code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets __magic_name__ : Tuple = '''\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } ''' __magic_name__ : Dict = '''\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy. ''' __magic_name__ : Tuple = r''' Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting "1/2" to "\\frac{1}{2}") Examples: >>> metric = datasets.load_metric("competition_math") >>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"]) >>> print(results) {\'accuracy\': 1.0} ''' @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase = 0.0 for i, j in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): n_correct += 1.0 if math_equivalence.is_equiv(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 0.0 UpperCamelCase = n_correct / len(_SCREAMING_SNAKE_CASE ) return { "accuracy": accuracy, }
280
def lowercase__ ( _UpperCamelCase) -> list: """simple docstring""" if bit_count < 0: raise ValueError('The given input must be positive') # get the generated string sequence UpperCamelCase = gray_code_sequence_string(_UpperCamelCase) # # convert them to integers for i in range(len(_UpperCamelCase)): UpperCamelCase = int(sequence[i] , 2) return sequence def lowercase__ ( _UpperCamelCase) -> list: """simple docstring""" if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits UpperCamelCase = gray_code_sequence_string(bit_count - 1) UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2): UpperCamelCase = '0' + smaller_sequence[i] sequence.append(_UpperCamelCase) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2)): UpperCamelCase = '1' + smaller_sequence[i] sequence.append(_UpperCamelCase) return sequence if __name__ == "__main__": import doctest doctest.testmod()
280
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class snake_case__ ( snake_case_ ): _snake_case : Tuple = """Speech2TextFeatureExtractor""" _snake_case : Dict = """Speech2TextTokenizer""" def __init__( self , lowerCamelCase , lowerCamelCase ): super().__init__(lowerCamelCase , lowerCamelCase ) __a = self.feature_extractor __a = False def __call__( self , *lowerCamelCase , **lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCamelCase , **lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) __a = kwargs.pop("raw_speech" ) else: __a = kwargs.pop("audio" , lowerCamelCase ) __a = kwargs.pop("sampling_rate" , lowerCamelCase ) __a = kwargs.pop("text" , lowerCamelCase ) if len(lowerCamelCase ) > 0: __a = args[0] __a = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: __a = self.feature_extractor(lowerCamelCase , *lowerCamelCase , sampling_rate=lowerCamelCase , **lowerCamelCase ) if text is not None: __a = self.tokenizer(lowerCamelCase , **lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: __a = encodings["input_ids"] return inputs def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.batch_decode(*lowerCamelCase , **lowerCamelCase ) def a__ ( self , *lowerCamelCase , **lowerCamelCase ): return self.tokenizer.decode(*lowerCamelCase , **lowerCamelCase ) @contextmanager def a__ ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) __a = True __a = self.tokenizer yield __a = self.feature_extractor __a = False
67
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging SCREAMING_SNAKE_CASE__:List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Optional[Any] = { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json""", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class snake_case__ ( snake_case_ ): _snake_case : str = """blenderbot-small""" _snake_case : str = ["""past_key_values"""] _snake_case : List[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , lowerCamelCase=50265 , lowerCamelCase=512 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=16 , lowerCamelCase=8 , lowerCamelCase=2048 , lowerCamelCase=16 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase="gelu" , lowerCamelCase=512 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.0 , lowerCamelCase=0.02 , lowerCamelCase=1 , lowerCamelCase=False , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , lowerCamelCase=2 , **lowerCamelCase , ): __a = vocab_size __a = max_position_embeddings __a = d_model __a = encoder_ffn_dim __a = encoder_layers __a = encoder_attention_heads __a = decoder_ffn_dim __a = decoder_layers __a = decoder_attention_heads __a = dropout __a = attention_dropout __a = activation_dropout __a = activation_function __a = init_std __a = encoder_layerdrop __a = decoder_layerdrop __a = use_cache __a = encoder_layers __a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , is_encoder_decoder=lowerCamelCase , decoder_start_token_id=lowerCamelCase , forced_eos_token_id=lowerCamelCase , **lowerCamelCase , ) class snake_case__ ( snake_case_ ): @property def a__ ( self ): if self.task in ["default", "seq2seq-lm"]: __a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __a = {0: "batch"} __a = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __a = {0: "batch", 1: "decoder_sequence"} __a = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __a , __a = self.num_layers for i in range(lowerCamelCase ): __a = {0: "batch", 2: "past_sequence + sequence"} __a = {0: "batch", 2: "past_sequence + sequence"} else: __a = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def a__ ( self ): if self.task in ["default", "seq2seq-lm"]: __a = super().outputs else: __a = super(lowerCamelCase , self ).outputs if self.use_past: __a , __a = self.num_layers for i in range(lowerCamelCase ): __a = {0: "batch", 2: "past_sequence + sequence"} __a = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) # Generate decoder inputs __a = seq_length if not self.use_past else 1 __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) __a = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __a = dict(**lowerCamelCase , **lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __a , __a = common_inputs["input_ids"].shape __a = common_inputs["decoder_input_ids"].shape[1] __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = decoder_seq_length + 3 __a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __a = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase )] , dim=1 ) __a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __a , __a = self.num_layers __a = min(lowerCamelCase , lowerCamelCase ) __a = max(lowerCamelCase , lowerCamelCase ) - min_num_layers __a = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase ), ) ) # TODO: test this. __a = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(lowerCamelCase , lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) ) return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __a , __a = common_inputs["input_ids"].shape # Not using the same length for past_key_values __a = seqlen + 2 __a , __a = self.num_layers __a , __a = self.num_attention_heads __a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __a = common_inputs["attention_mask"].dtype __a = torch.cat( [common_inputs["attention_mask"], torch.ones(lowerCamelCase , lowerCamelCase , dtype=lowerCamelCase )] , dim=1 ) __a = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(lowerCamelCase ) ] return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __a = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __a = tokenizer.num_special_tokens_to_add(lowerCamelCase ) __a = compute_effective_axis_dimension( lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence __a = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __a = dict(tokenizer(lowerCamelCase , return_tensors=lowerCamelCase ) ) return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase = -1 , lowerCamelCase = -1 , lowerCamelCase = False , lowerCamelCase = None , ): if self.task in ["default", "seq2seq-lm"]: __a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) elif self.task == "causal-lm": __a = self._generate_dummy_inputs_for_causal_lm( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) else: __a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowerCamelCase , batch_size=lowerCamelCase , seq_length=lowerCamelCase , is_pair=lowerCamelCase , framework=lowerCamelCase ) return common_inputs def a__ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): if self.task in ["default", "seq2seq-lm"]: __a = super()._flatten_past_key_values_(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) else: __a = super(lowerCamelCase , self )._flatten_past_key_values_( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
67
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ : List[str] = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Optional[int] = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys SCREAMING_SNAKE_CASE__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def SCREAMING_SNAKE_CASE ( __UpperCAmelCase ) -> str: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) SCREAMING_SNAKE_CASE__ = precision SCREAMING_SNAKE_CASE__ = ceil(precision / 14 ) SCREAMING_SNAKE_CASE__ = 426_880 * Decimal(10_005 ).sqrt() SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 13_591_409 SCREAMING_SNAKE_CASE__ = Decimal(__UpperCAmelCase ) for k in range(1 , __UpperCAmelCase ): SCREAMING_SNAKE_CASE__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(__UpperCAmelCase ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _A = 5_0 print(F'The first {n} digits of pi is: {pi(n)}')
159
0
from __future__ import annotations def __lowercase( UpperCAmelCase__ = 4 ): """simple docstring""" lowerCamelCase = abs(UpperCAmelCase__ ) or 4 return [[1 + x + y * row_size for x in range(UpperCAmelCase__ )] for y in range(UpperCAmelCase__ )] def __lowercase( UpperCAmelCase__ ): """simple docstring""" return reverse_row(transpose(UpperCAmelCase__ ) ) # OR.. transpose(reverse_column(matrix)) def __lowercase( UpperCAmelCase__ ): """simple docstring""" return reverse_row(reverse_column(UpperCAmelCase__ ) ) # OR.. reverse_column(reverse_row(matrix)) def __lowercase( UpperCAmelCase__ ): """simple docstring""" return reverse_column(transpose(UpperCAmelCase__ ) ) # OR.. transpose(reverse_row(matrix)) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [list(UpperCAmelCase__ ) for x in zip(*UpperCAmelCase__ )] return matrix def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = matrix[::-1] return matrix def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [x[::-1] for x in matrix] return matrix def __lowercase( UpperCAmelCase__ ): """simple docstring""" for i in matrix: print(*UpperCAmelCase__ ) if __name__ == "__main__": a_ : Union[str, Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 90 counterclockwise:\n') print_matrix(rotate_aa(matrix)) a_ : str = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 180:\n') print_matrix(rotate_aaa(matrix)) a_ : Optional[Any] = make_matrix() print('\norigin:\n') print_matrix(matrix) print('\nrotate 270 counterclockwise:\n') print_matrix(rotate_aaa(matrix))
707
import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' super().tearDown() gc.collect() def _a (self ): '''simple docstring''' lowerCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) lowerCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) lowerCamelCase = "xvjiarui/stable-diffusion-2-inpainting" lowerCamelCase , lowerCamelCase = FlaxStableDiffusionInpaintPipeline.from_pretrained(__a , safety_checker=__a ) lowerCamelCase = "Face of a yellow cat, high resolution, sitting on a park bench" lowerCamelCase = jax.random.PRNGKey(0 ) lowerCamelCase = 50 lowerCamelCase = jax.device_count() lowerCamelCase = num_samples * [prompt] lowerCamelCase = num_samples * [init_image] lowerCamelCase = num_samples * [mask_image] lowerCamelCase , lowerCamelCase , lowerCamelCase = pipeline.prepare_inputs(__a , __a , __a ) # shard inputs and rng lowerCamelCase = replicate(__a ) lowerCamelCase = jax.random.split(__a , jax.device_count() ) lowerCamelCase = shard(__a ) lowerCamelCase = shard(__a ) lowerCamelCase = shard(__a ) lowerCamelCase = pipeline( __a , __a , __a , __a , __a , __a , jit=__a ) lowerCamelCase = output.images.reshape(__a , 5_12 , 5_12 , 3 ) lowerCamelCase = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCamelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase = jnp.array( [0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
484
0
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _UpperCamelCase : Union[str, Any] = """https://www.indeed.co.in/jobs?q=mobile+app+development&l=""" def __UpperCAmelCase ( A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: UpperCAmelCase_ : List[Any] = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): UpperCAmelCase_ : Optional[int] = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() UpperCAmelCase_ : Optional[Any] = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f'''Job {i:>2} is {job[0]} at {job[1]}''')
541
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , __magic_name__ ): @register_to_config def __init__( self : List[Any] , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : float , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : int , snake_case__ : str , snake_case__ : bool = False , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[int] = nn.Embedding(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[Any] = nn.Embedding(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = False UpperCAmelCase__ : Optional[int] = nn.Dropout(p=snake_case__ ) UpperCAmelCase__ : Optional[int] = TaConfig( vocab_size=snake_case__ , d_model=snake_case__ , num_heads=snake_case__ , d_kv=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , feed_forward_proj=snake_case__ , is_decoder=snake_case__ , is_encoder_decoder=snake_case__ , ) UpperCAmelCase__ : Tuple = nn.ModuleList() for lyr_num in range(snake_case__ ): UpperCAmelCase__ : Tuple = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) UpperCAmelCase__ : str = TaLayerNorm(snake_case__ ) UpperCAmelCase__ : Tuple = nn.Dropout(p=snake_case__ ) def __a ( self : int , snake_case__ : List[str] , snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.token_embedder(snake_case__ ) UpperCAmelCase__ : Optional[int] = encoder_input_tokens.shape[1] UpperCAmelCase__ : List[Any] = torch.arange(snake_case__ , device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = self.dropout_pre(snake_case__ ) # inverted the attention mask UpperCAmelCase__ : List[Any] = encoder_input_tokens.size() UpperCAmelCase__ : Tuple = self.get_extended_attention_mask(snake_case__ , snake_case__ ) for lyr in self.encoders: UpperCAmelCase__ : Any = lyr(snake_case__ , snake_case__ )[0] UpperCAmelCase__ : Any = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
438
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class A__ ( __magic_name__ ): lowercase = 'gpt_neox' def __init__( self : str , a : List[str]=50_432 , a : Dict=6_144 , a : int=44 , a : Dict=64 , a : Dict=24_576 , a : List[str]="gelu" , a : Dict=0.2_5 , a : int=10_000 , a : List[Any]=0.0 , a : Tuple=0.0 , a : str=0.1 , a : Optional[int]=2_048 , a : Any=0.0_2 , a : Any=1E-5 , a : Optional[Any]=True , a : List[str]=0 , a : Any=2 , a : int=False , a : Dict=True , a : Optional[Any]=None , **a : Tuple , ): '''simple docstring''' super().__init__(bos_token_id=a , eos_token_id=a , **a ) lowerCAmelCase__ : Optional[int] = vocab_size lowerCAmelCase__ : str = max_position_embeddings lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : int = num_hidden_layers lowerCAmelCase__ : List[Any] = num_attention_heads lowerCAmelCase__ : Tuple = intermediate_size lowerCAmelCase__ : Optional[int] = hidden_act lowerCAmelCase__ : List[str] = rotary_pct lowerCAmelCase__ : List[Any] = rotary_emb_base lowerCAmelCase__ : Union[str, Any] = attention_dropout lowerCAmelCase__ : Union[str, Any] = hidden_dropout lowerCAmelCase__ : str = classifier_dropout lowerCAmelCase__ : Tuple = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : Tuple = use_cache lowerCAmelCase__ : Any = tie_word_embeddings lowerCAmelCase__ : Union[str, Any] = use_parallel_residual lowerCAmelCase__ : int = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( 'The hidden size is not divisble by the number of attention heads! Make sure to update them!' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' f'''got {self.rope_scaling}''' ) lowerCAmelCase__ : Any = self.rope_scaling.get('type' , a ) lowerCAmelCase__ : List[Any] = self.rope_scaling.get('factor' , a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(a , a ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
69
import os from collections import deque import torch from torch.utils.data import Dataset class A__ ( __magic_name__ ): def __init__( self : Union[str, Any] , a : str="" , a : str="train" ): '''simple docstring''' assert os.path.isdir(a ) lowerCAmelCase__ : Optional[Any] = [] lowerCAmelCase__ : Dict = os.listdir(a ) for story_filename in story_filenames_list: if "summary" in story_filename: continue lowerCAmelCase__ : Union[str, Any] = os.path.join(a , a ) if not os.path.isfile(a ): continue self.documents.append(a ) def __len__( self : Any ): '''simple docstring''' return len(self.documents ) def __getitem__( self : Dict , a : Any ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.documents[idx] lowerCAmelCase__ : Union[str, Any] = document_path.split('/' )[-1] with open(a , encoding='utf-8' ) as source: lowerCAmelCase__ : List[Any] = source.read() lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = process_story(a ) return document_name, story_lines, summary_lines def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : Optional[int] = list(filter(lambda SCREAMING_SNAKE_CASE_ : len(SCREAMING_SNAKE_CASE_ ) != 0 , [line.strip() for line in raw_story.split('\n' )] ) ) # for some unknown reason some lines miss a period, add it lowerCAmelCase__ : List[Any] = [_add_missing_period(SCREAMING_SNAKE_CASE_ ) for line in nonempty_lines] # gather article lines lowerCAmelCase__ : int = [] lowerCAmelCase__ : Any = deque(SCREAMING_SNAKE_CASE_ ) while True: try: lowerCAmelCase__ : int = lines.popleft() if element.startswith('@highlight' ): break story_lines.append(SCREAMING_SNAKE_CASE_ ) except IndexError: # if "@highlight" is absent from the file we pop # all elements until there is None, raising an exception. return story_lines, [] # gather summary lines lowerCAmelCase__ : Tuple = list(filter(lambda SCREAMING_SNAKE_CASE_ : not t.startswith('@highlight' ) , SCREAMING_SNAKE_CASE_ ) ) return story_lines, summary_lines def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: lowerCAmelCase__ : int = ['.', '!', '?', '...', '\'', '`', '"', '\u2019', '\u2019', ')'] if line.startswith('@highlight' ): return line if line[-1] in END_TOKENS: return line return line + "." def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if len(SCREAMING_SNAKE_CASE_ ) > block_size: return sequence[:block_size] else: sequence.extend([pad_token_id] * (block_size - len(SCREAMING_SNAKE_CASE_ )) ) return sequence def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : str = torch.ones_like(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = sequence == pad_token_id lowerCAmelCase__ : Optional[int] = 0 return mask def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : Any = [tokenizer.encode(SCREAMING_SNAKE_CASE_ ) for line in story_lines] lowerCAmelCase__ : str = [token for sentence in story_lines_token_ids for token in sentence] lowerCAmelCase__ : Dict = [tokenizer.encode(SCREAMING_SNAKE_CASE_ ) for line in summary_lines] lowerCAmelCase__ : str = [token for sentence in summary_lines_token_ids for token in sentence] return story_token_ids, summary_token_ids def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowerCAmelCase__ : Optional[int] = [] for sequence in batch: lowerCAmelCase__ : Union[str, Any] = -1 lowerCAmelCase__ : int = [] for s in sequence: if s == separator_token_id: sentence_num += 1 embeddings.append(sentence_num % 2 ) batch_embeddings.append(SCREAMING_SNAKE_CASE_ ) return torch.tensor(SCREAMING_SNAKE_CASE_ )
69
1
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _lowerCAmelCase : def __init__(self , lowercase ): if isinstance(A_ , A_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden A_ : Optional[Any] = deepcopy(A_ ) elif os.path.exists(A_ ): with io.open(A_ , """r""" , encoding="""utf-8""" ) as f: A_ : str = json.load(A_ ) else: try: A_ : Union[str, Any] = baseaa.urlsafe_baadecode(A_ ).decode("""utf-8""" ) A_ : List[str] = json.loads(A_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}' ) A_ : Optional[Any] = config self.set_stage_and_offload() def _a (self ): # zero stage - this is done as early as possible, before model is created, to allow # ``is_deepspeed_zero3_enabled`` query and getting to the early deepspeed config object # during ``zero.Init()`` which needs to know the dtype, and some other hparams. A_ : str = self.get_value("""zero_optimization.stage""" , -1 ) # offload A_ : str = False if self.is_zeroa() or self.is_zeroa(): A_ : Union[str, Any] = set(["""cpu""", """nvme"""] ) A_ : str = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: A_ : Any = True def _a (self , lowercase ): A_ : int = self.config # find the config node of interest if it exists A_ : int = ds_key_long.split(""".""" ) A_ : Optional[int] = nodes.pop() for node in nodes: A_ : List[str] = config.get(A_ ) if config is None: return None, ds_key return config, ds_key def _a (self , lowercase , lowercase=None ): A_, A_ : Optional[Any] = self.find_config_node(A_ ) if config is None: return default return config.get(A_ , A_ ) def _a (self , lowercase , lowercase=False ): A_ : Any = self.config # find the config node of interest if it exists A_ : Optional[Any] = ds_key_long.split(""".""" ) for node in nodes: A_ : Dict = config A_ : str = config.get(A_ ) if config is None: if must_exist: raise ValueError(F'Can\'t find {ds_key_long} entry in the config: {self.config}' ) else: return # if found remove it if parent_config is not None: parent_config.pop(A_ ) def _a (self , lowercase ): A_ : int = self.get_value(A_ ) return False if value is None else bool(A_ ) def _a (self , lowercase ): A_ : Optional[Any] = self.get_value(A_ ) return False if value is None else not bool(A_ ) def _a (self ): return self._stage == 2 def _a (self ): return self._stage == 3 def _a (self ): return self._offload class _lowerCAmelCase : def __init__(self , lowercase ): A_ : Any = engine def _a (self , lowercase , **lowercase ): # runs backpropagation and handles mixed precision self.engine.backward(A_ , **A_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _lowerCAmelCase ( lowerCAmelCase_ ): def __init__(self , lowercase ): super().__init__(A_ , device_placement=A_ , scaler=A_ ) A_ : Dict = hasattr(self.optimizer , """overflow""" ) def _a (self , lowercase=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _a (self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _a (self ): if self.__has_overflow__: return self.optimizer.overflow return False class _lowerCAmelCase ( lowerCAmelCase_ ): def __init__(self , lowercase , lowercase ): super().__init__(A_ , A_ ) def _a (self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _lowerCAmelCase : def __init__(self , lowercase , lowercase=0.0_01 , lowercase=0 , **lowercase ): A_ : Optional[Any] = params A_ : Union[str, Any] = lr A_ : Dict = weight_decay A_ : str = kwargs class _lowerCAmelCase : def __init__(self , lowercase , lowercase=None , lowercase=0 , **lowercase ): A_ : Tuple = optimizer A_ : str = total_num_steps A_ : Any = warmup_num_steps A_ : str = kwargs
667
'''simple docstring''' def lowercase__( _UpperCamelCase : str )-> str: """simple docstring""" return " ".join( "".join(word[::-1] ) if len(_UpperCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('''Hey wollef sroirraw'''))
138
0
"""simple docstring""" from __future__ import annotations from typing import Any def __lowerCAmelCase ( __lowerCAmelCase : list[Any] ) -> None: create_state_space_tree(__lowerCAmelCase , [] , 0 ) def __lowerCAmelCase ( __lowerCAmelCase : list[Any] , __lowerCAmelCase : list[Any] , __lowerCAmelCase : int ) -> None: if index == len(__lowerCAmelCase ): print(__lowerCAmelCase ) return create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(__lowerCAmelCase , __lowerCAmelCase , index + 1 ) current_subsequence.pop() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
711
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(SCREAMING_SNAKE_CASE__ ) , """Tatoeba directory does not exist.""" ) class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @cached_property def lowercase_ (self ): '''simple docstring''' _UpperCamelCase : Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=lowerCAmelCase__ ) @slow def lowercase_ (self ): '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowercase_ (self ): '''simple docstring''' _UpperCamelCase , _UpperCamelCase : Any = self.resolver.write_model_card("opus-mt-he-en" , dry_run=lowerCAmelCase__ ) assert mmeta["long_pair"] == "heb-eng"
239
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) -> Optional[Any]: assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : int =tmp_path / '''cache''' SCREAMING_SNAKE_CASE_ : str ={'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : List[Any] =TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] ) -> str: SCREAMING_SNAKE_CASE_ : Any =tmp_path / '''cache''' SCREAMING_SNAKE_CASE_ : Any ={'''text''': '''string'''} SCREAMING_SNAKE_CASE_ : Dict =features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Optional[Any] =( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] ) -> int: SCREAMING_SNAKE_CASE_ : List[Any] =tmp_path / '''cache''' SCREAMING_SNAKE_CASE_ : List[Any] ={'''text''': '''string'''} SCREAMING_SNAKE_CASE_ : Tuple =TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) -> Optional[Any]: if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] =text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE_ : Optional[Any] =[text_path] SCREAMING_SNAKE_CASE_ : Optional[Any] =tmp_path / '''cache''' SCREAMING_SNAKE_CASE_ : Optional[Any] ={'''text''': '''string'''} SCREAMING_SNAKE_CASE_ : Dict =TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=("train",) ) -> int: assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: SCREAMING_SNAKE_CASE_ : List[Any] =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ : Tuple =tmp_path / '''cache''' SCREAMING_SNAKE_CASE_ : Dict ={'''text''': '''string'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE_ : Dict =TextDatasetReader({'''train''': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( '''features''' , [ None, {'''text''': '''string'''}, {'''text''': '''int32'''}, {'''text''': '''float32'''}, ] , ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE_ : List[str] =tmp_path / '''cache''' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE_ : Optional[int] ={'''text''': '''string'''} SCREAMING_SNAKE_CASE_ : Any =features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE_ : Optional[int] =( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE_ : Tuple =TextDatasetReader({'''train''': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict ) -> Optional[Any]: if split: SCREAMING_SNAKE_CASE_ : List[str] ={split: text_path} else: SCREAMING_SNAKE_CASE_ : List[Any] ='''train''' SCREAMING_SNAKE_CASE_ : Union[str, Any] ={'''train''': text_path, '''test''': text_path} SCREAMING_SNAKE_CASE_ : Union[str, Any] =tmp_path / '''cache''' SCREAMING_SNAKE_CASE_ : List[str] ={'''text''': '''string'''} SCREAMING_SNAKE_CASE_ : Union[str, Any] =TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
443
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int = 1_0_0_0 ) -> int: SCREAMING_SNAKE_CASE_ : int =2**power SCREAMING_SNAKE_CASE_ : Tuple =0 while n: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] =r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
443
1
"""simple docstring""" import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__(self , lowerCAmelCase_ , lowerCAmelCase_=2 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=2 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=36 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=6 , lowerCAmelCase_=6 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , lowerCAmelCase_=1000 , ): A_ : Optional[int] = parent A_ : Tuple = batch_size A_ : Optional[Any] = num_channels A_ : Any = image_size A_ : Any = patch_size A_ : int = text_seq_length A_ : int = is_training A_ : Any = use_input_mask A_ : Tuple = use_token_type_ids A_ : List[str] = use_labels A_ : Tuple = vocab_size A_ : Optional[Any] = hidden_size A_ : List[Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : Optional[int] = intermediate_size A_ : List[Any] = hidden_act A_ : Optional[int] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : List[str] = type_vocab_size A_ : List[Any] = type_sequence_label_size A_ : Optional[Any] = initializer_range A_ : Tuple = coordinate_size A_ : Tuple = shape_size A_ : Tuple = num_labels A_ : Any = num_choices A_ : Tuple = scope A_ : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) A_ : Optional[int] = text_seq_length A_ : Any = (image_size // patch_size) ** 2 + 1 A_ : Optional[Any] = self.text_seq_length + self.image_seq_length def lowerCamelCase(self ): A_ : int = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) A_ : List[str] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : Union[str, Any] = bbox[i, j, 3] A_ : Optional[int] = bbox[i, j, 1] A_ : Any = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : str = bbox[i, j, 2] A_ : List[Any] = bbox[i, j, 0] A_ : Union[str, Any] = t A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Dict = None if self.use_input_mask: A_ : Optional[int] = random_attention_mask([self.batch_size, self.text_seq_length] ) A_ : Dict = None if self.use_token_type_ids: A_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : Tuple = None if self.use_labels: A_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) A_ : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : Dict = LayoutLMvaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() # text + image A_ : Optional[int] = model(lowerCAmelCase_ , pixel_values=lowerCAmelCase_ ) A_ : Optional[Any] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) A_ : List[str] = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) A_ : Tuple = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only A_ : str = model(lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only A_ : List[Any] = model(pixel_values=lowerCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[str] = self.num_labels A_ : int = LayoutLMvaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Any = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[Any] = self.num_labels A_ : Union[str, Any] = LayoutLMvaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : List[Any] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : str = LayoutLMvaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() A_ : Optional[Any] = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , pixel_values=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase(self ): A_ : Optional[int] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[Any] = config_and_inputs A_ : str = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _A : Dict = False _A : Union[str, Any] = False _A : Any = False _A : Optional[Any] = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) _A : Optional[int] = ( {"""document-question-answering""": LayoutLMvaForQuestionAnswering, """feature-extraction""": LayoutLMvaModel} if is_torch_available() else {} ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def lowerCamelCase(self ): A_ : Optional[Any] = LayoutLMvaModelTester(self ) A_ : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=False ): A_ : Any = copy.deepcopy(lowerCAmelCase_ ) if model_class in get_values(lowerCAmelCase_ ): A_ : List[str] = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(lowerCAmelCase_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(lowerCAmelCase_ ): A_ : int = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in get_values(lowerCAmelCase_ ): A_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) A_ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in [ *get_values(lowerCAmelCase_ ), ]: A_ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) elif model_class in [ *get_values(lowerCAmelCase_ ), ]: A_ : Optional[int] = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=lowerCAmelCase_ , ) return inputs_dict def lowerCamelCase(self ): self.config_tester.run_common_tests() def lowerCamelCase(self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ : Tuple = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) def lowerCamelCase(self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) @slow def lowerCamelCase(self ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : str = LayoutLMvaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) def __UpperCamelCase ( ): A_ : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase(self ): return LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase_ ) if is_vision_available() else None @slow def lowerCamelCase(self ): A_ : Optional[int] = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(lowerCAmelCase_ ) A_ : List[Any] = self.default_image_processor A_ : str = prepare_img() A_ : Union[str, Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values.to(lowerCAmelCase_ ) A_ : Optional[int] = torch.tensor([[1, 2]] ) A_ : Dict = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass A_ : Optional[Any] = model( input_ids=input_ids.to(lowerCAmelCase_ ) , bbox=bbox.to(lowerCAmelCase_ ) , pixel_values=pixel_values.to(lowerCAmelCase_ ) , ) # verify the logits A_ : Optional[int] = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , lowerCAmelCase_ ) A_ : Union[str, Any] = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
480
"""simple docstring""" import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) _lowerCAmelCase = logging.getLogger(__name__) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = git.Repo(search_parent_directories=snake_case__ ) A_ : List[str] = { """repo_id""": str(snake_case__ ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), } with open(os.path.join(snake_case__ , """git_log.json""" ) , """w""" ) as f: json.dump(snake_case__ , snake_case__ , indent=4 ) def __UpperCamelCase ( snake_case__ ): if params.n_gpu <= 0: A_ : Dict = 0 A_ : str = -1 A_ : int = True A_ : Union[str, Any] = False return assert torch.cuda.is_available() logger.info("""Initializing GPUs""" ) if params.n_gpu > 1: assert params.local_rank != -1 A_ : str = int(os.environ["""WORLD_SIZE"""] ) A_ : int = int(os.environ["""N_GPU_NODE"""] ) A_ : int = int(os.environ["""RANK"""] ) # number of nodes / node ID A_ : Optional[int] = params.world_size // params.n_gpu_per_node A_ : Optional[int] = params.global_rank // params.n_gpu_per_node A_ : Tuple = True assert params.n_nodes == int(os.environ["""N_NODES"""] ) assert params.node_id == int(os.environ["""NODE_RANK"""] ) # local job (single GPU) else: assert params.local_rank == -1 A_ : Dict = 1 A_ : Tuple = 0 A_ : Dict = 0 A_ : Optional[int] = 0 A_ : List[str] = 1 A_ : List[Any] = 1 A_ : List[Any] = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode A_ : Optional[int] = params.node_id == 0 and params.local_rank == 0 A_ : Optional[Any] = params.n_nodes > 1 # summary A_ : str = F"""--- Global rank: {params.global_rank} - """ logger.info(PREFIX + """Number of nodes: %i""" % params.n_nodes ) logger.info(PREFIX + """Node ID : %i""" % params.node_id ) logger.info(PREFIX + """Local rank : %i""" % params.local_rank ) logger.info(PREFIX + """World size : %i""" % params.world_size ) logger.info(PREFIX + """GPUs per node : %i""" % params.n_gpu_per_node ) logger.info(PREFIX + """Master : %s""" % str(params.is_master ) ) logger.info(PREFIX + """Multi-node : %s""" % str(params.multi_node ) ) logger.info(PREFIX + """Multi-GPU : %s""" % str(params.multi_gpu ) ) logger.info(PREFIX + """Hostname : %s""" % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info("""Initializing PyTorch distributed""" ) torch.distributed.init_process_group( init_method="""env://""" , backend="""nccl""" , ) def __UpperCamelCase ( snake_case__ ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
480
1
def UpperCamelCase_ ( ) -> List[Any]: a__ : Optional[int] = [] a__ : Dict = 1 while len(__a ) < 1e6: constant.append(str(__a ) ) i += 1 a__ : Dict = "".join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
37
"""simple docstring""" from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ = [] for part_id in partition_order: a__ = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(UpperCAmelCase__ ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> int: '''simple docstring''' a__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a__ = spark.range(1_00 ).repartition(1 ) a__ = Spark(UpperCAmelCase__ ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Tuple: '''simple docstring''' a__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a__ = spark.range(10 ).repartition(2 ) a__ = [1, 0] a__ = _generate_iterable_examples(UpperCAmelCase__,UpperCAmelCase__ ) # Reverse the partitions. a__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__,UpperCAmelCase__ ) for i, (row_id, row_dict) in enumerate(generate_fn() ): a__ , a__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Optional[Any]: '''simple docstring''' a__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a__ = spark.range(10 ).repartition(1 ) a__ = SparkExamplesIterable(UpperCAmelCase__ ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Union[str, Any]: '''simple docstring''' a__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a__ = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: a__ = lambda UpperCAmelCase__ : x.reverse() a__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__,[2, 1, 0] ) a__ = SparkExamplesIterable(UpperCAmelCase__ ).shuffle_data_sources(UpperCAmelCase__ ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): a__ , a__ = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' a__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a__ = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 a__ = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=0,num_workers=2 ) assert shard_it_a.n_shards == 2 a__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__,[0, 2] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): a__ , a__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 a__ = SparkExamplesIterable(UpperCAmelCase__ ).shard_data_sources(worker_id=1,num_workers=2 ) assert shard_it_a.n_shards == 2 a__ = _get_expected_row_ids_and_row_dicts_for_partition_order(UpperCAmelCase__,[1, 3] ) for i, (row_id, row_dict) in enumerate(UpperCAmelCase__ ): a__ , a__ = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def _lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' a__ = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() a__ = spark.range(1_00 ).repartition(1 ) a__ = Spark(UpperCAmelCase__ ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 1_00
232
0
from importlib import import_module from .logging import get_logger lowerCamelCase__ : Optional[Any] = get_logger(__name__) class _snake_case : def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : int = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__"""): setattr(self , SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)) lowercase__ : str = module._original_module if isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj) else module class _snake_case : __lowerCAmelCase : Optional[int] = [] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None): '''simple docstring''' lowercase__ : Union[str, Any] = obj lowercase__ : str = target lowercase__ : Dict = new lowercase__ : Optional[int] = target.split(""".""")[0] lowercase__ : Dict = {} lowercase__ : Dict = attrs or [] def __enter__( self): '''simple docstring''' lowercase__ : Optional[Any] = self.target.split(""".""") # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(SCREAMING_SNAKE_CASE_)): try: lowercase__ : List[Any] = import_module(""".""".join(submodules[: i + 1])) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): lowercase__ : Dict = getattr(self.obj , SCREAMING_SNAKE_CASE_) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(SCREAMING_SNAKE_CASE_ , _PatchedModuleObj) and obj_attr._original_module is submodule) ): lowercase__ : Optional[Any] = obj_attr # patch at top level setattr(self.obj , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(SCREAMING_SNAKE_CASE_ , attrs=self.attrs)) lowercase__ : Optional[int] = getattr(self.obj , SCREAMING_SNAKE_CASE_) # construct lower levels patches for key in submodules[i + 1 :]: setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) , attrs=self.attrs)) lowercase__ : str = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # finally set the target attribute setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.new) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: lowercase__ : Union[str, Any] = getattr(import_module(""".""".join(SCREAMING_SNAKE_CASE_)) , SCREAMING_SNAKE_CASE_) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , SCREAMING_SNAKE_CASE_) is attr_value: lowercase__ : str = getattr(self.obj , SCREAMING_SNAKE_CASE_) setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" lowercase__ : Optional[int] = globals()["""__builtins__"""][target_attr] setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.new) else: raise RuntimeError(f'Tried to patch attribute {target_attr} instead of a submodule.') def __exit__( self , *SCREAMING_SNAKE_CASE_): '''simple docstring''' for attr in list(self.original): setattr(self.obj , SCREAMING_SNAKE_CASE_ , self.original.pop(SCREAMING_SNAKE_CASE_)) def lowercase__ ( self): '''simple docstring''' self.__enter__() self._active_patches.append(self) def lowercase__ ( self): '''simple docstring''' try: self._active_patches.remove(self) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
717
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record lowerCamelCase__ : Dict = """\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } """ lowerCamelCase__ : Tuple = """\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. """ lowerCamelCase__ : Any = """ Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for 'record': list of question-answer dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'prediction_text': the predicted answer text - for 'multirc': list of question-answer dictionaries with the following keys: - 'idx': index of the question-answer pair as specified by the dataset - 'prediction': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for 'record': list of question-answers dictionaries with the following keys: - 'idx': index of the question as specified by the dataset - 'answers': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for 'record': - 'exact_match': Exact match between answer and gold answer - 'f1': F1 score - for 'multirc': - 'exact_match': Exact match between answer and gold answer - 'f1_m': Per-question macro-F1 score - 'f1_a': Average F1 score over all answers - for 'axb': 'matthews_correlation': Matthew Correlation - for 'cb': - 'accuracy': Accuracy - 'f1': F1 score - for all others: - 'accuracy': Accuracy Examples: >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'cb') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'record') >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}] >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc') >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0} >>> super_glue_metric = datasets.load_metric('super_glue', 'axb') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'matthews_correlation': 1.0} """ def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[Any]: '''simple docstring''' return float((preds == labels).mean() ) def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_="binary" ) -> int: '''simple docstring''' lowercase__ : List[str] = simple_accuracy(lowercase_ , lowercase_ ) lowercase__ : Optional[Any] = float(fa_score(y_true=lowercase_ , y_pred=lowercase_ , average=lowercase_ ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase ( lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : List[Any] = {} for id_pred, label in zip(lowercase_ , lowercase_ ): lowercase__ : Optional[Any] = F'{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}' lowercase__ : Optional[Any] = id_pred["""prediction"""] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase__ : Optional[int] = [(pred, label)] lowercase__ , lowercase__ : List[str] = [], [] for question, preds_labels in question_map.items(): lowercase__ , lowercase__ : List[str] = zip(*lowercase_ ) lowercase__ : Optional[Any] = fa_score(y_true=lowercase_ , y_pred=lowercase_ , average="""macro""" ) fas.append(lowercase_ ) lowercase__ : List[Any] = int(sum(pred == label for pred, label in preds_labels ) == len(lowercase_ ) ) ems.append(lowercase_ ) lowercase__ : str = float(sum(lowercase_ ) / len(lowercase_ ) ) lowercase__ : str = sum(lowercase_ ) / len(lowercase_ ) lowercase__ : List[str] = float(fa_score(y_true=lowercase_ , y_pred=[id_pred["""prediction"""] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowercase__ ( self): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""") return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types()) , codebase_urls=[] , reference_urls=[] , format="""numpy""" if not self.config_name == """record""" and not self.config_name == """multirc""" else None , ) def lowercase__ ( self): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value("""int64"""), "query": datasets.Value("""int64"""), }, "prediction_text": datasets.Value("""string"""), }, "references": { "idx": { "passage": datasets.Value("""int64"""), "query": datasets.Value("""int64"""), }, "answers": datasets.Sequence(datasets.Value("""string""")), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value("""int64"""), "paragraph": datasets.Value("""int64"""), "question": datasets.Value("""int64"""), }, "prediction": datasets.Value("""int64"""), }, "references": datasets.Value("""int64"""), } else: return { "predictions": datasets.Value("""int64"""), "references": datasets.Value("""int64"""), } def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)} elif self.config_name == "cb": return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , fa_avg="""macro""") elif self.config_name == "record": lowercase__ : Optional[Any] = [ { """qas""": [ {"""id""": ref["""idx"""]["""query"""], """answers""": [{"""text""": ans} for ans in ref["""answers"""]]} for ref in references ] } ] lowercase__ : str = {pred["""idx"""]["""query"""]: pred["""prediction_text"""] for pred in predictions} return evaluate_record(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)[0] elif self.config_name == "multirc": return evaluate_multirc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)} else: raise KeyError( """You should supply a configuration name selected in """ """[\"boolq\", \"cb\", \"copa\", \"multirc\", \"record\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"axb\", \"axg\",]""")
495
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ ) -> bool: """simple docstring""" return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' import operator def _lowercase ( lowerCamelCase__ , lowerCamelCase__ = False , lowerCamelCase__ = None ) -> list: """simple docstring""" __UpperCAmelCase : Tuple = operator.lt if reverse else operator.gt __UpperCAmelCase : Any = solution or [] if not arr: return solution __UpperCAmelCase : Dict = [arr.pop(0 )] for i, item in enumerate(lowerCamelCase__ ): if _operator(lowerCamelCase__ , sublist[-1] ): sublist.append(lowerCamelCase__ ) arr.pop(lowerCamelCase__ ) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase__ ) else: while sublist: __UpperCAmelCase : int = sublist.pop(0 ) for i, xx in enumerate(lowerCamelCase__ ): if not _operator(lowerCamelCase__ , lowerCamelCase__ ): solution.insert(lowerCamelCase__ , lowerCamelCase__ ) break else: solution.append(lowerCamelCase__ ) strand_sort(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
168
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None # sigma(t_i) @classmethod def __UpperCamelCase ( cls ): return cls() @dataclass class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCamelCase ( self ): return True @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 0.02 , __SCREAMING_SNAKE_CASE = 1_0_0 , __SCREAMING_SNAKE_CASE = 1.007 , __SCREAMING_SNAKE_CASE = 8_0 , __SCREAMING_SNAKE_CASE = 0.05 , __SCREAMING_SNAKE_CASE = 5_0 , ): pass def __UpperCamelCase ( self ): return KarrasVeSchedulerState.create() def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = () ): snake_case__ : List[Any] = jnp.arange(0 , __SCREAMING_SNAKE_CASE )[::-1].copy() snake_case__ : Dict = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=__SCREAMING_SNAKE_CASE , schedule=jnp.array(__SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) , timesteps=__SCREAMING_SNAKE_CASE , ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ): if self.config.s_min <= sigma <= self.config.s_max: snake_case__ : str = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: snake_case__ : Optional[Any] = 0 # sample eps ~ N(0, S_noise^2 * I) snake_case__ : Any = random.split(__SCREAMING_SNAKE_CASE , num=1 ) snake_case__ : Any = self.config.s_noise * random.normal(key=__SCREAMING_SNAKE_CASE , shape=sample.shape ) snake_case__ : Tuple = sigma + gamma * sigma snake_case__ : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , ): snake_case__ : int = sample_hat + sigma_hat * model_output snake_case__ : Optional[int] = (sample_hat - pred_original_sample) / sigma_hat snake_case__ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , ): snake_case__ : Union[str, Any] = sample_prev + sigma_prev * model_output snake_case__ : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev snake_case__ : Optional[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , derivative=__SCREAMING_SNAKE_CASE , state=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise NotImplementedError()
707
'''simple docstring''' import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : str = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCamelCase ( self ): with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : str = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __UpperCamelCase ( self ): with self.assertRaises(__SCREAMING_SNAKE_CASE ): snake_case__ : Dict = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""bool""" ) , type=Value("""int64""" ) ) ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = pa.array(TypedSequence([1, 2, 3] , type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCamelCase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case__ : int = pa.array(TypedSequence(["""foo""", """bar"""] , type=Value("""int64""" ) ) ) def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("""int32""" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=Value("""int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def __UpperCamelCase ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): snake_case__ : Any = pa.array(TypedSequence(["""foo""", """bar"""] , type=ArrayaD((1, 3) , """int64""" ) ) ) def __UpperCamelCase ( self ): snake_case__ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , """int64""" ) ) def __UpperCamelCase ( self ): snake_case__ : Tuple = pa.array(TypedSequence(["""foo""", """bar"""] , try_type=ArrayaD((1, 3) , """int64""" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __UpperCamelCase ( self ): import PIL.Image snake_case__ : Optional[int] = PIL.Image.fromarray(np.arange(1_0 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( """datasets.arrow_writer.cast_to_python_objects""" , side_effect=__SCREAMING_SNAKE_CASE ) as mock_cast_to_python_objects: snake_case__ : Any = pa.array(TypedSequence([{"""path""": None, """bytes""": b"""image_bytes"""}, pil_image] , type=Image() ) ) snake_case__ , snake_case__ : Dict = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("""optimize_list_casting""" , __SCREAMING_SNAKE_CASE ) self.assertFalse(kwargs["""optimize_list_casting"""] ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : int ) -> Optional[Any]: '''simple docstring''' snake_case__ : Tuple = pa.BufferReader(__magic_name__ ) if isinstance(__magic_name__ , pa.Buffer ) else pa.memory_map(__magic_name__ ) snake_case__ : Any = pa.ipc.open_stream(__magic_name__ ) snake_case__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : str ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = pa.BufferOutputStream() snake_case__ : Dict = pa.schema(__magic_name__ ) if fields else None with ArrowWriter(stream=__magic_name__ , schema=__magic_name__ , writer_batch_size=__magic_name__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case__ , snake_case__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case__ : int = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__magic_name__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase__ ( ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = pa.BufferOutputStream() snake_case__ : Dict = Features({"""labels""": ClassLabel(names=["""neg""", """pos"""] )} ) with ArrowWriter(stream=__magic_name__ , features=__magic_name__ ) as writer: writer.write({"""labels""": 0} ) writer.write({"""labels""": 1} ) snake_case__ , snake_case__ : List[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata snake_case__ : Optional[Any] = pa.BufferReader(output.getvalue() ) snake_case__ : List[str] = pa.ipc.open_stream(__magic_name__ ) snake_case__ : pa.Table = f.read_all() snake_case__ : Optional[Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__magic_name__ ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) def UpperCamelCase__ ( __magic_name__ : Any ) -> List[Any]: '''simple docstring''' snake_case__ : Optional[int] = pa.BufferOutputStream() with ArrowWriter( stream=__magic_name__ , writer_batch_size=__magic_name__ , hash_salt="""split_name""" , check_duplicates=__magic_name__ , ) as writer: with pytest.raises(__magic_name__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=[1, 2] ) snake_case__ , snake_case__ : Any = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = pa.BufferOutputStream() with ArrowWriter( stream=__magic_name__ , writer_batch_size=__magic_name__ , hash_salt="""split_name""" , check_duplicates=__magic_name__ , ) as writer: with pytest.raises(__magic_name__ ): writer.write({"""col_1""": """foo""", """col_2""": 1} , key=10 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=10 ) snake_case__ , snake_case__ : Tuple = writer.finalize() @pytest.mark.parametrize("""writer_batch_size""" , [None, 2, 10] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] ) -> str: '''simple docstring''' snake_case__ : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=__magic_name__ , writer_batch_size=__magic_name__ , hash_salt="""split_name""" , check_duplicates=__magic_name__ , ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} , key=1 ) writer.write({"""col_1""": """bar""", """col_2""": 2} , key=2 ) snake_case__ , snake_case__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCamelCase__ ( __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = pa.BufferOutputStream() snake_case__ : Optional[Any] = pa.schema(__magic_name__ ) if fields else None with ArrowWriter(stream=__magic_name__ , schema=__magic_name__ , writer_batch_size=__magic_name__ ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) writer.write_batch({"""col_1""": [], """col_2""": []} ) snake_case__ , snake_case__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case__ : Optional[Any] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__magic_name__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCamelCase__ ( __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> int: '''simple docstring''' snake_case__ : int = pa.BufferOutputStream() snake_case__ : Dict = pa.schema(__magic_name__ ) if fields else None with ArrowWriter(stream=__magic_name__ , schema=__magic_name__ , writer_batch_size=__magic_name__ ) as writer: writer.write_table(pa.Table.from_pydict({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) ) snake_case__ , snake_case__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case__ : int = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__magic_name__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("""writer_batch_size""" , [None, 1, 10] ) @pytest.mark.parametrize( """fields""" , [None, {"""col_1""": pa.string(), """col_2""": pa.intaa()}, {"""col_1""": pa.string(), """col_2""": pa.intaa()}] ) def UpperCamelCase__ ( __magic_name__ : Optional[int] , __magic_name__ : str ) -> Dict: '''simple docstring''' snake_case__ : int = pa.BufferOutputStream() snake_case__ : int = pa.schema(__magic_name__ ) if fields else None with ArrowWriter(stream=__magic_name__ , schema=__magic_name__ , writer_batch_size=__magic_name__ ) as writer: writer.write_row(pa.Table.from_pydict({"""col_1""": ["""foo"""], """col_2""": [1]} ) ) writer.write_row(pa.Table.from_pydict({"""col_1""": ["""bar"""], """col_2""": [2]} ) ) snake_case__ , snake_case__ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: snake_case__ : List[str] = {"""col_1""": pa.string(), """col_2""": pa.intaa()} assert writer._schema == pa.schema(__magic_name__ , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def UpperCamelCase__ ( ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case__ : int = {"""col_1""": pa.string(), """col_2""": pa.intaa()} snake_case__ : Union[str, Any] = os.path.join(__magic_name__ , """test.arrow""" ) with ArrowWriter(path=__magic_name__ , schema=pa.schema(__magic_name__ ) ) as writer: writer.write_batch({"""col_1""": ["""foo""", """bar"""], """col_2""": [1, 2]} ) snake_case__ , snake_case__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__magic_name__ , metadata=writer._schema.metadata ) _check_output(__magic_name__ , 1 ) def UpperCamelCase__ ( __magic_name__ : Dict ) -> Any: '''simple docstring''' if pa.types.is_list(__magic_name__ ): return get_base_dtype(arr_type.value_type ) else: return arr_type def UpperCamelCase__ ( __magic_name__ : List[str] , __magic_name__ : List[str] ) -> Dict: '''simple docstring''' if isinstance(lst[0] , __magic_name__ ): change_first_primitive_element_in_list(lst[0] , __magic_name__ ) else: snake_case__ : Tuple = value @pytest.mark.parametrize("""optimized_int_type, expected_dtype""" , [(None, pa.intaa()), (Value("""int32""" ), pa.intaa())] ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : List[str] ) -> Any: '''simple docstring''' snake_case__ : str = pa.array(TypedSequence(__magic_name__ , optimized_int_type=__magic_name__ ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( """col, expected_dtype""" , [ ("""attention_mask""", pa.inta()), ("""special_tokens_mask""", pa.inta()), ("""token_type_ids""", pa.inta()), ("""input_ids""", pa.intaa()), ("""other""", pa.intaa()), ] , ) @pytest.mark.parametrize("""sequence""" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def UpperCamelCase__ ( __magic_name__ : str , __magic_name__ : Any , __magic_name__ : Optional[Any] ) -> List[str]: '''simple docstring''' snake_case__ : Optional[int] = pa.array(OptimizedTypedSequence(__magic_name__ , col=__magic_name__ ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications snake_case__ : Optional[int] = copy.deepcopy(__magic_name__ ) snake_case__ : Tuple = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__magic_name__ , __magic_name__ ) snake_case__ : int = pa.array(OptimizedTypedSequence(__magic_name__ , col=__magic_name__ ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("""raise_exception""" , [False, True] ) def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Any ) -> List[Any]: '''simple docstring''' snake_case__ : Tuple = str(tmp_path / """dataset-train.arrow""" ) try: with ArrowWriter(path=__magic_name__ ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def UpperCamelCase__ ( __magic_name__ : Optional[Any] ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = """mock://dataset-train.arrow""" with ArrowWriter(path=__magic_name__ , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__magic_name__ ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case__ , snake_case__ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__magic_name__ ) def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = pa.BufferOutputStream() with ParquetWriter(stream=__magic_name__ ) as writer: writer.write({"""col_1""": """foo""", """col_2""": 1} ) writer.write({"""col_1""": """bar""", """col_2""": 2} ) snake_case__ , snake_case__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 snake_case__ : int = pa.BufferReader(output.getvalue() ) snake_case__ : pa.Table = pq.read_table(__magic_name__ ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("""embed_local_files""" , [False, True] ) def UpperCamelCase__ ( __magic_name__ : Dict , __magic_name__ : Dict ) -> Union[str, Any]: '''simple docstring''' import PIL.Image snake_case__ : List[str] = str(tmp_path / """test_image_rgb.jpg""" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__magic_name__ , format="""png""" ) snake_case__ : Union[str, Any] = pa.BufferOutputStream() with ParquetWriter( stream=__magic_name__ , features=Features({"""image""": Image()} ) , embed_local_files=__magic_name__ ) as writer: writer.write({"""image""": image_path} ) writer.finalize() snake_case__ : List[Any] = pa.BufferReader(output.getvalue() ) snake_case__ : pa.Table = pq.read_table(__magic_name__ ) snake_case__ : str = pa_table.to_pydict() if embed_local_files: assert isinstance(out["""image"""][0]["""path"""] , __magic_name__ ) with open(__magic_name__ , """rb""" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def UpperCamelCase__ ( ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = pa.schema([pa.field("""col_1""" , pa.string() , nullable=__magic_name__ )] ) snake_case__ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter(stream=__magic_name__ ) as writer: writer._build_writer(inferred_schema=__magic_name__ ) assert writer._schema == pa.schema([pa.field("""col_1""" , pa.string() )] )
