PopVQA / scripts /dataset_utils.py
idoco's picture
Update scripts
7d16fe6
import os
import pandas as pd
import numpy as np
from ast import literal_eval
from SPARQLWrapper import SPARQLWrapper, JSON
from tqdm import tqdm
from urllib.parse import urlparse
import requests
import re
from ast import literal_eval
from PIL import Image
import math
from tqdm import tqdm
tqdm.pandas()
from dotenv import load_dotenv
load_dotenv()
DATA_DIR = os.environ['DATA_DIR']
replacements = {"celebs":"the subject of this image",
"brands":"the brand in this image",
"landmarks":"the place in this image",
"paintings":"the painting in this image",
}
def best_obj_type(obj_types):
if type(obj_types) == str:
obj_types = literal_eval(obj_types)
prioritized_obj_types = ["city", "capital city", 'metropolis', 'country', 'occupation', 'language', 'type of sport', 'music genre'] # 'cinematic technique', 'team sport'
for ot in prioritized_obj_types:
if ot in obj_types:
return ot
for ot_ in obj_types:
if "university" in ot_:
return "university"
if "city" in ot_:
return "city"
return obj_types[0]
def replace_for_image(row):
replace_with = replacements[row['type']]
return row["template"].replace("[subj]", replace_with)
class SPARQL:
def __init__(self):
self.agent = "'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'"
self.sparql = SPARQLWrapper("https://query.wikidata.org/sparql", agent=self.agent)
self.sparql.setReturnFormat(JSON)
def parse_value(self, value):
parsed_uri = urlparse(value)
if all([parsed_uri.scheme, parsed_uri.netloc]):
return parsed_uri.path.split('/')[-1]
return value
def execute(self, query):
records = []
try:
self.sparql.setQuery(query)
responses = self.sparql.query().convert()
for response in responses['results']['bindings']:
record = {}
for key in response:
record[key] = self.parse_value(response[key]['value'])
records.append(record)
if records == 0:
print("request failed")
except Exception as e:
print(e)
return pd.DataFrame(records)
def add_aliases(df):
def _query(uris):
return f'''
SELECT ?s_uri ?alias
WHERE {{
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?s_uri skos:altLabel ?alias.
FILTER(LANG(?alias) = "en")
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
aliases = aliases.groupby("s_uri")["alias"].agg(list).reset_index(name="aliases")
res = pd.merge(df, aliases, how='left', on='s_uri')
res['aliases'] = res['aliases'].fillna('[]')
return res
def get_aliases(df):
def _query(uris):
return f'''
SELECT ?uri ?alias
WHERE {{
{{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?uri skos:altLabel ?alias.
FILTER(LANG(?alias) = "en")
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))# + df["a_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
aliases = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
aliases = aliases.groupby("uri")["alias"].agg(list).reset_index(name="aliases")
return aliases
def add_images(df):
def _query(uris):
return f'''
SELECT ?s_uri ?image
WHERE {{
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?s_uri wdt:P18 ?image .
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
images = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
images['image'] = 'http://commons.wikimedia.org/wiki/Special:FilePath/' + images['image']
res = pd.merge(df, images, how='inner', on='s_uri')
return res
def get_attribute(df, attribute_name, attribute_id):
def _query(uris):
return f'''
SELECT ?s_uri ?attribute_name
WHERE {{
{{VALUES ?s_uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?s_uri wdt:{attribute_id} ?{attribute_name} .
}}
'''
sparql = SPARQL()
uris = list(set(df["s_uri"].tolist()))
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
attributes = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
attributes = attributes.groupby("s_uri")[attribute_name].agg(list).reset_index(name=attribute_name)
res = pd.merge(df, attributes, how='inner', on='s_uri')
return res
def extract_year(timestamp):
parts = timestamp.split('-')
neg = False
if parts[0] == '':
year = parts[1]
neg = True
else:
year = parts[0]
if year.isdigit():
return str(-int(year)) if neg else str(int(year))
return np.nan
def get_all_properties(df):
def _query(relation_ids):
return f'''
SELECT ?item ?itemLabel ?wd ?wdLabel ?ps_ ?ps_Label WHERE {{
VALUES ?item {{
{" ".join([f"wd:{id}" for id in relation_ids])}
}}
?item ?p ?statement .
