usage: ## Demo ![Streamlit App](URL A streamlit webapp has been setup to use the model: URL !image ## Example results: ### Question: ### Answer:
[ "# Leetcode using AI :robot:\nGPT-2 Model for Leetcode Questions in python \n\nNote: the Answers might not make sense in some cases because of the bias in GPT-2\n\nContribtuions: If you would like to make the model better contributions are welcome Check out URL", "### Favour:\n\nIt would be highly motivating, if you can STAR⭐ this repo if you find it helpful.", "## Model\n\nTwo models have been developed for different use cases and they can be found at URL\n\nThe model weights can be found here: GPT-2 and DistilGPT-2", "### Example usage:", "## Demo\n![Streamlit App](URL\n\n\nA streamlit webapp has been setup to use the model: URL\n\n!image", "## Example results:", "### Question:", "### Answer:" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Leetcode using AI :robot:\nGPT-2 Model for Leetcode Questions in python \n\nNote: the Answers might not make sense in some cases because of the bias in GPT-2\n\nContribtuions: If you would like to make the model better contributions are welcome Check out URL", "### Favour:\n\nIt would be highly motivating, if you can STAR⭐ this repo if you find it helpful.", "## Model\n\nTwo models have been developed for different use cases and they can be found at URL\n\nThe model weights can be found here: GPT-2 and DistilGPT-2", "### Example usage:", "## Demo\n![Streamlit App](URL\n\n\nA streamlit webapp has been setup to use the model: URL\n\n!image", "## Example results:", "### Question:", "### Answer:" ]
text-generation
transformers
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python **Note**: the Answers might not make sense in some cases because of the bias in GPT-2 **Contribtuions:** If you would like to make the model better contributions are welcome Check out [CONTRIBUTIONS.md](https://github.com/gagan3012/project-code-py/blob/master/CONTRIBUTIONS.md) ### 📢 Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at https://huggingface.co/gagan3012 The model weights can be found here: [GPT-2](https://huggingface.co/gagan3012/project-code-py) and [DistilGPT-2](https://huggingface.co/gagan3012/project-code-py-small) ### Example usage: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/project-code-py") model = AutoModelWithLMHead.from_pretrained("gagan3012/project-code-py") ``` ## Demo [![Streamlit App](https://static.streamlit.io/badges/streamlit_badge_black_white.svg)](https://share.streamlit.io/gagan3012/project-code-py/app.py) A streamlit webapp has been setup to use the model: https://share.streamlit.io/gagan3012/project-code-py/app.py ![image](https://user-images.githubusercontent.com/49101362/110356042-e69e4780-804a-11eb-94c6-a47fa3cd66b3.png) ## Example results: ### Question: ``` Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. ``` ### Answer: ```python """ Write a function to delete a node in a singly-linked list. You will not be given access to the head of the list, instead you will be given access to the node to be deleted directly. It is guaranteed that the node to be deleted is not a tail node in the list. For example, a = 1->2->3 b = 3->1->2 t = ListNode(-1, 1) Note: The lexicographic ordering of the nodes in a tree matters. Do not assign values to nodes in a tree. Example 1: Input: [1,2,3] Output: 1->2->5 Explanation: 1->2->3->3->4, then 1->2->5[2] and then 5->1->3->4. Note: The length of a linked list will be in the range [1, 1000]. Node.val must be a valid LinkedListNode type. Both the length and the value of the nodes in a linked list will be in the range [-1000, 1000]. All nodes are distinct. """ # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def deleteNode(self, head: ListNode, val: int) -> None: """ BFS Linked List :param head: ListNode :param val: int :return: ListNode """ if head is not None: return head dummy = ListNode(-1, 1) dummy.next = head dummy.next.val = val dummy.next.next = head dummy.val = "" s1 = Solution() print(s1.deleteNode(head)) print(s1.deleteNode(-1)) print(s1.deleteNode(-1)) ```
{}
gagan3012/project-code-py
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Leetcode using AI :robot: GPT-2 Model for Leetcode Questions in python Note: the Answers might not make sense in some cases because of the bias in GPT-2 Contribtuions: If you would like to make the model better contributions are welcome Check out URL ### Favour: It would be highly motivating, if you can STAR⭐ this repo if you find it helpful. ## Model Two models have been developed for different use cases and they can be found at URL The model weights can be found here: GPT-2 and DistilGPT-2 ### Example usage: ## Demo ![Streamlit App](URL A streamlit webapp has been setup to use the model: URL !image ## Example results: ### Question: ### Answer:
[ "# Leetcode using AI :robot:\nGPT-2 Model for Leetcode Questions in python \n\nNote: the Answers might not make sense in some cases because of the bias in GPT-2\n\nContribtuions: If you would like to make the model better contributions are welcome Check out URL", "### Favour:\n\nIt would be highly motivating, if you can STAR⭐ this repo if you find it helpful.", "## Model\n\nTwo models have been developed for different use cases and they can be found at URL\n\nThe model weights can be found here: GPT-2 and DistilGPT-2", "### Example usage:", "## Demo\n![Streamlit App](URL\n\n\nA streamlit webapp has been setup to use the model: URL\n\n!image", "## Example results:", "### Question:", "### Answer:" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Leetcode using AI :robot:\nGPT-2 Model for Leetcode Questions in python \n\nNote: the Answers might not make sense in some cases because of the bias in GPT-2\n\nContribtuions: If you would like to make the model better contributions are welcome Check out URL", "### Favour:\n\nIt would be highly motivating, if you can STAR⭐ this repo if you find it helpful.", "## Model\n\nTwo models have been developed for different use cases and they can be found at URL\n\nThe model weights can be found here: GPT-2 and DistilGPT-2", "### Example usage:", "## Demo\n![Streamlit App](URL\n\n\nA streamlit webapp has been setup to use the model: URL\n\n!image", "## Example results:", "### Question:", "### Answer:" ]
text-generation
transformers
# Generating Rap song Lyrics like Eminem Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data lyrics from leading hip-hop stars ### My model can be accessed at: gagan3012/rap-writer ``` from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("gagan3012/rap-writer") model = AutoModelWithLMHead.from_pretrained("gagan3012/rap-writer") ```
{}
gagan3012/rap-writer
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
# Generating Rap song Lyrics like Eminem Using GPT2 ### I have built a custom model for it using data from Kaggle Creating a new finetuned model using data lyrics from leading hip-hop stars ### My model can be accessed at: gagan3012/rap-writer
[ "# Generating Rap song Lyrics like Eminem Using GPT2", "### I have built a custom model for it using data from Kaggle \n\nCreating a new finetuned model using data lyrics from leading hip-hop stars", "### My model can be accessed at: gagan3012/rap-writer" ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n", "# Generating Rap song Lyrics like Eminem Using GPT2", "### I have built a custom model for it using data from Kaggle \n\nCreating a new finetuned model using data lyrics from leading hip-hop stars", "### My model can be accessed at: gagan3012/rap-writer" ]
text2text-generation
transformers
--- Summarisation model summarsiation
{}
gagan3012/summarsiation
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us
--- Summarisation model summarsiation
[]
[ "TAGS\n#transformers #pytorch #t5 #text2text-generation #autotrain_compatible #endpoints_compatible #has_space #text-generation-inference #region-us \n" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hindi", "results": []}]}
gagan3012/wav2vec2-large-xls-r-300m-hindi
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
# wav2vec2-large-xls-r-300m-hindi This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
[ "# wav2vec2-large-xls-r-300m-hindi\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.18.2.dev0\n- Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "# wav2vec2-large-xls-r-300m-hindi\n\nThis model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0003\n- train_batch_size: 16\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- num_epochs: 30\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.17.0.dev0\n- Pytorch 1.10.2+cu102\n- Datasets 1.18.2.dev0\n- Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Chuvash using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cv", split="test") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Results: Prediction: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана'] Reference: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.'] ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re !mkdir cer !wget -O cer/cer.py https://huggingface.co/ctl/wav2vec2-large-xlsr-cantonese/raw/main/cer.py test_dataset = load_dataset("common_voice", "cv", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-chuvash") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 48.40 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1A7Y20c1QkSHfdOmLXPMiOEpwlTjDZ7m5?usp=sharing)
{"language": "cv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xlsr-chuvash by Gagan Bhatia", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cv", "type": "common_voice", "args": "cv"}, "metrics": [{"type": "wer", "value": 48.4, "name": "Test WER"}]}]}]}
gagan3012/wav2vec2-xlsr-chuvash
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cv", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "cv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Chuvash Fine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: #### Results: Prediction: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана'] Reference: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.'] ## Evaluation The model can be evaluated as follows on the Chuvash test data of Common Voice. Test Result: 48.40 % ## Training The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Chuvash \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Results: \n\nPrediction: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана']\n\nReference: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.']", "## Evaluation\n\nThe model can be evaluated as follows on the Chuvash test data of Common Voice.\n\n\n\nTest Result: 48.40 %", "## Training\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cv #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Chuvash \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Chuvash using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Results: \n\nPrediction: ['проектпа килӗшӳллӗн тӗлӗ мероприяти иртермелле', 'твăра çак планета минтӗ пуяни калленнана']\n\nReference: ['Проектпа килӗшӳллӗн, тӗрлӗ мероприяти ирттермелле.', 'Çак планета питĕ пуян иккен.']", "## Evaluation\n\nThe model can be evaluated as follows on the Chuvash test data of Common Voice.\n\n\n\nTest Result: 48.40 %", "## Training\n\nThe script used for training can be found here" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-khmer Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Khmer using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR Kh](http://www.openslr.org/42/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor !wget https://www.openslr.org/resources/42/km_kh_male.zip !unzip km_kh_male.zip !ls km_kh_male colnames=['path','sentence'] df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames) df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/km_kh_male/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train') processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\\\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\\\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\\\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\\\\\\\\\\\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Result Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re from sklearn.model_selection import train_test_split import pandas as pd from datasets import load_dataset !wget https://www.openslr.org/resources/42/km_kh_male.zip !unzip km_kh_male.zip !ls km_kh_male colnames=['path','sentence'] df = pd.read_csv('/content/km_kh_male/line_index.tsv',sep='\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\t',header=None,names = colnames) df['path'] = '/content/km_kh_male/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/km_kh_male/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/km_kh_male/line_index_test.csv',split = 'train') wer = load_metric("wer") cer = load_metric("cer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-khmer") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch cer = load_metric("cer") result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 24.96 % WER: 24.962519 CER: 6.950925 ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1yo_OTMH8FHQrAKCkKdQGMqpkj-kFhS_2?usp=sharing)
{"language": "km", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["OpenSLR", "common_voice"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xlsr-Khmer by Gagan Bhatia", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR km", "type": "OpenSLR", "args": "km"}, "metrics": [{"type": "wer", "value": 24.96, "name": "Test WER"}]}]}]}
gagan3012/wav2vec2-xlsr-khmer
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "km", "dataset:OpenSLR", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "km" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #km #dataset-OpenSLR #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us
# Wav2Vec2-Large-XLSR-53-khmer Fine-tuned facebook/wav2vec2-large-xlsr-53 on Khmer using the Common Voice, and OpenSLR Kh. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: #### Result Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French Test Result: 24.96 % WER: 24.962519 CER: 6.950925 ## Training The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-khmer \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Khmer using the Common Voice, and OpenSLR Kh. \n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Result \n\nPrediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']\n\nReference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: 24.96 % \n\nWER: 24.962519\nCER: 6.950925", "## Training\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #km #dataset-OpenSLR #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #has_space #region-us \n", "# Wav2Vec2-Large-XLSR-53-khmer \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Khmer using the Common Voice, and OpenSLR Kh. \n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Result \n\nPrediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']\n\nReference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: 24.96 % \n\nWER: 24.962519\nCER: 6.950925", "## Training\n\nThe script used for training can be found here" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Nepali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Nepali using the [Common Voice](https://huggingface.co/datasets/common_voice), and [OpenSLR ne](http://www.openslr.org/43/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor !wget https://www.openslr.org/resources/43/ne_np_female.zip !unzip ne_np_female.zip !ls ne_np_female colnames=['path','sentence'] df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames) df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/ne_np_female/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train') processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Result Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re !wget https://www.openslr.org/resources/43/ne_np_female.zip !unzip ne_np_female.zip !ls ne_np_female colnames=['path','sentence'] df = pd.read_csv('/content/ne_np_female/line_index.tsv',sep='\\t',header=None,names = colnames) df['path'] = '/content/ne_np_female/wavs/'+df['path'] +'.wav' train, test = train_test_split(df, test_size=0.1) test.to_csv('/content/ne_np_female/line_index_test.csv') test_dataset = load_dataset('csv', data_files='/content/ne_np_female/line_index_test.csv',split = 'train') wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-nepali") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 05.97 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1AHnYWXb5cwfMEa2o4O3TSdasAR3iVBFP?usp=sharing)
{"language": "ne", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["OpenSLR", "common_voice"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xlsr-nepali", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR ne", "type": "OpenSLR", "args": "ne"}, "metrics": [{"type": "wer", "value": 5.97, "name": "Test WER"}]}]}]}
gagan3012/wav2vec2-xlsr-nepali
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ne", "dataset:OpenSLR", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ne" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ne #dataset-OpenSLR #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Nepali Fine-tuned facebook/wav2vec2-large-xlsr-53 on Nepali using the Common Voice, and OpenSLR ne. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: #### Result Prediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] Reference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French Test Result: 05.97 % ## Training The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Nepali \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Nepali using the Common Voice, and OpenSLR ne. \n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Result \n\nPrediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']\n\nReference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: 05.97 %", "## Training\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ne #dataset-OpenSLR #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Nepali \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Nepali using the Common Voice, and OpenSLR ne. \n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Result \n\nPrediction: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']\n\nReference: ['पारानाको ब्राजिली राज्यमा रहेको राजधानी', 'देवराज जोशी त्रिभुवन विश्वविद्यालयबाट शिक्षाशास्त्रमा स्नातक हुनुहुन्छ']", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: 05.97 %", "## Training\n\nThe script used for training can be found here" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\\\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` #### Results: Prediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਇ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ'] Reference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") model = Wav2Vec2ForCTC.from_pretrained("gagan3012/wav2vec2-xlsr-punjabi") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\\\\\\\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\\\\\\\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\\\\\\\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\\\\\\\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\\\\\\\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\\\\\\\twith torch.no_grad(): \\\\\\\\t\\\\\\\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\\\\\\\tpred_ids = torch.argmax(logits, dim=-1) \\\\\\\\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\\\\\\\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 58.05 % ## Training The script used for training can be found [here](https://colab.research.google.com/drive/1A7Y20c1QkSHfdOmLXPMiOEpwlTjDZ7m5?usp=sharing)
{"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "wav2vec2-xlsr-punjabi", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 58.06, "name": "Test WER"}]}]}]}
gagan3012/wav2vec2-xlsr-punjabi
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: #### Results: Prediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਇ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ'] Reference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ'] ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French Test Result: 58.05 % ## Training The script used for training can be found here
