pdf
stringlengths 49
199
⌀ | aff
stringlengths 1
1.36k
⌀ | year
stringclasses 19
values | technical_novelty_avg
float64 0
4
⌀ | video
stringlengths 21
47
⌀ | doi
stringlengths 31
63
⌀ | presentation_avg
float64 0
4
⌀ | proceeding
stringlengths 43
129
⌀ | presentation
stringclasses 796
values | sess
stringclasses 576
values | technical_novelty
stringclasses 700
values | arxiv
stringlengths 10
16
⌀ | author
stringlengths 1
1.96k
⌀ | site
stringlengths 37
191
⌀ | keywords
stringlengths 2
582
⌀ | oa
stringlengths 86
198
⌀ | empirical_novelty_avg
float64 0
4
⌀ | poster
stringlengths 57
95
⌀ | openreview
stringlengths 41
45
⌀ | conference
stringclasses 11
values | corr_rating_confidence
float64 -1
1
⌀ | corr_rating_correctness
float64 -1
1
⌀ | project
stringlengths 1
162
⌀ | track
stringclasses 3
values | rating_avg
float64 0
10
⌀ | rating
stringlengths 1
17
⌀ | correctness
stringclasses 809
values | slides
stringlengths 32
41
⌀ | title
stringlengths 2
192
⌀ | github
stringlengths 3
165
⌀ | authors
stringlengths 7
161
⌀ | correctness_avg
float64 0
5
⌀ | confidence_avg
float64 0
5
⌀ | status
stringclasses 22
values | confidence
stringlengths 1
17
⌀ | empirical_novelty
stringclasses 763
values |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null |
Department of Electrical Engineering and Automation, Aalto University, Finland; Department of Computer Science, TU Darmstadt, Germany
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6802; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Pascal Klink, Carlo D'Eramo, Jan Peters, Joni Pajarinen
|
https://iclr.cc/virtual/2022/poster/6802
|
reinforcement learning;curriculum learning;boosting;residual learning
| null | 2.75 | null |
https://openreview.net/forum?id=anbBFlX1tJ1
|
iclr
| 0.333333 | 1 | null |
main
| 6.5 |
6;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6802
|
Boosted Curriculum Reinforcement Learning
| null | null | 3.25 | 3.75 |
Poster
|
4;3;4;4
|
3;2;3;3
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;4;2;2;3;3;4
| null | null | null |
Knowledge Graph Embedding;KGE;Negative Sampling;Convexity
| null | 2.714286 | null | null |
iclr
| -0.080687 | 0.76014 | null |
main
| 4.857143 |
3;3;3;5;6;6;8
|
2;3;3;3;4;3;4
| null |
Why does Negative Sampling not Work Well? Analysis of Convexity in Negative Sampling
| null | null | 3.142857 | 3.285714 |
Withdraw
|
4;2;4;3;3;4;3
|
2;4;2;2;2;3;4
|
null |
Department of Informatics & Munich Data Science Institute, Technical University of Munich, Germany
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7108; None
| null | 0 | null | null | null |
3;3;3
| null |
Nicholas Gao, Stephan Günnemann
|
https://iclr.cc/virtual/2022/poster/7108
|
Graph Neural Networks;Computational Physics;Self-Generative Learning;Machine Learning for Science
| null | 1.666667 | null |
https://openreview.net/forum?id=apv504XsysP
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8
|
3;3;4
|
https://iclr.cc/virtual/2022/poster/7108
|
Ab-Initio Potential Energy Surfaces by Pairing GNNs with Neural Wave Functions
| null | null | 3.333333 | 3.333333 |
Spotlight
|
4;4;2
|
3;2;0
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;2;3
| null | null | null | null | null | 2.333333 | null | null |
iclr
| 0 | 0.755929 | null |
main
| 4.666667 |
3;5;6
|
3;3;4
| null |
Meta-OLE: Meta-learned Orthogonal Low-Rank Embedding
| null | null | 3.333333 | 4 |
Reject
|
4;4;4
|
2;2;3
|
null |
Department of Electrical and Systems Engineering, University of Pennsylvania; Department of Computer Science and Technology, University of Cambridge
|
2022
| 2.8 |
https://iclr.cc/virtual/2022/poster/6596; None
| null | 0 | null | null | null |
2;3;3;3;3
| null |
Benjamin Hudson, Qingbiao Li, Matthew Malencia, Amanda Prorok
|
https://iclr.cc/virtual/2022/poster/6596
|
Traveling Salesman Problem;Graph Neural Network;Metaheuristic;Guided Local Search;Hybrid
| null | 2.6 | null |
https://openreview.net/forum?id=ar92oEosBIg
|
iclr
| -0.697217 | 0.904762 | null |
main
| 5.6 |
3;3;6;8;8
|
2;2;3;3;4
|
https://iclr.cc/virtual/2022/poster/6596
|
Graph Neural Network Guided Local Search for the Traveling Salesperson Problem
| null | null | 2.8 | 4 |
Poster
|
5;4;5;3;3
|
2;3;2;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
Implicit bias;Homogeneous neural networks;Exponential loss;Logistic loss;Maximum margin;Linear networks;ReLU networks
| null | 0 | null | null |
iclr
| 0.870388 | 0 | null |
main
| 5.75 |
5;6;6;6
|
4;4;4;4
| null |
On Margin Maximization in Linear and ReLU Networks
| null | null | 4 | 3.25 |
Reject
|
2;4;4;3
| null |
null |
Harvard University; Cornell University; MIT; University of Edinburgh & The Alan Turing Institute
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6869; None
| null | 0 | null | null | null |
3;3;3
| null |
Tuan Anh Le, Katherine Collins, Luke Hewitt, Kevin Ellis, Siddharth N, Samuel Gershman, Joshua B Tenenbaum
|
https://iclr.cc/virtual/2022/poster/6869
|
wake-sleep;variational inference;neuro-symbolic generative models
| null | 2.333333 | null |
https://openreview.net/forum?id=auOPcdAcoy
|
iclr
| -1 | 0.5 | null |
main
| 6.666667 |
6;6;8
|
4;3;4
|
https://iclr.cc/virtual/2022/poster/6869
|
Hybrid Memoised Wake-Sleep: Approximate Inference at the Discrete-Continuous Interface
| null | null | 3.666667 | 3.666667 |
Poster
|
4;4;3
|
2;2;3
|
null |
Department of Computer Science, Purdue University
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6946; None
| null | 0 | null | null | null |
3;3;3
| null |
S Chandra Mouli, Bruno Ribeiro
|
https://iclr.cc/virtual/2022/poster/6946
|
out-of-distribution classification;symmetries;counterfactual invariances;geometric deep learning
| null | 2.666667 | null |
https://openreview.net/forum?id=avgclFZ221l
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8
|
4;4;3
|
https://iclr.cc/virtual/2022/poster/6946
|
Asymmetry Learning for Counterfactually-invariant Classification in OOD Tasks
| null | null | 3.666667 | 3 |