419
0
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _a ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self , _UpperCAmelCase = 768 , ) -> Dict: super().__init__() UpperCamelCase_ = nn.Parameter(torch.zeros(1 , _UpperCAmelCase ) ) UpperCamelCase_ = nn.Parameter(torch.ones(1 , _UpperCAmelCase ) ) def _UpperCAmelCase ( self , _UpperCAmelCase = None , _UpperCAmelCase = None , ) -> List[Any]: UpperCamelCase_ = nn.Parameter(self.mean.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) UpperCamelCase_ = nn.Parameter(self.std.to(_UpperCAmelCase ).to(_UpperCAmelCase ) ) return self def _UpperCAmelCase ( self , _UpperCAmelCase ) -> Dict: UpperCamelCase_ = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCAmelCase ( self , _UpperCAmelCase ) -> List[str]: UpperCamelCase_ = (embeds * self.std) + self.mean return embeds
23
'''simple docstring''' import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __UpperCamelCase (unittest.TestCase ): def _a ( self ) -> List[str]: '''simple docstring''' lowercase = """hf-internal-testing/tiny-random-t5""" lowercase = AutoTokenizer.from_pretrained(_lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) lowercase = tokenizer("""This is me""" , return_tensors="""pt""" ) lowercase = model.to_bettertransformer() self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowercase = model.generate(**_lowerCAmelCase ) lowercase = model.reverse_bettertransformer() self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCAmelCase ) lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) self.assertFalse( any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowercase = model_reloaded.generate(**_lowerCAmelCase ) self.assertTrue(torch.allclose(_lowerCAmelCase , _lowerCAmelCase ) ) def _a ( self ) -> str: '''simple docstring''' lowercase = """hf-internal-testing/tiny-random-t5""" lowercase = AutoModelForSeqaSeqLM.from_pretrained(_lowerCAmelCase ) lowercase = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(_lowerCAmelCase ): model.save_pretrained(_lowerCAmelCase ) lowercase = model.reverse_bettertransformer() model.save_pretrained(_lowerCAmelCase )
588
0
'''simple docstring''' import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCAmelCase = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __UpperCAmelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCAmelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCAmelCase = re.compile(R"\[(.+?)\]\((https://huggingface\.co/.+?)\)") __UpperCAmelCase = { "DecisionTransformerConfig", "EncoderDecoderConfig", "MusicgenConfig", "RagConfig", "SpeechEncoderDecoderConfig", "TimmBackboneConfig", "VisionEncoderDecoderConfig", "VisionTextDualEncoderConfig", "LlamaConfig", } def lowerCAmelCase_ ( __A : Any ): '''simple docstring''' snake_case: Union[str, Any] = None # source code of `config_class` snake_case: Optional[int] = inspect.getsource(__A ) snake_case: str = _re_checkpoint.findall(__A ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case: Optional[int] = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case: int = f"""https://huggingface.co/{ckpt_name}""" if ckpt_link == ckpt_link_from_name: snake_case: List[str] = ckpt_name break return checkpoint def lowerCAmelCase_ ( ): '''simple docstring''' snake_case: int = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case: str = get_checkpoint_from_config_class(__A ) snake_case: Union[str, Any] = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(__A ) if len(__A ) > 0: snake_case: Any = '\n'.join(sorted(__A ) ) raise ValueError(f"""The following configurations don't contain any valid checkpoint:\n{message}""" ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
702
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = "pt" elif is_tf_available(): __UpperCAmelCase = "tf" else: __UpperCAmelCase = "jax" class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ByTaTokenizer __UpperCamelCase = False def _UpperCamelCase ( self ): '''simple docstring''' super().setUp() snake_case: int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _UpperCamelCase ( self ): '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def _UpperCamelCase ( self , **SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=5 ): '''simple docstring''' snake_case: Optional[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): try: snake_case: Optional[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) snake_case: List[str] = list(filter(lambda SCREAMING_SNAKE_CASE__ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , SCREAMING_SNAKE_CASE__ ) ) snake_case: str = list(filter(lambda SCREAMING_SNAKE_CASE__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE__ ) > max_length: snake_case: Union[str, Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE__ ) < min_length and len(SCREAMING_SNAKE_CASE__ ) > 0: while len(SCREAMING_SNAKE_CASE__ ) < min_length: snake_case: Tuple = toks + toks # toks_str = [t[1] for t in toks] snake_case: Dict = [t[0] for t in toks] # Ensure consistency snake_case: int = tokenizer.decode(SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE__ ) > 1: snake_case: str = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) ) if with_prefix_space: snake_case: Tuple = ' ' + output_txt snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) return output_txt, output_ids def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: str = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) snake_case: List[Any] = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.ta_base_tokenizer snake_case: Union[str, Any] = 'Unicode €.' snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'Unicode €.</s>' ) snake_case: List[Any] = tokenizer('e è é ê ë' ) snake_case: Optional[Any] = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['input_ids'] , SCREAMING_SNAKE_CASE__ ) # decoding snake_case: List[Any] = tokenizer.decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: str = self.ta_base_tokenizer snake_case: Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off snake_case: Optional[int] = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on snake_case: str = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if FRAMEWORK != "jax": snake_case: Optional[Any] = list(batch.input_ids.numpy()[0] ) else: snake_case: Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.ta_base_tokenizer snake_case: List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] snake_case: Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__ , padding=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_input_ids' , SCREAMING_SNAKE_CASE__ ) self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = self.ta_base_tokenizer snake_case: str = [ 'Summary of the text.', 'Another summary.', ] snake_case: Dict = tokenizer( text_target=SCREAMING_SNAKE_CASE__ , max_length=32 , padding='max_length' , truncation=SCREAMING_SNAKE_CASE__ , return_tensors=SCREAMING_SNAKE_CASE__ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = self.ta_base_tokenizer snake_case: Optional[int] = ['A long paragraph for summarization. </s>'] snake_case: str = ['Summary of the text. </s>'] # fmt: off snake_case: str = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] snake_case: Optional[int] = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on snake_case: List[Any] = tokenizer(SCREAMING_SNAKE_CASE__ , text_target=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['input_ids'][0] ) self.assertEqual(SCREAMING_SNAKE_CASE__ , batch['labels'][0] ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test snake_case: Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: Union[str, Any] = tempfile.mkdtemp() snake_case: Dict = ' He is very happy, UNwant\u00E9d,running' snake_case: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Any = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) snake_case: Any = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc snake_case: List[str] = tempfile.mkdtemp() snake_case: str = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) snake_case: List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) snake_case: int = tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) snake_case: Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: snake_case: Any = json.load(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: snake_case: str = json.load(SCREAMING_SNAKE_CASE__ ) snake_case: int = [F"""<extra_id_{i}>""" for i in range(1_25 )] snake_case: Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] snake_case: str = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files snake_case: Dict = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained snake_case: Union[str, Any] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=SCREAMING_SNAKE_CASE__ )] snake_case: Union[str, Any] = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case: Optional[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertTrue(tokenizer.decode([2_55] ) == '' ) def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' pass def _UpperCamelCase ( self ): '''simple docstring''' snake_case: Dict = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Union[str, Any] = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] snake_case: List[str] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ): '''simple docstring''' snake_case: int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): snake_case: Optional[Any] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] snake_case: Dict = 0 snake_case: List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , attr + '_id' , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE__ , attr + '_id' ) , SCREAMING_SNAKE_CASE__ ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [] ) setattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE__ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
692
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowercase_ : List[Any] = {'LayoutLMv2Config', 'LayoutLMv3Config'} @is_pipeline_test class _lowerCamelCase ( unittest.TestCase ): __a = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __a = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __a = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: str= ZeroShotClassificationPipeline( model=lowerCAmelCase , tokenizer=lowerCAmelCase , candidate_labels=['''polics''', '''health'''] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase_ ( self , lowerCAmelCase , lowerCAmelCase ) -> int: SCREAMING_SNAKE_CASE__: List[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics''' ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) # No kwarg SCREAMING_SNAKE_CASE__: int= classifier('''Who are you voting for in 2020?''' , ['''politics'''] ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) SCREAMING_SNAKE_CASE__: List[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics'''] ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) SCREAMING_SNAKE_CASE__: Dict= classifier('''Who are you voting for in 2020?''' , candidate_labels='''politics, public health''' ) self.assertEqual( lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= classifier('''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health'''] ) self.assertEqual( lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs['''scores'''] ) ) , 1.0 ) SCREAMING_SNAKE_CASE__: Optional[Any]= classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''This text is about {}''' ) self.assertEqual(lowerCAmelCase , {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase )]} ) # https://github.com/huggingface/transformers/issues/13846 SCREAMING_SNAKE_CASE__: str= classifier(['''I am happy'''] , ['''positive''', '''negative'''] ) self.assertEqual( lowerCAmelCase , [ {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} for i in range(1 ) ] , ) SCREAMING_SNAKE_CASE__: Tuple= classifier(['''I am happy''', '''I am sad'''] , ['''positive''', '''negative'''] ) self.assertEqual( lowerCAmelCase , [ {'''sequence''': ANY(lowerCAmelCase ), '''labels''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )], '''scores''': [ANY(lowerCAmelCase ), ANY(lowerCAmelCase )]} for i in range(2 ) ] , ) with self.assertRaises(lowerCAmelCase ): classifier('''''' , candidate_labels='''politics''' ) with self.assertRaises(lowerCAmelCase ): classifier(lowerCAmelCase , candidate_labels='''politics''' ) with self.assertRaises(lowerCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels='''''' ) with self.assertRaises(lowerCAmelCase ): classifier('''Who are you voting for in 2020?''' , candidate_labels=lowerCAmelCase ) with self.assertRaises(lowerCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template='''Not formatting template''' , ) with self.assertRaises(lowerCAmelCase ): classifier( '''Who are you voting for in 2020?''' , candidate_labels='''politics''' , hypothesis_template=lowerCAmelCase , ) self.run_entailment_id(lowerCAmelCase ) def UpperCamelCase_ ( self , lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= zero_shot_classifier.model.config SCREAMING_SNAKE_CASE__: str= config.labelaid SCREAMING_SNAKE_CASE__: int= zero_shot_classifier.entailment_id SCREAMING_SNAKE_CASE__: str= {'''LABEL_0''': 0, '''LABEL_1''': 1, '''LABEL_2''': 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) SCREAMING_SNAKE_CASE__: Any= {'''entailment''': 0, '''neutral''': 1, '''contradiction''': 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE__: List[Any]= {'''ENTAIL''': 0, '''NON-ENTAIL''': 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) SCREAMING_SNAKE_CASE__: Tuple= {'''ENTAIL''': 2, '''NEUTRAL''': 1, '''CONTR''': 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) SCREAMING_SNAKE_CASE__: Dict= original_labelaid self.assertEqual(lowerCAmelCase , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase_ ( self ) -> int: SCREAMING_SNAKE_CASE__: Union[str, Any]= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( '''Who are you voting for in 2020?''' * 100 , candidate_labels=['''politics''', '''public health''', '''science'''] ) @require_torch def UpperCamelCase_ ( self ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[int]= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''pt''' , ) SCREAMING_SNAKE_CASE__: Any= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @require_tf def UpperCamelCase_ ( self ) -> str: SCREAMING_SNAKE_CASE__: Tuple= pipeline( '''zero-shot-classification''' , model='''sshleifer/tiny-distilbert-base-cased-distilled-squad''' , framework='''tf''' , ) SCREAMING_SNAKE_CASE__: List[str]= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''science''', '''public health''', '''politics'''], '''scores''': [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: int= pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''pt''' ) SCREAMING_SNAKE_CASE__: List[Any]= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE__: Dict= zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCamelCase_ ( self ) -> Tuple: SCREAMING_SNAKE_CASE__: Any= pipeline('''zero-shot-classification''' , model='''roberta-large-mnli''' , framework='''tf''' ) SCREAMING_SNAKE_CASE__: Tuple= zero_shot_classifier( '''Who are you voting for in 2020?''' , candidate_labels=['''politics''', '''public health''', '''science'''] ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': '''Who are you voting for in 2020?''', '''labels''': ['''politics''', '''public health''', '''science'''], '''scores''': [0.976, 0.015, 0.009], } , ) SCREAMING_SNAKE_CASE__: Any= zero_shot_classifier( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural networks''' ''' in an encoder-decoder configuration. The best performing models also connect the encoder and decoder''' ''' through an attention mechanism. We propose a new simple network architecture, the Transformer, based''' ''' solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two''' ''' machine translation tasks show these models to be superior in quality while being more parallelizable''' ''' and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014''' ''' English-to-German translation task, improving over the existing best results, including ensembles by''' ''' over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new''' ''' single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small''' ''' fraction of the training costs of the best models from the literature. We show that the Transformer''' ''' generalizes well to other tasks by applying it successfully to English constituency parsing both with''' ''' large and limited training data.''' , candidate_labels=['''machine learning''', '''statistics''', '''translation''', '''vision'''] , multi_label=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase ) , { '''sequence''': ( '''The dominant sequence transduction models are based on complex recurrent or convolutional neural''' ''' networks in an encoder-decoder configuration. The best performing models also connect the''' ''' encoder and decoder through an attention mechanism. We propose a new simple network''' ''' architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence''' ''' and convolutions entirely. Experiments on two machine translation tasks show these models to be''' ''' superior in quality while being more parallelizable and requiring significantly less time to''' ''' train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task,''' ''' improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014''' ''' English-to-French translation task, our model establishes a new single-model state-of-the-art''' ''' BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training''' ''' costs of the best models from the literature. We show that the Transformer generalizes well to''' ''' other tasks by applying it successfully to English constituency parsing both with large and''' ''' limited training data.''' ), '''labels''': ['''translation''', '''machine learning''', '''vision''', '''statistics'''], '''scores''': [0.817, 0.713, 0.018, 0.018], } , )
64
import inspect import unittest class UpperCamelCase( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[Any]: '''simple docstring''' try: import diffusers # noqa: F401 except ImportError: assert False def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: '''simple docstring''' import diffusers from diffusers.dependency_versions_table import deps __snake_case = inspect.getmembers(SCREAMING_SNAKE_CASE , inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __snake_case = "k-diffusion" elif backend == "invisible_watermark": __snake_case = "invisible-watermark" assert backend in deps, f'''{backend} is not in the deps table!'''
371
0
"""simple docstring""" import torch def UpperCamelCase ( ): if torch.cuda.is_available(): __a = torch.cuda.device_count() else: __a = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
708
"""simple docstring""" __A = 6_55_21 def UpperCamelCase ( _lowerCAmelCase : str ): __a = 1 __a = 0 for plain_chr in plain_text: __a = (a + ord(_lowerCAmelCase )) % MOD_ADLER __a = (b + a) % MOD_ADLER return (b << 16) | a
173
0
'''simple docstring''' def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" while a != 0: __snake_case , __snake_case : str = b % a, a return b def _a ( _lowerCamelCase , _lowerCamelCase ) -> int: """simple docstring""" if gcd(_lowerCamelCase , _lowerCamelCase ) != 1: __snake_case : Any = F'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowerCamelCase ) __snake_case , __snake_case , __snake_case : Dict = 1, 0, a __snake_case , __snake_case , __snake_case : List[Any] = 0, 1, m while va != 0: __snake_case : List[str] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a : List[str] = { """configuration_efficientformer""": [ """EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """EfficientFormerConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = ["""EfficientFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ """EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """EfficientFormerForImageClassification""", """EfficientFormerForImageClassificationWithTeacher""", """EfficientFormerModel""", """EfficientFormerPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[Any] = [ """TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFEfficientFormerForImageClassification""", """TFEfficientFormerForImageClassificationWithTeacher""", """TFEfficientFormerModel""", """TFEfficientFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys a : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
613
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase: Optional[int] = logging.get_logger(__name__) UpperCAmelCase: Union[str, Any] = { """kssteven/ibert-roberta-base""": """https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json""", """kssteven/ibert-roberta-large""": """https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json""", """kssteven/ibert-roberta-large-mnli""": ( """https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json""" ), } class UpperCamelCase ( __lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = 'ibert' def __init__( self ,UpperCAmelCase_=3_05_22 ,UpperCAmelCase_=7_68 ,UpperCAmelCase_=12 ,UpperCAmelCase_=12 ,UpperCAmelCase_=30_72 ,UpperCAmelCase_="gelu" ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=0.1 ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=2 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=1E-12 ,UpperCAmelCase_=1 ,UpperCAmelCase_=0 ,UpperCAmelCase_=2 ,UpperCAmelCase_="absolute" ,UpperCAmelCase_=False ,UpperCAmelCase_="none" ,**UpperCAmelCase_ ,): super().__init__(pad_token_id=__A ,bos_token_id=__A ,eos_token_id=__A ,**__A ) _lowercase : Tuple = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : Union[str, Any] = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Tuple = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Optional[Any] = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : List[Any] = initializer_range _lowercase : Dict = layer_norm_eps _lowercase : Any = position_embedding_type _lowercase : List[Any] = quant_mode _lowercase : List[str] = force_dequant class UpperCamelCase ( __lowercase ): """simple docstring""" @property def lowerCamelCase__ ( self ): if self.task == "multiple-choice": _lowercase : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowercase : List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
714
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING UpperCAmelCase: List[Any] = logging.get_logger(__name__) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = "upernet" def __init__( self ,UpperCAmelCase_=None ,UpperCAmelCase_=5_12 ,UpperCAmelCase_=0.02 ,UpperCAmelCase_=[1, 2, 3, 6] ,UpperCAmelCase_=True ,UpperCAmelCase_=0.4 ,UpperCAmelCase_=3_84 ,UpperCAmelCase_=2_56 ,UpperCAmelCase_=1 ,UpperCAmelCase_=False ,UpperCAmelCase_=2_55 ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _lowercase : List[str] = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(UpperCAmelCase_ ,UpperCAmelCase_ ): _lowercase : Optional[int] = backbone_config.get("""model_type""" ) _lowercase : List[Any] = CONFIG_MAPPING[backbone_model_type] _lowercase : str = config_class.from_dict(UpperCAmelCase_ ) _lowercase : Union[str, Any] = backbone_config _lowercase : Dict = hidden_size _lowercase : int = initializer_range _lowercase : Tuple = pool_scales _lowercase : Dict = use_auxiliary_head _lowercase : Optional[Any] = auxiliary_loss_weight _lowercase : List[str] = auxiliary_in_channels _lowercase : List[str] = auxiliary_channels _lowercase : Optional[int] = auxiliary_num_convs _lowercase : List[Any] = auxiliary_concat_input _lowercase : List[Any] = loss_ignore_index def lowerCamelCase__ ( self ): _lowercase : int = copy.deepcopy(self.__dict__ ) _lowercase : List[Any] = self.backbone_config.to_dict() _lowercase : int = self.__class__.model_type return output
600
0
import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : int = None ): super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = pad_token_id SCREAMING_SNAKE_CASE : Optional[Any] = max_length SCREAMING_SNAKE_CASE : Optional[int] = vocab SCREAMING_SNAKE_CASE : Optional[Any] = merges SCREAMING_SNAKE_CASE : int = BytePairTokenizer(UpperCAmelCase_ , UpperCAmelCase_ , sequence_length=UpperCAmelCase_ ) @classmethod def _A ( cls : Tuple , UpperCAmelCase_ : GPTaTokenizer , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE : Optional[Any] = [" ".join(UpperCAmelCase_ ) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE : str = tokenizer.get_vocab() return cls(UpperCAmelCase_ , UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _A ( cls : str , UpperCAmelCase_ : Union[str, os.PathLike] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) return cls.from_tokenizer(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _A ( cls : Union[str, Any] , UpperCAmelCase_ : str ): return cls(**UpperCAmelCase_ ) def _A ( self : List[Any] ): return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _A ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int = None ): SCREAMING_SNAKE_CASE : Any = self.tf_tokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : str = tf.ones_like(UpperCAmelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE : Tuple = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = pad_model_inputs( UpperCAmelCase_ , max_seq_length=UpperCAmelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
62
import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = os.path.join(args.tf_model_dir , "parameters.json" ) SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(open(lowercase ).read() ) if not params: raise ValueError( F'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(".pt" ): SCREAMING_SNAKE_CASE : Optional[int] = args.output + ".pt" SCREAMING_SNAKE_CASE : Any = OrderedDict() with tf.device("/CPU:0" ): SCREAMING_SNAKE_CASE : Union[str, Any] = tf.train.load_checkpoint(args.tf_model_dir ) SCREAMING_SNAKE_CASE : Union[str, Any] = reader.get_variable_to_shape_map() for key_name in shapes.keys(): SCREAMING_SNAKE_CASE : Any = reader.get_tensor(lowercase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_name[9] ) elif key_name.startswith("pasts/out" ): SCREAMING_SNAKE_CASE : Optional[int] = 8 SCREAMING_SNAKE_CASE : List[Any] = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time SCREAMING_SNAKE_CASE : Optional[int] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(lowercase ) elif key_name.startswith("model/moe" ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): SCREAMING_SNAKE_CASE : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player SCREAMING_SNAKE_CASE : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Any = torch.tensor(lowercase ) elif key_name.endswith("/softmlp/kernel" ): SCREAMING_SNAKE_CASE : Dict = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player SCREAMING_SNAKE_CASE : Any = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(lowercase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): SCREAMING_SNAKE_CASE : Optional[int] = key_name[-9:-7] for i in range(16 ): SCREAMING_SNAKE_CASE : List[Any] = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) SCREAMING_SNAKE_CASE : List[str] = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided SCREAMING_SNAKE_CASE : Tuple = torch.tensor(lowercase ) elif key_name.startswith("model/mlp" ): SCREAMING_SNAKE_CASE : str = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): SCREAMING_SNAKE_CASE : Dict = "model.blocks.%d.feed_forward.mlp.wi.weight" % player SCREAMING_SNAKE_CASE : Union[str, Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Any = torch.tensor(lowercase ) elif key_name.endswith("/p1/bias" ): SCREAMING_SNAKE_CASE : Union[str, Any] = "model.blocks.%d.feed_forward.mlp.wi.bias" % player SCREAMING_SNAKE_CASE : Optional[Any] = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowercase ) elif key_name.endswith("/p2/kernel" ): SCREAMING_SNAKE_CASE : str = "model.blocks.%d.feed_forward.mlp.wo.weight" % player SCREAMING_SNAKE_CASE : List[Any] = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowercase ) elif key_name.endswith("/p2/bias" ): SCREAMING_SNAKE_CASE : Tuple = "model.blocks.%d.feed_forward.mlp.wo.bias" % player SCREAMING_SNAKE_CASE : str = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(lowercase ) elif key_name.startswith("model/ln" ): SCREAMING_SNAKE_CASE : Union[str, Any] = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): SCREAMING_SNAKE_CASE : Union[str, Any] = "model.blocks.%d.feed_forward.norm.bias" % player SCREAMING_SNAKE_CASE : Union[str, Any] = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(lowercase ) elif key_name.endswith("/g" ): SCREAMING_SNAKE_CASE : List[str] = "model.blocks.%d.feed_forward.norm.weight" % player SCREAMING_SNAKE_CASE : Optional[Any] = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : Dict = torch.tensor(lowercase ) elif key_name.startswith("model/att" ): SCREAMING_SNAKE_CASE : Optional[int] = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): SCREAMING_SNAKE_CASE : List[str] = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum SCREAMING_SNAKE_CASE : List[str] = state[:, 0, :, :] SCREAMING_SNAKE_CASE : Tuple = state[:, 1, :, :] SCREAMING_SNAKE_CASE : List[Any] = state[:, 2, :, :] SCREAMING_SNAKE_CASE : Tuple = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : List[Any] = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Union[str, Any] = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : int = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player SCREAMING_SNAKE_CASE : List[Any] = torch.tensor(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor(lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor(lowercase ) elif key_name.endswith("/o/kernel" ): SCREAMING_SNAKE_CASE : Union[str, Any] = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player SCREAMING_SNAKE_CASE : Optional[int] = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : str = torch.tensor(lowercase ) elif key_name.startswith("model/an" ): SCREAMING_SNAKE_CASE : int = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): SCREAMING_SNAKE_CASE : List[Any] = "model.blocks.%d.self_attn.norm.bias" % player SCREAMING_SNAKE_CASE : int = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : List[str] = torch.tensor(lowercase ) elif key_name.endswith("/g" ): SCREAMING_SNAKE_CASE : Tuple = "model.blocks.%d.self_attn.norm.weight" % player SCREAMING_SNAKE_CASE : List[str] = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : str = torch.tensor(lowercase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): SCREAMING_SNAKE_CASE : str = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] SCREAMING_SNAKE_CASE : List[str] = "model.%s.weight" % nlayer SCREAMING_SNAKE_CASE : Union[str, Any] = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE : str = torch.tensor(lowercase ) if key_name.startswith("model/wte" ): SCREAMING_SNAKE_CASE : Union[str, Any] = "lm_head.weight" SCREAMING_SNAKE_CASE : List[Any] = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE : Dict = torch.tensor(lowercase ) elif key_name.startswith("model/wob" ): SCREAMING_SNAKE_CASE : List[Any] = "final_logits_bias" SCREAMING_SNAKE_CASE : Optional[Any] = vnp.copy() # same in embedded SCREAMING_SNAKE_CASE : List[str] = state.reshape((1, -1) ) SCREAMING_SNAKE_CASE : int = torch.tensor(lowercase ) elif key_name == "model/dense/kernel": SCREAMING_SNAKE_CASE : Optional[int] = "model.last_project.weight" SCREAMING_SNAKE_CASE : Dict = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix SCREAMING_SNAKE_CASE : Tuple = torch.tensor(lowercase ) elif key_name == "model/dense_1/bias": SCREAMING_SNAKE_CASE : str = "model.last_project.bias" SCREAMING_SNAKE_CASE : int = vnp.copy() # same because it is one dimensional SCREAMING_SNAKE_CASE : str = torch.tensor(lowercase ) torch.save(lowercase , args.output ) if __name__ == "__main__": snake_case = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") snake_case = parser.parse_args() convert_tf_gptsan_to_pt(args)
62
1
"""simple docstring""" import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'MCTCTFeatureExtractor' lowercase__ = 'AutoTokenizer' def __init__( self , __a , __a) -> Optional[int]: '''simple docstring''' super().__init__(__a , __a) _UpperCamelCase = self.feature_extractor _UpperCamelCase = False def __call__( self , *__a , **__a) -> Any: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__a , **__a) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') _UpperCamelCase = kwargs.pop('''raw_speech''') else: _UpperCamelCase = kwargs.pop('''audio''' , __a) _UpperCamelCase = kwargs.pop('''sampling_rate''' , __a) _UpperCamelCase = kwargs.pop('''text''' , __a) if len(__a) > 0: _UpperCamelCase = args[0] _UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: _UpperCamelCase = self.feature_extractor(__a , *__a , sampling_rate=__a , **__a) if text is not None: _UpperCamelCase = self.tokenizer(__a , **__a) if text is None: return inputs elif audio is None: return encodings else: _UpperCamelCase = encodings['''input_ids'''] return inputs def UpperCAmelCase ( self , *__a , **__a) -> Dict: '''simple docstring''' return self.tokenizer.batch_decode(*__a , **__a) def UpperCAmelCase ( self , *__a , **__a) -> Optional[int]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__a , **__a) _UpperCamelCase = kwargs.pop('''input_features''' , __a) _UpperCamelCase = kwargs.pop('''labels''' , __a) if len(__a) > 0: _UpperCamelCase = args[0] _UpperCamelCase = args[1:] if input_features is not None: _UpperCamelCase = self.feature_extractor.pad(__a , *__a , **__a) if labels is not None: _UpperCamelCase = self.tokenizer.pad(__a , **__a) if labels is None: return input_features elif input_features is None: return labels else: _UpperCamelCase = labels['''input_ids'''] return input_features def UpperCAmelCase ( self , *__a , **__a) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*__a , **__a) @contextmanager def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') _UpperCamelCase = True _UpperCamelCase = self.tokenizer yield _UpperCamelCase = self.feature_extractor _UpperCamelCase = False
720
"""simple docstring""" import copy import re class _UpperCAmelCase: lowercase__ = 'hp' lowercase__ = {} lowercase__ = None @classmethod def UpperCAmelCase ( cls , __a , __a) -> Dict: '''simple docstring''' _UpperCamelCase = prefix _UpperCamelCase = defaults cls.build_naming_info() @staticmethod def UpperCAmelCase ( __a , __a) -> Union[str, Any]: '''simple docstring''' if len(__a) == 0: return "" _UpperCamelCase = None if any(char.isdigit() for char in word): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''') if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(__a) + 1): _UpperCamelCase = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: _UpperCamelCase = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(__a): _UpperCamelCase = '''''' while integer != 0: _UpperCamelCase = chr(ord('''A''') + integer % 10) + s integer //= 10 return s _UpperCamelCase = 0 while True: _UpperCamelCase = word + '''#''' + int_to_alphabetic(__a) if sword in info["reverse_short_word"]: continue else: _UpperCamelCase = sword break _UpperCamelCase = short_word _UpperCamelCase = word return short_word @staticmethod def UpperCAmelCase ( __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = param_name.split('''_''') _UpperCamelCase = [TrialShortNamer.shortname_for_word(__a , __a) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name _UpperCamelCase = ['''''', '''_'''] for separator in separators: _UpperCamelCase = separator.join(__a) if shortname not in info["reverse_short_param"]: _UpperCamelCase = shortname _UpperCamelCase = param_name return shortname return param_name @staticmethod def UpperCAmelCase ( __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = TrialShortNamer.shortname_for_key(__a , __a) _UpperCamelCase = short_name _UpperCamelCase = param_name @classmethod def UpperCAmelCase ( cls) -> Any: '''simple docstring''' if cls.NAMING_INFO is not None: return _UpperCamelCase = { '''short_word''': {}, '''reverse_short_word''': {}, '''short_param''': {}, '''reverse_short_param''': {}, } _UpperCamelCase = list(cls.DEFAULTS.keys()) for k in field_keys: cls.add_new_param_name(__a , __a) _UpperCamelCase = info @classmethod def UpperCAmelCase ( cls , __a) -> Optional[Any]: '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None _UpperCamelCase = [copy.copy(cls.PREFIX)] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''') if v == cls.DEFAULTS[k]: # The default value is not added to the name continue _UpperCamelCase = cls.NAMING_INFO['''short_param'''][k] if isinstance(__a , __a): _UpperCamelCase = 1 if v else 0 _UpperCamelCase = '''''' if isinstance(__a , (int, float)) else '''-''' _UpperCamelCase = F'''{key}{sep}{v}''' name.append(__a) return "_".join(__a) @classmethod def UpperCAmelCase ( cls , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = repr[len(cls.PREFIX) + 1 :] if repr == "": _UpperCamelCase = [] else: _UpperCamelCase = repr.split('''_''') _UpperCamelCase = {} for value in values: if "-" in value: _UpperCamelCase , _UpperCamelCase = value.split('''-''') else: _UpperCamelCase = re.sub('''[0-9.]''' , '''''' , __a) _UpperCamelCase = float(re.sub('''[^0-9.]''' , '''''' , __a)) _UpperCamelCase = cls.NAMING_INFO['''reverse_short_param'''][p_k] _UpperCamelCase = p_v for k in cls.DEFAULTS: if k not in parameters: _UpperCamelCase = cls.DEFAULTS[k] return parameters
78
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """microsoft/trocr-base-handwritten""": ( """https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json""" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class snake_case ( lowerCamelCase_ ): '''simple docstring''' snake_case_ : Union[str, Any] = """trocr""" snake_case_ : str = ["""past_key_values"""] snake_case_ : Tuple = { """num_attention_heads""": """decoder_attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """decoder_layers""", } def __init__( self : Any , lowerCAmelCase : Any=5_0265 , lowerCAmelCase : Optional[int]=1024 , lowerCAmelCase : Dict=12 , lowerCAmelCase : Tuple=16 , lowerCAmelCase : str=4096 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Dict=512 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : List[str]=0.0 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : int=0.0 , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Optional[int]=False , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : Any=1 , lowerCAmelCase : Dict=0 , lowerCAmelCase : Optional[Any]=2 , **lowerCAmelCase : Tuple , ) -> Any: """simple docstring""" _snake_case : int = vocab_size _snake_case : Dict = d_model _snake_case : Optional[int] = decoder_layers _snake_case : Optional[Any] = decoder_attention_heads _snake_case : Optional[Any] = decoder_ffn_dim _snake_case : int = activation_function _snake_case : Tuple = max_position_embeddings _snake_case : Any = dropout _snake_case : Tuple = attention_dropout _snake_case : str = activation_dropout _snake_case : Optional[int] = init_std _snake_case : List[str] = decoder_layerdrop _snake_case : Union[str, Any] = use_cache _snake_case : List[Any] = scale_embedding _snake_case : str = use_learned_position_embeddings _snake_case : Optional[int] = layernorm_embedding super().__init__( pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , decoder_start_token_id=a_ , **a_ , )
477
"""simple docstring""" class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , a_ : int )-> str: """simple docstring""" UpperCAmelCase_ : Any = n UpperCAmelCase_ : str = [None] * self.n UpperCAmelCase_ : List[Any] = 0 # index of the first element UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Dict = 0 def __len__( self : Union[str, Any] )-> int: """simple docstring""" return self.size def a ( self : Dict )-> bool: """simple docstring""" return self.size == 0 def a ( self : List[Any] )-> Optional[int]: """simple docstring""" return False if self.is_empty() else self.array[self.front] def a ( self : Dict , a_ : int )-> Optional[int]: """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) UpperCAmelCase_ : List[str] = data UpperCAmelCase_ : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def a ( self : Union[str, Any] )-> List[Any]: """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) UpperCAmelCase_ : Tuple = self.array[self.front] UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
470
0
import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCamelCase__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias")) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight")) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def lowerCAmelCase__ ( a__ , a__ , a__ ) ->Any: '''simple docstring''' _UpperCamelCase = state_dict.pop(a__ ) _UpperCamelCase = val def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' _UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: _UpperCamelCase = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) _UpperCamelCase = value else: _UpperCamelCase = value return new_state_dict def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' _UpperCamelCase = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCamelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[:256, :] _UpperCamelCase = in_proj_bias[:256] _UpperCamelCase = in_proj_weight[256:512, :] _UpperCamelCase = in_proj_bias[256:512] _UpperCamelCase = in_proj_weight[-256:, :] _UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[:256, :] _UpperCamelCase = in_proj_bias[:256] _UpperCamelCase = in_proj_weight[256:512, :] _UpperCamelCase = in_proj_bias[256:512] _UpperCamelCase = in_proj_weight[-256:, :] _UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCamelCase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _UpperCamelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCamelCase = in_proj_weight_cross_attn[:256, :] _UpperCamelCase = in_proj_bias_cross_attn[:256] _UpperCamelCase = in_proj_weight_cross_attn[256:512, :] _UpperCamelCase = in_proj_bias_cross_attn[256:512] _UpperCamelCase = in_proj_weight_cross_attn[-256:, :] _UpperCamelCase = in_proj_bias_cross_attn[-256:] def lowerCAmelCase__ ( a__ , a__ ) ->Dict: '''simple docstring''' _UpperCamelCase = image.size _UpperCamelCase = max(a__ , a__ ) _UpperCamelCase = 800 if '''detection''' in checkpoint_url else 1_000 _UpperCamelCase = target_max_size / current_max_size _UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = F.to_tensor(a__ ) _UpperCamelCase = F.normalize(a__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def lowerCAmelCase__ ( a__ , a__ , a__ ) ->List[str]: '''simple docstring''' logger.info("Converting model..." ) # load original state dict _UpperCamelCase = torch.hub.load_state_dict_from_url(a__ , map_location="cpu" ) # rename keys for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) _UpperCamelCase = rename_backbone_keys(a__ ) # query, key and value matrices need special treatment read_in_q_k_v(a__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCamelCase = '''model.''' for key in state_dict.copy().keys(): if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): _UpperCamelCase = state_dict.pop(a__ ) _UpperCamelCase = val # create HuggingFace model and load state dict _UpperCamelCase = TableTransformerConfig( backbone="resnet18" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: _UpperCamelCase = 15 _UpperCamelCase = 2 _UpperCamelCase = {0: '''table''', 1: '''table rotated'''} _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} else: _UpperCamelCase = 125 _UpperCamelCase = 6 _UpperCamelCase = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } _UpperCamelCase = idalabel _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = DetrImageProcessor( format="coco_detection" , max_size=800 if "detection" in checkpoint_url else 1_000 ) _UpperCamelCase = TableTransformerForObjectDetection(a__ ) model.load_state_dict(a__ ) model.eval() # verify our conversion _UpperCamelCase = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' _UpperCamelCase = hf_hub_download(repo_id="nielsr/example-pdf" , repo_type="dataset" , filename=a__ ) _UpperCamelCase = Image.open(a__ ).convert("RGB" ) _UpperCamelCase = normalize(resize(a__ , a__ ) ).unsqueeze(0 ) _UpperCamelCase = model(a__ ) if "detection" in checkpoint_url: _UpperCamelCase = (1, 15, 3) _UpperCamelCase = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) _UpperCamelCase = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: _UpperCamelCase = (1, 125, 7) _UpperCamelCase = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) _UpperCamelCase = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , a__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(a__ ).mkdir(exist_ok=a__ ) model.save_pretrained(a__ ) image_processor.save_pretrained(a__ ) if push_to_hub: # Push model to HF hub logger.info("Pushing model to the hub..." ) _UpperCamelCase = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(a__ ) image_processor.push_to_hub(a__ ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
717
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) class _UpperCAmelCase : '''simple docstring''' def __init__( self : List[Any] , lowercase_ : str = None , lowercase_ : uuid.UUID = None , lowercase_ : List[Any]=None , lowercase_ : int=None) -> Dict: """simple docstring""" if not conversation_id: _UpperCamelCase = uuid.uuida() if past_user_inputs is None: _UpperCamelCase = [] if generated_responses is None: _UpperCamelCase = [] _UpperCamelCase = conversation_id _UpperCamelCase = past_user_inputs _UpperCamelCase = generated_responses _UpperCamelCase = text def __eq__( self : Optional[Any] , lowercase_ : Optional[Any]) -> List[Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __UpperCAmelCase ( self : List[Any] , lowercase_ : str , lowercase_ : bool = False) -> Any: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".') _UpperCamelCase = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input') else: _UpperCamelCase = text def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input) _UpperCamelCase = None def __UpperCAmelCase ( self : Dict , lowercase_ : str) -> Optional[Any]: """simple docstring""" self.generated_responses.append(lowercase_) def __UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any]) -> int: """simple docstring""" _UpperCamelCase = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): _UpperCamelCase = "user" if is_user else "bot" output += f'{name} >> {text} \n' return output @add_end_docstrings( lowerCAmelCase, R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''', ) class _UpperCAmelCase ( lowerCAmelCase ): '''simple docstring''' def __init__( self : List[Any] , *lowercase_ : Optional[Any] , **lowercase_ : str) -> List[str]: """simple docstring""" super().__init__(*lowercase_ , **lowercase_) if self.tokenizer.pad_token_id is None: _UpperCamelCase = self.tokenizer.eos_token def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Union[str, Any]=None , lowercase_ : int=None , lowercase_ : str=None , **lowercase_ : str) -> Tuple: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} if min_length_for_response is not None: _UpperCamelCase = min_length_for_response if minimum_tokens is not None: _UpperCamelCase = minimum_tokens if "max_length" in generate_kwargs: _UpperCamelCase = generate_kwargs["max_length"] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _UpperCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(lowercase_) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , lowercase_ : Union[Conversation, List[Conversation]] , lowercase_ : str=0 , **lowercase_ : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = super().__call__(lowercase_ , num_workers=lowercase_ , **lowercase_) if isinstance(lowercase_ , lowercase_) and len(lowercase_) == 1: return outputs[0] return outputs def __UpperCAmelCase ( self : List[Any] , lowercase_ : Conversation , lowercase_ : Any=32) -> Dict[str, Any]: """simple docstring""" if not isinstance(lowercase_ , lowercase_): raise ValueError("ConversationalPipeline, expects Conversation as inputs") if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid)} does not contain new user input to process. ' "Add user inputs with the conversation's `add_user_input` method") if hasattr(self.tokenizer , "_build_conversation_input_ids"): _UpperCamelCase = self.tokenizer._build_conversation_input_ids(lowercase_) else: # If the tokenizer cannot handle conversations, we default to only the old version _UpperCamelCase = self._legacy_parse_and_tokenize(lowercase_) if self.framework == "pt": _UpperCamelCase = torch.LongTensor([input_ids]) elif self.framework == "tf": _UpperCamelCase = tf.constant([input_ids]) return {"input_ids": input_ids, "conversation": conversation} def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[int]=10 , **lowercase_ : Dict) -> List[str]: """simple docstring""" _UpperCamelCase = generate_kwargs.get("max_length" , self.model.config.max_length) _UpperCamelCase = model_inputs["input_ids"].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})') _UpperCamelCase = max_length - minimum_tokens _UpperCamelCase = model_inputs["input_ids"][:, -trim:] if "attention_mask" in model_inputs: _UpperCamelCase = model_inputs["attention_mask"][:, -trim:] _UpperCamelCase = model_inputs.pop("conversation") _UpperCamelCase = max_length _UpperCamelCase = self.model.generate(**lowercase_ , **lowercase_) if self.model.config.is_encoder_decoder: _UpperCamelCase = 1 else: _UpperCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : int=True) -> List[Any]: """simple docstring""" _UpperCamelCase = model_outputs["output_ids"] _UpperCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ , ) _UpperCamelCase = model_outputs["conversation"] conversation.mark_processed() conversation.append_response(lowercase_) return conversation def __UpperCAmelCase ( self : Any , lowercase_ : Conversation) -> Dict: """simple docstring""" _UpperCamelCase = self.tokenizer.eos_token_id _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_) + [eos_token_id]) else: input_ids.extend(self.tokenizer.encode(lowercase_ , add_special_tokens=lowercase_)) if len(lowercase_) > self.tokenizer.model_max_length: _UpperCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
82
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :Optional[Any] = DebertaTokenizer snake_case__ :int = True snake_case__ :Dict = DebertaTokenizerFast def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "[UNK]", ] lowerCAmelCase__ = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) lowerCAmelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowerCAmelCase__ = {"unk_token": "[UNK]"} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__magic_name__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__magic_name__ ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , **__magic_name__ : Optional[Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : str ): """simple docstring""" lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = "lower newer" return input_text, output_text def __SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = "lower newer" lowerCAmelCase__ = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowerCAmelCase__ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = tokenizer("Hello" , "World" ) lowerCAmelCase__ = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd["token_type_ids"] , __magic_name__ ) @slow def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" lowerCAmelCase__ = self.tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase__ = tokenizer.encode("sequence builders" , add_special_tokens=__magic_name__ ) lowerCAmelCase__ = tokenizer.encode("multi-sequence build" , add_special_tokens=__magic_name__ ) lowerCAmelCase__ = tokenizer.encode( "sequence builders" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowerCAmelCase__ = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=__magic_name__ , add_prefix_space=__magic_name__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) lowerCAmelCase__ = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def __SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" lowerCAmelCase__ = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: lowerCAmelCase__ = tokenizer_class.from_pretrained("microsoft/deberta-base" ) lowerCAmelCase__ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] lowerCAmelCase__ = tokenizer(__magic_name__ , padding=__magic_name__ ) lowerCAmelCase__ = [tokenizer.decode(__magic_name__ , skip_special_tokens=__magic_name__ ) for seq in encoding["input_ids"]] # fmt: off lowerCAmelCase__ = { "input_ids": [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], "token_type_ids": [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on lowerCAmelCase__ = [ "ALBERT: A Lite BERT for Self-supervised Learning of Language Representations", "ALBERT incorporates two parameter reduction techniques", "The first one is a factorized embedding parameterization. By decomposing the large vocabulary" " embedding matrix into two small matrices, we separate the size of the hidden layers from the size of" " vocabulary embedding.", ] self.assertDictEqual(encoding.data , __magic_name__ ) for expected, decoded in zip(__magic_name__ , __magic_name__ ): self.assertEqual(__magic_name__ , __magic_name__ )
48
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self , snake_case_ ) -> Optional[int]: __lowerCAmelCase = 3 __lowerCAmelCase = 250 __lowerCAmelCase = ids_tensor((batch_size, length) , snake_case_ ) __lowerCAmelCase = torch.ones((batch_size, length) , device=snake_case_ , dtype=torch.float ) / length return input_ids, scores def A__ ( self ) -> str: __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) __lowerCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) def A__ ( self ) -> Optional[int]: __lowerCAmelCase = MaxLengthCriteria(max_length=10 ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) def A__ ( self ) -> List[str]: __lowerCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def A__ ( self ) -> int: __lowerCAmelCase , __lowerCAmelCase = self._get_tensors(5 ) __lowerCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(snake_case_ , snake_case_ ) ) __lowerCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(snake_case_ , snake_case_ ) ) def A__ ( self ) -> Dict: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(snake_case_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __lowerCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(snake_case_ ) , 1 )
715
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def lowercase (_lowerCAmelCase ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) __lowerCAmelCase = precision __lowerCAmelCase = ceil(precision / 14 ) __lowerCAmelCase = 42_6880 * Decimal(1_0005 ).sqrt() __lowerCAmelCase = 1 __lowerCAmelCase = 1359_1409 __lowerCAmelCase = Decimal(_lowerCAmelCase ) for k in range(1 , _lowerCAmelCase ): __lowerCAmelCase = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowerCAmelCase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = 50 print(F"The first {n} digits of pi is: {pi(n)}")