[ "# Wav2Vec2-Large-XLSR-53-Punjabi \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Results: \n\nPrediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਇ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ']\n\nReference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ']", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: 58.05 %", "## Training\n\nThe script used for training can be found here" ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Punjabi \n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Punjabi using the Common Voice\n\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "#### Results: \n\nPrediction: ['ਹਵਾ ਲਾਤ ਵਿੱਚ ਪੰਦ ਛੇ ਇਖਲਾਟਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈ ਇ ਹਾ ਪੈਸੇ ਲੇਹੜ ਨਹੀਂ ਸੀ ਚੌਨਾ']\n\nReference: ['ਹਵਾਲਾਤ ਵਿੱਚ ਪੰਜ ਛੇ ਇਖ਼ਲਾਕੀ ਮੁਜਰਮ ਸਨ', 'ਮੈਂ ਇਹ ਪੈਸੇ ਲੈਣੇ ਨਹੀਂ ਸੀ ਚਾਹੁੰਦਾ']", "## Evaluation\n\nThe model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, *e.g.* French\n\n\n\n\nTest Result: 58.05 %", "## Training\n\nThe script used for training can be found here" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-hi This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - HI dataset. It achieves the following results on the evaluation set: - Loss: 0.7522 - Wer: 1.0091 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.0417 | 2.59 | 500 | 5.1484 | 1.0 | | 3.3722 | 5.18 | 1000 | 3.3380 | 1.0001 | | 1.9752 | 7.77 | 1500 | 1.3910 | 1.0074 | | 1.5868 | 10.36 | 2000 | 1.0298 | 1.0084 | | 1.4413 | 12.95 | 2500 | 0.9313 | 1.0175 | | 1.3296 | 15.54 | 3000 | 0.8966 | 1.0194 | | 1.2746 | 18.13 | 3500 | 0.8875 | 1.0097 | | 1.2147 | 20.73 | 4000 | 0.8746 | 1.0089 | | 1.1774 | 23.32 | 4500 | 0.8383 | 1.0198 | | 1.129 | 25.91 | 5000 | 0.7848 | 1.0167 | | 1.0995 | 28.5 | 5500 | 0.7992 | 1.0210 | | 1.0665 | 31.09 | 6000 | 0.7878 | 1.0107 | | 1.0321 | 33.68 | 6500 | 0.7653 | 1.0082 | | 1.0068 | 36.27 | 7000 | 0.7635 | 1.0065 | | 0.9916 | 38.86 | 7500 | 0.7728 | 1.0090 | | 0.9735 | 41.45 | 8000 | 0.7688 | 1.0070 | | 0.9745 | 44.04 | 8500 | 0.7455 | 1.0097 | | 0.9677 | 46.63 | 9000 | 0.7605 | 1.0099 | | 0.9313 | 49.22 | 9500 | 0.7527 | 1.0097 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "xls-r-300m-hi", "results": []}]}
gagan3012/xls-r-300m-hi
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "hi", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hi" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
xls-r-300m-hi ============= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - HI dataset. It achieves the following results on the evaluation set: * Loss: 0.7522 * Wer: 1.0091 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 50.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #hi #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 50.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xls-r-300m-pa This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PA-IN dataset. It achieves the following results on the evaluation set: - Loss: 1.0443 - Wer: 0.5715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 500.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:------:| | 4.6694 | 19.22 | 500 | 4.0455 | 1.0 | | 3.3907 | 38.45 | 1000 | 3.2836 | 1.0 | | 2.0866 | 57.67 | 1500 | 1.2788 | 0.7715 | | 1.4106 | 76.9 | 2000 | 0.7866 | 0.6891 | | 1.1711 | 96.15 | 2500 | 0.6556 | 0.6272 | | 1.038 | 115.37 | 3000 | 0.6195 | 0.5680 | | 0.8989 | 134.6 | 3500 | 0.6563 | 0.5602 | | 0.8021 | 153.82 | 4000 | 0.6644 | 0.5327 | | 0.7161 | 173.07 | 4500 | 0.6844 | 0.5253 | | 0.6449 | 192.3 | 5000 | 0.7018 | 0.5331 | | 0.5659 | 211.52 | 5500 | 0.7451 | 0.5465 | | 0.5118 | 230.75 | 6000 | 0.7857 | 0.5386 | | 0.4385 | 249.97 | 6500 | 0.8062 | 0.5382 | | 0.3984 | 269.22 | 7000 | 0.8316 | 0.5621 | | 0.3666 | 288.45 | 7500 | 0.8736 | 0.5504 | | 0.3256 | 307.67 | 8000 | 0.9133 | 0.5688 | | 0.289 | 326.9 | 8500 | 0.9556 | 0.5684 | | 0.2663 | 346.15 | 9000 | 0.9344 | 0.5708 | | 0.2445 | 365.37 | 9500 | 0.9472 | 0.5590 | | 0.2289 | 384.6 | 10000 | 0.9713 | 0.5672 | | 0.2048 | 403.82 | 10500 | 0.9978 | 0.5762 | | 0.1857 | 423.07 | 11000 | 1.0230 | 0.5798 | | 0.1751 | 442.3 | 11500 | 1.0409 | 0.5755 | | 0.1688 | 461.52 | 12000 | 1.0445 | 0.5727 | | 0.1633 | 480.75 | 12500 | 1.0484 | 0.5739 | | 0.1488 | 499.97 | 13000 | 1.0443 | 0.5715 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"language": ["pa-IN"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "xls-r-300m-pa", "results": []}]}
gagan3012/xls-r-300m-pa
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pa-IN" ]
TAGS #transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us
xls-r-300m-pa ============= This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON\_VOICE\_8\_0 - PA-IN dataset. It achieves the following results on the evaluation set: * Loss: 1.0443 * Wer: 0.5715 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 7.5e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 32 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_steps: 2000 * num\_epochs: 500.0 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.17.0.dev0 * Pytorch 1.10.2+cu102 * Datasets 1.18.2.dev0 * Tokenizers 0.11.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
[ "TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #mozilla-foundation/common_voice_8_0 #generated_from_trainer #dataset-common_voice #license-apache-2.0 #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 7.5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2000\n* num\\_epochs: 500.0\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.17.0.dev0\n* Pytorch 1.10.2+cu102\n* Datasets 1.18.2.dev0\n* Tokenizers 0.11.0" ]
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 19984005 - CO2 Emissions (in grams): 20.790169878009916 ## Validation Metrics - Loss: 0.06693269312381744 - Accuracy: 0.9789 - Precision: 0.9843244336569579 - Recall: 0.9733 - AUC: 0.99695552 - F1: 0.9787811745776348 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/gagandeepkundi/autonlp-text-classification-19984005 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("gagandeepkundi/autonlp-text-classification-19984005", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("gagandeepkundi/autonlp-text-classification-19984005", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "es", "tags": "autonlp", "datasets": ["gagandeepkundi/autonlp-data-text-classification"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 20.790169878009916}
gagandeepkundi/latam-question-quality
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "es", "dataset:gagandeepkundi/autonlp-data-text-classification", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "es" ]
TAGS #transformers #pytorch #roberta #text-classification #autonlp #es #dataset-gagandeepkundi/autonlp-data-text-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Binary Classification - Model ID: 19984005 - CO2 Emissions (in grams): 20.790169878009916 ## Validation Metrics - Loss: 0.06693269312381744 - Accuracy: 0.9789 - Precision: 0.9843244336569579 - Recall: 0.9733 - AUC: 0.99695552 - F1: 0.9787811745776348 ## Usage You can use cURL to access this model: Or Python API:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 19984005\n- CO2 Emissions (in grams): 20.790169878009916", "## Validation Metrics\n\n- Loss: 0.06693269312381744\n- Accuracy: 0.9789\n- Precision: 0.9843244336569579\n- Recall: 0.9733\n- AUC: 0.99695552\n- F1: 0.9787811745776348", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
[ "TAGS\n#transformers #pytorch #roberta #text-classification #autonlp #es #dataset-gagandeepkundi/autonlp-data-text-classification #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Binary Classification\n- Model ID: 19984005\n- CO2 Emissions (in grams): 20.790169878009916", "## Validation Metrics\n\n- Loss: 0.06693269312381744\n- Accuracy: 0.9789\n- Precision: 0.9843244336569579\n- Recall: 0.9733\n- AUC: 0.99695552\n- F1: 0.9787811745776348", "## Usage\n\nYou can use cURL to access this model:\n\n\n\nOr Python API:" ]
text-classification
transformers
# Sentiment Classification for hinglish text: `gk-hinglish-sentiment` ## Model description Trained small amount of reviews dataset ## Intended uses & limitations I wanted something to work well with hinglish data as it is being used in India mostly. The training data was not much as expected #### How to use ```python #sample code from transformers import BertTokenizer, BertForSequenceClassification tokenizerg = BertTokenizer.from_pretrained("/content/model") modelg = BertForSequenceClassification.from_pretrained("/content/model") text = "kuch bhi type karo hinglish mai" encoded_input = tokenizerg(text, return_tensors='pt') output = modelg(**encoded_input) print(output) #output contains 3 lables LABEL_0 = Negative ,LABEL_1 = Nuetral ,LABEL_2 = Positive ``` #### Limitations and bias The data contains only hinglish codemixed text it and was very much limited may be I will Update this model if I can get good amount of data ## Training data Training data contains labeled data for 3 labels link to the pre-trained model card with description of the pre-training data. I have Tuned below model https://huggingface.co/rohanrajpal/bert-base-multilingual-codemixed-cased-sentiment ### BibTeX entry and citation info ```@inproceedings{khanuja-etal-2020-gluecos, title = "{GLUEC}o{S}: An Evaluation Benchmark for Code-Switched {NLP}", author = "Khanuja, Simran and Dandapat, Sandipan and Srinivasan, Anirudh and Sitaram, Sunayana and Choudhury, Monojit", booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics", month = jul, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.acl-main.329", pages = "3575--3585" } ```
{"license": "apache-2.0", "tags": ["sentiment", "multilingual", "hindi codemix", "hinglish"], "datasets": ["sail"], "language_bcp47": ["hi-en"]}
ganeshkharad/gk-hinglish-sentiment
null
[ "transformers", "pytorch", "jax", "safetensors", "bert", "text-classification", "sentiment", "multilingual", "hindi codemix", "hinglish", "dataset:sail", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #safetensors #bert #text-classification #sentiment #multilingual #hindi codemix #hinglish #dataset-sail #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us
# Sentiment Classification for hinglish text: 'gk-hinglish-sentiment' ## Model description Trained small amount of reviews dataset ## Intended uses & limitations I wanted something to work well with hinglish data as it is being used in India mostly. The training data was not much as expected #### How to use #### Limitations and bias The data contains only hinglish codemixed text it and was very much limited may be I will Update this model if I can get good amount of data ## Training data Training data contains labeled data for 3 labels link to the pre-trained model card with description of the pre-training data. I have Tuned below model URL ### BibTeX entry and citation info
[ "# Sentiment Classification for hinglish text: 'gk-hinglish-sentiment'", "## Model description\n\nTrained small amount of reviews dataset", "## Intended uses & limitations\n\nI wanted something to work well with hinglish data as it is being used in India mostly.\nThe training data was not much as expected", "#### How to use", "#### Limitations and bias\n\nThe data contains only hinglish codemixed text it and was very much limited may be I will Update this model if I can get good amount of data", "## Training data\n\nTraining data contains labeled data for 3 labels\n\nlink to the pre-trained model card with description of the pre-training data.\nI have Tuned below model\n\nURL", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #jax #safetensors #bert #text-classification #sentiment #multilingual #hindi codemix #hinglish #dataset-sail #license-apache-2.0 #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "# Sentiment Classification for hinglish text: 'gk-hinglish-sentiment'", "## Model description\n\nTrained small amount of reviews dataset", "## Intended uses & limitations\n\nI wanted something to work well with hinglish data as it is being used in India mostly.\nThe training data was not much as expected", "#### How to use", "#### Limitations and bias\n\nThe data contains only hinglish codemixed text it and was very much limited may be I will Update this model if I can get good amount of data", "## Training data\n\nTraining data contains labeled data for 3 labels\n\nlink to the pre-trained model card with description of the pre-training data.\nI have Tuned below model\n\nURL", "### BibTeX entry and citation info" ]
text-generation
transformers
## Generating Chinese poetry by topic. ```python from transformers import * tokenizer = BertTokenizer.from_pretrained("gaochangkuan/model_dir") model = AutoModelWithLMHead.from_pretrained("gaochangkuan/model_dir") prompt= '''<s>田园躬耕''' length= 84 stop_token='</s>' temperature = 1.2 repetition_penalty=1.3 k= 30 p= 0.95 device ='cuda' seed=2020 no_cuda=False prompt_text = prompt if prompt else input("Model prompt >>> ") encoded_prompt = tokenizer.encode( '<s>'+prompt_text+'<sep>', add_special_tokens=False, return_tensors="pt" ) encoded_prompt = encoded_prompt.to(device) output_sequences = model.generate( input_ids=encoded_prompt, max_length=length, min_length=10, do_sample=True, early_stopping=True, num_beams=10, temperature=temperature, top_k=k, top_p=p, repetition_penalty=repetition_penalty, bad_words_ids=None, bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, length_penalty=1.2, no_repeat_ngram_size=2, num_return_sequences=1, attention_mask=None, decoder_start_token_id=tokenizer.bos_token_id,) generated_sequence = output_sequences[0].tolist() text = tokenizer.decode(generated_sequence) text = text[: text.find(stop_token) if stop_token else None] print(''.join(text).replace(' ','').replace('<pad>','').replace('<s>','')) ```
{}
gaochangkuan/model_dir
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
## Generating Chinese poetry by topic.
[ "## Generating Chinese poetry by topic." ]
[ "TAGS\n#transformers #pytorch #jax #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "## Generating Chinese poetry by topic." ]
image-classification
transformers
### What style is that? This model can help identify five architectural styles that were prominent in the early to mid 20th century. Check back for updates including more architectural styles and more accurate predictions as this model diversifies and improves its training. Upload a photograph of a building to the File Uploader on the right. The Image Classifier will predict its architectural style using a database of over 700 images. Scroll down to read more about each style. ### Classical Revival (1895 - 1950) The Classical Revival or Neoclassical style is one of the most commonly seen across the state and the country. This style was inspired by the World's Columbian Exposition in Chicago held in 1893 which promoted a renewed interest in the classical forms. This style encompasses many different styles, including Colonial Revival, Greek Revival, Neoclassical Revival and Mediterranean Revival. Colonial Revival is most commonly used in residential dwellings, while Greek and Neoclassical Revival styles are commonly used in commercial buildings like banks, post offices, and municipal buildings. ![classical revival architecture](images/ex_classical_revival_architecture.jpg) #### Queen Anne (1880-1910) The Queen Anne style was one of a number of popular architectural styles that emerged in the United States during the Victorian Period. It ranges from high style, like the image pictured here, to more vernacular styles that exhibit the Queen Anne form without its high style architectural details. ![queen anne architecture](images/ex_queen_anne_architecture.jpg) #### Craftsman Bungalow (1900-1930) The terms “craftsman” and “bungalow” are often used interchangably, however, “craftsman” refers to the Arts and Crafts movement and is considered an architectural style, whereas “bungalow” is the form of house. Bungalows often exhibit a craftsman style. ![craftsman bungalow architecture](images/ex_craftsman_bungalow_architecture.jpg) #### Tudor Cottage (1910-1950) Tudor homes are inspired by the Medieval period and can range is size and style. In general, the Tudor style features steeply pitched roofs, often with a cat-slide roof line, predominately brick construction, sometimes accented with half-timber framing, front-facing, prominently placed brick or stone chimneys, and tall windows with rectangular or diamond-shaped panes. Front doors are typically off-center with a round arch at the top of the door or doorway. ![tudor cottage architecture](images/ex_tudor_cottage_architecture.jpg) #### Mid-Century Modern Ranch (1930-1970) The Ranch style originated in southern California in the mid-1930s. In the 1940s, the Ranch was one of the small house types financed by the Federal Housing Administration (FHA), along with Minimal Traditional and other small house styles. The Ranch house began to pick up popularity as the financial controls that encouraged small house building lifted following WWII; by the 1950s it was the most predominant residential style in the country. ![mid-century modern ranch](images/ex_mid-century_modern_ranch.jpg) This model was created with HuggingPics🤗🖼️ Image Classifier! Make your own!: [the demo on Google Colab](https://colab.research.google.com/github/nateraw/huggingpics/blob/main/HuggingPics.ipynb).
{"tags": ["image-classification", "pytorch", "huggingpics"], "metrics": ["accuracy"]}
gatecitypreservation/architectural_styles
null
[ "transformers", "pytorch", "tensorboard", "vit", "image-classification", "huggingpics", "model-index", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us
### What style is that? This model can help identify five architectural styles that were prominent in the early to mid 20th century. Check back for updates including more architectural styles and more accurate predictions as this model diversifies and improves its training. Upload a photograph of a building to the File Uploader on the right. The Image Classifier will predict its architectural style using a database of over 700 images. Scroll down to read more about each style. ### Classical Revival (1895 - 1950) The Classical Revival or Neoclassical style is one of the most commonly seen across the state and the country. This style was inspired by the World's Columbian Exposition in Chicago held in 1893 which promoted a renewed interest in the classical forms. This style encompasses many different styles, including Colonial Revival, Greek Revival, Neoclassical Revival and Mediterranean Revival. Colonial Revival is most commonly used in residential dwellings, while Greek and Neoclassical Revival styles are commonly used in commercial buildings like banks, post offices, and municipal buildings. !classical revival architecture #### Queen Anne (1880-1910) The Queen Anne style was one of a number of popular architectural styles that emerged in the United States during the Victorian Period. It ranges from high style, like the image pictured here, to more vernacular styles that exhibit the Queen Anne form without its high style architectural details. !queen anne architecture #### Craftsman Bungalow (1900-1930) The terms “craftsman” and “bungalow” are often used interchangably, however, “craftsman” refers to the Arts and Crafts movement and is considered an architectural style, whereas “bungalow” is the form of house. Bungalows often exhibit a craftsman style. !craftsman bungalow architecture #### Tudor Cottage (1910-1950) Tudor homes are inspired by the Medieval period and can range is size and style. In general, the Tudor style features steeply pitched roofs, often with a cat-slide roof line, predominately brick construction, sometimes accented with half-timber framing, front-facing, prominently placed brick or stone chimneys, and tall windows with rectangular or diamond-shaped panes. Front doors are typically off-center with a round arch at the top of the door or doorway. !tudor cottage architecture #### Mid-Century Modern Ranch (1930-1970) The Ranch style originated in southern California in the mid-1930s. In the 1940s, the Ranch was one of the small house types financed by the Federal Housing Administration (FHA), along with Minimal Traditional and other small house styles. The Ranch house began to pick up popularity as the financial controls that encouraged small house building lifted following WWII; by the 1950s it was the most predominant residential style in the country. !mid-century modern ranch This model was created with HuggingPics️ Image Classifier! Make your own!: the demo on Google Colab.
