pdf
stringlengths 49
199
⌀ | aff
stringlengths 1
1.36k
⌀ | year
stringclasses 19
values | technical_novelty_avg
float64 0
4
⌀ | video
stringlengths 21
47
⌀ | doi
stringlengths 31
63
⌀ | presentation_avg
float64 0
4
⌀ | proceeding
stringlengths 43
129
⌀ | presentation
stringclasses 796
values | sess
stringclasses 576
values | technical_novelty
stringclasses 700
values | arxiv
stringlengths 10
16
⌀ | author
stringlengths 1
1.96k
⌀ | site
stringlengths 37
191
⌀ | keywords
stringlengths 2
582
⌀ | oa
stringlengths 86
198
⌀ | empirical_novelty_avg
float64 0
4
⌀ | poster
stringlengths 57
95
⌀ | openreview
stringlengths 41
45
⌀ | conference
stringclasses 11
values | corr_rating_confidence
float64 -1
1
⌀ | corr_rating_correctness
float64 -1
1
⌀ | project
stringlengths 1
162
⌀ | track
stringclasses 3
values | rating_avg
float64 0
10
⌀ | rating
stringlengths 1
17
⌀ | correctness
stringclasses 809
values | slides
stringlengths 32
41
⌀ | title
stringlengths 2
192
⌀ | github
stringlengths 3
165
⌀ | authors
stringlengths 7
161
⌀ | correctness_avg
float64 0
5
⌀ | confidence_avg
float64 0
5
⌀ | status
stringclasses 22
values | confidence
stringlengths 1
17
⌀ | empirical_novelty
stringclasses 763
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
distribution shift;calibration;ensembles
| null | 2.75 | null | null |
iclr
| 0 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
2;3;3;3
| null |
Calibrated ensembles - a simple way to mitigate ID-OOD accuracy tradeoffs
| null | null | 2.75 | 3.5 |
Reject
|
4;3;4;3
|
3;2;3;3
|
null | null |
2022
| 2.6 | null | null | 0 | null | null | null |
3;2;2;3;3
| null | null | null |
Relational Rule Induction;Hypergraph Network;Efficient Learning
| null | 2.2 | null | null |
iclr
| -0.166667 | 0.612372 | null |
main
| 4.8 |
3;3;6;6;6
|
1;3;3;3;3
| null |
Efficient Training and Inference of Hypergraph Reasoning Networks
| null | null | 2.6 | 3.4 |
Reject
|
3;4;3;4;3
|
2;1;2;3;3
|
null |
Snap Inc.; Michigan State University; Carnegie Mellon University; UCLA
|
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/6573; None
| null | 0 | null | null | null |
2;2;3;2
| null |
Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, Neil Shah
|
https://iclr.cc/virtual/2022/poster/6573
|
data-efficient learning;graph generation;graph neural networks
| null | 3 | null |
https://openreview.net/forum?id=WLEx3Jo4QaB
|
iclr
| -0.333333 | -1 | null |
main
| 5.75 |
5;6;6;6
|
4;3;3;3
|
https://iclr.cc/virtual/2022/poster/6573
|
Graph Condensation for Graph Neural Networks
|
https://github.com/ChandlerBang/GCond
| null | 3.25 | 3.75 |
Poster
|
4;4;3;4
|
4;2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
sparse unbalance GAN training;GAN training;dynamic sparse training;sparse training;bigGAN
| null | 2.5 | null | null |
iclr
| -0.555556 | 0.333333 | null |
main
| 4.25 |
3;3;5;6
|
3;3;4;3
| null |
Sparse Unbalanced GAN Training with In-Time Over-Parameterization
| null | null | 3.25 | 3.25 |
Withdraw
|
4;3;3;3
|
2;2;3;3
|
null | null |
2022
| 2.4 | null | null | 0 | null | null | null |
2;2;2;2;4
| null | null | null |
Normalizing flows;generative models;neural ode;continuous normalizing flows;computer vision
| null | 2.4 | null | null |
iclr
| 0.272166 | 0.952579 | null |
main
| 4.4 |
3;3;5;5;6
|
2;2;3;3;3
| null |
Multi-Resolution Continuous Normalizing Flows
| null | null | 2.6 | 3.6 |
Reject
|
4;3;3;4;4
|
2;2;2;2;4
|
null |
Paper under double-blind review
|
2022
| 2.25 | null | null | 0 | null | null | null |
2;3;2;2
| null | null | null |
model discovery;sparse regression;sparsistency;physics informed deep learning;partial differential equations
| null | 3 | null | null |
iclr
| -0.57735 | -0.301511 |
https://anonymous.4open.science/r/sparsistent_model_disco-56F8/
|
main
| 4 |
3;3;5;5
|
4;2;3;2
| null |
Sparsistent Model Discovery
| null | null | 2.75 | 3.25 |
Reject
|
3;4;3;3
|
3;3;3;3
|
null |
John A. Paulson School of Engineering and Applied Sciences, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6344; None
| null | 0 | null | null | null |
2;2;3;3
| null |
Blake Bordelon, Cengiz Pehlevan
|
https://iclr.cc/virtual/2022/poster/6344
|
Stochastic Gradient Descent;Generalization
| null | 1.75 | null |
https://openreview.net/forum?id=WPI2vbkAl3Q
|
iclr
| -0.408248 | 0 | null |
main
| 6 |
5;5;6;8
|
3;3;4;3
|
https://iclr.cc/virtual/2022/poster/6344
|
Learning Curves for SGD on Structured Features
| null | null | 3.25 | 3.5 |
Poster
|
3;4;4;3
|
2;2;0;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2;2
| null | null | null | null | null | 2 | null | null |
iclr
| -0.612372 | 0.663403 | null |
main
| 3.2 |
1;3;3;3;6
|
2;3;2;2;3
| null |
Compound Multi-branch Feature Fusion for Real Image Restoration
|
https://github.com/publish_after_accepting/CMFNet
| null | 2.4 | 4.4 |
Reject
|
5;4;4;5;4
|
1;2;2;2;3
|
null | null |
2022
| 2.2 | null | null | 0 | null | null | null |
2;2;2;2;3
| null | null | null |
generative models;sequence design;language models;proteins
| null | 1.8 | null | null |
iclr
| -0.645497 | 0.612372 | null |
main
| 3.8 |
3;3;3;5;5
|
1;3;2;3;3
| null |
Design in the Dark: Learning Deep Generative Models for De Novo Protein Design
| null | null | 2.4 | 4 |
Reject
|
5;4;4;4;3
|
1;2;2;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
Person Re-identification;Image Retrieval
| null | 1.75 | null | null |
iclr
| 0 | 0.333333 | null |
main
| 4.5 |
3;5;5;5
|
3;4;3;3
| null |
Camera Bias Regularization for Person Re-identification
| null | null | 3.25 | 4 |
Withdraw
|
4;4;4;4
|
2;0;3;2
|
null |
Simon Fraser University; Google Research; University of Pennsylvania
|
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/6737; None
| null | 0 | null | null | null |
2;2;2;3
| null |
Pardis Pashakhanloo, Aaditya Naik, Yuepeng Wang, Hanjun Dai, Petros Maniatis, Mayur Naik
|
https://iclr.cc/virtual/2022/poster/6737
|
relational database;code representation;knowledge graph reasoning;program understanding
| null | 2 | null |
https://openreview.net/forum?id=WQc075jmBmf
|
iclr
| 0.333333 | 0.522233 | null |
main
| 5.75 |
5;5;5;8
|
3;2;4;4
|
https://iclr.cc/virtual/2022/poster/6737
|
CodeTrek: Flexible Modeling of Code using an Extensible Relational Representation
