code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
a = logging.get_logger(__name__)
a = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __a :
__UpperCamelCase : str = field(
default=_snake_case, metadata={'help': 'Model type selected in the list: ' + ', '.join(_snake_case )} )
__UpperCamelCase : str = field(
default=_snake_case, metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
__UpperCamelCase : int = field(
default=128, metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
}, )
__UpperCamelCase : int = field(
default=128, metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'}, )
__UpperCamelCase : int = field(
default=64, metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
}, )
__UpperCamelCase : int = field(
default=30, metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
}, )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} )
__UpperCamelCase : bool = field(
default=_snake_case, metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
__UpperCamelCase : float = field(
default=0.0, metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
__UpperCamelCase : int = field(
default=20, metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
__UpperCamelCase : int = field(
default=0, metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
}, )
__UpperCamelCase : int = field(default=1, metadata={'help': 'multiple threads for converting example to features'} )
class __a ( _snake_case ):
__UpperCamelCase : Optional[Any] = 'train'
__UpperCamelCase : List[Any] = 'dev'
class __a ( _snake_case ):
__UpperCamelCase : SquadDataTrainingArguments
__UpperCamelCase : List[SquadFeatures]
__UpperCamelCase : Split
__UpperCamelCase : bool
def __init__( self : List[str] ,lowerCamelCase : SquadDataTrainingArguments ,lowerCamelCase : PreTrainedTokenizer ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Union[str, Split] = Split.train ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : Optional[str] = None ,lowerCamelCase : Optional[str] = "pt" ,):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = args
__SCREAMING_SNAKE_CASE = is_language_sensitive
__SCREAMING_SNAKE_CASE = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(lowerCamelCase ,lowerCamelCase ):
try:
__SCREAMING_SNAKE_CASE = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
__SCREAMING_SNAKE_CASE = mode
# Load data features from cache or dataset file
__SCREAMING_SNAKE_CASE = """v2""" if args.version_2_with_negative else """v1"""
__SCREAMING_SNAKE_CASE = os.path.join(
cache_dir if cache_dir is not None else args.data_dir ,f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" ,)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__SCREAMING_SNAKE_CASE = cached_features_file + """.lock"""
with FileLock(lowerCamelCase ):
if os.path.exists(lowerCamelCase ) and not args.overwrite_cache:
__SCREAMING_SNAKE_CASE = time.time()
__SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__SCREAMING_SNAKE_CASE = self.old_features["""features"""]
__SCREAMING_SNAKE_CASE = self.old_features.get("""dataset""" ,lowerCamelCase )
__SCREAMING_SNAKE_CASE = self.old_features.get("""examples""" ,lowerCamelCase )
logger.info(
f"""Loading features from cached file {cached_features_file} [took %.3f s]""" ,time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"""
""" future run""" )
else:
if mode == Split.dev:
__SCREAMING_SNAKE_CASE = self.processor.get_dev_examples(args.data_dir )
else:
__SCREAMING_SNAKE_CASE = self.processor.get_train_examples(args.data_dir )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = squad_convert_examples_to_features(
examples=self.examples ,tokenizer=lowerCamelCase ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=lowerCamelCase ,)
__SCREAMING_SNAKE_CASE = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} ,lowerCamelCase ,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" )
def __len__( self : Optional[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : Optional[Any] ,lowerCamelCase : Optional[int] ):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = self.features[i]
__SCREAMING_SNAKE_CASE = torch.tensor(feature.input_ids ,dtype=torch.long )
__SCREAMING_SNAKE_CASE = torch.tensor(feature.attention_mask ,dtype=torch.long )
__SCREAMING_SNAKE_CASE = torch.tensor(feature.token_type_ids ,dtype=torch.long )
__SCREAMING_SNAKE_CASE = torch.tensor(feature.cls_index ,dtype=torch.long )
__SCREAMING_SNAKE_CASE = torch.tensor(feature.p_mask ,dtype=torch.float )
__SCREAMING_SNAKE_CASE = torch.tensor(feature.is_impossible ,dtype=torch.float )
__SCREAMING_SNAKE_CASE = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__SCREAMING_SNAKE_CASE = torch.tensor(feature.start_position ,dtype=torch.long )
__SCREAMING_SNAKE_CASE = torch.tensor(feature.end_position ,dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 109 |
'''simple docstring'''
import argparse
import json
import os
import re
import torch
from transformers import BloomConfig, BloomModel
from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCamelCase : int =[
"word_embeddings_layernorm.weight",
"word_embeddings_layernorm.bias",
"input_layernorm.weight",
"input_layernorm.bias",
"post_attention_layernorm.weight",
"post_attention_layernorm.bias",
"self_attention.dense.bias",
"mlp.dense_4h_to_h.bias",
"ln_f.weight",
"ln_f.bias",
]
_UpperCamelCase : Dict =[
"mlp.dense_4h_to_h.weight",
"self_attention.dense.weight",
]
def lowerCamelCase_ ( A_ , A_ ):
__lowerCamelCase = {
'''word_embeddings.weight''': '''word_embeddings.weight''',
'''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''',
'''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''',
'''weight''': '''ln_f.weight''',
'''bias''': '''ln_f.bias''',
}
if key in layer_rename_map:
return layer_rename_map[key]
# Handle transformer blocks
__lowerCamelCase = int(re.match(R'''.*layer_(\d*).*''' , A_ )[1] )
layer_number -= 3
return f'''h.{layer_number}.''' + key
def lowerCamelCase_ ( A_ ):
if dtype == torch.bool:
return 1 / 8
__lowerCamelCase = re.search(R'''[^\d](\d+)$''' , str(A_ ) )
if bit_search is None:
raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' )
__lowerCamelCase = int(bit_search.groups()[0] )
return bit_size // 8
def lowerCamelCase_ ( A_ , A_ , A_ , A_ , A_ ):
# Construct model
if bloom_config_file == "":
__lowerCamelCase = BloomConfig()
else:
__lowerCamelCase = BloomConfig.from_json_file(A_ )
if shard_model:
__lowerCamelCase = os.listdir(A_ )
__lowerCamelCase = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s , A_ ) )
__lowerCamelCase = {'''weight_map''': {}, '''metadata''': {}}
__lowerCamelCase = 0
__lowerCamelCase = None
__lowerCamelCase = BloomConfig()
for j, file in enumerate(A_ ):
print('''Processing file: {}'''.format(A_ ) )
__lowerCamelCase = None
for i in range(A_ ):
# load all TP files
__lowerCamelCase = file.replace('''model_00''' , f'''model_0{i}''' )
__lowerCamelCase = torch.load(os.path.join(A_ , A_ ) , map_location='''cpu''' )
# Rename keys in the transformers names
__lowerCamelCase = list(temp.keys() )
for key in keys:
__lowerCamelCase = temp.pop(A_ )
if tensors is None:
__lowerCamelCase = temp
else:
for key in tensors.keys():
if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
__lowerCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
__lowerCamelCase = torch.cat([tensors[key], temp[key]] , dim=A_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
__lowerCamelCase = tensors[key] / pretraining_tp
torch.save(
A_ , os.path.join(
A_ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A_ ) ).zfill(5 ) ) , ) , )
for key in tensors.keys():
__lowerCamelCase = tensors[key]
total_size += value.numel() * get_dtype_size(value.dtype )
if key not in index_dict["weight_map"]:
__lowerCamelCase = '''pytorch_model_{}-of-{}.bin'''.format(
str(j + 1 ).zfill(5 ) , str(len(A_ ) ).zfill(5 ) )
__lowerCamelCase = BloomConfig()
__lowerCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
__lowerCamelCase = total_size
with open(A_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
with open(os.path.join(A_ , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f:
__lowerCamelCase = json.dumps(A_ , indent=2 , sort_keys=A_ ) + '''\n'''
f.write(A_ )
else:
__lowerCamelCase = BloomModel(A_ )
__lowerCamelCase = os.listdir(A_ )
__lowerCamelCase = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s , A_ ) )
__lowerCamelCase = None
for i, file in enumerate(A_ ):
__lowerCamelCase = None
for i in range(A_ ):
# load all TP files
__lowerCamelCase = file.replace('''model_00''' , f'''model_0{i}''' )
__lowerCamelCase = torch.load(os.path.join(A_ , A_ ) , map_location='''cpu''' )
# Rename keys in the transformers names
__lowerCamelCase = list(temp.keys() )
for key in keys:
__lowerCamelCase = temp.pop(A_ )
if tensors is None:
__lowerCamelCase = temp
else:
for key in tensors.keys():
# We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425)
if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
tensors[key] += temp[key]
else:
# Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel
__lowerCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0
# We concatenate these weights accross TP ranks
__lowerCamelCase = torch.cat([tensors[key], temp[key]] , dim=A_ )
# Divide by the number of TP the weights we want to average
for key in tensors.keys():
if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ):
__lowerCamelCase = tensors[key] / pretraining_tp
__lowerCamelCase = model.load_state_dict(A_ , strict=A_ )
assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected'''
if missing_keys is None:
__lowerCamelCase = set(other_keys.missing_keys )
else:
__lowerCamelCase = missing_keys.intersection(set(other_keys.missing_keys ) )
assert not missing_keys, f'''The keys {missing_keys} are missing'''
# Save pytorch-model
os.makedirs(A_ , exist_ok=A_ )
__lowerCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
__lowerCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' )
if config.torch_dtype is not None:
__lowerCamelCase = model.to(config.torch_dtype )
torch.save(model.state_dict() , A_ )
print(f'''Save configuration file to {pytorch_config_dump_path}''' )
with open(A_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
_UpperCamelCase : Optional[int] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bloom_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the Megatron-LM checkpoint path.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--bloom_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--shard_model",
action="store_true",
help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint",
)
parser.add_argument(
"--pretraining_tp",
default=4,
type=int,
help="Pretraining TP rank that has been used when training the model in Megatron-LM \n",
)
_UpperCamelCase : Optional[int] =parser.parse_args()
convert_bloom_checkpoint_to_pytorch(
args.bloom_checkpoint_path,
args.bloom_config_file,
args.pytorch_dump_folder_path,
args.shard_model,
args.pretraining_tp,
)
| 316 | 0 |
"""simple docstring"""
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def SCREAMING_SNAKE_CASE ( snake_case, snake_case = True, snake_case = math.inf, snake_case = -math.inf, snake_case = math.inf, snake_case = -math.inf, snake_case = False, snake_case = 1_00, snake_case = 0.01, snake_case = 1, ):
__snake_case = False
__snake_case = search_prob
__snake_case = start_temperate
__snake_case = []
__snake_case = 0
__snake_case = None
while not search_end:
__snake_case = current_state.score()
if best_state is None or current_score > best_state.score():
__snake_case = current_state
scores.append(snake_case)
iterations += 1
__snake_case = None
__snake_case = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
__snake_case = random.randint(0, len(snake_case) - 1) # picking a random neighbor
__snake_case = neighbors.pop(snake_case)
__snake_case = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
__snake_case = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
__snake_case = picked_neighbor
else:
__snake_case = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
__snake_case = picked_neighbor
__snake_case = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
__snake_case = True
else:
__snake_case = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(snake_case), snake_case)
plt.xlabel('''Iterations''')
plt.ylabel('''Function values''')
plt.show()
return best_state
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( snake_case, snake_case):
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
__lowercase : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__lowercase : Union[str, Any] = simulated_annealing(
prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
# starting the problem with initial coordinates (12, 47)
__lowercase : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
__lowercase : int = simulated_annealing(
prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 "
F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}"""
)
def SCREAMING_SNAKE_CASE ( snake_case, snake_case):
return (3 * x**2) - (6 * y)
__lowercase : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__lowercase : Dict = simulated_annealing(prob, find_max=False, visualization=True)
print(
"The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F"""{local_min.score()}"""
)
__lowercase : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
__lowercase : Tuple = simulated_annealing(prob, find_max=True, visualization=True)
print(
"The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: "
F"""{local_min.score()}"""
) | 93 | """simple docstring"""
import re
def SCREAMING_SNAKE_CASE ( snake_case):
return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''', str_)]
def SCREAMING_SNAKE_CASE ( snake_case):
__snake_case = split_input(str_)
return "".join(
[''''''.join([char.capitalize() for char in sub_str]) for sub_str in string_split])
def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case):
try:
__snake_case = split_input(snake_case)
if upper:
__snake_case = ''''''.join(
[
separator.join([char.upper() for char in sub_str])
for sub_str in string_split
])
else:
__snake_case = ''''''.join(
[
separator.join([char.lower() for char in sub_str])
for sub_str in string_split
])
return res_str
except IndexError:
return "not valid string"
def SCREAMING_SNAKE_CASE ( snake_case):
return to_simple_case(snake_case)
def SCREAMING_SNAKE_CASE ( snake_case):
try:
__snake_case = to_simple_case(snake_case)
return res_str[0].lower() + res_str[1:]
except IndexError:
return "not valid string"
def SCREAMING_SNAKE_CASE ( snake_case, snake_case):
return to_complex_case(snake_case, snake_case, '''_''')
def SCREAMING_SNAKE_CASE ( snake_case, snake_case):
return to_complex_case(snake_case, snake_case, '''-''')
if __name__ == "__main__":
__import__("doctest").testmod() | 93 | 1 |
from itertools import count
def _SCREAMING_SNAKE_CASE ( __lowercase : int = 5_0 ) -> int:
"""simple docstring"""
__A = [1] * min_block_length
for n in count(__lowercase ):
fill_count_functions.append(1 )
for block_length in range(__lowercase , n + 1 ):
for block_start in range(n - block_length ):
fill_count_functions[n] += fill_count_functions[
n - block_start - block_length - 1
]
fill_count_functions[n] += 1
if fill_count_functions[n] > 1_0_0_0_0_0_0:
break
return n
if __name__ == "__main__":
print(f"""{solution() = }""")
| 637 |
from __future__ import annotations
def _SCREAMING_SNAKE_CASE ( __lowercase : list[int] , __lowercase : int ) -> bool:
"""simple docstring"""
if len(__lowercase ) == 0:
return False
__A = len(__lowercase ) // 2
if a_list[midpoint] == item:
return True
if item < a_list[midpoint]:
return binary_search(a_list[:midpoint] , __lowercase )
else:
return binary_search(a_list[midpoint + 1 :] , __lowercase )
if __name__ == "__main__":
__a : Tuple = input("Enter numbers separated by comma:\n").strip()
__a : Any = [int(item.strip()) for item in user_input.split(",")]
__a : List[Any] = int(input("Enter the number to be found in the list:\n").strip())
__a : Optional[int] = "" if binary_search(sequence, target) else "not "
print(f"""{target} was {not_str}found in {sequence}""")
| 637 | 1 |
'''simple docstring'''
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name
class UpperCAmelCase_ ( __A ):
"""simple docstring"""
def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]:
'''simple docstring'''
super().__init__()
if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1:
lowercase : str =(
f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'
f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '
'''to update the config accordingly as leaving `steps_offset` might led to incorrect results'''
''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'''
''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'''
''' file'''
)
deprecate('''steps_offset!=1''' , '''1.0.0''' , UpperCamelCase__ , standard_warn=UpperCamelCase__ )
lowercase : Union[str, Any] =dict(scheduler.config )
lowercase : Optional[int] =1
lowercase : Optional[int] =FrozenDict(UpperCamelCase__ )
if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False:
lowercase : Any =(
f'The configuration file of this scheduler: {scheduler} has not set the configuration'
''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'''
''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'''
''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'''
''' Hub, it would be very nice if you could open a Pull request for the'''
''' `scheduler/scheduler_config.json` file'''
)
deprecate('''skip_prk_steps not set''' , '''1.0.0''' , UpperCamelCase__ , standard_warn=UpperCamelCase__ )
lowercase : str =dict(scheduler.config )
lowercase : Optional[int] =True
lowercase : List[str] =FrozenDict(UpperCamelCase__ )
if safety_checker is None:
logger.warning(
f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'
''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'''
''' results in services or applications open to the public. Both the diffusers team and Hugging Face'''
''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'''
''' it only for use-cases that involve analyzing network behavior or auditing its results. For more'''
''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' )
self.register_modules(
segmentation_model=UpperCamelCase__ , segmentation_processor=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , )
def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] = "auto" ) -> List[Any]:
'''simple docstring'''
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
lowercase : Dict =self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(UpperCamelCase__ )
def A__ ( self : int ) -> Any:
'''simple docstring'''
self.enable_attention_slicing(UpperCamelCase__ )
def A__ ( self : Dict ) -> List[Any]:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('''Please install accelerate via `pip install accelerate`''' )
lowercase : List[str] =torch.device('''cuda''' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(UpperCamelCase__ , UpperCamelCase__ )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def A__ ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ):
return self.device
for module in self.unet.modules():
if (
hasattr(UpperCamelCase__ , '''_hf_hook''' )
and hasattr(module._hf_hook , '''execution_device''' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = 512 , UpperCAmelCase : List[Any] = 512 , UpperCAmelCase : List[str] = 50 , UpperCAmelCase : Optional[Any] = 7.5 , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 0.0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = "pil" , UpperCAmelCase : str = True , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Dict = 1 , **UpperCAmelCase : List[str] , ) -> Dict:
'''simple docstring'''
lowercase : Tuple =self.segmentation_processor(
text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device )
lowercase : Optional[int] =self.segmentation_model(**UpperCamelCase__ )
lowercase : List[Any] =torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
lowercase : Tuple =self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
lowercase : Dict =StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , )
| 721 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l='
def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
"""simple docstring"""
lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('Bangalore'), 1):
print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
| 8 | 0 |
from google.protobuf import descriptor as _descriptor
from google.protobuf import descriptor_pool as _descriptor_pool
from google.protobuf import symbol_database as _symbol_database
from google.protobuf.internal import builder as _builder
# @@protoc_insertion_point(imports)
lowercase : Optional[Any] = _symbol_database.Default()
lowercase : int = _descriptor_pool.Default().AddSerializedFile(
b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03"""
)
lowercase : Optional[int] = globals()
_builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals)
_builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals)
if _descriptor._USE_C_DESCRIPTORS is False:
lowercase : Optional[int] = None
lowercase : Optional[int] = b"""H\003"""
# (generated by protobuf compiler, but `_TRAINERSPEC` is not defined)
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001"
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None
# _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001"
lowercase : str = 4_5
lowercase : str = 1_5_8_1
lowercase : Dict = 1_5_1_7
lowercase : List[Any] = 1_5_7_0
lowercase : Optional[int] = 1_5_8_4
lowercase : Tuple = 1_7_9_3
lowercase : Any = 1_7_9_5
lowercase : Optional[int] = 1_9_1_6
lowercase : List[Any] = 1_8_6_4
lowercase : int = 1_9_0_5
lowercase : Union[str, Any] = 1_9_1_9
lowercase : Union[str, Any] = 2_4_2_9
lowercase : List[Any] = 2_2_0_8
lowercase : Union[str, Any] = 2_4_1_8
lowercase : Optional[Any] = 2_3_2_3
lowercase : Union[str, Any] = 2_4_0_7
# @@protoc_insertion_point(module_scope)
| 302 | import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
lowerCamelCase_ : Optional[int] = logging.get_logger(__name__)
class a__ ( __snake_case ):
def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None:
warnings.warn(
'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use PerceiverImageProcessor instead.' , UpperCAmelCase , )
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
| 559 | 0 |
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def _A ( __magic_name__ , __magic_name__ , __magic_name__ = None ):
if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release:
# old versions of hfh don't url-encode the file path
lowercase__ = quote(__magic_name__ )
return hfh.hf_hub_url(__magic_name__ , __magic_name__ , repo_type="dataset" , revision=__magic_name__ )
| 611 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case = logging.get_logger(__name__)
_snake_case = {
"""uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""",
"""uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""",
"""uclanlp/visualbert-vqa-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json"""
),
"""uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""",
"""uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""",
"""uclanlp/visualbert-vcr-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json"""
),
"""uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""",
"""uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""",
"""uclanlp/visualbert-nlvr2-coco-pre""": (
"""https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json"""
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class lowerCAmelCase ( lowercase_ ):
__lowerCamelCase = 'visual_bert'
def __init__( self :Dict , _lowercase :Union[str, Any]=3_05_22 , _lowercase :List[Any]=7_68 , _lowercase :List[Any]=5_12 , _lowercase :List[str]=12 , _lowercase :Tuple=12 , _lowercase :Optional[Any]=30_72 , _lowercase :int="gelu" , _lowercase :Any=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :str=5_12 , _lowercase :str=2 , _lowercase :Optional[int]=0.02 , _lowercase :Tuple=1e-12 , _lowercase :Optional[int]=False , _lowercase :List[str]=True , _lowercase :Union[str, Any]=1 , _lowercase :List[Any]=0 , _lowercase :int=2 , **_lowercase :List[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase )
lowercase__ = vocab_size
lowercase__ = max_position_embeddings
lowercase__ = hidden_size
lowercase__ = visual_embedding_dim
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = initializer_range
lowercase__ = type_vocab_size
lowercase__ = layer_norm_eps
lowercase__ = bypass_transformer
lowercase__ = special_visual_initialize
| 611 | 1 |
def snake_case ( snake_case__ :str) -> str:
return " ".join(
"""""".join(word[::-1]) if len(snake_case__) > 4 else word for word in sentence.split())
if __name__ == "__main__":
import doctest
doctest.testmod()
print(reverse_long_words('Hey wollef sroirraw'))
| 401 | from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
_SCREAMING_SNAKE_CASE = {
'configuration_efficientformer': [
'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP',
'EfficientFormerConfig',
]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = ['EfficientFormerImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'EfficientFormerForImageClassification',
'EfficientFormerForImageClassificationWithTeacher',
'EfficientFormerModel',
'EfficientFormerPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE = [
'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFEfficientFormerForImageClassification',
'TFEfficientFormerForImageClassificationWithTeacher',
'TFEfficientFormerModel',
'TFEfficientFormerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_efficientformer import EfficientFormerImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_efficientformer import (
EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
EfficientFormerForImageClassification,
EfficientFormerForImageClassificationWithTeacher,
EfficientFormerModel,
EfficientFormerPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_efficientformer import (
TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEfficientFormerForImageClassification,
TFEfficientFormerForImageClassificationWithTeacher,
TFEfficientFormerModel,
TFEfficientFormerPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 401 | 1 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
snake_case_ = 16
snake_case_ = 32
def lowerCamelCase__ ( snake_case_ : Accelerator , snake_case_ : int = 16 ) -> Tuple:
__snake_case = AutoTokenizer.from_pretrained('''bert-base-cased''' )
__snake_case = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(snake_case_ : List[str] ):
# max_length=None => use the model max length (it's actually the default)
__snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__snake_case = datasets.map(
snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(snake_case_ : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__snake_case = 16
elif accelerator.mixed_precision != "no":
__snake_case = 8
else:
__snake_case = None
return tokenizer.pad(
snake_case_ , padding='''longest''' , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , return_tensors='''pt''' , )