[ "### What style is that?\n\nThis model can help identify five architectural styles that were prominent in the early to mid 20th century. Check back for updates including more architectural styles and more accurate predictions as this model diversifies and improves its training. \n\nUpload a photograph of a building to the File Uploader on the right. The Image Classifier will predict its architectural style using a database of over 700 images. Scroll down to read more about each style.", "### Classical Revival (1895 - 1950)\n\nThe Classical Revival or Neoclassical style is one of the most commonly seen across the state and the country. This style was inspired by the World's Columbian Exposition in Chicago held in 1893 which promoted a renewed interest in the classical forms. This style encompasses many different styles, including Colonial Revival, Greek Revival, Neoclassical Revival and Mediterranean Revival. Colonial Revival is most commonly used in residential dwellings, while Greek and Neoclassical Revival styles are commonly used in commercial buildings like banks, post offices, and municipal buildings. \n\n!classical revival architecture", "#### Queen Anne (1880-1910)\n\nThe Queen Anne style was one of a number of popular architectural styles that emerged in the United States during the Victorian Period. It ranges from high style, like the image pictured here, to more vernacular styles that exhibit the Queen Anne form without its high style architectural details.\n\n!queen anne architecture", "#### Craftsman Bungalow (1900-1930)\n\nThe terms “craftsman” and “bungalow” are often used interchangably, however, “craftsman” refers to the Arts and Crafts movement and is considered an architectural style, whereas “bungalow” is the form of house. Bungalows often exhibit a craftsman style.\n\n!craftsman bungalow architecture", "#### Tudor Cottage (1910-1950)\n\nTudor homes are inspired by the Medieval period and can range is size and style. In general, the Tudor style features steeply pitched roofs, often with a cat-slide roof line, predominately brick construction, sometimes accented with half-timber framing, front-facing, prominently placed brick or stone chimneys, and tall windows with rectangular or diamond-shaped panes. Front doors are typically off-center with a round arch at the top of the door or doorway. \n\n!tudor cottage architecture", "#### Mid-Century Modern Ranch (1930-1970)\n\nThe Ranch style originated in southern California in the mid-1930s. In the 1940s, the Ranch was one of the small house types financed by the Federal Housing Administration (FHA), along with Minimal Traditional and other small house styles. The Ranch house began to pick up popularity as the financial controls that encouraged small house building lifted following WWII; by the 1950s it was the most predominant residential style in the country.\n\n!mid-century modern ranch\n\nThis model was created with HuggingPics️ Image Classifier! \nMake your own!: the demo on Google Colab." ]
[ "TAGS\n#transformers #pytorch #tensorboard #vit #image-classification #huggingpics #model-index #autotrain_compatible #endpoints_compatible #has_space #region-us \n", "### What style is that?\n\nThis model can help identify five architectural styles that were prominent in the early to mid 20th century. Check back for updates including more architectural styles and more accurate predictions as this model diversifies and improves its training. \n\nUpload a photograph of a building to the File Uploader on the right. The Image Classifier will predict its architectural style using a database of over 700 images. Scroll down to read more about each style.", "### Classical Revival (1895 - 1950)\n\nThe Classical Revival or Neoclassical style is one of the most commonly seen across the state and the country. This style was inspired by the World's Columbian Exposition in Chicago held in 1893 which promoted a renewed interest in the classical forms. This style encompasses many different styles, including Colonial Revival, Greek Revival, Neoclassical Revival and Mediterranean Revival. Colonial Revival is most commonly used in residential dwellings, while Greek and Neoclassical Revival styles are commonly used in commercial buildings like banks, post offices, and municipal buildings. \n\n!classical revival architecture", "#### Queen Anne (1880-1910)\n\nThe Queen Anne style was one of a number of popular architectural styles that emerged in the United States during the Victorian Period. It ranges from high style, like the image pictured here, to more vernacular styles that exhibit the Queen Anne form without its high style architectural details.\n\n!queen anne architecture", "#### Craftsman Bungalow (1900-1930)\n\nThe terms “craftsman” and “bungalow” are often used interchangably, however, “craftsman” refers to the Arts and Crafts movement and is considered an architectural style, whereas “bungalow” is the form of house. Bungalows often exhibit a craftsman style.\n\n!craftsman bungalow architecture", "#### Tudor Cottage (1910-1950)\n\nTudor homes are inspired by the Medieval period and can range is size and style. In general, the Tudor style features steeply pitched roofs, often with a cat-slide roof line, predominately brick construction, sometimes accented with half-timber framing, front-facing, prominently placed brick or stone chimneys, and tall windows with rectangular or diamond-shaped panes. Front doors are typically off-center with a round arch at the top of the door or doorway. \n\n!tudor cottage architecture", "#### Mid-Century Modern Ranch (1930-1970)\n\nThe Ranch style originated in southern California in the mid-1930s. In the 1940s, the Ranch was one of the small house types financed by the Federal Housing Administration (FHA), along with Minimal Traditional and other small house styles. The Ranch house began to pick up popularity as the financial controls that encouraged small house building lifted following WWII; by the 1950s it was the most predominant residential style in the country.\n\n!mid-century modern ranch\n\nThis model was created with HuggingPics️ Image Classifier! \nMake your own!: the demo on Google Colab." ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.7550 - Matthews Correlation: 0.5265 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5296 | 1.0 | 535 | 0.5144 | 0.4215 | | 0.3504 | 2.0 | 1070 | 0.4903 | 0.5046 | | 0.2393 | 3.0 | 1605 | 0.6339 | 0.5058 | | 0.175 | 4.0 | 2140 | 0.7550 | 0.5265 | | 0.1259 | 5.0 | 2675 | 0.8688 | 0.5259 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5264763891845121, "name": "Matthews Correlation"}]}]}]}
gauravtripathy/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-cola ====================================== This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set: * Loss: 0.7550 * Matthews Correlation: 0.5265 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.11.3 * Pytorch 1.9.0+cu111 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
sentence-similarity
sentence-transformers
# gaussfer/test_simcse_new This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('gaussfer/test_simcse_new') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('gaussfer/test_simcse_new') model = AutoModel.from_pretrained('gaussfer/test_simcse_new') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=gaussfer/test_simcse_new) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 875 with parameters: ``` {'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 40, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 10000, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
gaussfer/test_simcse_new
null
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us
# gaussfer/test_simcse_new This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Usage (HuggingFace Transformers) Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 875 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# gaussfer/test_simcse_new\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 875 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #pytorch #bert #feature-extraction #sentence-similarity #transformers #endpoints_compatible #region-us \n", "# gaussfer/test_simcse_new\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Usage (HuggingFace Transformers)\nWithout sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 875 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-finetuned-pubmed This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5363 - Rouge2 Precision: 0.3459 - Rouge2 Recall: 0.2455 - Rouge2 Fmeasure: 0.2731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.652 | 1.0 | 1125 | 1.5087 | 0.3647 | 0.2425 | 0.2772 | | 1.4695 | 2.0 | 2250 | 1.5039 | 0.3448 | 0.2457 | 0.2732 | | 1.3714 | 3.0 | 3375 | 1.4842 | 0.3509 | 0.2474 | 0.277 | | 1.2734 | 4.0 | 4500 | 1.4901 | 0.3452 | 0.2426 | 0.2716 | | 1.1853 | 5.0 | 5625 | 1.5152 | 0.3658 | 0.2371 | 0.2744 | | 1.0975 | 6.0 | 6750 | 1.5133 | 0.3529 | 0.2417 | 0.2729 | | 1.0448 | 7.0 | 7875 | 1.5203 | 0.3485 | 0.2464 | 0.275 | | 0.9999 | 8.0 | 9000 | 1.5316 | 0.3437 | 0.2435 | 0.2719 | | 0.9732 | 9.0 | 10125 | 1.5338 | 0.3464 | 0.2446 | 0.2732 | | 0.954 | 10.0 | 11250 | 1.5363 | 0.3459 | 0.2455 | 0.2731 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-finetuned-pubmed", "results": []}]}
gayanin/bart-finetuned-pubmed
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-finetuned-pubmed ===================== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.5363 * Rouge2 Precision: 0.3459 * Rouge2 Recall: 0.2455 * Rouge2 Fmeasure: 0.2731 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-15 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4822 - Rouge2 Precision: 0.7578 - Rouge2 Recall: 0.5933 - Rouge2 Fmeasure: 0.6511 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.7006 | 1.0 | 663 | 0.5062 | 0.7492 | 0.5855 | 0.6434 | | 0.5709 | 2.0 | 1326 | 0.4811 | 0.7487 | 0.5879 | 0.6447 | | 0.5011 | 3.0 | 1989 | 0.4734 | 0.7541 | 0.5906 | 0.6483 | | 0.4164 | 4.0 | 2652 | 0.4705 | 0.7515 | 0.5876 | 0.6452 | | 0.3888 | 5.0 | 3315 | 0.4703 | 0.7555 | 0.5946 | 0.6515 | | 0.3655 | 6.0 | 3978 | 0.4725 | 0.7572 | 0.5943 | 0.6516 | | 0.319 | 7.0 | 4641 | 0.4733 | 0.7557 | 0.5911 | 0.6491 | | 0.3089 | 8.0 | 5304 | 0.4792 | 0.7577 | 0.5936 | 0.6513 | | 0.2907 | 9.0 | 5967 | 0.4799 | 0.7577 | 0.5931 | 0.6509 | | 0.275 | 10.0 | 6630 | 0.4822 | 0.7578 | 0.5933 | 0.6511 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-mlm-pubmed-15", "results": []}]}
gayanin/bart-mlm-pubmed-15
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-mlm-pubmed-15 ================== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4822 * Rouge2 Precision: 0.7578 * Rouge2 Recall: 0.5933 * Rouge2 Fmeasure: 0.6511 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-35 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9359 - Rouge2 Precision: 0.5451 - Rouge2 Recall: 0.4232 - Rouge2 Fmeasure: 0.4666 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.4156 | 1.0 | 663 | 1.0366 | 0.5165 | 0.3967 | 0.4394 | | 1.1773 | 2.0 | 1326 | 0.9841 | 0.5354 | 0.4168 | 0.4589 | | 1.0894 | 3.0 | 1989 | 0.9554 | 0.5346 | 0.4133 | 0.4563 | | 0.9359 | 4.0 | 2652 | 0.9440 | 0.5357 | 0.4163 | 0.4587 | | 0.8758 | 5.0 | 3315 | 0.9340 | 0.5428 | 0.4226 | 0.465 | | 0.8549 | 6.0 | 3978 | 0.9337 | 0.5385 | 0.422 | 0.4634 | | 0.7743 | 7.0 | 4641 | 0.9330 | 0.542 | 0.422 | 0.4647 | | 0.7465 | 8.0 | 5304 | 0.9315 | 0.5428 | 0.4231 | 0.4654 | | 0.7348 | 9.0 | 5967 | 0.9344 | 0.5462 | 0.4244 | 0.4674 | | 0.7062 | 10.0 | 6630 | 0.9359 | 0.5451 | 0.4232 | 0.4666 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-mlm-pubmed-35", "results": []}]}
gayanin/bart-mlm-pubmed-35
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-mlm-pubmed-35 ================== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.9359 * Rouge2 Precision: 0.5451 * Rouge2 Recall: 0.4232 * Rouge2 Fmeasure: 0.4666 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-45 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1797 - Rouge2 Precision: 0.4333 - Rouge2 Recall: 0.3331 - Rouge2 Fmeasure: 0.3684 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.7989 | 1.0 | 663 | 1.3385 | 0.4097 | 0.3086 | 0.3444 | | 1.5072 | 2.0 | 1326 | 1.2582 | 0.4218 | 0.3213 | 0.3569 | | 1.4023 | 3.0 | 1989 | 1.2236 | 0.4207 | 0.3211 | 0.3562 | | 1.2205 | 4.0 | 2652 | 1.2025 | 0.4359 | 0.3331 | 0.3696 | | 1.1584 | 5.0 | 3315 | 1.1910 | 0.4304 | 0.3307 | 0.3658 | | 1.1239 | 6.0 | 3978 | 1.1830 | 0.4247 | 0.3279 | 0.3618 | | 1.0384 | 7.0 | 4641 | 1.1761 | 0.4308 | 0.3325 | 0.367 | | 1.0168 | 8.0 | 5304 | 1.1762 | 0.4314 | 0.3336 | 0.368 | | 0.9966 | 9.0 | 5967 | 1.1773 | 0.4335 | 0.3341 | 0.369 | | 0.961 | 10.0 | 6630 | 1.1797 | 0.4333 | 0.3331 | 0.3684 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-mlm-pubmed-45", "results": []}]}
gayanin/bart-mlm-pubmed-45
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-mlm-pubmed-45 ================== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1797 * Rouge2 Precision: 0.4333 * Rouge2 Recall: 0.3331 * Rouge2 Fmeasure: 0.3684 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed-medterm This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0000 - Rouge2 Precision: 0.985 - Rouge2 Recall: 0.7208 - Rouge2 Fmeasure: 0.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:------:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.0018 | 1.0 | 13833 | 0.0003 | 0.985 | 0.7208 | 0.8088 | | 0.0014 | 2.0 | 27666 | 0.0006 | 0.9848 | 0.7207 | 0.8086 | | 0.0009 | 3.0 | 41499 | 0.0002 | 0.9848 | 0.7207 | 0.8086 | | 0.0007 | 4.0 | 55332 | 0.0002 | 0.985 | 0.7208 | 0.8088 | | 0.0006 | 5.0 | 69165 | 0.0001 | 0.9848 | 0.7207 | 0.8087 | | 0.0001 | 6.0 | 82998 | 0.0002 | 0.9846 | 0.7206 | 0.8086 | | 0.0009 | 7.0 | 96831 | 0.0001 | 0.9848 | 0.7208 | 0.8087 | | 0.0 | 8.0 | 110664 | 0.0000 | 0.9848 | 0.7207 | 0.8087 | | 0.0001 | 9.0 | 124497 | 0.0000 | 0.985 | 0.7208 | 0.8088 | | 0.0 | 10.0 | 138330 | 0.0000 | 0.985 | 0.7208 | 0.8088 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-mlm-pubmed-medterm", "results": []}]}
gayanin/bart-mlm-pubmed-medterm
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-mlm-pubmed-medterm ======================= This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0000 * Rouge2 Precision: 0.985 * Rouge2 Recall: 0.7208 * Rouge2 Fmeasure: 0.8088 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.16.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.16.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-mlm-pubmed This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7223 - Rouge2 Precision: 0.6572 - Rouge2 Recall: 0.5164 - Rouge2 Fmeasure: 0.5662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.0322 | 1.0 | 663 | 0.7891 | 0.639 | 0.4989 | 0.5491 | | 0.8545 | 2.0 | 1326 | 0.7433 | 0.6461 | 0.5057 | 0.5556 | | 0.758 | 3.0 | 1989 | 0.7299 | 0.647 | 0.5033 | 0.5547 | | 0.6431 | 4.0 | 2652 | 0.7185 | 0.6556 | 0.5101 | 0.5616 | | 0.6058 | 5.0 | 3315 | 0.7126 | 0.6537 | 0.5144 | 0.5638 | | 0.5726 | 6.0 | 3978 | 0.7117 | 0.6567 | 0.5169 | 0.5666 | | 0.5168 | 7.0 | 4641 | 0.7150 | 0.6585 | 0.5154 | 0.566 | | 0.5011 | 8.0 | 5304 | 0.7220 | 0.6568 | 0.5164 | 0.5664 | | 0.4803 | 9.0 | 5967 | 0.7208 | 0.6573 | 0.5161 | 0.5662 | | 0.4577 | 10.0 | 6630 | 0.7223 | 0.6572 | 0.5164 | 0.5662 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-mlm-pubmed", "results": []}]}
gayanin/bart-mlm-pubmed