| null | null | 3.25 | 4.75 |
Poster
|
5;4;5;5
|
2;2;2;2
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
3;2;3
| null | null | null |
Normalizing Flows;Conditional Sampling;Implicit Methods
| null | 0.666667 | null | null |
iclr
| -0.5 | -1 | null |
main
| 3.666667 |
3;3;5
|
4;4;3
| null |
VISCOS Flows: Variational Schur Conditional Sampling with Normalizing Flows
| null | null | 3.666667 | 3.333333 |
Reject
|
3;4;3
|
0;1;1
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;1;3;3
| null | null | null |
deep generative models;slots;scene generation;object-centric;VAEs
| null | 2.75 | null | null |
iclr
| -0.555556 | 0.870388 | null |
main
| 4.25 |
3;3;5;6
|
1;2;3;3
| null |
Generating Scenes with Latent Object Models
| null | null | 2.25 | 4.25 |
Reject
|
4;5;4;4
|
2;2;4;3
|
null |
Princeton University; Caltech; Purdue University
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6374; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung Chiang, Prateek Mittal
|
https://iclr.cc/virtual/2022/poster/6374
|
adversarial robustness;certified adversarial robustness;adversarial attacks;generative models;proxy distribution
| null | 2.75 | null |
https://openreview.net/forum?id=WVX0NNVBBkV
|
iclr
| 0 | 0 | null |
main
| 7 |
6;6;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6374
|
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
|
https://github.com/inspire-group/proxy-distributions
| null | 4 | 3.5 |
Poster
|
3;4;4;3
|
2;3;3;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;3;2
| null | null | null |
Software evolution;program merge;ml4code
| null | 2.333333 | null | null |
iclr
| 0 | -0.5 | null |
main
| 5 |
3;6;6
|
3;3;2
| null |
MergeBERT: Program Merge Conflict Resolution via Neural Transformers
| null | null | 2.666667 | 4 |
Reject
|
4;4;4
|
2;3;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
deep learning;gradient methods;stochastic optimization;generalization gap;imagenet;adam;large batch training
| null | 2.75 | null | null |
iclr
| -0.816497 | 0 | null |
main
| 4.5 |
3;5;5;5
|
3;3;3;3
| null |
Logit Attenuating Weight Normalization
| null | null | 3 | 4 |
Reject
|
5;4;4;3
|
2;3;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
Black Box Optimization;Distributed Computing;Evolutionary Computation
| null | 2 | null | null |
iclr
| -0.57735 | 0.816497 | null |
main
| 3.75 |
3;3;3;6
|
3;3;2;4
| null |
DiBB: Distributing Black-Box Optimization
| null | null | 3 | 3.5 |
Reject
|
4;3;4;3
|
2;2;2;2
|
null |
Stanford University; Harvard University; Peking University; University of Pennsylvania
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6209; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Wenlong Ji, Yiping Lu, Yiliang Zhang, Zhun Deng, Weijie J Su
|
https://iclr.cc/virtual/2022/poster/6209
|
neural collapse;uncostrained model;implicit regularization
| null | 2.25 | null |
https://openreview.net/forum?id=WZ3yjh8coDg
|
iclr
| 0 | 0 | null |
main
| 7 |
6;6;8;8
|
4;3;4;3
|
https://iclr.cc/virtual/2022/poster/6209
|
An Unconstrained Layer-Peeled Perspective on Neural Collapse
| null | null | 3.5 | 3.5 |
Poster
|
4;3;3;4
|
2;2;3;2
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;2;1;2
| null | null | null |
Wasserstein gradient flow;JKO;f-divergence
| null | 2 | null | null |
iclr
| -0.333333 | -0.174078 | null |
main
| 3.5 |
3;3;3;5
|
2;4;4;3
| null |
Variational Wasserstein gradient flow
| null | null | 3.25 | 4.25 |
Reject
|
5;4;4;4
|
2;2;3;1
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
Uncertainty;Bayesian;Neural Networks;Generative Models
| null | 2.5 | null | null |
iclr
| 0.622543 | 0.973329 | null |
main
| 4.75 |
3;5;5;6
|
2;3;3;4
| null |
Generative Posterior Networks for Approximately Bayesian Epistemic Uncertainty Estimation
| null | null | 3 | 3.25 |
Reject
|
2;4;4;3
|
2;2;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
Personalized Learning;Federated Learning
| null | 2 | null | null |
iclr
| -0.333333 | 0 | null |
main
| 4.5 |
3;5;5;5
|
3;3;3;3
| null |
Personalized Neural Architecture Search for Federated Learning
| null | null | 3 | 3.75 |
Reject
|
4;4;4;3
|
2;2;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null |
Geometric deep learning;Hyperbolic neural network;Vanishing gradient problem
| null | 2.25 | null | null |
iclr
| -0.70014 | 0.140028 | null |
main
| 5.25 |
3;5;5;8
|
4;3;3;4
| null |
Free Hyperbolic Neural Networks with Limited Radii
| null | null | 3.5 | 3.5 |
Withdraw
|
4;3;4;3
|
1;3;2;3
|
null |
University of Pennsylvania
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6649; None
| null | 0 | null | null | null |
4;3;2;3
| null |
Rahul Ramesh, Pratik A Chaudhari
|
https://iclr.cc/virtual/2022/poster/6649
|
Continual Learning;Learning Theory
| null | 3 | null |
https://openreview.net/forum?id=WfvgGBcgbE7
|
iclr
| -0.648886 | 0.973329 | null |
main
| 6.25 |
5;6;6;8
|
2;3;3;4
|
https://iclr.cc/virtual/2022/poster/6649
|
Model Zoo: A Growing Brain That Learns Continually
| null | null | 3 | 4 |
Poster
|
4;4;5;3
|
4;3;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;3;2
| null | null | null |
energy-based models;probabilistic models;autoencoders;optimization;learning representations;unsupervised learning
| null | 1 | null | null |
iclr
| 0 | 0.904534 | null |
main
| 2 |
1;1;3;3
|
1;2;3;3
| null |
One Stage Autoencoders for Multi-Domain Learning
| null | null | 2.25 | 3 |
Withdraw
|
4;2;3;3
|
0;1;1;2
|
null |
Waymo; Google Research, Brain Team
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/5969; None
| null | 0 | null | null | null |
2;2;3;4
| null |
Jiquan Ngiam, Vijay Vasudevan, Benjamin Caine, Zhengdong Zhang, Hao-Tien (Lewis) Chiang, Jeffrey Ling, Rebecca Roelofs, Alex Bewley, Chenxi Liu, Ashish Venugopal, David Weiss, Ben Sapp, Zhifeng Chen, Jonathon Shlens
|
https://iclr.cc/virtual/2022/poster/5969
|
trajectory prediction;motion forecasting;multi-task learning;attention;autonomous vehicles
| null | 2.5 | null |
https://openreview.net/forum?id=Wm3EA5OlHsG
|
iclr
| -0.555556 | 0.19245 | null |
main
| 6.75 |
5;6;8;8
|
3;4;3;4
|
https://iclr.cc/virtual/2022/poster/5969
|
Scene Transformer: A unified architecture for predicting future trajectories of multiple agents