573
0
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : str = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
543
"""simple docstring""" import random def a__ ( snake_case__ , snake_case__ , snake_case__ = False ) -> dict: lowerCamelCase = {i: [] for i in range(snake_case__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(snake_case__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(snake_case__ ): for j in range(i + 1 , snake_case__ ): if random.random() < probability: graph[i].append(snake_case__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(snake_case__ ) return graph def a__ ( snake_case__ ) -> dict: return { i: [j for j in range(snake_case__ ) if i != j] for i in range(snake_case__ ) } if __name__ == "__main__": import doctest doctest.testmod()
543
1
"""simple docstring""" import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __A : List[Any] = pytest.mark.integration @require_faiss class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(_a ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = self._create_dummy_dataset() lowerCamelCase = dset.map( lambda _a , _a : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_a , keep_in_memory=_a ) lowerCamelCase = dset.add_faiss_index("""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCamelCase , lowerCamelCase = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCamelCase , lowerCamelCase = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase , lowerCamelCase = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(_a , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCAmelCase ( self ): """simple docstring""" from elasticsearch import Elasticsearch lowerCamelCase = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: lowerCamelCase = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCamelCase = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} lowerCamelCase = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=_a ) lowerCamelCase , lowerCamelCase = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCamelCase = np.zeros(5 , dtype=np.floataa ) lowerCamelCase = 1 lowerCamelCase , lowerCamelCase = index.search(_a ) self.assertRaises(_a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCamelCase = np.eye(5 , dtype=np.floataa )[::-1] lowerCamelCase , lowerCamelCase = index.search_batch(_a ) self.assertRaises(_a , index.search_batch , queries[0] ) lowerCamelCase = [scores[0] for scores in total_scores] lowerCamelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _a ) def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCamelCase = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_a ): lowerCamelCase = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = faiss.IndexFlat(5 ) lowerCamelCase = FaissIndex(custom_index=_a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCAmelCase ( self ): """simple docstring""" import faiss lowerCamelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: index.save(tmp_file.name ) lowerCamelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCamelCase = np.zeros(5 , dtype=np.floataa ) lowerCamelCase = 1 lowerCamelCase , lowerCamelCase = index.search(_a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a__ ( snake_case__ ) -> Tuple: import faiss lowerCamelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) lowerCamelCase = """index.faiss""" lowerCamelCase = F'mock://{index_name}' index.save(snake_case__ , storage_options=mockfs.storage_options ) lowerCamelCase = FaissIndex.load(snake_case__ , storage_options=mockfs.storage_options ) lowerCamelCase = np.zeros(5 , dtype=np.floataa ) lowerCamelCase = 1 lowerCamelCase , lowerCamelCase = index.search(snake_case__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: lowerCamelCase = Elasticsearch() lowerCamelCase = {"""acknowledged""": True} lowerCamelCase = ElasticSearchIndex(es_client=_a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query lowerCamelCase = """foo""" lowerCamelCase = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} lowerCamelCase , lowerCamelCase = index.search(_a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCamelCase = """foo""" lowerCamelCase = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} lowerCamelCase , lowerCamelCase = index.search(_a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCamelCase = ["""foo""", """bar""", """foobar"""] lowerCamelCase = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} lowerCamelCase , lowerCamelCase = index.search_batch(_a ) lowerCamelCase = [scores[0] for scores in total_scores] lowerCamelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a ) # batched queries with timeout lowerCamelCase = ["""foo""", """bar""", """foobar"""] lowerCamelCase = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} lowerCamelCase , lowerCamelCase = index.search_batch(_a , request_timeout=30 ) lowerCamelCase = [scores[0] for scores in total_scores] lowerCamelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a )
704
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ : '''simple docstring''' def __init__( self , _a = None , _a = None , _a=None , _a=None ): """simple docstring""" if not conversation_id: lowerCamelCase = uuid.uuida() if past_user_inputs is None: lowerCamelCase = [] if generated_responses is None: lowerCamelCase = [] lowerCamelCase = conversation_id lowerCamelCase = past_user_inputs lowerCamelCase = generated_responses lowerCamelCase = text def __eq__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _lowerCAmelCase ( self , _a , _a = False ): """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' f'with: "{text}".' ) lowerCamelCase = text else: logger.warning( f'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' f'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCamelCase = text def _lowerCAmelCase ( self ): """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCamelCase = None def _lowerCAmelCase ( self , _a ): """simple docstring""" self.generated_responses.append(_a ) def _lowerCAmelCase ( self ): """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): """simple docstring""" lowerCamelCase = f'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCamelCase = """user""" if is_user else """bot""" output += f'{name} >> {text} \n' return output @add_end_docstrings( UpperCAmelCase__ , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , *_a , **_a ): """simple docstring""" super().__init__(*_a , **_a ) if self.tokenizer.pad_token_id is None: lowerCamelCase = self.tokenizer.eos_token def _lowerCAmelCase ( self , _a=None , _a=None , _a=None , **_a ): """simple docstring""" lowerCamelCase = {} lowerCamelCase = {} lowerCamelCase = {} if min_length_for_response is not None: lowerCamelCase = min_length_for_response if minimum_tokens is not None: lowerCamelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCamelCase = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCamelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_a ) return preprocess_params, forward_params, postprocess_params def __call__( self , _a , _a=0 , **_a ): """simple docstring""" lowerCamelCase = super().__call__(_a , num_workers=_a , **_a ) if isinstance(_a , _a ) and len(_a ) == 1: return outputs[0] return outputs def _lowerCAmelCase ( self , _a , _a=32 ): """simple docstring""" if not isinstance(_a , _a ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): lowerCamelCase = self.tokenizer._build_conversation_input_ids(_a ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCamelCase = self._legacy_parse_and_tokenize(_a ) if self.framework == "pt": lowerCamelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCamelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _lowerCAmelCase ( self , _a , _a=10 , **_a ): """simple docstring""" lowerCamelCase = generate_kwargs.get("""max_length""" , self.model.config.max_length ) lowerCamelCase = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCamelCase = max_length - minimum_tokens lowerCamelCase = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: lowerCamelCase = model_inputs["""attention_mask"""][:, -trim:] lowerCamelCase = model_inputs.pop("""conversation""" ) lowerCamelCase = max_length lowerCamelCase = self.model.generate(**_a , **_a ) if self.model.config.is_encoder_decoder: lowerCamelCase = 1 else: lowerCamelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _lowerCAmelCase ( self , _a , _a=True ): """simple docstring""" lowerCamelCase = model_outputs["""output_ids"""] lowerCamelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_a , clean_up_tokenization_spaces=_a , ) lowerCamelCase = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(_a ) return conversation def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = self.tokenizer.eos_token_id lowerCamelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_a , add_special_tokens=_a ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_a , add_special_tokens=_a ) ) if len(_a ) > self.tokenizer.model_max_length: lowerCamelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
533
0
import qiskit def UpperCamelCase ( snake_case__ : int , snake_case__ : int ) -> qiskit.result.counts.Counts: UpperCamelCase : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Create a Quantum Circuit acting on the q register UpperCamelCase : int = qiskit.QuantumCircuit(snake_case__ , snake_case__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator UpperCamelCase : str = qiskit.execute(snake_case__ , snake_case__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(snake_case__ ) if __name__ == "__main__": print(F"""Total count for various states are: {single_qubit_measure(1, 1)}""")
40
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def UpperCamelCase ( snake_case__ : Dict ) -> Optional[int]: return EnvironmentCommand() class lowerCAmelCase_ ( a__ ): @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase : List[Any] = parser.add_parser('env' ) download_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Any = huggingface_hub.__version__ UpperCamelCase : int = 'not installed' UpperCamelCase : Union[str, Any] = 'NA' if is_torch_available(): import torch UpperCamelCase : Any = torch.__version__ UpperCamelCase : str = torch.cuda.is_available() UpperCamelCase : Dict = 'not installed' if is_transformers_available(): import transformers UpperCamelCase : str = transformers.__version__ UpperCamelCase : Optional[Any] = 'not installed' if is_accelerate_available(): import accelerate UpperCamelCase : Dict = accelerate.__version__ UpperCamelCase : List[str] = 'not installed' if is_xformers_available(): import xformers UpperCamelCase : List[str] = xformers.__version__ UpperCamelCase : Dict = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': F"""{pt_version} ({pt_cuda_available})""", 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(SCREAMING_SNAKE_CASE_ ) ) return info @staticmethod def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: return "\n".join([F"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
40
1
lowerCamelCase__ = range(2, 20 + 1) lowerCamelCase__ = [10**k for k in range(ks[-1] + 1)] lowerCamelCase__ = {} def A(__a: Tuple , __a: Optional[Any] , __a: List[str] , __a: Optional[int] ): lowerCAmelCase_ = sum(a_i[j] for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase_ = sum(a_i[j] * base[j] for j in range(min(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) ) lowerCAmelCase_ , lowerCAmelCase_ = 0, 0 lowerCAmelCase_ = n - i lowerCAmelCase_ = memo.get(_SCREAMING_SNAKE_CASE ) if sub_memo is not None: lowerCAmelCase_ = sub_memo.get(_SCREAMING_SNAKE_CASE ) if jumps is not None and len(_SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over lowerCAmelCase_ = -1 for _k in range(len(_SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCAmelCase_ = _k break if max_jump >= 0: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = jumps[max_jump] # since the difference between jumps is cached, add c lowerCAmelCase_ = diff + c for j in range(min(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ) ): lowerCAmelCase_ , lowerCAmelCase_ = divmod(_SCREAMING_SNAKE_CASE , 10 ) if new_c > 0: add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase_ = [] else: lowerCAmelCase_ = {c: []} lowerCAmelCase_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCAmelCase_ , lowerCAmelCase_ = next_term(_SCREAMING_SNAKE_CASE , k - 1 , i + dn , _SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCAmelCase_ , lowerCAmelCase_ = compute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , i + dn , _SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped lowerCAmelCase_ = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCAmelCase_ = 0 while j < len(_SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def A(__a: Dict , __a: str , __a: List[Any] , __a: Dict ): if i >= n: return 0, i if k > len(_SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(_SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCAmelCase_ = i lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = 0, 0, 0 for j in range(len(_SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCAmelCase_ = ds_c + ds_b diff += addend lowerCAmelCase_ = 0 for j in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ = a_i[j] + addend lowerCAmelCase_ , lowerCAmelCase_ = divmod(_SCREAMING_SNAKE_CASE , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return diff, i - start_i def A(__a: Union[str, Any] , __a: Optional[int] , __a: str ): for j in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase_ = digits[j] + addend if s >= 10: lowerCAmelCase_ , lowerCAmelCase_ = divmod(_SCREAMING_SNAKE_CASE , 10 ) lowerCAmelCase_ = addend // 10 + quotient else: lowerCAmelCase_ = s lowerCAmelCase_ = addend // 10 if addend == 0: break while addend > 0: lowerCAmelCase_ , lowerCAmelCase_ = divmod(_SCREAMING_SNAKE_CASE , 10 ) digits.append(_SCREAMING_SNAKE_CASE ) def A(__a: Any = 10**15 ): lowerCAmelCase_ = [1] lowerCAmelCase_ = 1 lowerCAmelCase_ = 0 while True: lowerCAmelCase_ , lowerCAmelCase_ = next_term(_SCREAMING_SNAKE_CASE , 20 , i + dn , _SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break lowerCAmelCase_ = 0 for j in range(len(_SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
701
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __magic_name__ (__lowercase ): lowerCamelCase__ = '''''' lowerCamelCase__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCamelCase__ = None # compression type in fsspec. ex: "gzip" lowerCamelCase__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _a = "" , _a = None , _a = None , **_a ) -> Any: super().__init__(self , **_a ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCAmelCase_ = fsspec.open( _a , mode="rb" , protocol=_a , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCAmelCase_ = os.path.basename(self.file.path.split("::" )[0] ) lowerCAmelCase_ = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) lowerCAmelCase_ = None @classmethod def __a ( cls , _a ) -> List[Any]: # compressed file paths are always relative to the archive root return super()._strip_protocol(_a ).lstrip("/" ) def __a ( self ) -> Union[str, Any]: if self.dir_cache is None: lowerCAmelCase_ = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowerCAmelCase_ = {f["name"]: f} def __a ( self , _a ) -> Dict: return self.file.open().read() def __a ( self , _a , _a = "rb" , _a=None , _a=True , _a=None , **_a , ) -> Optional[Any]: lowerCAmelCase_ = self._strip_protocol(_a ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode 'rb'" ) return self.file.open() class __magic_name__ (__lowercase ): lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''bz2''' lowerCamelCase__ = '''.bz2''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''gzip''' lowerCamelCase__ = '''.gz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''lz4''' lowerCamelCase__ = '''.lz4''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''xz''' lowerCamelCase__ = '''.xz''' class __magic_name__ (__lowercase ): lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''zstd''' lowerCamelCase__ = '''.zst''' def __init__( self , _a , _a = "rb" , _a = None , _a = None , _a = DEFAULT_BLOCK_SIZE , **_a , ) -> Tuple: super().__init__( fo=_a , mode=_a , target_protocol=_a , target_options=_a , block_size=_a , **_a , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCAmelCase_ = self.file.__enter__ class __magic_name__ : def __init__( self , _a ) -> List[str]: lowerCAmelCase_ = file_ def __enter__( self ) -> int: self._file.__enter__() return self def __exit__( self , *_a , **_a ) -> Dict: self._file.__exit__(*_a , **_a ) def __iter__( self ) -> List[Any]: return iter(self._file ) def __a ( self ) -> List[Any]: return next(self._file ) def __getattr__( self , _a ) -> Tuple: return getattr(self._file , _a ) def fixed_enter(*_a , **_a ): return WrappedFile(_enter(*_a , **_a ) ) lowerCAmelCase_ = fixed_enter
226
0
from math import isqrt def __lowerCAmelCase ( A ): UpperCAmelCase_ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , lowercase_ , lowercase_ ): UpperCAmelCase_ = False return [i for i in range(2 , lowercase_ ) if is_prime[i]] def __lowerCAmelCase ( A = 10**8 ): UpperCAmelCase_ = calculate_prime_numbers(max_number // 2 ) UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = len(lowercase_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'{solution() = }')
162
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A_ : List[Any] = logging.get_logger(__name__) A_ : Any = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[str] = '''gpt_neo''' UpperCAmelCase__: str = ['''past_key_values'''] UpperCAmelCase__: Dict = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self , A__=5_0257 , A__=2048 , A__=2048 , A__=24 , A__=[[["global", "local"], 12]] , A__=16 , A__=None , A__=256 , A__="gelu_new" , A__=0.0 , A__=0.0 , A__=0.0 , A__=0.1 , A__=1e-5 , A__=0.0_2 , A__=True , A__=5_0256 , A__=5_0256 , **A__ , ): A__ : Optional[Any] = vocab_size A__ : Optional[int] = max_position_embeddings A__ : Optional[int] = hidden_size A__ : Dict = num_layers A__ : List[str] = num_heads A__ : Optional[int] = intermediate_size A__ : Union[str, Any] = window_size A__ : Optional[int] = activation_function A__ : Optional[Any] = resid_dropout A__ : Optional[int] = embed_dropout A__ : Any = attention_dropout A__ : Optional[Any] = classifier_dropout A__ : int = layer_norm_epsilon A__ : Tuple = initializer_range A__ : str = use_cache A__ : List[str] = bos_token_id A__ : List[Any] = eos_token_id A__ : Any = attention_types A__ : List[str] = self.expand_attention_types_params(A__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ F"""`config.num_layers = {self.num_layers}`. """ """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""" ) super().__init__(bos_token_id=A__ , eos_token_id=A__ , **A__ ) @staticmethod def __A ( A__ ): A__ : int = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def UpperCamelCase (lowercase_: Dict , lowercase_: Any , lowercase_: Union[str, Any] , lowercase_: Optional[Any] ) -> Dict: import torch A__ : List[Any] = input.size() A__ : List[str] = len(lowercase_ ) A__ : Union[str, Any] = shape[dimension] A__ : Optional[int] = torch.arange(0 , lowercase_ , lowercase_ ) A__ : str = torch.div(sizedim - size , lowercase_ , rounding_mode="""floor""" ) + 1 A__ : Any = torch.arange(lowercase_ ) + low_indices[:min_length][:, None] A__ : Union[str, Any] = [slice(lowercase_ )] * rank A__ : Any = indices A__ : List[str] = input[s] A__ : Dict = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowercase_ ) def UpperCamelCase (lowercase_: str , lowercase_: int ) -> int: import torch A__ : Union[str, Any] = torch.arange(1 , lowercase_ ) A__ : str = torch.remainder(lowercase_ , lowercase_ ) A__ : Optional[Any] = remainders == 0 A__ : Any = candidates[divisor_indices] A__ : Optional[Any] = torch.max(lowercase_ ) return largest_divisor, torch.div(lowercase_ , lowercase_ , rounding_mode="""floor""" ) class _a (__magic_name__ ): '''simple docstring''' @property def __A ( self ): A__ : Any = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A__ , direction="""inputs""" ) A__ : Optional[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: A__ : List[str] = {0: """batch""", 1: """sequence"""} return common_inputs @property def __A ( self ): return self._config.num_heads def __A ( self , A__ , A__ = -1 , A__ = -1 , A__ = False , A__ = None , ): A__ : int = super(A__ , self ).generate_dummy_inputs( A__ , batch_size=A__ , seq_length=A__ , is_pair=A__ , framework=A__ ) # We need to order the input in the way they appears in the forward() A__ : Optional[int] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A__ , A__ : Dict = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A__ : int = seqlen + 2 A__ : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A__ : Dict = [ (torch.zeros(A__ ), torch.zeros(A__ )) for _ in range(self.num_layers ) ] A__ : List[Any] = common_inputs["""attention_mask"""] if self.use_past: A__ : int = ordered_inputs["""attention_mask"""].dtype A__ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A__ , A__ , dtype=A__ )] , dim=1 ) return ordered_inputs @property def __A ( self ): return 13
456
0
from __future__ import annotations def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
703
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowerCAmelCase ( lowerCAmelCase): @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( _lowerCAmelCase: ArgumentParser ): raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self: List[str] ): raise NotImplementedError()
453
0
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase (_lowerCamelCase : float )-> float: '''simple docstring''' if num <= 0: raise ValueError('''math domain error''' ) return quad(_lowerCamelCase , 0 , _lowerCamelCase , args=(_lowerCamelCase) )[0] def _UpperCamelCase (_lowerCamelCase : float , _lowerCamelCase : float )-> float: '''simple docstring''' return math.pow(_lowerCamelCase , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
24
import argparse import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _lowercase : Optional[int] =16 _lowercase : List[str] =32 def lowerCAmelCase_ ( _lowercase : Accelerator , _lowercase : int = 16) -> Optional[int]: """simple docstring""" a__ : Tuple = AutoTokenizer.from_pretrained("""bert-base-cased""") a__ : Optional[int] = load_dataset("""glue""" , """mrpc""") def tokenize_function(_lowercase : Optional[int]): # max_length=None => use the model max length (it's actually the default) a__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ : Optional[int] = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Any = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(_lowercase : int): # On TPU it's best to pad everything to the same length or training will be very slow. a__ : Optional[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ : List[Any] = 16 elif accelerator.mixed_precision != "no": a__ : List[Any] = 8 else: a__ : Any = None return tokenizer.pad( _lowercase , padding="""longest""" , max_length=_lowercase , pad_to_multiple_of=_lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. a__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase , drop_last=_lowercase) a__ : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase , drop_last=(accelerator.mixed_precision == """fp8""") , ) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : int) -> List[str]: """simple docstring""" # Initialize accelerator a__ : Dict = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : List[Any] = config["""lr"""] a__ : int = int(config["""num_epochs"""]) a__ : Tuple = int(config["""seed"""]) a__ : Dict = int(config["""batch_size"""]) a__ : Dict = evaluate.load("""glue""" , """mrpc""") # If the batch size is too big we use gradient accumulation a__ : Union[str, Any] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: a__ : List[Any] = batch_size // MAX_GPU_BATCH_SIZE a__ : str = MAX_GPU_BATCH_SIZE set_seed(_lowercase) a__ , a__ : Any = get_dataloaders(_lowercase , _lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=_lowercase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ : Dict = model.to(accelerator.device) # Instantiate optimizer a__ : Any = AdamW(params=model.parameters() , lr=_lowercase) # Instantiate scheduler a__ : List[str] = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=100 , num_training_steps=(len(_lowercase) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : Tuple = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # Now we train the model for epoch in range(_lowercase): model.train() for step, batch in enumerate(_lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) a__ : List[str] = model(**_lowercase) a__ : List[str] = outputs.loss a__ : str = loss / gradient_accumulation_steps accelerator.backward(_lowercase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a__ : Any = model(**_lowercase) a__ : Optional[Any] = outputs.logits.argmax(dim=-1) a__ , a__ : Dict = accelerator.gather_for_metrics((predictions, batch["""labels"""])) metric.add_batch( predictions=_lowercase , references=_lowercase , ) a__ : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase) def lowerCAmelCase_ ( ) -> Dict: """simple docstring""" a__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""") parser.add_argument( """--mixed_precision""" , type=_lowercase , default=_lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""") a__ : Optional[int] = parser.parse_args() a__ : Optional[Any] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(_lowercase , _lowercase) if __name__ == "__main__": main()
136
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowercase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys _lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
719
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> Tuple: # Checks if the entire collection has been sorted if len(UpperCAmelCase_ ) <= 1 or n <= 1: return insert_next(UpperCAmelCase_ , n - 1 ) rec_insertion_sort(UpperCAmelCase_ , n - 1 ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : list , UpperCAmelCase_ : int ) -> List[Any]: # Checks order between adjacent elements if index >= len(UpperCAmelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str =( collection[index], collection[index - 1], ) insert_next(UpperCAmelCase_ , index + 1 ) if __name__ == "__main__": _lowercase = input("""Enter integers separated by spaces: """) _lowercase = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
431
0
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class lowerCamelCase__( snake_case_ ): def __magic_name__ ( self ): """simple docstring""" __lowercase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """hidden_sizes""" ) ) self.parent.assertTrue(hasattr(__UpperCAmelCase , """num_attention_heads""" ) ) class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase=1_3 , __UpperCAmelCase=6_4 , __UpperCAmelCase=3 , __UpperCAmelCase=3 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1_6 , __UpperCAmelCase=[1_2_8, 2_5_6, 3_8_4] , __UpperCAmelCase=[4, 6, 8] , __UpperCAmelCase=[2, 3, 4] , __UpperCAmelCase=[1_6, 1_6, 1_6] , __UpperCAmelCase=0 , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=[2, 2, 2] , __UpperCAmelCase=0.02 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=2 , ): """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = num_channels __lowercase = kernel_size __lowercase = stride __lowercase = padding __lowercase = hidden_sizes __lowercase = num_attention_heads __lowercase = depths __lowercase = key_dim __lowercase = drop_path_rate __lowercase = patch_size __lowercase = attention_ratio __lowercase = mlp_ratio __lowercase = initializer_range __lowercase = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] __lowercase = is_training __lowercase = use_labels __lowercase = num_labels __lowercase = initializer_range def __magic_name__ ( self ): """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.num_labels ) __lowercase = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ): """simple docstring""" return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = LevitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase ) __lowercase = (self.image_size, self.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) __lowercase = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" __lowercase = self.num_labels __lowercase = LevitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __lowercase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : str = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) UpperCamelCase : List[str] = ( { "feature-extraction": LevitModel, "image-classification": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCamelCase : Union[str, Any] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Tuple = False UpperCamelCase : List[Any] = False UpperCamelCase : Any = False def __magic_name__ ( self ): """simple docstring""" __lowercase = LevitModelTester(self ) __lowercase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=3_7 ) def __magic_name__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ): """simple docstring""" return @unittest.skip(reason="""Levit does not use inputs_embeds""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Levit does not support input and output embeddings""" ) def __magic_name__ ( self ): """simple docstring""" pass @unittest.skip(reason="""Levit does not output attentions""" ) def __magic_name__ ( self ): """simple docstring""" pass def __magic_name__ ( self ): """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(__UpperCAmelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __lowercase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() with torch.no_grad(): __lowercase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) ) __lowercase = outputs.hidden_states __lowercase = len(self.model_tester.depths ) + 1 self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __lowercase = (self.model_tester.image_size, self.model_tester.image_size) __lowercase , __lowercase = image_size[0], image_size[1] for _ in range(4 ): __lowercase = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) __lowercase = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __magic_name__ ( self ): """simple docstring""" pass def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" __lowercase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" if not self.model_tester.is_training: return __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__UpperCAmelCase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue __lowercase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __lowercase = model(**__UpperCAmelCase ).loss loss.backward() def __magic_name__ ( self ): """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowercase = False __lowercase = True for model_class in self.all_model_classes: if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue __lowercase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __lowercase = model(**__UpperCAmelCase ).loss loss.backward() def __magic_name__ ( self ): """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__UpperCAmelCase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ): __lowercase = problem_type["""title"""] __lowercase = problem_type["""num_labels"""] __lowercase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __lowercase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if problem_type["num_labels"] > 1: __lowercase = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) __lowercase = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__UpperCAmelCase ) as warning_list: __lowercase = model(**__UpperCAmelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __magic_name__ ( self ): """simple docstring""" for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = LevitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def lowercase__ ( ): '''simple docstring''' __lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase__( unittest.TestCase ): @cached_property def __magic_name__ ( self ): """simple docstring""" return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __UpperCAmelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=__UpperCAmelCase , return_tensors="""pt""" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __lowercase = model(**__UpperCAmelCase ) # verify the logits __lowercase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __lowercase = torch.tensor([1.04_48, -0.37_45, -1.83_17] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
566
'''simple docstring''' import importlib.util import os import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import ( is_accelerate_available, is_flax_available, is_safetensors_available, is_tf_available, is_torch_available, ) from . import BaseTransformersCLICommand def lowercase__ ( __UpperCamelCase : int ): '''simple docstring''' return EnvironmentCommand() def lowercase__ ( __UpperCamelCase : Tuple ): '''simple docstring''' return EnvironmentCommand(args.accelerate_config_file ) class lowerCamelCase__( snake_case_ ): @staticmethod def __magic_name__ ( __UpperCAmelCase ): """simple docstring""" __lowercase = parser.add_parser("""env""" ) download_parser.set_defaults(func=__UpperCAmelCase ) download_parser.add_argument( """--accelerate-config_file""" , default=__UpperCAmelCase , help="""The accelerate config file to use for the default values in the launching script.""" , ) download_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , *__UpperCAmelCase ): """simple docstring""" __lowercase = accelerate_config_file def __magic_name__ ( self ): """simple docstring""" __lowercase = """not installed""" if is_safetensors_available(): import safetensors __lowercase = safetensors.__version__ elif importlib.util.find_spec("""safetensors""" ) is not None: import safetensors __lowercase = F'''{safetensors.__version__} but is ignored because of PyTorch version too old.''' __lowercase = """not installed""" __lowercase = __lowercase = """not found""" if is_accelerate_available(): import accelerate from accelerate.commands.config import default_config_file, load_config_from_file __lowercase = accelerate.__version__ # Get the default from the config file. if self._accelerate_config_file is not None or os.path.isfile(__UpperCAmelCase ): __lowercase = load_config_from_file(self._accelerate_config_file ).to_dict() __lowercase = ( """\n""".join([F'''\t- {prop}: {val}''' for prop, val in accelerate_config.items()] ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else F'''\t{accelerate_config}''' ) __lowercase = """not installed""" __lowercase = """NA""" if is_torch_available(): import torch __lowercase = torch.__version__ __lowercase = torch.cuda.is_available() __lowercase = """not installed""" __lowercase = """NA""" if is_tf_available(): import tensorflow as tf __lowercase = tf.__version__ try: # deprecated in v2.1 __lowercase = tf.test.is_gpu_available() except AttributeError: # returns list of devices, convert to bool __lowercase = bool(tf.config.list_physical_devices("""GPU""" ) ) __lowercase = """not installed""" __lowercase = """not installed""" __lowercase = """not installed""" __lowercase = """NA""" if is_flax_available(): import flax import jax import jaxlib __lowercase = flax.__version__ __lowercase = jax.__version__ __lowercase = jaxlib.__version__ __lowercase = jax.lib.xla_bridge.get_backend().platform __lowercase = { """`transformers` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Huggingface_hub version""": huggingface_hub.__version__, """Safetensors version""": F'''{safetensors_version}''', """Accelerate version""": F'''{accelerate_version}''', """Accelerate config""": F'''{accelerate_config_str}''', """PyTorch version (GPU?)""": F'''{pt_version} ({pt_cuda_available})''', """Tensorflow version (GPU?)""": F'''{tf_version} ({tf_cuda_available})''', """Flax version (CPU?/GPU?/TPU?)""": F'''{flax_version} ({jax_backend})''', """Jax version""": F'''{jax_version}''', """JaxLib version""": F'''{jaxlib_version}''', """Using GPU in script?""": """<fill in>""", """Using distributed or parallel set-up in script?""": """<fill in>""", } print("""\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n""" ) print(self.format_dict(__UpperCAmelCase ) ) return info @staticmethod def __magic_name__ ( __UpperCAmelCase ): """simple docstring""" return "\n".join([F'''- {prop}: {val}''' for prop, val in d.items()] ) + "\n"
566
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCAmelCase__ ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __A : Optional[Any] = [('size', ctypes.c_int), ('visible', ctypes.c_byte)] def snake_case__ ( ) -> List[Any]: """simple docstring""" if os.name == "nt": A__ : Optional[Any] = CursorInfo() A__ : Tuple = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) A__ : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def snake_case__ ( ) -> Dict: """simple docstring""" if os.name == "nt": A__ : List[str] = CursorInfo() A__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) A__ : int = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def snake_case__ ( ) -> Optional[int]: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
182
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class lowerCAmelCase__ ( unittest.TestCase , UpperCamelCase ): def _lowercase ( self : List[Any]): A__ : Optional[Any] = load_tool("text-classification") self.tool.setup() A__ : Any = load_tool("text-classification" , remote=_A) def _lowercase ( self : List[Any]): A__ : Optional[Any] = self.tool("That's quite cool" , ["positive", "negative"]) self.assertEqual(_A , "positive") def _lowercase ( self : List[str]): A__ : Any = self.remote_tool("That's quite cool" , ["positive", "negative"]) self.assertEqual(_A , "positive") def _lowercase ( self : Optional[Any]): A__ : List[str] = self.tool(text="That's quite cool" , labels=["positive", "negative"]) self.assertEqual(_A , "positive") def _lowercase ( self : Tuple): A__ : Union[str, Any] = self.remote_tool(text="That's quite cool" , labels=["positive", "negative"]) self.assertEqual(_A , "positive")
182
1
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> int: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('''multiplicative_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''multiplicative_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE_ : str =0 SCREAMING_SNAKE_CASE_ : Optional[int] =str(UpperCAmelCase_ ) while len(UpperCAmelCase_ ) != 1: SCREAMING_SNAKE_CASE_ : Optional[int] =[int(UpperCAmelCase_ ) for i in num_string] SCREAMING_SNAKE_CASE_ : Tuple =1 for i in range(0 , len(UpperCAmelCase_ ) ): total *= numbers[i] SCREAMING_SNAKE_CASE_ : Union[str, Any] =str(UpperCAmelCase_ ) steps += 1 return steps def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int ) -> int: if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): raise ValueError('''additive_persistence() only accepts integral values''' ) if num < 0: raise ValueError('''additive_persistence() does not accept negative values''' ) SCREAMING_SNAKE_CASE_ : Any =0 SCREAMING_SNAKE_CASE_ : List[Any] =str(UpperCAmelCase_ ) while len(UpperCAmelCase_ ) != 1: SCREAMING_SNAKE_CASE_ : List[Any] =[int(UpperCAmelCase_ ) for i in num_string] SCREAMING_SNAKE_CASE_ : Union[str, Any] =0 for i in range(0 , len(UpperCAmelCase_ ) ): total += numbers[i] SCREAMING_SNAKE_CASE_ : List[Any] =str(UpperCAmelCase_ ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
443
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int = 8 ) -> str: SCREAMING_SNAKE_CASE_ : str =ascii_letters + digits + punctuation return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Any =i // 3 SCREAMING_SNAKE_CASE_ : Optional[Any] =i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) SCREAMING_SNAKE_CASE_ : int =( chars_incl + random(UpperCAmelCase_ , quotient + remainder ) + random(UpperCAmelCase_ , UpperCAmelCase_ ) + random(UpperCAmelCase_ , UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE_ : Optional[int] =list(UpperCAmelCase_ ) shuffle(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ) -> str: return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) ) def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple ) -> Optional[int]: pass # Put your code here... def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple ) -> Dict: pass # Put your code here... def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] ) -> Optional[int]: pass # Put your code here... def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : int = 8 ) -> bool: if len(UpperCAmelCase_ ) < min_length: # Your Password must be at least 8 characters long return False SCREAMING_SNAKE_CASE_ : List[str] =any(char in ascii_uppercase for char in password ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =any(char in ascii_lowercase for char in password ) SCREAMING_SNAKE_CASE_ : List[Any] =any(char in digits for char in password ) SCREAMING_SNAKE_CASE_ : str =any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE_ ( ) -> Optional[int]: SCREAMING_SNAKE_CASE_ : Any =int(input('''Please indicate the max length of your password: ''' ).strip() ) SCREAMING_SNAKE_CASE_ : Any =input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(UpperCAmelCase_ ) ) print( '''Alternative Password generated:''' , alternative_password_generator(UpperCAmelCase_ , UpperCAmelCase_ ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
443
1
from __future__ import annotations def a_ ( __snake_case , __snake_case ) -> list[int]: '''simple docstring''' UpperCamelCase_ = 0 UpperCamelCase_ = len(__snake_case ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase_ = i + 1 else: UpperCamelCase_ = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
559
def a_ ( __snake_case ) -> list[int]: '''simple docstring''' UpperCamelCase_ = [0 for i in range(len(__snake_case ) )] # initialize interval's left pointer and right pointer UpperCamelCase_ , UpperCamelCase_ = 0, 0 for i in range(1 , len(__snake_case ) ): # case when current index is inside the interval if i <= right_pointer: UpperCamelCase_ = min(right_pointer - i + 1 , z_result[i - left_pointer] ) UpperCamelCase_ = min_edge while go_next(__snake_case , __snake_case , __snake_case ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: UpperCamelCase_ , UpperCamelCase_ = i, i + z_result[i] - 1 return z_result def a_ ( __snake_case , __snake_case , __snake_case ) -> bool: '''simple docstring''' return i + z_result[i] < len(__snake_case ) and s[z_result[i]] == s[i + z_result[i]] def a_ ( __snake_case , __snake_case ) -> int: '''simple docstring''' UpperCamelCase_ = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string UpperCamelCase_ = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__snake_case ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
559
1
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib _A: int = get_logger() _A: Optional[dict] = None class UpperCAmelCase ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): def __init__( self , __A=None , __A=None , **__A ): super().__init__(features=__A ) import jax from jaxlib.xla_client import Device if isinstance(__A , __A ): raise ValueError( f'Expected {device} to be a `str` not {type(__A )}, as `jaxlib.xla_extension.Device` ' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) __UpperCAmelCase = device if isinstance(__A , __A ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) __UpperCAmelCase = str(jax.devices()[0] ) __UpperCAmelCase = jnp_array_kwargs @staticmethod def __lowerCamelCase ( ): import jax return {str(__A ): device for device in jax.devices()} def __lowerCamelCase ( self , __A ): import jax import jax.numpy as jnp if isinstance(__A , __A ) and column: if all( isinstance(__A , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__A , axis=0 ) return column def __lowerCamelCase ( self , __A ): import jax import jax.numpy as jnp if isinstance(__A , (str, bytes, type(__A )) ): return value elif isinstance(__A , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase = {} if isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: __UpperCAmelCase = {'dtype': jnp.intaa} else: __UpperCAmelCase = {'dtype': jnp.intaa} elif isinstance(__A , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__A , PIL.Image.Image ): __UpperCAmelCase = np.asarray(__A ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: __UpperCAmelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__A , **{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCamelCase ( self , __A ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__A , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__A , '__array__' ) and not isinstance(__A , jax.Array ): __UpperCAmelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__A , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) elif isinstance(__A , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__A ) for substruct in data_struct] ) return self._tensorize(__A ) def __lowerCamelCase ( self , __A ): return map_nested(self._recursive_tensorize , __A , map_list=__A ) def __lowerCamelCase ( self , __A ): __UpperCAmelCase = self.numpy_arrow_extractor().extract_row(__A ) __UpperCAmelCase = self.python_features_decoder.decode_row(__A ) return self.recursive_tensorize(__A ) def __lowerCamelCase ( self , __A ): __UpperCAmelCase = self.numpy_arrow_extractor().extract_column(__A ) __UpperCAmelCase = self.python_features_decoder.decode_column(__A , pa_table.column_names[0] ) __UpperCAmelCase = self.recursive_tensorize(__A ) __UpperCAmelCase = self._consolidate(__A ) return column def __lowerCamelCase ( self , __A ): __UpperCAmelCase = self.numpy_arrow_extractor().extract_batch(__A ) __UpperCAmelCase = self.python_features_decoder.decode_batch(__A ) __UpperCAmelCase = self.recursive_tensorize(__A ) for column_name in batch: __UpperCAmelCase = self._consolidate(batch[column_name] ) return batch
126
'''simple docstring''' import re from filelock import FileLock try: import nltk _A: Optional[int] = True except (ImportError, ModuleNotFoundError): _A: Dict = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def _lowerCAmelCase ( _lowerCAmelCase )-> str: re.sub('<n>' , '' , _lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCAmelCase ) )
126
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) __lowerCAmelCase : List[Any] = { '''sail/poolformer_s12''': '''https://huggingface.co/sail/poolformer_s12/resolve/main/config.json''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : str = 'poolformer' def __init__( self :Dict , __magic_name__ :Any=3 , __magic_name__ :str=16 , __magic_name__ :str=16 , __magic_name__ :str=3 , __magic_name__ :Optional[int]=4.0 , __magic_name__ :Optional[Any]=[2, 2, 6, 2] , __magic_name__ :Any=[64, 128, 320, 512] , __magic_name__ :str=[7, 3, 3, 3] , __magic_name__ :List[str]=[4, 2, 2, 2] , __magic_name__ :Tuple=[2, 1, 1, 1] , __magic_name__ :Optional[Any]=4 , __magic_name__ :Optional[Any]=0.0 , __magic_name__ :Dict="gelu" , __magic_name__ :int=True , __magic_name__ :str=1e-5 , __magic_name__ :Any=0.02 , **__magic_name__ :Union[str, Any] , ) -> Optional[Any]: '''simple docstring''' a__ = num_channels a__ = patch_size a__ = stride a__ = padding a__ = pool_size a__ = hidden_sizes a__ = mlp_ratio a__ = depths a__ = patch_sizes a__ = strides a__ = num_encoder_blocks a__ = drop_path_rate a__ = hidden_act a__ = use_layer_scale a__ = layer_scale_init_value a__ = initializer_range super().__init__(**__magic_name__ ) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' snake_case__ : int = version.parse('1.11' ) @property def _UpperCamelCase ( self :Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def _UpperCamelCase ( self :str ) -> float: '''simple docstring''' return 2e-3
708
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' def __init__( self :Optional[int] , __magic_name__ :Dict , __magic_name__ :List[str]=13 , __magic_name__ :Tuple=7 , __magic_name__ :Optional[Any]=True , __magic_name__ :str=True , __magic_name__ :Optional[Any]=True , __magic_name__ :int=True , __magic_name__ :Optional[Any]=99 , __magic_name__ :Optional[int]=32 , __magic_name__ :str=5 , __magic_name__ :List[Any]=4 , __magic_name__ :str=37 , __magic_name__ :List[str]="gelu" , __magic_name__ :str=0.1 , __magic_name__ :Dict=0.1 , __magic_name__ :Any=512 , __magic_name__ :int=16 , __magic_name__ :Tuple=2 , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :List[str]=False , __magic_name__ :List[Any]=True , __magic_name__ :List[Any]="None" , __magic_name__ :str=3 , __magic_name__ :Optional[int]=4 , __magic_name__ :Dict=None , ) -> Union[str, Any]: '''simple docstring''' a__ = parent a__ = batch_size a__ = seq_length a__ = is_training a__ = use_input_mask a__ = use_token_type_ids a__ = use_labels a__ = vocab_size a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = max_position_embeddings a__ = type_vocab_size a__ = type_sequence_label_size a__ = initializer_range a__ = num_labels a__ = num_choices a__ = relative_attention a__ = position_biased_input a__ = pos_att_type a__ = scope def _UpperCamelCase ( self :Optional[int] ) -> Any: '''simple docstring''' a__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ = None if self.use_input_mask: a__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) a__ = None if self.use_token_type_ids: a__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a__ = None a__ = None a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a__ = ids_tensor([self.batch_size] , self.num_choices ) a__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self :Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _UpperCamelCase ( self :int ) -> str: '''simple docstring''' a__ = self.get_config() a__ = 300 return config def _UpperCamelCase ( self :str , __magic_name__ :str ) -> List[Any]: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _UpperCamelCase ( self :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Dict , __magic_name__ :Tuple , __magic_name__ :Optional[Any] ) -> Tuple: '''simple docstring''' a__ = DebertaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ )[0] a__ = model(__magic_name__ , token_type_ids=__magic_name__ )[0] a__ = model(__magic_name__ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _UpperCamelCase ( self :Optional[Any] , __magic_name__ :Tuple , __magic_name__ :Any , __magic_name__ :int , __magic_name__ :List[Any] , __magic_name__ :List[Any] , __magic_name__ :int , __magic_name__ :Union[str, Any] ) -> str: '''simple docstring''' a__ = DebertaForMaskedLM(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self :Any , __magic_name__ :Optional[int] , __magic_name__ :str , __magic_name__ :str , __magic_name__ :List[Any] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] , __magic_name__ :Tuple ) -> str: '''simple docstring''' a__ = self.num_labels a__ = DebertaForSequenceClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__magic_name__ ) def _UpperCamelCase ( self :int , __magic_name__ :Tuple , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Optional[int] , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[int] , __magic_name__ :Optional[Any] ) -> List[str]: '''simple docstring''' a__ = self.num_labels a__ = DebertaForTokenClassification(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model(__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self :str , __magic_name__ :Dict , __magic_name__ :Any , __magic_name__ :Tuple , __magic_name__ :int , __magic_name__ :Union[str, Any] , __magic_name__ :str , __magic_name__ :Tuple ) -> Tuple: '''simple docstring''' a__ = DebertaForQuestionAnswering(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() a__ = model( __magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , start_positions=__magic_name__ , end_positions=__magic_name__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' a__ = self.prepare_config_and_inputs() ( ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ( a__ ) , ) = config_and_inputs a__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' snake_case__ : int = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : Optional[Any] = ( { 'feature-extraction': DebertaModel, 'fill-mask': DebertaForMaskedLM, 'question-answering': DebertaForQuestionAnswering, 'text-classification': DebertaForSequenceClassification, 'token-classification': DebertaForTokenClassification, 'zero-shot': DebertaForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : int = True snake_case__ : Any = False snake_case__ : List[str] = False snake_case__ : Any = False snake_case__ : Dict = False def _UpperCamelCase ( self :str ) -> Union[str, Any]: '''simple docstring''' a__ = DebertaModelTester(self ) a__ = ConfigTester(self , config_class=__magic_name__ , hidden_size=37 ) def _UpperCamelCase ( self :Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def _UpperCamelCase ( self :Union[str, Any] ) -> Optional[int]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__magic_name__ ) def _UpperCamelCase ( self :Any ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__magic_name__ ) def _UpperCamelCase ( self :Optional[int] ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__magic_name__ ) def _UpperCamelCase ( self :Any ) -> Optional[int]: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__magic_name__ ) def _UpperCamelCase ( self :str ) -> int: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__magic_name__ ) @slow def _UpperCamelCase ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = DebertaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='''Model not available yet''' ) def _UpperCamelCase ( self :Union[str, Any] ) -> int: '''simple docstring''' pass @slow def _UpperCamelCase ( self :Tuple ) -> str: '''simple docstring''' a__ = DebertaModel.from_pretrained('''microsoft/deberta-base''' ) a__ = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) a__ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): a__ = model(__magic_name__ , attention_mask=__magic_name__ )[0] # compare the actual values for a slice. a__ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __magic_name__ , atol=1e-4 ) , F"{output[:, 1:4, 1:4]}" )
158
0
'''simple docstring''' import os def __snake_case (): """simple docstring""" lowerCamelCase_ : Dict = os.path.dirname(os.path.realpath(__UpperCAmelCase ) ) lowerCamelCase_ : Optional[Any] = os.path.join(__UpperCAmelCase , '''triangle.txt''' ) with open(__UpperCAmelCase ) as f: lowerCamelCase_ : Dict = f.readlines() lowerCamelCase_ : str = [] for line in triangle: lowerCamelCase_ : Optional[Any] = [] for number in line.strip().split(''' ''' ): numbers_from_line.append(int(__UpperCAmelCase ) ) a.append(__UpperCAmelCase ) for i in range(1 , len(__UpperCAmelCase ) ): for j in range(len(a[i] ) ): lowerCamelCase_ : Any = a[i - 1][j] if j != len(a[i - 1] ) else 0 lowerCamelCase_ : Dict = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(__UpperCAmelCase , __UpperCAmelCase ) return max(a[-1] ) if __name__ == "__main__": print(solution())
501