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-mlm-pubmed =============== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.7223 * Rouge2 Precision: 0.6572 * Rouge2 Recall: 0.5164 * Rouge2 Fmeasure: 0.5662 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-pubmed-1.1 This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4236 - Rouge2 Precision: 0.8482 - Rouge2 Recall: 0.673 - Rouge2 Fmeasure: 0.7347 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6534 | 1.0 | 663 | 0.4641 | 0.8448 | 0.6691 | 0.7313 | | 0.5078 | 2.0 | 1326 | 0.4398 | 0.8457 | 0.6719 | 0.7333 | | 0.4367 | 3.0 | 1989 | 0.4274 | 0.847 | 0.6717 | 0.7335 | | 0.3575 | 4.0 | 2652 | 0.4149 | 0.8481 | 0.6733 | 0.735 | | 0.3319 | 5.0 | 3315 | 0.4170 | 0.8481 | 0.6724 | 0.7343 | | 0.3179 | 6.0 | 3978 | 0.4264 | 0.8484 | 0.6733 | 0.735 | | 0.2702 | 7.0 | 4641 | 0.4207 | 0.8489 | 0.6732 | 0.7353 | | 0.2606 | 8.0 | 5304 | 0.4205 | 0.8487 | 0.6725 | 0.7347 | | 0.2496 | 9.0 | 5967 | 0.4247 | 0.8466 | 0.6717 | 0.7334 | | 0.2353 | 10.0 | 6630 | 0.4236 | 0.8482 | 0.673 | 0.7347 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-paraphrase-pubmed-1.1", "results": []}]}
gayanin/bart-paraphrase-pubmed-1.1
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-paraphrase-pubmed-1.1 ========================== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4236 * Rouge2 Precision: 0.8482 * Rouge2 Recall: 0.673 * Rouge2 Fmeasure: 0.7347 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-paraphrase-pubmed This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6340 - Rouge2 Precision: 0.83 - Rouge2 Recall: 0.6526 - Rouge2 Fmeasure: 0.7144 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.6613 | 1.0 | 663 | 0.4750 | 0.8321 | 0.6552 | 0.7167 | | 0.4993 | 2.0 | 1326 | 0.4404 | 0.8366 | 0.6583 | 0.7203 | | 0.443 | 3.0 | 1989 | 0.4261 | 0.8319 | 0.6562 | 0.7176 | | 0.3482 | 4.0 | 2652 | 0.4198 | 0.8348 | 0.6571 | 0.7191 | | 0.3206 | 5.0 | 3315 | 0.4233 | 0.8344 | 0.656 | 0.7183 | | 0.294 | 6.0 | 3978 | 0.4334 | 0.835 | 0.657 | 0.719 | | 0.2404 | 7.0 | 4641 | 0.4437 | 0.8334 | 0.6559 | 0.7178 | | 0.2228 | 8.0 | 5304 | 0.4438 | 0.8348 | 0.6565 | 0.7187 | | 0.211 | 9.0 | 5967 | 0.4516 | 0.8329 | 0.6549 | 0.717 | | 0.1713 | 10.0 | 6630 | 0.4535 | 0.8332 | 0.6547 | 0.7169 | | 0.1591 | 11.0 | 7293 | 0.4763 | 0.8349 | 0.6561 | 0.7184 | | 0.1555 | 12.0 | 7956 | 0.4824 | 0.8311 | 0.6534 | 0.7153 | | 0.1262 | 13.0 | 8619 | 0.4883 | 0.8322 | 0.655 | 0.7167 | | 0.1164 | 14.0 | 9282 | 0.5025 | 0.8312 | 0.6539 | 0.7158 | | 0.1108 | 15.0 | 9945 | 0.5149 | 0.8321 | 0.6535 | 0.7157 | | 0.0926 | 16.0 | 10608 | 0.5340 | 0.8315 | 0.6544 | 0.7159 | | 0.0856 | 17.0 | 11271 | 0.5322 | 0.8306 | 0.6518 | 0.7142 | | 0.0785 | 18.0 | 11934 | 0.5346 | 0.8324 | 0.6549 | 0.7167 | | 0.071 | 19.0 | 12597 | 0.5488 | 0.8311 | 0.652 | 0.714 | | 0.0635 | 20.0 | 13260 | 0.5624 | 0.8287 | 0.6517 | 0.7132 | | 0.0608 | 21.0 | 13923 | 0.5612 | 0.8299 | 0.6527 | 0.7141 | | 0.0531 | 22.0 | 14586 | 0.5764 | 0.8283 | 0.6498 | 0.7119 | | 0.0486 | 23.0 | 15249 | 0.5832 | 0.8298 | 0.6532 | 0.7148 | | 0.0465 | 24.0 | 15912 | 0.5866 | 0.83 | 0.6522 | 0.7142 | | 0.0418 | 25.0 | 16575 | 0.5825 | 0.83 | 0.6523 | 0.7141 | | 0.0391 | 26.0 | 17238 | 0.5997 | 0.8306 | 0.6545 | 0.716 | | 0.0376 | 27.0 | 17901 | 0.5894 | 0.8315 | 0.6546 | 0.7164 | | 0.035 | 28.0 | 18564 | 0.6045 | 0.8306 | 0.6529 | 0.7149 | | 0.0316 | 29.0 | 19227 | 0.6168 | 0.8311 | 0.6546 | 0.7162 | | 0.0314 | 30.0 | 19890 | 0.6203 | 0.8311 | 0.6552 | 0.7164 | | 0.0292 | 31.0 | 20553 | 0.6173 | 0.8315 | 0.6548 | 0.7163 | | 0.0265 | 32.0 | 21216 | 0.6226 | 0.832 | 0.6548 | 0.7166 | | 0.0274 | 33.0 | 21879 | 0.6264 | 0.8314 | 0.6538 | 0.7155 | | 0.0247 | 34.0 | 22542 | 0.6254 | 0.8289 | 0.6515 | 0.7132 | | 0.0238 | 35.0 | 23205 | 0.6254 | 0.8307 | 0.6519 | 0.7142 | | 0.0232 | 36.0 | 23868 | 0.6295 | 0.8287 | 0.6515 | 0.7133 | | 0.0215 | 37.0 | 24531 | 0.6326 | 0.8293 | 0.6523 | 0.7138 | | 0.0212 | 38.0 | 25194 | 0.6332 | 0.8295 | 0.6522 | 0.714 | | 0.0221 | 39.0 | 25857 | 0.6335 | 0.8305 | 0.6528 | 0.7147 | | 0.0202 | 40.0 | 26520 | 0.6340 | 0.83 | 0.6526 | 0.7144 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-paraphrase-pubmed", "results": []}]}
gayanin/bart-paraphrase-pubmed
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
bart-paraphrase-pubmed ====================== This model is a fine-tuned version of facebook/bart-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.6340 * Rouge2 Precision: 0.83 * Rouge2 Recall: 0.6526 * Rouge2 Fmeasure: 0.7144 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 40 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bart #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6131 - Rouge2 Precision: 0.3 - Rouge2 Recall: 0.2152 - Rouge2 Fmeasure: 0.2379 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.1335 | 1.0 | 563 | 1.7632 | 0.2716 | 0.1936 | 0.2135 | | 1.9373 | 2.0 | 1126 | 1.7037 | 0.2839 | 0.2068 | 0.2265 | | 1.8827 | 3.0 | 1689 | 1.6723 | 0.2901 | 0.2118 | 0.2316 | | 1.8257 | 4.0 | 2252 | 1.6503 | 0.2938 | 0.2115 | 0.2332 | | 1.8152 | 5.0 | 2815 | 1.6386 | 0.2962 | 0.2139 | 0.2357 | | 1.7939 | 6.0 | 3378 | 1.6284 | 0.2976 | 0.212 | 0.2354 | | 1.7845 | 7.0 | 3941 | 1.6211 | 0.2991 | 0.2155 | 0.2383 | | 1.7468 | 8.0 | 4504 | 1.6167 | 0.2994 | 0.217 | 0.239 | | 1.7464 | 9.0 | 5067 | 1.6137 | 0.3007 | 0.2154 | 0.2382 | | 1.744 | 10.0 | 5630 | 1.6131 | 0.3 | 0.2152 | 0.2379 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-finetuned-pubmed", "results": []}]}
gayanin/t5-small-finetuned-pubmed
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-finetuned-pubmed ========================= This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.6131 * Rouge2 Precision: 0.3 * Rouge2 Recall: 0.2152 * Rouge2 Fmeasure: 0.2379 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-15 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5389 - Rouge2 Precision: 0.7165 - Rouge2 Recall: 0.5375 - Rouge2 Fmeasure: 0.5981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.1024 | 0.75 | 500 | 0.7890 | 0.6854 | 0.4813 | 0.5502 | | 0.8788 | 1.51 | 1000 | 0.7176 | 0.6906 | 0.4989 | 0.5638 | | 0.8086 | 2.26 | 1500 | 0.6830 | 0.6872 | 0.5052 | 0.5663 | | 0.7818 | 3.02 | 2000 | 0.6650 | 0.6912 | 0.5104 | 0.5711 | | 0.7466 | 3.77 | 2500 | 0.6458 | 0.6965 | 0.5167 | 0.5774 | | 0.731 | 4.52 | 3000 | 0.6355 | 0.6955 | 0.5161 | 0.5763 | | 0.7126 | 5.28 | 3500 | 0.6249 | 0.6924 | 0.517 | 0.576 | | 0.6998 | 6.03 | 4000 | 0.6166 | 0.6995 | 0.5207 | 0.5809 | | 0.6855 | 6.79 | 4500 | 0.6076 | 0.6981 | 0.5215 | 0.5813 | | 0.676 | 7.54 | 5000 | 0.6015 | 0.7003 | 0.5242 | 0.5836 | | 0.6688 | 8.3 | 5500 | 0.5962 | 0.7004 | 0.5235 | 0.583 | | 0.6569 | 9.05 | 6000 | 0.5900 | 0.6997 | 0.5234 | 0.5827 | | 0.6503 | 9.8 | 6500 | 0.5880 | 0.703 | 0.5257 | 0.5856 | | 0.6455 | 10.56 | 7000 | 0.5818 | 0.7008 | 0.5259 | 0.5849 | | 0.635 | 11.31 | 7500 | 0.5796 | 0.7017 | 0.5271 | 0.5861 | | 0.6323 | 12.07 | 8000 | 0.5769 | 0.7053 | 0.5276 | 0.5877 | | 0.6241 | 12.82 | 8500 | 0.5730 | 0.7011 | 0.5243 | 0.5838 | | 0.6224 | 13.57 | 9000 | 0.5696 | 0.7046 | 0.5286 | 0.5879 | | 0.6139 | 14.33 | 9500 | 0.5685 | 0.7047 | 0.5295 | 0.5886 | | 0.6118 | 15.08 | 10000 | 0.5653 | 0.704 | 0.5297 | 0.5886 | | 0.6089 | 15.84 | 10500 | 0.5633 | 0.703 | 0.5272 | 0.5865 | | 0.598 | 16.59 | 11000 | 0.5613 | 0.7059 | 0.5293 | 0.5889 | | 0.6003 | 17.35 | 11500 | 0.5602 | 0.7085 | 0.532 | 0.5918 | | 0.5981 | 18.1 | 12000 | 0.5587 | 0.7106 | 0.5339 | 0.5938 | | 0.5919 | 18.85 | 12500 | 0.5556 | 0.708 | 0.5319 | 0.5914 | | 0.5897 | 19.61 | 13000 | 0.5556 | 0.7106 | 0.5327 | 0.5931 | | 0.5899 | 20.36 | 13500 | 0.5526 | 0.7114 | 0.534 | 0.5939 | | 0.5804 | 21.12 | 14000 | 0.5521 | 0.7105 | 0.5328 | 0.5928 | | 0.5764 | 21.87 | 14500 | 0.5520 | 0.715 | 0.537 | 0.5976 | | 0.5793 | 22.62 | 15000 | 0.5506 | 0.713 | 0.5346 | 0.5951 | | 0.5796 | 23.38 | 15500 | 0.5492 | 0.7124 | 0.5352 | 0.5952 | | 0.5672 | 24.13 | 16000 | 0.5482 | 0.7124 | 0.5346 | 0.5948 | | 0.5737 | 24.89 | 16500 | 0.5470 | 0.7134 | 0.5352 | 0.5956 | | 0.5685 | 25.64 | 17000 | 0.5463 | 0.7117 | 0.5346 | 0.5946 | | 0.5658 | 26.4 | 17500 | 0.5457 | 0.7145 | 0.5359 | 0.5965 | | 0.5657 | 27.15 | 18000 | 0.5447 | 0.7145 | 0.5367 | 0.597 | | 0.5645 | 27.9 | 18500 | 0.5441 | 0.7141 | 0.5362 | 0.5964 | | 0.565 | 28.66 | 19000 | 0.5436 | 0.7151 | 0.5367 | 0.5972 | | 0.5579 | 29.41 | 19500 | 0.5426 | 0.7162 | 0.5378 | 0.5982 | | 0.563 | 30.17 | 20000 | 0.5424 | 0.7155 | 0.5373 | 0.5977 | | 0.556 | 30.92 | 20500 | 0.5418 | 0.7148 | 0.536 | 0.5966 | | 0.5576 | 31.67 | 21000 | 0.5411 | 0.7141 | 0.5356 | 0.5961 | | 0.5546 | 32.43 | 21500 | 0.5409 | 0.7149 | 0.5364 | 0.5967 | | 0.556 | 33.18 | 22000 | 0.5405 | 0.7143 | 0.5356 | 0.596 | | 0.5536 | 33.94 | 22500 | 0.5401 | 0.7165 | 0.5377 | 0.5982 | | 0.5527 | 34.69 | 23000 | 0.5397 | 0.7188 | 0.5389 | 0.5999 | | 0.5531 | 35.44 | 23500 | 0.5395 | 0.7172 | 0.538 | 0.5989 | | 0.5508 | 36.2 | 24000 | 0.5392 | 0.7166 | 0.538 | 0.5985 | | 0.5495 | 36.95 | 24500 | 0.5391 | 0.7176 | 0.5387 | 0.5993 | | 0.5539 | 37.71 | 25000 | 0.5391 | 0.7169 | 0.5372 | 0.598 | | 0.5452 | 38.46 | 25500 | 0.5390 | 0.7179 | 0.5384 | 0.5991 | | 0.5513 | 39.22 | 26000 | 0.5390 | 0.717 | 0.5377 | 0.5984 | | 0.5506 | 39.97 | 26500 | 0.5389 | 0.7165 | 0.5375 | 0.5981 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-mlm-pubmed-15", "results": []}]}
gayanin/t5-small-mlm-pubmed-15
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-mlm-pubmed-15 ====================== This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.5389 * Rouge2 Precision: 0.7165 * Rouge2 Recall: 0.5375 * Rouge2 Fmeasure: 0.5981 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 40 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-35 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1101 - Rouge2 Precision: 0.4758 - Rouge2 Recall: 0.3498 - Rouge2 Fmeasure: 0.3927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 1.8404 | 0.75 | 500 | 1.5005 | 0.4265 | 0.2786 | 0.3273 | | 1.6858 | 1.51 | 1000 | 1.4216 | 0.4318 | 0.2946 | 0.3404 | | 1.6071 | 2.26 | 1500 | 1.3777 | 0.4472 | 0.3148 | 0.3598 | | 1.5551 | 3.02 | 2000 | 1.3360 | 0.4406 | 0.3168 | 0.3586 | | 1.5116 | 3.77 | 2500 | 1.3128 | 0.4523 | 0.3234 | 0.3671 | | 1.4837 | 4.52 | 3000 | 1.2937 | 0.4477 | 0.3215 | 0.3645 | | 1.4513 | 5.28 | 3500 | 1.2766 | 0.4511 | 0.3262 | 0.3689 | | 1.4336 | 6.03 | 4000 | 1.2626 | 0.4548 | 0.3283 | 0.3718 | | 1.4149 | 6.79 | 4500 | 1.2449 | 0.4495 | 0.3274 | 0.3687 | | 1.3977 | 7.54 | 5000 | 1.2349 | 0.4507 | 0.3305 | 0.3712 | | 1.3763 | 8.3 | 5500 | 1.2239 | 0.4519 | 0.3266 | 0.3688 | | 1.371 | 9.05 | 6000 | 1.2171 | 0.4546 | 0.3305 | 0.3727 | | 1.3501 | 9.8 | 6500 | 1.2080 | 0.4575 | 0.3329 | 0.3755 | | 1.3443 | 10.56 | 7000 | 1.2017 | 0.4576 | 0.3314 | 0.3742 | | 1.326 | 11.31 | 7500 | 1.1926 | 0.4578 | 0.333 | 0.3757 | | 1.3231 | 12.07 | 8000 | 1.1866 | 0.4606 | 0.3357 | 0.3782 | | 1.3089 | 12.82 | 8500 | 1.1816 | 0.4591 | 0.3338 | 0.3765 | | 1.3007 | 13.57 | 9000 | 1.1764 | 0.4589 | 0.3361 | 0.3777 | | 1.2943 | 14.33 | 9500 | 1.1717 | 0.4641 | 0.3382 | 0.3811 | | 1.2854 | 15.08 | 10000 | 1.1655 | 0.4617 | 0.3378 | 0.38 | | 1.2777 | 15.84 | 10500 | 1.1612 | 0.464 | 0.3401 | 0.3823 | | 1.2684 | 16.59 | 11000 | 1.1581 | 0.4608 | 0.3367 | 0.3789 | | 1.2612 | 17.35 | 11500 | 1.1554 | 0.4623 | 0.3402 | 0.3818 | | 1.2625 | 18.1 | 12000 | 1.1497 | 0.4613 | 0.3381 | 0.3802 | | 1.2529 | 18.85 | 12500 | 1.1465 | 0.4671 | 0.3419 | 0.3848 | | 1.2461 | 19.61 | 13000 | 1.1431 | 0.4646 | 0.3399 | 0.3824 | | 1.2415 | 20.36 | 13500 | 1.1419 | 0.4659 | 0.341 | 0.3835 | | 1.2375 | 21.12 | 14000 | 1.1377 | 0.4693 | 0.3447 | 0.3873 | | 1.2315 | 21.87 | 14500 | 1.1353 | 0.4672 | 0.3433 | 0.3855 | | 1.2263 | 22.62 | 15000 | 1.1333 | 0.467 | 0.3433 | 0.3854 | | 1.2214 | 23.38 | 15500 | 1.1305 | 0.4682 | 0.3446 | 0.3869 | | 1.2202 | 24.13 | 16000 | 1.1291 | 0.4703 | 0.3465 | 0.3888 | | 1.2155 | 24.89 | 16500 | 1.1270 | 0.472 | 0.348 | 0.3903 | | 1.2064 | 25.64 | 17000 | 1.1261 | 0.4724 | 0.3479 | 0.3905 | | 1.2173 | 26.4 | 17500 | 1.1236 | 0.4734 | 0.3485 | 0.3912 | | 1.1994 | 27.15 | 18000 | 1.1220 | 0.4739 | 0.3486 | 0.3915 | | 1.2018 | 27.9 | 18500 | 1.1217 | 0.4747 | 0.3489 | 0.3921 | | 1.2045 | 28.66 | 19000 | 1.1194 | 0.4735 | 0.3488 | 0.3916 | | 1.1949 | 29.41 | 19500 | 1.1182 | 0.4732 | 0.3484 | 0.3911 | | 1.19 | 30.17 | 20000 | 1.1166 | 0.4724 | 0.3479 | 0.3904 | | 1.1932 | 30.92 | 20500 | 1.1164 | 0.4753 | 0.3494 | 0.3924 | | 1.1952 | 31.67 | 21000 | 1.1147 | 0.4733 | 0.3485 | 0.3911 | | 1.1922 | 32.43 | 21500 | 1.1146 | 0.475 | 0.3494 | 0.3923 | | 1.1889 | 33.18 | 22000 | 1.1132 | 0.4765 | 0.3499 | 0.3933 | | 1.1836 | 33.94 | 22500 | 1.1131 | 0.4768 | 0.351 | 0.3939 | | 1.191 | 34.69 | 23000 | 1.1127 | 0.4755 | 0.3495 | 0.3926 | | 1.1811 | 35.44 | 23500 | 1.1113 | 0.4748 | 0.349 | 0.3919 | | 1.1864 | 36.2 | 24000 | 1.1107 | 0.4751 | 0.3494 | 0.3921 | | 1.1789 | 36.95 | 24500 | 1.1103 | 0.4756 | 0.3499 | 0.3927 | | 1.1819 | 37.71 | 25000 | 1.1101 | 0.4758 | 0.35 | 0.3932 | | 1.1862 | 38.46 | 25500 | 1.1099 | 0.4755 | 0.3497 | 0.3926 | | 1.1764 | 39.22 | 26000 | 1.1101 | 0.4759 | 0.3498 | 0.3928 | | 1.1819 | 39.97 | 26500 | 1.1101 | 0.4758 | 0.3498 | 0.3927 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-mlm-pubmed-35", "results": []}]}
gayanin/t5-small-mlm-pubmed-35
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-mlm-pubmed-35 ====================== This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1101 * Rouge2 Precision: 0.4758 * Rouge2 Recall: 0.3498 * Rouge2 Fmeasure: 0.3927 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 40 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed-45 This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6395 - Rouge2 Precision: 0.3383 - Rouge2 Recall: 0.2424 - Rouge2 Fmeasure: 0.2753 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:----:|:---------------:|:----------------:|:-------------:|:---------------:| | 2.519 | 0.75 | 500 | 1.9659 | 0.3178 | 0.1888 | 0.2299 | | 2.169 | 1.51 | 1000 | 1.8450 | 0.3256 | 0.2138 | 0.25 | | 2.0796 | 2.26 | 1500 | 1.7900 | 0.3368 | 0.2265 | 0.2636 | | 1.9978 | 3.02 | 2000 | 1.7553 | 0.3427 | 0.234 | 0.2709 | | 1.9686 | 3.77 | 2500 | 1.7172 | 0.3356 | 0.2347 | 0.2692 | | 1.9142 | 4.52 | 3000 | 1.6986 | 0.3358 | 0.238 | 0.2715 | | 1.921 | 5.28 | 3500 | 1.6770 | 0.3349 | 0.2379 | 0.2709 | | 1.8848 | 6.03 | 4000 | 1.6683 | 0.3346 | 0.2379 | 0.2708 | | 1.8674 | 6.79 | 4500 | 1.6606 | 0.3388 | 0.2419 | 0.2752 | | 1.8606 | 7.54 | 5000 | 1.6514 | 0.3379 | 0.2409 | 0.274 | | 1.8515 | 8.3 | 5500 | 1.6438 | 0.3356 | 0.2407 | 0.2731 | | 1.8403 | 9.05 | 6000 | 1.6401 | 0.3367 | 0.2421 | 0.2744 | | 1.8411 | 9.8 | 6500 | 1.6395 | 0.3383 | 0.2424 | 0.2753 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-mlm-pubmed-45", "results": []}]}
gayanin/t5-small-mlm-pubmed-45