| null | null | 3.5 | 4.75 |
Poster
|
5;5;5;4
|
2;2;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;2;4;3
| null | null | null |
Group equivariance;separable convolutions;group equivariant neural networks
| null | 1.75 | null | null |
iclr
| -0.738549 | 0.471405 | null |
main
| 6 |
5;5;6;8
|
4;2;4;4
| null |
Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups
| null | null | 3.5 | 3.75 |
Reject
|
4;5;3;3
|
2;1;1;3
|
null |
Carnegie Mellon University
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6278; None
| null | 0 | null | null | null |
2;3;4;3
| null |
Chirag Gupta, Aaditya Ramdas
|
https://iclr.cc/virtual/2022/poster/6278
|
calibration;multiclass;uncertainty quantification;distribution-free;histogram binning
| null | 2.5 | null |
https://openreview.net/forum?id=WqoBaaPHS-
|
iclr
| 0.408248 | 0.942809 | null |
main
| 6 |
5;5;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6278
|
Top-label calibration and multiclass-to-binary reductions
|
https://github.com/aigen/df-posthoc-calibration
| null | 3.25 | 3.5 |
Poster
|
3;4;3;4
|
2;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Transformer;video recognition
| null | 2.25 | null | null |
iclr
| 0.57735 | 0 | null |
main
| 3.75 |
3;3;3;6
|
2;4;3;3
| null |
Cross-Stage Transformer for Video Learning
| null | null | 3 | 4.5 |
Withdraw
|
5;4;4;5
|
2;2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;3;2;2
| null | null | null |
font generation;GANet;glyph-attention;few-shot;GAN
| null | 2.25 | null | null |
iclr
| 0.57735 | -1 | null |
main
| 4.5 |
3;5;5;5
|
4;3;3;3
| null |
GANet: Glyph-Attention Network for Few-Shot Font Generation
| null | null | 3.25 | 4.5 |
Reject
|
4;5;5;4
|
2;3;2;2
|
null |
Korea Advanced Institute of Science and Technology, AITRICS; Korea Advanced Institute of Science and Technology; Samsung Advanced Institute of Technology
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6032; None
| null | 0 | null | null | null |
2;2;3;4
| null |
Youngmin Oh, Jinwoo Shin, Eunho Yang, Sung Ju Hwang
|
https://iclr.cc/virtual/2022/poster/6032
|
RL;Reinforcement Learning;Replay Buffer
| null | 3 | null |
https://openreview.net/forum?id=WuEiafqdy9H
|
iclr
| -0.058026 | 0.816497 | null |
main
| 6.75 |
5;6;8;8
|
2;3;4;3
|
https://iclr.cc/virtual/2022/poster/6032
|
Model-augmented Prioritized Experience Replay
| null | null | 3 | 3.75 |
Poster
|
3;5;4;3
|
3;2;3;4
|
null |
Carnegie Mellon University; Google Research
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6300; None
| null | 0 | null | null | null |
3;3;4;3
| null |
Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, Zico Kolter
|
https://iclr.cc/virtual/2022/poster/6300
|
Generalization;Deep Learning;Empirical Phenomenon;Accuracy Estimation;Stochastic Gradient Descent
| null | 3.25 | null |
https://openreview.net/forum?id=WvOGCEAQhxl
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6300
|
Assessing Generalization of SGD via Disagreement
| null | null | 4 | 3.5 |
Spotlight
|
3;4;4;3
|
3;3;4;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Optimization for Neural Networks;Optimization for Representation Learning;Stochastic Optimization;Nonconvex;Quasi-Newton;Optimization for Deep Learning
| null | 2.25 | null | null |
iclr
| -0.816497 | 0.942809 |
anonymous link
|
main
| 5 |
3;5;6;6
|
2;3;3;3
| null |
Apollo: An Adaptive Parameter-wised Diagonal Quasi-Newton Method for Nonconvex Stochastic Optimization
| null | null | 2.75 | 3.5 |
Reject
|
4;4;3;3
|
2;2;3;2
|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;1;2;2
| null | null | null |
Reinforcement Learning;Experience Replay
| null | 2.75 | null | null |
iclr
| 0.333333 | -0.57735 | null |
main
| 3.5 |
3;3;3;5
|
4;3;4;3
| null |
Benchmarking Sample Selection Strategies for Batch Reinforcement Learning
| null | null | 3.5 | 3.75 |
Reject
|
4;4;3;4
|
3;2;4;2
|
null |
DeepMind; University of British Columbia; University of Edinburgh
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6566; None
| null | 0 | null | null | null |
3;3;3;2
| null |
Shangmin Guo, YI REN, Kory Mathewson, Simon Kirby, Stefano Albrecht, Kenny Smith
|
https://iclr.cc/virtual/2022/poster/6566
|
Emergent Language;Expressivity
| null | 2.25 | null |
https://openreview.net/forum?id=WxuE_JWxjkW
|
iclr
| -0.493742 | 0.916949 | null |
main
| 6.25 |
3;6;8;8
|
2;4;4;4
|
https://iclr.cc/virtual/2022/poster/6566
|
Expressivity of Emergent Languages is a Trade-off between Contextual Complexity and Unpredictability
| null | null | 3.5 | 3.75 |
Poster
|
4;4;4;3
|
2;0;3;4
|
null |
Hong Kong University of Science and Technology; Shenzhen Research Institute of Big Data, The Chinese University of Hong Kong, Shenzhen, China
|
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/6658; None
| null | 0 | null | null | null |
2;2;2;3
| null |
Ziniu Li, Yingru Li, Yushun Zhang, Tong Zhang, Zhi-Quan Luo
|
https://iclr.cc/virtual/2022/poster/6658
|
exploration;reinforcement learning
| null | 2.75 | null |
https://openreview.net/forum?id=X0nrKAXu7g-
|
iclr
| -0.140028 | 0.727607 | null |
main
| 5.75 |
3;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6658
|
HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning
| null | null | 3.25 | 3.5 |
Poster
|
4;3;3;4
|
3;3;2;3
|
null | null |
2022
| 3.25 | null | null | 0 | null | null | null |
3;3;3;4
| null |
Oriol Corcoll, Raul Vicente
| null |
reinforcement learning;unsupervised reinforcement learning
| null | 3.25 | null | null |
iclr
| -0.333333 | 0 | null |
main
| 5.75 |
5;6;6;6
|
3;3;3;3
| null |
Did I do that? Blame as a means to identify controlled effects in reinforcement learning
| null | null | 3 | 3.75 |
Reject
|
4;4;4;3
|
2;4;4;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
model-based reinforcement learning;hyperparameter optimization;model predictive control;meta-learning;transfer learning
| null | 2.5 | null | null |
iclr
| -0.552532 | 0.493742 | null |
main
| 4.75 |
3;3;5;8
|
3;2;3;3
| null |
Improving Hyperparameter Optimization by Planning Ahead
| null | null | 2.75 | 3.25 |
Reject
|
4;4;2;3
|
2;2;2;4
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Channel Attention;Attention;Deep Learning;Computer Vision;Neural Networks.