# Instantiate dataloaders.
__snake_case = DataLoader(
tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
__snake_case = DataLoader(
tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
snake_case_ = mocked_dataloaders # noqa: F811
def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] ) -> List[Any]:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case_ ) == "1":
__snake_case = 2
# Initialize accelerator
__snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__snake_case = config['''lr''']
__snake_case = int(config['''num_epochs'''] )
__snake_case = int(config['''seed'''] )
__snake_case = int(config['''batch_size'''] )
__snake_case = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
__snake_case = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
__snake_case = batch_size // MAX_GPU_BATCH_SIZE
__snake_case = MAX_GPU_BATCH_SIZE
set_seed(snake_case_ )
__snake_case , __snake_case = get_dataloaders(snake_case_ , snake_case_ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__snake_case = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case_ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__snake_case = model.to(accelerator.device )
# Instantiate optimizer
__snake_case = AdamW(params=model.parameters() , lr=snake_case_ )
# Instantiate scheduler
__snake_case = get_linear_schedule_with_warmup(
optimizer=snake_case_ , num_warmup_steps=100 , num_training_steps=(len(snake_case_ ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare(
snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ )
# Now we train the model
for epoch in range(snake_case_ ):
model.train()
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__snake_case = model(**snake_case_ )
__snake_case = outputs.loss
__snake_case = loss / gradient_accumulation_steps
accelerator.backward(snake_case_ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
__snake_case = 0
for step, batch in enumerate(snake_case_ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__snake_case = model(**snake_case_ )
__snake_case = outputs.logits.argmax(dim=-1 )
__snake_case , __snake_case = accelerator.gather((predictions, batch['''labels''']) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(snake_case_ ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
__snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__snake_case = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=snake_case_ , references=snake_case_ , )
__snake_case = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f"""epoch {epoch}:""" , snake_case_ )
def lowerCamelCase__ ( ) -> Optional[int]:
__snake_case = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=snake_case_ , default=snake_case_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
__snake_case = parser.parse_args()
__snake_case = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(snake_case_ , snake_case_ )
if __name__ == "__main__":
main()
| 388 |
from __future__ import annotations
import math
def lowerCamelCase__ ( snake_case_ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowerCamelCase__ ( snake_case_ : int ) -> list[int]:
__snake_case = str(snake_case_ )
__snake_case = [n]
for i in range(1 , len(snake_case_ ) ):
list_nums.append(int(str_num[i:] ) )
list_nums.append(int(str_num[:-i] ) )
return list_nums
def lowerCamelCase__ ( snake_case_ : int ) -> bool:
if len(str(snake_case_ ) ) > 3:
if not is_prime(int(str(snake_case_ )[-3:] ) ) or not is_prime(int(str(snake_case_ )[:3] ) ):
return False
return True
def lowerCamelCase__ ( snake_case_ : int = 11 ) -> list[int]:
__snake_case = []
__snake_case = 13
while len(snake_case_ ) != count:
if validate(snake_case_ ):
__snake_case = list_truncated_nums(snake_case_ )
if all(is_prime(snake_case_ ) for i in list_nums ):
list_truncated_primes.append(snake_case_ )
num += 2
return list_truncated_primes
def lowerCamelCase__ ( ) -> int:
return sum(compute_truncated_primes(11 ) )
if __name__ == "__main__":
print(F'{sum(compute_truncated_primes(11)) = }')
| 388 | 1 |
"""simple docstring"""
import math
import sys
import cva
import numpy as np
def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : float ):
'''simple docstring'''
snake_case_ : Dict = math.sqrt(__UpperCamelCase )
snake_case_ : str = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ):
'''simple docstring'''
snake_case_ : Any = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float ):
'''simple docstring'''
snake_case_ : Any = np.zeros((kernel_size, kernel_size) )
for i in range(0 , __UpperCamelCase ):
for j in range(0 , __UpperCamelCase ):
snake_case_ : int = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(__UpperCamelCase , __UpperCamelCase )
def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : int , ):
'''simple docstring'''
snake_case_ : Any = np.zeros(img.shape )
snake_case_ : List[Any] = get_gauss_kernel(__UpperCamelCase , __UpperCamelCase )
snake_case_ , snake_case_ : Dict = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
snake_case_ : Tuple = get_slice(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
snake_case_ : Optional[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2]
snake_case_ : int = vec_gaussian(__UpperCamelCase , __UpperCamelCase )
snake_case_ : List[str] = np.multiply(__UpperCamelCase , __UpperCamelCase )
snake_case_ : Tuple = np.multiply(__UpperCamelCase , __UpperCamelCase )
snake_case_ : Dict = np.sum(__UpperCamelCase ) / np.sum(__UpperCamelCase )
snake_case_ : Any = val
return imga
def __lowerCAmelCase ( __UpperCamelCase : list ):
'''simple docstring'''
snake_case_ : Any = args[1] if args[1:] else """../image_data/lena.jpg"""
snake_case_ : Union[str, Any] = float(args[2] ) if args[2:] else 1.0
snake_case_ : List[Any] = float(args[3] ) if args[3:] else 1.0
if args[4:]:
snake_case_ : Optional[Any] = int(args[4] )
snake_case_ : List[str] = kernel_size + abs(kernel_size % 2 - 1 )
else:
snake_case_ : Optional[Any] = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parse_args(sys.argv)
__lowerCAmelCase : Union[str, Any] = cva.imread(filename, 0)
cva.imshow('''input image''', img)
__lowerCAmelCase : List[Any] = img / 255
__lowerCAmelCase : List[Any] = out.astype('''float32''')
__lowerCAmelCase : Optional[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
__lowerCAmelCase : str = out * 255
__lowerCAmelCase : Union[str, Any] = np.uinta(out)
cva.imshow('''output image''', out)
cva.waitKey(0)
cva.destroyAllWindows()
| 58 |
import inspect
import unittest
from transformers import RegNetConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import RegNetForImageClassification, RegNetModel
from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE :
def __init__( self : Tuple , __lowercase : Optional[int] , __lowercase : Union[str, Any]=3 , __lowercase : str=32 , __lowercase : Any=3 , __lowercase : List[str]=10 , __lowercase : str=[10, 20, 30, 40] , __lowercase : Union[str, Any]=[1, 1, 2, 1] , __lowercase : List[str]=True , __lowercase : Optional[int]=True , __lowercase : str="relu" , __lowercase : List[Any]=3 , __lowercase : Tuple=None , ):
'''simple docstring'''
__a = parent
__a = batch_size
__a = image_size
__a = num_channels
__a = embeddings_size
__a = hidden_sizes
__a = depths
__a = is_training
__a = use_labels
__a = hidden_act
__a = num_labels
__a = scope
__a = len(__lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.num_labels )
__a = self.get_config()
return config, pixel_values, labels
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , )
def UpperCamelCase_ ( self : Dict , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Optional[Any] ):
'''simple docstring'''
__a = RegNetModel(config=__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def UpperCamelCase_ ( self : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Optional[int] ):
'''simple docstring'''
__a = self.num_labels
__a = RegNetForImageClassification(__lowercase )
model.to(__lowercase )
model.eval()
__a = model(__lowercase , labels=__lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
__a = self.prepare_config_and_inputs()
__a , __a , __a = config_and_inputs
__a = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
__lowerCamelCase : int =(RegNetModel, RegNetForImageClassification) if is_torch_available() else ()
__lowerCamelCase : str =(
{'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification}
if is_torch_available()
else {}
)
__lowerCamelCase : Optional[Any] =False
__lowerCamelCase : Any =False
__lowerCamelCase : List[str] =False
__lowerCamelCase : Tuple =False
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = RegNetModelTester(self )
__a = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
return
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
pass
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(__lowercase )
__a = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__a = [*signature.parameters.keys()]
__a = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __lowercase )
def UpperCamelCase_ ( self : int ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowercase )
def UpperCamelCase_ ( self : Dict ):
'''simple docstring'''
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__a = model_class(config=__lowercase )
for name, module in model.named_modules():
if isinstance(__lowercase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , )
def UpperCamelCase_ ( self : List[Any] ):
'''simple docstring'''
def check_hidden_states_output(__lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ):
__a = model_class(__lowercase )
model.to(__lowercase )
model.eval()
with torch.no_grad():
__a = model(**self._prepare_for_class(__lowercase , __lowercase ) )
__a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__a = self.model_tester.num_stages
self.assertEqual(len(__lowercase ) , expected_num_stages + 1 )
# RegNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , )
__a , __a = self.model_tester.prepare_config_and_inputs_for_common()
__a = ["""basic""", """bottleneck"""]
for model_class in self.all_model_classes:
for layer_type in layers_type:
__a = layer_type
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__a = True
check_hidden_states_output(__lowercase , __lowercase , __lowercase )
def UpperCamelCase_ ( self : List[str] ):
'''simple docstring'''
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowercase )
@slow
def UpperCamelCase_ ( self : str ):
'''simple docstring'''
for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = RegNetModel.from_pretrained(__lowercase )
self.assertIsNotNone(__lowercase )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@cached_property
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def UpperCamelCase_ ( self : Union[str, Any] ):
'''simple docstring'''
__a = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowercase )
__a = self.default_image_processor
__a = prepare_img()
__a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase )
# forward pass
with torch.no_grad():
__a = model(**__lowercase )
# verify the logits
__a = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowercase )
__a = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
| 225 | 0 |
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''microsoft/conditional-detr-resnet-50''': (
'''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json'''
),
}
class __snake_case ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ = 'conditional_detr'
UpperCamelCase_ = ['past_key_values']
UpperCamelCase_ = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[int]=3 ,lowerCAmelCase__ : int=3_00 ,lowerCAmelCase__ : List[Any]=6 ,lowerCAmelCase__ : int=20_48 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Tuple=6 ,lowerCAmelCase__ : str=20_48 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : str="relu" ,lowerCAmelCase__ : List[str]=2_56 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[int]=0.0 ,lowerCAmelCase__ : Dict=0.0 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : List[str]=1.0 ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : int="sine" ,lowerCAmelCase__ : int="resnet50" ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : List[str]=5 ,lowerCAmelCase__ : Any=2 ,lowerCAmelCase__ : Dict=1 ,lowerCAmelCase__ : Any=1 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Tuple=5 ,lowerCAmelCase__ : Any=2 ,lowerCAmelCase__ : Union[str, Any]=0.25 ,**lowerCAmelCase__ : Optional[int] ,) -> Optional[int]:
'''simple docstring'''
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
lowerCAmelCase_ : Dict = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ):
lowerCAmelCase_ : Dict = backbone_config.get("model_type" )
lowerCAmelCase_ : Tuple = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase_ : Tuple = config_class.from_dict(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = use_timm_backbone
lowerCAmelCase_ : Optional[int] = backbone_config
lowerCAmelCase_ : Union[str, Any] = num_channels
lowerCAmelCase_ : int = num_queries
lowerCAmelCase_ : Union[str, Any] = d_model
lowerCAmelCase_ : Tuple = encoder_ffn_dim
lowerCAmelCase_ : Union[str, Any] = encoder_layers
lowerCAmelCase_ : List[Any] = encoder_attention_heads
lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim
lowerCAmelCase_ : Optional[int] = decoder_layers
lowerCAmelCase_ : Tuple = decoder_attention_heads
lowerCAmelCase_ : Tuple = dropout
lowerCAmelCase_ : List[Any] = attention_dropout
lowerCAmelCase_ : int = activation_dropout
lowerCAmelCase_ : Optional[int] = activation_function
lowerCAmelCase_ : Tuple = init_std
lowerCAmelCase_ : Optional[Any] = init_xavier_std
lowerCAmelCase_ : List[Any] = encoder_layerdrop
lowerCAmelCase_ : List[str] = decoder_layerdrop
lowerCAmelCase_ : int = encoder_layers
lowerCAmelCase_ : List[Any] = auxiliary_loss
lowerCAmelCase_ : int = position_embedding_type
lowerCAmelCase_ : Tuple = backbone
lowerCAmelCase_ : Dict = use_pretrained_backbone
lowerCAmelCase_ : str = dilation
# Hungarian matcher
lowerCAmelCase_ : List[str] = class_cost
lowerCAmelCase_ : Union[str, Any] = bbox_cost
lowerCAmelCase_ : Dict = giou_cost
# Loss coefficients
lowerCAmelCase_ : Tuple = mask_loss_coefficient
lowerCAmelCase_ : str = dice_loss_coefficient
lowerCAmelCase_ : Dict = cls_loss_coefficient
lowerCAmelCase_ : str = bbox_loss_coefficient
lowerCAmelCase_ : Optional[int] = giou_loss_coefficient
lowerCAmelCase_ : Optional[Any] = focal_alpha
super().__init__(is_encoder_decoder=lowerCAmelCase__ ,**lowerCAmelCase__ )
@property
def UpperCAmelCase_ ( self : str ) -> int:
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase_ ( self : str ) -> int:
'''simple docstring'''
return self.d_model
def UpperCAmelCase_ ( self : Optional[int] ) -> str:
'''simple docstring'''
lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowerCAmelCase_ : Optional[Any] = self.backbone_config.to_dict()
lowerCAmelCase_ : Any = self.__class__.model_type
return output
class __snake_case ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ = version.parse('1.11' )
@property
def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def UpperCAmelCase_ ( self : int ) -> float:
'''simple docstring'''
return 1e-5
@property
def UpperCAmelCase_ ( self : Optional[int] ) -> int:
'''simple docstring'''
return 12
| 683 |
class __snake_case :
"""simple docstring"""
def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None:
'''simple docstring'''
lowerCAmelCase_ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
lowerCAmelCase_ : int = is_leaf
lowerCAmelCase_ : Optional[Any] = prefix
def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]:
'''simple docstring'''
lowerCAmelCase_ : Any = 0
for q, w in zip(self.prefix ,lowerCAmelCase__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None:
'''simple docstring'''
for word in words:
self.insert(lowerCAmelCase__ )
def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None:
'''simple docstring'''
if self.prefix == word:
lowerCAmelCase_ : Optional[Any] = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ )
else:
lowerCAmelCase_ : Tuple = self.nodes[word[0]]
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match(
lowerCAmelCase__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCAmelCase__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
lowerCAmelCase_ : Optional[int] = remaining_prefix
lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]]
lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCAmelCase_ : Dict = aux_node
if remaining_word == "":
lowerCAmelCase_ : List[str] = True
else:
self.nodes[matching_string[0]].insert(lowerCAmelCase__ )
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ )
if not incoming_node:
return False
else:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match(
lowerCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCAmelCase__ )
def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool:
'''simple docstring'''
lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ )
if not incoming_node:
return False
else:
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match(
lowerCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCAmelCase__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
lowerCAmelCase_ : str = list(self.nodes.values() )[0]
lowerCAmelCase_ : Tuple = merging_node.is_leaf
self.prefix += merging_node.prefix
lowerCAmelCase_ : Optional[int] = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
lowerCAmelCase_ : Optional[Any] = False
# If there is 1 edge, we merge it with its child
else:
lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0]
lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
lowerCAmelCase_ : str = merging_node.nodes
return True
def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None:
'''simple docstring'''
if self.prefix != "":
print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def UpperCamelCase ( ):
lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split()
lowerCAmelCase_ : List[Any] = RadixNode()
root.insert_many(snake_case__)
assert all(root.find(snake_case__) for word in words)
assert not root.find("bandanas")
assert not root.find("apps")
root.delete("all")
assert not root.find("all")
root.delete("banana")
assert not root.find("banana")
assert root.find("bananas")
return True
def UpperCamelCase ( ):
assert test_trie()
def UpperCamelCase ( ):
lowerCAmelCase_ : List[str] = RadixNode()
lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split()
root.insert_many(snake_case__)
print("Words:" , snake_case__)
print("Tree:")
root.print_tree()
if __name__ == "__main__":
main()
| 683 | 1 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json",
"BridgeTower/bridgetower-base-itm-mlm": (
"https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json"
),
}
class lowerCamelCase (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
lowerCamelCase__ = '''bridgetower_vision_model'''
def __init__( self : Optional[int] , __magic_name__ : Optional[Any]=768 , __magic_name__ : List[Any]=12 , __magic_name__ : Dict=3 , __magic_name__ : List[str]=16 , __magic_name__ : Any=288 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1e-05 , __magic_name__ : int=False , __magic_name__ : str=True , __magic_name__ : Tuple=False , **__magic_name__ : Any , ) -> str:
super().__init__(**__magic_name__ )
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = initializer_factor
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = stop_gradient
SCREAMING_SNAKE_CASE_ = share_layernorm
SCREAMING_SNAKE_CASE_ = remove_last_layer
@classmethod
def __A ( cls : str , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[int] ) -> "PretrainedConfig":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ )
if config_dict.get("model_type" ) == "bridgetower":
SCREAMING_SNAKE_CASE_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__magic_name__ , **__magic_name__ )
class lowerCamelCase (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
lowerCamelCase__ = '''bridgetower_text_model'''
def __init__( self : str , __magic_name__ : Optional[Any]=50_265 , __magic_name__ : int=768 , __magic_name__ : str=12 , __magic_name__ : int=12 , __magic_name__ : Optional[int]=1 , __magic_name__ : Dict=3_072 , __magic_name__ : List[Any]="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=514 , __magic_name__ : str=1 , __magic_name__ : List[str]=1e-05 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Any=0 , __magic_name__ : Any=2 , __magic_name__ : List[str]="absolute" , __magic_name__ : List[str]=True , **__magic_name__ : int , ) -> Optional[Any]:
super().__init__(**__magic_name__ )
SCREAMING_SNAKE_CASE_ = vocab_size
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = initializer_factor
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = max_position_embeddings
SCREAMING_SNAKE_CASE_ = type_vocab_size
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = position_embedding_type
SCREAMING_SNAKE_CASE_ = use_cache
SCREAMING_SNAKE_CASE_ = pad_token_id
SCREAMING_SNAKE_CASE_ = bos_token_id
SCREAMING_SNAKE_CASE_ = eos_token_id
@classmethod
def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Tuple ) -> "PretrainedConfig":
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ )
if config_dict.get("model_type" ) == "bridgetower":
SCREAMING_SNAKE_CASE_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(__magic_name__ , **__magic_name__ )
class lowerCamelCase (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
lowerCamelCase__ = '''bridgetower'''
def __init__( self : int , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[str]="gelu" , __magic_name__ : List[str]=768 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=1e-05 , __magic_name__ : Dict=False , __magic_name__ : int="add" , __magic_name__ : str=12 , __magic_name__ : str=6 , __magic_name__ : Dict=False , __magic_name__ : List[Any]=False , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , **__magic_name__ : List[str] , ) -> Union[str, Any]:
# TODO: remove this once the Hub files are updated.
SCREAMING_SNAKE_CASE_ = kwargs.pop("text_config_dict" , __magic_name__ )
SCREAMING_SNAKE_CASE_ = kwargs.pop("vision_config_dict" , __magic_name__ )
super().__init__(**__magic_name__ )
SCREAMING_SNAKE_CASE_ = share_cross_modal_transformer_layers
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = initializer_factor
SCREAMING_SNAKE_CASE_ = layer_norm_eps
SCREAMING_SNAKE_CASE_ = share_link_tower_layers
SCREAMING_SNAKE_CASE_ = link_tower_type
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = tie_word_embeddings
SCREAMING_SNAKE_CASE_ = init_layernorm_from_vision_encoder
if text_config is None:
SCREAMING_SNAKE_CASE_ = {}
logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." )
if vision_config is None:
SCREAMING_SNAKE_CASE_ = {}
logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." )
SCREAMING_SNAKE_CASE_ = BridgeTowerTextConfig(**__magic_name__ )
SCREAMING_SNAKE_CASE_ = BridgeTowerVisionConfig(**__magic_name__ )
@classmethod
def __A ( cls : Tuple , __magic_name__ : BridgeTowerTextConfig , __magic_name__ : BridgeTowerVisionConfig , **__magic_name__ : Tuple ) -> int:
return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ )
def __A ( self : Tuple ) -> Optional[Any]:
SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE_ = self.text_config.to_dict()
SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE_ = self.__class__.model_type
return output
| 140 | def a__ ( __UpperCamelCase ):
if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError("Length must be a positive integer." )
return [n * (2 * n - 1) for n in range(__UpperCamelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 140 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import numpy as np
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
HfArgumentParser,
Trainer,
TrainingArguments,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
__A =logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt')
__A =list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
__A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _snake_case :
lowerCAmelCase :Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
lowerCAmelCase :Optional[str] = field(
default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
lowerCAmelCase :Optional[str] = field(
default=a__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , )
lowerCAmelCase :Optional[str] = field(default=a__ , metadata={'''help''': '''A folder containing the training data.'''} )
lowerCAmelCase :Optional[str] = field(default=a__ , metadata={'''help''': '''A folder containing the validation data.'''} )
lowerCAmelCase :Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
lowerCAmelCase :int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} )
lowerCAmelCase :float = field(
default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , )
lowerCAmelCase :Optional[int] = field(
default=a__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
lowerCAmelCase :Optional[int] = field(
default=a__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def snake_case__ ( self):
UpperCAmelCase__ : List[Any] = {}
if self.train_dir is not None:
UpperCAmelCase__ : List[Any] = self.train_dir
if self.validation_dir is not None:
UpperCAmelCase__ : Tuple = self.validation_dir
UpperCAmelCase__ : Optional[Any] = data_files if data_files else None
@dataclass
class _snake_case :
lowerCAmelCase :str = field(
default=a__ , metadata={
'''help''': (
'''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a '''
'''checkpoint identifier on the hub. '''
'''Don\'t set if you want to train a model from scratch.'''
)
} , )
lowerCAmelCase :Optional[str] = field(
default=a__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(a__ )} , )
lowerCAmelCase :Optional[str] = field(
default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowerCAmelCase :Optional[str] = field(
default=a__ , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
lowerCAmelCase :Optional[str] = field(
default=a__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , )
lowerCAmelCase :str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
lowerCAmelCase :str = field(default=a__ , metadata={'''help''': '''Name or path of preprocessor config.'''} )
lowerCAmelCase :bool = field(
default=a__ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
lowerCAmelCase :Optional[int] = field(
default=a__ , metadata={
'''help''': (
'''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.'''
)
} , )
lowerCAmelCase :Optional[int] = field(
default=a__ , metadata={
'''help''': (
'''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.'''
)
} , )
lowerCAmelCase :Optional[int] = field(
default=a__ , metadata={'''help''': '''Stride to use for the encoder.'''} , )
class _snake_case :
def __init__( self , _lowerCamelCase=192 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=0.6):
UpperCAmelCase__ : Tuple = input_size
UpperCAmelCase__ : Any = mask_patch_size
UpperCAmelCase__ : Optional[int] = model_patch_size
UpperCAmelCase__ : Tuple = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError("""Input size must be divisible by mask patch size""")
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError("""Mask patch size must be divisible by model patch size""")
UpperCAmelCase__ : Tuple = self.input_size // self.mask_patch_size
UpperCAmelCase__ : List[str] = self.mask_patch_size // self.model_patch_size
UpperCAmelCase__ : str = self.rand_size**2
UpperCAmelCase__ : Union[str, Any] = int(np.ceil(self.token_count * self.mask_ratio))
def __call__( self):
UpperCAmelCase__ : Any = np.random.permutation(self.token_count)[: self.mask_count]
UpperCAmelCase__ : Dict = np.zeros(self.token_count , dtype=_lowerCamelCase)
UpperCAmelCase__ : Dict = 1
UpperCAmelCase__ : Optional[Any] = mask.reshape((self.rand_size, self.rand_size))
UpperCAmelCase__ : List[str] = mask.repeat(self.scale , axis=0).repeat(self.scale , axis=1)
return torch.tensor(mask.flatten())
def _UpperCamelCase ( UpperCamelCase__ ):
UpperCAmelCase__ : List[Any] = torch.stack([example["""pixel_values"""] for example in examples] )
UpperCAmelCase__ : Tuple = torch.stack([example["""mask"""] for example in examples] )
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def _UpperCamelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("""run_mim""" , UpperCamelCase__ , UpperCamelCase__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
UpperCAmelCase__ : Dict = training_args.get_process_log_level()
logger.setLevel(UpperCamelCase__ )
transformers.utils.logging.set_verbosity(UpperCamelCase__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(f'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
UpperCAmelCase__ : Tuple = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
"""Use --overwrite_output_dir to overcome.""" )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
"""the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" )
# Initialize our dataset.
UpperCAmelCase__ : Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
UpperCAmelCase__ : Optional[int] = None if """validation""" in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , UpperCamelCase__ ) and data_args.train_val_split > 0.0:
UpperCAmelCase__ : Dict = ds["""train"""].train_test_split(data_args.train_val_split )
UpperCAmelCase__ : List[Any] = split["""train"""]
UpperCAmelCase__ : int = split["""test"""]
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase__ : int = {
"""cache_dir""": model_args.cache_dir,
"""revision""": model_args.model_revision,
"""use_auth_token""": True if model_args.use_auth_token else None,
}
if model_args.config_name_or_path:
UpperCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase__ )
elif model_args.model_name_or_path:
UpperCAmelCase__ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ )
else:
UpperCAmelCase__ : Dict = CONFIG_MAPPING[model_args.model_type]()
logger.warning("""You are instantiating a new config instance from scratch.""" )
if model_args.config_overrides is not None:
logger.info(f'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(f'''New config: {config}''' )
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(UpperCamelCase__ , """decoder_type""" ):
UpperCAmelCase__ : str = """simmim"""
# adapt config
UpperCAmelCase__ : Optional[Any] = model_args.image_size if model_args.image_size is not None else config.image_size
UpperCAmelCase__ : int = model_args.patch_size if model_args.patch_size is not None else config.patch_size
UpperCAmelCase__ : Dict = (
model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride
)
config.update(
{
"""image_size""": model_args.image_size,
"""patch_size""": model_args.patch_size,
"""encoder_stride""": model_args.encoder_stride,
} )
# create image processor
if model_args.image_processor_name:
UpperCAmelCase__ : List[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase__ )
elif model_args.model_name_or_path:
UpperCAmelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ )
else:
UpperCAmelCase__ : Dict = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
UpperCAmelCase__ : Union[str, Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]()
# create model
if model_args.model_name_or_path:
UpperCAmelCase__ : Tuple = AutoModelForMaskedImageModeling.from_pretrained(
model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info("""Training new model from scratch""" )
UpperCAmelCase__ : Tuple = AutoModelForMaskedImageModeling.from_config(UpperCamelCase__ )
if training_args.do_train:
UpperCAmelCase__ : Optional[Any] = ds["""train"""].column_names
else:
UpperCAmelCase__ : Union[str, Any] = ds["""validation"""].column_names
if data_args.image_column_name is not None:
UpperCAmelCase__ : Optional[Any] = data_args.image_column_name
elif "image" in column_names:
UpperCAmelCase__ : Any = """image"""
elif "img" in column_names:
UpperCAmelCase__ : Dict = """img"""
else:
UpperCAmelCase__ : Tuple = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
UpperCAmelCase__ : Any = Compose(
[
Lambda(lambda UpperCamelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ),
RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
# create mask generator
UpperCAmelCase__ : List[Any] = MaskGenerator(
input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , )
def preprocess_images(UpperCamelCase__ ):
UpperCAmelCase__ : str = [transforms(UpperCamelCase__ ) for image in examples[image_column_name]]
UpperCAmelCase__ : List[str] = [mask_generator() for i in range(len(examples[image_column_name] ) )]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError("""--do_train requires a train dataset""" )
if data_args.max_train_samples is not None:
UpperCAmelCase__ : List[str] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(UpperCamelCase__ )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError("""--do_eval requires a validation dataset""" )
if data_args.max_eval_samples is not None:
UpperCAmelCase__ : List[Any] = (
ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(UpperCamelCase__ )
# Initialize our trainer
UpperCAmelCase__ : str = Trainer(
model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , )
# Training
if training_args.do_train:
UpperCAmelCase__ : str = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase__ : List[Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase__ : Dict = last_checkpoint
UpperCAmelCase__ : str = trainer.train(resume_from_checkpoint=UpperCamelCase__ )
trainer.save_model()
trainer.log_metrics("""train""" , train_result.metrics )
trainer.save_metrics("""train""" , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
UpperCAmelCase__ : int = trainer.evaluate()
trainer.log_metrics("""eval""" , UpperCamelCase__ )
trainer.save_metrics("""eval""" , UpperCamelCase__ )
# Write model card and (optionally) push to hub
UpperCAmelCase__ : Optional[Any] = {
"""finetuned_from""": model_args.model_name_or_path,
"""tasks""": """masked-image-modeling""",
"""dataset""": data_args.dataset_name,
"""tags""": ["""masked-image-modeling"""],
}
if training_args.push_to_hub:
trainer.push_to_hub(**UpperCamelCase__ )
else:
trainer.create_model_card(**UpperCamelCase__ )
if __name__ == "__main__":
main() | 113 |
'''simple docstring'''
from collections.abc import Callable
from math import pi, sqrt
from random import uniform
from statistics import mean
def _UpperCamelCase ( UpperCamelCase__ ):
# A local function to see if a dot lands in the circle.
def is_in_circle(UpperCamelCase__ , UpperCamelCase__ ) -> bool:
UpperCAmelCase__ : List[str] = sqrt((x**2) + (y**2) )
# Our circle has a radius of 1, so a distance
# greater than 1 would land outside the circle.
return distance_from_centre <= 1
# The proportion of guesses that landed in the circle
UpperCAmelCase__ : Optional[Any] = mean(
int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) )
for _ in range(UpperCamelCase__ ) )
# The ratio of the area for circle to square is pi/4.
UpperCAmelCase__ : int = proportion * 4
print(f'''The estimated value of pi is {pi_estimate}''' )
print(f'''The numpy value of pi is {pi}''' )
print(f'''The total error is {abs(pi - pi_estimate )}''' )
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 , ):
return mean(
function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value)
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 ):
def identity_function(UpperCamelCase__ ) -> float:
return x
UpperCAmelCase__ : List[str] = area_under_curve_estimator(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
UpperCAmelCase__ : Optional[int] = (max_value * max_value - min_value * min_value) / 2
print("""******************""" )
print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {expected_value}''' )
print(f'''Total error is {abs(estimated_value - expected_value )}''' )
print("""******************""" )
def _UpperCamelCase ( UpperCamelCase__ ):
def function_to_integrate(UpperCamelCase__ ) -> float:
return sqrt(4.0 - x * x )
UpperCAmelCase__ : Dict = area_under_curve_estimator(
UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 )
print("""******************""" )
print("""Estimating pi using area_under_curve_estimator""" )
print(f'''Estimated value is {estimated_value}''' )
print(f'''Expected value is {pi}''' )
print(f'''Total error is {abs(estimated_value - pi )}''' )
print("""******************""" )
if __name__ == "__main__":
import doctest
doctest.testmod() | 113 | 1 |
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def a_ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] =tmp_path / 'cache'
_lowerCamelCase : str ={'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_lowerCamelCase : Optional[Any] =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read()
_check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ):
'''simple docstring'''
_lowerCamelCase : str =tmp_path / 'cache'
_lowerCamelCase : Tuple ={'text': 'string'}
_lowerCamelCase : Dict =features.copy() if features else default_expected_features
_lowerCamelCase : List[str] =(
Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowerCamelCase : List[Any] =TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
_lowerCamelCase : Tuple =tmp_path / 'cache'
_lowerCamelCase : List[str] ={'text': 'string'}
_lowerCamelCase : Any =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read()
_check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ):
'''simple docstring'''
if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_lowerCamelCase : str =text_path
elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_lowerCamelCase : Union[str, Any] =[text_path]
_lowerCamelCase : Tuple =tmp_path / 'cache'
_lowerCamelCase : Any ={'text': 'string'}
_lowerCamelCase : Tuple =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=("train",) ):
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for split in splits:
_lowerCamelCase : Tuple =dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ):
'''simple docstring'''
_lowerCamelCase : str =tmp_path / 'cache'
_lowerCamelCase : Union[str, Any] ={'text': 'string'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
_lowerCamelCase : Any =TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read()
_check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
'features' , [
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] , )
def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ):
'''simple docstring'''
_lowerCamelCase : Union[str, Any] =tmp_path / 'cache'
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
_lowerCamelCase : Any ={'text': 'string'}
_lowerCamelCase : str =features.copy() if features else default_expected_features
_lowerCamelCase : Optional[Any] =(
Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None
)
_lowerCamelCase : int =TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def a_ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ):
'''simple docstring'''
if split:
_lowerCamelCase : Any ={split: text_path}
else:
_lowerCamelCase : Union[str, Any] ='train'
_lowerCamelCase : Tuple ={'train': text_path, 'test': text_path}
_lowerCamelCase : Any =tmp_path / 'cache'
_lowerCamelCase : List[str] ={'text': 'string'}
_lowerCamelCase : Any =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read()
_check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 464 |
from timeit import timeit
lowerCamelCase = {
'MALAYALAM': True,
'String': False,
'rotor': True,
'level': True,
'A': True,
'BB': True,
'ABC': False,
'amanaplanacanalpanama': True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def a_ ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
_lowerCamelCase : Optional[int] =0
_lowerCamelCase : Union[str, Any] =len(SCREAMING_SNAKE_CASE__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def a_ ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
_lowerCamelCase : List[str] =len(SCREAMING_SNAKE_CASE__ ) // 2
_lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) )
def a_ ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
if len(SCREAMING_SNAKE_CASE__ ) <= 2:
return True
if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def a_ ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
return s == s[::-1]
def a_ ( SCREAMING_SNAKE_CASE__ : str ):
'''simple docstring'''
_lowerCamelCase : Optional[int] =F'''all({name}(key) is value for key, value in test_data.items())'''
_lowerCamelCase : List[Any] =F'''from __main__ import test_data, {name}'''
_lowerCamelCase : Any =500_000
_lowerCamelCase : Dict =timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ )
print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(F"""{key:21} {value}""")
print('a man a plan a canal panama')
# finished 500,000 runs in 0.46793 seconds
benchmark_function('is_palindrome_slice')
# finished 500,000 runs in 0.85234 seconds
benchmark_function('is_palindrome')
# finished 500,000 runs in 1.32028 seconds
benchmark_function('is_palindrome_recursive')
# finished 500,000 runs in 2.08679 seconds
benchmark_function('is_palindrome_traversal')
| 464 | 1 |
"""simple docstring"""
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowerCamelCase__ = pytest.mark.integration
lowerCamelCase__ = {"comet"}
lowerCamelCase__ = importlib.util.find_spec("fairseq") is not None
lowerCamelCase__ = {"code_eval"}
lowerCamelCase__ = os.name == "nt"
lowerCamelCase__ = {"bertscore", "frugalscore", "perplexity"}
lowerCamelCase__ = importlib.util.find_spec("transformers") is not None
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
@wraps(__A )
def wrapper(self ,lowercase_ ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest("\"test requires Fairseq\"" )
else:
test_case(self ,__A )
return wrapper
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
@wraps(__A )
def wrapper(self ,lowercase_ ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest("\"test requires transformers\"" )
else:
test_case(self ,__A )
return wrapper
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
@wraps(__A )
def wrapper(self ,lowercase_ ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest("\"test not supported on Windows\"" )
else:
test_case(self ,__A )
return wrapper
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
_snake_case , _snake_case , _snake_case )
@local
class __SCREAMING_SNAKE_CASE ( parameterized.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[Any] = {}
SCREAMING_SNAKE_CASE__ :List[Any] = None
@pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" )
@pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" )
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Tuple ) -> Dict:
_UpperCamelCase : List[str] = "[...]"