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-mlm-pubmed-45 ====================== This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.6395 * Rouge2 Precision: 0.3383 * Rouge2 Recall: 0.2424 * Rouge2 Fmeasure: 0.2753 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.5 * Pytorch 1.10.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.5\n* Pytorch 1.10.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-mlm-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8008 - Rouge2 Precision: 0.6071 - Rouge2 Recall: 0.4566 - Rouge2 Fmeasure: 0.5079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.914 | 0.75 | 500 | 0.8691 | 0.5901 | 0.4357 | 0.4879 | | 0.9093 | 1.51 | 1000 | 0.8646 | 0.5867 | 0.4372 | 0.488 | | 0.895 | 2.26 | 1500 | 0.8618 | 0.5891 | 0.4387 | 0.49 | | 0.8842 | 3.02 | 2000 | 0.8571 | 0.5899 | 0.4374 | 0.4891 | | 0.8796 | 3.77 | 2500 | 0.8544 | 0.5903 | 0.4406 | 0.4916 | | 0.8759 | 4.52 | 3000 | 0.8513 | 0.5921 | 0.4395 | 0.4912 | | 0.8621 | 5.28 | 3500 | 0.8485 | 0.5934 | 0.4413 | 0.493 | | 0.8613 | 6.03 | 4000 | 0.8442 | 0.5944 | 0.4428 | 0.4944 | | 0.8537 | 6.79 | 4500 | 0.8406 | 0.594 | 0.4414 | 0.4932 | | 0.8518 | 7.54 | 5000 | 0.8399 | 0.5956 | 0.4424 | 0.4945 | | 0.8438 | 8.3 | 5500 | 0.8365 | 0.5953 | 0.4452 | 0.4964 | | 0.8339 | 9.05 | 6000 | 0.8353 | 0.5983 | 0.4468 | 0.4983 | | 0.8307 | 9.8 | 6500 | 0.8331 | 0.5979 | 0.4461 | 0.4976 | | 0.8328 | 10.56 | 7000 | 0.8304 | 0.5975 | 0.4465 | 0.4979 | | 0.8263 | 11.31 | 7500 | 0.8283 | 0.5977 | 0.4467 | 0.4981 | | 0.8168 | 12.07 | 8000 | 0.8267 | 0.5971 | 0.4463 | 0.4976 | | 0.8165 | 12.82 | 8500 | 0.8248 | 0.5969 | 0.4462 | 0.4976 | | 0.8084 | 13.57 | 9000 | 0.8245 | 0.6018 | 0.4527 | 0.5035 | | 0.8136 | 14.33 | 9500 | 0.8219 | 0.6023 | 0.4509 | 0.5023 | | 0.8073 | 15.08 | 10000 | 0.8206 | 0.6002 | 0.4486 | 0.5001 | | 0.808 | 15.84 | 10500 | 0.8185 | 0.6009 | 0.4506 | 0.5019 | | 0.8027 | 16.59 | 11000 | 0.8173 | 0.5978 | 0.4478 | 0.4989 | | 0.8061 | 17.35 | 11500 | 0.8169 | 0.6022 | 0.4513 | 0.5026 | | 0.7922 | 18.1 | 12000 | 0.8152 | 0.6016 | 0.4501 | 0.5016 | | 0.7928 | 18.85 | 12500 | 0.8141 | 0.6009 | 0.45 | 0.5012 | | 0.7909 | 19.61 | 13000 | 0.8143 | 0.6019 | 0.4521 | 0.5028 | | 0.7909 | 20.36 | 13500 | 0.8115 | 0.5997 | 0.4505 | 0.5011 | | 0.7949 | 21.12 | 14000 | 0.8115 | 0.6043 | 0.4536 | 0.5048 | | 0.7853 | 21.87 | 14500 | 0.8095 | 0.6033 | 0.4527 | 0.5038 | | 0.7819 | 22.62 | 15000 | 0.8095 | 0.6054 | 0.4541 | 0.5056 | | 0.7828 | 23.38 | 15500 | 0.8075 | 0.6036 | 0.453 | 0.5042 | | 0.787 | 24.13 | 16000 | 0.8068 | 0.6031 | 0.4528 | 0.504 | | 0.7739 | 24.89 | 16500 | 0.8072 | 0.6043 | 0.4529 | 0.5045 | | 0.7782 | 25.64 | 17000 | 0.8073 | 0.606 | 0.4551 | 0.5063 | | 0.7772 | 26.4 | 17500 | 0.8063 | 0.6055 | 0.4549 | 0.5062 | | 0.7718 | 27.15 | 18000 | 0.8057 | 0.606 | 0.4546 | 0.5059 | | 0.7747 | 27.9 | 18500 | 0.8045 | 0.6046 | 0.4543 | 0.5054 | | 0.7738 | 28.66 | 19000 | 0.8035 | 0.6059 | 0.4549 | 0.506 | | 0.7642 | 29.41 | 19500 | 0.8041 | 0.6053 | 0.4545 | 0.5058 | | 0.7666 | 30.17 | 20000 | 0.8039 | 0.6066 | 0.457 | 0.508 | | 0.7686 | 30.92 | 20500 | 0.8027 | 0.6075 | 0.4571 | 0.5081 | | 0.7664 | 31.67 | 21000 | 0.8026 | 0.6062 | 0.4566 | 0.5076 | | 0.77 | 32.43 | 21500 | 0.8022 | 0.6068 | 0.4571 | 0.5081 | | 0.7618 | 33.18 | 22000 | 0.8015 | 0.6065 | 0.4563 | 0.5072 | | 0.7615 | 33.94 | 22500 | 0.8013 | 0.6064 | 0.4565 | 0.5074 | | 0.7611 | 34.69 | 23000 | 0.8017 | 0.607 | 0.4567 | 0.5078 | | 0.7611 | 35.44 | 23500 | 0.8013 | 0.608 | 0.4565 | 0.5082 | | 0.7604 | 36.2 | 24000 | 0.8012 | 0.6069 | 0.4561 | 0.5072 | | 0.7599 | 36.95 | 24500 | 0.8013 | 0.6078 | 0.4571 | 0.5085 | | 0.7542 | 37.71 | 25000 | 0.8016 | 0.6083 | 0.4579 | 0.5091 | | 0.7637 | 38.46 | 25500 | 0.8009 | 0.6072 | 0.4569 | 0.5081 | | 0.7596 | 39.22 | 26000 | 0.8008 | 0.6069 | 0.4566 | 0.5078 | | 0.7604 | 39.97 | 26500 | 0.8008 | 0.6071 | 0.4566 | 0.5079 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-mlm-pubmed", "results": []}]}
gayanin/t5-small-mlm-pubmed
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-mlm-pubmed =================== This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.8008 * Rouge2 Precision: 0.6071 * Rouge2 Recall: 0.4566 * Rouge2 Fmeasure: 0.5079 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 40 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-paraphrase-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4032 - Rouge2 Precision: 0.8281 - Rouge2 Recall: 0.6346 - Rouge2 Fmeasure: 0.6996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge2 Precision | Rouge2 Recall | Rouge2 Fmeasure | |:-------------:|:-----:|:-----:|:---------------:|:----------------:|:-------------:|:---------------:| | 0.5253 | 1.0 | 663 | 0.4895 | 0.8217 | 0.6309 | 0.695 | | 0.5385 | 2.0 | 1326 | 0.4719 | 0.822 | 0.6307 | 0.6953 | | 0.5255 | 3.0 | 1989 | 0.4579 | 0.8225 | 0.631 | 0.6954 | | 0.4927 | 4.0 | 2652 | 0.4510 | 0.824 | 0.6315 | 0.6965 | | 0.484 | 5.0 | 3315 | 0.4426 | 0.8254 | 0.6323 | 0.6974 | | 0.4691 | 6.0 | 3978 | 0.4383 | 0.8241 | 0.6311 | 0.6962 | | 0.4546 | 7.0 | 4641 | 0.4319 | 0.8248 | 0.6322 | 0.6969 | | 0.4431 | 8.0 | 5304 | 0.4270 | 0.8254 | 0.633 | 0.6977 | | 0.4548 | 9.0 | 5967 | 0.4257 | 0.8257 | 0.6322 | 0.6976 | | 0.4335 | 10.0 | 6630 | 0.4241 | 0.8271 | 0.6333 | 0.6986 | | 0.4234 | 11.0 | 7293 | 0.4203 | 0.827 | 0.6341 | 0.6992 | | 0.433 | 12.0 | 7956 | 0.4185 | 0.8279 | 0.6347 | 0.6998 | | 0.4108 | 13.0 | 8619 | 0.4161 | 0.8285 | 0.6352 | 0.7004 | | 0.4101 | 14.0 | 9282 | 0.4133 | 0.8289 | 0.6356 | 0.7008 | | 0.4155 | 15.0 | 9945 | 0.4149 | 0.8279 | 0.635 | 0.6998 | | 0.3991 | 16.0 | 10608 | 0.4124 | 0.8289 | 0.6353 | 0.7005 | | 0.3962 | 17.0 | 11271 | 0.4113 | 0.829 | 0.6353 | 0.7006 | | 0.3968 | 18.0 | 11934 | 0.4114 | 0.8285 | 0.6352 | 0.7002 | | 0.3962 | 19.0 | 12597 | 0.4100 | 0.8282 | 0.6346 | 0.6998 | | 0.3771 | 20.0 | 13260 | 0.4078 | 0.829 | 0.6352 | 0.7005 | | 0.3902 | 21.0 | 13923 | 0.4083 | 0.8295 | 0.6351 | 0.7006 | | 0.3811 | 22.0 | 14586 | 0.4077 | 0.8276 | 0.6346 | 0.6995 | | 0.38 | 23.0 | 15249 | 0.4076 | 0.8281 | 0.6346 | 0.6997 | | 0.3695 | 24.0 | 15912 | 0.4059 | 0.8277 | 0.6344 | 0.6993 | | 0.3665 | 25.0 | 16575 | 0.4043 | 0.8278 | 0.6343 | 0.6992 | | 0.3728 | 26.0 | 17238 | 0.4059 | 0.8279 | 0.6346 | 0.6994 | | 0.3669 | 27.0 | 17901 | 0.4048 | 0.8271 | 0.6342 | 0.6991 | | 0.3702 | 28.0 | 18564 | 0.4058 | 0.8265 | 0.6338 | 0.6985 | | 0.3674 | 29.0 | 19227 | 0.4049 | 0.8277 | 0.6345 | 0.6993 | | 0.364 | 30.0 | 19890 | 0.4048 | 0.8273 | 0.6341 | 0.699 | | 0.3618 | 31.0 | 20553 | 0.4041 | 0.828 | 0.6349 | 0.6997 | | 0.3609 | 32.0 | 21216 | 0.4040 | 0.8275 | 0.6346 | 0.6994 | | 0.357 | 33.0 | 21879 | 0.4037 | 0.8278 | 0.6348 | 0.6996 | | 0.3638 | 34.0 | 22542 | 0.4038 | 0.8275 | 0.634 | 0.6989 | | 0.3551 | 35.0 | 23205 | 0.4035 | 0.8275 | 0.6344 | 0.6992 | | 0.358 | 36.0 | 23868 | 0.4035 | 0.8279 | 0.6347 | 0.6995 | | 0.3519 | 37.0 | 24531 | 0.4034 | 0.8277 | 0.6343 | 0.6992 | | 0.359 | 38.0 | 25194 | 0.4035 | 0.8281 | 0.6346 | 0.6996 | | 0.3542 | 39.0 | 25857 | 0.4033 | 0.8281 | 0.6346 | 0.6996 | | 0.3592 | 40.0 | 26520 | 0.4032 | 0.8281 | 0.6346 | 0.6996 | ### Framework versions - Transformers 4.12.3 - Pytorch 1.9.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "t5-small-paraphrase-pubmed", "results": []}]}
gayanin/t5-small-paraphrase-pubmed
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
t5-small-paraphrase-pubmed ========================== This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.4032 * Rouge2 Precision: 0.8281 * Rouge2 Recall: 0.6346 * Rouge2 Fmeasure: 0.6996 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 40 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.12.3 * Pytorch 1.9.0+cu111 * Datasets 1.15.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 40\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.12.3\n* Pytorch 1.9.0+cu111\n* Datasets 1.15.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2180 - Accuracy: 0.923 - F1: 0.9233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8217 | 1.0 | 250 | 0.3137 | 0.903 | 0.8999 | | 0.2484 | 2.0 | 500 | 0.2180 | 0.923 | 0.9233 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.923, "name": "Accuracy"}, {"type": "f1", "value": 0.9233262687967644, "name": "F1"}]}]}]}
gbade786/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
distilbert-base-uncased-finetuned-emotion ========================================= This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set: * Loss: 0.2180 * Accuracy: 0.923 * F1: 0.9233 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 64 * eval\_batch\_size: 64 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 2 ### Training results ### Framework versions * Transformers 4.15.0 * Pytorch 1.10.0+cu111 * Datasets 1.17.0 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #dataset-emotion #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2", "### Training results", "### Framework versions\n\n\n* Transformers 4.15.0\n* Pytorch 1.10.0+cu111\n* Datasets 1.17.0\n* Tokenizers 0.10.3" ]
text2text-generation
transformers
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 483413089 - CO2 Emissions (in grams): 210.6348731063569 ## Validation Metrics - Loss: 1.8478657007217407 - Rouge1: 50.5981 - Rouge2: 26.2167 - RougeL: 46.0513 - RougeLsum: 46.061 - Gen Len: 13.5987 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/gborn/autonlp-news-summarization-483413089 ```
{"language": "en", "tags": "autonlp", "datasets": ["gborn/autonlp-data-news-summarization"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 210.6348731063569}
gborn/autonlp-news-summarization-483413089
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "autonlp", "en", "dataset:gborn/autonlp-data-news-summarization", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #pegasus #text2text-generation #autonlp #en #dataset-gborn/autonlp-data-news-summarization #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoNLP - Problem type: Summarization - Model ID: 483413089 - CO2 Emissions (in grams): 210.6348731063569 ## Validation Metrics - Loss: 1.8478657007217407 - Rouge1: 50.5981 - Rouge2: 26.2167 - RougeL: 46.0513 - RougeLsum: 46.061 - Gen Len: 13.5987 ## Usage You can use cURL to access this model:
[ "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 483413089\n- CO2 Emissions (in grams): 210.6348731063569", "## Validation Metrics\n\n- Loss: 1.8478657007217407\n- Rouge1: 50.5981\n- Rouge2: 26.2167\n- RougeL: 46.0513\n- RougeLsum: 46.061\n- Gen Len: 13.5987", "## Usage\n\nYou can use cURL to access this model:" ]
[ "TAGS\n#transformers #pytorch #pegasus #text2text-generation #autonlp #en #dataset-gborn/autonlp-data-news-summarization #co2_eq_emissions #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoNLP\n\n- Problem type: Summarization\n- Model ID: 483413089\n- CO2 Emissions (in grams): 210.6348731063569", "## Validation Metrics\n\n- Loss: 1.8478657007217407\n- Rouge1: 50.5981\n- Rouge2: 26.2167\n- RougeL: 46.0513\n- RougeLsum: 46.061\n- Gen Len: 13.5987", "## Usage\n\nYou can use cURL to access this model:" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-cola This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6747 - Matthews Correlation: 0.5957 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name cola \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-cola \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4921 | 1.0 | 535 | 0.5283 | 0.5068 | | 0.2837 | 2.0 | 1070 | 0.5133 | 0.5521 | | 0.1775 | 3.0 | 1605 | 0.6747 | 0.5957 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "bert-base-cased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5956649094312695, "name": "Matthews Correlation"}]}]}]}
gchhablani/bert-base-cased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-cola ============================== This model is a fine-tuned version of bert-base-cased on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6747 * Matthews Correlation: 0.5957 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-mnli This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.5721 - Accuracy: 0.8410 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name mnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-mnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.5323 | 1.0 | 24544 | 0.4431 | 0.8302 | | 0.3447 | 2.0 | 49088 | 0.4725 | 0.8353 | | 0.2267 | 3.0 | 73632 | 0.5887 | 0.8368 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MNLI", "type": "glue", "args": "mnli"}, "metrics": [{"type": "accuracy", "value": 0.8410292921074044, "name": "Accuracy"}]}]}]}
gchhablani/bert-base-cased-finetuned-mnli
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-mnli ============================== This model is a fine-tuned version of bert-base-cased on the GLUE MNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.5721 * Accuracy: 0.8410 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-mrpc This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.7132 - Accuracy: 0.8603 - F1: 0.9026 - Combined Score: 0.8814 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name mrpc \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir bert-base-cased-finetuned-mrpc \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5981 | 1.0 | 230 | 0.4580 | 0.7892 | 0.8562 | 0.8227 | | 0.3739 | 2.0 | 460 | 0.3806 | 0.8480 | 0.8942 | 0.8711 | | 0.1991 | 3.0 | 690 | 0.4879 | 0.8529 | 0.8958 | 0.8744 | | 0.1286 | 4.0 | 920 | 0.6342 | 0.8529 | 0.8986 | 0.8758 | | 0.0812 | 5.0 | 1150 | 0.7132 | 0.8603 | 0.9026 | 0.8814 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-base-cased-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8602941176470589, "name": "Accuracy"}, {"type": "f1", "value": 0.9025641025641027, "name": "F1"}]}]}]}
gchhablani/bert-base-cased-finetuned-mrpc
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-mrpc ============================== This model is a fine-tuned version of bert-base-cased on the GLUE MRPC dataset. It achieves the following results on the evaluation set: * Loss: 0.7132 * Accuracy: 0.8603 * F1: 0.9026 * Combined Score: 0.8814 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-qnli This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.3986 - Accuracy: 0.9099 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name qnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-qnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.337 | 1.0 | 6547 | 0.9013 | 0.2448 | | 0.1971 | 2.0 | 13094 | 0.9143 | 0.2839 | | 0.1175 | 3.0 | 19641 | 0.9099 | 0.3986 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-finetuned-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QNLI", "type": "glue", "args": "qnli"}, "metrics": [{"type": "accuracy", "value": 0.9099395936298736, "name": "Accuracy"}]}]}]}
gchhablani/bert-base-cased-finetuned-qnli
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-qnli ============================== This model is a fine-tuned version of bert-base-cased on the GLUE QNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.3986 * Accuracy: 0.9099 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-qqp This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3752 - Accuracy: 0.9084 - F1: 0.8768 - Combined Score: 0.8926 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name qqp \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-qqp \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.308 | 1.0 | 22741 | 0.2548 | 0.8925 | 0.8556 | 0.8740 | | 0.201 | 2.0 | 45482 | 0.2881 | 0.9032 | 0.8698 | 0.8865 | | 0.1416 | 3.0 | 68223 | 0.3752 | 0.9084 | 0.8768 | 0.8926 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-base-cased-finetuned-qqp", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QQP", "type": "glue", "args": "qqp"}, "metrics": [{"type": "accuracy", "value": 0.9083848627256987, "name": "Accuracy"}, {"type": "f1", "value": 0.8767633750332712, "name": "F1"}]}]}]}
gchhablani/bert-base-cased-finetuned-qqp
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-qqp ============================= This model is a fine-tuned version of bert-base-cased on the GLUE QQP dataset. It achieves the following results on the evaluation set: * Loss: 0.3752 * Accuracy: 0.9084 * F1: 0.8768 * Combined Score: 0.8926 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-rte This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7260 - Accuracy: 0.6715 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name rte \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-rte \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6915 | 1.0 | 156 | 0.6491 | 0.6606 | | 0.55 | 2.0 | 312 | 0.6737 | 0.6570 | | 0.3955 | 3.0 | 468 | 0.7260 | 0.6715 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6714801444043321, "name": "Accuracy"}]}]}]}
gchhablani/bert-base-cased-finetuned-rte