| null | 2 | null | null |
iclr
| -0.333333 | 1 | null |
main
| 3.5 |
3;3;3;5
|
2;2;2;3
| null |
PKCAM: Previous Knowledge Channel Attention Module
| null | null | 2.25 | 4.25 |
Reject
|
4;5;4;4
|
2;2;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
adversarial examples;adversarial attack;transferability;scale ensemble;image classification
| null | 2.25 | null | null |
iclr
| -0.426401 | 0.904534 | null |
main
| 3.5 |
1;3;5;5
|
2;2;3;3
| null |
Enhancing the Transferability of Adversarial Attacks via Scale Ensemble
| null | null | 2.5 | 4 |
Withdraw
|
5;3;4;4
|
2;2;3;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
reinforcement learning;multi-agent reinforcement learning;stochastic actions;poor co-ordination
| null | 2.5 | null | null |
iclr
| 0.184115 | 0.225494 | null |
main
| 3.75 |
1;3;5;6
|
3;2;3;3
| null |
DSDF: Coordinated look-ahead strategy in stochastic multi-agent reinforcement learning
| null | null | 2.75 | 3 |
Withdraw
|
3;3;2;4
|
2;2;3;3
|
null |
Unknown
|
2022
| 2 | null | null | 0 | null | null | null |
1;2;3;2
| null | null | null |
action;skeleton;video;recognition
| null | 2.25 | null | null |
iclr
| -0.408248 | 0 | null |
main
| 5 |
3;5;6;6
|
3;2;3;3
| null |
Revisiting Skeleton-based Action Recognition
| null | null | 2.75 | 3.5 |
Withdraw
|
4;3;4;3
|
1;2;3;3
|
null |
DeepMind, London, UK and University College London; DeepMind, London, UK
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6832; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Ioannis Antonoglou, Julian Schrittwieser, Sherjil Ozair, Thomas Hubert, David Silver
|
https://iclr.cc/virtual/2022/poster/6832
|
model-based reinforcement learning;deep reinforcement learning;tree based search;MCTS
| null | 3.75 | null |
https://openreview.net/forum?id=X6D9bAHhBQ1
|
iclr
| 0 | 0.889297 | null |
main
| 7.75 |
5;8;8;10
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6832
|
Planning in Stochastic Environments with a Learned Model
| null | null | 3.75 | 4 |
Spotlight
|
4;4;4;4
|
3;4;4;4
|
null |
Georgetown Day School; Carnegie Mellon University; MIT
|
2022
| 2.666667 |
https://iclr.cc/virtual/2022/poster/7143; None
| null | 0 | null | null | null |
2;4;2
| null |
Jon Ergun, Zhili Feng, Sandeep Silwal, David Woodruff, Samson Zhou
|
https://iclr.cc/virtual/2022/poster/7143
|
clustering;learning-augmented algorithms
| null | 2.666667 | null |
https://openreview.net/forum?id=X8cLTHexYyY
|
iclr
| 0 | -0.5 | null |
main
| 7.333333 |
6;8;8
|
4;3;4
|
https://iclr.cc/virtual/2022/poster/7143
|
Learning-Augmented $k$-means Clustering
| null | null | 3.666667 | 4 |
Spotlight
|
4;5;3
|
2;4;2
|
null | null |
2022
| 2.2 | null | null | 0 | null | null | null |
2;2;2;2;3
| null | null | null |
Constrained optimization;nonconvex;zeroth-order
| null | 2 | null | null |
iclr
| -0.375 | 0.25 | null |
main
| 4.6 |
3;5;5;5;5
|
3;3;3;3;4
| null |
Accelerated Gradient-Free Method for Heavily Constrained Nonconvex Optimization
| null | null | 3.2 | 3.4 |
Withdraw
|
4;4;3;4;2
|
3;3;0;2;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;2;4
| null | null | null |
Causal discovery;Data heterogeneity;Decentralized data
| null | 2.5 | null | null |
iclr
| -0.777778 | 0 | null |
main
| 4.25 |
3;3;5;6
|
3;3;3;3
| null |
Federated causal discovery
| null | null | 3 | 3.5 |
Withdraw
|
4;4;4;2
|
2;2;3;3
|
null |
Massachusetts Institute of Technology
|
2022
| 3.5 |
https://iclr.cc/virtual/2022/poster/6638; None
| null | 0 | null | null | null |
3;4;3;4
| null |
Thien Le, Stefanie Jegelka
|
https://iclr.cc/virtual/2022/poster/6638
|
deep learning;nonsmooth analysis;Clarke subdifferential;implicit regularization;low rank bias;alignment;training invariance
| null | 1.75 | null |
https://openreview.net/forum?id=XEW8CQgArno
|
iclr
| 0.57735 | 0 | null |
main
| 7.5 |
6;8;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6638
|
Training invariances and the low-rank phenomenon: beyond linear networks
| null | null | 4 | 3.5 |
Poster
|
3;4;4;3
|
0;3;0;4
|
null |
Alibaba Group
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6251; None
| null | 0 | null | null | null |
2;4;3
| null |
Tongkun Xu, Weihua Chen, Pichao WANG, Fan Wang, Li Hao, Rong Jin
|
https://iclr.cc/virtual/2022/poster/6251
| null | null | 3.333333 | null |
https://openreview.net/forum?id=XGzk5OKWFFc
|
iclr
| 1 | 0.5 | null |
main
| 7.333333 |
6;8;8
|
3;4;3
|
https://iclr.cc/virtual/2022/poster/6251
|
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation
|
https://github.com/CDTrans/CDTrans
| null | 3.333333 | 3.666667 |
Poster
|
3;4;4
|
3;4;3
|
null | null |
2022
| 2.6 | null | null | 0 | null | null | null |
2;2;3;3;3
| null | null | null |
Missing Annotations;NER;Negative Sampling;Unlabeled Entity Problem
| null | 2.6 | null | null |
iclr
| 0 | 0 | null |
main
| 5.4 |
5;5;5;6;6
|
2;4;3;3;3
| null |
Rethinking Negative Sampling for Handling Missing Entity Annotations
| null | null | 3 | 4 |
Withdraw
|
4;4;4;4;4
|
2;2;3;3;3
|
null |
School of Computer Science and Technology, East China Normal University, Shanghai, China; School of Data Science, The Chinese University of Hong Kong (Shenzhen), Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6464; None
| null | 0 | null | null | null |
2;3;2;3
| null |
Wenhao Li, Xiangfeng Wang, Bo Jin, Junjie Sheng, Hongyuan Zha
|
https://iclr.cc/virtual/2022/poster/6464
|
Nonstationarity;Trust-Region Methods;Multi-Agent Reinforcement Learning
| null | 2.5 | null |
https://openreview.net/forum?id=XHUxf5aRB3s
|
iclr
| 0.816497 | -0.333333 | null |
main
| 6.5 |