_UpperCamelCase : int = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path )
_UpperCamelCase : List[str] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase__ )
# check parameters
_UpperCamelCase : Union[str, Any] = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(lowerCAmelCase__ , metric_module.__name__ ):
with self.use_local_metrics():
try:
_UpperCamelCase : Any = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] ) -> str:
_UpperCamelCase : List[str] = "[...]"
_UpperCamelCase : Union[str, Any] = importlib.import_module(
datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path )
# run doctest
with self.use_local_metrics():
_UpperCamelCase : str = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Union[str, Any] , __a : Optional[Any] ) -> Dict:
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase__ ):
yield
else:
yield
@contextmanager
def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int:
def load_local_metric(__a : Tuple , *__a : str , **__a : Dict ):
return load_metric(os.path.join("metrics" , lowerCAmelCase__ ) , *lowerCAmelCase__ , **lowerCAmelCase__ )
with patch("datasets.load_metric" ) as mock_load_metric:
_UpperCamelCase : Optional[Any] = load_local_metric
yield
@classmethod
def __SCREAMING_SNAKE_CASE ( cls : List[Any] , __a : Any ) -> str:
def wrapper(__a : List[Any] ):
_UpperCamelCase : List[str] = contextmanager(lowerCAmelCase__ )
_UpperCamelCase : Tuple = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher("bleurt" )
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags
class __SCREAMING_SNAKE_CASE ( _snake_case ):
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any ) -> int:
assert len(input_dict["input_ids"] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch("bleurt.score._create_predictor" ) as mock_create_predictor:
_UpperCamelCase : Tuple = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher("bertscore" )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
import torch
def bert_cos_score_idf(lowercase_ ,lowercase_ ,*lowercase_ ,**lowercase_ ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch("bert_score.scorer.get_model" ), patch(
"bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf:
_UpperCamelCase : Optional[int] = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher("comet" )
def lowercase__ ( lowercase_ ) -> List[str]:
"""simple docstring"""
def load_from_checkpoint(lowercase_ ):
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , *__a : Dict , **__a : str ) -> Dict:
assert len(lowerCAmelCase__ ) == 2
_UpperCamelCase : Optional[int] = [0.19, 0.92]
return scores, sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch("comet.download_model" ) as mock_download_model:
_UpperCamelCase : Optional[Any] = None
with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint:
_UpperCamelCase : List[Any] = load_from_checkpoint
yield
def lowercase__ ( ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = load_metric(os.path.join("metrics" ,"seqeval" ) )
_UpperCamelCase : List[Any] = "ERROR"
_UpperCamelCase : List[Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'''
with pytest.raises(__A ,match=re.escape(__A ) ):
metric.compute(predictions=[] ,references=[] ,scheme=__A )
| 701 |
"""simple docstring"""
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append(".")
def lowercase__ ( lowercase_ ) -> int:
"""simple docstring"""
_UpperCamelCase : Any = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
"`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got "
F'''{test_file} instead.''' )
_UpperCamelCase : str = components[-1]
if not test_fn.endswith("py" ):
raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' )
if not test_fn.startswith("test_modeling_" ):
raise ValueError(
F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' )
_UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )]
_UpperCamelCase : List[str] = ".".join(lowercase_ )
return test_module_path
def lowercase__ ( lowercase_ ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_module_path(lowercase_ )
_UpperCamelCase : str = importlib.import_module(lowercase_ )
return test_module
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : Union[str, Any] = []
_UpperCamelCase : List[Any] = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
if attr.endswith("ModelTester" ):
tester_classes.append(getattr(lowercase_ ,lowercase_ ) )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Tuple:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = []
_UpperCamelCase : Any = get_test_module(lowercase_ )
for attr in dir(lowercase_ ):
_UpperCamelCase : int = getattr(lowercase_ ,lowercase_ )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] )
if len(lowercase_ ) > 0:
test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Any:
"""simple docstring"""
_UpperCamelCase : Dict = get_test_classes(lowercase_ )
_UpperCamelCase : int = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase : List[str] = test_class()
if hasattr(lowercase_ ,"setUp" ):
test.setUp()
_UpperCamelCase : Tuple = None
if hasattr(lowercase_ ,"model_tester" ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_UpperCamelCase : Tuple = test.model_tester.__class__
return model_tester
def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : str = get_test_classes(lowercase_ )
_UpperCamelCase : Dict = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ )
_UpperCamelCase : List[Any] = []
for test_class in test_classes:
_UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ )
if tester_class is not None:
tester_classes.append(lowercase_ )
# sort with class names
return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ )
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Any = get_test_classes(lowercase_ )
_UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes}
return test_tester_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : List[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Optional[int] = {
model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_test_mapping
def lowercase__ ( lowercase_ ) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ )
_UpperCamelCase : Tuple = {
model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes
}
return model_to_tester_mapping
def lowercase__ ( lowercase_ ) -> Optional[int]:
"""simple docstring"""
if isinstance(lowercase_ ,lowercase_ ):
return o
elif isinstance(lowercase_ ,lowercase_ ):
return o.__name__
elif isinstance(lowercase_ ,(list, tuple) ):
return [to_json(lowercase_ ) for x in o]
elif isinstance(lowercase_ ,lowercase_ ):
return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()}
else:
return o
| 51 | 0 |
def SCREAMING_SNAKE_CASE ( ) -> list[list[int]]:
return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )]
lowercase_ = generate_large_matrix()
lowercase_ = (
[[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]],
[[3, 2], [1, 0]],
[[7, 7, 6]],
[[7, 7, 6], [-1, -2, -3]],
grid,
)
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None:
assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid )
assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
_a = 0
_a = len(_UpperCAmelCase ) - 1
# Edge cases such as no values or all numbers are negative.
if not array or array[0] < 0:
return 0
while right + 1 > left:
_a = (left + right) // 2
_a = array[mid]
# Num must be negative and the index must be greater than or equal to 0.
if num < 0 and array[mid - 1] >= 0:
return mid
if num >= 0:
_a = mid + 1
else:
_a = mid - 1
# No negative numbers so return the last index of the array + 1 which is the length.
return len(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
_a = 0
_a = len(grid[0] )
for i in range(len(_UpperCAmelCase ) ):
_a = find_negative_index(grid[i][:bound] )
total += bound
return (len(_UpperCAmelCase ) * len(grid[0] )) - total
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
return len([number for row in grid for number in row if number < 0] )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
_a = 0
for row in grid:
for i, number in enumerate(_UpperCAmelCase ):
if number < 0:
total += len(_UpperCAmelCase ) - i
break
return total
def SCREAMING_SNAKE_CASE ( ) -> None:
from timeit import timeit
print('Running benchmarks' )
_a = (
'from __main__ import count_negatives_binary_search, '
'count_negatives_brute_force, count_negatives_brute_force_with_break, grid'
)
for func in (
"count_negatives_binary_search", # took 0.7727 seconds
"count_negatives_brute_force_with_break", # took 4.6505 seconds
"count_negatives_brute_force", # took 12.8160 seconds
):
_a = timeit(f"""{func}(grid=grid)""" , setup=_UpperCAmelCase , number=500 )
print(f"""{func}() took {time:0.4f} seconds""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 562 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {'vocab_file': 'sentencepiece.bpe.model'}
lowercase_ = {
'vocab_file': {
'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model',
'moussaKam/barthez-orangesum-title': (
'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model'
),
},
}
lowercase_ = {
'moussaKam/mbarthez': 10_24,
'moussaKam/barthez': 10_24,
'moussaKam/barthez-orangesum-title': 10_24,
}
lowercase_ = '▁'
class _UpperCamelCase ( lowerCamelCase__ ):
'''simple docstring'''
_A = VOCAB_FILES_NAMES
_A = PRETRAINED_VOCAB_FILES_MAP
_A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_A = ["input_ids", "attention_mask"]
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ):
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
_a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , )
_a = vocab_file
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) )
_a = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3}
_a = len(self.sp_model ) - 1
_a = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_a = [self.cls_token_id]
_a = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ):
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _UpperCAmelCase ( self : Optional[int] ):
return len(self.sp_model )
def _UpperCAmelCase ( self : Dict ):
_a = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ):
return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ )
def _UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
_a = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ )
return spm_id if spm_id else self.unk_token_id
def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ )
def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ):
_a = []
_a = ''
_a = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token
_a = True
_a = []
else:
current_sub_tokens.append(SCREAMING_SNAKE_CASE_ )
_a = False
out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ )
return out_string.strip()
def __getstate__( self : List[str] ):
_a = self.__dict__.copy()
_a = None
return state
def __setstate__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ):
_a = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_a = {}
_a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ):
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
_a = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
elif not os.path.isfile(self.vocab_file ):
with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi:
_a = self.sp_model.serialized_model_proto()
fi.write(SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 562 | 1 |
"""simple docstring"""
def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ):
A__ = len(__UpperCAmelCase )
A__ = len(__UpperCAmelCase )
A__ = (
first_str_length if first_str_length > second_str_length else second_str_length
)
A__ = []
for char_count in range(__UpperCAmelCase ):
if char_count < first_str_length:
output_list.append(first_str[char_count] )
if char_count < second_str_length:
output_list.append(second_str[char_count] )
return "".join(__UpperCAmelCase )
if __name__ == "__main__":
print(alternative_string_arrange('AB', 'XYZ'), end=' ')
| 713 |
"""simple docstring"""
from __future__ import annotations
class a :
"""simple docstring"""
def __init__( self: Any , UpperCamelCase: str , UpperCamelCase: str ):
"""simple docstring"""
A__ , A__ = text, pattern
A__ , A__ = len(UpperCamelCase ), len(UpperCamelCase )
def UpperCamelCase ( self: Dict , UpperCamelCase: str ):
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1 ):
if char == self.pattern[i]:
return i
return -1
def UpperCamelCase ( self: str , UpperCamelCase: int ):
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1 ):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def UpperCamelCase ( self: List[Any] ):
"""simple docstring"""
A__ = []
for i in range(self.textLen - self.patLen + 1 ):
A__ = self.mismatch_in_text(UpperCamelCase )
if mismatch_index == -1:
positions.append(UpperCamelCase )
else:
A__ = self.match_in_pattern(self.text[mismatch_index] )
A__ = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
SCREAMING_SNAKE_CASE_ : List[Any] = 'ABAABA'
SCREAMING_SNAKE_CASE_ : List[Any] = 'AB'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = BoyerMooreSearch(text, pattern)
SCREAMING_SNAKE_CASE_ : int = bms.bad_character_heuristic()
if len(positions) == 0:
print('No match found')
else:
print('Pattern found in following positions: ')
print(positions)
| 500 | 0 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class A__ ( UpperCAmelCase__ ):
__UpperCamelCase : List[str] = "philschmid/bart-large-cnn-samsum"
__UpperCamelCase : int = (
"This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, "
"and returns a summary of the text."
)
__UpperCamelCase : Union[str, Any] = "summarizer"
__UpperCamelCase : List[str] = AutoTokenizer
__UpperCamelCase : Dict = AutoModelForSeqaSeqLM
__UpperCamelCase : List[str] = ["text"]
__UpperCamelCase : Tuple = ["text"]
def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :str ) -> int:
'''simple docstring'''
return self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" , truncation=SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[int]:
'''simple docstring'''
return self.model.generate(**SCREAMING_SNAKE_CASE )[0]
def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Dict ) -> Dict:
'''simple docstring'''
return self.pre_processor.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE )
| 694 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int:
_a : Optional[Any] =[]
_a , _a : Union[str, Any] =0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(_UpperCAmelCase )
_a , _a : Optional[Any] =b, a + b
return sum(_UpperCAmelCase )
if __name__ == "__main__":
print(F"{solution() = }")
| 694 | 1 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class _lowerCAmelCase ( ctypes.Structure ):
'''simple docstring'''
a_ : int =[("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)]
def lowerCamelCase_ ( )-> Any:
if os.name == "nt":
_snake_case : int = CursorInfo()
_snake_case : int = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) )
_snake_case : List[str] = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) )
elif os.name == "posix":
sys.stdout.write('\033[?25l' )
sys.stdout.flush()
def lowerCamelCase_ ( )-> Optional[Any]:
if os.name == "nt":
_snake_case : Dict = CursorInfo()
_snake_case : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) )
_snake_case : Dict = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) )
elif os.name == "posix":
sys.stdout.write('\033[?25h' )
sys.stdout.flush()
@contextmanager
def lowerCamelCase_ ( )-> Any:
try:
hide_cursor()
yield
finally:
show_cursor()
| 716 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class _lowerCAmelCase ( UpperCAmelCase_ ):
'''simple docstring'''
a_ : torch.FloatTensor
class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
@register_to_config
def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ):
'''simple docstring'''
super().__init__()
_snake_case : str = num_attention_heads
_snake_case : Optional[int] = attention_head_dim
_snake_case : Any = num_attention_heads * attention_head_dim
_snake_case : List[Any] = additional_embeddings
_snake_case : List[str] = time_embed_dim or inner_dim
_snake_case : int = embedding_proj_dim or embedding_dim
_snake_case : List[Any] = clip_embed_dim or embedding_dim
_snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 )
_snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase )
_snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase )
if embedding_proj_norm_type is None:
_snake_case : str = None
elif embedding_proj_norm_type == "layer":
_snake_case : List[Any] = nn.LayerNorm(UpperCamelCase )
else:
raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" )
_snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase )
if encoder_hid_proj_type is None:
_snake_case : Any = None
elif encoder_hid_proj_type == "linear":
_snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase )
else:
raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" )
_snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) )
if added_emb_type == "prd":
_snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) )
elif added_emb_type is None:
_snake_case : Dict = None
else:
raise ValueError(
f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" )
_snake_case : Optional[int] = nn.ModuleList(
[
BasicTransformerBlock(
UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , )
for d in range(UpperCamelCase )
] )
if norm_in_type == "layer":
_snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase )
elif norm_in_type is None:
_snake_case : Optional[Any] = None
else:
raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" )
_snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase )
_snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase )
_snake_case : List[Any] = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 )
causal_attention_mask.triu_(1 )
_snake_case : Optional[Any] = causal_attention_mask[None, ...]