'''simple docstring''' import collections import json import math import os import re import time from fnmatch import fnmatch from typing import Dict import requests from slack_sdk import WebClient __lowerCamelCase : str = WebClient(token=os.environ["""CI_SLACK_BOT_TOKEN"""]) def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Optional[Any] = test_results.split(''' ''' ) lowerCamelCase_ : Tuple = 0 lowerCamelCase_ : Optional[int] = 0 # When the output is short enough, the output is surrounded by = signs: "== OUTPUT ==" # When it is too long, those signs are not present. lowerCamelCase_ : Optional[Any] = expressions[-2] if '''=''' in expressions[-1] else expressions[-1] for i, expression in enumerate(__UpperCAmelCase ): if "failed" in expression: failed += int(expressions[i - 1] ) if "passed" in expression: success += int(expressions[i - 1] ) return failed, success, time_spent def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Tuple = {} lowerCamelCase_ : List[Any] = None lowerCamelCase_ : Any = False for line in failures_short_lines.split('''\n''' ): if re.search(R'''_ \[doctest\]''' , __UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = True lowerCamelCase_ : Optional[Any] = line.split(''' ''' )[2] elif in_error and not line.split(''' ''' )[0].isdigit(): lowerCamelCase_ : str = line lowerCamelCase_ : List[Any] = False return failures class lowerCAmelCase__ : def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> List[Any]: """simple docstring""" lowerCamelCase_ : List[Any] = title lowerCamelCase_ : Dict = doc_test_results['''time_spent'''].split(''',''' )[0] lowerCamelCase_ : str = doc_test_results['''success'''] lowerCamelCase_ : int = doc_test_results['''failures'''] lowerCamelCase_ : List[Any] = self.n_success + self.n_failures # Failures and success of the modeling tests lowerCamelCase_ : Union[str, Any] = doc_test_results @property def __UpperCamelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCamelCase_ : Dict = [self._time_spent] lowerCamelCase_ : Optional[int] = 0 for time in time_spent: lowerCamelCase_ : Tuple = time.split(''':''' ) # Time can be formatted as xx:xx:xx, as .xx, or as x.xx if the time spent was less than a minute. if len(UpperCamelCase_ ) == 1: lowerCamelCase_ : int = [0, 0, time_parts[0]] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Dict = int(time_parts[0] ), int(time_parts[1] ), float(time_parts[2] ) total_secs += hours * 3_600 + minutes * 60 + seconds lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = total_secs // 3_600, (total_secs % 3_600) // 60, total_secs % 60 return F"""{int(UpperCamelCase_ )}h{int(UpperCamelCase_ )}m{int(UpperCamelCase_ )}s""" @property def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" return {"type": "header", "text": {"type": "plain_text", "text": self.title}} @property def __UpperCamelCase ( self : int ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": F"""🌞 There were no failures: all {self.n_tests} tests passed. The suite ran in {self.time}.""", "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __UpperCamelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" return { "type": "section", "text": { "type": "plain_text", "text": ( F"""There were {self.n_failures} failures, out of {self.n_tests} tests.\nThe suite ran in""" F""" {self.time}.""" ), "emoji": True, }, "accessory": { "type": "button", "text": {"type": "plain_text", "text": "Check Action results", "emoji": True}, "url": F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } @property def __UpperCamelCase ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ : Any = 40 lowerCamelCase_ : Tuple = {k: v['''failed'''] for k, v in doc_test_results.items() if isinstance(UpperCamelCase_ , UpperCamelCase_ )} lowerCamelCase_ : int = '''''' for category, failures in category_failures.items(): if len(UpperCamelCase_ ) == 0: continue if report != "": report += "\n\n" report += F"""*{category} failures*:""".ljust(line_length // 2 ).rjust(line_length // 2 ) + "\n" report += "`" report += "`\n`".join(UpperCamelCase_ ) report += "`" return { "type": "section", "text": { "type": "mrkdwn", "text": F"""The following examples had failures:\n\n\n{report}\n""", }, } @property def __UpperCamelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_ : str = [self.header] if self.n_failures > 0: blocks.append(self.failures ) if self.n_failures > 0: blocks.extend([self.category_failures] ) if self.n_failures == 0: blocks.append(self.no_failures ) return json.dumps(UpperCamelCase_ ) @staticmethod def __UpperCamelCase ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Any = [ { '''type''': '''section''', '''text''': { '''type''': '''plain_text''', '''text''': '''There was an issue running the tests.''', }, '''accessory''': { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''Check Action results''', '''emoji''': True}, '''url''': F"""https://github.com/huggingface/transformers/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } ] print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(UpperCamelCase_ )} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text='''There was an issue running the tests.''' , blocks=UpperCamelCase_ , ) def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" print('''Sending the following payload''' ) print(json.dumps({'''blocks''': json.loads(self.payload )} ) ) lowerCamelCase_ : Optional[int] = F"""{self.n_failures} failures out of {self.n_tests} tests,""" if self.n_failures else '''All tests passed.''' lowerCamelCase_ : Union[str, Any] = client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , blocks=self.payload , text=UpperCamelCase_ , ) def __UpperCamelCase ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : str = '''''' for key, value in failures.items(): lowerCamelCase_ : List[Any] = value[:200] + ''' [Truncated]''' if len(UpperCamelCase_ ) > 250 else value failures_text += F"""*{key}*\n_{value}_\n\n""" lowerCamelCase_ : List[str] = job_name lowerCamelCase_ : List[str] = {'''type''': '''section''', '''text''': {'''type''': '''mrkdwn''', '''text''': text}} if job_link is not None: lowerCamelCase_ : List[str] = { '''type''': '''button''', '''text''': {'''type''': '''plain_text''', '''text''': '''GitHub Action job''', '''emoji''': True}, '''url''': job_link, } return [ {"type": "header", "text": {"type": "plain_text", "text": title.upper(), "emoji": True}}, content, {"type": "section", "text": {"type": "mrkdwn", "text": failures_text}}, ] def __UpperCamelCase ( self : Dict ) -> List[str]: """simple docstring""" if self.thread_ts is None: raise ValueError('''Can only post reply if a post has been made.''' ) lowerCamelCase_ : Dict = self.doc_test_results.pop('''job_link''' ) self.doc_test_results.pop('''failures''' ) self.doc_test_results.pop('''success''' ) self.doc_test_results.pop('''time_spent''' ) lowerCamelCase_ : List[Any] = sorted(self.doc_test_results.items() , key=lambda UpperCamelCase_ : t[0] ) for job, job_result in sorted_dict: if len(job_result['''failures'''] ): lowerCamelCase_ : str = F"""*Num failures* :{len(job_result['failed'] )} \n""" lowerCamelCase_ : Any = job_result['''failures'''] lowerCamelCase_ : Any = self.get_reply_blocks(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , text=UpperCamelCase_ ) print('''Sending the following reply''' ) print(json.dumps({'''blocks''': blocks} ) ) client.chat_postMessage( channel=os.environ['''CI_SLACK_CHANNEL_ID_DAILY'''] , text=F"""Results for {job}""" , blocks=UpperCamelCase_ , thread_ts=self.thread_ts['''ts'''] , ) time.sleep(1 ) def __snake_case (): """simple docstring""" lowerCamelCase_ : Any = os.environ['''GITHUB_RUN_ID'''] lowerCamelCase_ : Dict = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{run_id}/jobs?per_page=100""" lowerCamelCase_ : Tuple = requests.get(__UpperCAmelCase ).json() lowerCamelCase_ : Union[str, Any] = {} try: jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) lowerCamelCase_ : Union[str, Any] = math.ceil((result['''total_count'''] - 100) / 100 ) for i in range(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = requests.get(url + F"""&page={i + 2}""" ).json() jobs.update({job['''name''']: job['''html_url'''] for job in result['''jobs''']} ) return jobs except Exception as e: print('''Unknown error, could not fetch links.''' , __UpperCAmelCase ) return {} def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : List[Any] = {} if os.path.exists(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = os.listdir(__UpperCAmelCase ) for file in files: try: with open(os.path.join(__UpperCAmelCase , __UpperCAmelCase ) , encoding='''utf-8''' ) as f: lowerCamelCase_ : str = f.read() except UnicodeDecodeError as e: raise ValueError(F"""Could not open {os.path.join(__UpperCAmelCase , __UpperCAmelCase )}.""" ) from e return _artifact def __snake_case (): """simple docstring""" class lowerCAmelCase__ : def __init__( self : Any , UpperCamelCase_ : str ) -> int: """simple docstring""" lowerCamelCase_ : Optional[int] = name lowerCamelCase_ : str = [] def __str__( self : int ) -> Tuple: """simple docstring""" return self.name def __UpperCamelCase ( self : List[str] , UpperCamelCase_ : str ) -> List[str]: """simple docstring""" self.paths.append({'''name''': self.name, '''path''': path} ) lowerCamelCase_ : Dict[str, Artifact] = {} lowerCamelCase_ : List[str] = filter(os.path.isdir , os.listdir() ) for directory in directories: lowerCamelCase_ : List[Any] = directory if artifact_name not in _available_artifacts: lowerCamelCase_ : List[Any] = Artifact(__UpperCAmelCase ) _available_artifacts[artifact_name].add_path(__UpperCAmelCase ) return _available_artifacts if __name__ == "__main__": __lowerCamelCase : List[Any] = get_job_links() __lowerCamelCase : str = retrieve_available_artifacts() __lowerCamelCase : Tuple = collections.OrderedDict( [ ("""*.py""", """API Examples"""), ("""*.md""", """MD Examples"""), ] ) # This dict will contain all the information relative to each doc test category: # - failed: list of failed tests # - failures: dict in the format 'test': 'error_message' __lowerCamelCase : Optional[Any] = { v: { """failed""": [], """failures""": {}, } for v in docs.values() } # Link to the GitHub Action job __lowerCamelCase : str = github_actions_job_links.get("""run_doctests""") __lowerCamelCase : Optional[int] = available_artifacts["""doc_tests_gpu_test_reports"""].paths[0] __lowerCamelCase : Tuple = retrieve_artifact(artifact_path["""name"""]) if "stats" in artifact: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = handle_test_results(artifact["""stats"""]) __lowerCamelCase : Union[str, Any] = failed __lowerCamelCase : str = success __lowerCamelCase : int = time_spent[1:-1] + """, """ __lowerCamelCase : List[Any] = extract_first_line_failure(artifact["""failures_short"""]) for line in artifact["summary_short"].split("""\n"""): if re.search("""FAILED""", line): __lowerCamelCase : List[Any] = line.replace("""FAILED """, """""") __lowerCamelCase : List[str] = line.split()[0].replace("""\n""", """""") if "::" in line: __lowerCamelCase , __lowerCamelCase : Optional[Any] = line.split("""::""") else: __lowerCamelCase , __lowerCamelCase : str = line, line for file_regex in docs.keys(): if fnmatch(file_path, file_regex): __lowerCamelCase : Tuple = docs[file_regex] doc_test_results[category]["failed"].append(test) __lowerCamelCase : List[Any] = all_failures[test] if test in all_failures else """N/A""" __lowerCamelCase : Optional[int] = failure break __lowerCamelCase : Dict = Message("""🤗 Results of the doc tests.""", doc_test_results) message.post() message.post_reply()
501
1
'''simple docstring''' import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) UpperCamelCase_ = logging.getLogger(__name__) UpperCamelCase_ = tf.data.AUTOTUNE def _lowerCAmelCase ( ) -> Any: lowercase : Dict =argparse.ArgumentParser(description='''Train a masked language model on TPU.''' ) parser.add_argument( '''--pretrained_model_config''' , type=__magic_name__ , default='''roberta-base''' , help='''The model config to use. Note that we don\'t copy the model\'s weights, only the config!''' , ) parser.add_argument( '''--tokenizer''' , type=__magic_name__ , default='''unigram-tokenizer-wikitext''' , help='''The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.''' , ) parser.add_argument( '''--per_replica_batch_size''' , type=__magic_name__ , default=8 , help='''Batch size per TPU core.''' , ) parser.add_argument( '''--no_tpu''' , action='''store_true''' , help='''If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.''' , ) parser.add_argument( '''--tpu_name''' , type=__magic_name__ , help='''Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.''' , default='''local''' , ) parser.add_argument( '''--tpu_zone''' , type=__magic_name__ , help='''Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.''' , ) parser.add_argument( '''--gcp_project''' , type=__magic_name__ , help='''Google cloud project name. Only used for non-Colab TPU nodes.''' ) parser.add_argument( '''--bfloat16''' , action='''store_true''' , help='''Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.''' , ) parser.add_argument( '''--train_dataset''' , type=__magic_name__ , help='''Path to training dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--shuffle_buffer_size''' , type=__magic_name__ , default=2**18 , help='''Size of the shuffle buffer (in samples)''' , ) parser.add_argument( '''--eval_dataset''' , type=__magic_name__ , help='''Path to evaluation dataset to load. If the path begins with `gs://`''' ''' then the dataset will be loaded from a Google Cloud Storage bucket.''' , ) parser.add_argument( '''--num_epochs''' , type=__magic_name__ , default=1 , help='''Number of epochs to train for.''' , ) parser.add_argument( '''--learning_rate''' , type=__magic_name__ , default=1E-4 , help='''Learning rate to use for training.''' , ) parser.add_argument( '''--weight_decay_rate''' , type=__magic_name__ , default=1E-3 , help='''Weight decay rate to use for training.''' , ) parser.add_argument( '''--max_length''' , type=__magic_name__ , default=512 , help='''Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py''' , ) parser.add_argument( '''--mlm_probability''' , type=__magic_name__ , default=0.1_5 , help='''Fraction of tokens to mask during training.''' , ) parser.add_argument('''--output_dir''' , type=__magic_name__ , required=__magic_name__ , help='''Path to save model checkpoints to.''' ) parser.add_argument('''--hub_model_id''' , type=__magic_name__ , help='''Model ID to upload to on the Hugging Face Hub.''' ) lowercase : Union[str, Any] =parser.parse_args() return args def _lowerCAmelCase ( __magic_name__ : List[str] ) -> List[Any]: try: if args.tpu_name: lowercase : Dict =tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name , zone=args.tpu_zone , project=args.gcp_project ) else: lowercase : Optional[int] =tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( '''Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or ''' '''--gcp_project. When running on a TPU VM, use --tpu_name local.''' ) tf.config.experimental_connect_to_cluster(__magic_name__ ) tf.tpu.experimental.initialize_tpu_system(__magic_name__ ) return tpu def _lowerCAmelCase ( __magic_name__ : Tuple ) -> Union[str, Any]: lowercase : str =0 for file in file_list: lowercase : List[str] =file.split('''/''' )[-1] lowercase : Union[str, Any] =re.search(R'''-\d+-(\d+)\.tfrecord''' , __magic_name__ ).group(1 ) lowercase : int =int(__magic_name__ ) num_samples += sample_count return num_samples def _lowerCAmelCase ( __magic_name__ : List[str] , __magic_name__ : Union[str, Any] , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ) -> str: lowercase : int =count_samples(__magic_name__ ) lowercase : Union[str, Any] =tf.data.Dataset.from_tensor_slices(__magic_name__ ) if shuffle: lowercase : Union[str, Any] =dataset.shuffle(len(__magic_name__ ) ) lowercase : Any =tf.data.TFRecordDataset(__magic_name__ , num_parallel_reads=__magic_name__ ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here lowercase : Optional[int] =dataset.apply(tf.data.experimental.assert_cardinality(__magic_name__ ) ) lowercase : str =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) if shuffle: assert shuffle_buffer_size is not None lowercase : int =dataset.shuffle(args.shuffle_buffer_size ) lowercase : Optional[int] =dataset.batch(__magic_name__ , drop_remainder=__magic_name__ ) lowercase : int =dataset.map(__magic_name__ , num_parallel_calls=__magic_name__ ) lowercase : Union[str, Any] =dataset.prefetch(__magic_name__ ) return dataset def _lowerCAmelCase ( __magic_name__ : Any ) -> str: if not args.no_tpu: lowercase : Optional[Any] =initialize_tpu(__magic_name__ ) lowercase : Any =tf.distribute.TPUStrategy(__magic_name__ ) else: lowercase : Optional[Any] =tf.distribute.OneDeviceStrategy(device='''/gpu:0''' ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy('''mixed_bfloat16''' ) lowercase : Any =AutoTokenizer.from_pretrained(args.tokenizer ) lowercase : Union[str, Any] =AutoConfig.from_pretrained(args.pretrained_model_config ) lowercase : Optional[Any] =tokenizer.vocab_size lowercase : str =tf.io.gfile.glob(os.path.join(args.train_dataset , '''*.tfrecord''' ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) lowercase : Optional[int] =tf.io.gfile.glob(os.path.join(args.eval_dataset , '''*.tfrecord''' ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) lowercase : Any =count_samples(__magic_name__ ) lowercase : str =num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) lowercase : Union[str, Any] =steps_per_epoch * args.num_epochs with strategy.scope(): lowercase : List[Any] =TFAutoModelForMaskedLM.from_config(__magic_name__ ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built lowercase , lowercase : Dict =create_optimizer( num_train_steps=__magic_name__ , num_warmup_steps=total_train_steps // 20 , init_lr=args.learning_rate , weight_decay_rate=args.weight_decay_rate , ) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=__magic_name__ , metrics=['''accuracy'''] ) def decode_fn(__magic_name__ : Optional[Any] ): lowercase : Union[str, Any] ={ '''input_ids''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), '''attention_mask''': tf.io.FixedLenFeature(dtype=tf.intaa , shape=(args.max_length,) ), } return tf.io.parse_single_example(__magic_name__ , __magic_name__ ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. lowercase : str =DataCollatorForLanguageModeling( tokenizer=__magic_name__ , mlm_probability=args.mlm_probability , mlm=__magic_name__ , return_tensors='''tf''' ) def mask_with_collator(__magic_name__ : Dict ): # TF really needs an isin() function lowercase : int =( ~tf.cast(batch['''attention_mask'''] , tf.bool ) | (batch['''input_ids'''] == tokenizer.cls_token_id) | (batch['''input_ids'''] == tokenizer.sep_token_id) ) lowercase , lowercase : Union[str, Any] =data_collator.tf_mask_tokens( batch['''input_ids'''] , vocab_size=len(__magic_name__ ) , mask_token_id=tokenizer.mask_token_id , special_tokens_mask=__magic_name__ , ) return batch lowercase : List[str] =args.per_replica_batch_size * strategy.num_replicas_in_sync lowercase : Dict =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , shuffle_buffer_size=args.shuffle_buffer_size , ) lowercase : Union[str, Any] =prepare_dataset( __magic_name__ , decode_fn=__magic_name__ , mask_fn=__magic_name__ , batch_size=__magic_name__ , shuffle=__magic_name__ , ) lowercase : Tuple =[] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir , hub_model_id=args.hub_model_id , tokenizer=__magic_name__ ) ) model.fit( __magic_name__ , validation_data=__magic_name__ , epochs=args.num_epochs , callbacks=__magic_name__ , ) model.save_pretrained(args.output_dir ) if __name__ == "__main__": UpperCamelCase_ = parse_args() main(args)
88
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
88
1
'''simple docstring''' def _lowercase ( UpperCamelCase__ : Optional[Any] ): __A : Dict = 1 __A : Dict = 2 while i * i <= n: __A : Any = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _lowercase ( ): __A : List[Any] = 1 __A : Optional[Any] = 1 while True: i += 1 t_num += i if count_divisors(UpperCamelCase__ ) > 500: break return t_num if __name__ == "__main__": print(solution())
365
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class _lowerCamelCase ( snake_case_ ): '''simple docstring''' __lowercase : torch.FloatTensor class _lowerCamelCase ( snake_case_ , snake_case_ ): '''simple docstring''' @register_to_config def __init__( self , __lowercase = 16 , __lowercase = 88 , __lowercase = None , __lowercase = None , __lowercase = 1 , __lowercase = 0.0 , __lowercase = 32 , __lowercase = None , __lowercase = False , __lowercase = None , __lowercase = "geglu" , __lowercase = True , __lowercase = True , ): """simple docstring""" super().__init__() __A : Optional[int] = num_attention_heads __A : Dict = attention_head_dim __A : Optional[int] = num_attention_heads * attention_head_dim __A : Optional[Any] = in_channels __A : Optional[int] = torch.nn.GroupNorm(num_groups=__lowercase , num_channels=__lowercase , eps=1E-6 , affine=__lowercase ) __A : Optional[Any] = nn.Linear(__lowercase , __lowercase ) # 3. Define transformers blocks __A : List[Any] = nn.ModuleList( [ BasicTransformerBlock( __lowercase , __lowercase , __lowercase , dropout=__lowercase , cross_attention_dim=__lowercase , activation_fn=__lowercase , attention_bias=__lowercase , double_self_attention=__lowercase , norm_elementwise_affine=__lowercase , ) for d in range(__lowercase ) ] ) __A : Union[str, Any] = nn.Linear(__lowercase , __lowercase ) def snake_case__ ( self , __lowercase , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase=1 , __lowercase=None , __lowercase = True , ): """simple docstring""" __A ,__A ,__A ,__A : int = hidden_states.shape __A : Union[str, Any] = batch_frames // num_frames __A : Union[str, Any] = hidden_states __A : List[str] = hidden_states[None, :].reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __A : List[Any] = hidden_states.permute(0 , 2 , 1 , 3 , 4 ) __A : Dict = self.norm(__lowercase ) __A : List[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1 ).reshape(batch_size * height * width , __lowercase , __lowercase ) __A : Optional[Any] = self.proj_in(__lowercase ) # 2. Blocks for block in self.transformer_blocks: __A : List[Any] = block( __lowercase , encoder_hidden_states=__lowercase , timestep=__lowercase , cross_attention_kwargs=__lowercase , class_labels=__lowercase , ) # 3. Output __A : Optional[int] = self.proj_out(__lowercase ) __A : int = ( hidden_states[None, None, :] .reshape(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) .permute(0 , 3 , 4 , 1 , 2 ) .contiguous() ) __A : List[str] = hidden_states.reshape(__lowercase , __lowercase , __lowercase , __lowercase ) __A : str = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=__lowercase )
365
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() a= logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) a= [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.encoder.norm.weight''', '''encoder.layernorm.weight'''), ('''transformer.encoder.norm.bias''', '''encoder.layernorm.bias'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ] ) def _UpperCamelCase ( _a : Optional[Any] , _a : Optional[int] , _a : List[Any] ): """simple docstring""" __UpperCamelCase : Tuple = state_dict.pop(_a ) __UpperCamelCase : Dict = val def _UpperCamelCase ( _a : Dict ): """simple docstring""" __UpperCamelCase : str = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __UpperCamelCase : List[Any] = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __UpperCamelCase : Any = value else: __UpperCamelCase : List[Any] = value return new_state_dict def _UpperCamelCase ( _a : Tuple ): """simple docstring""" __UpperCamelCase : int = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __UpperCamelCase : List[str] = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCamelCase : Any = state_dict.pop(f"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase : List[Any] = in_proj_weight[:2_5_6, :] __UpperCamelCase : List[str] = in_proj_bias[:2_5_6] __UpperCamelCase : Union[str, Any] = in_proj_weight[2_5_6:5_1_2, :] __UpperCamelCase : str = in_proj_bias[2_5_6:5_1_2] __UpperCamelCase : Dict = in_proj_weight[-2_5_6:, :] __UpperCamelCase : Optional[Any] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase : List[str] = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __UpperCamelCase : str = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase : Tuple = in_proj_weight[:2_5_6, :] __UpperCamelCase : int = in_proj_bias[:2_5_6] __UpperCamelCase : List[Any] = in_proj_weight[2_5_6:5_1_2, :] __UpperCamelCase : Union[str, Any] = in_proj_bias[2_5_6:5_1_2] __UpperCamelCase : Optional[Any] = in_proj_weight[-2_5_6:, :] __UpperCamelCase : List[str] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention __UpperCamelCase : List[str] = state_dict.pop( f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __UpperCamelCase : Tuple = state_dict.pop(f"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __UpperCamelCase : List[Any] = in_proj_weight_cross_attn[:2_5_6, :] __UpperCamelCase : Optional[int] = in_proj_bias_cross_attn[:2_5_6] __UpperCamelCase : List[Any] = in_proj_weight_cross_attn[2_5_6:5_1_2, :] __UpperCamelCase : Tuple = in_proj_bias_cross_attn[2_5_6:5_1_2] __UpperCamelCase : Optional[int] = in_proj_weight_cross_attn[-2_5_6:, :] __UpperCamelCase : Tuple = in_proj_bias_cross_attn[-2_5_6:] def _UpperCamelCase ( _a : List[Any] , _a : str ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : str = image.size __UpperCamelCase : int = max(_a , _a ) __UpperCamelCase : List[str] = 8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 __UpperCamelCase : Union[str, Any] = target_max_size / current_max_size __UpperCamelCase : Tuple = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _UpperCamelCase ( _a : List[str] ): """simple docstring""" __UpperCamelCase : int = F.to_tensor(_a ) __UpperCamelCase : str = F.normalize(_a , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _UpperCamelCase ( _a : Union[str, Any] , _a : Union[str, Any] , _a : List[Any] ): """simple docstring""" logger.info('Converting model...' ) # load original state dict __UpperCamelCase : Any = torch.hub.load_state_dict_from_url(_a , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(_a , _a , _a ) __UpperCamelCase : str = rename_backbone_keys(_a ) # query, key and value matrices need special treatment read_in_q_k_v(_a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __UpperCamelCase : Dict = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __UpperCamelCase : str = state_dict.pop(_a ) __UpperCamelCase : Tuple = val # create HuggingFace model and load state dict __UpperCamelCase : List[Any] = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __UpperCamelCase : Dict = 1_5 __UpperCamelCase : int = 2 __UpperCamelCase : str = {0: 'table', 1: 'table rotated'} __UpperCamelCase : str = idalabel __UpperCamelCase : int = {v: k for k, v in idalabel.items()} else: __UpperCamelCase : Any = 1_2_5 __UpperCamelCase : Tuple = 6 __UpperCamelCase : List[Any] = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } __UpperCamelCase : Optional[Any] = idalabel __UpperCamelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCamelCase : Any = DetrImageProcessor( format='coco_detection' , max_size=8_0_0 if 'detection' in checkpoint_url else 1_0_0_0 ) __UpperCamelCase : Any = TableTransformerForObjectDetection(_a ) model.load_state_dict(_a ) model.eval() # verify our conversion __UpperCamelCase : Any = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' __UpperCamelCase : Dict = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=_a ) __UpperCamelCase : Any = Image.open(_a ).convert('RGB' ) __UpperCamelCase : Tuple = normalize(resize(_a , _a ) ).unsqueeze(0 ) __UpperCamelCase : List[Any] = model(_a ) if "detection" in checkpoint_url: __UpperCamelCase : List[Any] = (1, 1_5, 3) __UpperCamelCase : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) __UpperCamelCase : List[Any] = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: __UpperCamelCase : int = (1, 1_2_5, 7) __UpperCamelCase : List[Any] = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) __UpperCamelCase : str = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , _a , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , _a , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(_a ).mkdir(exist_ok=_a ) model.save_pretrained(_a ) image_processor.save_pretrained(_a ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) __UpperCamelCase : Union[str, Any] = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(_a ) image_processor.push_to_hub(_a ) if __name__ == "__main__": a= argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', type=str, choices=[ '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth''', '''https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth''', ], help='''URL of the Table Transformer checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a= parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
287
'''simple docstring''' import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() a= { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def _UpperCamelCase ( _a : int , _a : Union[str, Any] , _a : str , _a : List[str] , _a : Dict=False , _a : str=True ): """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __UpperCamelCase : List[Any] = cached_file(_a , _a , force_download=not use_cached_models ) __UpperCamelCase : Union[str, Any] = config_class.from_json_file(_a ) __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : List[str] = True print(f"""Building TensorFlow model from configuration: {config}""" ) __UpperCamelCase : Optional[int] = model_class(_a ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __UpperCamelCase : Union[str, Any] = cached_file( _a , _a , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __UpperCamelCase : Any = load_pytorch_checkpoint_in_tfa_model(_a , _a ) if compare_with_pt_model: __UpperCamelCase : Dict = tf_model(tf_model.dummy_inputs , training=_a ) # build the network __UpperCamelCase : List[str] = torch.load(_a , map_location='cpu' ) __UpperCamelCase : Union[str, Any] = pt_model_class.from_pretrained( pretrained_model_name_or_path=_a , config=_a , state_dict=_a ) with torch.no_grad(): __UpperCamelCase : Any = pt_model(**pt_model.dummy_inputs ) __UpperCamelCase : Optional[Any] = pto[0].numpy() __UpperCamelCase : int = tfo[0].numpy() __UpperCamelCase : Union[str, Any] = np.amax(np.abs(np_pt - np_tf ) ) print(f"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, f"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(f"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(_a , save_format='h5' ) def _UpperCamelCase ( _a : str , _a : Optional[Any] , _a : Dict=None , _a : Tuple=None , _a : int=False , _a : Union[str, Any]=False , _a : int=False , _a : List[str]=False , ): """simple docstring""" if args_model_type is None: __UpperCamelCase : Dict = list(MODEL_CLASSES.keys() ) else: __UpperCamelCase : Union[str, Any] = [args_model_type] for j, model_type in enumerate(_a , start=1 ): print('=' * 1_0_0 ) print(f""" Converting model type {j}/{len(_a )}: {model_type}""" ) print('=' * 1_0_0 ) if model_type not in MODEL_CLASSES: raise ValueError(f"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : str = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __UpperCamelCase : List[str] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __UpperCamelCase : Optional[int] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(_a , _a ) , start=1 ): print('-' * 1_0_0 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue __UpperCamelCase : Dict = model_shortcut_name elif only_convert_finetuned_models: print(f""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( f""" Converting checkpoint {i}/{len(_a )}: {model_shortcut_name} - model_type {model_type}""" ) print('-' * 1_0_0 ) if config_shortcut_name in aws_config_map: __UpperCamelCase : Tuple = cached_file(_a , _a , force_download=not use_cached_models ) else: __UpperCamelCase : Dict = config_shortcut_name if model_shortcut_name in aws_model_maps: __UpperCamelCase : Dict = cached_file(_a , _a , force_download=not use_cached_models ) else: __UpperCamelCase : Tuple = model_shortcut_name if os.path.isfile(_a ): __UpperCamelCase : int = 'converted_model' convert_pt_checkpoint_to_tf( model_type=_a , pytorch_checkpoint_path=_a , config_file=_a , tf_dump_path=os.path.join(_a , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=_a , ) if remove_cached_files: os.remove(_a ) os.remove(_a ) if __name__ == "__main__": a= argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') a= parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
287
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ : str = { "configuration_layoutlmv3": [ "LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv3Config", "LayoutLMv3OnnxConfig", ], "processing_layoutlmv3": ["LayoutLMv3Processor"], "tokenization_layoutlmv3": ["LayoutLMv3Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : int = ["LayoutLMv3TokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Dict = [ "LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv3ForQuestionAnswering", "LayoutLMv3ForSequenceClassification", "LayoutLMv3ForTokenClassification", "LayoutLMv3Model", "LayoutLMv3PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ "TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLayoutLMv3ForQuestionAnswering", "TFLayoutLMv3ForSequenceClassification", "TFLayoutLMv3ForTokenClassification", "TFLayoutLMv3Model", "TFLayoutLMv3PreTrainedModel", ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : List[str] = ["LayoutLMv3FeatureExtractor"] SCREAMING_SNAKE_CASE__ : List[str] = ["LayoutLMv3ImageProcessor"] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
85
A = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A = [{'type': 'code', 'content': INSTALL_CONTENT}] A = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
544
0
import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE__:Any = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE__:Optional[Any] = False if NLTK_AVAILABLE: with FileLock(""".lock""") as lock: nltk.download("""punkt""", quiet=True) def _lowerCamelCase( a ): re.sub("<n>" , "" , UpperCAmelCase__ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(UpperCAmelCase__ ) )
708
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class snake_case__ ( snake_case_ ): def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) __a = input_file.read() __a = regexp.search(lowerCamelCase ) return match def a__ ( self , lowerCamelCase ): with open(lowerCamelCase , encoding="utf-8" ) as input_file: __a = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) __a = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __a = regexp.finditer(lowerCamelCase ) __a = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase ) ): raise AssertionError(F"open(...) must use utf-8 encoding in {dataset}" ) def a__ ( self ): __a = Path("./datasets" ) __a = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase ) ): raise AssertionError(F"print statement found in {dataset}. Use datasets.logger/logging instead." )
67
0
"""simple docstring""" from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _UpperCamelCase ( __snake_case): def A (self , lowerCamelCase__ ): """simple docstring""" return 0.0 def _SCREAMING_SNAKE_CASE ( UpperCamelCase : np.ndarray , UpperCamelCase : int ): A__ = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) A__ = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _SCREAMING_SNAKE_CASE ( UpperCamelCase : FilterType , UpperCamelCase : int ): A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(UpperCamelCase ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.abs(np.fft.fft(UpperCamelCase ) ) A__ = 20 * np.logaa(UpperCamelCase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds A__ = get_bounds(UpperCamelCase , UpperCamelCase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(UpperCamelCase ) plt.show() def _SCREAMING_SNAKE_CASE ( UpperCamelCase : FilterType , UpperCamelCase : int ): A__ = 512 A__ = [1] + [0] * (size - 1) A__ = [filter_type.process(UpperCamelCase ) for item in inputs] A__ = [0] * (samplerate - size) # zero-padding outputs += filler A__ = np.angle(np.fft.fft(UpperCamelCase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(UpperCamelCase , -2 * pi ) ) plt.show()
574
"""simple docstring""" from __future__ import annotations import time lowerCamelCase__ = list[tuple[int, int]] lowerCamelCase__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCamelCase__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _UpperCamelCase : def __init__(self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = pos_x A__ = pos_y A__ = (pos_y, pos_x) A__ = goal_x A__ = goal_y A__ = parent class _UpperCamelCase : def __init__(self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = Node(start[1] , start[0] , goal[1] , goal[0] , lowerCamelCase__ ) A__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , lowerCamelCase__ ) A__ = [self.start] A__ = False def A (self ): """simple docstring""" while self.node_queue: A__ = self.node_queue.pop(0 ) if current_node.pos == self.target.pos: A__ = True return self.retrace_path(lowerCamelCase__ ) A__ = self.get_successors(lowerCamelCase__ ) for node in successors: self.node_queue.append(lowerCamelCase__ ) if not self.reached: return [self.start.pos] return None def A (self , lowerCamelCase__ ): """simple docstring""" A__ = [] for action in delta: A__ = parent.pos_x + action[1] A__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCamelCase__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(lowerCamelCase__ , lowerCamelCase__ , self.target.pos_y , self.target.pos_x , lowerCamelCase__ ) ) return successors def A (self , lowerCamelCase__ ): """simple docstring""" A__ = node A__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) A__ = current_node.parent path.reverse() return path class _UpperCamelCase : def __init__(self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = BreadthFirstSearch(lowerCamelCase__ , lowerCamelCase__ ) A__ = BreadthFirstSearch(lowerCamelCase__ , lowerCamelCase__ ) A__ = False def A (self ): """simple docstring""" while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: A__ = self.fwd_bfs.node_queue.pop(0 ) A__ = self.bwd_bfs.node_queue.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: A__ = True return self.retrace_bidirectional_path( lowerCamelCase__ , lowerCamelCase__ ) A__ = current_bwd_node A__ = current_fwd_node A__ = { self.fwd_bfs: self.fwd_bfs.get_successors(lowerCamelCase__ ), self.bwd_bfs: self.bwd_bfs.get_successors(lowerCamelCase__ ), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(lowerCamelCase__ ) if not self.reached: return [self.fwd_bfs.start.pos] return None def A (self , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" A__ = self.fwd_bfs.retrace_path(lowerCamelCase__ ) A__ = self.bwd_bfs.retrace_path(lowerCamelCase__ ) bwd_path.pop() bwd_path.reverse() A__ = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() lowerCamelCase__ = (0, 0) lowerCamelCase__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) lowerCamelCase__ = time.time() lowerCamelCase__ = BreadthFirstSearch(init, goal) lowerCamelCase__ = bfs.search() lowerCamelCase__ = time.time() - start_bfs_time print("Unidirectional BFS computation time : ", bfs_time) lowerCamelCase__ = time.time() lowerCamelCase__ = BidirectionalBreadthFirstSearch(init, goal) lowerCamelCase__ = bd_bfs.search() lowerCamelCase__ = time.time() - start_bd_bfs_time print("Bidirectional BFS computation time : ", bd_bfs_time)
574
1
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class A__ ( lowercase_ , unittest.TestCase): A_ : Optional[int] = MvpTokenizer A_ : Optional[int] = MvpTokenizerFast A_ : Optional[int] = True A_ : Tuple = filter_roberta_detectors def __lowerCamelCase ( self ): super().setUp() __lowerCAmelCase : Union[str, Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] __lowerCAmelCase : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) __lowerCAmelCase : Tuple = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] __lowerCAmelCase : int = {'unk_token': '<unk>'} __lowerCAmelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_SCREAMING_SNAKE_CASE ) ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , **_SCREAMING_SNAKE_CASE ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE ): return "lower newer", "lower newer" @cached_property def __lowerCamelCase ( self ): return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def __lowerCamelCase ( self ): return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase : Union[str, Any] = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) __lowerCAmelCase : Dict = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Test that special tokens are reset @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : Tuple = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase : Dict = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , _SCREAMING_SNAKE_CASE ) self.assertIn('attention_mask' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('labels' , _SCREAMING_SNAKE_CASE ) self.assertNotIn('decoder_attention_mask' , _SCREAMING_SNAKE_CASE ) @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase : Optional[Any] = tokenizer(text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def __lowerCamelCase ( self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase : Optional[Any] = tokenizer( ['I am a small frog' * 10_24, 'I am a small frog'] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 10_24) ) @require_torch def __lowerCamelCase ( self ): __lowerCAmelCase : int = ['A long paragraph for summarization.'] __lowerCAmelCase : str = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __lowerCAmelCase : Dict = tokenizer(_SCREAMING_SNAKE_CASE , text_target=_SCREAMING_SNAKE_CASE , return_tensors='pt' ) __lowerCAmelCase : Optional[Any] = inputs['input_ids'] __lowerCAmelCase : Union[str, Any] = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): __lowerCAmelCase : List[str] = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[str] = 'A, <mask> AllenNLP sentence.' __lowerCAmelCase : Optional[int] = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) __lowerCAmelCase : Optional[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) __lowerCAmelCase : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
720
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : List[str] = len(_UpperCamelCase ) __lowerCAmelCase : Tuple = [[0] * n for i in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): __lowerCAmelCase : Any = y_points[i] for i in range(2 , _UpperCamelCase ): for j in range(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : int = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
549
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
132
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
0
'''simple docstring''' import csv import tweepy # Twitter API credentials snake_case_ = """""" snake_case_ = """""" snake_case_ = """""" snake_case_ = """""" def __lowercase (_SCREAMING_SNAKE_CASE :str ): SCREAMING_SNAKE_CASE : str = tweepy.OAuthHandler(snake_case__ , snake_case__ ) auth.set_access_token(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE : Optional[int] = tweepy.API(snake_case__ ) # initialize a list to hold all the tweepy Tweets SCREAMING_SNAKE_CASE : Union[str, Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) SCREAMING_SNAKE_CASE : List[str] = api.user_timeline(screen_name=snake_case__ , count=2_00 ) # save most recent tweets alltweets.extend(snake_case__ ) # save the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Optional[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(snake_case__ ) > 0: print(F'''getting tweets before {oldest}''' ) # all subsequent requests use the max_id param to prevent duplicates SCREAMING_SNAKE_CASE : List[Any] = api.user_timeline( screen_name=snake_case__ , count=2_00 , max_id=snake_case__ ) # save most recent tweets alltweets.extend(snake_case__ ) # update the id of the oldest tweet less one SCREAMING_SNAKE_CASE : Optional[int] = alltweets[-1].id - 1 print(F'''...{len(snake_case__ )} tweets downloaded so far''' ) # transform the tweepy tweets into a 2D array that will populate the csv SCREAMING_SNAKE_CASE : Optional[int] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F'''new_{screen_name}_tweets.csv''' , '''w''' ) as f: SCREAMING_SNAKE_CASE : List[str] = csv.writer(snake_case__ ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(snake_case__ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets("""FirePing32""")
706
'''simple docstring''' from __future__ import annotations def __lowercase (_SCREAMING_SNAKE_CASE :int | str ): SCREAMING_SNAKE_CASE : int = str(_SCREAMING_SNAKE_CASE ) return n == n[::-1] def __lowercase (_SCREAMING_SNAKE_CASE :int = 1_00_00_00 ): SCREAMING_SNAKE_CASE : int = 0 for i in range(1 , _SCREAMING_SNAKE_CASE ): if is_palindrome(_SCREAMING_SNAKE_CASE ) and is_palindrome(bin(_SCREAMING_SNAKE_CASE ).split('''b''' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
355
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
136
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=_SCREAMING_SNAKE_CASE ): snake_case = ["speech"] def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): requires_backends(self , ["""speech"""] ) class SCREAMING_SNAKE_CASE__ ( metaclass=_SCREAMING_SNAKE_CASE ): snake_case = ["speech"] def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Dict ): requires_backends(self , ["""speech"""] )
129
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _UpperCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(a_ ) class _snake_case ( a_ ): def __init__( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(**_SCREAMING_SNAKE_CASE ) if self.framework == "tf": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , 'vision' ) self.check_model_type(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' if "text_queries" in kwargs: lowerCAmelCase = kwargs.pop('text_queries' ) if isinstance(_SCREAMING_SNAKE_CASE , (str, Image.Image) ): lowerCAmelCase = {'image': image, 'candidate_labels': candidate_labels} else: lowerCAmelCase = image lowerCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) return results def _SCREAMING_SNAKE_CASE ( self , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {} if "threshold" in kwargs: lowerCAmelCase = kwargs['threshold'] if "top_k" in kwargs: lowerCAmelCase = kwargs['top_k'] return {}, {}, postprocess_params def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = load_image(inputs['image'] ) lowerCAmelCase = inputs['candidate_labels'] if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = candidate_labels.split(',' ) lowerCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) lowerCAmelCase = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=self.framework ) yield { "is_last": i == len(_SCREAMING_SNAKE_CASE ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = model_inputs.pop('target_size' ) lowerCAmelCase = model_inputs.pop('candidate_label' ) lowerCAmelCase = model_inputs.pop('is_last' ) lowerCAmelCase = self.model(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = {'target_size': target_size, 'candidate_label': candidate_label, 'is_last': is_last, **outputs} return model_outputs def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' lowerCAmelCase = [] for model_output in model_outputs: lowerCAmelCase = model_output['candidate_label'] lowerCAmelCase = BaseModelOutput(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.image_processor.post_process_object_detection( outputs=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): lowerCAmelCase = outputs['scores'][index].item() lowerCAmelCase = self._get_bounding_box(outputs['boxes'][index][0] ) lowerCAmelCase = {'score': score, 'label': label, 'box': box} results.append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : x["score"] , reverse=_SCREAMING_SNAKE_CASE ) if top_k: lowerCAmelCase = results[:top_k] return results def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = box.int().tolist() lowerCAmelCase = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
514
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : List[Any] = {"vocab_file": "spiece.model"} _UpperCamelCase : Union[str, Any] = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } _UpperCamelCase : List[Any] = { "AI-Sweden/gpt-sw3-126m": 2048, "AI-Sweden/gpt-sw3-350m": 2048, "AI-Sweden/gpt-sw3-1.6b": 2048, "AI-Sweden/gpt-sw3-6.7b": 2048, "AI-Sweden/gpt-sw3-20b": 2048, } class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs lowerCAmelCase = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) lowerCAmelCase = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing lowerCAmelCase = '<|endoftext|>' if eos_token is None else eos_token lowerCAmelCase = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: lowerCAmelCase = unk_token if pad_token is None else pad_token lowerCAmelCase = eos_token if bos_token is None else bos_token else: lowerCAmelCase = '<pad>' if pad_token is None else pad_token lowerCAmelCase = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = do_lower_case lowerCAmelCase = remove_space lowerCAmelCase = keep_accents lowerCAmelCase = vocab_file lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_SCREAMING_SNAKE_CASE ) # Used for whitespace normalization in input texts # fmt : off lowerCAmelCase = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing lowerCAmelCase = re.compile( F'[{"".join(map(_SCREAMING_SNAKE_CASE , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(1_27 , 1_60 ) ) + [1_60, 1_73, 82_03] ) )}]' ) def __getstate__( self ): '''simple docstring''' lowerCAmelCase = self.__dict__.copy() lowerCAmelCase = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCAmelCase = {} lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return len(self.sp_model ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.non_printing_characters_re.sub('' , _SCREAMING_SNAKE_CASE ) # Normalize whitespaces lowerCAmelCase = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization lowerCAmelCase = unicodedata.normalize('NFC' , _SCREAMING_SNAKE_CASE ) return text def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.preprocess_text(_SCREAMING_SNAKE_CASE ) return self.sp_model.encode(_SCREAMING_SNAKE_CASE , out_type=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) @staticmethod def _SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' return out_string def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = [] lowerCAmelCase = '' lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) + token lowerCAmelCase = True lowerCAmelCase = [] else: current_sub_tokens.append(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = False out_string += self.sp_model.decode(_SCREAMING_SNAKE_CASE ) return out_string def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(_SCREAMING_SNAKE_CASE , 'wb' ) as fi: lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase = self.preprocess_text(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.sp_model.encode(_SCREAMING_SNAKE_CASE ) else: lowerCAmelCase = [self.preprocess_text(_SCREAMING_SNAKE_CASE ) for t in text] lowerCAmelCase = self.sp_model.encode(_SCREAMING_SNAKE_CASE ) if return_tensors is True or return_tensors == "pt": lowerCAmelCase = torch.tensor(_SCREAMING_SNAKE_CASE ) return token_ids def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.decode(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] lowerCAmelCase = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(_SCREAMING_SNAKE_CASE ) + F'{self.bos_token}Bot:' ) return self.encode(text=_SCREAMING_SNAKE_CASE )
514
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :List[str] = { 'facebook/wav2vec2-base-960h': 'https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCAmelCase ( __snake_case ): a: str = "wav2vec2" def __init__( self: Dict , __UpperCamelCase: Optional[int]=32 , __UpperCamelCase: Optional[int]=768 , __UpperCamelCase: Tuple=12 , __UpperCamelCase: List[Any]=12 , __UpperCamelCase: Tuple=3072 , __UpperCamelCase: Any="gelu" , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: Union[str, Any]=0.1 , __UpperCamelCase: int=0.1 , __UpperCamelCase: Tuple=0.0 , __UpperCamelCase: Any=0.0 , __UpperCamelCase: str=0.1 , __UpperCamelCase: str=0.1 , __UpperCamelCase: int=0.0_2 , __UpperCamelCase: Dict=1E-5 , __UpperCamelCase: Union[str, Any]="group" , __UpperCamelCase: List[str]="gelu" , __UpperCamelCase: List[str]=(512, 512, 512, 512, 512, 512, 512) , __UpperCamelCase: List[str]=(5, 2, 2, 2, 2, 2, 2) , __UpperCamelCase: List[Any]=(10, 3, 3, 3, 3, 2, 2) , __UpperCamelCase: Optional[int]=False , __UpperCamelCase: int=128 , __UpperCamelCase: Dict=16 , __UpperCamelCase: List[str]=False , __UpperCamelCase: Optional[Any]=True , __UpperCamelCase: Optional[Any]=0.0_5 , __UpperCamelCase: Union[str, Any]=10 , __UpperCamelCase: Optional[int]=2 , __UpperCamelCase: Union[str, Any]=0.0 , __UpperCamelCase: List[Any]=10 , __UpperCamelCase: Dict=0 , __UpperCamelCase: str=320 , __UpperCamelCase: List[Any]=2 , __UpperCamelCase: str=0.1 , __UpperCamelCase: List[str]=100 , __UpperCamelCase: int=256 , __UpperCamelCase: Any=256 , __UpperCamelCase: Optional[int]=0.1 , __UpperCamelCase: Union[str, Any]="sum" , __UpperCamelCase: Union[str, Any]=False , __UpperCamelCase: Dict=False , __UpperCamelCase: Union[str, Any]=256 , __UpperCamelCase: Optional[int]=(512, 512, 512, 512, 1500) , __UpperCamelCase: str=(5, 3, 3, 1, 1) , __UpperCamelCase: int=(1, 2, 3, 1, 1) , __UpperCamelCase: int=512 , __UpperCamelCase: List[str]=0 , __UpperCamelCase: Union[str, Any]=1 , __UpperCamelCase: Optional[int]=2 , __UpperCamelCase: Union[str, Any]=False , __UpperCamelCase: Any=3 , __UpperCamelCase: Any=2 , __UpperCamelCase: List[str]=3 , __UpperCamelCase: Union[str, Any]=None , __UpperCamelCase: Optional[int]=None , **__UpperCamelCase: Union[str, Any] , ): super().__init__(**__UpperCamelCase , pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCamelCase ) _a = list(__UpperCamelCase ) _a = list(__UpperCamelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # adapter _a = add_adapter _a = adapter_kernel_size _a = adapter_stride _a = num_adapter_layers _a = output_hidden_size or hidden_size _a = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. _a = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. _a = list(__UpperCamelCase ) _a = list(__UpperCamelCase ) _a = list(__UpperCamelCase ) _a = xvector_output_dim @property def _A ( self: Optional[int] ): return functools.reduce(operator.mul , self.conv_stride , 1 )
487
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase :str = logging.get_logger(__name__) class UpperCAmelCase ( __snake_case ): a: Union[str, Any] = ["input_values", "attention_mask"] def __init__( self: Dict , __UpperCamelCase: int = 1 , __UpperCamelCase: int = 1_6000 , __UpperCamelCase: float = 0.0 , __UpperCamelCase: bool = False , __UpperCamelCase: int = 80 , __UpperCamelCase: int = 16 , __UpperCamelCase: int = 64 , __UpperCamelCase: str = "hann_window" , __UpperCamelCase: float = 1.0 , __UpperCamelCase: float = 80 , __UpperCamelCase: float = 7600 , __UpperCamelCase: float = 1E-10 , __UpperCamelCase: int = 2 , __UpperCamelCase: bool = True , **__UpperCamelCase: List[Any] , ): super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) _a = do_normalize _a = return_attention_mask _a = num_mel_bins _a = hop_length _a = win_length _a = win_function _a = frame_signal_scale _a = fmin _a = fmax _a = mel_floor _a = reduction_factor _a = win_length * sampling_rate // 1000 _a = hop_length * sampling_rate // 1000 _a = optimal_fft_length(self.sample_size ) _a = (self.n_fft // 2) + 1 _a = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) _a = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , __UpperCamelCase , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , __UpperCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _A ( __UpperCamelCase: List[np.ndarray] , __UpperCamelCase: List[np.ndarray] , __UpperCamelCase: float = 0.0 ): if attention_mask is not None: _a = np.array(__UpperCamelCase , np.intaa ) _a = [] for vector, length in zip(__UpperCamelCase , attention_mask.sum(-1 ) ): _a = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _a = padding_value normed_input_values.append(__UpperCamelCase ) else: _a = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def _A ( self: Optional[Any] , __UpperCamelCase: np.ndarray , ): _a = spectrogram( __UpperCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self: Optional[Any] , __UpperCamelCase: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCamelCase: Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __UpperCamelCase: Union[bool, str, PaddingStrategy] = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: bool = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , __UpperCamelCase: Optional[int] = None , **__UpperCamelCase: Any , ): if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: _a = self._process_audio( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ) else: _a = None if audio_target is not None: _a = self._process_audio( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase , ) if inputs is None: return inputs_target else: _a = inputs_target['''input_values'''] _a = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: _a = decoder_attention_mask return inputs def _A ( self: Optional[Any] , __UpperCamelCase: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase: bool = False , __UpperCamelCase: Union[bool, str, PaddingStrategy] = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: bool = False , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: Optional[bool] = None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , **__UpperCamelCase: Optional[int] , ): _a = isinstance(__UpperCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _a = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _a = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): _a = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _a = speech.astype(np.floataa ) # always return batch if not is_batched: _a = [speech] # needed to make pad() work on spectrogram inputs _a = self.feature_size # convert into correct format for padding if is_target: _a = [self._extract_mel_features(__UpperCamelCase ) for waveform in speech] _a = BatchFeature({'''input_values''': features} ) _a = self.num_mel_bins else: _a = BatchFeature({'''input_values''': speech} ) _a = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) _a = feature_size_hack # convert input values to correct format _a = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): _a = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__UpperCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _a = [array.astype(np.floataa ) for array in input_values] elif isinstance(__UpperCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _a = input_values.astype(np.floataa ) # convert attention_mask to correct format _a = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: _a = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _a = ( attention_mask if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _a = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=__UpperCamelCase , padding_value=self.padding_value ) if return_tensors is not None: _a = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs def _A ( self: Optional[int] ): _a = super().to_dict() # Don't serialize these as they are derived from the other properties. _a = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
487