6;6;6;8
|
3;4;3;3
|
https://iclr.cc/virtual/2022/poster/6464
|
Dealing with Non-Stationarity in MARL via Trust-Region Decomposition
| null | null | 3.25 | 3 |
Poster
|
3;2;3;4
|
3;2;2;3
|
null | null |
2022
| 2.6 | null | null | 0 | null | null | null |
2;2;3;3;3
| null | null | null | null | null | 2.6 | null | null |
iclr
| -0.408248 | 0 | null |
main
| 4.6 |
3;5;5;5;5
|
3;3;3;3;3
| null |
Was my Model Stolen? Feature Sharing for Robust and Transferable Watermarks
|
https://anonymous.4open.science/r/API_Protection
| null | 3 | 3.6 |
Withdraw
|
4;4;3;3;4
|
2;3;2;3;3
|
null |
Paper under double-blind review
|
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
federated learning;aggregation;security;untargeted model poisoning attack
| null | 2.75 | null | null |
iclr
| 0 | -0.471405 | null |
main
| 6 |
5;5;6;8
|
3;4;3;3
| null |
Tesseract: Gradient Flip Score to Secure Federated Learning against Model Poisoning Attacks
| null | null | 3.25 | 4 |
Reject
|
4;4;4;4
|
2;2;4;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;2;3
| null | null | null |
learning to rank;knowledge distillation;neural networks
| null | 2.333333 | null | null |
iclr
| 0 | 0.866025 | null |
main
| 4.666667 |
3;3;8
|
3;2;4
| null |
Born Again Neural Rankers
| null | null | 3 | 4 |
Reject
|
4;4;4
|
2;2;3
|
null |
Department of Electrical and Systems Engineering, University of Pennsylvania
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6716; None
| null | 0 | null | null | null |
3;3;3
| null |
Samar Hadou, Charilaos Kanatsoulis, Alejandro Ribeiro
|
https://iclr.cc/virtual/2022/poster/6716
|
ST-GNNs;GNNs;stability;graph-time perturbations
| null | 2.333333 | null |
https://openreview.net/forum?id=XJiajt89Omg
|
iclr
| 0 | 0.5 | null |
main
| 6 |
5;5;8
|
3;4;4
|
https://iclr.cc/virtual/2022/poster/6716
|
Space-Time Graph Neural Networks
| null | null | 3.666667 | 3 |
Poster
|
3;3;3
|
2;2;3
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
2;3;3
| null | null | null | null | null | 3 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
|
3;3;4
| null |
MS$^2$-Transformer: An End-to-End Model for MS/MS-assisted Molecule Identification
|
https://github.com/bmebmebme/ms2transformer
| null | 3.333333 | 4 |
Reject
|
5;3;4
|
2;3;4
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
causal inference;individual treatment effect;disentangled representation learning;mutual information
| null | 2.5 | null | null |
iclr
| 0.57735 | 0.57735 | null |
main
| 4 |
3;3;5;5
|
2;3;3;3
| null |
Mutual Information Minimization Based Disentangled Learning Framework For Causal Effect Estimation
| null | null | 2.75 | 4.25 |
Withdraw
|
4;4;4;5
|
3;2;2;3
|
null |
Institute for Artificial Intelligence, Peking University; Beijing Institute for General Artificial Intelligence; Institute for Artificial Intelligence, Peking University
|
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/6916; None
| null | 0 | null | null | null |
3;2;2;2
| null |
Xiyuan Wang, Muhan Zhang
|
https://iclr.cc/virtual/2022/poster/6916
| null | null | 2.5 | null |
https://openreview.net/forum?id=XLxhEjKNbXj
|
iclr
| 1 | 0 | null |
main
| 5.75 |
5;6;6;6
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6916
|
GLASS: GNN with Labeling Tricks for Subgraph Representation Learning
| null | null | 3 | 3.75 |
Poster
|
3;4;4;4
|
3;3;2;2
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null |
GNN;Personalized PageRank;Graph Attention Network;Graph Neural Network
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Personalized PageRank meets Graph Attention Networks
| null | null | 0 | 0 |
Desk Reject
| null | null |
null |
Sony AIR; Université de Montréal, Quebec AI Institute, Microsoft Research; McGill University, Quebec AI Institute; Stanford University; Microsoft Research
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6350; None
| null | 0 | null | null | null |
3;3;4;3
| null |
Bogdan Mazoure, Ahmed Ahmed, R Devon Hjelm, Andrey Kolobov, Patrick MacAlpine
|
https://iclr.cc/virtual/2022/poster/6350
|
reinforcement learning;representation learning;self-supervised learning;procgen
| null | 3 | null |
https://openreview.net/forum?id=XOh5x-vxsrV
|
iclr
| -0.57735 | 0.333333 | null |
main
| 5.25 |
3;6;6;6
|
3;3;4;3
|
https://iclr.cc/virtual/2022/poster/6350
|
Cross-Trajectory Representation Learning for Zero-Shot Generalization in RL
|
https://github.com/bmazoure/ctrl_public
| null | 3.25 | 3.5 |
Poster
|
4;3;3;4
|
2;3;3;4
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
neuroscience-inspired AI;robotics;motor control
| null | 2 | null | null |
iclr
| -1 | 0.57735 | null |
main
| 3.5 |
3;3;3;5
|
2;3;2;3
| null |
Neural Circuit Architectural Priors for Embodied Control
| null | null | 2.5 | 3.75 |
Reject
|
4;4;4;3
|
2;2;1;3
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Multi-armed bandits;online learning;batched bandits;Lipschitz bandits
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Batched Lipschitz Bandits
| null | null | 0 | 0 |
Desk Reject
| null | null |
null |
University of Maryland, College Park
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5903; None
| null | 0 | null | null | null |
3;3;3
| null |
Sahil Singla, Soheil Feizi
|
https://iclr.cc/virtual/2022/poster/5903
|
interpretability;failure explanation;debugging;robustness
| null | 3 | null |
https://openreview.net/forum?id=XVPqLyNxSyh
|
iclr
| 1 | 0.5 | null |
main
| 7.333333 |
6;8;8
|
3;4;3
|
https://iclr.cc/virtual/2022/poster/5903
|
Salient ImageNet: How to discover spurious features in Deep Learning?