self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase )
_snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) )
_snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
_snake_case : Optional[Any] = {}
def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ):
if hasattr(UpperCamelCase , 'set_processor' ):
_snake_case : Tuple = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase )
return processors
def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ):
'''simple docstring'''
_snake_case : Optional[int] = len(self.attn_processors.keys() )
if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count:
raise ValueError(
f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the"""
f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" )
def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ):
if hasattr(UpperCamelCase , 'set_processor' ):
if not isinstance(UpperCamelCase , UpperCamelCase ):
module.set_processor(UpperCamelCase )
else:
module.set_processor(processor.pop(f"""{name}.processor""" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase )
for name, module in self.named_children():
fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase )
def UpperCamelCase_ ( self : Optional[Any] ):
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ):
'''simple docstring'''
_snake_case : Dict = hidden_states.shape[0]
_snake_case : str = timestep
if not torch.is_tensor(UpperCamelCase ):
_snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0:
_snake_case : Tuple = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
_snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device )
_snake_case : Union[str, Any] = self.time_proj(UpperCamelCase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
_snake_case : Tuple = timesteps_projected.to(dtype=self.dtype )
_snake_case : List[Any] = self.time_embedding(UpperCamelCase )
if self.embedding_proj_norm is not None:
_snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase )
_snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
_snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' )
_snake_case : str = self.proj_in(UpperCamelCase )
_snake_case : int = self.positional_embedding.to(hidden_states.dtype )
_snake_case : Optional[int] = []
_snake_case : List[Any] = 0
if encoder_hidden_states is not None:
additional_embeds.append(UpperCamelCase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
_snake_case : str = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
_snake_case : str = hidden_states[:, None, :]
_snake_case : str = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
_snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 )
additional_embeds.append(UpperCamelCase )
_snake_case : Optional[int] = torch.cat(
UpperCamelCase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
_snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
_snake_case : Optional[Any] = F.pad(
UpperCamelCase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
_snake_case : Optional[Any] = hidden_states + positional_embeddings
if attention_mask is not None:
_snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0
_snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 )
_snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
_snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
_snake_case : Tuple = self.norm_in(UpperCamelCase )
for block in self.transformer_blocks:
_snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase )
_snake_case : Dict = self.norm_out(UpperCamelCase )
if self.prd_embedding is not None:
_snake_case : str = hidden_states[:, -1]
else:
_snake_case : Any = hidden_states[:, additional_embeddings_len:]
_snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase )
def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
_snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 669 | 0 |
from collections.abc import Sequence
def __magic_name__ ( lowerCAmelCase_ = None):
'''simple docstring'''
if nums is None or not nums:
raise ValueError("Input sequence should not be empty")
lowerCamelCase_ : Dict = nums[0]
for i in range(1 , len(lowerCAmelCase_)):
lowerCamelCase_ : Tuple = nums[i]
lowerCamelCase_ : List[str] = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_)
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
__magic_name__ = int(input('''Enter number of elements : ''').strip())
__magic_name__ = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 250 |
from math import factorial, radians
def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ = 18 , lowerCAmelCase_ = 10):
'''simple docstring'''
lowerCamelCase_ : List[str] = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0)
# Converting from degrees to radians
lowerCamelCase_ : Tuple = radians(lowerCAmelCase_)
lowerCamelCase_ : Tuple = angle_in_radians
lowerCamelCase_ : Tuple = 3
lowerCamelCase_ : List[Any] = -1
for _ in range(lowerCAmelCase_):
result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase_)
lowerCamelCase_ : List[Any] = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(lowerCAmelCase_ , lowerCAmelCase_)
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 250 | 1 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
SCREAMING_SNAKE_CASE_ : Optional[Any] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ : List[str] = {
"Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class _A ( _lowerCamelCase ):
__a = 'dpt'
def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1e-12 , SCREAMING_SNAKE_CASE__=384 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[2, 5, 8, 11] , SCREAMING_SNAKE_CASE__="project" , SCREAMING_SNAKE_CASE__=[4, 2, 1, 0.5] , SCREAMING_SNAKE_CASE__=[96, 192, 384, 768] , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=-1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=255 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=[1, 1024, 24, 24] , SCREAMING_SNAKE_CASE__=[0, 1] , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> str:
super().__init__(**A__ )
lowerCamelCase__ = hidden_size
lowerCamelCase__ = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info("Initializing the config with a `BiT` backbone." )
lowerCamelCase__ = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
}
lowerCamelCase__ = BitConfig(**A__ )
elif isinstance(A__ , A__ ):
logger.info("Initializing the config with a `BiT` backbone." )
lowerCamelCase__ = BitConfig(**A__ )
elif isinstance(A__ , A__ ):
lowerCamelCase__ = backbone_config
else:
raise ValueError(
f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' )
lowerCamelCase__ = backbone_featmap_shape
lowerCamelCase__ = neck_ignore_stages
if readout_type != "project":
raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." )
else:
lowerCamelCase__ = None
lowerCamelCase__ = None
lowerCamelCase__ = []
lowerCamelCase__ = num_hidden_layers
lowerCamelCase__ = num_attention_heads
lowerCamelCase__ = intermediate_size
lowerCamelCase__ = hidden_act
lowerCamelCase__ = hidden_dropout_prob
lowerCamelCase__ = attention_probs_dropout_prob
lowerCamelCase__ = initializer_range
lowerCamelCase__ = layer_norm_eps
lowerCamelCase__ = image_size
lowerCamelCase__ = patch_size
lowerCamelCase__ = num_channels
lowerCamelCase__ = qkv_bias
lowerCamelCase__ = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" )
lowerCamelCase__ = readout_type
lowerCamelCase__ = reassemble_factors
lowerCamelCase__ = neck_hidden_sizes
lowerCamelCase__ = fusion_hidden_size
lowerCamelCase__ = head_in_index
lowerCamelCase__ = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
lowerCamelCase__ = use_auxiliary_head
lowerCamelCase__ = auxiliary_loss_weight
lowerCamelCase__ = semantic_loss_ignore_index
lowerCamelCase__ = semantic_classifier_dropout
def _lowerCamelCase ( self ) -> List[str]:
lowerCamelCase__ = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
lowerCamelCase__ = self.backbone_config.to_dict()
lowerCamelCase__ = self.__class__.model_type
return output
| 700 |
"""simple docstring"""
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def UpperCAmelCase__ ( ) -> List[Any]:
"""simple docstring"""
lowerCamelCase__ = torch.nn.Linear(2 , 4 )
lowerCamelCase__ = torch.optim.AdamW(model.parameters() , lr=1.0 )
lowerCamelCase__ = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 )
lowerCamelCase__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
lowerCamelCase__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def UpperCAmelCase__ ( A__ ) -> Any:
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def UpperCAmelCase__ ( A__ ) -> Any:
"""simple docstring"""
lowerCamelCase__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(A__ )
class _A ( __a ):
@require_cuda
def _lowerCamelCase ( self ) -> Optional[Any]:
lowerCamelCase__ = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
lowerCamelCase__ = Accelerator(cpu=SCREAMING_SNAKE_CASE__ )
def _lowerCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ = GradientState()
assert state.num_steps == 1
lowerCamelCase__ = 4
assert state.num_steps == 4
assert state.sync_gradients is True
lowerCamelCase__ = False
assert state.sync_gradients is False
GradientState._reset_state()
def _lowerCamelCase ( self ) -> str:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def _lowerCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components()
accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def _lowerCamelCase ( self ) -> Dict:
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
pass
with patch("torch.cuda.set_device" , SCREAMING_SNAKE_CASE__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ):
lowerCamelCase__ = Accelerator()
self.assertEqual(str(accelerator.state.device ) , "cuda:64" )
def _lowerCamelCase ( self ) -> Optional[Any]:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components()
accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = get_signature(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
# make sure random weights don't match
load_random_weights(SCREAMING_SNAKE_CASE__ )
self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 )
# make sure loaded weights match
accelerator.load_state(SCREAMING_SNAKE_CASE__ )
self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 )
def _lowerCamelCase ( self ) -> Any:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components()
accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = get_signature(SCREAMING_SNAKE_CASE__ )
# saving hook
def save_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowerCamelCase__ = {"class_name": models[0].__class__.__name__}
with open(os.path.join(SCREAMING_SNAKE_CASE__ , "data.json" ) , "w" ) as f:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# loading hook
def load_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
with open(os.path.join(SCREAMING_SNAKE_CASE__ , "data.json" ) , "r" ) as f:
lowerCamelCase__ = json.load(SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = config["class_name"]
lowerCamelCase__ = accelerator.register_save_state_pre_hook(SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = accelerator.register_load_state_pre_hook(SCREAMING_SNAKE_CASE__ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
# make sure random weights don't match with hooks
load_random_weights(SCREAMING_SNAKE_CASE__ )
self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 )
# random class name to verify correct one is loaded
lowerCamelCase__ = "random"
# make sure loaded weights match with hooks
accelerator.load_state(SCREAMING_SNAKE_CASE__ )
self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(SCREAMING_SNAKE_CASE__ )
# make sure random weights don't match with hooks removed
load_random_weights(SCREAMING_SNAKE_CASE__ )
self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 )
# random class name to verify correct one is loaded
lowerCamelCase__ = "random"
# make sure loaded weights match with hooks removed
accelerator.load_state(SCREAMING_SNAKE_CASE__ )
self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def _lowerCamelCase ( self ) -> Union[str, Any]:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components()
lowerCamelCase__ = None
# This should work
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertTrue(dummy_obj is None )
def _lowerCamelCase ( self ) -> List[str]:
lowerCamelCase__ = Accelerator()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components()
lowerCamelCase__ = [1, 2, 3]
# This should work
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.assertEqual(
getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , )
self.assertEqual(
getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , )
self.assertEqual(
getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , )
self.assertEqual(
getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , )
self.assertEqual(
getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , )
self.assertEqual(
getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , )
@slow
@require_bnb
def _lowerCamelCase ( self ) -> str:
from transformers import AutoModelForCausalLM
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map={"": 0} , )
lowerCamelCase__ = Accelerator()
# This should work
lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
@slow
@require_bnb
def _lowerCamelCase ( self ) -> Tuple:
from transformers import AutoModelForCausalLM
lowerCamelCase__ = Accelerator()
with init_empty_weights():
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , )
model.tie_weights()
lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = "cpu"
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , device_map=SCREAMING_SNAKE_CASE__ , load_in_abit=SCREAMING_SNAKE_CASE__ , llm_inta_enable_fpaa_cpu_offload=SCREAMING_SNAKE_CASE__ )
# This should not work and get value error
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
@slow
@require_bnb
@require_multi_gpu
def _lowerCamelCase ( self ) -> Dict:
from transformers import AutoModelForCausalLM
lowerCamelCase__ = {"distributed_type": DistributedType.MULTI_GPU}
with init_empty_weights():
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , )
model.tie_weights()
lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = 1
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , )
lowerCamelCase__ = Accelerator()
# This should not work and get value error
with self.assertRaises(SCREAMING_SNAKE_CASE__ ):
lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def _lowerCamelCase ( self ) -> List[Any]:
from transformers import AutoModelForCausalLM
with init_empty_weights():
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , )
lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = 1
lowerCamelCase__ = AutoModelForCausalLM.from_pretrained(
"EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , )
lowerCamelCase__ = Accelerator()
# This should work
lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
@require_cuda
def _lowerCamelCase ( self ) -> List[str]:
lowerCamelCase__ = torch.nn.Linear(10 , 10 )
lowerCamelCase__ = torch.optim.SGD(model.parameters() , lr=0.01 )
lowerCamelCase__ = Accelerator(cpu=SCREAMING_SNAKE_CASE__ )
lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
| 274 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
from typing import Any
import requests
SCREAMING_SNAKE_CASE : Any = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
SCREAMING_SNAKE_CASE : Any = BASE_URL + '''/user'''
# https://github.com/settings/tokens
SCREAMING_SNAKE_CASE : List[str] = os.environ.get('''USER_TOKEN''', '''''')
def __lowerCamelCase ( lowerCAmelCase__ ):
A__ = {
'Authorization': f'''token {auth_token}''',
'Accept': 'application/vnd.github.v3+json',
}
return requests.get(lowerCAmelCase__ ,headers=lowerCAmelCase__ ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'''{key}: {value}''')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 260 |
"""simple docstring"""
from typing import List, Union
import numpy as np
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, logging
from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline
SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__)
class snake_case_ ( _lowerCamelCase ):
"""simple docstring"""
def _UpperCAmelCase ( self , __a ):
"""simple docstring"""
if isinstance(__a , __a ):
A__ = [label.strip() for label in labels.split(',' ) if label.strip()]
return labels
def __call__( self , __a , __a , __a ):
"""simple docstring"""
if len(__a ) == 0 or len(__a ) == 0:
raise ValueError('You must include at least one label and at least one sequence.' )
if hypothesis_template.format(labels[0] ) == hypothesis_template:
raise ValueError(
(
'The provided hypothesis_template "{}" was not able to be formatted with the target labels. '
'Make sure the passed template includes formatting syntax such as {{}} where the label should go.'
).format(__a ) )
if isinstance(__a , __a ):
A__ = [sequences]
A__ = []
for sequence in sequences:
sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] )
return sequence_pairs, sequences
@add_end_docstrings(_lowerCamelCase )
class snake_case_ ( _lowerCamelCase ):
"""simple docstring"""
def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a ):
"""simple docstring"""
A__ = args_parser
super().__init__(*__a , **__a )
if self.entailment_id == -1:
logger.warning(
'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to '
'-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' )
@property
def _UpperCAmelCase ( self ):
"""simple docstring"""
for label, ind in self.model.config.labelaid.items():
if label.lower().startswith('entail' ):
return ind
return -1
def _UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a ):
"""simple docstring"""
A__ = self.framework
if self.tokenizer.pad_token is None:
# Override for tokenizers not supporting padding
logger.error(
'Tokenizer was not supporting padding necessary for zero-shot, attempting to use '
' `pad_token=eos_token`' )
A__ = self.tokenizer.eos_token
try:
A__ = self.tokenizer(
__a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , )
except Exception as e:
if "too short" in str(__a ):
# tokenizers might yell that we want to truncate
# to a value that is not even reached by the input.
# In that case we don't want to truncate.
# It seems there's not a really better way to catch that
# exception.
A__ = self.tokenizer(
__a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , )
else:
raise e
return inputs
def _UpperCAmelCase ( self , **__a ):
"""simple docstring"""
if kwargs.get('multi_class' , __a ) is not None:
A__ = kwargs['multi_class']
logger.warning(
'The `multi_class` argument has been deprecated and renamed to `multi_label`. '
'`multi_class` will be removed in a future version of Transformers.' )
A__ = {}
if "candidate_labels" in kwargs:
A__ = self._args_parser._parse_labels(kwargs['candidate_labels'] )
if "hypothesis_template" in kwargs:
A__ = kwargs['hypothesis_template']
A__ = {}
if "multi_label" in kwargs:
A__ = kwargs['multi_label']
return preprocess_params, {}, postprocess_params
def __call__( self , __a , *__a , **__a , ):
"""simple docstring"""
if len(__a ) == 0:
pass
elif len(__a ) == 1 and "candidate_labels" not in kwargs:
A__ = args[0]
else:
raise ValueError(f'''Unable to understand extra arguments {args}''' )
return super().__call__(__a , **__a )
def _UpperCAmelCase ( self , __a , __a=None , __a="This example is {}." ):
"""simple docstring"""
A__ , A__ = self._args_parser(__a , __a , __a )
for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ):
A__ = self._parse_and_tokenize([sequence_pair] )
yield {
"candidate_label": candidate_label,
"sequence": sequences[0],
"is_last": i == len(__a ) - 1,
**model_input,
}
def _UpperCAmelCase ( self , __a ):
"""simple docstring"""
A__ = inputs['candidate_label']
A__ = inputs['sequence']
A__ = {k: inputs[k] for k in self.tokenizer.model_input_names}
A__ = self.model(**__a )
A__ = {
'candidate_label': candidate_label,
'sequence': sequence,
'is_last': inputs['is_last'],
**outputs,
}
return model_outputs
def _UpperCAmelCase ( self , __a , __a=False ):
"""simple docstring"""
A__ = [outputs['candidate_label'] for outputs in model_outputs]
A__ = [outputs['sequence'] for outputs in model_outputs]
A__ = np.concatenate([output['logits'].numpy() for output in model_outputs] )
A__ = logits.shape[0]
A__ = len(__a )
A__ = N // n