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a (lowerCamelCase ): def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(__magic_name__ , '''num_heads''' ) ) class __a : def __init__( self : List[str] , __magic_name__ : Dict , __magic_name__ : Tuple=13 , __magic_name__ : Any=64 , __magic_name__ : Optional[Any]=3 , __magic_name__ : Tuple=[16, 48, 96] , __magic_name__ : Optional[Any]=[1, 3, 6] , __magic_name__ : str=[1, 2, 10] , __magic_name__ : str=[7, 3, 3] , __magic_name__ : Dict=[4, 2, 2] , __magic_name__ : Any=[2, 1, 1] , __magic_name__ : str=[2, 2, 2] , __magic_name__ : Union[str, Any]=[False, False, True] , __magic_name__ : Dict=[0.0, 0.0, 0.0] , __magic_name__ : Optional[int]=0.0_2 , __magic_name__ : Dict=1E-12 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[str]=True , __magic_name__ : int=2 , ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = parent UpperCAmelCase_ : int = batch_size UpperCAmelCase_ : Dict = image_size UpperCAmelCase_ : Tuple = patch_sizes UpperCAmelCase_ : List[Any] = patch_stride UpperCAmelCase_ : Dict = patch_padding UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Optional[Any] = use_labels UpperCAmelCase_ : Union[str, Any] = num_labels UpperCAmelCase_ : Any = num_channels UpperCAmelCase_ : Union[str, Any] = embed_dim UpperCAmelCase_ : str = num_heads UpperCAmelCase_ : int = stride_kv UpperCAmelCase_ : Any = depth UpperCAmelCase_ : Tuple = cls_token UpperCAmelCase_ : str = attention_drop_rate UpperCAmelCase_ : Any = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps def UpperCAmelCase__ ( self : int ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase_ : Any = None if self.use_labels: UpperCAmelCase_ : int = ids_tensor([self.batch_size] , self.num_labels ) UpperCAmelCase_ : int = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : str ) -> Optional[Any]: """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self : str , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase_ : int = CvtModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : Any = model(__magic_name__ ) UpperCAmelCase_ : Optional[int] = (self.image_size, self.image_size) UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = image_size[0], image_size[1] for i in range(len(self.depth ) ): UpperCAmelCase_ : Tuple = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) UpperCAmelCase_ : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def UpperCAmelCase__ ( self : int , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : int ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Any = self.num_labels UpperCAmelCase_ : List[str] = CvtForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() UpperCAmelCase_ : str = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Any = self.prepare_config_and_inputs() UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = config_and_inputs UpperCAmelCase_ : Union[str, Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __a (lowerCamelCase , lowerCamelCase , unittest.TestCase ): __a : Union[str, Any] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __a : Union[str, Any] = ( {"feature-extraction": CvtModel, "image-classification": CvtForImageClassification} if is_torch_available() else {} ) __a : Dict = False __a : List[Any] = False __a : Optional[Any] = False __a : List[str] = False __a : str = False def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" UpperCAmelCase_ : int = CvtModelTester(self ) UpperCAmelCase_ : Optional[Any] = ConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ , hidden_size=37 ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" return @unittest.skip(reason='''Cvt does not output attentions''' ) def UpperCAmelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def UpperCAmelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def UpperCAmelCase__ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Optional[int] = model_class(__magic_name__ ) UpperCAmelCase_ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_ : str = [*signature.parameters.keys()] UpperCAmelCase_ : Optional[int] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> str: """simple docstring""" def check_hidden_states_output(__magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : int ): UpperCAmelCase_ : List[Any] = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): UpperCAmelCase_ : Any = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) UpperCAmelCase_ : Optional[Any] = outputs.hidden_states UpperCAmelCase_ : List[str] = len(self.model_tester.depth ) self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) UpperCAmelCase_ , UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_ : Dict = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase_ : Any = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" pass @slow def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_ : List[Any] = CvtModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def lowerCamelCase_ ( ) -> str: UpperCAmelCase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class __a (unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__magic_name__ ) UpperCAmelCase_ : List[Any] = self.default_image_processor UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : Any = image_processor(images=__magic_name__ , return_tensors='''pt''' ).to(__magic_name__ ) # forward pass with torch.no_grad(): UpperCAmelCase_ : str = model(**__magic_name__ ) # verify the logits UpperCAmelCase_ : Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) )
644
'''simple docstring''' def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : int = 10, SCREAMING_SNAKE_CASE__ : int = 22 ) -> int: UpperCAmelCase_ : Optional[int] = range(1, SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = range(1, SCREAMING_SNAKE_CASE__ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(10, 22) = }''')
644
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = { 'microsoft/swin-tiny-patch4-window7-224': ( 'https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json' ), # See all Swin models at https://huggingface.co/models?filter=swin } class a__ ( A__ , A__ ): UpperCAmelCase__ = '''swin''' UpperCAmelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :int , _lowerCamelCase :str=224 , _lowerCamelCase :List[Any]=4 , _lowerCamelCase :Optional[Any]=3 , _lowerCamelCase :str=96 , _lowerCamelCase :List[Any]=[2, 2, 6, 2] , _lowerCamelCase :Dict=[3, 6, 12, 24] , _lowerCamelCase :Union[str, Any]=7 , _lowerCamelCase :Union[str, Any]=4.0 , _lowerCamelCase :Optional[int]=True , _lowerCamelCase :int=0.0 , _lowerCamelCase :Any=0.0 , _lowerCamelCase :Union[str, Any]=0.1 , _lowerCamelCase :Optional[Any]="gelu" , _lowerCamelCase :Optional[int]=False , _lowerCamelCase :Any=0.02 , _lowerCamelCase :List[Any]=1E-5 , _lowerCamelCase :Optional[int]=32 , _lowerCamelCase :Any=None , _lowerCamelCase :Optional[Any]=None , **_lowerCamelCase :Optional[int] , ): '''simple docstring''' super().__init__(**__a ) UpperCamelCase_ : Any =image_size UpperCamelCase_ : Any =patch_size UpperCamelCase_ : Optional[Any] =num_channels UpperCamelCase_ : Tuple =embed_dim UpperCamelCase_ : str =depths UpperCamelCase_ : int =len(__a ) UpperCamelCase_ : Dict =num_heads UpperCamelCase_ : str =window_size UpperCamelCase_ : str =mlp_ratio UpperCamelCase_ : Dict =qkv_bias UpperCamelCase_ : List[Any] =hidden_dropout_prob UpperCamelCase_ : int =attention_probs_dropout_prob UpperCamelCase_ : List[Any] =drop_path_rate UpperCamelCase_ : List[str] =hidden_act UpperCamelCase_ : int =use_absolute_embeddings UpperCamelCase_ : Union[str, Any] =layer_norm_eps UpperCamelCase_ : Tuple =initializer_range UpperCamelCase_ : Any =encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase_ : int =int(embed_dim * 2 ** (len(__a ) - 1) ) UpperCamelCase_ : Optional[int] =["""stem"""] + [f'''stage{idx}''' for idx in range(1 , len(__a ) + 1 )] UpperCamelCase_ : str =get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names ) class a__ ( A__ ): UpperCAmelCase__ = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self :int ): '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self :Any ): '''simple docstring''' return 1E-4
357
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCAmelCase ( ) -> Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=_UpperCamelCase ) lowerCamelCase__: List[str] = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_UpperCamelCase ) env_command_parser(subparsers=_UpperCamelCase ) launch_command_parser(subparsers=_UpperCamelCase ) tpu_command_parser(subparsers=_UpperCamelCase ) test_command_parser(subparsers=_UpperCamelCase ) # Let's go lowerCamelCase__: int = parser.parse_args() if not hasattr(_UpperCamelCase , """func""" ): parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
306
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : str = { "configuration_pegasus_x": ["PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP", "PegasusXConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ "PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST", "PegasusXForConditionalGeneration", "PegasusXModel", "PegasusXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
'''simple docstring''' from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
238
0
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def A_ ( _lowerCAmelCase : dict , _lowerCAmelCase : str , _lowerCAmelCase : set , _lowerCAmelCase : set , _lowerCAmelCase : dict , _lowerCAmelCase : dict , _lowerCAmelCase : PriorityQueue , _lowerCAmelCase : dict , _lowerCAmelCase : float | int , ): """simple docstring""" for nxt, d in graph[v]: if nxt in visited_forward: continue _lowerCamelCase : str = cst_fwd.get(_lowerCAmelCase , np.inf ) _lowerCamelCase : Any = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) _lowerCamelCase : Dict = new_cost_f _lowerCamelCase : str = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: _lowerCamelCase : List[Any] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : dict , _lowerCAmelCase : dict ): """simple docstring""" _lowerCamelCase : Dict = -1 _lowerCamelCase : List[Any] = set() _lowerCamelCase : Optional[int] = set() _lowerCamelCase : List[Any] = {source: 0} _lowerCamelCase : Dict = {destination: 0} _lowerCamelCase : List[str] = {source: None} _lowerCamelCase : Optional[int] = {destination: None} _lowerCamelCase : PriorityQueue[Any] = PriorityQueue() _lowerCamelCase : PriorityQueue[Any] = PriorityQueue() _lowerCamelCase : List[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): _lowerCamelCase , _lowerCamelCase : List[str] = queue_forward.get() visited_forward.add(_lowerCAmelCase ) _lowerCamelCase , _lowerCamelCase : List[Any] = queue_backward.get() visited_backward.add(_lowerCAmelCase ) _lowerCamelCase : List[Any] = pass_and_relaxation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) _lowerCamelCase : List[str] = pass_and_relaxation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: _lowerCamelCase : Any = shortest_distance return shortest_path_distance UpperCAmelCase_ : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } UpperCAmelCase_ : Dict = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
44
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCAmelCase_ : List[str] = { 'allenai/led-base-16384': 1_6384, } class UpperCAmelCase__ ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = LEDTokenizer lowerCAmelCase_ = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],__A : List[Any]=None,__A : str=None,__A : str=None,__A : Optional[int]="replace",__A : Union[str, Any]="<s>",__A : Union[str, Any]="</s>",__A : Any="</s>",__A : Optional[int]="<s>",__A : List[str]="<unk>",__A : str="<pad>",__A : Tuple="<mask>",__A : Union[str, Any]=False,__A : Optional[int]=True,**__A : Optional[int],): super().__init__( __A,__A,tokenizer_file=__A,errors=__A,bos_token=__A,eos_token=__A,sep_token=__A,cls_token=__A,unk_token=__A,pad_token=__A,mask_token=__A,add_prefix_space=__A,trim_offsets=__A,**__A,) _lowerCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : str = getattr(__A,pre_tok_state.pop("type" ) ) _lowerCamelCase : List[Any] = add_prefix_space _lowerCamelCase : Tuple = pre_tok_class(**__A ) _lowerCamelCase : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _lowerCamelCase : List[str] = "post_processor" _lowerCamelCase : int = getattr(self.backend_tokenizer,__A,__A ) if tokenizer_component_instance: _lowerCamelCase : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowerCamelCase : str = tuple(state["sep"] ) if "cls" in state: _lowerCamelCase : List[str] = tuple(state["cls"] ) _lowerCamelCase : Dict = False if state.get("add_prefix_space",__A ) != add_prefix_space: _lowerCamelCase : List[str] = add_prefix_space _lowerCamelCase : List[Any] = True if state.get("trim_offsets",__A ) != trim_offsets: _lowerCamelCase : List[str] = trim_offsets _lowerCamelCase : List[str] = True if changes_to_apply: _lowerCamelCase : Tuple = getattr(__A,state.pop("type" ) ) _lowerCamelCase : Any = component_class(**__A ) setattr(self.backend_tokenizer,__A,__A ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCamelCase_ ( self : str ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self : List[str],__A : str ): _lowerCamelCase : Optional[Any] = AddedToken(__A,lstrip=__A,rstrip=__A ) if isinstance(__A,__A ) else value _lowerCamelCase : str = value def lowerCamelCase_ ( self : List[str],*__A : List[Any],**__A : int ): _lowerCamelCase : List[str] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Optional[int],*__A : Optional[Any],**__A : Union[str, Any] ): _lowerCamelCase : List[Any] = kwargs.get("is_split_into_words",__A ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__A,**__A ) def lowerCamelCase_ ( self : Dict,__A : str,__A : Optional[str] = None ): _lowerCamelCase : List[str] = self._tokenizer.model.save(__A,name=__A ) return tuple(__A ) def lowerCamelCase_ ( self : List[str],__A : Optional[Any],__A : List[str]=None ): _lowerCamelCase : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self : Dict,__A : List[int],__A : Optional[List[int]] = None ): _lowerCamelCase : Tuple = [self.sep_token_id] _lowerCamelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : Any,__A : Union[Dict[str, EncodedInput], BatchEncoding],__A : Optional[int] = None,__A : PaddingStrategy = PaddingStrategy.DO_NOT_PAD,__A : Optional[int] = None,__A : Optional[bool] = None,): _lowerCamelCase : List[str] = super()._pad( encoded_inputs=__A,max_length=__A,padding_strategy=__A,pad_to_multiple_of=__A,return_attention_mask=__A,) # Load from model defaults if return_attention_mask is None: _lowerCamelCase : Any = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: _lowerCamelCase : Union[str, Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. _lowerCamelCase : Optional[Any] = len(encoded_inputs["global_attention_mask"] ) != len(__A ) if needs_to_be_padded: _lowerCamelCase : str = len(__A ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` _lowerCamelCase : Tuple = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": _lowerCamelCase : int = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
44
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCamelCase__ ( ) -> None: print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def UpperCamelCase__ ( A__ ) -> tuple[tuple[int, int], tuple[int, int]]: print('Generating prime p...' ) snake_case__ : Dict = rabinMiller.generate_large_prime(A__ ) print('Generating prime q...' ) snake_case__ : Optional[Any] = rabinMiller.generate_large_prime(A__ ) snake_case__ : Dict = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: snake_case__ : Optional[Any] = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(A__ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) snake_case__ : int = cryptoMath.find_mod_inverse(A__ , (p - 1) * (q - 1) ) snake_case__ : Optional[Any] = (n, e) snake_case__ : List[Any] = (n, d) return (public_key, private_key) def UpperCamelCase__ ( A__ , A__ ) -> None: if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() snake_case__ , snake_case__ : List[str] = generate_key(A__ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{public_key[0]},{public_key[1]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as out_file: out_file.write(F"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
699
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
699
1
'''simple docstring''' from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def snake_case_ ( __snake_case : List[Any]) -> Optional[int]: return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name) A_ : List[Any] =''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class __UpperCAmelCase ( __a ): @staticmethod def UpperCAmelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=snake_case__ , required=snake_case__ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=snake_case__ , required=snake_case__ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=snake_case__ , required=snake_case__ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=snake_case__ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=snake_case__ , default=snake_case__ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=snake_case__ ) def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , *_lowerCamelCase , ): lowerCAmelCase_ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F'''Loading model {model_type}''' ) lowerCAmelCase_ = model_type lowerCAmelCase_ = tf_checkpoint lowerCAmelCase_ = pytorch_dump_output lowerCAmelCase_ = config lowerCAmelCase_ = finetuning_task_name def UpperCAmelCase_ ( self ): if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(snake_case__ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) if "ckpt" in self._tf_checkpoint.lower(): lowerCAmelCase_ = self._tf_checkpoint lowerCAmelCase_ = "" else: lowerCAmelCase_ = self._tf_checkpoint lowerCAmelCase_ = "" convert_transfo_xl_checkpoint_to_pytorch( snake_case__ , self._config , self._pytorch_dump_output , snake_case__ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(snake_case__ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
274
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""DeiTFeatureExtractor"""] SCREAMING_SNAKE_CASE = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
199
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging a__ : Any = logging.get_logger(__name__) class lowercase_ ( a__ ): __UpperCAmelCase = 'encoder-decoder' __UpperCAmelCase = True def __init__( self , **a ): super().__init__(**a ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCamelCase__ = kwargs.pop("encoder" ) UpperCamelCase__ = encoder_config.pop("model_type" ) UpperCamelCase__ = kwargs.pop("decoder" ) UpperCamelCase__ = decoder_config.pop("model_type" ) from ..auto.configuration_auto import AutoConfig UpperCamelCase__ = AutoConfig.for_model(a , **a ) UpperCamelCase__ = AutoConfig.for_model(a , **a ) UpperCamelCase__ = True @classmethod def __a ( cls , a , a , **a ): logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) UpperCamelCase__ = True UpperCamelCase__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **a ) def __a ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.encoder.to_dict() UpperCamelCase__ = self.decoder.to_dict() UpperCamelCase__ = self.__class__.model_type return output
223
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() a__ : str = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model a__ : Union[str, Any] = { # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.15}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names a__ : int = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a__ : Optional[int] = 'facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: a__ : Any = 'allenai' def _UpperCamelCase ( __A ) -> int: '''simple docstring''' UpperCamelCase__ = dict((re.sub(R"@@$" , "" , __A ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __A ), v) for k, v in d.items() ) UpperCamelCase__ = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F'''{k}</w>'''] UpperCamelCase__ = d[k] # restore return da def _UpperCamelCase ( __A , __A ) -> Tuple: '''simple docstring''' assert os.path.exists(__A ) os.makedirs(__A , exist_ok=__A ) print(F'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCamelCase__ = basename(__A ) UpperCamelCase__ = dirname(__A ) UpperCamelCase__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCamelCase__ = cls.hub_models() UpperCamelCase__ = {"bpe": "fastbpe", "tokenizer": "moses"} UpperCamelCase__ = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(F'''using checkpoint {checkpoint_file}''' ) UpperCamelCase__ = hub_utils.from_pretrained( __A , __A , __A , archive_map=__A , **__A ) UpperCamelCase__ = vars(chkpt["args"]["model"] ) UpperCamelCase__ = args["source_lang"] UpperCamelCase__ = args["target_lang"] UpperCamelCase__ = dirname(__A ) UpperCamelCase__ = basename(__A ) # dicts UpperCamelCase__ = os.path.join(__A , F'''dict.{src_lang}.txt''' ) UpperCamelCase__ = os.path.join(__A , F'''dict.{tgt_lang}.txt''' ) UpperCamelCase__ = Dictionary.load(__A ) UpperCamelCase__ = rewrite_dict_keys(src_dict.indices ) UpperCamelCase__ = len(__A ) UpperCamelCase__ = os.path.join(__A , "vocab-src.json" ) print(F'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCamelCase__ = True for k in src_vocab.keys(): if not k.islower(): UpperCamelCase__ = False break UpperCamelCase__ = Dictionary.load(__A ) UpperCamelCase__ = rewrite_dict_keys(tgt_dict.indices ) UpperCamelCase__ = len(__A ) UpperCamelCase__ = os.path.join(__A , "vocab-tgt.json" ) print(F'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # merges_file (bpecodes) UpperCamelCase__ = os.path.join(__A , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCamelCase__ = os.path.join(__A , __A ) if os.path.exists(__A ): break with open(__A , encoding="utf-8" ) as fin: UpperCamelCase__ = fin.read() UpperCamelCase__ = re.sub(R" \d+$" , "" , __A , 0 , re.M ) # remove frequency number print(F'''Generating {merges_file}''' ) with open(__A , "w" , encoding="utf-8" ) as fout: fout.write(__A ) # model config UpperCamelCase__ = os.path.join(__A , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", F'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", F'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCamelCase__ = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.02, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with UpperCamelCase__ = 5 UpperCamelCase__ = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCamelCase__ = best_score_hparams[model_dir]["length_penalty"] else: UpperCamelCase__ = 1.0 print(F'''Generating {fsmt_model_config_file}''' ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # tokenizer config UpperCamelCase__ = os.path.join(__A , __A ) UpperCamelCase__ = { "langs": [src_lang, tgt_lang], "model_max_length": 1024, "do_lower_case": do_lower_case, } print(F'''Generating {fsmt_tokenizer_config_file}''' ) with open(__A , "w" , encoding="utf-8" ) as f: f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) ) # model UpperCamelCase__ = chkpt["models"][0] UpperCamelCase__ = model.state_dict() # rename keys to start with 'model.' UpperCamelCase__ = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCamelCase__ = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(__A , __A ) UpperCamelCase__ = FSMTConfig.from_pretrained(__A ) UpperCamelCase__ = FSMTForConditionalGeneration(__A ) # check that it loads ok model_new.load_state_dict(__A , strict=__A ) # save UpperCamelCase__ = os.path.join(__A , __A ) print(F'''Generating {pytorch_weights_dump_path}''' ) torch.save(__A , __A ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(F'''cd {data_root}''' ) print(F'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__ : Optional[int] = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
223
1
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( lowercase__ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ : List[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowerCAmelCase_ : Optional[int] = 4 lowerCAmelCase_ : Optional[int] = 48 lowerCAmelCase_ : List[str] = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ : Optional[int] = [6, 6, 6, 6] lowerCAmelCase_ : Tuple = 60 lowerCAmelCase_ : int = [6, 6, 6, 6] lowerCAmelCase_ : Optional[Any] = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ : List[str] = 4 lowerCAmelCase_ : Optional[int] = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowerCAmelCase_ : Tuple = 1 lowerCAmelCase_ : Union[str, Any] = 1 lowerCAmelCase_ : Optional[Any] = 126 lowerCAmelCase_ : Dict = 7 lowerCAmelCase_ : List[str] = 255.0 lowerCAmelCase_ : int = '' return config def __UpperCamelCase ( lowercase__ : int , lowercase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if "patch_embed.proj" in name and "layers" not in name: lowerCAmelCase_ : Tuple = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: lowerCAmelCase_ : Dict = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" ) if "layers" in name: lowerCAmelCase_ : List[Any] = name.replace("""layers""" , """encoder.stages""" ) if "residual_group.blocks" in name: lowerCAmelCase_ : Optional[int] = name.replace("""residual_group.blocks""" , """layers""" ) if "attn.proj" in name: lowerCAmelCase_ : List[str] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowerCAmelCase_ : Optional[int] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowerCAmelCase_ : List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowerCAmelCase_ : str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowerCAmelCase_ : Any = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowerCAmelCase_ : Optional[int] = name.replace("""mlp.fc2""" , """output.dense""" ) if "q_bias" in name: lowerCAmelCase_ : int = name.replace("""q_bias""" , """query.bias""" ) if "k_bias" in name: lowerCAmelCase_ : List[str] = name.replace("""k_bias""" , """key.bias""" ) if "v_bias" in name: lowerCAmelCase_ : Union[str, Any] = name.replace("""v_bias""" , """value.bias""" ) if "cpb_mlp" in name: lowerCAmelCase_ : Any = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" ) if "patch_embed.proj" in name: lowerCAmelCase_ : Optional[int] = name.replace("""patch_embed.proj""" , """patch_embed.projection""" ) if name == "norm.weight": lowerCAmelCase_ : Tuple = 'layernorm.weight' if name == "norm.bias": lowerCAmelCase_ : List[Any] = 'layernorm.bias' if "conv_first" in name: lowerCAmelCase_ : List[str] = name.replace("""conv_first""" , """first_convolution""" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowerCAmelCase_ : Optional[Any] = name.replace("""conv_last""" , """final_convolution""" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowerCAmelCase_ : int = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" ) if "upsample.0" in name: lowerCAmelCase_ : Tuple = name.replace("""upsample.0""" , """upsample.convolution_0""" ) if "upsample.2" in name: lowerCAmelCase_ : Optional[Any] = name.replace("""upsample.2""" , """upsample.convolution_1""" ) lowerCAmelCase_ : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": lowerCAmelCase_ : List[Any] = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" ) lowerCAmelCase_ : Tuple = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" ) else: pass else: lowerCAmelCase_ : int = 'swin2sr.' + name return name def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : int ) -> str: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase_ : List[Any] = orig_state_dict.pop(__lowerCAmelCase ) if "qkv" in key: lowerCAmelCase_ : Optional[int] = key.split(""".""" ) lowerCAmelCase_ : Union[str, Any] = int(key_split[1] ) lowerCAmelCase_ : Tuple = int(key_split[4] ) lowerCAmelCase_ : Optional[int] = config.embed_dim if "weight" in key: lowerCAmelCase_ : List[Any] = val[:dim, :] lowerCAmelCase_ : Union[str, Any] = val[dim : dim * 2, :] lowerCAmelCase_ : Optional[Any] = val[-dim:, :] else: lowerCAmelCase_ : Tuple = val[:dim] lowerCAmelCase_ : Any = val[dim : dim * 2] lowerCAmelCase_ : Union[str, Any] = val[-dim:] pass else: lowerCAmelCase_ : str = val return orig_state_dict def __UpperCamelCase ( lowercase__ : str , lowercase__ : str , lowercase__ : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase_ : Any = get_config(__lowerCAmelCase ) lowerCAmelCase_ : Optional[Any] = SwinaSRForImageSuperResolution(__lowerCAmelCase ) model.eval() lowerCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location="""cpu""" ) lowerCAmelCase_ : Union[str, Any] = convert_state_dict(__lowerCAmelCase , __lowerCAmelCase ) lowerCAmelCase_ : str = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ValueError("""Missing keys when converting: {}""".format(__lowerCAmelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'Unexpected key {key} in state_dict' ) # verify values lowerCAmelCase_ : int = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' lowerCAmelCase_ : Any = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ).convert("""RGB""" ) lowerCAmelCase_ : int = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowerCAmelCase_ : Optional[int] = 126 if 'Jpeg' in checkpoint_url else 256 lowerCAmelCase_ : int = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowerCAmelCase_ : Any = transforms(__lowerCAmelCase ).unsqueeze(0 ) if config.num_channels == 1: lowerCAmelCase_ : Tuple = pixel_values[:, 0, :, :].unsqueeze(1 ) lowerCAmelCase_ : Optional[int] = model(__lowerCAmelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowerCAmelCase_ : List[Any] = torch.Size([1, 3, 512, 512] ) lowerCAmelCase_ : int = torch.tensor( [[-0.7087, -0.7138, -0.6721], [-0.8340, -0.8095, -0.7298], [-0.9149, -0.8414, -0.7940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowerCAmelCase_ : Optional[int] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ : Tuple = torch.tensor( [[-0.7775, -0.8105, -0.8933], [-0.7764, -0.8356, -0.9225], [-0.7976, -0.8686, -0.9579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowerCAmelCase_ : List[str] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ : Dict = torch.tensor( [[-0.8035, -0.7504, -0.7491], [-0.8538, -0.8124, -0.7782], [-0.8804, -0.8651, -0.8493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowerCAmelCase_ : Optional[Any] = torch.Size([1, 3, 512, 512] ) lowerCAmelCase_ : str = torch.tensor( [[-0.7669, -0.8662, -0.8767], [-0.8810, -0.9962, -0.9820], [-0.9340, -1.0322, -1.1149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowerCAmelCase_ : Optional[int] = torch.Size([1, 3, 1024, 1024] ) lowerCAmelCase_ : Optional[int] = torch.tensor( [[-0.5238, -0.5557, -0.6321], [-0.6016, -0.5903, -0.6391], [-0.6244, -0.6334, -0.6889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , __lowerCAmelCase , atol=1E-3 ) print("""Looks ok!""" ) lowerCAmelCase_ : Optional[Any] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } lowerCAmelCase_ : Tuple = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowerCAmelCase ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(__lowerCAmelCase ) if push_to_hub: model.push_to_hub(f'caidas/{model_name}' ) processor.push_to_hub(f'caidas/{model_name}' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') __UpperCAmelCase = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
600
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def A__( __lowerCAmelCase ): _snake_case : Dict = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(__lowerCAmelCase , __lowerCAmelCase ) def A__( __lowerCAmelCase ): _snake_case , _snake_case : Any = emb.weight.shape _snake_case : List[str] = nn.Linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) _snake_case : Optional[int] = emb.weight.data return lin_layer def A__( __lowerCAmelCase ): _snake_case : List[str] = torch.load(__lowerCAmelCase , map_location='cpu' ) _snake_case : List[Any] = Namespace(**checkpoint['cfg']['model'] ) _snake_case : Optional[Any] = checkpoint['model'] remove_ignore_keys_(__lowerCAmelCase ) _snake_case : List[Any] = state_dict['decoder.embed_tokens.weight'].shape[0] _snake_case : Dict = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} _snake_case : Optional[Any] = XGLMConfig( vocab_size=__lowerCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case : Optional[Any] = XGLMForCausalLM(__lowerCAmelCase ) _snake_case : Any = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) print(__lowerCAmelCase ) _snake_case : Optional[Any] = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowercase_ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase_ : Optional[Any] = parser.parse_args() lowercase_ : List[Any] = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
304
0
'''simple docstring''' import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __A : str = random.Random() def lowerCAmelCase_ ( a : Dict , a : int=1.0 , a : Optional[int]=None , a : Any=None ): if rng is None: a__ = global_rng a__ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , _a , _a=7 , _a=400 , _a=2000 , _a=10 , _a=160 , _a=8 , _a=0.0 , _a=4000 , _a=False , _a=True , ): """simple docstring""" a__ = parent a__ = batch_size a__ = min_seq_length a__ = max_seq_length a__ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) a__ = padding_value a__ = sampling_rate a__ = return_attention_mask a__ = do_normalize a__ = feature_size a__ = chunk_length a__ = hop_length def lowercase__ ( self ): """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowercase__ ( self , _a=False , _a=False ): """simple docstring""" def _flatten(_a ): return list(itertools.chain(*_a ) ) if equal_length: a__ = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size a__ = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: a__ = [np.asarray(_a ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCamelCase ( _A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE:Dict = WhisperFeatureExtractor if is_speech_available() else None def lowercase__ ( self ): """simple docstring""" a__ = WhisperFeatureExtractionTester(self ) def lowercase__ ( self ): """simple docstring""" a__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = feat_extract_first.save_pretrained(_a )[0] check_json_file_has_correct_format(_a ) a__ = self.feature_extraction_class.from_pretrained(_a ) a__ = feat_extract_first.to_dict() a__ = feat_extract_second.to_dict() a__ = feat_extract_first.mel_filters a__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: a__ = os.path.join(_a , 'feat_extract.json' ) feat_extract_first.to_json_file(_a ) a__ = self.feature_extraction_class.from_json_file(_a ) a__ = feat_extract_first.to_dict() a__ = feat_extract_second.to_dict() a__ = feat_extract_first.mel_filters a__ = feat_extract_second.mel_filters self.assertTrue(np.allclose(_a , _a ) ) self.assertEqual(_a , _a ) def lowercase__ ( self ): """simple docstring""" a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 a__ = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] a__ = [np.asarray(_a ) for speech_input in speech_inputs] # Test feature size a__ = feature_extractor(_a , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input a__ = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features a__ = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test batched a__ = feature_extractor(_a , return_tensors='np' ).input_features a__ = feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. a__ = [floats_list((1, x) )[0] for x in (800, 800, 800)] a__ = np.asarray(_a ) a__ = feature_extractor(_a , return_tensors='np' ).input_features a__ = feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) # Test truncation required a__ = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] a__ = [np.asarray(_a ) for speech_input in speech_inputs] a__ = [x[: feature_extractor.n_samples] for x in speech_inputs] a__ = [np.asarray(_a ) for speech_input in speech_inputs_truncated] a__ = feature_extractor(_a , return_tensors='np' ).input_features a__ = feature_extractor(_a , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(_a , _a ): self.assertTrue(np.allclose(_a , _a , atol=1e-3 ) ) def lowercase__ ( self ): """simple docstring""" import torch a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = np.random.rand(100 , 32 ).astype(np.floataa ) a__ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: a__ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) a__ = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def lowercase__ ( self , _a ): """simple docstring""" a__ = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech a__ = ds.sort('id' ).select(range(_a ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowercase__ ( self ): """simple docstring""" a__ = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on a__ = self._load_datasamples(1 ) a__ = WhisperFeatureExtractor() a__ = feature_extractor(_a , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , _a , atol=1e-4 ) ) def lowercase__ ( self ): """simple docstring""" a__ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) a__ = self._load_datasamples(1 )[0] a__ = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5535 # Rescale to [0, 65535] to show issue a__ = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=_a )[0] self.assertTrue(np.all(np.mean(_a ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(_a ) - 1 ) < 1e-3 ) )
714
'''simple docstring''' from pathlib import Path import fire from tqdm import tqdm def lowerCAmelCase_ ( a : int="ro" , a : Tuple="en" , a : Union[str, Any]="wmt16" , a : List[Any]=None ): try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('run pip install datasets' ) a__ = f'''{src_lang}-{tgt_lang}''' print(f'''Converting {dataset}-{pair}''' ) a__ = datasets.load_dataset(a , a ) if save_dir is None: a__ = f'''{dataset}-{pair}''' a__ = Path(a ) save_dir.mkdir(exist_ok=a ) for split in ds.keys(): print(f'''Splitting {split} with {ds[split].num_rows} records''' ) # to save to val.source, val.target like summary datasets a__ = 'val' if split == 'validation' else split a__ = save_dir.joinpath(f'''{fn}.source''' ) a__ = save_dir.joinpath(f'''{fn}.target''' ) a__ = src_path.open('w+' ) a__ = tgt_path.open('w+' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): a__ = x['translation'] src_fp.write(ex[src_lang] + '\n' ) tgt_fp.write(ex[tgt_lang] + '\n' ) print(f'''Saved {dataset} dataset to {save_dir}''' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
126
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE ( __a , unittest.TestCase ): """simple docstring""" __A = CodeGenTokenizer __A = CodeGenTokenizerFast __A = True __A = {"add_prefix_space": True} __A = False def a ( self : Optional[Any] ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _lowerCAmelCase = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _lowerCAmelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowerCAmelCase = {'unk_token': '<unk>'} _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__lowerCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__lowerCAmelCase ) ) def a ( self : List[Any] , **__lowerCAmelCase : Any ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a ( self : List[str] , **__lowerCAmelCase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def a ( self : int , __lowerCAmelCase : Optional[int] ): """simple docstring""" _lowerCAmelCase = 'lower newer' _lowerCAmelCase = 'lower newer' return input_text, output_text def a ( self : Optional[Any] ): """simple docstring""" _lowerCAmelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowerCAmelCase = 'lower newer' _lowerCAmelCase = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) _lowerCAmelCase = tokens + [tokenizer.unk_token] _lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def a ( self : Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCAmelCase = 'lower newer' # Testing tokenization _lowerCAmelCase = tokenizer.tokenize(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.tokenize(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids without special tokens _lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing conversion to ids with special tokens _lowerCAmelCase = self.get_rust_tokenizer(add_prefix_space=__lowerCAmelCase ) _lowerCAmelCase = tokenizer.encode(__lowerCAmelCase , add_prefix_space=__lowerCAmelCase ) _lowerCAmelCase = rust_tokenizer.encode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) # Testing the unknown token _lowerCAmelCase = tokens + [rust_tokenizer.unk_token] _lowerCAmelCase = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , __lowerCAmelCase ) def a ( self : Union[str, Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : int ): """simple docstring""" pass def a ( self : Optional[int] , __lowerCAmelCase : int=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # Simple input _lowerCAmelCase = 'This is a simple input' _lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase = ('This is a simple input', 'This is a pair') _lowerCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='max_length' , ) def a ( self : str ): """simple docstring""" _lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _lowerCAmelCase = 'This is a simple input' _lowerCAmelCase = ['This is a simple input looooooooong', 'This is a simple input'] _lowerCAmelCase = ('This is a simple input', 'This is a pair') _lowerCAmelCase = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _lowerCAmelCase = tokenizer.pad_token_id _lowerCAmelCase = tokenizer(__lowerCAmelCase , padding='max_length' , max_length=30 , return_tensors='np' ) _lowerCAmelCase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='np' ) _lowerCAmelCase = tokenizer(*__lowerCAmelCase , padding='max_length' , max_length=60 , return_tensors='np' ) _lowerCAmelCase = tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncate=__lowerCAmelCase , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def a ( self : int ): """simple docstring""" _lowerCAmelCase = '$$$' _lowerCAmelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=__lowerCAmelCase , add_bos_token=__lowerCAmelCase ) _lowerCAmelCase = 'This is a simple input' _lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase = tokenizer.bos_token_id _lowerCAmelCase = tokenizer(__lowerCAmelCase ) _lowerCAmelCase = tokenizer(__lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , __lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowerCAmelCase = tokenizer.decode(out_s.input_ids ) _lowerCAmelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def a ( self : int ): """simple docstring""" _lowerCAmelCase = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _lowerCAmelCase = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _lowerCAmelCase = '\nif len_a > len_b: result = a\nelse: result = b' _lowerCAmelCase = tokenizer.encode(__lowerCAmelCase ) _lowerCAmelCase = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _lowerCAmelCase = tokenizer.decode(__lowerCAmelCase , truncate_before_pattern=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) def a ( self : Tuple ): """simple docstring""" pass
309
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices snake_case = logging.get_logger(__name__) snake_case = { '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( __a , __a ): """simple docstring""" __A = "bit" __A = ["preactivation", "bottleneck"] __A = ["SAME", "VALID"] def __init__( self : str , __lowerCAmelCase : Optional[int]=3 , __lowerCAmelCase : Tuple=64 , __lowerCAmelCase : Optional[int]=[256, 512, 1024, 2048] , __lowerCAmelCase : str=[3, 4, 6, 3] , __lowerCAmelCase : int="preactivation" , __lowerCAmelCase : int="relu" , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : List[Any]=0.0 , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=32 , __lowerCAmelCase : Tuple=1 , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : int=None , **__lowerCAmelCase : List[Any] , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowerCAmelCase = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported" ) _lowerCAmelCase = num_channels _lowerCAmelCase = embedding_size _lowerCAmelCase = hidden_sizes _lowerCAmelCase = depths _lowerCAmelCase = layer_type _lowerCAmelCase = hidden_act _lowerCAmelCase = global_padding _lowerCAmelCase = num_groups _lowerCAmelCase = drop_path_rate _lowerCAmelCase = embedding_dynamic_padding _lowerCAmelCase = output_stride _lowerCAmelCase = width_factor _lowerCAmelCase = ['stem'] + [F"stage{idx}" for idx in range(1 , len(__lowerCAmelCase ) + 1 )] _lowerCAmelCase , _lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__lowerCAmelCase , out_indices=__lowerCAmelCase , stage_names=self.stage_names )
309
1
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCAmelCase = Path(__file__).resolve().parents[3] / "src" sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCAmelCase = {"base": "patrickvonplaten/wav2vec2_tiny_random", "robust": "patrickvonplaten/wav2vec2_tiny_random_robust"} _lowerCAmelCase = "zero2" _lowerCAmelCase = "zero3" _lowerCAmelCase = [ZEROa, ZEROa] def UpperCamelCase ( a , a , a ) -> Dict: '''simple docstring''' # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __magic_name__ = parameterized.to_safe_name('''_'''.join(str(a ) for x in param.args ) ) return F'''{func.__name__}_{param_based_name}''' # Cartesian-product of zero stages with models to test _lowerCAmelCase = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class _SCREAMING_SNAKE_CASE ( __a ): @parameterized.expand(a__ , name_func=a__ ) def snake_case__ ( self : Optional[Any] , a__ : str , a__ : Tuple ): self.run_and_check( stage=a__ , model=a__ , distributed=a__ , fpaa=a__ , ) @require_torch_multi_gpu @parameterized.expand(a__ , name_func=a__ ) def snake_case__ ( self : int , a__ : Any , a__ : Dict ): self.run_and_check( stage=a__ , model=a__ , distributed=a__ , fpaa=a__ , ) @parameterized.expand(a__ , name_func=a__ ) def snake_case__ ( self : Union[str, Any] , a__ : List[str] , a__ : Optional[Any] ): self.run_and_check( stage=a__ , model=a__ , distributed=a__ , fpaa=a__ , ) @require_torch_multi_gpu @parameterized.expand(a__ , name_func=a__ ) def snake_case__ ( self : Optional[int] , a__ : Union[str, Any] , a__ : List[str] ): self.run_and_check( stage=a__ , model=a__ , distributed=a__ , fpaa=a__ , ) def snake_case__ ( self : List[Any] , a__ : List[str] ): # XXX: run_asr is premature and doesn't save any results # so all we check for now is that the process didn't fail pass def snake_case__ ( self : int , a__ : str , a__ : str , a__ : int = 10 , a__ : bool = True , a__ : bool = True , a__ : bool = True , ): __magic_name__ = models[model] __magic_name__ = self.run_trainer( stage=a__ , model_name=a__ , eval_steps=a__ , num_train_epochs=1 , distributed=a__ , fpaa=a__ , ) self.do_checks(a__ ) return output_dir def snake_case__ ( self : List[Any] , a__ : str , a__ : str , a__ : int = 10 , a__ : int = 1 , a__ : bool = True , a__ : bool = True , ): __magic_name__ = self.get_auto_remove_tmp_dir('''./xxx''' , after=a__ ) __magic_name__ = F''' --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(a__ )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none '''.split() if fpaa: args.extend(['''--fp16'''] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __magic_name__ = F'''--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json'''.split() __magic_name__ = [F'''{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py'''] __magic_name__ = self.get_launcher(a__ ) __magic_name__ = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(a__ , env=self.get_env() ) return output_dir def snake_case__ ( self : Dict , a__ : Any=False ): # 1. explicitly set --num_nodes=1 just in case these tests end up run on a multi-node setup # - it won't be able to handle that # 2. for now testing with just 2 gpus max (since some quality tests may give different # results with mode gpus because we use very little data) __magic_name__ = min(2 , get_gpu_count() ) if distributed else 1 return F'''deepspeed --num_nodes 1 --num_gpus {num_gpus}'''.split()
245
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def UpperCamelCase ( a ) -> int: '''simple docstring''' if isinstance(a , collections.abc.Iterable ): return x return (x, x) @require_tf class _SCREAMING_SNAKE_CASE : def snake_case__ ( self : List[Any] , a__ : Optional[int] , a__ : List[str] ): pass def snake_case__ ( self : Dict ): pass def snake_case__ ( self : Optional[int] ): pass def snake_case__ ( self : List[Any] , a__ : List[Any] , a__ : List[Any] , a__ : int , a__ : Dict , a__ : str=None , **a__ : Dict ): __magic_name__ = VisionTextDualEncoderConfig.from_vision_text_configs(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def snake_case__ ( self : Any , a__ : Tuple , a__ : List[Any] , a__ : Union[str, Any] , a__ : Any , a__ : Dict=None , **a__ : Optional[Any] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , a__ : Tuple , a__ : Optional[Any] , a__ : int , a__ : Optional[int] , a__ : int=None , **a__ : int ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = {'''vision_model''': vision_model, '''text_model''': text_model} __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def snake_case__ ( self : str , a__ : List[Any] , a__ : Optional[int] , a__ : int , a__ : Union[str, Any] , a__ : Tuple=None , **a__ : Union[str, Any] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) __magic_name__ = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__ ) __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) __magic_name__ = model(input_ids=a__ , pixel_values=a__ , attention_mask=a__ ) __magic_name__ = after_output[0].numpy() __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) def snake_case__ ( self : str , a__ : Any , a__ : Optional[int] , a__ : List[str] , a__ : Tuple , a__ : Optional[Any]=None , **a__ : int ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) __magic_name__ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) __magic_name__ = to_atuple(vision_model.config.image_size ) __magic_name__ = to_atuple(vision_model.config.patch_size ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : Optional[Any] , a__ : np.ndarray , a__ : np.ndarray , a__ : float ): __magic_name__ = np.abs((a - b) ).max() self.assertLessEqual(a__ , a__ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def snake_case__ ( self : Tuple ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**a__ ) def snake_case__ ( self : int ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**a__ ) def snake_case__ ( self : Optional[Any] ): __magic_name__ = self.prepare_config_and_inputs() self.check_save_load(**a__ ) def snake_case__ ( self : Tuple ): __magic_name__ = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**a__ ) @slow def snake_case__ ( self : int ): __magic_name__ , __magic_name__ = self.get_pretrained_model_and_inputs() __magic_name__ = model_a(**a__ ) __magic_name__ = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(a__ ) __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained(a__ ) __magic_name__ = model_a(**a__ ) __magic_name__ = after_outputs[0].numpy() __magic_name__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a__ , 1E-5 ) @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : int ): __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Union[str, Any] , a__ : Any , a__ : List[Any] ): __magic_name__ = TFViTModel(a__ , name='''vision_model''' ) __magic_name__ = TFBertModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : List[str] ): __magic_name__ = TFViTModelTester(self ) __magic_name__ = TFBertModelTester(self ) __magic_name__ = vit_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : Tuple ): # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : Dict , a__ : Any , a__ : Tuple , a__ : str , a__ : Any , a__ : Union[str, Any]=None , **a__ : List[str] ): __magic_name__ , __magic_name__ = self.get_vision_text_model(a__ , a__ ) __magic_name__ = TFVisionTextDualEncoderModel(vision_model=a__ , text_model=a__ ) __magic_name__ = model( input_ids=a__ , pixel_values=a__ , attention_mask=a__ , output_attentions=a__ ) __magic_name__ = output.vision_model_output.attentions self.assertEqual(len(a__ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __magic_name__ = to_atuple(vision_model.config.image_size ) __magic_name__ = to_atuple(vision_model.config.patch_size ) __magic_name__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) __magic_name__ = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) __magic_name__ = output.text_model_output.attentions self.assertEqual(len(a__ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def snake_case__ ( self : str , a__ : int , a__ : Any ): __magic_name__ = TFDeiTModel(a__ , name='''vision_model''' ) __magic_name__ = TFRobertaModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : Dict ): __magic_name__ = TFDeiTModelTester(self ) __magic_name__ = TFRobertaModelTester(self ) __magic_name__ = vit_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE ( __a ,unittest.TestCase ): def snake_case__ ( self : List[str] ): __magic_name__ = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) __magic_name__ = 13 __magic_name__ = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) __magic_name__ = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) __magic_name__ = random_attention_mask([batch_size, 4] ) __magic_name__ = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def snake_case__ ( self : int , a__ : int , a__ : Dict ): __magic_name__ = TFCLIPVisionModel(a__ , name='''vision_model''' ) __magic_name__ = TFBertModel(a__ , name='''text_model''' ) return vision_model, text_model def snake_case__ ( self : str ): __magic_name__ = TFCLIPVisionModelTester(self ) __magic_name__ = TFBertModelTester(self ) __magic_name__ = clip_model_tester.prepare_config_and_inputs() __magic_name__ = bert_model_tester.prepare_config_and_inputs() __magic_name__ , __magic_name__ = vision_config_and_inputs ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def snake_case__ ( self : Union[str, Any] ): __magic_name__ = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=a__ ) __magic_name__ = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) __magic_name__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) __magic_name__ = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=a__ , padding=a__ , return_tensors='''np''' ) __magic_name__ = model(**a__ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) __magic_name__ = np.array([[1.2_284_727, 0.3_104_122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , a__ , atol=1E-3 ) )
245
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "ut/deta": "https://huggingface.co/ut/deta/resolve/main/config.json", } class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Union[str, Any] = """deta""" snake_case : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=900 , __lowerCAmelCase=2048 , __lowerCAmelCase=6 , __lowerCAmelCase=2048 , __lowerCAmelCase=8 , __lowerCAmelCase=6 , __lowerCAmelCase=1024 , __lowerCAmelCase=8 , __lowerCAmelCase=0.0 , __lowerCAmelCase=True , __lowerCAmelCase="relu" , __lowerCAmelCase=256 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1.0 , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="sine" , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase=True , __lowerCAmelCase=300 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=1 , __lowerCAmelCase=1 , __lowerCAmelCase=5 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.25 , **__lowerCAmelCase , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) UpperCamelCase__ = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = backbone_config.pop("""model_type""" ) UpperCamelCase__ = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ = config_class.from_dict(__lowerCAmelCase ) UpperCamelCase__ = backbone_config UpperCamelCase__ = num_queries UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = d_model UpperCamelCase__ = encoder_ffn_dim UpperCamelCase__ = encoder_layers UpperCamelCase__ = encoder_attention_heads UpperCamelCase__ = decoder_ffn_dim UpperCamelCase__ = decoder_layers UpperCamelCase__ = decoder_attention_heads UpperCamelCase__ = dropout UpperCamelCase__ = attention_dropout UpperCamelCase__ = activation_dropout UpperCamelCase__ = activation_function UpperCamelCase__ = init_std UpperCamelCase__ = init_xavier_std UpperCamelCase__ = encoder_layerdrop UpperCamelCase__ = auxiliary_loss UpperCamelCase__ = position_embedding_type # deformable attributes UpperCamelCase__ = num_feature_levels UpperCamelCase__ = encoder_n_points UpperCamelCase__ = decoder_n_points UpperCamelCase__ = two_stage UpperCamelCase__ = two_stage_num_proposals UpperCamelCase__ = with_box_refine UpperCamelCase__ = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher UpperCamelCase__ = class_cost UpperCamelCase__ = bbox_cost UpperCamelCase__ = giou_cost # Loss coefficients UpperCamelCase__ = mask_loss_coefficient UpperCamelCase__ = dice_loss_coefficient UpperCamelCase__ = bbox_loss_coefficient UpperCamelCase__ = giou_loss_coefficient UpperCamelCase__ = eos_coefficient UpperCamelCase__ = focal_alpha super().__init__(is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase ) @property def _lowerCamelCase ( self ): return self.encoder_attention_heads @property def _lowerCamelCase ( self ): return self.d_model def _lowerCamelCase ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.backbone_config.to_dict() UpperCamelCase__ = self.__class__.model_type return output
619
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : Optional[Any] = """encoder-decoder""" snake_case : Optional[int] = True def __init__( self , **__lowerCAmelCase ): super().__init__(**__lowerCAmelCase ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" UpperCamelCase__ = kwargs.pop("""encoder""" ) UpperCamelCase__ = encoder_config.pop("""model_type""" ) UpperCamelCase__ = kwargs.pop("""decoder""" ) UpperCamelCase__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig UpperCamelCase__ = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = AutoConfig.for_model(__lowerCAmelCase , **__lowerCAmelCase ) UpperCamelCase__ = True @classmethod def _lowerCamelCase ( cls , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ): logger.info("""Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config""" ) UpperCamelCase__ = True UpperCamelCase__ = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCAmelCase ) def _lowerCamelCase ( self ): UpperCamelCase__ = copy.deepcopy(self.__dict__ ) UpperCamelCase__ = self.encoder.to_dict() UpperCamelCase__ = self.decoder.to_dict() UpperCamelCase__ = self.__class__.model_type return output
619
1
from bisect import bisect from itertools import accumulate def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : int = sorted(zip(_lowerCAmelCase ,_lowerCAmelCase ) ,key=lambda _lowerCAmelCase : x[0] / x[1] ,reverse=_lowerCAmelCase ) A_ : Optional[int] = [i[0] for i in r], [i[1] for i in r] A_ : Dict = list(accumulate(_lowerCAmelCase ) ) A_ : Tuple = bisect(_lowerCAmelCase ,_lowerCAmelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
708
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,): '''simple docstring''' A_ , A_ : int = coefficient_matrix.shape A_ , A_ : Tuple = constant_matrix.shape if rowsa != colsa: A_ : int = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if colsa != 1: A_ : List[Any] = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowerCAmelCase ) if rowsa != rowsa: A_ : str = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowerCAmelCase ) if len(_lowerCAmelCase ) != rowsa: A_ : Any = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(_lowerCAmelCase )} and {rowsa}""" ) raise ValueError(_lowerCAmelCase ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) A_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) ,axis=1 ) A_ , A_ : str = table.shape strictly_diagonally_dominant(_lowerCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_lowerCAmelCase ): A_ : Union[str, Any] = [] for row in range(_lowerCAmelCase ): A_ : str = 0 for col in range(_lowerCAmelCase ): if col == row: A_ : Optional[Any] = table[row][col] elif col == cols - 1: A_ : List[str] = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] A_ : str = (temp + val) / denom new_val.append(_lowerCAmelCase ) A_ : List[str] = new_val return [float(_lowerCAmelCase ) for i in new_val] def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ , A_ : str = table.shape A_ : Any = True for i in range(0 ,_lowerCAmelCase ): A_ : Optional[Any] = 0 for j in range(0 ,cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