| null | null | 3.333333 | 3.666667 |
Poster
|
3;4;4
|
3;3;3
|
null |
NAVER AI Lab & NAVER CLOVA; NAVER AI Lab
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/7164; None
| null | 0 | null | null | null |
3;2;3;3
| null |
Yunji Kim, Jung-Woo Ha
|
https://iclr.cc/virtual/2022/poster/7164
|
Unsupervised Fine-grained Class Clustering;Disentangled Representation Learning;Generative Adversarial Networks
| null | 2.5 | null |
https://openreview.net/forum?id=XWODe7ZLn8f
|
iclr
| -0.57735 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
4;3;4;4
|
https://iclr.cc/virtual/2022/poster/7164
|
Contrastive Fine-grained Class Clustering via Generative Adversarial Networks
|
https://github.com/naver-ai/c3-gan
| null | 3.75 | 3.25 |
Spotlight
|
3;4;3;3
|
3;2;3;2
|
null |
Samsung Research, Seoul, South Korea; Seoul National University, Seoul, South Korea
|
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null | null | null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Deep Recurrent Neural Network Layers with Layerwise Loss
| null | null | 0 | 0 |
Desk Reject
| null | null |
null |
University of Illinois at Urbana-Champaign
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6185; None
| null | 0 | null | null | null |
3;2;3;4
| null |
Yikun Ban, Yuchen Yan, Arindam Banerjee, Jingrui He
|
https://iclr.cc/virtual/2022/poster/6185
|
Contextual Bandits;Exploration Strategy;Neural Networks
| null | 2.75 | null |
https://openreview.net/forum?id=X_ch3VrNSRg
|
iclr
| -0.57735 | 1 | null |
main
| 7 |
6;6;8;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6185
|
EE-Net: Exploitation-Exploration Neural Networks in Contextual Bandits
| null | null | 3.5 | 2.75 |
Spotlight
|
3;3;2;3
|
2;2;4;3
|
null |
CS Department, University of California, Irvine; CS Department, UCLA
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6879; None
| null | 0 | null | null | null |
3;3;3;2
| null |
Anji Liu, Stephan Mandt, Guy Van den Broeck
|
https://iclr.cc/virtual/2022/poster/6879
| null | null | 2.75 | null |
https://openreview.net/forum?id=X_hByk2-5je
|
iclr
| 0.648886 | 0.132453 | null |
main
| 6.25 |
5;6;6;8
|
3;3;2;3
|
https://iclr.cc/virtual/2022/poster/6879
|
Lossless Compression with Probabilistic Circuits
| null | null | 2.75 | 3 |
Spotlight
|
3;2;3;4
|
3;3;2;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;4;3;2
| null | null | null |
applications;music;controllable generation;compositionality;transformer;finetuning
| null | 2.5 | null | null |
iclr
| -0.57735 | 0.870388 | null |
main
| 3.75 |
3;3;3;6
|
3;2;2;4
| null |
Composing Features: Compositional Model Augmentation for Steerability of Music Transformers
| null | null | 2.75 | 3.5 |
Reject
|
4;4;3;3
|
2;3;2;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;3;2;2
| null | null | null |
vision transformer;image classification;deep learning;computer vision
| null | 1.5 | null | null |
iclr
| -0.522233 | 0.852803 | null |
main
| 3.5 |
1;3;5;5
|
2;3;4;3
| null |
MaiT: integrating spatial locality into image transformers with attention masks
| null | null | 3 | 4.5 |
Reject
|
5;5;5;3
|
1;3;0;2
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;2;1;2
| null | null | null |
MLP;batch normalization;dropout;residual connections;Bayesian inference
| null | 1.5 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
4;1;2;3
| null |
Generalizing MLPs With Dropouts, Batch Normalization, and Skip Connections
|
https://github.com/anonymous
| null | 2.5 | 4.25 |
Reject
|
4;4;5;4
|
1;2;1;2
|
null |
University of Notre Dame; DeepMind; Tufts University
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6494; None
| null | 0 | null | null | null |
2;3;2;3
| null |
XU HAN, Han Gao, Tobias Pfaff, Jian-Xun Wang, Liping Liu
|
https://iclr.cc/virtual/2022/poster/6494
|
fluid dynamics;graph neural network;attention neural network
| null | 2.75 | null |
https://openreview.net/forum?id=XctLdNfCmP
|
iclr
| -0.333333 | 0.57735 | null |
main
| 6.5 |
6;6;6;8
|
3;4;3;4
|
https://iclr.cc/virtual/2022/poster/6494
|
Predicting Physics in Mesh-reduced Space with Temporal Attention
| null | null | 3.5 | 4.25 |
Poster
|
4;4;5;4
|
3;3;2;3
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Strongly Self-Normalizing Neural Networks with Applications to Implicit Representation Learning
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Strongly Self-Normalizing Neural Networks with Applications to Implicit Representation Learning
| null | null | 0 | 0 |
Withdraw
| null | null |
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;1;2;2
| null | null | null |
Explanation;RL;Language;Relations;Causality
| null | 2 | null | null |
iclr
| -0.522233 | 0.927173 | null |
main
| 5.25 |
3;6;6;6
|
1;3;3;4
| null |
Tell me why!—Explanations support learning relational and causal structure
| null | null | 2.75 | 3.25 |
Reject
|
4;4;2;3
|
1;3;2;2
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;3;3;2
| null | null | null |
non-deep networks
| null | 3 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5;5
|
2;3;4;3
| null |
Non-deep Networks
| null | null | 3 | 4.75 |
Reject
|
5;4;5;5
|
3;3;3;3
|
null | null |
2022
| 3.5 | null | null | 0 | null | null | null |
3;3;4;4
| null | null | null |
PAC-Bayes bounds;meta-learning;localized PAC-Bayes analysis
| null | 2.5 | null | null |
iclr
| -0.688247 | 0 | null |
main
| 5.5 |
5;5;6;6
|
3;4;4;3
| null |
Improved Generalization Risk Bounds for Meta-Learning with PAC-Bayes-kl Analysis
| null | null | 3.5 | 3.75 |
Withdraw
|
5;4;4;2
|
3;2;2;3
|
null |
Pazhou Lab, Guangzhou, 510330, China; School of Mathematical Sciences, Peking University; Key Lab. of Machine Perception (MoE), School of Artificial Intelligence, Peking University; Institute for Artificial Intelligence, Peking University