Oral
|
2;3;4
|
3;2;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;2;4
| null | null | null | null | null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6;6
|
3;4;3;4
| null |
Distribution Matching in Deep Generative Models with Kernel Transfer Operators
| null | null | 3.5 | 3.25 |
Reject
|
4;3;3;3
|
3;2;2;2
|
null | null |
2022
| 3.25 | null | null | 0 | null | null | null |
3;4;3;3
| null | null | null |
Federated learning;differential privacy;compression;communication efficiency
| null | 2.75 | null | null |
iclr
| 0 | 0.57735 | null |
main
| 7 |
6;6;8;8
|
4;3;4;4
| null |
DP-REC: Private & Communication-Efficient Federated Learning
| null | null | 3.75 | 3.5 |
Reject
|
4;3;3;4
|
2;3;3;3
|
null |
DeepMind
|
2022
| 3.75 |
https://iclr.cc/virtual/2022/poster/6252; None
| null | 0 | null | null | null |
4;4;3;4
| null |
Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, Satinder Singh
|
https://iclr.cc/virtual/2022/poster/6252
|
meta-learning;meta-gradients;meta-reinforcement learning
| null | 3.75 | null |
https://openreview.net/forum?id=b-ny3x071E5
|
iclr
| 0.904534 | 0 | null |
main
| 9 |
8;8;10;10
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6252
|
Bootstrapped Meta-Learning
| null | null | 4 | 3.75 |
Oral
|
3;3;5;4
|
4;4;3;4
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
Subgraph similarity;graph neural networks
| null | 3 | null | null |
iclr
| -0.57735 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
3;3;3;4
| null |
NeuroSED: Learning Subgraph Similarity via Graph Neural Networks
| null | null | 3.25 | 3.75 |
Reject
|
4;4;4;3
|
2;3;3;4
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Reinforcement Learning;Combinatorial Optimization;Traveling Salesman Problem with Drones;Vehicle Routing Problem
| null | 2.25 | null | null |
iclr
| -0.57735 | 0.816497 | null |
main
| 4.5 |
3;5;5;5
|
2;3;4;3
| null |
An Attention-LSTM Hybrid Model for the Coordinated Routing of Multiple Vehicles
| null | null | 3 | 3.5 |
Withdraw
|
4;3;3;4
|
2;3;2;2
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
1;3;4;3
| null | null | null |
finetuning;pretrained language models;natural language generation;robustness;prefix-tuning
| null | 2 | null | null |
iclr
| -0.927173 | 0.688247 | null |
main
| 4.75 |
3;5;5;6
|
2;3;2;3
| null |
Ensembles and Cocktails: Robust Finetuning for Natural Language Generation
| null | null | 2.5 | 4.25 |
Reject
|
5;4;4;4
|
0;3;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null |
survival analysis;time-to-event analysis;calibration
| null | 1.75 | null | null |
iclr
| 0 | 0.57735 | null |
main
| 4 |
3;3;5;5
|
3;3;4;3
| null |
Simpler Calibration for Survival Analysis
| null | null | 3.25 | 4 |
Reject
|
4;4;5;3
|
1;2;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
1;2;3;3
| null | null | null |
Prompt fine-tuning;Semi-supervised Learning;Few-shot;NLP
| null | 2.5 | null | null |
iclr
| -0.396059 | 0.889297 | null |
main
| 5.25 |
3;5;5;8
|
3;3;3;4
| null |
LiST: Lite Self-training Makes Efficient Few-shot Learners
| null | null | 3.25 | 4 |
Withdraw
|
5;3;4;4
|
2;2;3;3
|
null |
NAVER AI Lab, NAVER CLOVA; NAVER CLOVA; NAVER AI Lab
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7139; None
| null | 0 | null | null | null |
3;2;3;4
| null |
Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo
|
https://iclr.cc/virtual/2022/poster/7139
|
ImageNet;efficient network architecture;network design;image classification
| null | 2.75 | null |
https://openreview.net/forum?id=bCrdi4iVvv
|
iclr
| 0 | 1 | null |
main
| 6.5 |
6;6;6;8
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/7139
|
Learning Features with Parameter-Free Layers
|
https://github.com/naver-ai/PfLayer
| null | 3.25 | 4 |
Poster
|
4;4;4;4
|
2;3;2;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;3;2;3
| null | null | null |
Adversarial Attack;Speech Synthesise;Automatic Speech Recognition
| null | 3 | null | null |
iclr
| 0 | 0.927173 |
https://sites.google.com/view/ssa-asr/home
|
main
| 6.25 |
5;6;6;8
|
3;3;3;4
| null |
Synthesising Audio Adversarial Examples for Automatic Speech Recognition
| null | null | 3.25 | 4 |
Reject
|
4;4;4;4
|
2;3;3;4
|
null |
DeepMind, London, UK; University College London; DeepMind, London, UK
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/6418; None
| null | 0 | null | null | null |
3;3;4;3
| null |
Ivo Danihelka, Arthur Guez, Julian Schrittwieser, David Silver
|
https://iclr.cc/virtual/2022/poster/6418
|
AlphaZero;MuZero;reinforcement learning
| null | 3.5 | null |
https://openreview.net/forum?id=bERaNdoegnO
|
iclr
| -1 | 1 | null |
main
| 7.5 |
6;8;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6418
|
Policy improvement by planning with Gumbel
| null | null | 3.75 | 3.25 |
Spotlight
|
4;3;3;3
|
4;3;4;3
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;3;3;3
| null | null | null |
Combinatorial Optimization;Reinforcement Learning;Evolution Strategies;Simulated Annealing
| null | 2.5 | null | null |
iclr
| -0.471405 | 0.738549 | null |
main
| 6 |
5;5;6;8
|
2;3;4;4
| null |
Neural Simulated Annealing
| null | null | 3.25 | 4.25 |
Reject
|
5;4;4;4
|
2;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;1;2;3
| null | null | null |
Distributed SGD;Byzantine resilience
| null | 2.25 | null | null |
iclr
| 0.57735 | 1 | null |
main
| 4.5 |
3;3;6;6
|
3;3;4;4
| null |
Combining Differential Privacy and Byzantine Resilience in Distributed SGD
| null | null | 3.5 | 3.25 |
Reject
|
3;3;3;4
|
2;2;2;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
3;2;2
| null | null | null |
open set domain adaptation;zero-shot learning;knowledge graph;graph convolutional network;adversarial learning
| null | 2 | null | null |
iclr
| -0.5 | 0.5 | null |
main
| 3.666667 |
3;3;5
|
3;2;3
| null |
Open Set Domain Adaptation with Zero-shot Learning on Graph
| null | null | 2.666667 | 4.333333 |
Reject
|
4;5;4
|
2;0;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;3;2;3