A__ = logits.reshape((num_sequences, n, -1) )
if multi_label or len(__a ) == 1:
# softmax over the entailment vs. contradiction dim for each label independently
A__ = self.entailment_id
A__ = -1 if entailment_id == 0 else 0
A__ = reshaped_outputs[..., [contradiction_id, entailment_id]]
A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a )
A__ = scores[..., 1]
else:
# softmax the "entailment" logits over all candidate labels
A__ = reshaped_outputs[..., self.entailment_id]
A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a )
A__ = list(reversed(scores[0].argsort() ) )
return {
"sequence": sequences[0],
"labels": [candidate_labels[i] for i in top_inds],
"scores": scores[0, top_inds].tolist(),
}
| 260 | 1 |
from cva import destroyAllWindows, imread, imshow, waitKey
def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> List[str]:
"""simple docstring"""
A , A = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
A = [2_55, 2_55, 2_55] - img[i][j]
return img
if __name__ == "__main__":
# read original image
_lowercase : str = imread("image_data/lena.jpg", 1)
# convert to its negative
_lowercase : List[str] = convert_to_negative(img)
# show result image
imshow("negative of original image", img)
waitKey(0)
destroyAllWindows()
| 546 |
from __future__ import annotations
from typing import Any
class _UpperCamelCase :
"""simple docstring"""
def __init__( self , a__ , a__ , a__ = 0 ) -> None:
A , A = row, column
A = [[default_value for c in range(a__ )] for r in range(a__ )]
def __str__( self ) -> str:
A = f'Matrix consist of {self.row} rows and {self.column} columns\n'
# Make string identifier
A = 0
for row_vector in self.array:
for obj in row_vector:
A = max(a__ , len(str(a__ ) ) )
A = f'%{max_element_length}s'
# Make string and return
def single_line(a__ ) -> str:
nonlocal string_format_identifier
A = """["""
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(a__ ) for row_vector in self.array )
return s
def __repr__( self ) -> str:
return str(self )
def _UpperCAmelCase ( self , a__ ) -> bool:
if not (isinstance(a__ , (list, tuple) ) and len(a__ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self , a__ ) -> Any:
assert self.validate_indicies(a__ )
return self.array[loc[0]][loc[1]]
def __setitem__( self , a__ , a__ ) -> None:
assert self.validate_indicies(a__ )
A = value
def __add__( self , a__ ) -> Matrix:
assert isinstance(a__ , a__ )
assert self.row == another.row and self.column == another.column
# Add
A = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
A = self[r, c] + another[r, c]
return result
def __neg__( self ) -> Matrix:
A = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
A = -self[r, c]
return result
def __sub__( self , a__ ) -> Matrix:
return self + (-another)
def __mul__( self , a__ ) -> Matrix:
if isinstance(a__ , (int, float) ): # Scalar multiplication
A = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
A = self[r, c] * another
return result
elif isinstance(a__ , a__ ): # Matrix multiplication
assert self.column == another.row
A = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
A = f'Unsupported type given for another ({type(a__ )})'
raise TypeError(a__ )
def _UpperCAmelCase ( self ) -> Matrix:
A = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
A = self[r, c]
return result
def _UpperCAmelCase ( self , a__ , a__ ) -> Any:
assert isinstance(a__ , a__ ) and isinstance(a__ , a__ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
A = v.transpose()
A = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def _lowerCAmelCase ( ) -> None:
"""simple docstring"""
A = Matrix(3 , 3 , 0 )
for i in range(3 ):
A = 1
print(f'a^(-1) is {ainv}' )
# u, v
A = Matrix(3 , 1 , 0 )
A , A , A = 1, 2, -3
A = Matrix(3 , 1 , 0 )
A , A , A = 4, -2, 5
print(f'u is {u}' )
print(f'v is {v}' )
print(f'uv^T is {u * v.transpose()}' )
# Sherman Morrison
print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase__ , UpperCamelCase__ )}' )
def _lowerCAmelCase ( ) -> None:
"""simple docstring"""
import doctest
doctest.testmod()
testa()
| 546 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__UpperCamelCase : Any = {
"""configuration_swiftformer""": [
"""SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SwiftFormerConfig""",
"""SwiftFormerOnnxConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCamelCase : Optional[int] = [
"""SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SwiftFormerForImageClassification""",
"""SwiftFormerModel""",
"""SwiftFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
__UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 80 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__UpperCamelCase : int = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer
else:
import sys
__UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 80 | 1 |
'''simple docstring'''
def __A ( lowerCAmelCase_ = 1000 ):
_UpperCAmelCase : Any = 3
_UpperCAmelCase : Optional[int] = 0
while a < n:
if a % 3 == 0 or a % 5 == 0:
result += a
elif a % 15 == 0:
result -= a
a += 1
return result
if __name__ == "__main__":
print(F"{solution() = }")
| 718 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
lowerCAmelCase_ : Any = {
'''Acehnese Arabic''': '''ace_Arab''',
'''Acehnese Latin''': '''ace_Latn''',
'''Mesopotamian Arabic''': '''acm_Arab''',
'''Ta\'izzi-Adeni Arabic''': '''acq_Arab''',
'''Tunisian Arabic''': '''aeb_Arab''',
'''Afrikaans''': '''afr_Latn''',
'''South Levantine Arabic''': '''ajp_Arab''',
'''Akan''': '''aka_Latn''',
'''Amharic''': '''amh_Ethi''',
'''North Levantine Arabic''': '''apc_Arab''',
'''Modern Standard Arabic''': '''arb_Arab''',
'''Modern Standard Arabic Romanized''': '''arb_Latn''',
'''Najdi Arabic''': '''ars_Arab''',
'''Moroccan Arabic''': '''ary_Arab''',
'''Egyptian Arabic''': '''arz_Arab''',
'''Assamese''': '''asm_Beng''',
'''Asturian''': '''ast_Latn''',
'''Awadhi''': '''awa_Deva''',
'''Central Aymara''': '''ayr_Latn''',
'''South Azerbaijani''': '''azb_Arab''',
'''North Azerbaijani''': '''azj_Latn''',
'''Bashkir''': '''bak_Cyrl''',
'''Bambara''': '''bam_Latn''',
'''Balinese''': '''ban_Latn''',
'''Belarusian''': '''bel_Cyrl''',
'''Bemba''': '''bem_Latn''',
'''Bengali''': '''ben_Beng''',
'''Bhojpuri''': '''bho_Deva''',
'''Banjar Arabic''': '''bjn_Arab''',
'''Banjar Latin''': '''bjn_Latn''',
'''Standard Tibetan''': '''bod_Tibt''',
'''Bosnian''': '''bos_Latn''',
'''Buginese''': '''bug_Latn''',
'''Bulgarian''': '''bul_Cyrl''',
'''Catalan''': '''cat_Latn''',
'''Cebuano''': '''ceb_Latn''',
'''Czech''': '''ces_Latn''',
'''Chokwe''': '''cjk_Latn''',
'''Central Kurdish''': '''ckb_Arab''',
'''Crimean Tatar''': '''crh_Latn''',
'''Welsh''': '''cym_Latn''',
'''Danish''': '''dan_Latn''',
'''German''': '''deu_Latn''',
'''Southwestern Dinka''': '''dik_Latn''',
'''Dyula''': '''dyu_Latn''',
'''Dzongkha''': '''dzo_Tibt''',
'''Greek''': '''ell_Grek''',
'''English''': '''eng_Latn''',
'''Esperanto''': '''epo_Latn''',
'''Estonian''': '''est_Latn''',
'''Basque''': '''eus_Latn''',
'''Ewe''': '''ewe_Latn''',
'''Faroese''': '''fao_Latn''',
'''Fijian''': '''fij_Latn''',
'''Finnish''': '''fin_Latn''',
'''Fon''': '''fon_Latn''',
'''French''': '''fra_Latn''',
'''Friulian''': '''fur_Latn''',
'''Nigerian Fulfulde''': '''fuv_Latn''',
'''Scottish Gaelic''': '''gla_Latn''',
'''Irish''': '''gle_Latn''',
'''Galician''': '''glg_Latn''',
'''Guarani''': '''grn_Latn''',
'''Gujarati''': '''guj_Gujr''',
'''Haitian Creole''': '''hat_Latn''',
'''Hausa''': '''hau_Latn''',
'''Hebrew''': '''heb_Hebr''',
'''Hindi''': '''hin_Deva''',
'''Chhattisgarhi''': '''hne_Deva''',
'''Croatian''': '''hrv_Latn''',
'''Hungarian''': '''hun_Latn''',
'''Armenian''': '''hye_Armn''',
'''Igbo''': '''ibo_Latn''',
'''Ilocano''': '''ilo_Latn''',
'''Indonesian''': '''ind_Latn''',
'''Icelandic''': '''isl_Latn''',
'''Italian''': '''ita_Latn''',
'''Javanese''': '''jav_Latn''',
'''Japanese''': '''jpn_Jpan''',
'''Kabyle''': '''kab_Latn''',
'''Jingpho''': '''kac_Latn''',
'''Kamba''': '''kam_Latn''',
'''Kannada''': '''kan_Knda''',
'''Kashmiri Arabic''': '''kas_Arab''',
'''Kashmiri Devanagari''': '''kas_Deva''',
'''Georgian''': '''kat_Geor''',
'''Central Kanuri Arabic''': '''knc_Arab''',
'''Central Kanuri Latin''': '''knc_Latn''',
'''Kazakh''': '''kaz_Cyrl''',
'''Kabiyè''': '''kbp_Latn''',
'''Kabuverdianu''': '''kea_Latn''',
'''Khmer''': '''khm_Khmr''',
'''Kikuyu''': '''kik_Latn''',
'''Kinyarwanda''': '''kin_Latn''',
'''Kyrgyz''': '''kir_Cyrl''',
'''Kimbundu''': '''kmb_Latn''',
'''Northern Kurdish''': '''kmr_Latn''',
'''Kikongo''': '''kon_Latn''',
'''Korean''': '''kor_Hang''',
'''Lao''': '''lao_Laoo''',
'''Ligurian''': '''lij_Latn''',
'''Limburgish''': '''lim_Latn''',
'''Lingala''': '''lin_Latn''',
'''Lithuanian''': '''lit_Latn''',
'''Lombard''': '''lmo_Latn''',
'''Latgalian''': '''ltg_Latn''',
'''Luxembourgish''': '''ltz_Latn''',
'''Luba-Kasai''': '''lua_Latn''',
'''Ganda''': '''lug_Latn''',
'''Luo''': '''luo_Latn''',
'''Mizo''': '''lus_Latn''',
'''Standard Latvian''': '''lvs_Latn''',
'''Magahi''': '''mag_Deva''',
'''Maithili''': '''mai_Deva''',
'''Malayalam''': '''mal_Mlym''',
'''Marathi''': '''mar_Deva''',
'''Minangkabau Arabic ''': '''min_Arab''',
'''Minangkabau Latin''': '''min_Latn''',
'''Macedonian''': '''mkd_Cyrl''',
'''Plateau Malagasy''': '''plt_Latn''',
'''Maltese''': '''mlt_Latn''',
'''Meitei Bengali''': '''mni_Beng''',
'''Halh Mongolian''': '''khk_Cyrl''',
'''Mossi''': '''mos_Latn''',
'''Maori''': '''mri_Latn''',
'''Burmese''': '''mya_Mymr''',
'''Dutch''': '''nld_Latn''',
'''Norwegian Nynorsk''': '''nno_Latn''',
'''Norwegian Bokmål''': '''nob_Latn''',
'''Nepali''': '''npi_Deva''',
'''Northern Sotho''': '''nso_Latn''',
'''Nuer''': '''nus_Latn''',
'''Nyanja''': '''nya_Latn''',
'''Occitan''': '''oci_Latn''',
'''West Central Oromo''': '''gaz_Latn''',
'''Odia''': '''ory_Orya''',
'''Pangasinan''': '''pag_Latn''',
'''Eastern Panjabi''': '''pan_Guru''',
'''Papiamento''': '''pap_Latn''',
'''Western Persian''': '''pes_Arab''',
'''Polish''': '''pol_Latn''',
'''Portuguese''': '''por_Latn''',
'''Dari''': '''prs_Arab''',
'''Southern Pashto''': '''pbt_Arab''',
'''Ayacucho Quechua''': '''quy_Latn''',
'''Romanian''': '''ron_Latn''',
'''Rundi''': '''run_Latn''',
'''Russian''': '''rus_Cyrl''',
'''Sango''': '''sag_Latn''',
'''Sanskrit''': '''san_Deva''',
'''Santali''': '''sat_Olck''',
'''Sicilian''': '''scn_Latn''',
'''Shan''': '''shn_Mymr''',
'''Sinhala''': '''sin_Sinh''',
'''Slovak''': '''slk_Latn''',
'''Slovenian''': '''slv_Latn''',
'''Samoan''': '''smo_Latn''',
'''Shona''': '''sna_Latn''',
'''Sindhi''': '''snd_Arab''',
'''Somali''': '''som_Latn''',
'''Southern Sotho''': '''sot_Latn''',
'''Spanish''': '''spa_Latn''',
'''Tosk Albanian''': '''als_Latn''',
'''Sardinian''': '''srd_Latn''',
'''Serbian''': '''srp_Cyrl''',
'''Swati''': '''ssw_Latn''',
'''Sundanese''': '''sun_Latn''',
'''Swedish''': '''swe_Latn''',
'''Swahili''': '''swh_Latn''',
'''Silesian''': '''szl_Latn''',
'''Tamil''': '''tam_Taml''',
'''Tatar''': '''tat_Cyrl''',
'''Telugu''': '''tel_Telu''',
'''Tajik''': '''tgk_Cyrl''',
'''Tagalog''': '''tgl_Latn''',
'''Thai''': '''tha_Thai''',
'''Tigrinya''': '''tir_Ethi''',
'''Tamasheq Latin''': '''taq_Latn''',
'''Tamasheq Tifinagh''': '''taq_Tfng''',
'''Tok Pisin''': '''tpi_Latn''',
'''Tswana''': '''tsn_Latn''',
'''Tsonga''': '''tso_Latn''',
'''Turkmen''': '''tuk_Latn''',
'''Tumbuka''': '''tum_Latn''',
'''Turkish''': '''tur_Latn''',
'''Twi''': '''twi_Latn''',
'''Central Atlas Tamazight''': '''tzm_Tfng''',
'''Uyghur''': '''uig_Arab''',
'''Ukrainian''': '''ukr_Cyrl''',
'''Umbundu''': '''umb_Latn''',
'''Urdu''': '''urd_Arab''',
'''Northern Uzbek''': '''uzn_Latn''',
'''Venetian''': '''vec_Latn''',
'''Vietnamese''': '''vie_Latn''',
'''Waray''': '''war_Latn''',
'''Wolof''': '''wol_Latn''',
'''Xhosa''': '''xho_Latn''',
'''Eastern Yiddish''': '''ydd_Hebr''',
'''Yoruba''': '''yor_Latn''',
'''Yue Chinese''': '''yue_Hant''',
'''Chinese Simplified''': '''zho_Hans''',
'''Chinese Traditional''': '''zho_Hant''',
'''Standard Malay''': '''zsm_Latn''',
'''Zulu''': '''zul_Latn''',
}
class __lowerCAmelCase ( __a ):
snake_case : Any = """facebook/nllb-200-distilled-600M"""
snake_case : Optional[int] = (
"""This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """
"""be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """
"""which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """
"""plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`."""
)
snake_case : Dict = """translator"""
snake_case : str = AutoTokenizer
snake_case : Dict = AutoModelForSeqaSeqLM
snake_case : Optional[Any] = LANGUAGE_CODES
snake_case : List[str] = ["""text""", """text""", """text"""]
snake_case : Tuple = ["""text"""]
def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
if src_lang not in self.lang_to_code:
raise ValueError(F"{src_lang} is not a supported language." )
if tgt_lang not in self.lang_to_code:
raise ValueError(F"{tgt_lang} is not a supported language." )
_UpperCAmelCase : str = self.lang_to_code[src_lang]
_UpperCAmelCase : Tuple = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ ):
return self.model.generate(**lowerCAmelCase__ )
def snake_case_ (self , lowerCAmelCase__ ):
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
| 156 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCAmelCase_ = {
"configuration_distilbert": [
"DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"DistilBertConfig",
"DistilBertOnnxConfig",
],
"tokenization_distilbert": ["DistilBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = ["DistilBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"DistilBertForMaskedLM",
"DistilBertForMultipleChoice",
"DistilBertForQuestionAnswering",
"DistilBertForSequenceClassification",
"DistilBertForTokenClassification",
"DistilBertModel",
"DistilBertPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFDistilBertForMaskedLM",
"TFDistilBertForMultipleChoice",
"TFDistilBertForQuestionAnswering",
"TFDistilBertForSequenceClassification",
"TFDistilBertForTokenClassification",
"TFDistilBertMainLayer",
"TFDistilBertModel",
"TFDistilBertPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ = [
"FlaxDistilBertForMaskedLM",
"FlaxDistilBertForMultipleChoice",
"FlaxDistilBertForQuestionAnswering",
"FlaxDistilBertForSequenceClassification",
"FlaxDistilBertForTokenClassification",
"FlaxDistilBertModel",
"FlaxDistilBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_distilbert import (
DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DistilBertConfig,
DistilBertOnnxConfig,
)
from .tokenization_distilbert import DistilBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_distilbert_fast import DistilBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_distilbert import (
DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
DistilBertForMaskedLM,
DistilBertForMultipleChoice,
DistilBertForQuestionAnswering,
DistilBertForSequenceClassification,
DistilBertForTokenClassification,
DistilBertModel,
DistilBertPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_distilbert import (
TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDistilBertForMaskedLM,
TFDistilBertForMultipleChoice,
TFDistilBertForQuestionAnswering,
TFDistilBertForSequenceClassification,
TFDistilBertForTokenClassification,
TFDistilBertMainLayer,
TFDistilBertModel,
TFDistilBertPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_distilbert import (
FlaxDistilBertForMaskedLM,
FlaxDistilBertForMultipleChoice,
FlaxDistilBertForQuestionAnswering,
FlaxDistilBertForSequenceClassification,
FlaxDistilBertForTokenClassification,
FlaxDistilBertModel,
FlaxDistilBertPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) | 32 |
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
__UpperCamelCase : Dict = logging.get_logger(__name__)
class __lowerCAmelCase ( enum.Enum ):
UpperCamelCase__ = 0
UpperCamelCase__ = 1
@add_end_docstrings(__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''generated'''
def __init__( self :Any , *__magic_name__ :Tuple , **__magic_name__ :Tuple ):
'''simple docstring'''
super().__init__(*__magic_name__ , **__magic_name__ )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == """tf"""
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Any=None , __magic_name__ :Optional[Any]=None , __magic_name__ :Any=None , __magic_name__ :List[str]=None , __magic_name__ :Tuple=None , __magic_name__ :str=None , **__magic_name__ :List[Any] , ):
'''simple docstring'''
a = {}
if truncation is not None:
a = truncation
a = generate_kwargs
a = {}
if return_tensors is not None and return_type is None:
a = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
a = return_type
if clean_up_tokenization_spaces is not None:
a = clean_up_tokenization_spaces
if stop_sequence is not None:
a = self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ )
if len(__magic_name__ ) > 1:
warnings.warn(
"""Stopping on a multiple token sequence is not yet supported on transformers. The first token of"""
""" the stop sequence will be used as the stop sequence string in the interim.""" )
a = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
return True
def lowerCamelCase__ ( self :Dict , *__magic_name__ :Optional[int] , __magic_name__ :List[str] ):
'''simple docstring'''
a = self.model.config.prefix if self.model.config.prefix is not None else """"""
if isinstance(args[0] , __magic_name__ ):
if self.tokenizer.pad_token_id is None:
raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" )
a = ([prefix + arg for arg in args[0]],)
a = True
elif isinstance(args[0] , __magic_name__ ):
a = (prefix + args[0],)
a = False
else:
raise ValueError(
F' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' )
a = self.tokenizer(*__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self :Tuple , *__magic_name__ :Any , **__magic_name__ :str ):
'''simple docstring'''
a = super().__call__(*__magic_name__ , **__magic_name__ )
if (
isinstance(args[0] , __magic_name__ )
and all(isinstance(__magic_name__ , __magic_name__ ) for el in args[0] )
and all(len(__magic_name__ ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[Any] , __magic_name__ :List[str]=TruncationStrategy.DO_NOT_TRUNCATE , **__magic_name__ :Any ):
'''simple docstring'''
a = self._parse_and_tokenize(__magic_name__ , truncation=__magic_name__ , **__magic_name__ )
return inputs
def lowerCamelCase__ ( self :Any , __magic_name__ :int , **__magic_name__ :int ):
'''simple docstring'''
if self.framework == "pt":
a , a = model_inputs["""input_ids"""].shape
elif self.framework == "tf":
a , a = tf.shape(model_inputs["""input_ids"""] ).numpy()
a = generate_kwargs.get("""min_length""" , self.model.config.min_length )
a = generate_kwargs.get("""max_length""" , self.model.config.max_length )
self.check_inputs(__magic_name__ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] )
a = self.model.generate(**__magic_name__ , **__magic_name__ )
a = output_ids.shape[0]
if self.framework == "pt":
a = output_ids.reshape(__magic_name__ , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
a = tf.reshape(__magic_name__ , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Dict , __magic_name__ :Any=ReturnType.TEXT , __magic_name__ :int=False ):
'''simple docstring'''
a = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
a = {F'{self.return_name}_token_ids': output_ids}
elif return_type == ReturnType.TEXT:
a = {
F'{self.return_name}_text': self.tokenizer.decode(
__magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , )
}
records.append(__magic_name__ )
return records
@add_end_docstrings(__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''summary'''
def __call__( self :Any , *__magic_name__ :List[str] , **__magic_name__ :Optional[int] ):
'''simple docstring'''
return super().__call__(*__magic_name__ , **__magic_name__ )
def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if max_length < min_length:
logger.warning(F'Your min_length={min_length} must be inferior than your max_length={max_length}.' )
if input_length < max_length:
logger.warning(
F'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '
"""a summarization task, where outputs shorter than the input are typically wanted, you might """
F'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' )
@add_end_docstrings(__magic_name__ )
class __lowerCAmelCase ( __magic_name__ ):