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-rte ============================= This model is a fine-tuned version of bert-base-cased on the GLUE RTE dataset. It achieves the following results on the evaluation set: * Loss: 0.7260 * Accuracy: 0.6715 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-sst2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3649 - Accuracy: 0.9232 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name sst2 \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-sst2 \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.233 | 1.0 | 4210 | 0.9174 | 0.2841 | | 0.1261 | 2.0 | 8420 | 0.9278 | 0.3310 | | 0.0768 | 3.0 | 12630 | 0.9232 | 0.3649 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE SST2", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.9231651376146789, "name": "Accuracy"}]}]}]}
gchhablani/bert-base-cased-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-sst2 ============================== This model is a fine-tuned version of bert-base-cased on the GLUE SST2 dataset. It achieves the following results on the evaluation set: * Loss: 0.3649 * Accuracy: 0.9232 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-stsb This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.4861 - Pearson: 0.8926 - Spearmanr: 0.8898 - Combined Score: 0.8912 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir bert-base-cased-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:| | 1.1174 | 1.0 | 360 | 0.8816 | 0.5000 | 0.8832 | 0.8800 | | 0.3835 | 2.0 | 720 | 0.8901 | 0.4672 | 0.8915 | 0.8888 | | 0.2388 | 3.0 | 1080 | 0.8912 | 0.4861 | 0.8926 | 0.8898 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["spearmanr"], "model-index": [{"name": "bert-base-cased-finetuned-stsb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metrics": [{"type": "spearmanr", "value": 0.8897907271421561, "name": "Spearmanr"}]}]}]}
gchhablani/bert-base-cased-finetuned-stsb
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-stsb ============================== This model is a fine-tuned version of bert-base-cased on the GLUE STSB dataset. It achieves the following results on the evaluation set: * Loss: 0.4861 * Pearson: 0.8926 * Spearmanr: 0.8898 * Combined Score: 0.8912 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-finetuned-wnli This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6996 - Accuracy: 0.4648 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path bert-base-cased \\n --task_name wnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir bert-base-cased-finetuned-wnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7299 | 1.0 | 40 | 0.6923 | 0.5634 | | 0.6982 | 2.0 | 80 | 0.7027 | 0.3803 | | 0.6972 | 3.0 | 120 | 0.7005 | 0.4507 | | 0.6992 | 4.0 | 160 | 0.6977 | 0.5352 | | 0.699 | 5.0 | 200 | 0.6996 | 0.4648 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.4647887323943662, "name": "Accuracy"}]}]}]}
gchhablani/bert-base-cased-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-base-cased-finetuned-wnli ============================== This model is a fine-tuned version of bert-base-cased on the GLUE WNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.6996 * Accuracy: 0.4648 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-cola This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.8385 - Matthews Correlation: 0.5957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5533 | 1.0 | 2138 | 0.7943 | 0.4439 | | 0.5004 | 2.0 | 4276 | 0.7272 | 0.5678 | | 0.2865 | 3.0 | 6414 | 0.8385 | 0.5957 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "bert-large-cased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5957317644481708, "name": "Matthews Correlation"}]}]}]}
gchhablani/bert-large-cased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-large-cased-finetuned-cola =============================== This model is a fine-tuned version of bert-large-cased on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.8385 * Matthews Correlation: 0.5957 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-mrpc This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.6274 - Accuracy: 0.6838 - F1: 0.8122 - Combined Score: 0.7480 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6441 | 1.0 | 917 | 0.6370 | 0.6838 | 0.8122 | 0.7480 | | 0.6451 | 2.0 | 1834 | 0.6553 | 0.6838 | 0.8122 | 0.7480 | | 0.6428 | 3.0 | 2751 | 0.6332 | 0.6838 | 0.8122 | 0.7480 | | 0.6476 | 4.0 | 3668 | 0.6248 | 0.6838 | 0.8122 | 0.7480 | | 0.6499 | 5.0 | 4585 | 0.6274 | 0.6838 | 0.8122 | 0.7480 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "bert-large-cased-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.6838235294117647, "name": "Accuracy"}, {"type": "f1", "value": 0.8122270742358079, "name": "F1"}]}]}]}
gchhablani/bert-large-cased-finetuned-mrpc
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-large-cased-finetuned-mrpc =============================== This model is a fine-tuned version of bert-large-cased on the GLUE MRPC dataset. It achieves the following results on the evaluation set: * Loss: 0.6274 * Accuracy: 0.6838 * F1: 0.8122 * Combined Score: 0.7480 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-rte This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 1.5187 - Accuracy: 0.6643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6969 | 1.0 | 623 | 0.7039 | 0.5343 | | 0.5903 | 2.0 | 1246 | 0.6461 | 0.7184 | | 0.4557 | 3.0 | 1869 | 1.5187 | 0.6643 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-large-cased-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6642599277978339, "name": "Accuracy"}]}]}]}
gchhablani/bert-large-cased-finetuned-rte
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-large-cased-finetuned-rte ============================== This model is a fine-tuned version of bert-large-cased on the GLUE RTE dataset. It achieves the following results on the evaluation set: * Loss: 1.5187 * Accuracy: 0.6643 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-wnli This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7087 - Accuracy: 0.3521 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:----:|:--------:|:---------------:| | 0.7114 | 1.0 | 159 | 0.5634 | 0.6923 | | 0.7141 | 2.0 | 318 | 0.5634 | 0.6895 | | 0.7063 | 3.0 | 477 | 0.5634 | 0.6930 | | 0.712 | 4.0 | 636 | 0.4507 | 0.7077 | | 0.7037 | 5.0 | 795 | 0.3521 | 0.7087 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "bert-large-cased-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.352112676056338, "name": "Accuracy"}]}]}]}
gchhablani/bert-large-cased-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
bert-large-cased-finetuned-wnli =============================== This model is a fine-tuned version of bert-large-cased on the GLUE WNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.7087 * Accuracy: 0.3521 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #bert #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-cola This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.5929 - Matthews Correlation: 0.3594 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name cola \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-cola \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5895 | 1.0 | 535 | 0.6146 | 0.1699 | | 0.4656 | 2.0 | 1070 | 0.5667 | 0.3047 | | 0.3329 | 3.0 | 1605 | 0.5929 | 0.3594 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-base-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.35940659235571387, "name": "Matthews Correlation"}]}]}]}
gchhablani/fnet-base-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-cola ======================== This model is a fine-tuned version of google/fnet-base on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.5929 * Matthews Correlation: 0.3594 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-mnli This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6443 - Accuracy: 0.7675 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name mnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-mnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7143 | 1.0 | 24544 | 0.6169 | 0.7504 | | 0.5407 | 2.0 | 49088 | 0.6218 | 0.7627 | | 0.4178 | 3.0 | 73632 | 0.6564 | 0.7658 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-mnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MNLI", "type": "glue", "args": "mnli"}, "metrics": [{"type": "accuracy", "value": 0.7674938974776241, "name": "Accuracy"}]}]}]}
gchhablani/fnet-base-finetuned-mnli
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-mnli ======================== This model is a fine-tuned version of google/fnet-base on the GLUE MNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.6443 * Accuracy: 0.7675 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-mrpc This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.9653 - Accuracy: 0.7721 - F1: 0.8502 - Combined Score: 0.8112 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name mrpc \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir fnet-base-finetuned-mrpc \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.544 | 1.0 | 230 | 0.5272 | 0.7328 | 0.8300 | 0.7814 | | 0.4034 | 2.0 | 460 | 0.6211 | 0.7255 | 0.8298 | 0.7776 | | 0.2602 | 3.0 | 690 | 0.9110 | 0.7230 | 0.8306 | 0.7768 | | 0.1688 | 4.0 | 920 | 0.8640 | 0.7696 | 0.8489 | 0.8092 | | 0.0913 | 5.0 | 1150 | 0.9653 | 0.7721 | 0.8502 | 0.8112 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "fnet-base-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.7720588235294118, "name": "Accuracy"}, {"type": "f1", "value": 0.8502415458937198, "name": "F1"}]}]}]}
gchhablani/fnet-base-finetuned-mrpc
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-mrpc ======================== This model is a fine-tuned version of google/fnet-base on the GLUE MRPC dataset. It achieves the following results on the evaluation set: * Loss: 0.9653 * Accuracy: 0.7721 * F1: 0.8502 * Combined Score: 0.8112 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-qnli This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.4746 - Accuracy: 0.8439 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name qnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-qnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.4597 | 1.0 | 6547 | 0.3713 | 0.8411 | | 0.3252 | 2.0 | 13094 | 0.3781 | 0.8420 | | 0.2243 | 3.0 | 19641 | 0.4746 | 0.8439 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QNLI", "type": "glue", "args": "qnli"}, "metrics": [{"type": "accuracy", "value": 0.8438586857038257, "name": "Accuracy"}]}]}]}
gchhablani/fnet-base-finetuned-qnli
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-qnli ======================== This model is a fine-tuned version of google/fnet-base on the GLUE QNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.4746 * Accuracy: 0.8439 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-qqp This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3686 - Accuracy: 0.8847 - F1: 0.8466 - Combined Score: 0.8657 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name qqp \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-qqp \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.3484 | 1.0 | 22741 | 0.3014 | 0.8676 | 0.8297 | 0.8487 | | 0.2387 | 2.0 | 45482 | 0.3011 | 0.8801 | 0.8429 | 0.8615 | | 0.1739 | 3.0 | 68223 | 0.3686 | 0.8847 | 0.8466 | 0.8657 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "fnet-base-finetuned-qqp", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QQP", "type": "glue", "args": "qqp"}, "metrics": [{"type": "accuracy", "value": 0.8847390551570616, "name": "Accuracy"}, {"type": "f1", "value": 0.8466197090382463, "name": "F1"}]}]}]}
gchhablani/fnet-base-finetuned-qqp
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-qqp ======================= This model is a fine-tuned version of google/fnet-base on the GLUE QQP dataset. It achieves the following results on the evaluation set: * Loss: 0.3686 * Accuracy: 0.8847 * F1: 0.8466 * Combined Score: 0.8657 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-rte This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6978 - Accuracy: 0.6282 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name rte \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-rte \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6829 | 1.0 | 156 | 0.6657 | 0.5704 | | 0.6174 | 2.0 | 312 | 0.6784 | 0.6101 | | 0.5141 | 3.0 | 468 | 0.6978 | 0.6282 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.628158844765343, "name": "Accuracy"}]}]}]}
gchhablani/fnet-base-finetuned-rte
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-rte ======================= This model is a fine-tuned version of google/fnet-base on the GLUE RTE dataset. It achieves the following results on the evaluation set: * Loss: 0.6978 * Accuracy: 0.6282 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-sst2 This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.4674 - Accuracy: 0.8945 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name sst2 \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-sst2 \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Accuracy | Validation Loss | |:-------------:|:-----:|:-----:|:--------:|:---------------:| | 0.2956 | 1.0 | 4210 | 0.8819 | 0.3128 | | 0.1746 | 2.0 | 8420 | 0.8979 | 0.3850 | | 0.1204 | 3.0 | 12630 | 0.8945 | 0.4674 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE SST2", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.8944954128440367, "name": "Accuracy"}]}]}]}
gchhablani/fnet-base-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "rust", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #rust #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-sst2 ======================== This model is a fine-tuned version of google/fnet-base on the GLUE SST2 dataset. It achieves the following results on the evaluation set: * Loss: 0.4674 * Accuracy: 0.8945 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #rust #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-stsb This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.7894 - Pearson: 0.8256 - Spearmanr: 0.8219 - Combined Score: 0.8238 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name stsb \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 3 \\n --output_dir fnet-base-finetuned-stsb \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Combined Score | Validation Loss | Pearson | Spearmanr | |:-------------:|:-----:|:----:|:--------------:|:---------------:|:-------:|:---------:| | 1.5473 | 1.0 | 360 | 0.8120 | 0.7751 | 0.8115 | 0.8125 | | 0.6954 | 2.0 | 720 | 0.8145 | 0.8717 | 0.8160 | 0.8130 | | 0.4828 | 3.0 | 1080 | 0.8238 | 0.7894 | 0.8256 | 0.8219 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["spearmanr"], "model-index": [{"name": "fnet-base-finetuned-stsb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metrics": [{"type": "spearmanr", "value": 0.8219397497728022, "name": "Spearmanr"}]}]}]}
gchhablani/fnet-base-finetuned-stsb
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-stsb ======================== This model is a fine-tuned version of google/fnet-base on the GLUE STSB dataset. It achieves the following results on the evaluation set: * Loss: 0.7894 * Pearson: 0.8256 * Spearmanr: 0.8219 * Combined Score: 0.8238 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-base-finetuned-wnli This model is a fine-tuned version of [google/fnet-base](https://huggingface.co/google/fnet-base) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6887 - Accuracy: 0.5493 The model was fine-tuned to compare [google/fnet-base](https://huggingface.co/google/fnet-base) as introduced in [this paper](https://arxiv.org/abs/2105.03824) against [bert-base-cased](https://huggingface.co/bert-base-cased). ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure This model is trained using the [run_glue](https://github.com/huggingface/transformers/blob/master/examples/pytorch/text-classification/run_glue.py) script. The following command was used: ```bash #!/usr/bin/bash python ../run_glue.py \\n --model_name_or_path google/fnet-base \\n --task_name wnli \\n --do_train \\n --do_eval \\n --max_seq_length 512 \\n --per_device_train_batch_size 16 \\n --learning_rate 2e-5 \\n --num_train_epochs 5 \\n --output_dir fnet-base-finetuned-wnli \\n --push_to_hub \\n --hub_strategy all_checkpoints \\n --logging_strategy epoch \\n --save_strategy epoch \\n --evaluation_strategy epoch \\n``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7052 | 1.0 | 40 | 0.6902 | 0.5634 | | 0.6957 | 2.0 | 80 | 0.7013 | 0.4366 | | 0.6898 | 3.0 | 120 | 0.6898 | 0.5352 | | 0.6958 | 4.0 | 160 | 0.6874 | 0.5634 | | 0.6982 | 5.0 | 200 | 0.6887 | 0.5493 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer", "fnet-bert-base-comparison"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-base-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.5492957746478874, "name": "Accuracy"}]}]}]}