| null | null | null |
calibration;online prediction;distribution shift;uncertainty quantification
| null | 2.5 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5;5
|
3;3;2;2
| null |
Provably Calibrated Regression Under Distribution Drift
| null | null | 2.5 | 3.25 |
Reject
|
3;4;3;3
|
2;3;3;2
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;1;2;3
| null | null | null |
Deep neural networks;Homomorphic encryption
| null | 1.5 | null | null |
iclr
| -0.572656 | 0.919866 | null |
main
| 5.5 |
3;5;6;8
|
2;3;4;4
| null |
Efficient representations for privacy-preserving inference
| null | null | 3.25 | 3.25 |
Reject
|
5;2;3;3
|
1;0;2;3
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
2;2;3
| null | null | null |
Adversarial training;Trade-off
| null | 2 | null | null |
iclr
| -1 | -0.5 | null |
main
| 3.666667 |
3;3;5
|
2;4;2
| null |
Attention-based Interpretation and Response to The Trade-Off of Adversarial Training
| null | null | 2.666667 | 4.333333 |
Withdraw
|
5;5;3
|
2;2;2
|
null |
McGill University, Mila – Quebec Artificial Intelligence Institute, Canada CIFAR AI Chair, Mila; Microsoft Research; McGill University, Mila – Quebec Artificial Intelligence Institute
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/5993; None
| null | 0 | null | null | null |
2;3;4
| null |
Benjamin LeBrun, Alessandro Sordoni, Timothy O'Donnell
|
https://iclr.cc/virtual/2022/poster/5993
| null | null | 3 | null |
https://openreview.net/forum?id=bTteFbU99ye
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8
|
3;3;4
|
https://iclr.cc/virtual/2022/poster/5993
|
Evaluating Distributional Distortion in Neural Language Modeling
| null | null | 3.333333 | 4 |
Poster
|
3;4;5
|
3;2;4
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
adversarial Training;Robustness;Domain-invariant representation;domain adaptation
| null | 3 | null | null |
iclr
| 0.493742 | 0.493742 | null |
main
| 4.75 |
3;3;5;8
|
3;4;4;4
| null |
Domain Invariant Adversarial Learning
| null | null | 3.75 | 3.75 |
Reject
|
4;3;4;4
|
3;2;4;3
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
3;2;3
| null | null | null |
Representation learning;Laplacian;self-supervised;exploration
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 5.333333 |
5;5;6
|
3;3;3
| null |
Temporal abstractions-augmented temporally contrastive learning: an alternative to the Laplacian in RL
| null | null | 3 | 4 |
Reject
|
4;4;4
|
2;2;2
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
1;3;3
| null | null | null | null | null | 3 | null | null |
iclr
| -1 | 0.5 | null |
main
| 4.333333 |
3;5;5
|
3;4;3
| null |
Calibrating Probabilistic Embeddings for Cross-Modal Retrieval
| null | null | 3.333333 | 4.333333 |
Withdraw
|
5;4;4
|
2;4;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;3;2
| null | null | null |
Multi-modal Learning;Bayesian Learning;Neural Processes;Variational Inference
| null | 1.25 | null | null |
iclr
| 0.707107 | -0.57735 | null |
main
| 4 |
3;3;5;5
|
3;3;2;3
| null |
Bayesian Relational Generative Model for Scalable Multi-modal Learning
| null | null | 2.75 | 4 |
Reject
|
3;4;4;5
|
0;0;3;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
3;2;2;3
| null | null | null |
computer vision;stegaography;recurrent neural network;loss conditional training;information hiding
| null | 2.25 | null | null |
iclr
| -0.774597 | 0 | null |
main
| 4.5 |
3;5;5;5
|
3;2;3;4
| null |
Variable Length Variable Quality Audio Steganography
| null | null | 3 | 3.5 |
Reject
|
5;2;3;4
|
2;2;2;3
|
null |
Stanford University; Google Research
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6894; None
| null | 0 | null | null | null |
3;3;2;4
| null |
Xuechen Li, Florian Tramer, Percy Liang, Tatsunori Hashimoto
|
https://iclr.cc/virtual/2022/poster/6894
|
language model;differential privacy;language generation;fine-tuning;NLP
| null | 3.25 | null |
https://openreview.net/forum?id=bVuP3ltATMz
|
iclr
| 0 | 0 | null |
main
| 7.5 |
6;8;8;8
|
3;3;3;3
|
https://iclr.cc/virtual/2022/poster/6894
|
Large Language Models Can Be Strong Differentially Private Learners
|
https://github.com/lxuechen/private-transformers
| null | 3 | 4 |
Oral
|
4;4;3;5
|
4;3;3;3
|
null |
Amazon Web Services; Amazon Web Services and Department of Mathematics, University of California, Los Angeles
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/7196; None
| null | 0 | null | null | null |
2;3;3;4
| null |
Yonatan Dukler, Alessandro Achille, Giovanni Paolini, Avinash Ravichandran, Marzia Polito, Stefano Soatto
|
https://iclr.cc/virtual/2022/poster/7196
|
Leave one out cross validation;AutoML;dataset optimization
| null | 3 | null |
https://openreview.net/forum?id=bVvMOtLMiw
|
iclr
| -0.522233 | -0.19245 | null |
main
| 6.75 |
5;6;8;8
|
4;3;4;3
|
https://iclr.cc/virtual/2022/poster/7196
|
DIVA: Dataset Derivative of a Learning Task
| null | null | 3.5 | 3.75 |
Poster
|
5;3;4;3
|
2;2;4;4
|
null |
Mila, Université de Montréal; Mila, McGill University
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6381; None
| null | 0 | null | null | null |
3;3;3;3
| null |
Andjela Mladenovic, Joey Bose, Hugo Berard, William Hamilton, Simon Lacoste-Julien, Pascal Vincent, Gauthier Gidel
|
https://iclr.cc/virtual/2022/poster/6381
|
Online Algorithms;Adversarial Attacks
| null | 2.5 | null |
https://openreview.net/forum?id=bYGSzbCM_i
|
iclr
| 0.408248 | 0.866025 | null |
main
| 6 |
5;5;6;8
|
3;2;3;4
|
https://iclr.cc/virtual/2022/poster/6381
|
Online Adversarial Attacks
| null | null | 3 | 3.5 |
Poster
|
3;4;3;4
|
3;2;2;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
reinforcement learning theory;offline deep reinforcement learning;model selection;pessimism;tuning free
| null | 1.5 | null | null |
iclr
| -0.333333 | 1 | null |
main
| 3.5 |
3;3;3;5
|
3;3;3;4
| null |
Pessimistic Model Selection for Offline Deep Reinforcement Learning
| null | null | 3.25 | 3.25 |
Reject
|
3;4;3;3
|
2;2;0;2
|
null |