481
0
'''simple docstring''' from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowercase__ : str = _symbol_database.Default() lowercase__ : Optional[int] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) lowercase__ : Optional[int] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowercase__ : int = None lowercase__ : List[Any] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowercase__ : Union[str, Any] = 45 lowercase__ : Optional[Any] = 1581 lowercase__ : Dict = 1517 lowercase__ : Any = 1570 lowercase__ : Dict = 1584 lowercase__ : Any = 1793 lowercase__ : List[str] = 1795 lowercase__ : Union[str, Any] = 1916 lowercase__ : Union[str, Any] = 1864 lowercase__ : str = 1905 lowercase__ : List[Any] = 1919 lowercase__ : Tuple = 2429 lowercase__ : Optional[int] = 2208 lowercase__ : Dict = 2418 lowercase__ : Any = 2323 lowercase__ : Any = 2407 # @@protoc_insertion_point(module_scope)
390
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] , _UpperCamelCase : Dict , _UpperCamelCase : Tuple ): '''simple docstring''' UpperCAmelCase_ = { '''en''': '''Machine learning is great, isn\'t it?''', '''ru''': '''Машинное обучение - это здорово, не так ли?''', '''de''': '''Maschinelles Lernen ist großartig, nicht wahr?''', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCAmelCase_ = { '''wmt16-en-de-dist-12-1''': [28.3, 27.52], '''wmt16-en-de-dist-6-1''': [27.4, 27.11], '''wmt16-en-de-12-1''': [26.9, 25.75], } UpperCAmelCase_ = F"""{src_lang}-{tgt_lang}""" UpperCAmelCase_ = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCAmelCase_ = os.path.join(_UpperCamelCase , '''README.md''' ) print(F"""Generating {path}""" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(_UpperCamelCase ) # make sure we are under the root of the project lowercase__ : Dict = Path(__file__).resolve().parent.parent.parent lowercase__ : Any = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowercase__ : str = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
390
1
'''simple docstring''' def __UpperCAmelCase ( ) -> list[list[int]]: return [list(range(1_000 - i , -1_000 - i , -1)) for i in range(1_000)] lowerCAmelCase__ = generate_large_matrix() lowerCAmelCase__ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def __UpperCAmelCase ( lowerCamelCase_) -> None: assert all(row == sorted(lowerCamelCase_ , reverse=lowerCamelCase_) for row in grid) assert all(list(lowerCamelCase_) == sorted(lowerCamelCase_ , reverse=lowerCamelCase_) for col in zip(*lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : List[str] = len(lowerCamelCase_) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: UpperCamelCase__ : int = (left + right) // 2 UpperCamelCase__ : int = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: UpperCamelCase__ : Union[str, Any] = mid + 1 else: UpperCamelCase__ : int = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Tuple = len(grid[0]) for i in range(len(lowerCamelCase_)): UpperCamelCase__ : Dict = find_negative_index(grid[i][:bound]) total += bound return (len(lowerCamelCase_) * len(grid[0])) - total def __UpperCAmelCase ( lowerCamelCase_) -> int: return len([number for row in grid for number in row if number < 0]) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = 0 for row in grid: for i, number in enumerate(lowerCamelCase_): if number < 0: total += len(lowerCamelCase_) - i break return total def __UpperCAmelCase ( ) -> None: from timeit import timeit print('Running benchmarks') UpperCamelCase__ : Optional[int] = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): UpperCamelCase__ : Any = timeit(f'{func}(grid=grid)' , setup=lowerCamelCase_ , number=500) print(f'{func}() took {time:0.4f} seconds') if __name__ == "__main__": import doctest doctest.testmod() benchmark()
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =ShapEPipeline __a =['prompt'] __a =['prompt'] __a =[ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] __a =False @property def UpperCamelCase__ ( self : str ): return 32 @property def UpperCamelCase__ ( self : Any ): return 32 @property def UpperCamelCase__ ( self : List[str] ): return self.time_input_dim * 4 @property def UpperCamelCase__ ( self : int ): return 8 @property def UpperCamelCase__ ( self : Union[str, Any] ): _a = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCamelCase__ ( self : Any ): torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModelWithProjection(__a ) @property def UpperCamelCase__ ( self : int ): torch.manual_seed(0 ) _a = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } _a = PriorTransformer(**__a ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } _a = ShapERenderer(**__a ) return model def UpperCamelCase__ ( self : Dict ): _a = self.dummy_prior _a = self.dummy_text_encoder _a = self.dummy_tokenizer _a = self.dummy_renderer _a = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=10_24 , prediction_type="sample" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) _a = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def UpperCamelCase__ ( self : List[Any] , __a : List[Any] , __a : Optional[Any]=0 ): if str(__a ).startswith("mps" ): _a = torch.manual_seed(__a ) else: _a = torch.Generator(device=__a ).manual_seed(__a ) _a = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCamelCase__ ( self : List[str] ): _a = "cpu" _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = pipe(**self.get_dummy_inputs(__a ) ) _a = output.images[0] _a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def UpperCamelCase__ ( self : int ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase__ ( self : Tuple ): _a = torch_device == "cpu" _a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def UpperCamelCase__ ( self : List[str] ): _a = self.get_dummy_components() _a = self.pipeline_class(**__a ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = 1 _a = 2 _a = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: _a = batch_size * [inputs[key]] _a = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Dict ): _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) _a = ShapEPipeline.from_pretrained("openai/shap-e" ) _a = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _a = torch.Generator(device=__a ).manual_seed(0 ) _a = pipe( "a shark" , generator=__a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
692
'''simple docstring''' lowerCAmelCase_ : Optional[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase_ : List[Any] = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase_ : Dict = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
692
1
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowercase_ ( _lowerCamelCase: int ) -> Any: '''simple docstring''' random.seed(_lowerCamelCase ) np.random.seed(_lowerCamelCase ) torch.manual_seed(_lowerCamelCase ) torch.cuda.manual_seed_all(_lowerCamelCase ) # ^^ safe to call this function even if cuda is not available class _snake_case : def __init__( self : List[Any] , UpperCAmelCase : Iterable[torch.nn.Parameter] , UpperCAmelCase : float = 0.9_9_9_9 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : int = 0 , UpperCAmelCase : bool = False , UpperCAmelCase : Union[float, int] = 1.0 , UpperCAmelCase : Union[float, int] = 2 / 3 , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : Dict[str, Any] = None , **UpperCAmelCase : List[str] , ): if isinstance(UpperCAmelCase , torch.nn.Module ): __lowerCamelCase : Union[str, Any] = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage`" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase , ) __lowerCamelCase : Union[str, Any] = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility __lowerCamelCase : List[Any] = True if kwargs.get("max_value" , UpperCAmelCase ) is not None: __lowerCamelCase : Optional[int] = "The `max_value` argument is deprecated. Please use `decay` instead." deprecate("max_value" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase ) __lowerCamelCase : Optional[int] = kwargs["max_value"] if kwargs.get("min_value" , UpperCAmelCase ) is not None: __lowerCamelCase : str = "The `min_value` argument is deprecated. Please use `min_decay` instead." deprecate("min_value" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase ) __lowerCamelCase : List[Any] = kwargs["min_value"] __lowerCamelCase : List[str] = list(UpperCAmelCase ) __lowerCamelCase : Dict = [p.clone().detach() for p in parameters] if kwargs.get("device" , UpperCAmelCase ) is not None: __lowerCamelCase : Optional[int] = "The `device` argument is deprecated. Please use `to` instead." deprecate("device" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase ) self.to(device=kwargs["device"] ) __lowerCamelCase : str = None __lowerCamelCase : Optional[int] = decay __lowerCamelCase : Optional[Any] = min_decay __lowerCamelCase : int = update_after_step __lowerCamelCase : List[str] = use_ema_warmup __lowerCamelCase : List[Any] = inv_gamma __lowerCamelCase : Optional[Any] = power __lowerCamelCase : Tuple = 0 __lowerCamelCase : str = None # set in `step()` __lowerCamelCase : Tuple = model_cls __lowerCamelCase : int = model_config @classmethod def lowerCamelCase__ ( cls : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int] ): __lowerCamelCase , __lowerCamelCase : List[Any] = model_cls.load_config(UpperCAmelCase , return_unused_kwargs=UpperCAmelCase ) __lowerCamelCase : Dict = model_cls.from_pretrained(UpperCAmelCase ) __lowerCamelCase : List[str] = cls(model.parameters() , model_cls=UpperCAmelCase , model_config=model.config ) ema_model.load_state_dict(UpperCAmelCase ) return ema_model def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : List[Any] ): if self.model_cls is None: raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__." ) if self.model_config is None: raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__." ) __lowerCamelCase : Dict = self.model_cls.from_config(self.model_config ) __lowerCamelCase : Union[str, Any] = self.state_dict() state_dict.pop("shadow_params" , UpperCAmelCase ) model.register_to_config(**UpperCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(UpperCAmelCase ) def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : int ): __lowerCamelCase : Tuple = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: __lowerCamelCase : int = 1 - (1 + step / self.inv_gamma) ** -self.power else: __lowerCamelCase : int = (1 + step) / (10 + step) __lowerCamelCase : Dict = min(UpperCAmelCase , self.decay ) # make sure decay is not smaller than min_decay __lowerCamelCase : str = max(UpperCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Iterable[torch.nn.Parameter] ): if isinstance(UpperCAmelCase , torch.nn.Module ): __lowerCamelCase : Dict = ( "Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. " "Please pass the parameters of the module instead." ) deprecate( "passing a `torch.nn.Module` to `ExponentialMovingAverage.step`" , "1.0.0" , UpperCAmelCase , standard_warn=UpperCAmelCase , ) __lowerCamelCase : Tuple = parameters.parameters() __lowerCamelCase : Optional[Any] = list(UpperCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. __lowerCamelCase : List[str] = self.get_decay(self.optimization_step ) __lowerCamelCase : Optional[Any] = decay __lowerCamelCase : Union[str, Any] = 1 - decay __lowerCamelCase : Tuple = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , UpperCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): __lowerCamelCase : Union[str, Any] = deepspeed.zero.GatheredParameters(UpperCAmelCase , modifier_rank=UpperCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(UpperCAmelCase ) def lowerCamelCase__ ( self : Tuple , UpperCAmelCase : Iterable[torch.nn.Parameter] ): __lowerCamelCase : Optional[Any] = list(UpperCAmelCase ) for s_param, param in zip(self.shadow_params , UpperCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def lowerCamelCase__ ( self : str , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None ): __lowerCamelCase : Any = [ p.to(device=UpperCAmelCase , dtype=UpperCAmelCase ) if p.is_floating_point() else p.to(device=UpperCAmelCase ) for p in self.shadow_params ] def lowerCamelCase__ ( self : Union[str, Any] ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def lowerCamelCase__ ( self : Union[str, Any] , UpperCAmelCase : Iterable[torch.nn.Parameter] ): __lowerCamelCase : int = [param.detach().cpu().clone() for param in parameters] def lowerCamelCase__ ( self : Dict , UpperCAmelCase : Iterable[torch.nn.Parameter] ): if self.temp_stored_params is None: raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights " "to `restore()`" ) for c_param, param in zip(self.temp_stored_params , UpperCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. __lowerCamelCase : List[Any] = None def lowerCamelCase__ ( self : Optional[Any] , UpperCAmelCase : dict ): __lowerCamelCase : Any = copy.deepcopy(UpperCAmelCase ) __lowerCamelCase : List[str] = state_dict.get("decay" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("Decay must be between 0 and 1" ) __lowerCamelCase : str = state_dict.get("min_decay" , self.min_decay ) if not isinstance(self.min_decay , UpperCAmelCase ): raise ValueError("Invalid min_decay" ) __lowerCamelCase : Union[str, Any] = state_dict.get("optimization_step" , self.optimization_step ) if not isinstance(self.optimization_step , UpperCAmelCase ): raise ValueError("Invalid optimization_step" ) __lowerCamelCase : Tuple = state_dict.get("update_after_step" , self.update_after_step ) if not isinstance(self.update_after_step , UpperCAmelCase ): raise ValueError("Invalid update_after_step" ) __lowerCamelCase : List[Any] = state_dict.get("use_ema_warmup" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , UpperCAmelCase ): raise ValueError("Invalid use_ema_warmup" ) __lowerCamelCase : List[Any] = state_dict.get("inv_gamma" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("Invalid inv_gamma" ) __lowerCamelCase : List[str] = state_dict.get("power" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("Invalid power" ) __lowerCamelCase : Tuple = state_dict.get("shadow_params" , UpperCAmelCase ) if shadow_params is not None: __lowerCamelCase : int = shadow_params if not isinstance(self.shadow_params , UpperCAmelCase ): raise ValueError("shadow_params must be a list" ) if not all(isinstance(UpperCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("shadow_params must all be Tensors" )
366
"""simple docstring""" import gc import threading import time import psutil import torch class _snake_case : def __init__( self : str ): __lowerCamelCase : Optional[Any] = psutil.Process() __lowerCamelCase : List[Any] = False def lowerCamelCase__ ( self : str ): __lowerCamelCase : List[Any] = -1 while True: __lowerCamelCase : Union[str, Any] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCamelCase__ ( self : Any ): __lowerCamelCase : Optional[Any] = True __lowerCamelCase : Union[str, Any] = threading.Thread(target=self.peak_monitor ) __lowerCamelCase : Optional[Any] = True self.thread.start() def lowerCamelCase__ ( self : Dict ): __lowerCamelCase : str = False self.thread.join() return self.cpu_memory_peak __A = PeakCPUMemory() def lowercase_ ( ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase : Any = {"time": time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Optional[int] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : int = torch.cuda.memory_allocated(_lowerCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def lowercase_ ( _lowerCamelCase: Optional[Any] ) -> Tuple: '''simple docstring''' __lowerCamelCase : Tuple = {"time": time.time() - start_measures["time"]} gc.collect() torch.cuda.empty_cache() # CPU mem __lowerCamelCase : Dict = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20 __lowerCamelCase : Tuple = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowerCamelCase : Any = (torch.cuda.memory_allocated(_lowerCamelCase ) - start_measures[str(_lowerCamelCase )]) / 2**20 __lowerCamelCase : Optional[int] = (torch.cuda.max_memory_allocated(_lowerCamelCase ) - start_measures[str(_lowerCamelCase )]) / 2**20 return measures def lowercase_ ( _lowerCamelCase: int , _lowerCamelCase: List[Any] ) -> Optional[int]: '''simple docstring''' print(F"""{description}:""" ) print(F"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(F"""- GPU {i} allocated: {measures[str(_lowerCamelCase )]:.2f}MiB""" ) __lowerCamelCase : List[Any] = measures[F"""{i}-peak"""] print(F"""- GPU {i} peak: {peak:.2f}MiB""" ) print(F"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(F"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
366
1
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: assert isinstance(UpperCamelCase_ ,UpperCamelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('keep_in_memory' ,[False, True] ) def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: A_ = tmp_path / 'cache' A_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A_ = SqlDatasetReader( 'dataset' ,'sqlite:///' + sqlite_path ,cache_dir=UpperCamelCase_ ,keep_in_memory=UpperCamelCase_ ).read() _check_sql_dataset(UpperCamelCase_ ,UpperCamelCase_ ) @require_sqlalchemy @pytest.mark.parametrize( 'features' ,[ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] ,) def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: A_ = tmp_path / 'cache' A_ = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} A_ = features.copy() if features else default_expected_features A_ = ( Features({feature: Value(UpperCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) A_ = SqlDatasetReader('dataset' ,'sqlite:///' + sqlite_path ,features=UpperCamelCase_ ,cache_dir=UpperCamelCase_ ).read() _check_sql_dataset(UpperCamelCase_ ,UpperCamelCase_ ) def lowerCamelCase( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: with contextlib.closing(sqlitea.connect(UpperCamelCase_ ) ) as con: A_ = con.cursor() cur.execute('SELECT * FROM dataset' ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Optional[int]: A_ = tmp_path / 'cache' A_ = os.path.join(UpperCamelCase_ ,'tmp.sql' ) A_ = SqlDatasetReader('dataset' ,'sqlite:///' + sqlite_path ,cache_dir=UpperCamelCase_ ).read() SqlDatasetWriter(UpperCamelCase_ ,'dataset' ,'sqlite:///' + output_sqlite_path ,num_proc=1 ).write() A_ = iter_sql_file(UpperCamelCase_ ) A_ = iter_sql_file(UpperCamelCase_ ) for rowa, rowa in zip(UpperCamelCase_ ,UpperCamelCase_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> str: A_ = tmp_path / 'cache' A_ = os.path.join(UpperCamelCase_ ,'tmp.sql' ) A_ = SqlDatasetReader('dataset' ,'sqlite:///' + sqlite_path ,cache_dir=UpperCamelCase_ ).read() SqlDatasetWriter(UpperCamelCase_ ,'dataset' ,'sqlite:///' + output_sqlite_path ,num_proc=2 ).write() A_ = iter_sql_file(UpperCamelCase_ ) A_ = iter_sql_file(UpperCamelCase_ ) for rowa, rowa in zip(UpperCamelCase_ ,UpperCamelCase_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: A_ = tmp_path / 'cache' A_ = os.path.join(UpperCamelCase_ ,'tmp.sql' ) A_ = SqlDatasetReader('dataset' ,'sqlite:///' + sqlite_path ,cache_dir=UpperCamelCase_ ).read() with pytest.raises(UpperCamelCase_ ): SqlDatasetWriter(UpperCamelCase_ ,'dataset' ,'sqlite:///' + output_sqlite_path ,num_proc=0 ).write()
366
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : Any = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = 'levit' def __init__( self : Union[str, Any] , __snake_case : str=224 , __snake_case : Optional[Any]=3 , __snake_case : str=3 , __snake_case : Optional[Any]=2 , __snake_case : List[str]=1 , __snake_case : Tuple=16 , __snake_case : Union[str, Any]=[128, 256, 384] , __snake_case : Optional[Any]=[4, 8, 12] , __snake_case : str=[4, 4, 4] , __snake_case : int=[16, 16, 16] , __snake_case : Union[str, Any]=0 , __snake_case : int=[2, 2, 2] , __snake_case : Dict=[2, 2, 2] , __snake_case : Optional[Any]=0.02 , **__snake_case : Tuple , ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) lowerCamelCase = image_size lowerCamelCase = num_channels lowerCamelCase = kernel_size lowerCamelCase = stride lowerCamelCase = padding lowerCamelCase = hidden_sizes lowerCamelCase = num_attention_heads lowerCamelCase = depths lowerCamelCase = key_dim lowerCamelCase = drop_path_rate lowerCamelCase = patch_size lowerCamelCase = attention_ratio lowerCamelCase = mlp_ratio lowerCamelCase = initializer_range lowerCamelCase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case = version.parse('1.11' ) @property def lowerCamelCase__ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase__ ( self : Optional[int] ) -> float: '''simple docstring''' return 1e-4
246
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=100 , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=10 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , ): """simple docstring""" UpperCamelCase : Dict = parent UpperCamelCase : Dict = 100 UpperCamelCase : Tuple = batch_size UpperCamelCase : Union[str, Any] = image_size UpperCamelCase : Tuple = patch_size UpperCamelCase : Union[str, Any] = num_channels UpperCamelCase : Dict = is_training UpperCamelCase : List[Any] = use_labels UpperCamelCase : Union[str, Any] = hidden_size UpperCamelCase : List[Any] = num_hidden_layers UpperCamelCase : Tuple = num_attention_heads UpperCamelCase : List[Any] = intermediate_size UpperCamelCase : Dict = hidden_act UpperCamelCase : str = hidden_dropout_prob UpperCamelCase : List[Any] = attention_probs_dropout_prob UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : int = initializer_range UpperCamelCase : str = scope UpperCamelCase : List[Any] = out_indices UpperCamelCase : Tuple = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase : List[Any] = (image_size // patch_size) ** 2 UpperCamelCase : List[Any] = num_patches + 1 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase : Dict = None UpperCamelCase : Optional[Any] = None if self.use_labels: UpperCamelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase : List[Any] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self ): """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : int = BeitModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Dict = BeitForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = self.type_sequence_label_size UpperCamelCase : Optional[Any] = BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : str = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase : Any = 1 UpperCamelCase : Optional[int] = BeitForImageClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase : Optional[int] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : str = self.num_labels UpperCamelCase : Dict = BeitForSemanticSegmentation(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) UpperCamelCase : List[str] = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() UpperCamelCase : str = config_and_inputs UpperCamelCase : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a, _a, unittest.TestCase): '''simple docstring''' __UpperCamelCase : Union[str, Any] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) __UpperCamelCase : Any = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) __UpperCamelCase : List[str] = False __UpperCamelCase : Dict = False __UpperCamelCase : Tuple = False def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[Any] = BeitModelTester(self ) UpperCamelCase : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''BEiT does not use inputs_embeds''' ) def _lowercase ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='''BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def _lowercase ( self ): """simple docstring""" pass def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Union[str, Any] = model_class(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase : List[Any] = [*signature.parameters.keys()] UpperCamelCase : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" if not self.model_tester.is_training: return UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__SCREAMING_SNAKE_CASE ), BeitForMaskedImageModeling]: continue UpperCamelCase : str = model_class(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase : Dict = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase : int = False UpperCamelCase : Optional[Any] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__SCREAMING_SNAKE_CASE ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue UpperCamelCase : str = model_class(__SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.to(__SCREAMING_SNAKE_CASE ) model.train() UpperCamelCase : Optional[int] = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = model(**__SCREAMING_SNAKE_CASE ).loss loss.backward() def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase : Any = _config_zero_init(__SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCamelCase : Optional[Any] = model_class(config=__SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _lowercase ( self ): """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = BeitModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a ( ): """simple docstring""" UpperCamelCase : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): '''simple docstring''' @cached_property def _lowercase ( self ): """simple docstring""" return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = BeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = self.default_image_processor UpperCamelCase : Any = prepare_img() UpperCamelCase : int = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values.to(__SCREAMING_SNAKE_CASE ) # prepare bool_masked_pos UpperCamelCase : Tuple = torch.ones((1, 196) , dtype=torch.bool ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : List[Any] = model(pixel_values=__SCREAMING_SNAKE_CASE , bool_masked_pos=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = outputs.logits # verify the logits UpperCamelCase : int = torch.Size((1, 196, 8_192) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = torch.tensor( [[-3.2_437, 0.5_072, -13.9_174], [-3.2_456, 0.4_948, -13.9_401], [-3.2_033, 0.5_121, -13.8_550]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-2 ) ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = BeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ).to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = self.default_image_processor UpperCamelCase : List[str] = prepare_img() UpperCamelCase : List[Any] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : Dict = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = outputs.logits # verify the logits UpperCamelCase : Dict = torch.Size((1, 1_000) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = torch.tensor([-1.2_385, -1.0_987, -1.0_108] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) UpperCamelCase : Union[str, Any] = 281 self.assertEqual(logits.argmax(-1 ).item() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = BeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ).to( __SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = self.default_image_processor UpperCamelCase : Dict = prepare_img() UpperCamelCase : Tuple = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : Any = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = outputs.logits # verify the logits UpperCamelCase : Union[str, Any] = torch.Size((1, 21_841) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = torch.tensor([1.6_881, -0.2_787, 0.5_901] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) UpperCamelCase : List[Any] = 2_396 self.assertEqual(logits.argmax(-1 ).item() , __SCREAMING_SNAKE_CASE ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : Optional[int] = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCamelCase : List[str] = model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[str] = BeitImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , size=640 , do_center_crop=__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCamelCase : Any = Image.open(ds[0]['''file'''] ) UpperCamelCase : List[str] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : List[Any] = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = outputs.logits # verify the logits UpperCamelCase : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = version.parse(PIL.__version__ ) < version.parse('''9.0.0''' ) if is_pillow_less_than_a: UpperCamelCase : Optional[Any] = torch.tensor( [ [[-4.9_225, -2.3_954, -3.0_522], [-2.8_822, -1.0_046, -1.7_561], [-2.9_549, -1.3_228, -2.1_347]], [[-5.8_168, -3.4_129, -4.0_778], [-3.8_651, -2.2_214, -3.0_277], [-3.8_356, -2.4_643, -3.3_535]], [[-0.0_078, 3.9_952, 4.0_754], [2.9_856, 4.6_944, 5.0_035], [3.2_413, 4.7_813, 4.9_969]], ] , device=__SCREAMING_SNAKE_CASE , ) else: UpperCamelCase : Any = torch.tensor( [ [[-4.8_960, -2.3_688, -3.0_355], [-2.8_478, -0.9_836, -1.7_418], [-2.9_449, -1.3_332, -2.1_456]], [[-5.8_081, -3.4_124, -4.1_006], [-3.8_561, -2.2_081, -3.0_323], [-3.8_365, -2.4_601, -3.3_669]], [[-0.0_309, 3.9_868, 4.0_540], [2.9_640, 4.6_877, 4.9_976], [3.2_081, 4.7_690, 4.9_942]], ] , device=__SCREAMING_SNAKE_CASE , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) ) @slow def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = BeitForSemanticSegmentation.from_pretrained('''microsoft/beit-base-finetuned-ade-640-640''' ) UpperCamelCase : str = model.to(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = BeitImageProcessor(do_resize=__SCREAMING_SNAKE_CASE , size=640 , do_center_crop=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = load_dataset('''hf-internal-testing/fixtures_ade20k''' , split='''test''' ) UpperCamelCase : Dict = Image.open(ds[0]['''file'''] ) UpperCamelCase : Optional[int] = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCamelCase : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = outputs.logits.detach().cpu() UpperCamelCase : Dict = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE , target_sizes=[(500, 300)] ) UpperCamelCase : Tuple = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE ) UpperCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __SCREAMING_SNAKE_CASE )
717
import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCAmelCase : Dict = logging.get_logger(__name__) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Any = ["input_features"] def __init__( self , __SCREAMING_SNAKE_CASE=80 , __SCREAMING_SNAKE_CASE=16_000 , __SCREAMING_SNAKE_CASE=160 , __SCREAMING_SNAKE_CASE=30 , __SCREAMING_SNAKE_CASE=400 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( feature_size=__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , padding_value=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) UpperCamelCase : List[str] = n_fft UpperCamelCase : Dict = hop_length UpperCamelCase : Dict = chunk_length UpperCamelCase : List[str] = chunk_length * sampling_rate UpperCamelCase : Dict = self.n_samples // hop_length UpperCamelCase : str = sampling_rate UpperCamelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__SCREAMING_SNAKE_CASE , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=__SCREAMING_SNAKE_CASE , norm='''slaney''' , mel_scale='''slaney''' , ) def _lowercase ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[str] = spectrogram( __SCREAMING_SNAKE_CASE , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , ) UpperCamelCase : int = log_spec[:, :-1] UpperCamelCase : int = np.maximum(__SCREAMING_SNAKE_CASE , log_spec.max() - 8.0 ) UpperCamelCase : Any = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 ): """simple docstring""" if attention_mask is not None: UpperCamelCase : List[Any] = np.array(__SCREAMING_SNAKE_CASE , np.intaa ) UpperCamelCase : Optional[Any] = [] for vector, length in zip(__SCREAMING_SNAKE_CASE , attention_mask.sum(-1 ) ): UpperCamelCase : Optional[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: UpperCamelCase : Optional[int] = padding_value normed_input_values.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : Union[str, Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "max_length" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) UpperCamelCase : Tuple = isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" ) UpperCamelCase : Union[str, Any] = is_batched_numpy or ( isinstance(__SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase : List[Any] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ): UpperCamelCase : int = np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase : Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase : Optional[int] = [np.asarray([raw_speech] ).T] UpperCamelCase : Optional[int] = BatchFeature({'''input_features''': raw_speech} ) # convert into correct format for padding UpperCamelCase : Optional[Any] = self.pad( __SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , max_length=max_length if max_length else self.n_samples , truncation=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: UpperCamelCase : Optional[Any] = self.zero_mean_unit_var_norm( padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , ) UpperCamelCase : List[str] = np.stack(padded_inputs['''input_features'''] , axis=0 ) # make sure list is in array format UpperCamelCase : Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 ) UpperCamelCase : Tuple = [self._np_extract_fbank_features(__SCREAMING_SNAKE_CASE ) for waveform in input_features[0]] if isinstance(input_features[0] , __SCREAMING_SNAKE_CASE ): UpperCamelCase : Optional[int] = [np.asarray(__SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] else: UpperCamelCase : Dict = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) UpperCamelCase : Union[str, Any] = padded_inputs['''attention_mask'''][:, :: self.hop_length] if return_tensors is not None: UpperCamelCase : Dict = padded_inputs.convert_to_tensors(__SCREAMING_SNAKE_CASE ) return padded_inputs def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = copy.deepcopy(self.__dict__ ) UpperCamelCase : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
643
0
from collections.abc import Sequence def __UpperCamelCase ( _A , _A = False ): if not arr: return 0 lowerCAmelCase_ = 0 if allow_empty_subarrays else float('''-inf''' ) lowerCAmelCase_ = 0.0 for num in arr: lowerCAmelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase_ = max(_A , _A ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
431
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType _A = logging.get_logger(__name__) _A = { '''openai/whisper-base''': '''https://huggingface.co/openai/whisper-base/resolve/main/config.json''', } # fmt: off _A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] _A = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class A ( __UpperCAmelCase ): __snake_case = 'whisper' __snake_case = ['past_key_values'] __snake_case = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self, UpperCamelCase__=5_1865, UpperCamelCase__=80, UpperCamelCase__=6, UpperCamelCase__=4, UpperCamelCase__=6, UpperCamelCase__=4, UpperCamelCase__=1536, UpperCamelCase__=1536, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=5_0257, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__="gelu", UpperCamelCase__=256, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=False, UpperCamelCase__=1500, UpperCamelCase__=448, UpperCamelCase__=5_0256, UpperCamelCase__=5_0256, UpperCamelCase__=5_0256, UpperCamelCase__=None, UpperCamelCase__=[220, 5_0256], UpperCamelCase__=False, UpperCamelCase__=256, UpperCamelCase__=False, UpperCamelCase__=0.05, UpperCamelCase__=10, UpperCamelCase__=2, UpperCamelCase__=0.0, UpperCamelCase__=10, UpperCamelCase__=0, UpperCamelCase__=7, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = vocab_size lowerCAmelCase_ = num_mel_bins lowerCAmelCase_ = d_model lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = encoder_attention_heads lowerCAmelCase_ = decoder_layers lowerCAmelCase_ = decoder_attention_heads lowerCAmelCase_ = decoder_ffn_dim lowerCAmelCase_ = encoder_ffn_dim lowerCAmelCase_ = dropout lowerCAmelCase_ = attention_dropout lowerCAmelCase_ = activation_dropout lowerCAmelCase_ = activation_function lowerCAmelCase_ = init_std lowerCAmelCase_ = encoder_layerdrop lowerCAmelCase_ = decoder_layerdrop lowerCAmelCase_ = use_cache lowerCAmelCase_ = encoder_layers lowerCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ = max_source_positions lowerCAmelCase_ = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. lowerCAmelCase_ = classifier_proj_size lowerCAmelCase_ = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCAmelCase_ = apply_spec_augment lowerCAmelCase_ = mask_time_prob lowerCAmelCase_ = mask_time_length lowerCAmelCase_ = mask_time_min_masks lowerCAmelCase_ = mask_feature_prob lowerCAmelCase_ = mask_feature_length lowerCAmelCase_ = mask_feature_min_masks lowerCAmelCase_ = median_filter_width super().__init__( pad_token_id=UpperCamelCase__, bos_token_id=UpperCamelCase__, eos_token_id=UpperCamelCase__, is_encoder_decoder=UpperCamelCase__, decoder_start_token_id=UpperCamelCase__, suppress_tokens=UpperCamelCase__, begin_suppress_tokens=UpperCamelCase__, **UpperCamelCase__, ) class A ( __UpperCAmelCase ): @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = OrderedDict( [ ('''input_features''', {0: '''batch''', 1: '''feature_size''', 2: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ = {0: '''batch'''} else: lowerCAmelCase_ = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__, direction='''inputs''' ) return common_inputs def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = -1, UpperCamelCase__ = -1, UpperCamelCase__ = False, UpperCamelCase__ = None, UpperCamelCase__ = 2_2050, UpperCamelCase__ = 5.0, UpperCamelCase__ = 220, ): """simple docstring""" lowerCAmelCase_ = OrderedDict() lowerCAmelCase_ = OnnxConfig.generate_dummy_inputs( self, preprocessor=preprocessor.feature_extractor, batch_size=UpperCamelCase__, framework=UpperCamelCase__, sampling_rate=UpperCamelCase__, time_duration=UpperCamelCase__, frequency=UpperCamelCase__, ) lowerCAmelCase_ = encoder_inputs['''input_features'''].shape[2] lowerCAmelCase_ = encoder_sequence_length // 2 if self.use_past else seq_length lowerCAmelCase_ = super().generate_dummy_inputs( preprocessor.tokenizer, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) lowerCAmelCase_ = encoder_inputs.pop('''input_features''' ) lowerCAmelCase_ = decoder_inputs.pop('''decoder_input_ids''' ) if "past_key_values" in decoder_inputs: lowerCAmelCase_ = decoder_inputs.pop('''past_key_values''' ) return dummy_inputs @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return 1E-3
431
1
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[str] = XLMRobertaTokenizer __lowerCAmelCase : Tuple = XLMRobertaTokenizerFast __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Union[str, Any] = True def __lowerCamelCase ( self :int ): super().setUp() # We have a SentencePiece fixture for testing snake_case__ : Union[str, Any] = XLMRobertaTokenizer(__lowercase ,keep_accents=__lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self :str ): snake_case__ : Tuple = '''<pad>''' snake_case__ : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowercase ) ,__lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowercase ) ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(__lowercase ) ,1_0_0_2 ) def __lowerCamelCase ( self :Dict ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_2 ) def __lowerCamelCase ( self :int ): snake_case__ : int = XLMRobertaTokenizer(__lowercase ,keep_accents=__lowercase ) snake_case__ : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowercase ,['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] ,) snake_case__ : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowercase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] ,) snake_case__ : List[str] = tokenizer.convert_tokens_to_ids(__lowercase ) self.assertListEqual( __lowercase ,[ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] ,) snake_case__ : List[Any] = tokenizer.convert_ids_to_tokens(__lowercase ) self.assertListEqual( __lowercase ,[ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] ,) def __lowerCamelCase ( self :Dict ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return snake_case__ : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case__ : Tuple = self.rust_tokenizer_class.from_pretrained(__lowercase ,**__lowercase ) snake_case__ : Union[str, Any] = self.tokenizer_class.from_pretrained(__lowercase ,**__lowercase ) snake_case__ : Optional[Any] = tempfile.mkdtemp() snake_case__ : Union[str, Any] = tokenizer_r.save_pretrained(__lowercase ) snake_case__ : List[str] = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) snake_case__ : List[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowercase ,__lowercase ) # Checks everything loads correctly in the same way snake_case__ : int = tokenizer_r.from_pretrained(__lowercase ) snake_case__ : int = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase ,__lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=True snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : Dict = tokenizer_r.save_pretrained(__lowercase ,legacy_format=__lowercase ) snake_case__ : List[Any] = tokenizer_p.save_pretrained(__lowercase ) # Checks it save with the same files self.assertSequenceEqual(__lowercase ,__lowercase ) # Checks everything loads correctly in the same way snake_case__ : List[str] = tokenizer_r.from_pretrained(__lowercase ) snake_case__ : str = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase ,__lowercase ) ) shutil.rmtree(__lowercase ) # Save tokenizer rust, legacy_format=False snake_case__ : List[Any] = tempfile.mkdtemp() snake_case__ : int = tokenizer_r.save_pretrained(__lowercase ,legacy_format=__lowercase ) snake_case__ : Tuple = tokenizer_p.save_pretrained(__lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case__ : Dict = tokenizer_r.from_pretrained(__lowercase ) snake_case__ : Optional[Any] = tokenizer_p.from_pretrained(__lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowercase ,__lowercase ) ) shutil.rmtree(__lowercase ) @cached_property def __lowerCamelCase ( self :Optional[int] ): return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __lowerCamelCase ( self :Union[str, Any] ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(__lowercase ,f.name ) snake_case__ : Union[str, Any] = XLMRobertaTokenizer(f.name ,keep_accents=__lowercase ) snake_case__ : List[Any] = pickle.dumps(__lowercase ) pickle.loads(__lowercase ) def __lowerCamelCase ( self :List[Any] ): if not self.test_rust_tokenizer: return snake_case__ : str = self.get_tokenizer() snake_case__ : List[str] = self.get_rust_tokenizer() snake_case__ : str = '''I was born in 92000, and this is falsé.''' snake_case__ : int = tokenizer.tokenize(__lowercase ) snake_case__ : Union[str, Any] = rust_tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) snake_case__ : Dict = tokenizer.encode(__lowercase ,add_special_tokens=__lowercase ) snake_case__ : Union[str, Any] = rust_tokenizer.encode(__lowercase ,add_special_tokens=__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) snake_case__ : Tuple = self.get_rust_tokenizer() snake_case__ : Optional[Any] = tokenizer.encode(__lowercase ) snake_case__ : Union[str, Any] = rust_tokenizer.encode(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :List[Any] ): snake_case__ : str = '''Hello World!''' snake_case__ : List[str] = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowercase ,self.big_tokenizer.encode(__lowercase ) ) @slow def __lowerCamelCase ( self :int ): snake_case__ : List[Any] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) snake_case__ : Any = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(__lowercase ,self.big_tokenizer.encode(__lowercase ) ) @slow def __lowerCamelCase ( self :int ): # fmt: off snake_case__ : Optional[int] = {'''input_ids''': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowercase ,model_name='''xlm-roberta-base''' ,revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' ,)
721
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : str = ShapEPipeline __lowerCAmelCase : Union[str, Any] = ["""prompt"""] __lowerCAmelCase : Union[str, Any] = ["""prompt"""] __lowerCAmelCase : Tuple = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] __lowerCAmelCase : Optional[Any] = False @property def __lowerCamelCase ( self :Dict ): return 3_2 @property def __lowerCamelCase ( self :str ): return 3_2 @property def __lowerCamelCase ( self :Optional[int] ): return self.time_input_dim * 4 @property def __lowerCamelCase ( self :int ): return 8 @property def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def __lowerCamelCase ( self :int ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=self.text_embedder_hidden_size ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=3_7 ,layer_norm_eps=1e-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_0_0_0 ,) return CLIPTextModelWithProjection(__lowercase ) @property def __lowerCamelCase ( self :str ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = { '''num_attention_heads''': 2, '''attention_head_dim''': 1_6, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 3_2, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } snake_case__ : Optional[int] = PriorTransformer(**__lowercase ) return model @property def __lowerCamelCase ( self :Optional[int] ): torch.manual_seed(0 ) snake_case__ : Dict = { '''param_shapes''': ( (self.renderer_dim, 9_3), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 1_2, '''background''': ( 0.1, 0.1, 0.1, ), } snake_case__ : List[str] = ShapERenderer(**__lowercase ) return model def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : str = self.dummy_prior snake_case__ : Optional[Any] = self.dummy_text_encoder snake_case__ : List[Any] = self.dummy_tokenizer snake_case__ : Optional[int] = self.dummy_renderer snake_case__ : str = HeunDiscreteScheduler( beta_schedule='''exp''' ,num_train_timesteps=1_0_2_4 ,prediction_type='''sample''' ,use_karras_sigmas=__lowercase ,clip_sample=__lowercase ,clip_sample_range=1.0 ,) snake_case__ : Tuple = { '''prior''': prior, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :int ,__lowercase :str=0 ): if str(__lowercase ).startswith('''mps''' ): snake_case__ : List[str] = torch.manual_seed(__lowercase ) else: snake_case__ : Optional[Any] = torch.Generator(device=__lowercase ).manual_seed(__lowercase ) snake_case__ : Optional[int] = { '''prompt''': '''horse''', '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 3_2, '''output_type''': '''np''', } return inputs def __lowerCamelCase ( self :Tuple ): snake_case__ : str = '''cpu''' snake_case__ : str = self.get_dummy_components() snake_case__ : Optional[Any] = self.pipeline_class(**__lowercase ) snake_case__ : Tuple = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Tuple = pipe(**self.get_dummy_inputs(__lowercase ) ) snake_case__ : Dict = output.images[0] snake_case__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (2_0, 3_2, 3_2, 3) snake_case__ : Tuple = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCamelCase ( self :Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = torch_device == '''cpu''' snake_case__ : Dict = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=__lowercase ,relax_max_difference=__lowercase ,) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = self.get_dummy_components() snake_case__ : Any = self.pipeline_class(**__lowercase ) snake_case__ : str = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Any = 1 snake_case__ : str = 2 snake_case__ : Any = self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: snake_case__ : Optional[Any] = batch_size * [inputs[key]] snake_case__ : Any = pipe(**__lowercase ,num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a ( unittest.TestCase ): def __lowerCamelCase ( self :List[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_np_out.npy''' ) snake_case__ : Optional[int] = ShapEPipeline.from_pretrained('''openai/shap-e''' ) snake_case__ : Any = pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case__ : Optional[int] = torch.Generator(device=__lowercase ).manual_seed(0 ) snake_case__ : Tuple = pipe( '''a shark''' ,generator=__lowercase ,guidance_scale=15.0 ,num_inference_steps=6_4 ,frame_size=6_4 ,output_type='''np''' ,).images[0] assert images.shape == (2_0, 6_4, 6_4, 3) assert_mean_pixel_difference(__lowercase ,__lowercase )
219
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __SCREAMING_SNAKE_CASE : def __init__( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int]=13 , UpperCAmelCase__ : Any=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[Any]=99 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Any=4 , UpperCAmelCase__ : Any=37 , UpperCAmelCase__ : str="gelu" , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : str=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Tuple=0.02 , UpperCAmelCase__ : Optional[int]=3 , UpperCAmelCase__ : List[str]=4 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Tuple=0 , ): '''simple docstring''' lowercase : Optional[Any] =parent lowercase : Dict =batch_size lowercase : List[Any] =seq_length lowercase : Optional[Any] =is_training lowercase : Tuple =use_input_mask lowercase : Dict =use_token_type_ids lowercase : Any =use_labels lowercase : List[Any] =vocab_size lowercase : int =hidden_size lowercase : List[Any] =num_hidden_layers lowercase : Dict =num_attention_heads lowercase : Optional[Any] =intermediate_size lowercase : str =hidden_act lowercase : Optional[Any] =hidden_dropout_prob lowercase : Any =attention_probs_dropout_prob lowercase : List[Any] =max_position_embeddings lowercase : Dict =type_vocab_size lowercase : List[str] =type_sequence_label_size lowercase : Union[str, Any] =initializer_range lowercase : Tuple =num_labels lowercase : Any =num_choices lowercase : Dict =scope lowercase : Any =projection_dim def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : Dict =None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowercase : Tuple =random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[Any] =None if self.use_token_type_ids: lowercase : int =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase : Union[str, Any] =None lowercase : Optional[Any] =None lowercase : Optional[int] =None if self.use_labels: lowercase : Optional[int] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase : Any =ids_tensor([self.batch_size] , self.num_choices ) lowercase : int =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) lowercase : List[Any] =DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : List[str] =TFDPRContextEncoder(config=UpperCAmelCase__ ) lowercase : List[Any] =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : Optional[int] =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : int =model(UpperCAmelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : str =TFDPRQuestionEncoder(config=UpperCAmelCase__ ) lowercase : Dict =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : Optional[Any] =model(UpperCAmelCase__ , token_type_ids=UpperCAmelCase__ ) lowercase : Any =model(UpperCAmelCase__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : int ): '''simple docstring''' lowercase : List[Any] =TFDPRReader(config=UpperCAmelCase__ ) lowercase : Tuple =model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : List[Any] =self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : Dict =config_and_inputs lowercase : Optional[Any] ={'''input_ids''': input_ids} return config, inputs_dict @require_tf class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): lowerCamelCase_ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCamelCase_ = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowercase : int =TFDPRModelTester(self ) lowercase : Optional[Any] =ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' lowercase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*UpperCAmelCase__ ) @slow def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[int] =TFDPRContextEncoder.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Optional[int] =TFDPRContextEncoder.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Tuple =TFDPRQuestionEncoder.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : List[str] =TFDPRReader.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : str =TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) lowercase : Any =tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowercase : int =model(UpperCAmelCase__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowercase : Any =tf.constant( [ [ 0.03_23_62_53, 0.12_75_33_35, 0.16_81_85_09, 0.00_27_97_86, 0.3_89_69_33, 0.24_26_49_45, 0.2_17_89_71, -0.02_33_52_27, -0.08_48_19_59, -0.14_32_41_17, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
92
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Any =0.0_0 lowercase : Tuple =0 for resistor in resistors: if resistor <= 0: lowercase : Dict =f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__magic_name__ ) first_sum += 1 / float(__magic_name__ ) index += 1 return 1 / first_sum def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Optional[Any] =0.0_0 lowercase : int =0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase : Tuple =f'''Resistor at index {index} has a negative value!''' raise ValueError(__magic_name__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
92
1
_UpperCAmelCase = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def _lowerCamelCase ( _a ): """simple docstring""" assert type(_a ) in (int, float) and decimal == int(_a ) _lowerCamelCase = int(_a ) _lowerCamelCase = '''''' _lowerCamelCase = False if decimal < 0: _lowerCamelCase = True decimal *= -1 while decimal > 0: _lowerCamelCase , _lowerCamelCase = divmod(_a , 1_6 ) _lowerCamelCase = values[remainder] + hexadecimal _lowerCamelCase = '''0x''' + hexadecimal if negative: _lowerCamelCase = '''-''' + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
297
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( _a , _a , _a ): """simple docstring""" _lowerCamelCase = MobileBertConfig.from_json_file(_a ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCamelCase = MobileBertForPreTraining(_a ) # Load weights from tf checkpoint _lowerCamelCase = load_tf_weights_in_mobilebert(_a , _a , _a ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , _a ) if __name__ == "__main__": _UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _UpperCAmelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
297
1
import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __magic_name__ ( _a, _a, unittest.TestCase ): _lowerCAmelCase = IFInpaintingPipeline _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _lowerCAmelCase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''latents'''} def _A ( self : List[str] ): return self._get_dummy_components() def _A ( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any]=0 ): if str(lowerCamelCase__ ).startswith('''mps''' ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(lowerCamelCase__ ) else: lowerCAmelCase : str = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) lowerCAmelCase : str = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) lowerCAmelCase : Dict = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _A ( self : Union[str, Any] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _A ( self : List[str] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def _A ( self : str ): super().test_save_load_floataa(expected_max_diff=1E-1 ) def _A ( self : List[Any] ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _A ( self : Dict ): self._test_save_load_local() def _A ( self : Optional[int] ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
348
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : Tuple = inspect.getfile(accelerate.test_utils ) lowerCamelCase_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase_ : Union[str, Any] = ['''accelerate''', '''launch'''] lowerCamelCase_ : Tuple = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase_ : Tuple = '''default_config.yaml''' lowerCamelCase_ : str = config_folder / config_file lowerCamelCase_ : List[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase_ : Dict = Path('''tests/test_configs''' ) @classmethod def lowerCamelCase (cls ) -> Dict: '''simple docstring''' if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCamelCase (cls ) -> Any: '''simple docstring''' if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' snake_case_ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=__magic_name__ ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(__magic_name__ ), self.test_file_path] , env=os.environ.copy() ) def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class __lowerCAmelCase ( unittest.TestCase ): lowerCamelCase_ : List[str] = '''test-tpu''' lowerCamelCase_ : Dict = '''us-central1-a''' lowerCamelCase_ : Any = '''ls''' lowerCamelCase_ : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase_ : Tuple = '''cd /usr/share''' lowerCamelCase_ : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase_ : List[Any] = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : int = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[str] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=__magic_name__ ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Any = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Dict: '''simple docstring''' snake_case_ : str = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Tuple = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , ) def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=__magic_name__ , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , __magic_name__ , )
60
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "ibert" def __init__( self , UpperCamelCase__=3_0522 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=2 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__="absolute" , UpperCamelCase__=False , UpperCamelCase__="none" , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : Optional[int] = hidden_size A__ : Optional[Any] = num_hidden_layers A__ : Any = num_attention_heads A__ : str = hidden_act A__ : Tuple = intermediate_size A__ : int = hidden_dropout_prob A__ : int = attention_probs_dropout_prob A__ : List[str] = max_position_embeddings A__ : Union[str, Any] = type_vocab_size A__ : Union[str, Any] = initializer_range A__ : Any = layer_norm_eps A__ : List[Any] = position_embedding_type A__ : List[str] = quant_mode A__ : Tuple = force_dequant class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def __snake_case ( self ): if self.task == "multiple-choice": A__ : List[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A__ : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
