Add the dataset card.

#1
by smenon8 - opened
Files changed (1) hide show
  1. README.md +130 -3
README.md CHANGED
@@ -1,3 +1,130 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc0-1.0
3
+ language:
4
+ - en
5
+ pretty_name: TreeOfLife-10M Vector database
6
+ task_categories: [image-feature-extraction]
7
+ tags:
8
+ - biology
9
+ - image
10
+ - animals
11
+ - CV
12
+ size_categories: 1M<n<10M
13
+ ---
14
+
15
+ <!--
16
+ Image with caption (jpg or png):
17
+ |![Figure #](https://huggingface.co/datasets/imageomics/<data-repo>/resolve/main/<filepath>)|
18
+ |:--|
19
+ |**Figure #.** [Image of <>](https://huggingface.co/datasets/imageomics/<data-repo>/raw/main/<filepath>) <caption description>.|
20
+ -->
21
+
22
+ <!--
23
+ Notes on styling:
24
+
25
+ To render LaTex in your README, wrap the code in `\\(` and `\\)`. Example: \\(\frac{1}{2}\\)
26
+
27
+ Escape underscores ("_") with a "\". Example: image\_RGB
28
+ -->
29
+
30
+ # Dataset Card for TreeOfLife-10M Vector database
31
+
32
+ Persistent files for vector Database created with [chromadb](https://docs.trychroma.com/docs/overview/introduction)
33
+ containing the embeddings for all images in the [imageomics/TreeOfLife-10M](https://huggingface.co/datasets/imageomics/TreeOfLife-10M) dataset.
34
+
35
+ ## Dataset Details
36
+
37
+
38
+
39
+ ### Dataset Description
40
+
41
+ - **Curated by:** Sreejith Menon - [git](https://github.com/smenon8) [in](https://www.linkedin.com/in/smenon8/)
42
+ <!-- Provide the basic links for the dataset. These will show up on the sidebar to the right of your dataset card ("Curated by" too). -->
43
+ - **Homepage:** https://imageomics.github.io/
44
+ - **Repository:** [imageonomics/bioclip-vector-db](https://github.com/Imageomics/bioclip-vector-db)
45
+ - **Paper:** N/A
46
+
47
+
48
+ This dataset contains the generated vector database built using ChromaDb as the backend vector database solution for the entire TreeOfLife-10M dataset.
49
+
50
+ The rationale behind creating a vector database was to enable blazingly fast nearest neighbor search.
51
+ The vector database is loaded into memory and for a given query embedding in the same dimension as the vectors in the database, we calculate the inner product (ip) to calculate distances.
52
+ In this case all vectors are of the same dimension i.e. 512 dims.
53
+
54
+ The files in this dataset are binaries and cannot be read in raw format. The files in this dataset are intended to be used with chromadb.
55
+
56
+ Below is an example usage:
57
+ ```py
58
+ import chromadb
59
+
60
+ client = chromadb.PersistentClient(path=self._collection_dir)
61
+
62
+ collection = client.get_or_create_collection(
63
+ name="imageomics/TreeOfLife-10M",
64
+ metadata={"hnsw:space": "ip", "hnsw:search_ef": 10},
65
+ )
66
+ # returns ID of 10 nearest neighbor. If an exact match exists,
67
+ # that will be the first returned result with a distance of 0.
68
+ collection.query(query_embeddings=[query_embedding], n_results=10)
69
+ ```
70
+
71
+ ## Dataset Structure
72
+ ```
73
+ tol_vector_db/
74
+ β”œβ”€β”€ 97283350-138c-49b4-a4d4-9b93a33960da/
75
+ β”‚ β”œβ”€β”€ header.bin
76
+ β”‚ β”œβ”€β”€ index_metadata.pickle
77
+ β”‚ β”œβ”€β”€ data_level0.bin
78
+ β”‚ β”œβ”€β”€ link_lists.bin
79
+ β”‚ └── length.bin
80
+ └── chroma.sqlite3
81
+ ```
82
+
83
+ ## Dataset Creation
84
+
85
+
86
+ ### Source Data
87
+
88
+ [imageomics/TreeOfLife-10M](https://huggingface.co/datasets/imageomics/TreeOfLife-10M) dataset was the source for all images in the database.
89
+ Along with every image in the database we also store the taxonomic information as additional columns in the vector database:
90
+ * kingdom
91
+ * phylum
92
+ * class
93
+ * order
94
+ * family
95
+ * genus
96
+ * species
97
+ * common name
98
+
99
+ The image embedding were generated using the [`TreeOfLifeClassifier`](https://github.com/Imageomics/pybioclip/blob/35ad338bb904d18b295dabf8b23377a343273c06/src/bioclip/predict.py#L429) available in the [pybioclip](https://github.com/Imageomics/pybioclip/tree/main) library.
100
+
101
+
102
+ ## Citation
103
+
104
+ **BibTeX:**
105
+ **Data**
106
+ ```
107
+ @misc{<ref_code>,
108
+ author = {Sreejith Menon},
109
+ title = {Tree Of Life 10M Vector Database},
110
+ year = {2025},
111
+ url = {https://huggingface.co/datasets/imageomics/tree-of-life-vector-db},
112
+ }
113
+ ```
114
+
115
+
116
+ ## Acknowledgements
117
+
118
+ This work was supported by the [Imageomics Institute](https://imageomics.org), which is funded by the US National Science Foundation's Harnessing the Data Revolution (HDR) program under [Award #2118240](https://www.nsf.gov/awardsearch/showAward?AWD_ID=2118240) (Imageomics: A New Frontier of Biological Information Powered by Knowledge-Guided Machine Learning). Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
119
+
120
+ Speical thanks to:
121
+ * [Matt Thompson](https://github.com/thompsonmj)
122
+
123
+
124
+ ## Dataset Card Authors
125
+
126
+ Sreejith Menon - [git](https://github.com/smenon8) [in](https://www.linkedin.com/in/smenon8/)
127
+
128
+ ## Dataset Card Contact
129
+
130
+ Sreejith Menon - [git](https://github.com/smenon8) [in](https://www.linkedin.com/in/smenon8/)