H.Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6935; None
| null | 0 | null | null | null |
2;2;3;3
| null |
Namjoon Suh, Hyunouk Ko, Xiaoming Huo
|
https://iclr.cc/virtual/2022/poster/6935
|
Overparametrized Deep Neural Network;Neural Tangent Kernel;Minimax;Non-parametric regression
| null | 1.25 | null |
https://openreview.net/forum?id=bZJbzaj_IlP
|
iclr
| -0.57735 | 1 | null |
main
| 7 |
6;6;8;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6935
|
A NON-PARAMETRIC REGRESSION VIEWPOINT : GENERALIZATION OF OVERPARAMETRIZED DEEP RELU NETWORK UNDER NOISY OBSERVATIONS
| null | null | 3.5 | 3.25 |
Poster
|
3;4;3;3
|
2;0;3;0
|
null | null |
2022
| 2.4 | null | null | 0 | null | null | null |
2;2;3;3;2
| null | null | null |
black-box adversarial attacks;instragram-based image filters;evolutionary algorithm;multi-network attacks
| null | 2.4 | null | null |
iclr
| -0.516047 | 0.516047 | null |
main
| 4.6 |
3;3;5;6;6
|
3;3;3;4;3
| null |
One for Many: an Instagram inspired black-box adversarial attack
| null | null | 3.2 | 3.6 |
Reject
|
4;4;4;4;2
|
2;2;2;3;3
|
null |
Institute for AI Industry Research, Tsinghua University, China; JD Explore Academy, JD.com Inc, China
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6035; None
| null | 0 | null | null | null |
2;2;3;3
| null |
Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, Dacheng Tao
|
https://iclr.cc/virtual/2022/poster/6035
|
unlearnable examples;adversarial training;privacy
| null | 2.75 | null |
https://openreview.net/forum?id=baUQQPwQiAg
|
iclr
| 0.37998 | 0.886621 | null |
main
| 5.75 |
3;6;6;8
|
2;4;3;4
|
https://iclr.cc/virtual/2022/poster/6035
|
Robust Unlearnable Examples: Protecting Data Privacy Against Adversarial Learning
|
https://github.com/fshp971/robust-unlearnable-examples
| null | 3.25 | 4.25 |
Poster
|
4;3;5;5
|
2;3;2;4
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null | null | null | 2.5 | null | null |
iclr
| -0.57735 | -0.333333 | null |
main
| 5.75 |
5;6;6;6
|
4;3;4;4
| null |
k-Median Clustering via Metric Embedding: Towards Better Initialization with Privacy
| null | null | 3.75 | 3.5 |
Reject
|
4;4;3;3
|
2;3;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
3;2;1;2
| null | null | null |
Adversarial Attack;Bayesian Optimization
| null | 1.25 | null | null |
iclr
| -0.333333 | 0.57735 | null |
main
| 3.5 |
3;3;3;5
|
2;4;2;4
| null |
BO-DBA: Query-Efficient Decision-Based Adversarial Attacks via Bayesian Optimization
| null | null | 3 | 3.5 |
Withdraw
|
3;5;3;3
|
2;2;1;0
|
null |
School of Computer Science, National University of Defense Technology, China; National Key Lab for Novel Software Technology, Nanjing University, China
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6490; None
| null | 0 | null | null | null |
2;3;3;3
| null |
Hang Zhao, Yang Yu, Kai Xu
|
https://iclr.cc/virtual/2022/poster/6490
|
Bin Packing Problem;Online 3D-BPP;Reinforcement Learning
| null | 1.5 | null |
https://openreview.net/forum?id=bfuGjlCwAq
|
iclr
| -0.12666 | 0.594089 | null |
main
| 5.75 |
3;6;6;8
|
2;4;3;3
|
https://iclr.cc/virtual/2022/poster/6490
|
Learning Efficient Online 3D Bin Packing on Packing Configuration Trees
| null | null | 3 | 3.25 |
Poster
|
4;2;3;4
|
0;3;3;0
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
1;3;3;3
| null | null | null |
reinforcement learning;bellman value target;lower bound;discounted return
| null | 2.5 | null | null |
iclr
| -0.57735 | 0.174078 | null |
main
| 5.25 |
3;6;6;6
|
3;2;4;4
| null |
Faster Reinforcement Learning with Value Target Lower Bounding
| null | null | 3.25 | 4.5 |
Reject
|
5;5;4;4
|
1;3;3;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
cross-attention;dual encoder;neural ranking;distillation
| null | 2.75 | null | null |
iclr
| -0.730297 | -0.408248 | null |
main
| 5 |
3;5;6;6
|
4;3;4;3
| null |
In defense of dual-encoders for neural ranking
| null | null | 3.5 | 3.5 |
Reject
|
5;3;2;4
|
2;3;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;2;3
| null | null | null |
Reinforcement Learning;General RL Theory;Policy Transfer;Dynamics Modeling
| null | 1.25 | null | null |
iclr
| 0.333333 | -1 | null |
main
| 3.5 |
3;3;3;5
|
3;3;3;2
| null |
A General Theory of Relativity in Reinforcement Learning
| null | null | 2.75 | 3.5 |
Reject
|
4;2;4;4
|
1;2;2;0
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2;2
| null | null | null |
Physics Informed Machine Learning;Smoothed Particle Hydrodynamics;Sensitivity Analysis;Differentiable Programming;Mixed Mode Automatic Differentiation;Deep Learning;Turbulence;Lagrangian Fluid Simulation.
| null | 2.4 | null | null |
iclr
| -0.645497 | 0.422577 | null |
main
| 4 |
3;3;3;5;6
|
2;3;4;3;4
| null |
Physics Informed Machine Learning of SPH: Machine Learning Lagrangian Turbulence
| null | null | 3.2 | 3.4 |
Reject
|
4;4;3;3;3
|
2;2;3;3;2
|
null |
Paper under double-blind review
|
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
offline RL;learning from experts;finetuning;multi-objective RL;deep RL;continuous control
| null | 2.5 | null | null |
iclr
| 0 | 0.816497 | null |
main
| 5 |
3;5;6;6
|
3;3;4;4
| null |
On Multi-objective Policy Optimization as a Tool for Reinforcement Learning: Case Studies in Offline RL and Finetuning
| null | null | 3.5 | 3 |
Reject
|
3;3;3;3
|
2;3;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null |
Aitor Lewkowycz
| null |
learning rates;hyperparameter tuning;schedules
| null | 2.75 | null | null |
iclr
| -0.57735 | 0.707107 | null |
main
| 4.5 |
3;3;6;6
|
2;3;4;3
| null |
How to decay your learning rate
| null | null | 3 | 3.75 |
Reject
|
4;4;4;3
|
3;2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null | null | null | 1.75 | null | null |
iclr
| 0 | -0.447214 | null |
main
| 4 |
3;3;5;5
|
4;2;1;3
| null |
Classification and Uncertainty Quantification of Corrupted Data using Semi-Supervised Autoencoders
| null | null | 2.5 | 3.5 |
Reject
|
4;3;4;3
|
2;2;2;1
|
null |
Kagenova Limited, Guildford, Surrey, United Kingdom.