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6954; None
| null | 0 | null | null | null |
2;3;4;4
| null |
Yifei Wang, Yisen Wang, Jiansheng Yang, Zhouchen Lin
|
https://iclr.cc/virtual/2022/poster/6954
|
Generative Models;Energy-based Models;Sampling;Adversarial Training
| null | 3 | null |
https://openreview.net/forum?id=XhF2VOMRHS
|
iclr
| 0.544331 | 0.777778 | null |
main
| 6.75 |
5;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6954
|
A Unified Contrastive Energy-based Model for Understanding the Generative Ability of Adversarial Training
| null | null | 3.75 | 3 |
Poster
|
3;2;4;3
|
2;3;4;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;2;4
| null | null | null | null | null | 2.25 | null | null |
iclr
| 0 | 0.333333 | null |
main
| 3.75 |
3;3;3;6
|
3;3;2;3
| null |
Low-Precision Stochastic Gradient Langevin Dynamics
| null | null | 2.75 | 4 |
Reject
|
4;4;4;4
|
2;2;2;3
|
null | null |
2022
| 2.2 | null | null | 0 | null | null | null |
2;3;2;2;2
| null | null | null |
contrastive learning;semi-supervised learning;unsupervised domain adaptation;semi-supervised domain adaptation
| null | 2.4 | null | null |
iclr
| 0 | 0.790569 | null |
main
| 4.6 |
3;5;5;5;5
|
2;3;3;3;4
| null |
Semantic-aware Representation Learning Via Probability Contrastive Loss
| null | null | 3 | 4 |
Withdraw
|
4;4;4;4;4
|
2;2;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Reinforcement learning;Off-policy learning;Continuous control;Machine learning
| null | 2.25 | null | null |
iclr
| 0.471405 | 0.816497 | null |
main
| 6 |
5;5;6;8
|
3;3;4;4
| null |
Learning Pessimism for Robust and Efficient Off-Policy Reinforcement Learning
| null | null | 3.5 | 3.75 |
Withdraw
|
4;3;4;4
|
2;3;2;2
|
null |
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6104; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Zebang Shen, Juan Cervino, Hamed Hassani, Alejandro Ribeiro
|
https://iclr.cc/virtual/2022/poster/6104
|
Federated Learning;Class Imbalance
| null | 2.75 | null |
https://openreview.net/forum?id=Xo0lbDt975
|
iclr
| 0 | 0 |
Not provided
|
main
| 6 |
6;6;6;6
|
3;3;2;3
|
https://iclr.cc/virtual/2022/poster/6104
|
An Agnostic Approach to Federated Learning with Class Imbalance
|
Not provided
| null | 2.75 | 3.25 |
Poster
|
3;3;4;3
|
3;2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
out-of-distribution detection;OOD detection;spatio-temporal;latent-space;sequential;outlier;anomaly
| null | 2.25 | null | null |
iclr
| 0.57735 | 0 | null |
main
| 4.5 |
3;5;5;5
|
2;1;3;2
| null |
TIME-LAPSE: Learning to say “I don't know” through spatio-temporal uncertainty scoring
| null | null | 2 | 3.5 |
Reject
|
3;4;4;3
|
2;2;3;2
|
null | null |
2022
| 2.6 | null | null | 0 | null | null | null |
2;2;3;3;3
| null | null | null |
contrastive learning;unsupervised learning;variational information bottleneck
| null | 2.4 | null | null |
iclr
| -0.457604 | 0.666667 | null |
main
| 4.4 |
3;3;5;5;6
|
2;2;2;2;3
| null |
Understanding Self-supervised Learning via Information Bottleneck Principle
| null | null | 2.2 | 3.4 |
Withdraw
|
5;3;2;4;3
|
1;2;4;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
adversarial robustness;certifiable training;deep learning
| null | 2.5 | null | null |
iclr
| 0.5547 | 0 | null |
main
| 5.5 |
3;5;6;8
|
3;3;3;3
| null |
Tactics on Refining Decision Boundary for Improving Certification-based Robust Training
| null | null | 3 | 4.5 |
Reject
|
4;5;4;5
|
2;2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null | null | null | 2.25 | null | null |
iclr
| 0 | 0.174078 | null |
main
| 3.5 |
3;3;3;5
|
4;2;2;3
| null |
Improving Out-of-Distribution Robustness of Classifiers Through Interpolated Generative Models
| null | null | 2.75 | 4 |
Withdraw
|
4;4;4;4
|
2;2;2;3
|
null | null |
2022
| 1.5 | null | null | 0 | null | null | null |
1;1;2;2
| null | null | null |
Linear Elasticity;Deep Neural Network;Ritz Method;Unsupervised Learning
| null | 1 | null | null |
iclr
| -0.707107 | 0.707107 | null |
main
| 2 |
1;1;3;3
|
2;3;3;4
| null |
RitzNet: A Deep Neural Network Method for Linear Stress Problems
| null | null | 3 | 4 |
Withdraw
|
5;4;3;4
|
0;1;2;1
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
2;3;4
| null | null | null |
neural network;function identification;robust generalization
| null | 1.333333 | null | null |
iclr
| 0.5 | 0.5 | null |
main
| 5.333333 |
5;5;6
|
3;4;4
| null |
Robust Generalization of Quadratic Neural Networks via Function Identification
| null | null | 3.666667 | 3.666667 |
Reject
|
3;4;4
|
1;3;0
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
1;3;3;3
| null | null | null |
Probabilistic Programming;Approximate Posterior Inference;Meta Learning
| null | 1.75 | null | null |
iclr
| -0.946729 | 0.96225 | null |
main
| 4.25 |
3;3;5;6
|
2;2;3;3
| null |
Meta-Learning an Inference Algorithm for Probabilistic Programs
| null | null | 2.5 | 3.5 |
Reject
|
4;5;3;2
|
1;1;2;3
|
null |
Microsoft Research, New York, NY; Mila, University of Montreal, Max Planck Institute Germany; Indian Institute of Technology, Delhi; Google Deepmind; Google Research, Brain Team; Mila, University of Montreal
|
2022
| 3.75 |
https://iclr.cc/virtual/2022/poster/6382; None
| null | 0 | null | null | null |
4;3;4;4
| null |
Anirudh Goyal, Aniket Didolkar, Alex Lamb, Kartikeya Badola, Nan Rosemary Ke, Nasim Rahaman, Jonathan Binas, Charles Blundell, Michael Mozer, Yoshua Bengio
|
https://iclr.cc/virtual/2022/poster/6382
|
slot based recurrent architectures;attention;transformers;latent bottleneck.