UpperCamelCase__ = '''translation'''
def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int ):
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '
"""increasing your max_length manually, e.g. translator('...', max_length=400)""" )
return True
def lowerCamelCase__ ( self :str , *__magic_name__ :Union[str, Any] , __magic_name__ :Any=TruncationStrategy.DO_NOT_TRUNCATE , __magic_name__ :Optional[Any]=None , __magic_name__ :List[str]=None ):
'''simple docstring'''
if getattr(self.tokenizer , """_build_translation_inputs""" , __magic_name__ ):
return self.tokenizer._build_translation_inputs(
*__magic_name__ , return_tensors=self.framework , truncation=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ )
else:
return super()._parse_and_tokenize(*__magic_name__ , truncation=__magic_name__ )
def lowerCamelCase__ ( self :int , __magic_name__ :List[str]=None , __magic_name__ :Union[str, Any]=None , **__magic_name__ :Optional[int] ):
'''simple docstring'''
a , a , a = super()._sanitize_parameters(**__magic_name__ )
if src_lang is not None:
a = src_lang
if tgt_lang is not None:
a = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
a = kwargs.get("""task""" , self.task )
a = task.split("""_""" )
if task and len(__magic_name__ ) == 4:
# translation, XX, to YY
a = items[1]
a = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self :Optional[Any] , *__magic_name__ :Any , **__magic_name__ :str ):
'''simple docstring'''
return super().__call__(*__magic_name__ , **__magic_name__ )
| 468 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@property
def snake_case__ ( self : List[str] ):
torch.manual_seed(0 )
__magic_name__ = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def snake_case__ ( self : List[str] ):
__magic_name__ = self.dummy_uncond_unet
__magic_name__ = PNDMScheduler()
__magic_name__ = PNDMPipeline(unet=a__ , scheduler=a__ )
pndm.to(a__ )
pndm.set_progress_bar_config(disable=a__ )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pndm(generator=a__ , num_inference_steps=20 , output_type='''numpy''' ).images
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pndm(generator=a__ , num_inference_steps=20 , output_type='''numpy''' , return_dict=a__ )[0]
__magic_name__ = image[0, -3:, -3:, -1]
__magic_name__ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__magic_name__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
def snake_case__ ( self : List[str] ):
__magic_name__ = '''google/ddpm-cifar10-32'''
__magic_name__ = UNetaDModel.from_pretrained(a__ )
__magic_name__ = PNDMScheduler()
__magic_name__ = PNDMPipeline(unet=a__ , scheduler=a__ )
pndm.to(a__ )
pndm.set_progress_bar_config(disable=a__ )
__magic_name__ = torch.manual_seed(0 )
__magic_name__ = pndm(generator=a__ , output_type='''numpy''' ).images
__magic_name__ = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__magic_name__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 245 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_lowerCAmelCase = {
"configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"]
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = ["RemBertTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = ["RemBertTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = [
"REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RemBertForCausalLM",
"RemBertForMaskedLM",
"RemBertForMultipleChoice",
"RemBertForQuestionAnswering",
"RemBertForSequenceClassification",
"RemBertForTokenClassification",
"RemBertLayer",
"RemBertModel",
"RemBertPreTrainedModel",
"load_tf_weights_in_rembert",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase = [
"TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRemBertForCausalLM",
"TFRemBertForMaskedLM",
"TFRemBertForMultipleChoice",
"TFRemBertForQuestionAnswering",
"TFRemBertForSequenceClassification",
"TFRemBertForTokenClassification",
"TFRemBertLayer",
"TFRemBertModel",
"TFRemBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
_lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 245 | 1 |
"""simple docstring"""
def lowercase ( __UpperCamelCase ) -> list[int]:
if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ):
raise ValueError('''Length must be a positive integer.''' )
return [n * (2 * n - 1) for n in range(__UpperCamelCase )]
if __name__ == "__main__":
print(hexagonal_numbers(length=5))
print(hexagonal_numbers(length=10))
| 490 |
"""simple docstring"""
import argparse
import os
import re
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_dummies.py
__lowerCamelCase = "src/diffusers"
# Matches is_xxx_available()
__lowerCamelCase = re.compile(r"is\_([a-z_]*)_available\(\)")
# Matches from xxx import bla
__lowerCamelCase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
__lowerCamelCase = "\n{0} = None\n"
__lowerCamelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n"
__lowerCamelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n"
def lowercase ( __UpperCamelCase ) -> Tuple:
__magic_name__ = _re_backend.findall(__UpperCamelCase )
if len(__UpperCamelCase ) == 0:
return None
return "_and_".join(__UpperCamelCase )
def lowercase ( ) -> List[str]:
with open(os.path.join(__UpperCamelCase , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__magic_name__ = f.readlines()
# Get to the point we do the actual imports for type checking
__magic_name__ = 0
__magic_name__ = {}
# Go through the end of the file
while line_index < len(__UpperCamelCase ):
# If the line contains is_backend_available, we grab all objects associated with the `else` block
__magic_name__ = find_backend(lines[line_index] )
if backend is not None:
while not lines[line_index].startswith('''else:''' ):
line_index += 1
line_index += 1
__magic_name__ = []
# Until we unindent, add backend objects to the list
while line_index < len(__UpperCamelCase ) and len(lines[line_index] ) > 1:
__magic_name__ = lines[line_index]
__magic_name__ = _re_single_line_import.search(__UpperCamelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
if len(__UpperCamelCase ) > 0:
__magic_name__ = objects
else:
line_index += 1
return backend_specific_objects
def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str:
if name.isupper():
return DUMMY_CONSTANT.format(__UpperCamelCase )
elif name.islower():
return DUMMY_FUNCTION.format(__UpperCamelCase , __UpperCamelCase )
else:
return DUMMY_CLASS.format(__UpperCamelCase , __UpperCamelCase )
def lowercase ( __UpperCamelCase=None ) -> List[Any]:
if backend_specific_objects is None:
__magic_name__ = read_init()
# For special correspondence backend to module name as used in the function requires_modulename
__magic_name__ = {}
for backend, objects in backend_specific_objects.items():
__magic_name__ = '''[''' + ''', '''.join(f'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']'''
__magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n'''
dummy_file += "from ..utils import DummyObject, requires_backends\n\n"
dummy_file += "\n".join([create_dummy_object(__UpperCamelCase , __UpperCamelCase ) for o in objects] )
__magic_name__ = dummy_file
return dummy_files
def lowercase ( __UpperCamelCase=False ) -> List[str]:
__magic_name__ = create_dummy_files()
# For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py
__magic_name__ = {'''torch''': '''pt'''}
# Locate actual dummy modules and read their content.
__magic_name__ = os.path.join(__UpperCamelCase , '''utils''' )
__magic_name__ = {
backend: os.path.join(__UpperCamelCase , f'''dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py''' )
for backend in dummy_files.keys()
}
__magic_name__ = {}
for backend, file_path in dummy_file_paths.items():
if os.path.isfile(__UpperCamelCase ):
with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__magic_name__ = f.read()
else:
__magic_name__ = ''''''
for backend in dummy_files.keys():
if dummy_files[backend] != actual_dummies[backend]:
if overwrite:
print(
f'''Updating diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py as the main '''
'''__init__ has new objects.''' )
with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f:
f.write(dummy_files[backend] )
else:
raise ValueError(
'''The main __init__ has objects that are not present in '''
f'''diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py. Run `make fix-copies` '''
'''to fix this.''' )
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__lowerCamelCase = parser.parse_args()
check_dummies(args.fix_and_overwrite)
| 490 | 1 |
'''simple docstring'''
from argparse import ArgumentParser
from .env import EnvironmentCommand
def _UpperCAmelCase ( ) -> int:
"""simple docstring"""
lowercase_ : Optional[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' )
lowercase_ : Union[str, Any] = parser.add_subparsers(help='diffusers-cli command helpers' )
# Register commands
EnvironmentCommand.register_subcommand(lowerCAmelCase__ )
# Let's go
lowercase_ : Optional[Any] = parser.parse_args()
if not hasattr(lowerCAmelCase__ , 'func' ):
parser.print_help()
exit(1 )
# Run
lowercase_ : Any = args.func(lowerCAmelCase__ )
service.run()
if __name__ == "__main__":
main()
| 720 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : Tuple = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Tuple = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : int = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : Dict = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : List[Any] = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
# Removed: 'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Optional[int]:
lowercase_ : str = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Union[str, Any] = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : Optional[int] = [
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
# pass variant but use the non-variant filenames
lowercase_ : Optional[int] = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : int = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : str = [
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
]
lowercase_ : str = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> List[str]:
# pass variant but use the non-variant filenames
lowercase_ : List[Any] = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> List[str]:
lowercase_ : Union[str, Any] = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
# 'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
| 7 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json',
# See all Cvt models at https://huggingface.co/models?filter=cvt
}
class lowerCamelCase ( __lowerCamelCase ):
UpperCamelCase_ : Tuple = 'cvt'
def __init__( self :Dict , lowercase :Union[str, Any]=3 , lowercase :List[Any]=[7, 3, 3] , lowercase :Optional[Any]=[4, 2, 2] , lowercase :int=[2, 1, 1] , lowercase :List[Any]=[6_4, 1_9_2, 3_8_4] , lowercase :Optional[int]=[1, 3, 6] , lowercase :int=[1, 2, 1_0] , lowercase :str=[4.0, 4.0, 4.0] , lowercase :List[str]=[0.0, 0.0, 0.0] , lowercase :int=[0.0, 0.0, 0.0] , lowercase :Optional[Any]=[0.0, 0.0, 0.1] , lowercase :str=[True, True, True] , lowercase :Tuple=[False, False, True] , lowercase :Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , lowercase :Optional[Any]=[3, 3, 3] , lowercase :str=[1, 1, 1] , lowercase :str=[2, 2, 2] , lowercase :Optional[int]=[1, 1, 1] , lowercase :List[str]=[1, 1, 1] , lowercase :List[str]=0.02 , lowercase :str=1e-12 , **lowercase :int , ) -> Any:
"""simple docstring"""
super().__init__(**lowercase )
SCREAMING_SNAKE_CASE = num_channels
SCREAMING_SNAKE_CASE = patch_sizes
SCREAMING_SNAKE_CASE = patch_stride
SCREAMING_SNAKE_CASE = patch_padding
SCREAMING_SNAKE_CASE = embed_dim
SCREAMING_SNAKE_CASE = num_heads
SCREAMING_SNAKE_CASE = depth
SCREAMING_SNAKE_CASE = mlp_ratio
SCREAMING_SNAKE_CASE = attention_drop_rate
SCREAMING_SNAKE_CASE = drop_rate
SCREAMING_SNAKE_CASE = drop_path_rate
SCREAMING_SNAKE_CASE = qkv_bias
SCREAMING_SNAKE_CASE = cls_token
SCREAMING_SNAKE_CASE = qkv_projection_method
SCREAMING_SNAKE_CASE = kernel_qkv
SCREAMING_SNAKE_CASE = padding_kv
SCREAMING_SNAKE_CASE = stride_kv
SCREAMING_SNAKE_CASE = padding_q
SCREAMING_SNAKE_CASE = stride_q
SCREAMING_SNAKE_CASE = initializer_range
SCREAMING_SNAKE_CASE = layer_norm_eps | 201 |
import os
def a ( a = "matrix.txt" ) ->int:
'''simple docstring'''
with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file:
SCREAMING_SNAKE_CASE = in_file.read()
SCREAMING_SNAKE_CASE = [[int(a ) for cell in row.split(''',''' )] for row in data.strip().splitlines()]
SCREAMING_SNAKE_CASE = [[0 for cell in row] for row in grid]
SCREAMING_SNAKE_CASE = len(grid[0] )
SCREAMING_SNAKE_CASE = [[0 for i in range(a )] for j in range(a )]
SCREAMING_SNAKE_CASE = grid[0][0]
for i in range(1 , a ):
SCREAMING_SNAKE_CASE = grid[0][i] + dp[0][i - 1]
for i in range(1 , a ):
SCREAMING_SNAKE_CASE = grid[i][0] + dp[i - 1][0]
for i in range(1 , a ):
for j in range(1 , a ):
SCREAMING_SNAKE_CASE = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] )
return dp[-1][-1]
if __name__ == "__main__":
print(F'''{solution() = }''') | 201 | 1 |
from __future__ import annotations
class lowercase :
def __init__( self , _a = 0 ) -> str:
_A : Any = key
def a__ ( self , _a , _a ) -> list[str]:
assert isinstance(_a , _a ) and isinstance(_a , _a )
_A : Any = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_a ) ^ key ) for ch in content]
def a__ ( self , _a , _a ) -> list[str]:
assert isinstance(_a , _a ) and isinstance(_a , _a )
_A : List[Any] = key or self.__key or 1
# make sure key is an appropriate size
key %= 255
return [chr(ord(_a ) ^ key ) for ch in content]
def a__ ( self , _a , _a = 0 ) -> str:
assert isinstance(_a , _a ) and isinstance(_a , _a )
_A : List[Any] = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_A : List[str] = """"""
for ch in content:
ans += chr(ord(_a ) ^ key )
return ans
def a__ ( self , _a , _a = 0 ) -> str:
assert isinstance(_a , _a ) and isinstance(_a , _a )
_A : List[str] = key or self.__key or 1
# make sure key can be any size
while key > 255:
key -= 255
# This will be returned
_A : List[str] = """"""
for ch in content:
ans += chr(ord(_a ) ^ key )
return ans
def a__ ( self , _a , _a = 0 ) -> bool:
assert isinstance(_a , _a ) and isinstance(_a , _a )
try:
with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(_a , _a ) )
except OSError:
return False
return True
def a__ ( self , _a , _a ) -> bool:
assert isinstance(_a , _a ) and isinstance(_a , _a )
try:
with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(_a , _a ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 713 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
"configuration_time_series_transformer": [
"TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TimeSeriesTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TimeSeriesTransformerForPrediction",
"TimeSeriesTransformerModel",
"TimeSeriesTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TimeSeriesTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_time_series_transformer import (
TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimeSeriesTransformerForPrediction,
TimeSeriesTransformerModel,
TimeSeriesTransformerPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 54 | 0 |
'''simple docstring'''
import os
def _UpperCamelCase ( ):
'''simple docstring'''
with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/p022_names.txt""" ) as file:
UpperCAmelCase__ = str(file.readlines()[0] )
UpperCAmelCase__ = names.replace("""\"""" , """""" ).split(""",""" )
names.sort()
UpperCAmelCase__ = 0
UpperCAmelCase__ = 0
for i, name in enumerate(SCREAMING_SNAKE_CASE__ ):
for letter in name:
name_score += ord(SCREAMING_SNAKE_CASE__ ) - 64
total_score += (i + 1) * name_score
UpperCAmelCase__ = 0
return total_score
if __name__ == "__main__":
print(solution())
| 603 |
'''simple docstring'''
import os
import tempfile
import unittest
from transformers import NezhaConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
)
from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[Any]=None , ):
"""simple docstring"""
UpperCAmelCase__ = parent
UpperCAmelCase__ = batch_size
UpperCAmelCase__ = seq_length
UpperCAmelCase__ = is_training
UpperCAmelCase__ = use_input_mask
UpperCAmelCase__ = use_token_type_ids
UpperCAmelCase__ = use_labels
UpperCAmelCase__ = vocab_size
UpperCAmelCase__ = hidden_size
UpperCAmelCase__ = num_hidden_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = intermediate_size
UpperCAmelCase__ = hidden_act
UpperCAmelCase__ = hidden_dropout_prob
UpperCAmelCase__ = attention_probs_dropout_prob
UpperCAmelCase__ = max_position_embeddings
UpperCAmelCase__ = type_vocab_size
UpperCAmelCase__ = type_sequence_label_size
UpperCAmelCase__ = initializer_range
UpperCAmelCase__ = num_labels
UpperCAmelCase__ = num_choices
UpperCAmelCase__ = scope
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCAmelCase__ = None
if self.use_input_mask:
UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase__ = None
if self.use_token_type_ids:
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCAmelCase__ = None
UpperCAmelCase__ = None
UpperCAmelCase__ = None
if self.use_labels:
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices )
UpperCAmelCase__ = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
return NezhaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = self.prepare_config_and_inputs()
UpperCAmelCase__ = True
UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaModel(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
UpperCAmelCase__ = model(_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , ):
"""simple docstring"""
UpperCAmelCase__ = True
UpperCAmelCase__ = NezhaModel(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , )
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaForMaskedLM(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaForNextSentencePrediction(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaForPreTraining(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaForQuestionAnswering(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = NezhaForSequenceClassification(_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.num_labels
UpperCAmelCase__ = NezhaForTokenClassification(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ):
"""simple docstring"""
UpperCAmelCase__ = self.num_choices
UpperCAmelCase__ = NezhaForMultipleChoice(config=_UpperCAmelCase )
model.to(_UpperCAmelCase )
model.eval()
UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
UpperCAmelCase__ = model(
_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = config_and_inputs
UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ : Any = (
(
NezhaModel,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
)
if is_torch_available()
else ()
)
lowerCAmelCase_ : Tuple = (
{
"""feature-extraction""": NezhaModel,
"""fill-mask""": NezhaForMaskedLM,
"""question-answering""": NezhaForQuestionAnswering,
"""text-classification""": NezhaForSequenceClassification,
"""token-classification""": NezhaForTokenClassification,
"""zero-shot""": NezhaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowerCAmelCase_ : Union[str, Any] = True
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False ):
"""simple docstring"""
UpperCAmelCase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase )
if return_labels:
if model_class in get_values(_UpperCAmelCase ):
UpperCAmelCase__ = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase )
UpperCAmelCase__ = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase )
return inputs_dict
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = NezhaModelTester(self )
UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ):
"""simple docstring"""
(
(
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) , (
UpperCAmelCase__
) ,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
UpperCAmelCase__ = None
self.model_tester.create_and_check_model_as_decoder(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase )
@slow
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase__ = NezhaModel.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@slow
@require_torch_gpu
def SCREAMING_SNAKE_CASE__ ( self : str ):
"""simple docstring"""
UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# NezhaForMultipleChoice behaves incorrectly in JIT environments.