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6521; None
| null | 0 | null | null | null |
2;2;3;3
| null |
Jason McEwen, Christopher Wallis, Augustine Mavor-Parker
|
https://iclr.cc/virtual/2022/poster/6521
| null | null | 2.25 | null |
https://openreview.net/forum?id=bjy5Zb2fo2
|
iclr
| 0 | -0.57735 | null |
main
| 5.5 |
5;5;6;6
|
4;4;4;3
|
https://iclr.cc/virtual/2022/poster/6521
|
Scattering Networks on the Sphere for Scalable and Rotationally Equivariant Spherical CNNs
| null | null | 3.75 | 3.5 |
Poster
|
4;3;4;3
|
1;2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
1;3;2;3
| null | null | null |
Adversarial training;Adversarial robustness
| null | 2.75 | null | null |
iclr
| -0.57735 | 0 | null |
main
| 4.5 |
3;3;6;6
|
3;3;3;3
| null |
Understanding the robustness-accuracy tradeoff by rethinking robust fairness
| null | null | 3 | 3.75 |
Reject
|
4;4;4;3
|
2;3;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null | null | null | 2.75 | null | null |
iclr
| 0.288675 | 0.984732 | null |
main
| 5 |
3;5;6;6
|
2;3;4;4
| null |
EMFlow: Data Imputation in Latent Space via EM and Deep Flow Models
| null | null | 3.25 | 4 |
Reject
|
4;3;5;4
|
2;3;3;3
|
null |
Boston University; MIT CSAIL
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/7151; None
| null | 0 | null | null | null |
3;3;3;4
| null |
Afra Feyza Akyürek, Ekin Akyürek, Derry Wijaya, Jacob Andreas
|
https://iclr.cc/virtual/2022/poster/7151
|
few-shot class incremental learning;incremental learning;incremental classification;subspace regularization;manifold regularization;few-shot learning
| null | 3 | null |
https://openreview.net/forum?id=boJy41J-tnQ
|
iclr
| -0.132453 | 0.688247 | null |
main
| 6.25 |
5;6;6;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/7151
|
Subspace Regularizers for Few-Shot Class Incremental Learning
|
https://github.com/feyzaakyurek/subspace-reg
| null | 3.5 | 4.25 |
Poster
|
4;5;4;4
|
2;3;3;4
|
null |
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6640; None
| null | 0 | null | null | null |
3;3;3
| null |
Xueyuan She, Saurabh Dash, Saibal Mukhopadhyay
|
https://iclr.cc/virtual/2022/poster/6640
|
spiking neural network;spatiotemporal processing;feedforward network
| null | 2.666667 | null |
https://openreview.net/forum?id=bp-LJ4y_XC
|
iclr
| 0.5 | 0 | null |
main
| 6.666667 |
6;6;8
|
3;3;3
|
https://iclr.cc/virtual/2022/poster/6640
|
Sequence Approximation using Feedforward Spiking Neural Network for Spatiotemporal Learning: Theory and Optimization Methods
| null | null | 3 | 3.666667 |
Poster
|
4;3;4
|
2;3;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Graph Neural Networks;general unified framework;against adversarial attacks;robust model;graph reconstruction operation
| null | 2.5 | null | null |
iclr
| -0.57735 | -0.174078 | null |
main
| 4.5 |
3;5;5;5
|
3;4;2;2
| null |
A General Unified Graph Neural Network Framework Against Adversarial Attacks
| null | null | 2.75 | 4.5 |
Reject
|
5;4;4;5
|
2;3;3;2
|
null | null |
2022
| 1 | null | null | 0 | null | null | null |
1;1;1;1
| null | null | null |
Ethno-nationality;Native Language Identification;Natural Language Processing;Machine Learning;Linear SVM;Less-controlled environments;ICE corpus
| null | 1.25 | null | null |
iclr
| 0 | 0 | null |
main
| 3 |
3;3;3;3
|
3;1;2;3
| null |
Determining the Ethno-nationality of Writers Using Written English Text
| null | null | 2.25 | 4.25 |
Reject
|
5;4;4;4
|
1;1;2;1
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;3;3;2
| null | null | null |
domain adaptation adversarial training imbalanced class distribution
| null | 1.75 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5;5
|
3;4;3;3
| null |
Pairwise Adversarial Training for Unsupervised Class-imbalanced Domain Adaptation
| null | null | 3.25 | 4.75 |
Reject
|
4;5;5;5
|
2;3;0;2
|
null |
SUTD; Univ. of Montr´eal & Mila
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/7040; None
| null | 0 | null | null | null |
3;2;3;2
| null |
Andjela Mladenovic, Iosif Sakos, Gauthier Gidel, Georgios Piliouras
|
https://iclr.cc/virtual/2022/poster/7040
| null | null | 1.75 | null |
https://openreview.net/forum?id=bsycpMi00R1
|
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6;6
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/7040
|
Generalized Natural Gradient Flows in Hidden Convex-Concave Games and GANs
| null | null | 3.75 | 3.25 |
Poster
|
2;3;4;4
|
0;3;2;2
|
null | null |
2022
| 1.666667 | null | null | 0 | null | null | null |
1;2;2
| null | null | null |
Reinforcement Learning;Intrinsic reward;MaxEnt;Probability matching;Motor control;Variational inference
| null | 2 | null | null |
iclr
| 0.5 | 0 | null |
main
| 2.333333 |
1;3;3
|
3;3;3
| null |
Occupy & Specify: Investigations into a Maximum Credit Assignment Occupancy Objective for Data-efficient Reinforcement Learning
| null | null | 3 | 3.333333 |
Reject
|
3;4;3
|
2;2;2
|
null |
Korea Advanced Institute of Science and Technology (KAIST), South Korea
|
2022
| 2.8 |
https://iclr.cc/virtual/2022/poster/6629; None
| null | 0 | null | null | null |
3;2;2;4;3
| null |
Chaoning Zhang, Kang Zhang, Chenshuang Zhang, Trung X. Pham, Chang Yoo, In Kweon
|
https://iclr.cc/virtual/2022/poster/6629
|
SimSiam;Negative samples;SSL;Collapse;Covariance
| null | 2.6 | null |
https://openreview.net/forum?id=bwq6O4Cwdl
|
iclr
| 0.612372 | 0.645497 | null |
main
| 6.8 |
6;6;6;8;8
|
3;2;3;4;3
|
https://iclr.cc/virtual/2022/poster/6629
|
How Does SimSiam Avoid Collapse Without Negative Samples? A Unified Understanding with Self-supervised Contrastive Learning
| null | null | 3 | 3.2 |
Poster
|
3;3;3;3;4
|
2;2;2;4;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
1;2;3;2
| null | null | null |
Mutli-Agent Reinforcement Learning;Coordination;Intrinsic Motivation;Coordinated Exploration
| null | 2.25 | null | null |
iclr
| 0 | 0 | null |
main
| 4 |
3;3;5;5
|
2;3;3;2
| null |
Influence-Based Reinforcement Learning for Intrinsically-Motivated Agents
| null | null | 2.5 | 4 |
Reject
|
4;4;4;4
|
2;2;2;3
|
null |
SketchX, CVSSP, University of Surrey, UK; School of Informatics, University of Edinburgh, UK; SketchX, CVSSP, University of Surrey, UK; iFlyTek-Surrey Joint Research Centre on Artificial Intelligence; School of Informatics, University of Edinburgh, UK
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6760; None
| null | 0 | null | null | null |
2;3;4;3
| null |
Ayan Das, Yongxin Yang, Timothy Hospedales, Tao Xiang, Yi-Zhe Song
|
https://iclr.cc/virtual/2022/poster/6760
|
Chirography;Sketch;Free-form;Neural ODE
| null | 3.25 | null |
https://openreview.net/forum?id=c-4HSDAWua5
|
iclr
| -0.777778 | 0.777778 | null |
main
| 6.75 |
5;6;8;8
|
3;4;4;4
|
https://iclr.cc/virtual/2022/poster/6760
|
SketchODE: Learning neural sketch representation in continuous time
| null | null | 3.75 | 3.25 |
Poster
|
4;3;3;3
|
2;3;4;4
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;2;2;4;4
| null | null | null | null | null | 3 | null | null |
iclr
| -0.541736 | 0.669894 | null |
main
| 4.6 |
3;3;5;6;6
|
2;3;4;4;3
| null |
Can Label-Noise Transition Matrix Help to Improve Sample Selection and Label Correction?