704
from numpy import exp, pi, sqrt def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Dict , __UpperCamelCase : float = 0.0 , __UpperCamelCase : float = 1.0 ) -> int: """simple docstring""" return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
55
0
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def a (lowerCAmelCase__=32 , lowerCAmelCase__=10 , lowerCAmelCase__=100 , lowerCAmelCase__=1_026 , lowerCAmelCase__=True , lowerCAmelCase__="data/tokenized_stories_train_wikitext103.jbl" , lowerCAmelCase__="igf_context_pairs.jbl" , ): set_seed(3 ) # generate train_data and objective_set __a , __a = generate_datasets( lowerCAmelCase__ , lowerCAmelCase__ , number=lowerCAmelCase__ , min_len=1_026 , trim=lowerCAmelCase__ ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? __a = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) # load pretrained model __a = load_gpta("""gpt2""" ).to(lowerCAmelCase__ ) print("""computing perplexity on objective set""" ) __a = compute_perplexity(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).item() print("""perplexity on objective set:""" , lowerCAmelCase__ ) # collect igf pairs and save to file demo.jbl collect_objective_set(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def a (lowerCAmelCase__ , lowerCAmelCase__=15 , lowerCAmelCase__=128 , lowerCAmelCase__=100 , lowerCAmelCase__="igf_model.pt" , ): set_seed(42 ) # Load pre-trained model __a = GPTaLMHeadModel.from_pretrained("""gpt2""" ) # Initialize secondary learner to use embedding weights of model __a = SecondaryLearner(lowerCAmelCase__ ) # Train secondary learner __a = train_secondary_learner( lowerCAmelCase__ , lowerCAmelCase__ , max_epochs=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , eval_freq=100 , igf_model_path=lowerCAmelCase__ , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=32 , lowerCAmelCase__=1_000 , lowerCAmelCase__=16 , lowerCAmelCase__=1.0 , lowerCAmelCase__=recopy_gpta , lowerCAmelCase__=None , lowerCAmelCase__=10 , lowerCAmelCase__="gpt2_finetuned.pt" , ): __a = torch.device("""cuda:0""" if torch.cuda.is_available() else """cpu""" ) __a = RandomSampler(lowerCAmelCase__ ) __a = DataLoader(lowerCAmelCase__ , sampler=lowerCAmelCase__ ) __a = max_steps // (len(lowerCAmelCase__ )) + 1 __a = 0 __a = torch.zeros((1, context_len) , dtype=torch.long , device=lowerCAmelCase__ ) __a , __a , __a = recopy_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) model.train() if secondary_learner is not None: secondary_learner.to(lowerCAmelCase__ ) secondary_learner.eval() __a = [] __a = 0 __a = [] __a = [] # Compute the performance of the transformer model at the beginning __a = compute_perplexity(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) test_perps.append(lowerCAmelCase__ ) print("""Test perplexity, step""" , lowerCAmelCase__ , """:""" , lowerCAmelCase__ ) for epoch in range(int(lowerCAmelCase__ ) ): for step, example in enumerate(lowerCAmelCase__ ): torch.cuda.empty_cache() __a = random.randint(0 , example.size(2 ) - context_len - 1 ) __a = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() __a = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) __a = True if secondary_learner is not None: __a = secondary_learner.forward( torch.tensor(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ).unsqueeze(0 ) )[0].item() observed_qs.append(float(lowerCAmelCase__ ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: __a = -1 if predicted_q < threshold: __a = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) __a = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() __a = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: __a = compute_perplexity(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) test_perps.append(lowerCAmelCase__ ) print("""Test perplexity, step""" , lowerCAmelCase__ , """:""" , lowerCAmelCase__ ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , lowerCAmelCase__ ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def a (): __a = argparse.ArgumentParser(description="""Fine-tune a transformer model with IGF on a language modeling task""" ) # Required parameters parser.add_argument( """--data_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The input data dir. Should contain data files for WikiText.""" , ) parser.add_argument( """--model_name_or_path""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""Path to pretrained model or model identifier from huggingface.co/models""" , ) parser.add_argument( """--data_file""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help=( """A jbl file containing tokenized data which can be split as objective dataset, """ """train_dataset and test_dataset.""" ) , ) parser.add_argument( """--igf_data_file""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""A jbl file containing the context and information gain pairs to train secondary learner.""" , ) parser.add_argument( """--output_dir""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The output directory where the final fine-tuned model is stored.""" , ) parser.add_argument( """--tokenizer_name""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Pretrained tokenizer name or path if not the same as model_name""" , ) parser.add_argument("""--seed""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""A seed for reproducible training.""" ) parser.add_argument( """--context_len""" , default=32 , type=lowerCAmelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--size_objective_set""" , default=100 , type=lowerCAmelCase__ , help="""number of articles that are long enough to be used as our objective set""" , ) parser.add_argument( """--eval_freq""" , default=100 , type=lowerCAmelCase__ , help="""secondary model evaluation is triggered at eval_freq""" ) parser.add_argument("""--max_steps""" , default=1_000 , type=lowerCAmelCase__ , help="""To calculate training epochs""" ) parser.add_argument( """--secondary_learner_batch_size""" , default=128 , type=lowerCAmelCase__ , help="""batch size of training data for secondary learner""" , ) parser.add_argument( """--batch_size""" , default=16 , type=lowerCAmelCase__ , help="""batch size of training data of language model(gpt2) """ ) parser.add_argument( """--eval_interval""" , default=10 , type=lowerCAmelCase__ , help=( """decay the selectivity of our secondary learner filter from""" """1 standard deviation above average to 1 below average after 10 batches""" ) , ) parser.add_argument( """--number""" , default=100 , type=lowerCAmelCase__ , help="""The number of examples split to be used as objective_set/test_data""" ) parser.add_argument( """--min_len""" , default=1_026 , type=lowerCAmelCase__ , help="""The minimum length of the article to be used as objective set""" ) parser.add_argument( """--secondary_learner_max_epochs""" , default=15 , type=lowerCAmelCase__ , help="""number of epochs to train secondary learner""" ) parser.add_argument("""--trim""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""truncate the example if it exceeds context length""" ) parser.add_argument( """--threshold""" , default=1.0 , type=lowerCAmelCase__ , help=( """The threshold value used by secondary learner to filter the train_data and allow only""" """ informative data as input to the model""" ) , ) parser.add_argument("""--finetuned_model_name""" , default="""gpt2_finetuned.pt""" , type=lowerCAmelCase__ , help="""finetuned_model_name""" ) parser.add_argument( """--recopy_model""" , default=lowerCAmelCase__ , type=lowerCAmelCase__ , help="""Reset the model to the original pretrained GPT-2 weights after each iteration""" , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1_026 , trim=lowerCAmelCase__ , data_file="""data/tokenized_stories_train_wikitext103.jbl""" , igf_data_file="""igf_context_pairs.jbl""" , ) # Load train data for secondary learner __a = joblib.load("""data/IGF_values.jbl""" ) # Train secondary learner __a = training_secondary_learner( lowerCAmelCase__ , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="""igf_model.pt""" , ) # load pretrained gpt2 model __a = GPTaLMHeadModel.from_pretrained("""gpt2""" ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model __a , __a = generate_datasets( context_len=32 , file="""data/tokenized_stories_train_wikitext103.jbl""" , number=100 , min_len=1_026 , trim=lowerCAmelCase__ ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , context_len=32 , max_steps=1_000 , batch_size=16 , threshold=1.0 , recopy_model=lowerCAmelCase__ , secondary_learner=lowerCAmelCase__ , eval_interval=10 , finetuned_model_name="""gpt2_finetuned.pt""" , ) if __name__ == "__main__": main()
99
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
328
0
'''simple docstring''' import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem lowercase_ : Any = importlib.util.find_spec('''s3fs''') is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 lowercase_ : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def SCREAMING_SNAKE_CASE ( lowercase_ : str ): if "://" in dataset_path: lowercase = dataset_path.split("""://""" )[1] return dataset_path def SCREAMING_SNAKE_CASE ( lowercase_ : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def SCREAMING_SNAKE_CASE ( lowercase_ : fsspec.AbstractFileSystem , lowercase_ : str , lowercase_ : str ): lowercase = not is_remote_filesystem(lowercase_ ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(lowercase_ ) , fs._strip_protocol(lowercase_ ) ) else: fs.mv(lowercase_ , lowercase_ , recursive=lowercase_ ) def SCREAMING_SNAKE_CASE ( ): if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase = None lowercase = None lowercase = threading.Lock()
715
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __UpperCamelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=13 , _lowerCAmelCase=3 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=224 , _lowerCAmelCase=1000 , _lowerCAmelCase=[3, 3, 6, 4] , _lowerCAmelCase=[48, 56, 112, 220] , ) -> List[str]: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = num_channels lowercase = is_training lowercase = use_labels lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = num_labels lowercase = image_size lowercase = layer_depths lowercase = embed_dims def _a ( self ) -> Tuple: '''simple docstring''' lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.num_labels ) lowercase = self.get_config() return config, pixel_values, labels def _a ( self ) -> int: '''simple docstring''' return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1E-5 , ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase = self.num_labels lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) lowercase = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self ) -> Optional[Any]: '''simple docstring''' ((lowercase) , (lowercase) , (lowercase)) = self.prepare_config_and_inputs() lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __UpperCamelCase (_UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): __A = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __A = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) __A = False __A = False __A = False __A = False __A = False def _a ( self ) -> Dict: '''simple docstring''' lowercase = SwiftFormerModelTester(self ) lowercase = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _a ( self ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def _a ( self ) -> List[str]: '''simple docstring''' pass def _a ( self ) -> Dict: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def _a ( self ) -> int: '''simple docstring''' lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(_lowerCAmelCase ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def _a ( self ) -> List[str]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def _a ( self ) -> Optional[Any]: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def _a ( self ) -> Any: '''simple docstring''' for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def _a ( self ) -> Optional[Any]: '''simple docstring''' pass def _a ( self ) -> Union[str, Any]: '''simple docstring''' def check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): lowercase = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) lowercase = outputs.hidden_states lowercase = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def _a ( self ) -> Dict: '''simple docstring''' def _config_zero_init(_lowerCAmelCase ): lowercase = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1E-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): lowercase = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: lowercase = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ) -> Any: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( ): lowercase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __UpperCamelCase (unittest.TestCase ): @cached_property def _a ( self ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def _a ( self ) -> List[Any]: '''simple docstring''' lowercase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) lowercase = self.default_image_processor lowercase = prepare_img() lowercase = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): lowercase = model(**_lowerCAmelCase ) # verify the logits lowercase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) lowercase = torch.tensor([[-2.17_03E00, 2.11_07E00, -2.08_11E00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4 ) )
653
0
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece_no_bos.model") @require_sentencepiece @require_tokenizers class __lowercase ( __lowercase , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def __a ( self : Tuple ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = PegasusTokenizer(_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self : List[Any] ) -> int: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __a ( self : Dict , **__lowerCamelCase : int ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self : Tuple , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' return ("This is a test", "This is a test") def __a ( self : Dict ) -> Optional[Any]: '''simple docstring''' lowercase = '''</s>''' lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __a ( self : int ) -> List[str]: '''simple docstring''' lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(_lowerCAmelCase ) , 11_03 ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __a ( self : Any ) -> List[Any]: '''simple docstring''' lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowercase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] lowercase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' lowercase = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowercase = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] lowercase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) def __a ( self : Optional[int] ) -> List[Any]: '''simple docstring''' lowercase = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 lowercase = '''To ensure a smooth flow of bank resolutions.''' lowercase = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] lowercase = tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __a ( self : str ) -> Any: '''simple docstring''' lowercase = ['''This is going to be way too long.''' * 1_50, '''short example'''] lowercase = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) lowercase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def __a ( self : Optional[Any] ) -> Tuple: '''simple docstring''' lowercase = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class __lowercase ( __lowercase , unittest.TestCase ): lowercase = PegasusTokenizer lowercase = PegasusTokenizerFast lowercase = True lowercase = True def __a ( self : List[str] ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowercase = PegasusTokenizer(_lowerCAmelCase , offset=0 , mask_token_sent=_lowerCAmelCase , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __a ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __a ( self : List[str] , **__lowerCamelCase : Tuple ) -> PegasusTokenizer: '''simple docstring''' return PegasusTokenizer.from_pretrained(self.tmpdirname , **_lowerCAmelCase ) def __a ( self : Optional[int] , __lowerCamelCase : Any ) -> List[str]: '''simple docstring''' return ("This is a test", "This is a test") def __a ( self : List[Any] ) -> Dict: '''simple docstring''' lowercase = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowercase = rust_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] lowercase = py_tokenizer([raw_input_str] , return_tensors=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids[0] self.assertListEqual(_lowerCAmelCase , _lowerCAmelCase ) @require_torch def __a ( self : Dict ) -> Tuple: '''simple docstring''' lowercase = ['''This is going to be way too long.''' * 10_00, '''short example'''] lowercase = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase = self._large_tokenizer(_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) lowercase = self._large_tokenizer( text_target=_lowerCAmelCase , max_length=5 , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(_lowerCAmelCase ) == 2 # input_ids, attention_mask. def __a ( self : List[Any] ) -> int: '''simple docstring''' lowercase = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowercase = self._large_tokenizer(_lowerCAmelCase ).input_ids self.assertListEqual( _lowerCAmelCase , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
604
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def a__ ( lowercase__ , lowercase__ , lowercase__=1_0_2_4 , lowercase__=1_0_2_4 , lowercase__=False , **lowercase__ ): '''simple docstring''' UpperCAmelCase_ =AutoTokenizer.from_pretrained(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="train" , **lowercase__ ) UpperCAmelCase_ =tok.pad_token_id def get_lens(lowercase__ ): UpperCAmelCase_ =tqdm( DataLoader(lowercase__ , batch_size=5_1_2 , num_workers=8 , shuffle=lowercase__ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) UpperCAmelCase_ =[] for batch in dl: UpperCAmelCase_ =batch["input_ids"].ne(lowercase__ ).sum(1 ).tolist() UpperCAmelCase_ =batch["labels"].ne(lowercase__ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(lowercase__ , lowercase__ ): max_lens.append(max(lowercase__ , lowercase__ ) ) else: max_lens.extend(lowercase__ ) return max_lens UpperCAmelCase_ =get_lens(lowercase__ ) UpperCAmelCase_ =SeqaSeqDataset(lowercase__ , lowercase__ , lowercase__ , lowercase__ , type_path="val" , **lowercase__ ) UpperCAmelCase_ =get_lens(lowercase__ ) pickle_save(lowercase__ , train_ds.len_file ) pickle_save(lowercase__ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
54
0
"""simple docstring""" import re import subprocess import sys a_ : Optional[int] = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') a_ : Optional[int] = ( subprocess.check_output(F"""git diff --diff-filter=d --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() ) a_ : List[Any] = '''|'''.join(sys.argv[1:]) a_ : List[Any] = re.compile(RF"""^({joined_dirs}).*?\.py$""") a_ : Any = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
711
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 a_ : Optional[int] = { '''return_dict''': False, '''output_hidden_states''': True, '''output_attentions''': True, '''torchscript''': True, '''torch_dtype''': '''float16''', '''use_bfloat16''': True, '''tf_legacy_loss''': True, '''pruned_heads''': {'''a''': 1}, '''tie_word_embeddings''': False, '''is_decoder''': True, '''cross_attention_hidden_size''': 1_28, '''add_cross_attention''': True, '''tie_encoder_decoder''': True, '''max_length''': 50, '''min_length''': 3, '''do_sample''': True, '''early_stopping''': True, '''num_beams''': 3, '''num_beam_groups''': 3, '''diversity_penalty''': 0.5, '''temperature''': 2.0, '''top_k''': 10, '''top_p''': 0.7, '''typical_p''': 0.2, '''repetition_penalty''': 0.8, '''length_penalty''': 0.8, '''no_repeat_ngram_size''': 5, '''encoder_no_repeat_ngram_size''': 5, '''bad_words_ids''': [1, 2, 3], '''num_return_sequences''': 3, '''chunk_size_feed_forward''': 5, '''output_scores''': True, '''return_dict_in_generate''': True, '''forced_bos_token_id''': 2, '''forced_eos_token_id''': 3, '''remove_invalid_values''': True, '''architectures''': ['''BertModel'''], '''finetuning_task''': '''translation''', '''id2label''': {0: '''label'''}, '''label2id''': {'''label''': '''0'''}, '''tokenizer_class''': '''BertTokenizerFast''', '''prefix''': '''prefix''', '''bos_token_id''': 6, '''pad_token_id''': 7, '''eos_token_id''': 8, '''sep_token_id''': 9, '''decoder_start_token_id''': 10, '''exponential_decay_length_penalty''': (5, 1.0_1), '''suppress_tokens''': [0, 1], '''begin_suppress_tokens''': 2, '''task_specific_params''': {'''translation''': '''some_params'''}, '''problem_type''': '''regression''', } @is_staging_test class __lowercase( unittest.TestCase ): '''simple docstring''' @classmethod def snake_case_ ( cls ): __lowerCamelCase : Tuple = TOKEN HfFolder.save_token(__a ) @classmethod def snake_case_ ( cls ): try: delete_repo(token=cls._token , repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-config' ) except HTTPError: pass def snake_case_ ( self ): __lowerCamelCase : List[str] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('test-config' , use_auth_token=self._token ) __lowerCamelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , repo_id='test-config' , push_to_hub=__a , use_auth_token=self._token ) __lowerCamelCase : Any = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case_ ( self ): __lowerCamelCase : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('valid_org/test-config-org' , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id='valid_org/test-config-org' , push_to_hub=__a , use_auth_token=self._token ) __lowerCamelCase : Tuple = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a ) ) def snake_case_ ( self ): CustomConfig.register_for_auto_class() __lowerCamelCase : Optional[Any] = CustomConfig(attribute=42 ) config.push_to_hub('test-dynamic-config' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'AutoConfig': 'custom_configuration.CustomConfig'} ) __lowerCamelCase : Tuple = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=__a ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , 'CustomConfig' ) self.assertEqual(new_config.attribute , 42 ) class __lowercase( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ): __lowerCamelCase : Tuple = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __lowerCamelCase : List[str] = c.n_embd + 1 # int __lowerCamelCase : Dict = c.resid_pdrop + 1.0 # float __lowerCamelCase : int = not c.scale_attn_weights # bool __lowerCamelCase : Optional[int] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(__a , c.n_embd , 'mismatch for key: n_embd' ) self.assertEqual(__a , c.resid_pdrop , 'mismatch for key: resid_pdrop' ) self.assertEqual(__a , c.scale_attn_weights , 'mismatch for key: scale_attn_weights' ) self.assertEqual(__a , c.summary_type , 'mismatch for key: summary_type' ) def snake_case_ ( self ): __lowerCamelCase : Tuple = PretrainedConfig() __lowerCamelCase : Dict = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __a , ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) __lowerCamelCase : int = [key for key, value in config_common_kwargs.items() if value == getattr(__a , __a )] if len(__a ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {", ".join(__a )}.''' ) def snake_case_ ( self ): with self.assertRaises(__a ): # config is in subfolder, the following should not work without specifying the subfolder __lowerCamelCase : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' , subfolder='bert' ) self.assertIsNotNone(__a ) def snake_case_ ( self ): # A mock response for an HTTP head request to emulate server down __lowerCamelCase : List[str] = mock.Mock() __lowerCamelCase : Tuple = 500 __lowerCamelCase : Tuple = {} __lowerCamelCase : Optional[Any] = HTTPError __lowerCamelCase : str = {} # Download this model to make sure it's in the cache. __lowerCamelCase : Optional[int] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=__a ) as mock_head: __lowerCamelCase : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def snake_case_ ( self ): # This test is for deprecated behavior and can be removed in v5 __lowerCamelCase : Optional[Any] = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def snake_case_ ( self ): __lowerCamelCase : List[Any] = AutoConfig.from_pretrained('bert-base-cased' ) __lowerCamelCase : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__a ) __lowerCamelCase : Optional[int] = 2 json.dump(configuration.to_dict() , open(os.path.join(__a , 'config.4.0.0.json' ) , 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __lowerCamelCase : Any = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __lowerCamelCase : Any = ['config.42.0.0.json'] __lowerCamelCase : Tuple = 768 configuration.save_pretrained(__a ) shutil.move(os.path.join(__a , 'config.4.0.0.json' ) , os.path.join(__a , 'config.42.0.0.json' ) ) __lowerCamelCase : Dict = AutoConfig.from_pretrained(__a ) self.assertEqual(new_configuration.hidden_size , 768 ) def snake_case_ ( self ): # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __lowerCamelCase : List[str] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers __lowerCamelCase : Tuple = 'v4.0.0' __lowerCamelCase , __lowerCamelCase : Optional[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( __a , return_unused_kwargs=__a ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__a , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __lowerCamelCase : Union[str, Any] = 'v3.0.0' __lowerCamelCase : Optional[int] = old_transformers.models.auto.AutoConfig.from_pretrained(__a ) self.assertEqual(old_configuration.hidden_size , 768 )
263
0
from __future__ import annotations import math def _snake_case ( __snake_case ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True _lowerCAmelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def _snake_case ( __snake_case ): if not isinstance(__snake_case , __snake_case ): raise ValueError('''n must be an integer''' ) if n <= 0: raise ValueError('''n must be >= 0''' ) _UpperCamelCase = [] for num in range(len(__snake_case ) ): _UpperCamelCase = 0 while 2 * i * i <= odd_composites[num]: _UpperCamelCase = odd_composites[num] - 2 * i * i if is_prime(__snake_case ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__snake_case ) == n: return list_nums return [] def _snake_case ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(f'{solution() = }')
10
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class _lowerCamelCase ( UpperCamelCase , UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 768 , )->Union[str, Any]: '''simple docstring''' super().__init__() A_ : Union[str, Any] = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) A_ : Any = nn.Parameter(torch.ones(1 , _SCREAMING_SNAKE_CASE ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , )->Tuple: '''simple docstring''' A_ : Optional[Any] = nn.Parameter(self.mean.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) A_ : str = nn.Parameter(self.std.to(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) ) return self def _snake_case ( self , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' A_ : Tuple = (embeds - self.mean) * 1.0 / self.std return embeds def _snake_case ( self , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' A_ : List[str] = (embeds * self.std) + self.mean return embeds
590
0
SCREAMING_SNAKE_CASE = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def a (lowerCAmelCase__ ): __a = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} __a = 0 __a = 0 while place < len(snake_case_ ): if (place + 1 < len(snake_case_ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a (lowerCAmelCase__ ): __a = [] for arabic, roman in ROMAN: (__a) = divmod(snake_case_ , snake_case_ ) result.append(roman * factor ) if number == 0: break return "".join(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
719
from math import ceil, sqrt def a (lowerCAmelCase__ = 1_000_000 ): __a = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __a = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __a = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
209
0
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = GPTSwaTokenizer __lowerCamelCase : Optional[Any] = False __lowerCamelCase : List[Any] = True __lowerCamelCase : Union[str, Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = GPTSwaTokenizer(A , eos_token='''<unk>''' , bos_token='''<unk>''' , pad_token='''<unk>''' ) tokenizer.save_pretrained(self.tmpdirname ) def a__ (self , A ) -> str: """simple docstring""" _a = '''This is a test''' _a = '''This is a test''' return input_text, output_text def a__ (self ) -> List[str]: """simple docstring""" _a = '''<s>''' _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def a__ (self ) -> Dict: """simple docstring""" _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(A ) , 2_000 ) def a__ (self ) -> List[str]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 2_000 ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = GPTSwaTokenizer(A ) _a = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [465, 287, 265, 631, 842] ) _a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) # fmt: off self.assertListEqual( A , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] , ) # fmt: on _a = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] , ) _a = tokenizer.convert_ids_to_tokens(A ) # fmt: off self.assertListEqual( A , ['''▁I''', '''▁was''', '''▁bor''', '''n''', '''▁in''', '''▁''', '''<0x39>''', '''2''', '''0''', '''0''', '''0''', ''',''', '''▁and''', '''▁this''', '''▁is''', '''▁f''', '''al''', '''s''', '''<0xC3>''', '''<0xA9>''', '''.'''] ) # fmt: on def a__ (self ) -> Optional[int]: """simple docstring""" _a = GPTSwaTokenizer(A ) _a = ['''This is a test''', '''I was born in 92000, and this is falsé.'''] _a = [ [465, 287, 265, 631, 842], [262, 272, 1_525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(A , A ): self.assertListEqual(tokenizer.encode_fast(A ) , A ) # Test that decode_fast returns the input text for text, token_ids in zip(A , A ): self.assertEqual(tokenizer.decode_fast(A ) , A ) @slow def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = [ '''<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')''', '''Hey there, how are you doing this fine day?''', '''This is a text with a trailing spaces followed by a dot .''', '''Häj sväjs lillebrör! =)''', '''Det är inget fel på Mr. Cool''', ] # fmt: off _a = {'''input_ids''': [[63_423, 5, 6_811, 14_954, 282, 816, 3_821, 63_466, 63_425, 63_462, 18, 63_978, 678, 301, 1_320, 63_423, 63_455, 63_458, 18, 63_982, 4_246, 3_940, 1_901, 47_789, 5_547, 18_994], [19_630, 1_100, 63_446, 1_342, 633, 544, 4_488, 593, 5_102, 2_416, 63_495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_652, 428, 268, 1_936, 515, 268, 58_593, 22_413, 9_106, 546, 268, 33_213, 63_979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55_130, 63_450, 924, 63_449, 2_249, 4_062, 1_558, 318, 63_504, 21_498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2_827, 2_559, 332, 6_575, 63_443, 26_801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name='''AI-Sweden/gpt-sw3-126m''' , sequences=A , )
11
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase (__A = "laptop"): """simple docstring""" _a = F'''https://www.amazon.in/laptop/s?k={product}''' _a = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _a = BeautifulSoup(requests.get(__A , headers=__A).text) # Initialize a Pandas dataframe with the column titles _a = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ]) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''}) , ): try: _a = item.ha.text _a = '''https://www.amazon.in/''' + item.ha.a['''href'''] _a = item.find('''span''' , attrs={'''class''': '''a-offscreen'''}).text try: _a = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''}).text except AttributeError: _a = '''Not available''' try: _a = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''}).text.split('''₹''')[1] ) except AttributeError: _a = '''''' try: _a = float( ( ( float(product_mrp.strip('''₹''').replace(''',''' , '''''')) - float(product_price.strip('''₹''').replace(''',''' , '''''')) ) / float(product_mrp.strip('''₹''').replace(''',''' , '''''')) ) * 100) except ValueError: _a = float('''nan''') except AttributeError: pass _a = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _a = ''' ''' _a = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase_ = "headphones" get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
11
1
def _UpperCamelCase ( lowerCAmelCase_ ) ->list[list]: UpperCAmelCase = current_set.copy() for row_index, row in enumerate(lowerCAmelCase_ ): UpperCAmelCase = row[0] for column_index, column in enumerate(lowerCAmelCase_ ): if magnitude == 0: UpperCAmelCase = column continue UpperCAmelCase = column / magnitude # Subtract to cancel term UpperCAmelCase = current_set[0] UpperCAmelCase = [first_row] UpperCAmelCase = current_set[1::] for row in current_set: UpperCAmelCase = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCAmelCase_ ) continue for column_index in range(len(lowerCAmelCase_ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCAmelCase_ ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCAmelCase = final_set[0] UpperCAmelCase = [] UpperCAmelCase = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCAmelCase = simplify(lowerCAmelCase_ ) for i in range(len(lowerCAmelCase_ ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , lowerCAmelCase_ ) UpperCAmelCase = resultant return final_set def _UpperCamelCase ( lowerCAmelCase_ ) ->list: if len(lowerCAmelCase_ ) == 0: raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) UpperCAmelCase = len(lowerCAmelCase_ ) + 1 if any(len(lowerCAmelCase_ ) != _length for item in equations ): raise IndexError("""solve_simultaneous() requires n lists of length n+1""" ) for row in equations: if any(not isinstance(lowerCAmelCase_ , (int, float) ) for column in row ): raise ValueError("""solve_simultaneous() requires lists of integers""" ) if len(lowerCAmelCase_ ) == 1: return [equations[0][-1] / equations[0][0]] UpperCAmelCase = equations.copy() if any(0 in row for row in data_set ): UpperCAmelCase = data_set.copy() UpperCAmelCase = [] for row_index, row in enumerate(lowerCAmelCase_ ): if 0 not in row: UpperCAmelCase = data_set.pop(lowerCAmelCase_ ) break if not full_row: raise ValueError("""solve_simultaneous() requires at least 1 full equation""" ) data_set.insert(0 , lowerCAmelCase_ ) UpperCAmelCase = data_set.copy() UpperCAmelCase = simplify(lowerCAmelCase_ ) UpperCAmelCase = simplified[::-1] UpperCAmelCase = [] for row in simplified: UpperCAmelCase = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCAmelCase = row.copy()[: len(lowerCAmelCase_ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCAmelCase_ ) == 0: solutions.append(0 ) continue UpperCAmelCase = temp_row[1::] UpperCAmelCase = temp_row[::-1] for column_index, column in enumerate(lowerCAmelCase_ ): current_solution -= column * solutions[column_index] solutions.append(lowerCAmelCase_ ) UpperCAmelCase = [] for item in solutions: final.append(float(round(lowerCAmelCase_ , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __a = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
710
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowercase : def __init__( self : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any]=1_3 , __lowerCamelCase : Optional[Any]=3_0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : str=True , __lowerCamelCase : str=True , __lowerCamelCase : Union[str, Any]=3_2 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : Union[str, Any]=3_7 , __lowerCamelCase : str="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1_0 , __lowerCamelCase : Union[str, Any]=0.02 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Any=2 , ) -> Tuple: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = is_training UpperCAmelCase = use_labels UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = scope UpperCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase = (image_size // patch_size) ** 2 UpperCAmelCase = num_patches + 2 def _lowercase ( self : Tuple ) -> int: """simple docstring""" UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = self.get_config() return config, pixel_values, labels def _lowercase ( self : Tuple ) -> str: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _lowercase ( self : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = TFDeiTModel(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = TFDeiTForMaskedImageModeling(config=__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForMaskedImageModeling(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _lowercase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int ) -> Any: """simple docstring""" UpperCAmelCase = self.type_sequence_label_size UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase = 1 UpperCAmelCase = TFDeiTForImageClassification(__lowerCamelCase ) UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self : Tuple ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): UpperCamelCase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) UpperCamelCase = ( { '''feature-extraction''': TFDeiTModel, '''image-classification''': (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def _lowercase ( self : str ) -> str: """simple docstring""" UpperCAmelCase = TFDeiTModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=3_7 ) def _lowercase ( self : Union[str, Any] ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _lowercase ( self : List[Any] ) -> Dict: """simple docstring""" pass def _lowercase ( self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) ) def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" UpperCAmelCase , UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase = model_class(__lowerCamelCase ) UpperCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase = [*signature.parameters.keys()] UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def _lowercase ( self : Optional[int] ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def _lowercase ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) def _lowercase ( self : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=False ) -> int: """simple docstring""" UpperCAmelCase = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _lowercase ( self : Optional[int] ) -> str: """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = TFDeiTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def _UpperCamelCase ( ) ->Tuple: UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowercase ( unittest.TestCase ): @cached_property def _lowercase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _lowercase ( self : Optional[int] ) -> List[str]: """simple docstring""" UpperCAmelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) UpperCAmelCase = self.default_image_processor UpperCAmelCase = prepare_img() UpperCAmelCase = image_processor(images=__lowerCamelCase , return_tensors="""tf""" ) # forward pass UpperCAmelCase = model(**__lowerCamelCase ) # verify the logits UpperCAmelCase = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) UpperCAmelCase = tf.constant([-1.0_266, 0.1_912, -1.2_861] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
627
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase_ : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase_ : Optional[int] = typing.Union[np.floataa, int, float] # noqa: UP007 def A__ ( snake_case_ : Vector , snake_case_ : Vector ): return np.sqrt(np.sum((np.asarray(snake_case_ ) - np.asarray(snake_case_ )) ** 2 ) ) def A__ ( snake_case_ : Vector , snake_case_ : Vector ): return sum((va - va) ** 2 for va, va in zip(snake_case_ , snake_case_ ) ) ** (1 / 2) if __name__ == "__main__": def A__ ( ): from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) ) benchmark()
64
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/config.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/config.json""" # See all FNet models at https://huggingface.co/models?filter=fnet } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''fnet''' def __init__( self : Any , lowerCamelCase_ : List[str]=3_20_00 , lowerCamelCase_ : List[Any]=7_68 , lowerCamelCase_ : Union[str, Any]=12 , lowerCamelCase_ : Optional[Any]=30_72 , lowerCamelCase_ : Optional[Any]="gelu_new" , lowerCamelCase_ : Any=0.1 , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : Optional[int]=4 , lowerCamelCase_ : Optional[int]=0.02 , lowerCamelCase_ : str=1e-12 , lowerCamelCase_ : Any=False , lowerCamelCase_ : str=5_12 , lowerCamelCase_ : str=3 , lowerCamelCase_ : int=1 , lowerCamelCase_ : Optional[Any]=2 , **lowerCamelCase_ : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , bos_token_id=lowerCamelCase_ , eos_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size SCREAMING_SNAKE_CASE : Any = layer_norm_eps SCREAMING_SNAKE_CASE : int = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE : List[Any] = tpu_short_seq_length
379
0
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def UpperCAmelCase__ (): """simple docstring""" import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join _snake_case : Dict = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def UpperCAmelCase__ (): """simple docstring""" assert _test_patching.open is open _snake_case : Any = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , snake_case__ ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def UpperCAmelCase__ (): """simple docstring""" _snake_case : Union[str, Any] = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , snake_case__ ): pass def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , snake_case__ ) is None with patch_submodule(_test_patching , """len""" , snake_case__ ): assert _test_patching.len is mock assert _test_patching.len is len def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[int] = """__test_patch_submodule_start_and_stop_mock__""" _snake_case : Dict = patch_submodule(_test_patching , """open""" , snake_case__ ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def UpperCAmelCase__ (): """simple docstring""" from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join _snake_case : Any = """__test_patch_submodule_successive_join__""" _snake_case : Union[str, Any] = """__test_patch_submodule_successive_dirname__""" _snake_case : Tuple = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ): with patch_submodule(_test_patching , """os.rename""" , snake_case__ ): with patch_submodule(_test_patching , """os.path.dirname""" , snake_case__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , snake_case__ ): with patch_submodule(_test_patching , """os.path.join""" , snake_case__ ): with patch_submodule(_test_patching , """os.path.dirname""" , snake_case__ ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , snake_case__ ): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , snake_case__ ): pass
715
"""simple docstring""" import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : Dict ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : str = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : int , snake_case__ : List[Any] ): """simple docstring""" _snake_case : str = tmp_path / """cache""" _snake_case : List[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[Any] = features.copy() if features else default_expected_features _snake_case : List[Any] = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[Any] = ParquetDatasetReader(snake_case__ , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : List[str] = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : int = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ , split=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("""path_type""" , [str, list] ) def UpperCAmelCase__ (snake_case__ : Dict , snake_case__ : str , snake_case__ : str ): """simple docstring""" if issubclass(snake_case__ , snake_case__ ): _snake_case : Optional[Any] = parquet_path elif issubclass(snake_case__ , snake_case__ ): _snake_case : int = [parquet_path] _snake_case : Union[str, Any] = tmp_path / """cache""" _snake_case : Tuple = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : List[str] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_dataset(snake_case__ , snake_case__ ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : Optional[int] , snake_case__ : str=("train",) ): """simple docstring""" assert isinstance(snake_case__ , snake_case__ ) for split in splits: _snake_case : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def UpperCAmelCase__ (snake_case__ : str , snake_case__ : str , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Tuple = tmp_path / """cache""" _snake_case : Optional[int] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _snake_case : Tuple = ParquetDatasetReader( {"""train""": parquet_path} , cache_dir=snake_case__ , keep_in_memory=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : Optional[int] = tmp_path / """cache""" _snake_case : Dict = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Optional[Any] = features.copy() if features else default_expected_features _snake_case : Dict = ( Features({feature: Value(snake_case__ ) for feature, dtype in features.items()} ) if features is not None else None ) _snake_case : Optional[int] = ParquetDatasetReader({"""train""": parquet_path} , features=snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ ) @pytest.mark.parametrize("""split""" , [None, NamedSplit("""train""" ), """train""", """test"""] ) def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : Tuple ): """simple docstring""" if split: _snake_case : int = {split: parquet_path} else: _snake_case : Optional[Any] = """train""" _snake_case : int = {"""train""": parquet_path, """test""": parquet_path} _snake_case : Dict = tmp_path / """cache""" _snake_case : Any = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} _snake_case : Union[str, Any] = ParquetDatasetReader(snake_case__ , cache_dir=snake_case__ ).read() _check_parquet_datasetdict(snake_case__ , snake_case__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def UpperCAmelCase__ (snake_case__ : Tuple , snake_case__ : Tuple ): """simple docstring""" _snake_case : List[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : str = pq.ParquetFile(tmp_path / """foo.parquet""" ) _snake_case : int = pf.read() assert dataset.data.table == output_table def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Optional[Any] = str(shared_datadir / """test_image_rgb.jpg""" ) _snake_case : Tuple = {"""image""": [image_path]} _snake_case : Optional[int] = Features({"""image""": Image()} ) _snake_case : int = Dataset.from_dict(snake_case__ , features=snake_case__ ) _snake_case : Optional[Any] = ParquetDatasetWriter(snake_case__ , tmp_path / """foo.parquet""" ) assert writer.write() > 0 _snake_case : List[str] = Dataset.from_parquet(str(tmp_path / """foo.parquet""" ) ) assert dataset.features == reloaded_dataset.features _snake_case : Optional[Any] = ParquetDatasetReader(str(tmp_path / """foo.parquet""" ) , streaming=snake_case__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( """feature, expected""" , [ (Features({"""foo""": Value("""int32""" )} ), None), (Features({"""image""": Image(), """foo""": Value("""int32""" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"""nested""": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : str ): """simple docstring""" assert get_writer_batch_size(snake_case__ ) == expected
28
0
def _a ( __UpperCamelCase : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
233
"""simple docstring""" def __A ( a_ :Tuple , a_ :Union[str, Any] , a_ :int=False) -> List[str]: if isinstance(a_ , a_) and isinstance(a_ , a_): __a : List[str] = len(set_a.intersection(a_)) if alternative_union: __a : List[str] = len(a_) + len(a_) else: __a : int = len(set_a.union(a_)) return intersection / union if isinstance(a_ , (list, tuple)) and isinstance(a_ , (list, tuple)): __a : Union[str, Any] = [element for element in set_a if element in set_b] if alternative_union: __a : Union[str, Any] = len(a_) + len(a_) return len(a_) / union else: __a : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(a_) / len(a_) return len(a_) / len(a_) return None if __name__ == "__main__": A = {'''a''', '''b''', '''c''', '''d''', '''e'''} A = {'''c''', '''d''', '''e''', '''f''', '''h''', '''i'''} print(jaccard_similarity(set_a, set_b))
52
0
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class snake_case : '''simple docstring''' snake_case_ : Optional[Union[str, Path]] = None snake_case_ : bool = False snake_case_ : bool = False snake_case_ : bool = False snake_case_ : Optional[Dict] = None snake_case_ : Optional[str] = None snake_case_ : bool = False snake_case_ : bool = False snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[int] = None snake_case_ : int = 1 snake_case_ : Optional[Union[str, bool]] = None snake_case_ : bool = False snake_case_ : Optional[Dict] = None snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : Dict) -> "DownloadConfig": """simple docstring""" return self.__class__(**{k: copy.deepcopy(lowerCAmelCase) for k, v in self.__dict__.items()})
198
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Optional[Any] = BertJapaneseTokenizer snake_case_ : Optional[int] = False snake_case_ : Optional[int] = True def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" super().setUp() _snake_case : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] _snake_case : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : str) -> int: """simple docstring""" _snake_case : List[Any] = """こんにちは、世界。 \nこんばんは、世界。""" _snake_case : Optional[Any] = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case : Dict = self.get_input_output_texts(lowerCAmelCase) _snake_case : Optional[Any] = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase) _snake_case : Tuple = tokenizer.decode(lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) return text, ids def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" _snake_case : List[str] = self.tokenizer_class(self.vocab_file) _snake_case : List[Any] = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""") self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) def UpperCamelCase_ ( self : int) -> Dict: """simple docstring""" _snake_case : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""") self.assertIsNotNone(lowerCAmelCase) _snake_case : List[str] = """こんにちは、世界。\nこんばんは、世界。""" _snake_case : Dict = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) _snake_case : Tuple = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase , """wb""") as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase) with open(lowerCAmelCase , """rb""") as handle: _snake_case : Dict = pickle.load(lowerCAmelCase) _snake_case : Optional[int] = tokenizer_new.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> int: """simple docstring""" _snake_case : Optional[Any] = MecabTokenizer(mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" try: _snake_case : Optional[int] = MecabTokenizer(mecab_dic="""unidic_lite""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" try: _snake_case : List[Any] = MecabTokenizer(mecab_dic="""unidic""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case : List[str] = MecabTokenizer(do_lower_case=lowerCAmelCase , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" try: _snake_case : Dict = MecabTokenizer( do_lower_case=lowerCAmelCase , normalize_text=lowerCAmelCase , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" _snake_case : str = MecabTokenizer(normalize_text=lowerCAmelCase , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" _snake_case : Optional[Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""") self.assertIsNotNone(lowerCAmelCase) _snake_case : List[str] = """こんにちは、世界。\nこんばんは、世界。""" _snake_case : str = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) _snake_case : Optional[Any] = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase , """wb""") as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase) with open(lowerCAmelCase , """rb""") as handle: _snake_case : Optional[Any] = pickle.load(lowerCAmelCase) _snake_case : Tuple = tokenizer_new.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @require_sudachi def UpperCamelCase_ ( self : List[Any]) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国""", """人""", """参政""", """権"""]) @require_sudachi def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Dict = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人""", """参政権"""]) @require_sudachi def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Union[str, Any] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人参政権"""]) @require_sudachi def UpperCamelCase_ ( self : Tuple) -> Tuple: """simple docstring""" _snake_case : List[str] = SudachiTokenizer(do_lower_case=lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Dict = SudachiTokenizer(normalize_text=lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def UpperCamelCase_ ( self : Any) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = SudachiTokenizer(trim_whitespace=lowerCAmelCase , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""") self.assertIsNotNone(lowerCAmelCase) _snake_case : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。""" _snake_case : Tuple = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) _snake_case : str = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase , """wb""") as handle: pickle.dump(lowerCAmelCase , lowerCAmelCase) with open(lowerCAmelCase , """rb""") as handle: _snake_case : int = pickle.load(lowerCAmelCase) _snake_case : List[Any] = tokenizer_new.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @require_jumanpp def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" _snake_case : Union[str, Any] = JumanppTokenizer(do_lower_case=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = JumanppTokenizer(normalize_text=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Optional[int]) -> List[str]: """simple docstring""" _snake_case : str = JumanppTokenizer(trim_whitespace=lowerCAmelCase) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""") , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] _snake_case : str = {} for i, token in enumerate(lowerCAmelCase): _snake_case : List[Any] = i _snake_case : List[Any] = WordpieceTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こんにちは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは""") , ["""こん""", """##ばんは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""") , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""]) def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" _snake_case : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""") _snake_case : Tuple = tokenizer.subword_tokenizer _snake_case : Tuple = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""") self.assertListEqual(lowerCAmelCase , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""]) _snake_case : Union[str, Any] = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""") self.assertListEqual(lowerCAmelCase , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""]) def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _snake_case : int = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""") _snake_case : str = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase) _snake_case : Optional[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase) _snake_case : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase) _snake_case : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = BertJapaneseTokenizer snake_case_ : Dict = False def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" super().setUp() _snake_case : Optional[Any] = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def UpperCamelCase_ ( self : str , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Any = """こんにちは、世界。 \nこんばんは、世界。""" _snake_case : List[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def UpperCamelCase_ ( self : str) -> int: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" pass # TODO add if relevant def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Union[str, Any] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""") _snake_case : Dict = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""") self.assertListEqual( lowerCAmelCase , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def UpperCamelCase_ ( self : List[str]) -> int: """simple docstring""" _snake_case : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] _snake_case : int = {} for i, token in enumerate(lowerCAmelCase): _snake_case : int = i _snake_case : Optional[int] = CharacterTokenizer(vocab=lowerCAmelCase , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こ""", """ん""", """に""", """ち""", """は"""]) self.assertListEqual(tokenizer.tokenize("""こんにちほ""") , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""]) def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : Optional[int] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""") _snake_case : List[str] = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase) _snake_case : Optional[int] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase) _snake_case : str = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase) _snake_case : Any = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : List[str] = """cl-tohoku/bert-base-japanese""" _snake_case : int = AutoTokenizer.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" _snake_case : str = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertTokenizer.from_pretrained(lowerCAmelCase) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""")) _snake_case : Any = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from."""))
198
1
from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE : Union[str, Any] = "https://api.github.com" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE : List[Any] = BASE_URL + "/user" # https://github.com/settings/tokens SCREAMING_SNAKE_CASE : Any = os.environ.get("USER_TOKEN", "") def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): UpperCamelCase_ : Union[str, Any] = { """Authorization""": f'''token {auth_token}''', """Accept""": """application/vnd.github.v3+json""", } return requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError("'USER_TOKEN' field cannot be empty.")
