File size: 4,146 Bytes
28f8c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from pathlib import Path
import numpy as np
import matplotlib.pyplot as plt
from typing import List
from cleanvision import Imagelab
from PIL import Image
from datasets import Dataset, Features, Image as ImageFeature


def images_with_deduplication(data_path):
    imagelab = Imagelab(data_path=data_path)

    # Automatically check for a predefined list of issues within your dataset
    imagelab.find_issues({"near_duplicates": {}, "exact_duplicates": {}})

    # load names of all images in the dataset
    image_paths = list(Path(data_path).rglob("*.png"))
    image_paths = [str(path.resolve()) for path in image_paths]
    print(f"Number of images before deduplication: {len(image_paths)}")

    duplicate_sets = imagelab.info["near_duplicates"]["sets"]
    num_duplicates = sum([len(duplicate_set) - 1 for duplicate_set in duplicate_sets])

    for duplicate_set in duplicate_sets:
        for i in range(len(duplicate_set)):
            if i > 0:
                image_name = duplicate_set[i]
                del image_paths[image_paths.index(image_name)]

    print(f"Number of images after deduplication: {len(image_paths)}")
    print(f"Number of images removed: {num_duplicates}")

    return image_paths


def find_closest_pair(ref_timestamp, search_dir, threshold_ms=100):
    search_files = list(search_dir.glob("*"))
    search_timestamps = [int(f.stem.split("_")[0]) for f in search_files]

    diffs = np.abs(np.array(search_timestamps) - ref_timestamp) / 1e6
    min_idx = np.argmin(diffs)

    if diffs[min_idx] <= threshold_ms:
        return str(search_files[min_idx])
    return None


def find_image_groups(
    base_dir, ref_subdir, search_subdirs: List[str], threshold_ms=100
):
    base_path = Path(base_dir)
    ref_dir = base_path / ref_subdir
    search_dirs = [base_path / subdir for subdir in search_subdirs]

    # deduplicate images from the reference directory
    ref_dir_files = images_with_deduplication(ref_dir)

    pairs = []
    for ref_file in ref_dir_files:
        ref_ts = int(ref_file.split("/")[-1].split("_")[0])
        image_group = (ref_file,)

        for search_dir in search_dirs:
            assert search_dir.exists(), f"{search_dir} does not exist"

            match = find_closest_pair(ref_ts, search_dir, threshold_ms)
            if match:
                image_group += (match,)
            else:
                image_group += (None,)

        pairs.append(image_group)

    return pairs


def visualize_images(image_tuple):
    n = len(image_tuple)
    fig, axes = plt.subplots(1, n, figsize=(6 * n, 4))

    if n == 1:
        axes = [axes]

    for ax, img_path in zip(axes, image_tuple):
        if img_path is None:
            ax.axis("off")
            continue

        img = Image.open(img_path)

        if "DEPTH" in str(img_path):
            ax.imshow(img, cmap="viridis")
        elif "THERMAL" in str(img_path):
            ax.imshow(img, cmap="hot")
        else:
            img = Image.open(img_path)
            ax.imshow(img)

        ax.set_title(img_path.split("/")[-2])
    plt.show()


# prepare the dataset for upload to huggingface
def create_image_dataset(image_tuples):
    """
    Create a HuggingFace dataset from a list of image tuples.

    Args:
        image_tuples: List of tuples, each containing (color, depth, depth_16bit, thermal, thermal_rgb) image paths
    """

    features = Features(
        {
            "color": ImageFeature(decode=True),
            "depth": ImageFeature(decode=True),
            "depth_16bit": ImageFeature(decode=True),
            "thermal": ImageFeature(decode=True),
            "thermal_rgb": ImageFeature(decode=True),
        }
    )

    # Unzip the tuples into separate lists
    color_imgs, depth_imgs, depth_16bit_imgs, thermal_imgs, thermal_rgb_imgs = zip(
        *image_tuples
    )

    dataset_dict = {
        "color": list(color_imgs),
        "depth": list(depth_imgs),
        "depth_16bit": list(depth_16bit_imgs),
        "thermal": list(thermal_imgs),
        "thermal_rgb": list(thermal_rgb_imgs),
    }

    dataset = Dataset.from_dict(dataset_dict, features=features)

    return dataset