| null | null | 3.2 | 4.6 |
Withdraw
|
5;5;4;5;4
|
3;2;3;4;3
|
null |
Paper under double-blind review
|
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null |
Wen
| null | null | null | 2.75 | null | null |
iclr
| -1 | 0.333333 | null |
main
| 3.5 |
3;3;3;5
|
3;2;3;3
| null |
Personalized Heterogeneous Federated Learning with Gradient Similarity
| null | null | 2.75 | 3.75 |
Reject
|
4;4;4;3
|
2;2;3;4
|
null | null |
2022
| 2.4 | null | null | 0 | null | null | null |
2;3;2;3;2
| null | null | null |
deep learning;generative model;image synthesis;generative adversarial network;self-supervised learning;image-to-image translation
| null | 2.4 | null | null |
iclr
| 0.218218 | 0.645497 | null |
main
| 5.4 |
5;5;5;6;6
|
3;2;3;4;3
| null |
PIVQGAN: Posture and Identity Disentangled Image-to-Image Translation via Vector Quantization
| null | null | 3 | 3.8 |
Reject
|
4;3;4;5;3
|
2;3;3;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
information retrieval;contrastive pretraining
| null | 2 | null | null |
iclr
| -0.707107 | 0.57735 | null |
main
| 4 |
3;3;5;5
|
3;2;3;3
| null |
Contrastive Pre-training for Zero-Shot Information Retrieval
| null | null | 2.75 | 4 |
Reject
|
4;5;4;3
|
2;2;2;2
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
1;2;3;3
| null | null | null |
Sinkhorn;NLP;Wasserstein;Random probability skew;Federated Distillation
| null | 2 | null | null |
iclr
| 0.676481 | 0.911322 | null |
main
| 3.75 |
1;3;5;6
|
2;2;3;3
| null |
Federated Distillation of Natural Language Understanding with Confident Sinkhorns
| null | null | 2.5 | 3.25 |
Withdraw
|
3;3;3;4
|
1;2;3;2
|
null |
Max Planck Institute for Intelligent Systems, T¨ubingen, Germany; Microsoft Research, Montr´eal, Canada
|
2022
| 2.666667 |
https://iclr.cc/virtual/2022/poster/6000; None
| null | 0 | null | null | null |
3;3;2
| null |
Mehdi Fatemi, Arash Tavakoli
|
https://iclr.cc/virtual/2022/poster/6000
|
Reinforcement Learning;Value Mapping;Reward Decomposition
| null | 2.333333 | null |
https://openreview.net/forum?id=c87d0TS4yX
|
iclr
| 0 | 0 | null |
main
| 6 |
6;6;6
|
4;3;3
|
https://iclr.cc/virtual/2022/poster/6000
|
Orchestrated Value Mapping for Reinforcement Learning
| null | null | 3.333333 | 3.333333 |
Poster
|
3;4;3
|
3;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null | null | null | 2.25 | null | null |
iclr
| -0.407407 | 0 | null |
main
| 4.25 |
3;3;5;6
|
3;3;3;3
| null |
Perturbation Deterioration: The Other Side of Catastrophic Overfitting
| null | null | 3 | 3.75 |
Reject
|
5;3;5;2
|
2;2;2;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;2;3;3
| null | null | null | null | null | 2.5 | null | null |
iclr
| 0 | 0 | null |
main
| 5.5 |
5;5;6;6
|
4;2;3;3
| null |
Towards Generic Interface for Human-Neural Network Knowledge Exchange
| null | null | 3 | 3.5 |
Reject
|
3;4;3;4
|
2;3;2;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
1;2;3;3
| null | null | null |
representation learning;interpretability;cognitive science
| null | 2.25 | null | null |
iclr
| -0.96225 | 0.777778 | null |
main
| 4.25 |
3;3;5;6
|
3;3;3;4
| null |
Learning Structure from the Ground up---Hierarchical Representation Learning by Chunking
| null | null | 3.25 | 3.5 |
Reject
|
4;4;3;3
|
2;2;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;2;3
| null | null | null | null | null | 2.5 | null | null |
iclr
| -0.132453 | 0 | null |
main
| 4.75 |
3;5;5;6
|
3;3;3;3
| null |
Implicit Equivariance in Convolutional Networks
| null | null | 3 | 3.75 |
Withdraw
|
4;4;3;4
|
2;2;2;4
|
null |
DAMO Academy, Alibaba Group
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6863; None
| null | 0 | null | null | null |
2;3;4
| null |
yiqi jiang, Zhiyu Tan, Junyan Wang, Xiuyu Sun, Ming Lin, Li Hao
|
https://iclr.cc/virtual/2022/poster/6863
|
Object Detection;fpn;space-to-depth;representation
| null | 2.333333 | null |
https://openreview.net/forum?id=cBu4ElJfneV
|
iclr
| -0.5 | 0 | null |
main
| 7 |
5;8;8
|
3;2;4
|
https://iclr.cc/virtual/2022/poster/6863
|
GiraffeDet: A Heavy-Neck Paradigm for Object Detection
|
https://github.com/jyqi/GiraffeDet
| null | 3 | 4.333333 |
Poster
|
5;3;5
|
2;2;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
2;3;3;3
| null | null | null |
Continual Learning;Replay Memory;Task Incremental Learning
| null | 1.5 | null | null |
iclr
| 0 | 0.160128 | null |
main
| 5.5 |
3;5;6;8
|
3;3;4;3
| null |
Learn the Time to Learn: Replay Scheduling for Continual Learning
| null | null | 3.25 | 4 |
Reject
|
4;4;4;4
|
2;2;2;0
|
null |
NAVER Corp.; KAIST AI; ETRI; VUNO
|
2022
| 2 |
https://iclr.cc/virtual/2022/poster/6034; None
| null | 0 | null | null | null |
2;2;2
| null |
Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, Jaegul Choo
|
https://iclr.cc/virtual/2022/poster/6034
|
Time-series forecasting;Normalization;Distribution shift
| null | 1.666667 | null |
https://openreview.net/forum?id=cGDAkQo1C0p
|
iclr
| 0.188982 | -0.188982 | null |
main
| 6.333333 |
5;6;8
|
3;4;3
|
https://iclr.cc/virtual/2022/poster/6034
|
Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift
| null | null | 3.333333 | 3.666667 |
Poster
|
4;3;4
|
2;3;0
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null | null | null | 2.5 | null | null |
iclr
| -0.471405 | 0.471405 | null |
main
| 5 |
3;5;6;6
|
3;3;4;3
| null |
Rethinking Self-Supervision Objectives for Generalizable Coherence Modeling
| null | null | 3.25 | 3.5 |
Withdraw
|
4;4;2;4
|
2;2;3;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;1;3;3
| null | null | null |
private prediction;language models;user privacy;machine learning
| null | 1.75 | null | null |
iclr
| -0.737865 | 0.948683 | null |
main
| 5 |
3;3;6;8
|
2;1;3;4
| null |
SubMix: Practical Private Prediction for Large-scale Language Models
| null | null | 2.5 | 3.5 |
Reject
|
4;5;2;3
|
2;1;2;2
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2;2
| null | null | null |
variational autoencoder;representation learning;disentanglement
| null | 2.2 | null | null |
iclr
| -0.375 | 0.25 | null |
main
| 4.6 |
3;5;5;5;5
|
2;3;3;3;1
| null |
Group-disentangled Representation Learning with Weakly-Supervised Regularization
| null | null | 2.4 | 3.4 |
Withdraw
|
4;4;3;4;2
|
2;2;3;2;2
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;3;3;2
| null | null | null | null | null | 1 | null | null |
iclr
| 0.132453 | 0.688247 | null |
main
| 4.75 |
3;5;5;6
|
3;3;4;4
| null |
FedLite: A Scalable Approach for Federated Learning on Resource-constrained Clients
| null | null | 3.5 | 4.25 |
Reject
|
4;4;5;4
|
2;2;0;0
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;2;2;2
| null | null | null |
Kalman Filter;noise estimation;optimization;gradient descent;parameterization
| null | 2.25 | null | null |
iclr
| 0.870388 | 0.555556 | null |
main
| 4.25 |
3;3;5;6
|
3;1;3;3
| null |
Kalman Filter Is All You Need: Optimization Works When Noise Estimation Fails
| null | null | 2.5 | 3.25 |
Reject
|
3;2;4;4
|
2;2;3;2
|
null |
Carnegie Mellon University, ByteDance Inc.; Carnegie Mellon University; ByteDance Inc.