gchhablani/fnet-base-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "fnet-bert-base-comparison", "en", "dataset:glue", "arxiv:2105.03824", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[ "2105.03824" ]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-base-finetuned-wnli ======================== This model is a fine-tuned version of google/fnet-base on the GLUE WNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.6887 * Accuracy: 0.5493 The model was fine-tuned to compare google/fnet-base as introduced in this paper against bert-base-cased. Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ This model is trained using the run\_glue script. The following command was used: ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #fnet-bert-base-comparison #en #dataset-glue #arxiv-2105.03824 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6243 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6195 | 1.0 | 2138 | 0.6527 | 0.0 | | 0.6168 | 2.0 | 4276 | 0.6259 | 0.0 | | 0.616 | 3.0 | 6414 | 0.6243 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
gchhablani/fnet-large-finetuned-cola-copy
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy ============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6243 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy2 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6173 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6192 | 1.0 | 2138 | 0.6443 | 0.0 | | 0.6177 | 2.0 | 4276 | 0.6296 | 0.0 | | 0.6128 | 3.0 | 6414 | 0.6173 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
gchhablani/fnet-large-finetuned-cola-copy2
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy2 =============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6173 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy3 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6554 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6408 | 1.0 | 2138 | 0.7329 | 0.0 | | 0.6589 | 2.0 | 4276 | 0.6311 | 0.0 | | 0.6467 | 3.0 | 6414 | 0.6554 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy3", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
gchhablani/fnet-large-finetuned-cola-copy3
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy3 =============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6554 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0001 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0001\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola-copy4 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6500 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: polynomial - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6345 | 1.0 | 2138 | 0.6611 | 0.0 | | 0.6359 | 2.0 | 4276 | 0.6840 | 0.0 | | 0.6331 | 3.0 | 6414 | 0.6500 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola-copy4", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
gchhablani/fnet-large-finetuned-cola-copy4
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola-copy4 =============================== This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6500 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 4e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: polynomial * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: polynomial\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: polynomial\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-cola This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE COLA dataset. It achieves the following results on the evaluation set: - Loss: 0.6243 - Matthews Correlation: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.6195 | 1.0 | 2138 | 0.6527 | 0.0 | | 0.6168 | 2.0 | 4276 | 0.6259 | 0.0 | | 0.616 | 3.0 | 6414 | 0.6243 | 0.0 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "fnet-large-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE COLA", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.0, "name": "Matthews Correlation"}]}]}]}
gchhablani/fnet-large-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-cola ========================= This model is a fine-tuned version of google/fnet-large on the GLUE COLA dataset. It achieves the following results on the evaluation set: * Loss: 0.6243 * Matthews Correlation: 0.0 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-mrpc This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 1.0872 - Accuracy: 0.8260 - F1: 0.8799 - Combined Score: 0.8529 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.5656 | 1.0 | 917 | 0.6999 | 0.7843 | 0.8581 | 0.8212 | | 0.3874 | 2.0 | 1834 | 0.7280 | 0.8088 | 0.8691 | 0.8390 | | 0.1627 | 3.0 | 2751 | 1.1274 | 0.8162 | 0.8780 | 0.8471 | | 0.0751 | 4.0 | 3668 | 1.0289 | 0.8333 | 0.8870 | 0.8602 | | 0.0339 | 5.0 | 4585 | 1.0872 | 0.8260 | 0.8799 | 0.8529 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "fnet-large-finetuned-mrpc", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE MRPC", "type": "glue", "args": "mrpc"}, "metrics": [{"type": "accuracy", "value": 0.8259803921568627, "name": "Accuracy"}, {"type": "f1", "value": 0.8798646362098139, "name": "F1"}]}]}]}
gchhablani/fnet-large-finetuned-mrpc
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-mrpc ========================= This model is a fine-tuned version of google/fnet-large on the GLUE MRPC dataset. It achieves the following results on the evaluation set: * Loss: 1.0872 * Accuracy: 0.8260 * F1: 0.8799 * Combined Score: 0.8529 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-qqp This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.5515 - Accuracy: 0.8943 - F1: 0.8557 - Combined Score: 0.8750 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:--------------:| | 0.4574 | 1.0 | 90962 | 0.4946 | 0.8694 | 0.8297 | 0.8496 | | 0.3387 | 2.0 | 181924 | 0.4745 | 0.8874 | 0.8437 | 0.8655 | | 0.2029 | 3.0 | 272886 | 0.5515 | 0.8943 | 0.8557 | 0.8750 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "fnet-large-finetuned-qqp", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QQP", "type": "glue", "args": "qqp"}, "metrics": [{"type": "accuracy", "value": 0.8943111550828593, "name": "Accuracy"}, {"type": "f1", "value": 0.8556565212985171, "name": "F1"}]}]}]}
gchhablani/fnet-large-finetuned-qqp
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-qqp ======================== This model is a fine-tuned version of google/fnet-large on the GLUE QQP dataset. It achieves the following results on the evaluation set: * Loss: 0.5515 * Accuracy: 0.8943 * F1: 0.8557 * Combined Score: 0.8750 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-rte This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.7528 - Accuracy: 0.6426 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7105 | 1.0 | 623 | 0.6887 | 0.5740 | | 0.6714 | 2.0 | 1246 | 0.6742 | 0.6209 | | 0.509 | 3.0 | 1869 | 0.7528 | 0.6426 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-large-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6425992779783394, "name": "Accuracy"}]}]}]}
gchhablani/fnet-large-finetuned-rte
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-rte ======================== This model is a fine-tuned version of google/fnet-large on the GLUE RTE dataset. It achieves the following results on the evaluation set: * Loss: 0.7528 * Accuracy: 0.6426 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-sst2 This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.5240 - Accuracy: 0.9048 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.394 | 1.0 | 16838 | 0.3896 | 0.8968 | | 0.2076 | 2.0 | 33676 | 0.5100 | 0.8956 | | 0.1148 | 3.0 | 50514 | 0.5240 | 0.9048 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-large-finetuned-sst2", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE SST2", "type": "glue", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.9048165137614679, "name": "Accuracy"}]}]}]}
gchhablani/fnet-large-finetuned-sst2
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-sst2 ========================= This model is a fine-tuned version of google/fnet-large on the GLUE SST2 dataset. It achieves the following results on the evaluation set: * Loss: 0.5240 * Accuracy: 0.9048 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-stsb This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.6250 - Pearson: 0.8554 - Spearmanr: 0.8533 - Combined Score: 0.8543 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 1.0727 | 1.0 | 1438 | 0.7718 | 0.8187 | 0.8240 | 0.8214 | | 0.4619 | 2.0 | 2876 | 0.7704 | 0.8472 | 0.8500 | 0.8486 | | 0.2401 | 3.0 | 4314 | 0.6250 | 0.8554 | 0.8533 | 0.8543 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["spearmanr"], "model-index": [{"name": "fnet-large-finetuned-stsb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metrics": [{"type": "spearmanr", "value": 0.8532669137129205, "name": "Spearmanr"}]}]}]}
gchhablani/fnet-large-finetuned-stsb
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-stsb ========================= This model is a fine-tuned version of google/fnet-large on the GLUE STSB dataset. It achieves the following results on the evaluation set: * Loss: 0.6250 * Pearson: 0.8554 * Spearmanr: 0.8533 * Combined Score: 0.8543 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 3.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fnet-large-finetuned-wnli This model is a fine-tuned version of [google/fnet-large](https://huggingface.co/google/fnet-large) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6953 - Accuracy: 0.3803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7217 | 1.0 | 159 | 0.6864 | 0.5634 | | 0.7056 | 2.0 | 318 | 0.6869 | 0.5634 | | 0.706 | 3.0 | 477 | 0.6875 | 0.5634 | | 0.7032 | 4.0 | 636 | 0.6931 | 0.5634 | | 0.7025 | 5.0 | 795 | 0.6953 | 0.3803 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"language": ["en"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["accuracy"], "model-index": [{"name": "fnet-large-finetuned-wnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE WNLI", "type": "glue", "args": "wnli"}, "metrics": [{"type": "accuracy", "value": 0.38028169014084506, "name": "Accuracy"}]}]}]}
gchhablani/fnet-large-finetuned-wnli
null
[ "transformers", "pytorch", "tensorboard", "fnet", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "en" ]
TAGS #transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
fnet-large-finetuned-wnli ========================= This model is a fine-tuned version of google/fnet-large on the GLUE WNLI dataset. It achieves the following results on the evaluation set: * Loss: 0.6953 * Accuracy: 0.3803 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 4 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5.0 ### Training results ### Framework versions * Transformers 4.11.0.dev0 * Pytorch 1.9.0 * Datasets 1.12.1 * Tokenizers 0.10.3
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #fnet #text-classification #generated_from_trainer #en #dataset-glue #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.11.0.dev0\n* Pytorch 1.9.0\n* Datasets 1.12.1\n* Tokenizers 0.10.3" ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Hakha-Chin Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hakha Chin using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "cnh", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh/") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "cnh", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\/]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 31.38 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://colab.research.google.com/drive/1pejk9gv9vMcUOjyVQ_vsV2ngW4NiWLWy?usp=sharing).
{"language": "cnh", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Hakha Chin by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice cnh", "type": "common_voice", "args": "cnh"}, "metrics": [{"type": "wer", "value": 31.38, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-cnh
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "cnh", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "cnh" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cnh #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Hakha-Chin Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 31.38 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Hakha-Chin\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 31.38 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #cnh #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Hakha-Chin\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 31.38 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Esperanto Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Esperanto using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "eo", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) test_dataset = load_dataset("common_voice", "eo", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo') model.to("cuda") chars_to_ignore_regex = """[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\“\\\\\\\\%\\\\\\\\‘\\\\\\\\”\\\\\\\\�\\\\\\\\„\\\\\\\\«\\\\\\\\(\\\\\\\\»\\\\\\\\)\\\\\\\\’\\\\\\\\']""" resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace('—',' ').replace('–',' ') speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000))) ``` **Test Result**: 10.13 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-esperanto-asr-with-transformers-final.ipynb).
{"language": "eo", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Esperanto by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice eo", "type": "common_voice", "args": "eo"}, "metrics": [{"type": "wer", "value": 10.13, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-eo
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "eo", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "eo" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eo #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Esperanto Fine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 10.13 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Esperanto\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 10.13 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #eo #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Esperanto\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Esperanto using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 10.13 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Gujarati Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Gujarati using the [OpenSLR SLR78](http://openslr.org/78/) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. # For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset_eval = test_dataset_eval.map(speech_file_to_array_fn) inputs = processor(test_dataset_eval["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset_eval["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-gu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 23.55 % ## Training 90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1fRQlgl4EPR4qKGScgza3MpWgbL5BeWtn?usp=sharing).