| null | 3.25 | null |
https://openreview.net/forum?id=XzTtHjgPDsT
|
iclr
| -0.522233 | 0.522233 | null |
main
| 7.5 |
6;6;8;10
|
4;2;4;4
|
https://iclr.cc/virtual/2022/poster/6382
|
Coordination Among Neural Modules Through a Shared Global Workspace
| null | null | 3.5 | 3.25 |
Oral
|
4;3;3;3
|
3;3;3;4
|
null | null |
2022
| 0 | null | null | 0 | null | null | null | null | null | null | null |
Dense Correspondence;Generative Model;Neural Radiance Field
| null | 0 | null | null |
iclr
| 0 | 0 | null |
main
| 0 | null | null | null |
Learning Dense NeRF Correspondence Through Generative Structural Priors
| null | null | 0 | 0 |
Withdraw
| null | null |
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
contrastive learning;object recognition;virtual environment;temporal coherence
| null | 3 | null | null |
iclr
| 0 | 0.160128 | null |
main
| 5.5 |
3;5;6;8
|
3;3;4;3
| null |
Contrastive Learning Through Time
| null | null | 3.25 | 4 |
Withdraw
|
4;4;4;4
|
2;3;3;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
Data selection;subset selection;deep learning;active learning
| null | 2.5 | null | null |
iclr
| 0 | 0 | null |
main
| 5.5 |
5;5;6;6
|
4;2;3;3
| null |
Prioritized training on points that are learnable, worth learning, and not yet learned
| null | null | 3 | 4 |
Reject
|
4;4;4;4
|
3;2;2;3
|
null | null |
2022
| 2.6 | null | null | 0 | null | null | null |
2;2;2;3;4
| null | null | null |
Deep ensemble;Bayesian deep learning;Gaussian process;functional variational inference;uncertainty estimation
| null | 2 | null | null |
iclr
| 0.408248 | 0.612372 | null |
main
| 5.6 |
5;5;5;5;8
|
3;3;3;4;4
| null |
Deep Ensemble as a Gaussian Process Posterior
| null | null | 3.4 | 3.6 |
Reject
|
4;3;3;4;4
|
2;2;0;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
One-Shot Learning;Object Detection;Generalization;Instance Segmentation
| null | 2 | null | null |
iclr
| -0.662266 | 0.57735 | null |
main
| 4.5 |
3;5;5;5
|
3;3;4;4
| null |
A Broad Dataset is All You Need for One-Shot Object Detection
| null | null | 3.5 | 3.75 |
Reject
|
5;2;4;4
|
2;2;2;2
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;2;3
| null | null | null |
Object Counting;Weak Supervision;Ranking
| null | 2.333333 | null | null |
iclr
| -0.5 | 0.5 | null |
main
| 4 |
3;3;6
|
2;3;3
| null |
Learning-to-Count by Learning-to-Rank: Weakly Supervised Object Counting & Localization Using Only Pairwise Image Rankings
| null | null | 2.666667 | 4.333333 |
Reject
|
5;4;4
|
3;2;2
|
null |
Princeton University; University of Technology Sydney; Northwestern University; University of Toronto, Vector Institute, NVIDIA; Harbin Institute of Technology
|
2022
| 2 |
https://iclr.cc/virtual/2022/poster/6030; None
| null | 0 | null | null | null |
2;1;2;3
| null |
Chenjia Bai, Lingxiao Wang, Zhuoran Yang, Zhihong Deng, Animesh Garg, Peng Liu, Zhaoran Wang
|
https://iclr.cc/virtual/2022/poster/6030
|
Pessimistic Bootstrapping;Bootstrapped Q-functions;Uncertainty Estimation;Offline Reinforcement Learning
| null | 3 | null |
https://openreview.net/forum?id=Y4cs1Z3HnqL
|
iclr
| 0 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6030
|
Pessimistic Bootstrapping for Uncertainty-Driven Offline Reinforcement Learning
| null | null | 3.75 | 4 |
Spotlight
|
4;4;4;4
|
2;3;3;4
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null |
Geometric Shape Assembly;Shape Matching;Pose Estimation;Implicit Representations
| null | 2.25 | null | null |
iclr
| -0.57735 | 1 |
https://neural-shape-mating.github.io
|
main
| 4.5 |
3;5;5;5
|
2;3;3;3
| null |
Neural Shape Mating: Self-Supervised Object Assembly with Adversarial Shape Priors
|
https://github.com/neural-shape-mating
| null | 2.75 | 3.5 |
Withdraw
|
4;4;3;3
|
2;2;3;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
incremental learning;continual learning;class-incremental learning
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
3;5;6;6
|
3;1;2;4
| null |
Wakening Past Concepts without Past Data: Class-incremental Learning from Placebos
| null | null | 2.5 | 4 |
Reject
|
4;4;4;4
|
2;2;2;3
|
null | null |
2022
| 2.8 | null | null | 0 | null | null | null |
2;3;3;3;3
| null | null | null |
Weakly Supervised Learning;Deep Generative Flows;Deep Learning;Deep Generative Models;Machine Learning
| null | 2.8 | null | null |
iclr
| 0.372678 | 0.9759 | null |
main
| 6 |
5;5;6;6;8
|
2;2;3;3;4
| null |
Weakly Supervised Label Learning Flows
| null | null | 2.8 | 3.6 |
Reject
|
3;4;4;3;4
|
2;2;4;3;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
3;2;2
| null | null | null | null | null | 2.333333 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
|
3;3;3
| null |
CheXT: Knowledge-Guided Cross-Attention Transformer for Abnormality Classification and Localization in Chest X-rays
| null | null | 3 | 4.333333 |
Reject
|
5;4;4
|
3;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;3;2
| null | null | null |
object learning;scene modeling;scene generation;causal modeling;causal representation learning;generative modeling;common fate
| null | 2.666667 | null | null |
iclr
| -1 | 1 | null |
main
| 4 |
3;3;6
|
2;2;3
| null |
Unsupervised Object Learning via Common Fate
| null | null | 2.333333 | 3.666667 |
Reject
|
4;4;3
|
2;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;3;3
| null | null | null |
reinforcement learning;transfer learning;meta learning;successor features
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5;5
|
4;3;3;3
| null |
Xi-learning: Successor Feature Transfer Learning for General Reward Functions
|
https://tinyurl.com/3xuzxff3
| null | 3.25 | 3.5 |
Reject
|
4;4;3;3
|
2;2;2;2
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
2;1;2;2
| null | null | null |
Relational Triple Extraction;Natural Language Processing
| null | 2.75 | null | null |
iclr
| -0.57735 | 0.96225 | null |
main
| 4 |
3;3;5;5
|
2;1;4;4
| null |
Stop just recalling memorized relations: Extracting Unseen Relational Triples from the context
| null | null | 2.75 | 4.25 |
Withdraw
|
4;5;4;4
|
2;2;4;3
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.