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6388; None
| null | 0 | null | null | null |
3;3;3
| null |
Oscar Li, Jiankai Sun, Xin Yang, Weihao Gao, Hongyi Zhang, Junyuan Xie, Virginia Smith, Chong Wang
|
https://iclr.cc/virtual/2022/poster/6388
|
Split Learning;label leakage;privacy;privacy protection
| null | 3.333333 | null |
https://openreview.net/forum?id=cOtBRgsf2fO
|
iclr
| 0.866025 | -0.5 | null |
main
| 6.666667 |
6;6;8
|
3;4;3
|
https://iclr.cc/virtual/2022/poster/6388
|
Label Leakage and Protection in Two-party Split Learning
|
https://github.com/OscarcarLi/label-protection
| null | 3.333333 | 3 |
Poster
|
2;3;4
|
4;3;3
|
null |
DeepMind
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6475; None
| null | 0 | null | null | null |
2;4;3;3
| null |
DJ Strouse, Kate Baumli, David Warde-Farley, Volodymyr Mnih, Steven Hansen
|
https://iclr.cc/virtual/2022/poster/6475
|
intrinsic control;skill discovery;unsupervised skill learning;uncertainty estimation;optimistic exploration;variational information maximization
| null | 3 | null |
https://openreview.net/forum?id=cU8rknuhxc
|
iclr
| 0.174078 | 0.57735 | null |
main
| 7.5 |
6;8;8;8
|
3;4;3;4
|
https://iclr.cc/virtual/2022/poster/6475
|
Learning more skills through optimistic exploration
| null | null | 3.5 | 4.25 |
Spotlight
|
4;5;3;5
|
2;4;3;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;4;2
| null | null | null |
spurious correlations;contrastive learning;robustness;group shifts
| null | 3 | null | null |
iclr
| 0 | 0.904534 | null |
main
| 5.5 |
5;5;6;6
|
2;3;4;4
| null |
Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations
| null | null | 3.25 | 4 |
Reject
|
4;4;4;4
|
3;2;4;3
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
Privacy;Representation Learning
| null | 1.75 | null | null |
iclr
| -0.899229 | 0.973329 | null |
main
| 4.75 |
3;5;5;6
|
2;3;3;4
| null |
Task-aware Privacy Preservation for Multi-dimensional Data
| null | null | 3 | 3.75 |
Reject
|
5;3;4;3
|
2;0;2;3
|
null | null |
2022
| 3.5 |
https://iclr.cc/virtual/2022/poster/6330; None
| null | 0 | null | null | null |
3;3;4;4
| null |
Yonggang Zhang, Mingming Gong, Tongliang Liu, Gang Niu, Xinmei Tian, Bo Han, Bernhard Schoelkopf, Kun Zhang
|
https://iclr.cc/virtual/2022/poster/6330
|
Adversarial examples;Causality
| null | 3 | null |
https://openreview.net/forum?id=cZAi1yWpiXQ
|
iclr
| -0.57735 | 0.57735 | null |
main
| 7.5 |
6;8;8;8
|
3;3;4;4
|
https://iclr.cc/virtual/2022/poster/6330
|
Adversarial Robustness Through the Lens of Causality
| null | null | 3.5 | 3.5 |
Poster
|
4;3;4;3
|
2;3;4;3
|
null | null |
2022
| 1.75 | null | null | 0 | null | null | null |
1;1;3;2
| null | null | null |
Machine Learning;Few-Shot Learning;Image Classification;Dataset Bias
| null | 2 | null | null |
iclr
| -0.025055 | 0.756889 | null |
main
| 3.75 |
1;3;5;6
|
2;1;3;4
| null |
Dataset Bias Prediction for Few-Shot Image Classification
| null | null | 2.5 | 3.75 |
Withdraw
|
5;2;3;5
|
1;1;3;3
|
null |
Microsoft Research Asia; Department of Computer Science, University of Illinois at Urbana-Champaign
|
2022
| 3.25 |
https://iclr.cc/virtual/2022/poster/7178; None
| null | 0 | null | null | null |
4;3;3;3
| null |
Jiawei Huang, Jinglin Chen, Li Zhao, Tao Qin, Nan Jiang, Tie-Yan Liu
|
https://iclr.cc/virtual/2022/poster/7178
|
reinforcement learning theory;deployment efficiency;linear MDP
| null | 0 | null |
https://openreview.net/forum?id=ccWaPGl9Hq
|
iclr
| 0 | 0 | null |
main
| 8 |
8;8;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/7178
|
Towards Deployment-Efficient Reinforcement Learning: Lower Bound and Optimality
| null | null | 4 | 3.5 |
Spotlight
|
3;4;4;3
| null |
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
Neural Processes;Gaussian Processes;Uncertainty Quantification;Ensemble Methods;Meta-Learning
| null | 1.5 | null | null |
iclr
| -0.333333 | -0.57735 | null |
main
| 3.5 |
3;3;3;5
|
2;3;3;2
| null |
Learning Neural Processes on the Fly
| null | null | 2.5 | 3.25 |
Withdraw
|
4;3;3;3
|
0;2;2;2
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
2;3;3
| null | null | null |
Federated Learning;communication efficiency;adaptive quantization
| null | 2 | null | null |
iclr
| 0 | 0.5 | null |
main
| 6.666667 |
6;6;8
|
4;3;4
| null |
AQUILA: Communication Efficient Federated Learning with Adaptive Quantization of Lazily-Aggregated Gradients
| null | null | 3.666667 | 3 |
Reject
|
3;3;3
|
3;0;3
|
null | null |
2022
| 2.666667 | null | null | 0 | null | null | null |
2;2;4
| null | null | null |
Variational Autoencoder;generative models;audio;music;deep learning;representation learning;latent space
| null | 2.333333 | null | null |
iclr
| 0.114708 | 0.802955 | null |
main
| 5.333333 |
3;5;8
|
2;3;3
| null |
RAVE: A variational autoencoder for fast and high-quality neural audio synthesis
| null | null | 2.666667 | 3.666667 |
Reject
|
4;3;4
|
2;2;3
|
null | null |
2022
| 2 | null | null | 0 | null | null | null |
2;2;2;2
| null | null | null |
representation learning;algorithmic reasoning;graph neural networks;relational learning
| null | 2.5 | null | null |
iclr
| -0.57735 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
4;3;4;4
| null |
Reasoning-Modulated Representations
| null | null | 3.75 | 3.75 |
Reject
|
4;4;4;3
|
3;2;3;2
|
null |