{"language": "gu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Gujarati by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR gu", "type": "openslr"}, "metrics": [{"type": "wer", "value": 23.55, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-gu
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "gu", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "gu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #gu #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Gujarati Fine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields: ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. Test Result: 23.55 % ## Training 90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters. The colab notebook used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Gujarati\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 23.55 %", "## Training\n\n90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters.\nThe colab notebook used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #gu #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Gujarati\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Gujarati using the OpenSLR SLR78 dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Gujarati 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 23.55 %", "## Training\n\n90% of the OpenSLR Gujarati Male+Female dataset was used for training, after removing few examples that contained Roman characters.\nThe colab notebook used for training can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Hungarian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "hu", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hu", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 46.75 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-hungarian-asr.ipynb). The notebook containing the code used for evaluation can be found [here](https://colab.research.google.com/drive/1esYvWS6IkTQFfRqi_b6lAJEycuecInHE?usp=sharing).
{"language": "hu", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Hungarian by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hu", "type": "common_voice", "args": "hu"}, "metrics": [{"type": "wer", "value": 46.75, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-hu
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "hu", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "hu" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Hungarian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 46.75 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 46.75 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #hu #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Hungarian\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 46.75 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Interlingua using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ia", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ia", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-ia") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\']' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.09 % ## Training The Common Voice `train` and `validation` datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results. The colab notebook used can be found [here](https://colab.research.google.com/drive/1nbqvVwS8DTNrCzzh3vgrN55qxgoqbita?usp=sharing) and the evaluation can be found [here](https://colab.research.google.com/drive/18pCWBwNNUMUYV1FiqT_0EsTbCfwwe7ms?usp=sharing).
{"language": "ia", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Interlingua by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ia", "type": "common_voice", "args": "ia"}, "metrics": [{"type": "wer", "value": 25.09, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-ia
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ia", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "ia" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Interlingua Fine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. Test Result: 25.09 % ## Training The Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results. The colab notebook used can be found here and the evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 25.09 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results.\n\nThe colab notebook used can be found here and the evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #ia #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Interlingua\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Interlingua using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 25.09 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training for 4000 steps due to GPU timeout. The results are based on the 4000 steps checkpoint. There is a good chance that full training will lead to better results.\n\nThe colab notebook used can be found here and the evaluation can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Italian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Italian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "it", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import unicodedata import jiwer def chunked_wer(targets, predictions, chunk_size=None): if chunk_size is None: return jiwer.wer(targets, predictions) start = 0 end = chunk_size H, S, D, I = 0, 0, 0, 0 while start < len(targets): chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end]) H = H + chunk_metrics["hits"] S = S + chunk_metrics["substitutions"] D = D + chunk_metrics["deletions"] I = I + chunk_metrics["insertions"] start += chunk_size end += chunk_size return float(S + D + I) / float(H + S + D) allowed_characters = [ " ", "'", 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'à', 'á', 'è', 'é', 'ì', 'í', 'ò', 'ó', 'ù', 'ú', ] def remove_accents(input_str): if input_str in allowed_characters: return input_str if input_str == 'ø': return 'o' elif input_str=='ß' or input_str =='ß': return 'b' elif input_str=='ё': return 'e' elif input_str=='đ': return 'd' nfkd_form = unicodedata.normalize('NFKD', input_str) only_ascii = nfkd_form.encode('ASCII', 'ignore').decode() if only_ascii is None or only_ascii=='': return input_str else: return only_ascii def fix_accents(sentence): new_sentence='' for char in sentence: new_sentence+=remove_accents(char) return new_sentence test_dataset = load_dataset("common_voice", "it", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-it') model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_remove= [",", "?", ".", "!", "-", ";", ":", '""', "%", '"', "�",'ʿ','“','”','(','=','`','_','+','«','<','>','~','…','«','»','–','\[','\]','°','̇','´','ʾ','„','̇','̇','̇','¡'] # All extra characters chars_to_remove_regex = f'[{"".join(chars_to_remove)}]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_remove_regex, '', batch["sentence"]).lower().replace('‘',"'").replace('ʻ',"'").replace('ʼ',"'").replace('’',"'").replace('ʹ',"''").replace('̇','') batch["sentence"] = fix_accents(batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000))) ``` **Test Result**: 11.49 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://github.com/gchhablani/wav2vec2-week/blob/main/fine-tune-xlsr-wav2vec2-on-italian-asr-with-transformers_final.ipynb).
{"language": "it", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Italian by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice it", "type": "common_voice", "args": "it"}, "metrics": [{"type": "wer", "value": 11.49, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-it
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "it", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "it" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #it #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Italian Fine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 11.49 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Italian\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 11.49 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #it #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Italian\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Italian using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 11.49 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using a part of the [InterSpeech 2021 Marathi](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") resampler = torchaudio.transforms.Resample(8_000, 16_000) # The original data was with 8,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]' resampler = torchaudio.transforms.Resample(8_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 19.98 % (555 examples from test set were used for evaluation) **Test Result on 10% of OpenSLR74 data**: 64.64 % ## Training 5000 examples of the InterSpeech Marathi dataset were used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1sIwGOLJPQqhKm_wVZDkzRuoJqAEgArFr?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["interspeech_2021_asr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi 2 by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "InterSpeech 2021 ASR mr", "type": "interspeech_2021_asr"}, "metrics": [{"type": "wer", "value": 14.53, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-mr-2
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:interspeech_2021_asr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-interspeech_2021_asr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields: ## Evaluation The model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021. Test Result: 19.98 % (555 examples from test set were used for evaluation) Test Result on 10% of OpenSLR74 data: 64.64 % ## Training 5000 examples of the InterSpeech Marathi dataset were used for training. The colab notebook used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021.\n\n\n\nTest Result: 19.98 % (555 examples from test set were used for evaluation)\n\nTest Result on 10% of OpenSLR74 data: 64.64 %", "## Training\n\n5000 examples of the InterSpeech Marathi dataset were used for training. \nThe colab notebook used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-interspeech_2021_asr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using a part of the InterSpeech 2021 Marathi dataset. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on the test set of the Marathi data on InterSpeech-2021.\n\n\n\nTest Result: 19.98 % (555 examples from test set were used for evaluation)\n\nTest Result on 10% of OpenSLR74 data: 64.64 %", "## Training\n\n5000 examples of the InterSpeech Marathi dataset were used for training. \nThe colab notebook used for training can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset and [InterSpeech 2021](https://navana-tech.github.io/IS21SS-indicASRchallenge/data.html) Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `text` and `audio_path` fields: ```python import torch import torchaudio import librosa from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) # sampling_rate can vary return batch test_data= test_data.map(speech_file_to_array_fn) inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_data["text"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio import librosa from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_data = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-3") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["text"] = re.sub(chars_to_ignore_regex, '', batch["text"]).lower() speech_array, sampling_rate = torchaudio.load(batch["audio_path"]) batch["speech"] = librosa.resample(speech_array[0].numpy(), sampling_rate, 16_000) return batch test_data= test_data.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_data.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["text"]))) ``` **Test Result**: 19.05 % (157+157 examples) **Test Result on OpenSLR test**: 14.15 % (157 examples) **Test Results on InterSpeech test**: 27.14 % (157 examples) ## Training 1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used. The colab notebook used for training and evaluation can be found [here](https://colab.research.google.com/drive/15fUhb4bUFFGJyNLr-_alvPxVX4w0YXRu?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr", "interspeech_2021_asr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR mr, InterSpeech 2021 ASR mr", "type": "openslr, interspeech_2021_asr"}, "metrics": [{"type": "wer", "value": 19.05, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-mr-3
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:openslr", "dataset:interspeech_2021_asr", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #dataset-interspeech_2021_asr #license-apache-2.0 #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields: ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. Test Result: 19.05 % (157+157 examples) Test Result on OpenSLR test: 14.15 % (157 examples) Test Results on InterSpeech test: 27.14 % (157 examples) ## Training 1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used. The colab notebook used for training and evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 19.05 % (157+157 examples)\n \nTest Result on OpenSLR test: 14.15 % (157 examples)\n\nTest Results on InterSpeech test: 27.14 % (157 examples)", "## Training\n\n1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used.\n\nThe colab notebook used for training and evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #dataset-interspeech_2021_asr #license-apache-2.0 #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset and InterSpeech 2021 Marathi datasets. Note that this data OpenSLR contains only female voices. Please keep this in mind before using the model for your task. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'text' and 'audio_path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 19.05 % (157+157 examples)\n \nTest Result on OpenSLR test: 14.15 % (157 examples)\n\nTest Results on InterSpeech test: 27.14 % (157 examples)", "## Training\n\n1412 examples of the OpenSLR Marathi dataset and 1412 examples of InterSpeech 2021 Marathi ASR dataset were used for training. For testing, 157 examples from each were used.\n\nThe colab notebook used for training and evaluation can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Marathi using the [OpenSLR SLR64](http://openslr.org/64/) dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi `sentence` and `path` fields: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") resampler = torchaudio.transforms.Resample(48_000, 16_000) # The original data was with 48,000 sampling rate. You can change it according to your input. # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re # test_dataset = #TODO: WRITE YOUR CODE TO LOAD THE TEST DATASET. For sample see the Colab link in Training Section. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 14.53 % ## Training 90% of the OpenSLR Marathi dataset was used for training. The colab notebook used for training can be found [here](https://colab.research.google.com/drive/1_BbLyLqDUsXG3RpSULfLRjC6UY3RjwME?usp=sharing).
{"language": "mr", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["openslr"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Marathi by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR mr", "type": "openslr"}, "metrics": [{"type": "wer", "value": 14.53, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-mr
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "mr", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "mr" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Marathi Fine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields: ## Evaluation The model can be evaluated as follows on 10% of the Marathi data on OpenSLR. Test Result: 14.53 % ## Training 90% of the OpenSLR Marathi dataset was used for training. The colab notebook used for training can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 14.53 %", "## Training\n\n90% of the OpenSLR Marathi dataset was used for training.\nThe colab notebook used for training can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #mr #dataset-openslr #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Marathi\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Marathi using the OpenSLR SLR64 dataset. Note that this data contains only female voices. Please keep this in mind before using the model for your task, although it works very well for male voice too. When using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows, assuming you have a dataset with Marathi 'sentence' and 'path' fields:", "## Evaluation\n\nThe model can be evaluated as follows on 10% of the Marathi data on OpenSLR.\n\n\n\nTest Result: 14.53 %", "## Training\n\n90% of the OpenSLR Marathi dataset was used for training.\nThe colab notebook used for training can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Odia using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\–\…\'\_\’\।\|]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 52.64 % ## Training The Common Voice `train` and `validation` datasets were used for training.The colab notebook used can be found [here](https://colab.research.google.com/drive/1s8DrwgB5y4Z7xXIrPXo1rQA5_1OZ8WD5?usp=sharing).
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Large 53 Odia by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 52.64, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-or
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "or" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Odia Fine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Odia test data of Common Voice. Test Result: 52.64 % ## Training The Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 52.64 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #or #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Odia\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Odia using the Common Voice.\nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\nThe model can be used directly (without a language model) as follows:", "## Evaluation\nThe model can be evaluated as follows on the Odia test data of Common Voice.\n\nTest Result: 52.64 %", "## Training\nThe Common Voice 'train' and 'validation' datasets were used for training.The colab notebook used can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Portuguese using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pt", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pt", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-pt") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\;\"\“\'\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 17.22 % ## Training The Common Voice `train` and `validation` datasets were used for training. The script used for training can be found [here](https://github.com/jqueguiner/wav2vec2-sprint/blob/main/run_common_voice.py). The parameters passed were: ```bash #!/usr/bin/env bash python run_common_voice.py \ --model_name_or_path="facebook/wav2vec2-large-xlsr-53" \ --dataset_config_name="pt" \ --output_dir=/workspace/output_models/pt/wav2vec2-large-xlsr-pt \ --cache_dir=/workspace/data \ --overwrite_output_dir \ --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --per_device_eval_batch_size="32" \ --evaluation_strategy="steps" \ --learning_rate="3e-4" \ --warmup_steps="500" \ --fp16 \ --freeze_feature_extractor \ --save_steps="500" \ --eval_steps="500" \ --save_total_limit="1" \ --logging_steps="500" \ --group_by_length \ --feat_proj_dropout="0.0" \ --layerdrop="0.1" \ --gradient_checkpointing \ --do_train --do_eval \ ``` Notebook containing the evaluation can be found [here](https://colab.research.google.com/drive/14e-zNK_5pm8EMY9EbeZerpHx7WsGycqG?usp=sharing).
{"language": "pt", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Portugese by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pt", "type": "common_voice", "args": "pt"}, "metrics": [{"type": "wer", "value": 17.22, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-pt
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "pt", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "pt" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Portuguese Fine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 17.22 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here. The parameters passed were: Notebook containing the evaluation can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Portuguese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 17.22 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.\n The parameters passed were:\n\n\n\nNotebook containing the evaluation can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #pt #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Portuguese\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Portuguese using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 17.22 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The script used for training can be found here.\n The parameters passed were:\n\n\n\nNotebook containing the evaluation can be found here." ]
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Romansh Sursilvan using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "rm-sursilv", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“\\%\\‘\\”\\�\\…\\«\\»\\–]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 25.16 % ## Training The Common Voice `train` and `validation` datasets were used for training. The code can be found [here](https://colab.research.google.com/drive/1dpZr_GzRowCciUbzM3GnW04TNKnB7vrP?usp=sharing).
{"language": "rm-sursilv", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Large 53 Romansh Sursilvan by Gunjan Chhablani", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice rm-sursilv", "type": "common_voice", "args": "rm-sursilv"}, "metrics": [{"type": "wer", "value": 25.16, "name": "Test WER"}]}]}]}
gchhablani/wav2vec2-large-xlsr-rm-sursilv
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "rm-sursilv" ]
TAGS #transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us
# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan Fine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ## Evaluation The model can be evaluated as follows on the Portuguese test data of Common Voice. Test Result: 25.16 % ## Training The Common Voice 'train' and 'validation' datasets were used for training. The code can be found here.
[ "# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 25.16 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
[ "TAGS\n#transformers #pytorch #jax #wav2vec2 #automatic-speech-recognition #audio #speech #xlsr-fine-tuning-week #dataset-common_voice #license-apache-2.0 #model-index #endpoints_compatible #region-us \n", "# Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan\n\nFine-tuned facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. \nWhen using this model, make sure that your speech input is sampled at 16kHz.", "## Usage\n\nThe model can be used directly (without a language model) as follows:", "## Evaluation\n\nThe model can be evaluated as follows on the Portuguese test data of Common Voice.\n\n\n\n\nTest Result: 25.16 %", "## Training\n\nThe Common Voice 'train' and 'validation' datasets were used for training. The code can be found here." ]
fill-mask
transformers
# GreekSocialBERT ## Model description A Greek language model based on [GreekBERT](https://huggingface.co/nlpaueb/bert-base-greek-uncased-v1) ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. The training corpus has been collected and provided by [Palo LTD](http://www.paloservices.com/) ## Eval results ### BibTeX entry and citation info ```bibtex @Article{info12080331, AUTHOR = {Alexandridis, Georgios and Varlamis, Iraklis and Korovesis, Konstantinos and Caridakis, George and Tsantilas, Panagiotis}, TITLE = {A Survey on Sentiment Analysis and Opinion Mining in Greek Social Media}, JOURNAL = {Information}, VOLUME = {12}, YEAR = {2021}, NUMBER = {8}, ARTICLE-NUMBER = {331}, URL = {https://www.mdpi.com/2078-2489/12/8/331}, ISSN = {2078-2489}, DOI = {10.3390/info12080331} } ```
{"language": "el"}
gealexandri/greeksocialbert-base-greek-uncased-v1
null
[ "transformers", "pytorch", "tf", "bert", "fill-mask", "el", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
[]
[ "el" ]
TAGS #transformers #pytorch #tf #bert #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us
# GreekSocialBERT ## Model description A Greek language model based on GreekBERT ## Training data The training data is a corpus of 458,293 documents collected from Greek social media accounts. The training corpus has been collected and provided by Palo LTD ## Eval results ### BibTeX entry and citation info
[ "# GreekSocialBERT", "## Model description\n\nA Greek language model based on GreekBERT", "## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. \n\nThe training corpus has been collected and provided by Palo LTD", "## Eval results", "### BibTeX entry and citation info" ]
[ "TAGS\n#transformers #pytorch #tf #bert #fill-mask #el #autotrain_compatible #endpoints_compatible #region-us \n", "# GreekSocialBERT", "## Model description\n\nA Greek language model based on GreekBERT", "## Training data\n\nThe training data is a corpus of 458,293 documents collected from Greek social media accounts. \n\nThe training corpus has been collected and provided by Palo LTD", "## Eval results", "### BibTeX entry and citation info" ]