635
from __future__ import annotations def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("""You cannot supply more or less than 2 values""" ) elif electron_conc < 0: raise ValueError("""Electron concentration cannot be negative in a semiconductor""" ) elif hole_conc < 0: raise ValueError("""Hole concentration cannot be negative in a semiconductor""" ) elif intrinsic_conc < 0: raise ValueError( """Intrinsic concentration cannot be negative in a semiconductor""" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
635
1
import random def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' UpperCAmelCase_ = num - 1 UpperCAmelCase_ = 0 while s % 2 == 0: UpperCAmelCase_ = s // 2 t += 1 for _ in range(5 ): UpperCAmelCase_ = random.randrange(2 , num - 1 ) UpperCAmelCase_ = pow(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if v != 1: UpperCAmelCase_ = 0 while v != (num - 1): if i == t - 1: return False else: UpperCAmelCase_ = i + 1 UpperCAmelCase_ = (v**2) % num return True def A ( __UpperCAmelCase ) -> bool: '''simple docstring''' if num < 2: return False UpperCAmelCase_ = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__UpperCAmelCase ) def A ( __UpperCAmelCase = 1024 ) -> int: '''simple docstring''' while True: UpperCAmelCase_ = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__UpperCAmelCase ): return num if __name__ == "__main__": UpperCamelCase_ = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
561
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def A ( ) -> Optional[int]: '''simple docstring''' raise RuntimeError('''CUDA out of memory.''' ) class a_ ( nn.Module ): def __init__( self :Dict) -> Any: super().__init__() UpperCAmelCase_ = nn.Linear(3 , 4) UpperCAmelCase_ = nn.BatchNormad(4) UpperCAmelCase_ = nn.Linear(4 , 5) def __a ( self :str , _lowercase :int) -> str: return self.lineara(self.batchnorm(self.lineara(_lowercase))) class a_ ( unittest.TestCase ): def __a ( self :Any) -> int: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[str]): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) def __a ( self :Union[str, Any]) -> Union[str, Any]: UpperCAmelCase_ = [] @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :Optional[int] , _lowercase :str): nonlocal batch_sizes batch_sizes.append(_lowercase) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase_ , UpperCAmelCase_ = mock_training_loop_function('''hello''') self.assertListEqual(_lowercase , [128, 64, 32, 16, 8]) self.assertListEqual([bs, arga] , [8, '''hello''']) def __a ( self :Optional[Any]) -> str: @find_executable_batch_size(starting_batch_size=0) def mock_training_loop_function(_lowercase :Optional[Any]): pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :Any) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :Tuple): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''No executable batch size found, reached zero.''' , cm.exception.args[0]) def __a ( self :str) -> Dict: @find_executable_batch_size(starting_batch_size=128) def mock_training_loop_function(_lowercase :List[Any] , _lowercase :Union[str, Any] , _lowercase :Tuple): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_lowercase) as cm: mock_training_loop_function(128 , '''hello''' , '''world''') self.assertIn('''Batch size was passed into `f`''' , cm.exception.args[0]) self.assertIn('''`f(arg1=\'hello\', arg2=\'world\')''' , cm.exception.args[0]) def __a ( self :Optional[int]) -> Any: @find_executable_batch_size(starting_batch_size=16) def mock_training_loop_function(_lowercase :List[str]): raise ValueError('''Oops, we had an error!''') with self.assertRaises(_lowercase) as cm: mock_training_loop_function() self.assertIn('''Oops, we had an error!''' , cm.exception.args[0]) @require_cuda def __a ( self :List[Any]) -> Union[str, Any]: UpperCAmelCase_ = torch.cuda.memory_allocated() UpperCAmelCase_ = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _lowercase) UpperCAmelCase_ = release_memory(_lowercase) self.assertEqual(torch.cuda.memory_allocated() , _lowercase)
561
1
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def __snake_case ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> int: '''simple docstring''' _UpperCAmelCase : int = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): _UpperCAmelCase : str = "segformer.encoder." + key if key.startswith("backbone" ): _UpperCAmelCase : List[str] = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 _UpperCAmelCase : List[Any] = key[key.find("patch_embed" ) + len("patch_embed" )] _UpperCAmelCase : Tuple = key.replace(f'patch_embed{idx}' , f'patch_embeddings.{int(_snake_case )-1}' ) if "norm" in key: _UpperCAmelCase : List[Any] = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 _UpperCAmelCase : List[str] = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] _UpperCAmelCase : Dict = key.replace(f'layer_norm{idx}' , f'layer_norm.{int(_snake_case )-1}' ) if "layer_norm1" in key: _UpperCAmelCase : int = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: _UpperCAmelCase : Dict = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 _UpperCAmelCase : Tuple = key[key.find("block" ) + len("block" )] _UpperCAmelCase : Optional[Any] = key.replace(f'block{idx}' , f'block.{int(_snake_case )-1}' ) if "attn.q" in key: _UpperCAmelCase : Tuple = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: _UpperCAmelCase : Any = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: _UpperCAmelCase : Dict = key.replace("attn" , "attention.self" ) if "fc1" in key: _UpperCAmelCase : Tuple = key.replace("fc1" , "dense1" ) if "fc2" in key: _UpperCAmelCase : Tuple = key.replace("fc2" , "dense2" ) if "linear_pred" in key: _UpperCAmelCase : Tuple = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: _UpperCAmelCase : Tuple = key.replace("linear_fuse.conv" , "linear_fuse" ) _UpperCAmelCase : Optional[Any] = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 _UpperCAmelCase : int = key[key.find("linear_c" ) + len("linear_c" )] _UpperCAmelCase : List[str] = key.replace(f'linear_c{idx}' , f'linear_c.{int(_snake_case )-1}' ) if key.startswith("head" ): _UpperCAmelCase : List[str] = key.replace("head" , "classifier" ) _UpperCAmelCase : List[str] = value return new_state_dict def __snake_case ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) _UpperCAmelCase : Optional[int] = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) _UpperCAmelCase : Dict = state_dict.pop(f'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = kv_weight[ : config.hidden_sizes[i], : ] _UpperCAmelCase : List[Any] = kv_bias[: config.hidden_sizes[i]] _UpperCAmelCase : Union[str, Any] = kv_weight[ config.hidden_sizes[i] :, : ] _UpperCAmelCase : Dict = kv_bias[ config.hidden_sizes[i] : ] def __snake_case ( ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : int = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def __snake_case ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : str = SegformerConfig() _UpperCAmelCase : Tuple = False # set attributes based on model_name _UpperCAmelCase : Any = "huggingface/label-files" if "segformer" in model_name: _UpperCAmelCase : List[Any] = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: _UpperCAmelCase : Optional[int] = 150 _UpperCAmelCase : Union[str, Any] = "ade20k-id2label.json" _UpperCAmelCase : List[str] = (1, 150, 128, 128) elif "city" in model_name: _UpperCAmelCase : List[str] = 19 _UpperCAmelCase : str = "cityscapes-id2label.json" _UpperCAmelCase : Tuple = (1, 19, 128, 128) else: raise ValueError(f'Model {model_name} not supported' ) elif "mit" in model_name: _UpperCAmelCase : List[str] = True _UpperCAmelCase : Tuple = model_name[4:6] _UpperCAmelCase : Optional[int] = 1_000 _UpperCAmelCase : Dict = "imagenet-1k-id2label.json" _UpperCAmelCase : Any = (1, 1_000) else: raise ValueError(f'Model {model_name} not supported' ) # set config attributes _UpperCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : int = {int(_snake_case ): v for k, v in idalabel.items()} _UpperCAmelCase : Tuple = idalabel _UpperCAmelCase : List[str] = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": _UpperCAmelCase : List[Any] = [64, 128, 320, 512] _UpperCAmelCase : Union[str, Any] = 256 elif size == "b2": _UpperCAmelCase : Any = [64, 128, 320, 512] _UpperCAmelCase : Optional[int] = 768 _UpperCAmelCase : Any = [3, 4, 6, 3] elif size == "b3": _UpperCAmelCase : Union[str, Any] = [64, 128, 320, 512] _UpperCAmelCase : List[Any] = 768 _UpperCAmelCase : Any = [3, 4, 18, 3] elif size == "b4": _UpperCAmelCase : str = [64, 128, 320, 512] _UpperCAmelCase : Optional[int] = 768 _UpperCAmelCase : List[Any] = [3, 8, 27, 3] elif size == "b5": _UpperCAmelCase : str = [64, 128, 320, 512] _UpperCAmelCase : List[str] = 768 _UpperCAmelCase : Tuple = [3, 6, 40, 3] else: raise ValueError(f'Size {size} not supported' ) # load image processor (only resize + normalize) _UpperCAmelCase : Optional[Any] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) # prepare image _UpperCAmelCase : Optional[Any] = prepare_img() _UpperCAmelCase : Any = image_processor(images=_snake_case , return_tensors="pt" ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict if encoder_only: _UpperCAmelCase : List[Any] = torch.load(_snake_case , map_location=torch.device("cpu" ) ) else: _UpperCAmelCase : Dict = torch.load(_snake_case , map_location=torch.device("cpu" ) )["state_dict"] # rename keys _UpperCAmelCase : Optional[int] = rename_keys(_snake_case , encoder_only=_snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict if encoder_only: _UpperCAmelCase : List[Any] = False _UpperCAmelCase : Optional[Any] = SegformerForImageClassification(_snake_case ) else: _UpperCAmelCase : Optional[int] = SegformerForSemanticSegmentation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass _UpperCAmelCase : str = model(_snake_case ) _UpperCAmelCase : List[str] = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": _UpperCAmelCase : str = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": _UpperCAmelCase : Union[str, Any] = torch.tensor( [ [[-7.5_820, -8.7_231, -8.3_215], [-8.0_600, -10.3_529, -10.0_304], [-7.5_208, -9.4_103, -9.6_239]], [[-12.6_918, -13.8_994, -13.7_137], [-13.3_196, -15.7_523, -15.4_789], [-12.9_343, -14.8_757, -14.9_689]], [[-11.1_911, -11.9_421, -11.3_243], [-11.3_342, -13.6_839, -13.3_581], [-10.3_909, -12.1_832, -12.4_858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": _UpperCAmelCase : Optional[int] = torch.tensor( [ [[-11.8_173, -14.3_850, -16.3_128], [-14.5_648, -16.5_804, -18.6_568], [-14.7_223, -15.7_387, -18.4_218]], [[-15.7_290, -17.9_171, -19.4_423], [-18.3_105, -19.9_448, -21.4_661], [-17.9_296, -18.6_497, -20.7_910]], [[-15.0_783, -17.0_336, -18.2_789], [-16.8_771, -18.6_870, -20.1_612], [-16.2_454, -17.1_426, -19.5_055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": _UpperCAmelCase : str = torch.tensor( [ [[-9.0_878, -10.2_081, -10.1_891], [-9.3_144, -10.7_941, -10.9_843], [-9.2_294, -10.3_855, -10.5_704]], [[-12.2_316, -13.9_068, -13.6_102], [-12.9_161, -14.3_702, -14.3_235], [-12.5_233, -13.7_174, -13.7_932]], [[-14.6_275, -15.2_490, -14.9_727], [-14.3_400, -15.9_687, -16.2_827], [-14.1_484, -15.4_033, -15.8_937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": _UpperCAmelCase : Dict = torch.tensor( [ [[-12.3_144, -13.2_447, -14.0_802], [-13.3_614, -14.5_816, -15.6_117], [-13.3_340, -14.4_433, -16.2_219]], [[-19.2_781, -20.4_128, -20.7_506], [-20.6_153, -21.6_566, -22.0_998], [-19.9_800, -21.0_430, -22.1_494]], [[-18.8_739, -19.7_804, -21.1_834], [-20.1_233, -21.6_765, -23.2_944], [-20.0_315, -21.2_641, -23.6_944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": _UpperCAmelCase : Any = torch.tensor( [ [[-9.5_524, -12.0_835, -11.7_348], [-10.5_229, -13.6_446, -14.5_662], [-9.5_842, -12.8_851, -13.9_414]], [[-15.3_432, -17.5_323, -17.0_818], [-16.3_330, -18.9_255, -19.2_101], [-15.1_340, -17.7_848, -18.3_971]], [[-12.6_072, -14.9_486, -14.6_631], [-13.7_629, -17.0_907, -17.7_745], [-12.7_899, -16.1_695, -17.1_671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": _UpperCAmelCase : Tuple = torch.tensor( [ [[-11.9_295, -13.4_057, -14.8_106], [-13.3_431, -14.8_179, -15.3_781], [-14.2_836, -15.5_942, -16.1_588]], [[-11.4_906, -12.8_067, -13.6_564], [-13.1_189, -14.0_500, -14.1_543], [-13.8_748, -14.5_136, -14.8_789]], [[0.5_374, 0.1_067, -0.4_742], [0.1_141, -0.2_255, -0.7_099], [-0.3_000, -0.5_924, -1.3_105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": _UpperCAmelCase : List[Any] = torch.tensor( [ [[-7.8_217, -9.8_767, -10.1_717], [-9.4_438, -10.9_058, -11.4_047], [-9.7_939, -12.3_495, -12.1_079]], [[-7.1_514, -9.5_336, -10.0_860], [-9.7_776, -11.6_822, -11.8_439], [-10.1_411, -12.7_655, -12.8_972]], [[0.3_021, 0.0_805, -0.2_310], [-0.0_328, -0.1_605, -0.2_714], [-0.1_408, -0.5_477, -0.6_976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": _UpperCAmelCase : int = torch.tensor( [ [ [-1.1372E01, -1.2787E01, -1.3477E01], [-1.2536E01, -1.4194E01, -1.4409E01], [-1.3217E01, -1.4888E01, -1.5327E01], ], [ [-1.4791E01, -1.7122E01, -1.8277E01], [-1.7163E01, -1.9192E01, -1.9533E01], [-1.7897E01, -1.9991E01, -2.0315E01], ], [ [7.6723E-01, 4.1921E-01, -7.7878E-02], [4.7772E-01, 9.5557E-03, -2.8082E-01], [3.6032E-01, -2.4826E-01, -5.1168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": _UpperCAmelCase : Optional[Any] = torch.tensor( [ [[-9.4_959, -11.3_087, -11.7_479], [-11.0_025, -12.6_540, -12.3_319], [-11.4_064, -13.0_487, -12.9_905]], [[-9.8_905, -11.3_084, -12.0_854], [-11.1_726, -12.7_698, -12.9_583], [-11.5_985, -13.3_278, -14.1_774]], [[0.2_213, 0.0_192, -0.2_466], [-0.1_731, -0.4_213, -0.4_874], [-0.3_126, -0.6_541, -1.1_389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": _UpperCAmelCase : Tuple = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": _UpperCAmelCase : str = torch.tensor( [ [[-16.0_976, -16.4_856, -17.3_962], [-16.6_234, -19.0_342, -19.7_685], [-16.0_900, -18.0_661, -19.1_180]], [[-18.4_750, -18.8_488, -19.5_074], [-19.4_030, -22.1_570, -22.5_977], [-19.1_191, -20.8_486, -22.3_783]], [[-4.5_178, -5.5_037, -6.5_109], [-5.0_884, -7.2_174, -8.0_334], [-4.4_156, -5.8_117, -7.2_970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": _UpperCAmelCase : Tuple = torch.tensor( [ [[-14.2_081, -14.4_732, -14.1_977], [-14.5_867, -16.4_423, -16.6_356], [-13.4_441, -14.9_685, -16.8_696]], [[-14.4_576, -14.7_073, -15.0_451], [-15.0_816, -17.6_237, -17.9_873], [-14.4_213, -16.0_199, -18.5_992]], [[-4.7_349, -4.9_588, -5.0_966], [-4.3_210, -6.9_325, -7.2_591], [-3.4_312, -4.7_484, -7.1_917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": _UpperCAmelCase : List[Any] = torch.tensor( [ [[-11.7_737, -11.9_526, -11.3_273], [-13.6_692, -14.4_574, -13.8_878], [-13.8_937, -14.6_924, -15.9_345]], [[-14.6_706, -14.5_330, -14.1_306], [-16.1_502, -16.8_180, -16.4_269], [-16.8_338, -17.8_939, -20.1_746]], [[1.0_491, 0.8_289, 1.0_310], [1.1_044, 0.5_219, 0.8_055], [1.0_899, 0.6_926, 0.5_590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": _UpperCAmelCase : Dict = torch.tensor( [ [[-12.5_641, -13.4_777, -13.0_684], [-13.9_587, -15.8_983, -16.6_557], [-13.3_109, -15.7_350, -16.3_141]], [[-14.7_074, -15.4_352, -14.5_944], [-16.6_353, -18.1_663, -18.6_120], [-15.1_702, -18.0_329, -18.1_547]], [[-1.7_990, -2.0_951, -1.7_784], [-2.6_397, -3.8_245, -3.9_686], [-1.5_264, -2.8_126, -2.9_316]], ] ) else: _UpperCAmelCase : Optional[int] = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": _lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_name", default="segformer.b0.512x512.ade.160k", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) _lowerCAmelCase : List[str] = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
289
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger snake_case : Optional[int] = get_logger(__name__) snake_case : Union[str, Any] = R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _snake_case : @add_start_docstrings(_a ) def __call__( self , _a , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case : @add_start_docstrings(_a ) def __call__( self , _a , _a ): raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class _snake_case ( snake_case ): @add_start_docstrings(_a ) def __call__( self , _a , _a , _a , **_a ): for processor in self: __magic_name__ : str = inspect.signature(processor.__call__ ).parameters if len(_a ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'''Make sure that all the required parameters: {list(function_args.keys() )} for ''' f'''{processor.__class__} are passed to the logits processor.''' ) __magic_name__ : Tuple = processor(_a , _a , _a , **_a ) else: __magic_name__ : int = processor(_a , _a , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a ): if not isinstance(_a , _a ) or not (temperature > 0): raise ValueError(f'''`temperature` has to be a strictly positive float, but is {temperature}''' ) __magic_name__ : str = temperature def __call__( self , _a , _a , _a ): __magic_name__ : List[Any] = scores / self.temperature return scores class _snake_case ( snake_case ): def __init__( self , _a , _a = -float("Inf" ) , _a = 1 ): if not isinstance(_a , _a ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'''`top_p` has to be a float > 0 and < 1, but is {top_p}''' ) if not isinstance(_a , _a ) or (min_tokens_to_keep < 1): raise ValueError(f'''`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}''' ) __magic_name__ : List[str] = top_p __magic_name__ : Optional[Any] = filter_value __magic_name__ : Tuple = min_tokens_to_keep def __call__( self , _a , _a , _a ): __magic_name__ , __magic_name__ : str = lax.top_k(_a , scores.shape[-1] ) __magic_name__ : Dict = jnp.full_like(_a , self.filter_value ) __magic_name__ : Union[str, Any] = jax.nn.softmax(_a , axis=-1 ).cumsum(axis=-1 ) __magic_name__ : int = cumulative_probs < self.top_p # include the token that is higher than top_p as well __magic_name__ : Tuple = jnp.roll(_a , 1 ) score_mask |= score_mask.at[:, 0].set(_a ) # min tokens to keep __magic_name__ : int = score_mask.at[:, : self.min_tokens_to_keep].set(_a ) __magic_name__ : Any = jnp.where(_a , _a , _a ) __magic_name__ : Union[str, Any] = jax.lax.sort_key_val(_a , _a )[-1] return next_scores class _snake_case ( snake_case ): def __init__( self , _a , _a = -float("Inf" ) , _a = 1 ): if not isinstance(_a , _a ) or top_k <= 0: raise ValueError(f'''`top_k` has to be a strictly positive integer, but is {top_k}''' ) __magic_name__ : str = max(_a , _a ) __magic_name__ : Any = filter_value def __call__( self , _a , _a , _a ): __magic_name__ , __magic_name__ : Optional[Any] = scores.shape __magic_name__ : Union[str, Any] = jnp.full(batch_size * vocab_size , self.filter_value ) __magic_name__ : Tuple = min(self.top_k , scores.shape[-1] ) # Safety check __magic_name__ , __magic_name__ : str = lax.top_k(_a , _a ) __magic_name__ : Optional[int] = jnp.broadcast_to((jnp.arange(_a ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __magic_name__ : int = topk_scores.flatten() __magic_name__ : List[Any] = topk_indices.flatten() + shift __magic_name__ : Optional[Any] = next_scores_flat.at[topk_indices_flat].set(_a ) __magic_name__ : List[Any] = next_scores_flat.reshape(_a , _a ) return next_scores class _snake_case ( snake_case ): def __init__( self , _a ): __magic_name__ : Dict = bos_token_id def __call__( self , _a , _a , _a ): __magic_name__ : Optional[int] = jnp.full(scores.shape , -float("inf" ) ) __magic_name__ : Union[str, Any] = 1 - jnp.bool_(cur_len - 1 ) __magic_name__ : Dict = jnp.where(_a , new_scores.at[:, self.bos_token_id].set(0 ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a ): __magic_name__ : Tuple = max_length __magic_name__ : int = eos_token_id def __call__( self , _a , _a , _a ): __magic_name__ : Dict = jnp.full(scores.shape , -float("inf" ) ) __magic_name__ : Union[str, Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __magic_name__ : Dict = jnp.where(_a , new_scores.at[:, self.eos_token_id].set(0 ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a ): if not isinstance(_a , _a ) or min_length < 0: raise ValueError(f'''`min_length` has to be a positive integer, but is {min_length}''' ) if not isinstance(_a , _a ) or eos_token_id < 0: raise ValueError(f'''`eos_token_id` has to be a positive integer, but is {eos_token_id}''' ) __magic_name__ : int = min_length __magic_name__ : Any = eos_token_id def __call__( self , _a , _a , _a ): # create boolean flag to decide if min length penalty should be applied __magic_name__ : Optional[Any] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __magic_name__ : List[Any] = jnp.where(_a , scores.at[:, self.eos_token_id].set(-float("inf" ) ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a ): __magic_name__ : Dict = list(_a ) __magic_name__ : Union[str, Any] = begin_index def __call__( self , _a , _a , _a ): __magic_name__ : Any = 1 - jnp.bool_(cur_len - self.begin_index ) __magic_name__ : Dict = jnp.where(_a , scores.at[:, self.begin_suppress_tokens].set(-float("inf" ) ) , _a ) return scores class _snake_case ( snake_case ): def __init__( self , _a ): __magic_name__ : List[Any] = list(_a ) def __call__( self , _a , _a , _a ): __magic_name__ : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float("inf" ) ) return scores class _snake_case ( snake_case ): def __init__( self , _a ): __magic_name__ : Tuple = dict(_a ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __magic_name__ : Optional[int] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __magic_name__ : Any = force_token_array.at[index].set(_a ) __magic_name__ : List[Any] = jnp.intaa(_a ) def __call__( self , _a , _a , _a ): def _force_token(_a ): __magic_name__ : Any = scores.shape[0] __magic_name__ : int = self.force_token_array[generation_idx] __magic_name__ : Union[str, Any] = jnp.ones_like(_a , dtype=scores.dtype ) * -float("inf" ) __magic_name__ : str = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __magic_name__ : Any = lax.dynamic_update_slice(_a , _a , (0, current_token) ) return new_scores __magic_name__ : Any = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(_a ) , lambda: scores , ) , ) return scores class _snake_case ( snake_case ): def __init__( self , _a , _a , _a ): __magic_name__ : Optional[int] = generate_config.eos_token_id __magic_name__ : List[Any] = generate_config.no_timestamps_token_id __magic_name__ : Optional[Any] = generate_config.no_timestamps_token_id + 1 __magic_name__ : int = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(_a , "max_initial_timestamp_index" ): __magic_name__ : List[Any] = generate_config.max_initial_timestamp_index else: __magic_name__ : str = model_config.vocab_size if self.max_initial_timestamp_index is None: __magic_name__ : str = model_config.vocab_size def __call__( self , _a , _a , _a ): # suppress <|notimestamps|> which is handled by without_timestamps __magic_name__ : List[str] = scores.at[:, self.no_timestamps_token_id].set(-float("inf" ) ) def handle_pairs(_a , _a ): __magic_name__ : int = jnp.where((cur_len - self.begin_index) >= 1 , _a , _a ) __magic_name__ : str = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , _a , ) __magic_name__ : Dict = jnp.where((cur_len - self.begin_index) < 2 , _a , _a ) __magic_name__ : Any = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , _a , _a , ) return jnp.where( _a , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float("inf" ) ) , scores_k.at[: self.eos_token_id].set(-float("inf" ) ) , ) , _a , ) __magic_name__ : Any = jax.vmap(_a )(_a , _a ) __magic_name__ : Dict = jnp.where(cur_len == self.begin_index , _a , _a ) __magic_name__ : List[str] = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , _a , ) __magic_name__ : Union[str, Any] = self.timestamp_begin + self.max_initial_timestamp_index __magic_name__ : Tuple = jnp.where( _a , scores.at[:, last_allowed + 1 :].set(-float("inf" ) ) , _a , ) # if sum of probability over timestamps is above any other token, sample timestamp __magic_name__ : Union[str, Any] = jax.nn.log_softmax(_a , axis=-1 ) def handle_cumulative_probs(_a , _a ): __magic_name__ : int = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __magic_name__ : int = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float("inf" ) ) , _a , ) __magic_name__ : int = jax.vmap(_a )(_a , _a ) return scores
124
0
'''simple docstring''' import argparse lowerCAmelCase_ = 'docs/source/_static/js/custom.js' def A__ ( A : Dict): '''simple docstring''' with open(A , encoding="utf-8" , newline="\n") as f: UpperCamelCase : Union[str, Any] = f.readlines() UpperCamelCase : Optional[int] = 0 # First let's put the right version while not lines[index].startswith("const stableVersion ="): index += 1 UpperCamelCase : Any = F'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {"): index += 1 # We go until the end while not lines[index].startswith("}"): index += 1 # We add the new version at the end lines[index - 1] += F''' "v{version}": "v{version}",\n''' with open(A , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(A) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--version', help='Release version.') lowerCAmelCase_ = parser.parse_args() update_custom_js(args.version)
435
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase ) -> Dict: '''simple docstring''' UpperCamelCase : Union[str, Any] = arr.split("," ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[Any] = [int(self.array[0] )] * len(self.array ) UpperCamelCase : int = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase : Tuple = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase : Optional[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase_ = input('please input some numbers:') lowerCAmelCase_ = SubArray(whole_array) lowerCAmelCase_ = array.solve_sub_array() print(('the results is:', re))
435
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str=10 ) -> Optional[Any]: _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict=10 ) -> Optional[int]: _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> Any: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def snake_case_ ( self : int ) -> Union[str, Any]: _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): _A = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def snake_case_ ( self : int ) -> Union[str, Any]: _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(10_00 ): _A = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Optional[Any] = nn.Linear(50 , 50) if is_torch_available() else None a__ : Dict = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None a__ : List[Any] = 10 def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=None ) -> List[Any]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> str: _A = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : Any ) -> List[Any]: _A = fn def __call__( self : Union[str, Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : List[str] ) -> Dict: return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def snake_case_ ( self : Any , __lowerCAmelCase : Optional[Any] ) -> List[str]: _A = list(map(self , scheduler.lr_lambdas ) )
2
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class A_ ( __a , __a , unittest.TestCase ): _A :List[Any] = VQModel _A :Any = '''sample''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : int=(32, 32) ): lowercase = 4 lowercase = 3 lowercase = floats_tensor((batch_size, num_channels) + sizes ).to(snake_case__ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : str ): return (3, 32, 32) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return (3, 32, 32) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowercase = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 3, } lowercase = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): lowercase , lowercase = VQModel.from_pretrained("""fusing/vqgan-dummy""" , output_loading_info=snake_case__ ) self.assertIsNotNone(snake_case__ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(snake_case__ ) lowercase = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): lowercase = VQModel.from_pretrained("""fusing/vqgan-dummy""" ) model.to(snake_case__ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowercase = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowercase = image.to(snake_case__ ) with torch.no_grad(): lowercase = model(snake_case__ ).sample lowercase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowercase = torch.tensor([-0.0_153, -0.4_044, -0.1_880, -0.5_161, -0.2_418, -0.4_072, -0.1_612, -0.0_633, -0.0_143] ) # fmt: on self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1E-3 ) )
428
0
'''simple docstring''' from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
319
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup __lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __init__( self : str ,**_a : List[Any] ): '''simple docstring''' requires_backends(self ,['bs4'] ) super().__init__(**_a ) def __lowercase ( self : Tuple ,_a : List[str] ): '''simple docstring''' _a : List[str] = [] _a : Any = [] _a : int = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag _a : Dict = parent.find_all(child.name ,recursive=_a ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_a ) else next(i for i, s in enumerate(_a ,1 ) if s is child ) ) _a : Optional[Any] = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def __lowercase ( self : int ,_a : Any ): '''simple docstring''' _a : List[str] = BeautifulSoup(_a ,'html.parser' ) _a : int = [] _a : int = [] _a : Optional[Any] = [] for element in html_code.descendants: if type(_a ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue _a : Tuple = html.unescape(_a ).strip() if not text_in_this_tag: continue all_doc_strings.append(_a ) _a, _a : Tuple = self.xpath_soup(_a ) stringaxtag_seq.append(_a ) stringaxsubs_seq.append(_a ) if len(_a ) != len(_a ): raise ValueError('Number of doc strings and xtags does not correspond' ) if len(_a ) != len(_a ): raise ValueError('Number of doc strings and xsubs does not correspond' ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def __lowercase ( self : List[Any] ,_a : List[str] ,_a : Any ): '''simple docstring''' _a : List[str] = '' for tagname, subs in zip(_a ,_a ): xpath += F"""/{tagname}""" if subs != 0: xpath += F"""[{subs}]""" return xpath def __call__( self : str ,_a : Tuple ): '''simple docstring''' _a : Optional[int] = False # Check that strings has a valid type if isinstance(_a ,_a ): _a : Optional[int] = True elif isinstance(_a ,(list, tuple) ): if len(_a ) == 0 or isinstance(html_strings[0] ,_a ): _a : int = True if not valid_strings: raise ValueError( 'HTML strings must of type `str`, `List[str]` (batch of examples), ' F"""but is of type {type(_a )}.""" ) _a : List[str] = bool(isinstance(_a ,(list, tuple) ) and (isinstance(html_strings[0] ,_a )) ) if not is_batched: _a : Optional[int] = [html_strings] # Get nodes + xpaths _a : Union[str, Any] = [] _a : int = [] for html_string in html_strings: _a, _a, _a : Any = self.get_three_from_single(_a ) nodes.append(_a ) _a : Tuple = [] for node, tag_list, sub_list in zip(_a ,_a ,_a ): _a : Dict = self.construct_xpath(_a ,_a ) xpath_strings.append(_a ) xpaths.append(_a ) # return as Dict _a : Optional[Any] = {'nodes': nodes, 'xpaths': xpaths} _a : Tuple = BatchFeature(data=_a ,tensor_type=_a ) return encoded_inputs
319
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import List import timm import torch import torch.nn as nn from huggingface_hub import hf_hub_download from torch import Tensor from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification from transformers.utils import logging logging.set_verbosity_info() a_ = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =42 _UpperCAmelCase =field(default_factory=lowercase_ ) _UpperCAmelCase =field(default_factory=lowercase_ ) def _lowerCAmelCase ( self: Optional[int] , a: List[Any] , a: Tensor , a: Tensor) ->Tuple: '''simple docstring''' a_ = len(list(m.modules())) == 1 or isinstance(a , nn.Convad) or isinstance(a , nn.BatchNormad) if has_not_submodules: self.traced.append(a) def __call__( self: str , a: Tensor) ->Dict: '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(a) [x.remove() for x in self.handles] return self @property def _lowerCAmelCase ( self: Union[str, Any]) ->Optional[Any]: '''simple docstring''' return list(filter(lambda a: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class SCREAMING_SNAKE_CASE__ : _UpperCAmelCase =42 _UpperCAmelCase =42 _UpperCAmelCase =0 _UpperCAmelCase =field(default_factory=lowercase_ ) _UpperCAmelCase =field(default_factory=lowercase_ ) def __call__( self: List[str] , a: Tensor) ->int: '''simple docstring''' a_ = Tracker(self.dest)(a).parametrized a_ = Tracker(self.src)(a).parametrized a_ = list(filter(lambda a: type(a) not in self.src_skip , a)) a_ = list(filter(lambda a: type(a) not in self.dest_skip , a)) if len(a) != len(a): raise Exception( f"""Numbers of operations are different. Source module has {len(a)} operations while""" f""" destination module has {len(a)}.""") for dest_m, src_m in zip(a , a): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(f"""Transfered from={src_m} to={dest_m}""") def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = True ) -> Union[str, Any]: '''simple docstring''' print(F"""Converting {name}...""" ) with torch.no_grad(): a_ = timm.create_model(lowercase__ ,pretrained=lowercase__ ).eval() a_ = ResNetForImageClassification(lowercase__ ).eval() a_ = ModuleTransfer(src=lowercase__ ,dest=lowercase__ ) a_ = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase__ ) assert torch.allclose(from_model(lowercase__ ) ,our_model(lowercase__ ).logits ), "The model logits don't match the original one." a_ = F"""resnet{'-'.join(name.split('resnet' ) )}""" print(lowercase__ ) if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add model" ,use_temp_dir=lowercase__ ,) # we can use the convnext one a_ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) image_processor.push_to_hub( repo_path_or_name=save_directory / checkpoint_name ,commit_message="Add image processor" ,use_temp_dir=lowercase__ ,) print(F"""Pushed {checkpoint_name}""" ) def __UpperCAmelCase (lowercase__ ,lowercase__ = None ,lowercase__ = True ) -> int: '''simple docstring''' a_ = "imagenet-1k-id2label.json" a_ = 1000 a_ = (1, num_labels) a_ = "huggingface/label-files" a_ = num_labels a_ = json.load(open(hf_hub_download(lowercase__ ,lowercase__ ,repo_type="dataset" ) ,"r" ) ) a_ = {int(lowercase__ ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} a_ = partial(lowercase__ ,num_labels=lowercase__ ,idalabel=lowercase__ ,labelaid=lowercase__ ) a_ = { "resnet18": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet26": ImageNetPreTrainedConfig( depths=[2, 2, 2, 2] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet34": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[64, 128, 256, 512] ,layer_type="basic" ), "resnet50": ImageNetPreTrainedConfig( depths=[3, 4, 6, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet101": ImageNetPreTrainedConfig( depths=[3, 4, 23, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), "resnet152": ImageNetPreTrainedConfig( depths=[3, 8, 36, 3] ,hidden_sizes=[256, 512, 1024, 2048] ,layer_type="bottleneck" ), } if model_name: convert_weight_and_push(lowercase__ ,names_to_config[model_name] ,lowercase__ ,lowercase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) return config, expected_shape if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported resnet* architecture,' ' currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) a_ = parser.parse_args() a_ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
685
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json', 'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json', 'uclanlp/visualbert-vqa-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json', 'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json', 'uclanlp/visualbert-vcr-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json' ), 'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json', 'uclanlp/visualbert-nlvr2-coco-pre': ( 'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class SCREAMING_SNAKE_CASE__ ( lowercase_ ): _UpperCAmelCase ='''visual_bert''' def __init__( self: Union[str, Any] , a: List[Any]=3_05_22 , a: List[Any]=7_68 , a: Union[str, Any]=5_12 , a: List[str]=12 , a: Tuple=12 , a: Optional[Any]=30_72 , a: int="gelu" , a: Union[str, Any]=0.1 , a: int=0.1 , a: str=5_12 , a: Optional[int]=2 , a: List[str]=0.02 , a: Optional[int]=1e-12 , a: str=False , a: Any=True , a: Tuple=1 , a: Dict=0 , a: Any=2 , **a: Optional[Any] , ) ->str: '''simple docstring''' super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a) a_ = vocab_size a_ = max_position_embeddings a_ = hidden_size a_ = visual_embedding_dim a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = initializer_range a_ = type_vocab_size a_ = layer_norm_eps a_ = bypass_transformer a_ = special_visual_initialize
685
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(_lowerCamelCase ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' def __init__( self , **_A ): '''simple docstring''' super().__init__(**_A ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , _A , **_A ): '''simple docstring''' return super().__call__(_A , **_A ) def UpperCamelCase_ ( self , **_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} if "candidate_labels" in kwargs: _SCREAMING_SNAKE_CASE =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _SCREAMING_SNAKE_CASE =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def UpperCamelCase_ ( self , _A , _A=None , _A="This is a photo of {}." ): '''simple docstring''' _SCREAMING_SNAKE_CASE =load_image(_A ) _SCREAMING_SNAKE_CASE =self.image_processor(images=[image] , return_tensors=self.framework ) _SCREAMING_SNAKE_CASE =candidate_labels _SCREAMING_SNAKE_CASE =[hypothesis_template.format(_A ) for x in candidate_labels] _SCREAMING_SNAKE_CASE =self.tokenizer(_A , return_tensors=self.framework , padding=_A ) _SCREAMING_SNAKE_CASE =[text_inputs] return inputs def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =model_inputs.pop('''candidate_labels''' ) _SCREAMING_SNAKE_CASE =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _A ): _SCREAMING_SNAKE_CASE =text_inputs[0] else: # Batching case. _SCREAMING_SNAKE_CASE =text_inputs[0][0] _SCREAMING_SNAKE_CASE =self.model(**_A , **_A ) _SCREAMING_SNAKE_CASE ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_image, } return model_outputs def UpperCamelCase_ ( self , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =model_outputs.pop('''candidate_labels''' ) _SCREAMING_SNAKE_CASE =model_outputs['''logits'''][0] if self.framework == "pt": _SCREAMING_SNAKE_CASE =logits.softmax(dim=-1 ).squeeze(-1 ) _SCREAMING_SNAKE_CASE =probs.tolist() if not isinstance(_A , _A ): _SCREAMING_SNAKE_CASE =[scores] elif self.framework == "tf": _SCREAMING_SNAKE_CASE =stable_softmax(_A , axis=-1 ) _SCREAMING_SNAKE_CASE =probs.numpy().tolist() else: raise ValueError(f"""Unsupported framework: {self.framework}""" ) _SCREAMING_SNAKE_CASE =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_A , _A ) , key=lambda _A : -x[0] ) ] return result
715
"""simple docstring""" import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Any = "owlvit_text_model" def __init__( self , _A=4_9_4_0_8 , _A=5_1_2 , _A=2_0_4_8 , _A=1_2 , _A=8 , _A=1_6 , _A="quick_gelu" , _A=1E-5 , _A=0.0 , _A=0.02 , _A=1.0 , _A=0 , _A=4_9_4_0_6 , _A=4_9_4_0_7 , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) _SCREAMING_SNAKE_CASE =vocab_size _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =max_position_embeddings _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_A , **_A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _SCREAMING_SNAKE_CASE =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Tuple = "owlvit_vision_model" def __init__( self , _A=7_6_8 , _A=3_0_7_2 , _A=1_2 , _A=1_2 , _A=3 , _A=7_6_8 , _A=3_2 , _A="quick_gelu" , _A=1E-5 , _A=0.0 , _A=0.02 , _A=1.0 , **_A , ): '''simple docstring''' super().__init__(**_A ) _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =layer_norm_eps _SCREAMING_SNAKE_CASE =attention_dropout _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =initializer_factor @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _SCREAMING_SNAKE_CASE =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Optional[int] = "owlvit" lowercase : List[Any] = True def __init__( self , _A=None , _A=None , _A=5_1_2 , _A=2.6592 , _A=True , **_A , ): '''simple docstring''' super().__init__(**_A ) if text_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _SCREAMING_SNAKE_CASE ={} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _SCREAMING_SNAKE_CASE =OwlViTTextConfig(**_A ) _SCREAMING_SNAKE_CASE =OwlViTVisionConfig(**_A ) _SCREAMING_SNAKE_CASE =projection_dim _SCREAMING_SNAKE_CASE =logit_scale_init_value _SCREAMING_SNAKE_CASE =return_dict _SCREAMING_SNAKE_CASE =1.0 @classmethod def UpperCamelCase_ ( cls , _A , **_A ): '''simple docstring''' cls._set_token_in_kwargs(_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =cls.get_config_dict(_A , **_A ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_A , **_A ) @classmethod def UpperCamelCase_ ( cls , _A , _A , **_A ): '''simple docstring''' _SCREAMING_SNAKE_CASE ={} _SCREAMING_SNAKE_CASE =text_config _SCREAMING_SNAKE_CASE =vision_config return cls.from_dict(_A , **_A ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =copy.deepcopy(self.__dict__ ) _SCREAMING_SNAKE_CASE =self.text_config.to_dict() _SCREAMING_SNAKE_CASE =self.vision_config.to_dict() _SCREAMING_SNAKE_CASE =self.__class__.model_type return output class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1E-4 def UpperCamelCase_ ( self , _A , _A = -1 , _A = -1 , _A = None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE =super().generate_dummy_inputs( processor.tokenizer , batch_size=_A , seq_length=_A , framework=_A ) _SCREAMING_SNAKE_CASE =super().generate_dummy_inputs( processor.image_processor , batch_size=_A , framework=_A ) return {**text_input_dict, **image_input_dict} @property def UpperCamelCase_ ( self ): '''simple docstring''' return 1_4
165
0
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class a__ ( UpperCamelCase__ ): a : torch.FloatTensor class a__ ( nn.Module ): def __init__( self , A=3 , A=3 , A=("DownEncoderBlock2D",) , A=(64,) , A=2 , A=32 , A="silu" , A=True , ) -> str: '''simple docstring''' super().__init__() a = layers_per_block a = torch.nn.Convad( A , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) a = None a = nn.ModuleList([] ) # down a = block_out_channels[0] for i, down_block_type in enumerate(A ): a = output_channel a = block_out_channels[i] a = i == len(A ) - 1 a = get_down_block( A , num_layers=self.layers_per_block , in_channels=A , out_channels=A , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=A , resnet_groups=A , attention_head_dim=A , temb_channels=A , ) self.down_blocks.append(A ) # mid a = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=A , output_scale_factor=1 , resnet_time_scale_shift="default" , attention_head_dim=block_out_channels[-1] , resnet_groups=A , temb_channels=A , ) # out a = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=A , eps=1e-6 ) a = nn.SiLU() a = 2 * out_channels if double_z else out_channels a = nn.Convad(block_out_channels[-1] , A , 3 , padding=1 ) a = False def lowerCAmelCase_ ( self , A ) -> Tuple: '''simple docstring''' a = x a = self.conv_in(A ) if self.training and self.gradient_checkpointing: def create_custom_forward(A ): def custom_forward(*A ): return module(*A ) return custom_forward # down if is_torch_version(">=" , "1.11.0" ): for down_block in self.down_blocks: a = torch.utils.checkpoint.checkpoint( create_custom_forward(A ) , A , use_reentrant=A ) # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , A , use_reentrant=A ) else: for down_block in self.down_blocks: a = torch.utils.checkpoint.checkpoint(create_custom_forward(A ) , A ) # middle a = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , A ) else: # down for down_block in self.down_blocks: a = down_block(A ) # middle a = self.mid_block(A ) # post-process a = self.conv_norm_out(A ) a = self.conv_act(A ) a = self.conv_out(A ) return sample class a__ ( nn.Module ): def __init__( self , A=3 , A=3 , A=("UpDecoderBlock2D",) , A=(64,) , A=2 , A=32 , A="silu" , A="group" , ) -> Union[str, Any]: '''simple docstring''' super().__init__() a = layers_per_block a = nn.Convad( A , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) a = None a = nn.ModuleList([] ) a = in_channels if norm_type == "spatial" else None # mid a = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=A , output_scale_factor=1 , resnet_time_scale_shift="default" if norm_type == "group" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=A , temb_channels=A , ) # up a = list(reversed(A ) ) a = reversed_block_out_channels[0] for i, up_block_type in enumerate(A ): a = output_channel a = reversed_block_out_channels[i] a = i == len(A ) - 1 a = get_up_block( A , num_layers=self.layers_per_block + 1 , in_channels=A , out_channels=A , prev_output_channel=A , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=A , resnet_groups=A , attention_head_dim=A , temb_channels=A , resnet_time_scale_shift=A , ) self.up_blocks.append(A ) a = output_channel # out if norm_type == "spatial": a = SpatialNorm(block_out_channels[0] , A ) else: a = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=A , eps=1e-6 ) a = nn.SiLU() a = nn.Convad(block_out_channels[0] , A , 3 , padding=1 ) a = False def lowerCAmelCase_ ( self , A , A=None ) -> Any: '''simple docstring''' a = z a = self.conv_in(A ) a = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(A ): def custom_forward(*A ): return module(*A ) return custom_forward if is_torch_version(">=" , "1.11.0" ): # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , A , A , use_reentrant=A ) a = sample.to(A ) # up for up_block in self.up_blocks: a = torch.utils.checkpoint.checkpoint( create_custom_forward(A ) , A , A , use_reentrant=A ) else: # middle a = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , A , A ) a = sample.to(A ) # up for up_block in self.up_blocks: a = torch.utils.checkpoint.checkpoint(create_custom_forward(A ) , A , A ) else: # middle a = self.mid_block(A , A ) a = sample.to(A ) # up for up_block in self.up_blocks: a = up_block(A , A ) # post-process if latent_embeds is None: a = self.conv_norm_out(A ) else: a = self.conv_norm_out(A , A ) a = self.conv_act(A ) a = self.conv_out(A ) return sample class a__ ( nn.Module ): def __init__( self , A , A , A , A=None , A="random" , A=False , A=True ) -> Tuple: '''simple docstring''' super().__init__() a = n_e a = vq_embed_dim a = beta a = legacy a = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) a = remap if self.remap is not None: self.register_buffer("used" , torch.tensor(np.load(self.remap ) ) ) a = self.used.shape[0] a = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": a = self.re_embed a = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: a = n_e a = sane_index_shape def lowerCAmelCase_ ( self , A ) -> Any: '''simple docstring''' a = inds.shape assert len(A ) > 1 a = inds.reshape(ishape[0] , -1 ) a = self.used.to(A ) a = (inds[:, :, None] == used[None, None, ...]).long() a = match.argmax(-1 ) a = match.sum(2 ) < 1 if self.unknown_index == "random": a = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: a = self.unknown_index return new.reshape(A ) def lowerCAmelCase_ ( self , A ) -> Union[str, Any]: '''simple docstring''' a = inds.shape assert len(A ) > 1 a = inds.reshape(ishape[0] , -1 ) a = self.used.to(A ) if self.re_embed > self.used.shape[0]: # extra token a = 0 # simply set to zero a = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , A ) return back.reshape(A ) def lowerCAmelCase_ ( self , A ) -> List[str]: '''simple docstring''' a = z.permute(0 , 2 , 3 , 1 ).contiguous() a = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z a = torch.argmin(torch.cdist(A , self.embedding.weight ) , dim=1 ) a = self.embedding(A ).view(z.shape ) a = None a = None # compute loss for embedding if not self.legacy: a = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: a = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients a = z + (z_q - z).detach() # reshape back to match original input shape a = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: a = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis a = self.remap_to_used(A ) a = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: a = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowerCAmelCase_ ( self , A , A ) -> Optional[Any]: '''simple docstring''' if self.remap is not None: a = indices.reshape(shape[0] , -1 ) # add batch axis a = self.unmap_to_all(A ) a = indices.reshape(-1 ) # flatten again # get quantized latent vectors a = self.embedding(A ) if shape is not None: a = z_q.view(A ) # reshape back to match original input shape a = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class a__ ( UpperCamelCase__ ): def __init__( self , A , A=False ) -> Tuple: '''simple docstring''' a = parameters a , a = torch.chunk(A , 2 , dim=1 ) a = torch.clamp(self.logvar , -3_0.0 , 2_0.0 ) a = deterministic a = torch.exp(0.5 * self.logvar ) a = torch.exp(self.logvar ) if self.deterministic: a = a = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowerCAmelCase_ ( self , A = None ) -> torch.FloatTensor: '''simple docstring''' a = randn_tensor( self.mean.shape , generator=A , device=self.parameters.device , dtype=self.parameters.dtype ) a = self.mean + self.std * sample return x def lowerCAmelCase_ ( self , A=None ) -> List[Any]: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowerCAmelCase_ ( self , A , A=[1, 2, 3] ) -> str: '''simple docstring''' if self.deterministic: return torch.Tensor([0.0] ) a = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=A ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return self.mean
515
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : Any = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class a__ ( UpperCamelCase__ ): a : int = """audio-spectrogram-transformer""" def __init__( self , A=768 , A=12 , A=12 , A=3072 , A="gelu" , A=0.0 , A=0.0 , A=0.0_2 , A=1e-12 , A=16 , A=True , A=10 , A=10 , A=1024 , A=128 , **A , ) -> Any: '''simple docstring''' super().__init__(**A ) a = hidden_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = layer_norm_eps a = patch_size a = qkv_bias a = frequency_stride a = time_stride a = max_length a = num_mel_bins
515
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__: Dict = logging.get_logger(__name__) class A__ ( UpperCAmelCase__ ): __UpperCamelCase : Optional[int] = "timm_backbone" def __init__( self :Any , SCREAMING_SNAKE_CASE :Optional[Any]=None , SCREAMING_SNAKE_CASE :List[str]=3 , SCREAMING_SNAKE_CASE :Optional[int]=True , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :int=None , **SCREAMING_SNAKE_CASE :List[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE ) _a : Tuple =backbone _a : Dict =num_channels _a : int =features_only _a : str =use_pretrained_backbone _a : str =True _a : str =out_indices if out_indices is not None else (-1,)
700
'''simple docstring''' from functools import lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> set: _a : Any =2 _a : Tuple =set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_UpperCAmelCase ) if n > 1: factors.add(_UpperCAmelCase ) return factors @lru_cache def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> int: return len(unique_prime_factors(_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : list ) -> bool: return len(set(_UpperCAmelCase ) ) in (0, 1) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int ) -> list: _a : int =2 while True: # Increment each value of a generated range _a : str =[base + i for i in range(_UpperCAmelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. _a : List[Any] =[upf_len(_UpperCAmelCase ) for x in group] checker.append(_UpperCAmelCase ) # If all numbers in the list are equal, return the group variable. if equality(_UpperCAmelCase ): return group # Increment our base variable by 1 base += 1 def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4 ) -> int: _a : Optional[int] =run(_UpperCAmelCase ) return results[0] if len(_UpperCAmelCase ) else None if __name__ == "__main__": print(solution())
506
0