School of Computer Science, McGill University, Montr´eal, QC H3A 0G4 Canada; Dept. of Mathematics, University of Pennsylvania, Philadelphia, PA 19104 USA; Dept. of Operations Research & Financial Engineering, Princeton University, Princeton, NJ 08544 USA
|
2022
| 3 |
https://iclr.cc/virtual/2022/poster/6660; None
| null | 0 | null | null | null |
3;2;4;3
| null |
Boris Hanin, Ryan Jeong, David Rolnick
|
https://iclr.cc/virtual/2022/poster/6660
|
deep learning theory;random ReLU networks;length distortion;initialization;expressivity
| null | 1.25 | null |
https://openreview.net/forum?id=ci7LBzDn2Q
|
iclr
| 0.57735 | 0 | null |
main
| 7 |
6;6;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6660
|
Deep ReLU Networks Preserve Expected Length
| null | null | 4 | 3.75 |
Poster
|
3;4;4;4
|
0;3;2;0
|
null |
Affiliation of Author 1; Affiliation of Author 2
|
2022
| 2.666667 | null | null | 0 | null | null | null |
2;3;3
| null | null | null |
Federated Learning;Data poisoning attack;Byzantine attack;Malicious node detection;Ranking
| null | 2.333333 | null | null |
iclr
| 0 | 0 | null |
main
| 5.666667 |
3;6;8
|
4;4;4
| null |
MANDERA: Malicious Node Detection in Federated Learning via Ranking
| null | null | 4 | 3 |
Reject
|
3;3;3
|
2;3;2
|
null | null |
2022
| 2.333333 | null | null | 0 | null | null | null |
3;2;2
| null | null | null |
attention mechanism;vision transformers;summed-area tables;stick-breaking transforms;dynamic programming
| null | 2 | null | null |
iclr
| 0 | 0 | null |
main
| 5 |
5;5;5
|
3;3;3
| null |
Ripple Attention for Visual Perception with Sub-quadratic Complexity
| null | null | 3 | 3.666667 |
Withdraw
|
4;4;3
|
2;2;2
|
null |
Meta AI; Oxford University; Carnegie Mellon University
|
2022
| 2.5 |
https://iclr.cc/virtual/2022/poster/6730; None
| null | 0 | null | null | null |
2;3;3;2
| null |
Samuel Sokota, Hengyuan Hu, David Wu, Zico Kolter, Jakob Foerster, Noam Brown
|
https://iclr.cc/virtual/2022/poster/6730
|
imperfect-information;partial observability;search;decision-time planning
| null | 2.25 | null |
https://openreview.net/forum?id=ckZY7DGa7FQ
|
iclr
| 0.57735 | 0 | null |
main
| 6.75 |
3;8;8;8
|
4;4;4;4
|
https://iclr.cc/virtual/2022/poster/6730
|
A Fine-Tuning Approach to Belief State Modeling
| null | null | 4 | 3.5 |
Poster
|
3;4;4;3
|
0;3;3;3
|
null | null |
2022
| 3 | null | null | 0 | null | null | null |
3;3;3;3
| null | null | null |
quantization;efficient training;4 bit training
| null | 2.5 | null | null |
iclr
| 0 | 0.57735 | null |
main
| 5.5 |
5;5;6;6
|
3;2;3;3
| null |
Logarithmic Unbiased Quantization: Practical 4-bit Training in Deep Learning
| null | null | 2.75 | 4 |
Reject
|
4;4;4;4
|
2;2;3;3
|
null |
Facebook AI Research; Facebook AI Research, Paris-Dauphine University; University College London; Facebook
|
2022
| 2.75 |
https://iclr.cc/virtual/2022/poster/6467; None
| null | 0 | null | null | null |
2;2;3;4
| null |
Baptiste Roziere, Jie Zhang, François Charton, Mark Harman, Gabriel Synnaeve, Guillaume Lample
|
https://iclr.cc/virtual/2022/poster/6467
|
unsupervised;translation;code;self-training;pseudo-labelling;unit tests;programming languages;deep learning;transformer
| null | 2.25 | null |
https://openreview.net/forum?id=cmt-6KtR4c4
|
iclr
| 0.333333 | 0.157135 | null |
main
| 6.75 |
5;6;8;8
|
4;1;4;3
|
https://iclr.cc/virtual/2022/poster/6467
|
Leveraging Automated Unit Tests for Unsupervised Code Translation
| null | null | 3 | 3.75 |
Spotlight
|
4;3;4;4
|
2;2;2;3
|
null | null |
2022
| 2.75 | null | null | 0 | null | null | null |
3;3;3;2
| null | null | null |
Neural Architecture Search;Performance Estimation;Neural Predictor
| null | 2.75 | null | null |
iclr
| 0 | 1 | null |
main
| 4.5 |
3;5;5;5
|
2;3;3;3
| null |
A Transferable General-Purpose Predictor for Neural Architecture Search
| null | null | 2.75 | 4 |
Withdraw
|
4;5;3;4
|
3;3;2;3
|
null | null |
2022
| 2.5 | null | null | 0 | null | null | null |
2;2;3;3
| null | null | null |
Bayesian optimization;entropy search;knowledge gradient;Bayesian optimal experimental design
| null | 2.5 | null | null |
iclr
| 0.57735 | -0.57735 | null |
main
| 4.5 |
3;3;6;6
|
4;3;3;3
| null |
H-Entropy Search: Generalizing Bayesian Optimization with a Decision-theoretic Uncertainty Measure
| null | null | 3.25 | 3.75 |
Withdraw
|
3;4;4;4
|
0;3;3;4
|
null |
Huawei Noah’s Ark Lab, Hong Kong University of Science and Technology; Huawei Noah’s Ark Lab; Sun Yat-sen University
|
2022
| 2.25 |
https://iclr.cc/virtual/2022/poster/6909; None
| null | 0 | null | null | null |
2;2;2;3
| null |
Lewei Yao, Runhui Huang, LU HOU, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, Chunjing Xu
|
https://iclr.cc/virtual/2022/poster/6909
|
Visual-language pretraining;Language-Image Pretraining;Multi-modality model
| null | 3 | null |
https://openreview.net/forum?id=cpDhcsEDC2
|
iclr
| 0 | 0.333333 | null |
main
| 5.75 |
5;6;6;6
|
3;3;3;4
|
https://iclr.cc/virtual/2022/poster/6909
|
FILIP: Fine-grained Interactive Language-Image Pre-Training
| null | null | 3.25 | 4 |
Poster
|
4;4;4;4
|
2;3;3;4
|
null | null |
2022
| 2.25 | null | null | 0 | null | null | null |
2;2;2;3
| null | null | null |
Generalization error;Information theory;Semi-supervised learning
| null | 1.75 | null | null |
iclr
| 0.174078 | -0.333333 | null |
main
| 5.25 |
5;5;5;6
|
3;4;3;3
| null |
Information-Theoretic Generalization Bounds for Iterative Semi-Supervised Learning
| null | null | 3.25 | 3.75 |
Reject
|
5;3;3;4
|
1;2;2;2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.