?statement ?ps ?ps_ .
?wd wikibase:claim ?p .
?wd wikibase:statementProperty ?ps .
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
'''
sparql = SPARQL()
# df = pd.read_csv(origin)
subjects = df["s_uri"].to_list()
subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)]
df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)])
df = df[~df["wdLabel"].str.contains(r"ID|category|template|username|instance of|gallery|article|handle|url|wiki|copyright|classification|website|described|tag|archive|reddit|profile|image|list|file", case=False, na=False)]
tmp = df[(df['wd'] == 'P569') | (df['wd'] == 'P571')].copy()
tmp['ps_Label'] = tmp['ps_Label'].apply(extract_year)
tmp.dropna(subset=['ps_Label'], inplace=True)
tmp['ps_'] = 'Q000'
df = df[~((df['wd'] == 'P569') | (df['wd'] == 'P571'))]
df = df[~df["ps_Label"].str.contains(r'\d', na=False)]
df = df[df["ps_"].apply(lambda s: bool(re.fullmatch(r"Q\d+", s)))]
df = pd.concat([df, tmp])
df = df[["item", "itemLabel", "wd", "wdLabel", "ps_", "ps_Label"]]
df = df.rename(
columns = {
"item": "s_uri",
"itemLabel": "subject",
"wd": "r_uri",
"wdLabel": "relation",
"ps_": "a_uri",
"ps_Label": "attribute",
}
)
return df
def attribute_type(df):
def _query(uris):
return f'''
SELECT ?uri ?typeLabel
WHERE {{
{{VALUES ?uri {{ {" ".join([f"wd:{uri}" for uri in uris])} }} }}
?uri wdt:P31 ?type.
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
'''
sparql = SPARQL()
uris = df["a_uri"].drop_duplicates().to_list()
uri_chunks = [uris[i:i+100] for i in range(0, len(uris), 100)]
a_types = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(uri_chunks)])
a_types = a_types.groupby("uri")["typeLabel"].agg(list).reset_index(name="a_type")
a_types['a_type'] = a_types['a_type'].apply(lambda x: x if type(x) == list else [])
a_types = pd.concat([a_types, pd.DataFrame([{'uri': 'Q000', 'a_type': str(['year'])}])])
return a_types
def get_wikidata_id(name):
url = "https://www.wikidata.org/w/api.php"
params = {
"action": "wbsearchentities",
"format": "json",
"language": "en",
"search": name
}
response = requests.get(url, params=params).json()
if 'search' in response and response['search']:
return response['search'][0]['id']
return None
def add_wikidata_ids(df, name_col="subject"):
df["wikidata_id"] = df[name_col].apply(get_wikidata_id)
return df
def add_unesco_question(base_df):
def _query(qids):
return f"""
SELECT ?item ?itemLabel ?startTime WHERE {{
VALUES ?item {{{' '.join(f'wd:{qid}' for qid in qids)}}}
?item p:P1435 ?heritageStatement.
?heritageStatement ps:P1435 wd:Q9259.
OPTIONAL {{
?heritageStatement pq:P580 ?startTime.
}}
SERVICE wikibase:label {{ bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". }}
}}
"""
sparql = SPARQL()
df = base_df[base_df['type'] == 'landmarks']
subjects = df["s_uri"].to_list()
subject_chunks = [subjects[i:i+20] for i in range(0, len(subjects), 20)]
df = pd.concat([sparql.execute(_query(chunk)) for chunk in tqdm(subject_chunks)])
df.dropna(subset=['startTime'], inplace=True)
df['startTime'] = df['startTime'].apply(extract_year)
df = df.rename(
columns = {
"item": "s_uri",
"startTime": "attribute",
"itemLabel": "subject",
}
)
df['possible_answers'] = df['attribute'].apply(lambda x: str([x]))
df['r_uri'] = 'P580'
df['relation'] = 'start time'
df['a_uri'] = 'P580'
df['a_type'] = str(['year'])
return df
def aggregate_triplets(base, aliases, relations, attributes, add_unesco=False):
subjects = base[['s_uri']]
relations = relations.merge(subjects, on="s_uri")
aliases = pd.read_csv("data/all_aliases.csv", index_col=0)
if type(aliases.iloc[0]['aliases']) == str:
aliases["aliases"] = aliases["aliases"].apply(lambda x: literal_eval(x))
if type(attributes.iloc[0]['a_type']) == str:
attributes["a_type"] = attributes["a_type"].apply(lambda x: literal_eval(x))
relations = relations.merge(aliases, left_on="a_uri", right_on="uri", how="left")
relations = relations.drop(columns=["uri"])
relations["possible_answers"] = relations['aliases'].apply(lambda x: x if type(x) == list else [])
relations["possible_answers"] = relations.progress_apply(lambda x: x["possible_answers"] + [x["attribute"]], axis=1)
agg_funcs = {col: 'first' for col in relations.columns if col not in ['s_uri', 'r_uri', 'possible_answers']}
agg_funcs['possible_answers'] = sum
relations = relations.groupby(['s_uri', 'r_uri'], as_index=False).agg(agg_funcs)
relations = relations.drop(columns=["aliases"])
relations = relations.merge(attributes, left_on="a_uri", right_on="uri", how="left")
relations = relations.drop(columns=["uri"])
if add_unesco:
unesco = add_unesco_question(base)
relations = pd.concat([relations, unesco])
return relations
def subj_substitute(row):
if row['type'] == 'brands':
return f"the brand {row['subject']}"
if row['type'] == 'paintings':
return f"the painting {row['subject']}"
return row['subject']
def build_prompts(base_df, triplets, templates):
subjects = base_df[["s_uri", "subject"]]
base_df = base_df[["s_uri", "type"]]
triplets = triplets.drop("subject", axis=1)
triplets = triplets.merge(subjects, on=["s_uri"])
triplets = triplets.merge(base_df, on=["s_uri"], how='left')
triplets = triplets.merge(templates[["uri", "template"]], left_on="r_uri", right_on="uri")
triplets = triplets.drop(columns=["uri"])
triplets = triplets.dropna()
query_counts = triplets.drop_duplicates(["s_uri", "r_uri"]).groupby(["s_uri"])["r_uri"].count().reset_index(name="count")
triplets = triplets.merge(query_counts[query_counts["count"] > 1][["s_uri"]], on="s_uri")
triplets["question_for_image"] = triplets.progress_apply(replace_for_image, axis=1)
triplets["question_for_image"] = triplets.progress_apply(lambda row: row["question_for_image"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1)
triplets["question"] = triplets.progress_apply(lambda row: row["template"].replace("[subj]", subj_substitute(row)), axis=1)
triplets["question"] = triplets.progress_apply(lambda row: row["question"].replace("[obj_type]", best_obj_type(row["a_type"])) if len(row["a_type"]) > 0 else row["question"], axis=1)
triplets = triplets.drop(columns=["template"])
triplets = triplets[['type','subject','question_for_image','question','possible_answers', 'relation', 's_uri', 'r_uri','a_uri','attribute','a_type']]
return triplets
def resize_square(image, size=336, resample=Image.LANCZOS):
"""
Resize an image to a square of the given size, first adding a black background if needed.
image: a Pillow image instance
size: an integer, the desired output size (width and height will be the same)
"""
img_format = image.format
image = image.copy()
size = [size, size]
img_size = image.size
ratio = min(size[0] / img_size[0], size[1] / img_size[1])
new_size = [
int(math.ceil(img_size[0] * ratio)),
int(math.ceil(img_size[1] * ratio))
]
image = image.resize((new_size[0], new_size[1]), resample)
# Make the image square by adding black padding
max_dim = max(image.size)
new_img = Image.new("RGB", (max_dim, max_dim), (0, 0, 0))
new_img.paste(image, ((max_dim - image.size[0]) // 2, (max_dim - image.size[1]) // 2))
# Resize to target size
# new_img = new_img.resize((size, size), resample)
new_img.format = img_format
return new_img