if model_class == NezhaForMultipleChoice:
return
UpperCAmelCase__ = True
UpperCAmelCase__ = model_class(config=_UpperCAmelCase )
UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase__ = torch.jit.trace(
_UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """bert.pt""" ) )
UpperCAmelCase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """bert.pt""" ) , map_location=_UpperCAmelCase )
loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) )
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" )
UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
UpperCAmelCase__ = torch.Size((1, 6, 7_68) )
self.assertEqual(output.shape , _UpperCAmelCase )
UpperCAmelCase__ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
@slow
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" )
UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] )
UpperCAmelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0]
UpperCAmelCase__ = torch.Size((1, 6, 2_11_28) )
self.assertEqual(output.shape , _UpperCAmelCase )
UpperCAmelCase__ = torch.tensor(
[[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
| 603 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case : List[str] = logging.get_logger(__name__)
_snake_case : Optional[int] = [
['attention', 'attn'],
['encoder_attention', 'encoder_attn'],
['q_lin', 'q_proj'],
['k_lin', 'k_proj'],
['v_lin', 'v_proj'],
['out_lin', 'out_proj'],
['norm_embeddings', 'layernorm_embedding'],
['position_embeddings', 'embed_positions'],
['embeddings', 'embed_tokens'],
['ffn.lin', 'fc'],
]
def snake_case_ (UpperCamelCase : List[str] ):
'''simple docstring'''
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_a = k.replace(UpperCamelCase , UpperCamelCase )
if k.startswith('''encoder''' ):
_a = k.replace('''.attn''' , '''.self_attn''' )
_a = k.replace('''norm1''' , '''self_attn_layer_norm''' )
_a = k.replace('''norm2''' , '''final_layer_norm''' )
elif k.startswith('''decoder''' ):
_a = k.replace('''norm1''' , '''self_attn_layer_norm''' )
_a = k.replace('''norm2''' , '''encoder_attn_layer_norm''' )
_a = k.replace('''norm3''' , '''final_layer_norm''' )
return k
def snake_case_ (UpperCamelCase : Optional[Any] ):
'''simple docstring'''
_a = [
'''model.encoder.layernorm_embedding.weight''',
'''model.encoder.layernorm_embedding.bias''',
'''model.decoder.layernorm_embedding.weight''',
'''model.decoder.layernorm_embedding.bias''',
]
for k in keys:
_a = sd.pop(UpperCamelCase )
_a = k.replace('''layernorm_embedding''' , '''layer_norm''' )
assert new_k not in sd
_a = v
_snake_case : List[str] = ['START']
@torch.no_grad()
def snake_case_ (UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : int ):
'''simple docstring'''
_a = torch.load(UpperCamelCase , map_location='''cpu''' )
_a = model['''model''']
_a = BlenderbotConfig.from_json_file(UpperCamelCase )
_a = BlenderbotForConditionalGeneration(UpperCamelCase )
_a = m.model.state_dict().keys()
_a = []
_a = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_a = rename_state_dict_key(UpperCamelCase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_a = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(UpperCamelCase )
m.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase )
m.half()
m.save_pretrained(UpperCamelCase )
if __name__ == "__main__":
_snake_case : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin')
parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.')
parser.add_argument(
'--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use'
)
_snake_case : Optional[int] = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 377 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
_snake_case : List[str] = '\nimport os\n'
_snake_case : Dict = '\ndef foo():\n import os\n return False\n'
_snake_case : List[Any] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n'
_snake_case : Dict = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n'
_snake_case : Optional[Any] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n'
_snake_case : Optional[Any] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n'
_snake_case : Any = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n'
_snake_case : List[str] = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n'
_snake_case : Dict = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n'
_snake_case : Any = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n'
_snake_case : Union[str, Any] = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , UpperCamelCase )
def snake_case_ (UpperCamelCase : str , UpperCamelCase : List[Any] ):
'''simple docstring'''
_a = os.path.join(UpperCamelCase , '''test_file.py''' )
with open(UpperCamelCase , '''w''' ) as _tmp_file:
_tmp_file.write(UpperCamelCase )
_a = get_imports(UpperCamelCase )
assert parsed_imports == ["os"]
| 377 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
lowercase_ = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]:
if attention_mask is None:
lowercase__ = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
lowercase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
lowercase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , a : str , a : Any=13 , a : List[str]=7 , a : Any=True , a : str=False , a : List[Any]=99 , a : List[Any]=16 , a : Any=2 , a : Dict=4 , a : List[str]=4 , a : int="gelu" , a : int=0.1 , a : List[Any]=0.1 , a : str=32 , a : int=2 , a : Tuple=1 , a : List[str]=0 , a : Optional[Any]=0.02 , )-> List[str]:
"""simple docstring"""
lowercase__ = parent
lowercase__ = batch_size
lowercase__ = seq_length
lowercase__ = is_training
lowercase__ = use_labels
lowercase__ = vocab_size
lowercase__ = hidden_size
lowercase__ = num_hidden_layers
lowercase__ = num_attention_heads
lowercase__ = intermediate_size
lowercase__ = hidden_act
lowercase__ = hidden_dropout_prob
lowercase__ = attention_probs_dropout_prob
lowercase__ = max_position_embeddings
lowercase__ = eos_token_id
lowercase__ = pad_token_id
lowercase__ = bos_token_id
lowercase__ = initializer_range
def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple:
"""simple docstring"""
lowercase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
lowercase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
lowercase__ = shift_tokens_right(a , 1 , 2 )
lowercase__ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a , )
lowercase__ = prepare_blenderbot_inputs_dict(a , a , a )
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]:
"""simple docstring"""
lowercase__ , lowercase__ = self.prepare_config_and_inputs()
return config, inputs_dict
def SCREAMING_SNAKE_CASE_ ( self : Any , a : List[Any] , a : int , a : str )-> Optional[int]:
"""simple docstring"""
lowercase__ = 20
lowercase__ = model_class_name(a )
lowercase__ = model.encode(inputs_dict['input_ids'] )
lowercase__ , lowercase__ = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowercase__ = model.init_cache(decoder_input_ids.shape[0] , a , a )
lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' )
lowercase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase__ = model.decode(
decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , )
lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowercase__ = model.decode(
decoder_input_ids[:, -1:] , a , decoder_attention_mask=a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a , )
lowercase__ = model.decode(a , a )
lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
def SCREAMING_SNAKE_CASE_ ( self : Any , a : Dict , a : Tuple , a : Tuple )-> Union[str, Any]:
"""simple docstring"""
lowercase__ = 20
lowercase__ = model_class_name(a )
lowercase__ = model.encode(inputs_dict['input_ids'] )
lowercase__ , lowercase__ = (
inputs_dict['decoder_input_ids'],
inputs_dict['decoder_attention_mask'],
)
lowercase__ = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
lowercase__ = model.init_cache(decoder_input_ids.shape[0] , a , a )
lowercase__ = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
lowercase__ = model.decode(
decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , )
lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' )
lowercase__ = model.decode(
decoder_input_ids[:, -1:] , a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a , decoder_position_ids=a , )
lowercase__ = model.decode(a , a , decoder_attention_mask=a )
lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class SCREAMING_SNAKE_CASE (unittest.TestCase ):
_UpperCamelCase : Dict = 99
def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict:
"""simple docstring"""
lowercase__ = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
lowercase__ = input_ids.shape[0]
lowercase__ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def SCREAMING_SNAKE_CASE_ ( self : int )-> int:
"""simple docstring"""
lowercase__ , lowercase__ , lowercase__ = self._get_config_and_data()
lowercase__ = FlaxBlenderbotSmallForConditionalGeneration(a )
lowercase__ = lm_model(input_ids=a )
lowercase__ = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['logits'].shape , a )
def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Tuple:
"""simple docstring"""
lowercase__ = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
lowercase__ = FlaxBlenderbotSmallForConditionalGeneration(a )
lowercase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
lowercase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
lowercase__ = lm_model(input_ids=a , decoder_input_ids=a )
lowercase__ = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['logits'].shape , a )
def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]:
"""simple docstring"""
lowercase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
lowercase__ = shift_tokens_right(a , 1 , 2 )
lowercase__ = np.equal(a , 1 ).astype(np.floataa ).sum()
lowercase__ = np.equal(a , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(a , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class SCREAMING_SNAKE_CASE (snake_case_ , unittest.TestCase , snake_case_ ):
_UpperCamelCase : Any = True
_UpperCamelCase : int = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
_UpperCamelCase : str = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]:
"""simple docstring"""
lowercase__ = FlaxBlenderbotSmallModelTester(self )
def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(a , a , a )
def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(a , a , a )
def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase__ = self._prepare_for_class(a , a )
lowercase__ = model_class(a )
@jax.jit
def encode_jitted(a : str , a : Optional[Any]=None , **a : Any ):
return model.encode(input_ids=a , attention_mask=a )
with self.subTest('JIT Enabled' ):
lowercase__ = encode_jitted(**a ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowercase__ = encode_jitted(**a ).to_tuple()
self.assertEqual(len(a ) , len(a ) )
for jitted_output, output in zip(a , a ):
self.assertEqual(jitted_output.shape , output.shape )
def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]:
"""simple docstring"""
lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
lowercase__ = model_class(a )
lowercase__ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] )
lowercase__ = {
'decoder_input_ids': inputs_dict['decoder_input_ids'],
'decoder_attention_mask': inputs_dict['decoder_attention_mask'],
'encoder_outputs': encoder_outputs,
}
@jax.jit
def decode_jitted(a : List[str] , a : List[str] , a : Union[str, Any] ):
return model.decode(
decoder_input_ids=a , decoder_attention_mask=a , encoder_outputs=a , )
with self.subTest('JIT Enabled' ):
lowercase__ = decode_jitted(**a ).to_tuple()
with self.subTest('JIT Disabled' ):
with jax.disable_jit():
lowercase__ = decode_jitted(**a ).to_tuple()
self.assertEqual(len(a ) , len(a ) )
for jitted_output, output in zip(a , a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[str]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
lowercase__ = model_class_name.from_pretrained('facebook/blenderbot_small-90M' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
lowercase__ = np.ones((1, 1) ) * model.config.eos_token_id
lowercase__ = model(a )
self.assertIsNotNone(a )
| 235 | """simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__:Optional[int] = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class snake_case__ ( snake_case_ ):
_snake_case : Union[str, Any] = """sew-d"""
def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("p2c", "c2p") , lowerCamelCase="layer_norm" , lowerCamelCase="gelu_python" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-7 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ):
super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase )
__a = hidden_size
__a = feat_extract_norm
__a = feat_extract_activation
__a = list(lowerCamelCase )
__a = list(lowerCamelCase )
__a = list(lowerCamelCase )
__a = conv_bias
__a = num_conv_pos_embeddings
__a = num_conv_pos_embedding_groups
__a = len(self.conv_dim )
__a = num_hidden_layers
__a = intermediate_size
__a = squeeze_factor
__a = max_position_embeddings
__a = position_buckets
__a = share_att_key
__a = relative_attention
__a = norm_rel_ebd
__a = list(lowerCamelCase )
__a = hidden_act
__a = num_attention_heads
__a = hidden_dropout
__a = attention_dropout
__a = activation_dropout
__a = feat_proj_dropout
__a = final_dropout
__a = layer_norm_eps
__a = feature_layer_norm_eps
__a = initializer_range
__a = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__a = apply_spec_augment
__a = mask_time_prob
__a = mask_time_length
__a = mask_time_min_masks
__a = mask_feature_prob
__a = mask_feature_length
__a = mask_feature_min_masks
# ctc loss
__a = ctc_loss_reduction
__a = ctc_zero_infinity
# sequence classification
__a = use_weighted_layer_sum
__a = classifier_proj_size
@property
def a__ ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 528 | 0 |
from math import factorial
def a__ ( __UpperCamelCase = 1_0_0 ):
return sum(int(__UpperCamelCase ) for x in str(factorial(__UpperCamelCase ) ) )
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 356 | from __future__ import annotations
def a__ ( __UpperCamelCase ):
# preprocessing the first row
for i in range(1 , len(matrix[0] ) ):
matrix[0][i] += matrix[0][i - 1]
# preprocessing the first column
for i in range(1 , len(__UpperCamelCase ) ):
matrix[i][0] += matrix[i - 1][0]
# updating the path cost for current position
for i in range(1 , len(__UpperCamelCase ) ):
for j in range(1 , len(matrix[0] ) ):
matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] )
return matrix[-1][-1]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356 | 1 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class lowerCAmelCase_ ( _lowercase ):
"""simple docstring"""
def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> float:
return 0.0
def _a ( __lowercase , __lowercase ) -> tuple[int | float, int | float]:
"""simple docstring"""
__UpperCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
__UpperCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _a ( __lowercase , __lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = 512
__UpperCamelCase = [1] + [0] * (size - 1)
__UpperCamelCase = [filter_type.process(__lowercase ) for item in inputs]
__UpperCamelCase = [0] * (samplerate - size) # zero-padding
outputs += filler
__UpperCamelCase = np.abs(np.fft.fft(__lowercase ) )
__UpperCamelCase = 20 * np.logaa(__lowercase )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('Frequency (Hz)' )
plt.xscale('log' )
# Display within reasonable bounds
__UpperCamelCase = get_bounds(__lowercase , __lowercase )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel('Gain (dB)' )
plt.plot(__lowercase )
plt.show()
def _a ( __lowercase , __lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = 512
__UpperCamelCase = [1] + [0] * (size - 1)
__UpperCamelCase = [filter_type.process(__lowercase ) for item in inputs]
__UpperCamelCase = [0] * (samplerate - size) # zero-padding
outputs += filler
__UpperCamelCase = np.angle(np.fft.fft(__lowercase ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel('Frequency (Hz)' )
plt.xscale('log' )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel('Phase shift (Radians)' )
plt.plot(np.unwrap(__lowercase , -2 * pi ) )
plt.show()
| 383 |
import unittest
from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available
from transformers.pipelines import pipeline
from transformers.pipelines.document_question_answering import apply_tesseract
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_detectrona,
require_pytesseract,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
from transformers.image_utils import load_image
else:
class lowerCAmelCase_ :
"""simple docstring"""
@staticmethod
def __lowercase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]:
pass
def _a ( __lowercase ) -> str:
"""simple docstring"""
return None
# This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace,
# so we can expect it to be available.
_snake_case = (
'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png'
)
@is_pipeline_test
@require_torch
@require_vision
class lowerCAmelCase_ ( unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING
@require_pytesseract
@require_vision
def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
__UpperCamelCase = pipeline(
'document-question-answering' , model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) )
__UpperCamelCase = 'What is the placebo?'
__UpperCamelCase = [
{
'image': load_image(_SCREAMING_SNAKE_CASE ),
'question': question,
},
{
'image': image,
'question': question,
},
{
'image': image,
'question': question,
'word_boxes': word_boxes,
},
]
return dqa_pipeline, examples
def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
__UpperCamelCase = dqa_pipeline(_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
_SCREAMING_SNAKE_CASE , [
[
{'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE ), 'start': ANY(_SCREAMING_SNAKE_CASE ), 'end': ANY(_SCREAMING_SNAKE_CASE )},
{'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE ), 'start': ANY(_SCREAMING_SNAKE_CASE ), 'end': ANY(_SCREAMING_SNAKE_CASE )},
]
]
* 3 , )
@require_torch
@require_detectrona
@require_pytesseract
def __lowercase( self ) -> Dict:
__UpperCamelCase = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = 'How many cats are there?'
__UpperCamelCase = [
{'score': 0.0_0_0_1, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39},
{'score': 0.0_0_0_1, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40},
]
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , _SCREAMING_SNAKE_CASE )
__UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , _SCREAMING_SNAKE_CASE )
# This image does not detect ANY text in it, meaning layoutlmv2 should fail.
# Empty answer probably
__UpperCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png'
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(_SCREAMING_SNAKE_CASE , [] )
# We can optionnally pass directly the words and bounding boxes
__UpperCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png'
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , words=_SCREAMING_SNAKE_CASE , boxes=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(_SCREAMING_SNAKE_CASE , [] )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def __lowercase( self ) -> str:
__UpperCamelCase = pipeline(
'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = 'What is the invoice number?'
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16},
] , )
__UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16},
] , )
__UpperCamelCase = dqa_pipeline(
[{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16},
],
]
* 2 , )
@slow
@require_torch
@require_detectrona
@require_pytesseract
def __lowercase( self ) -> int:
__UpperCamelCase = pipeline(
'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = 'What is the invoice number?'
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23},
{'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16},
] , )
__UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23},
{'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16},
] , )
__UpperCamelCase = dqa_pipeline(
[{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23},
{'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16},
]
]
* 2 , )
@slow
@require_torch
@require_pytesseract
@require_vision
def __lowercase( self ) -> Optional[int]:
__UpperCamelCase = AutoTokenizer.from_pretrained(
'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_SCREAMING_SNAKE_CASE )
__UpperCamelCase = pipeline(
'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_SCREAMING_SNAKE_CASE , revision='3dc6de3' , )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = 'What is the invoice number?'
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23},
] , )
__UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23},
] , )
__UpperCamelCase = dqa_pipeline(
[{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23},
]
]
* 2 , )
__UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) )
# This model should also work if `image` is set to None
__UpperCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23},
] , )
@slow
@require_torch
@require_pytesseract
@require_vision
def __lowercase( self ) -> Dict:
__UpperCamelCase = AutoTokenizer.from_pretrained(
'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_SCREAMING_SNAKE_CASE )
__UpperCamelCase = pipeline(
'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_SCREAMING_SNAKE_CASE , revision='3dc6de3' , max_seq_len=50 , )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = 'What is the invoice number?'
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16},
] , )
__UpperCamelCase = dqa_pipeline(
[{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
[
{'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16},
]
]
* 2 , )
__UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) )
# This model should also work if `image` is set to None
__UpperCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 )
self.assertEqual(
nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [
{'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16},
{'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16},
] , )
@slow
@require_torch
def __lowercase( self ) -> Union[str, Any]:
__UpperCamelCase = pipeline(
'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , )
__UpperCamelCase = INVOICE_URL
__UpperCamelCase = 'What is the invoice number?'
__UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 )
self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{'answer': 'us-001'}] )
@require_tf
@unittest.skip('Document question answering not implemented in TF' )
def __lowercase( self ) -> Optional[Any]:
pass
| 383 | 1 |
'''simple docstring'''
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ConditionalDetrImageProcessor
class a__ ( unittest.TestCase ):
def __init__(self : Optional[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : Union[str, Any]=7, __UpperCAmelCase : Optional[Any]=3, __UpperCAmelCase : int=30, __UpperCAmelCase : List[Any]=400, __UpperCAmelCase : Union[str, Any]=True, __UpperCAmelCase : Optional[Any]=None, __UpperCAmelCase : Union[str, Any]=True, __UpperCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5], __UpperCAmelCase : Dict=[0.5, 0.5, 0.5], __UpperCAmelCase : str=True, __UpperCAmelCase : List[Any]=1 / 255, __UpperCAmelCase : Union[str, Any]=True, ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
SCREAMING_SNAKE_CASE : int = parent
SCREAMING_SNAKE_CASE : str = batch_size
SCREAMING_SNAKE_CASE : int = num_channels
SCREAMING_SNAKE_CASE : Dict = min_resolution
SCREAMING_SNAKE_CASE : Union[str, Any] = max_resolution
SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize
SCREAMING_SNAKE_CASE : Optional[int] = size
SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize
SCREAMING_SNAKE_CASE : str = image_mean
SCREAMING_SNAKE_CASE : Tuple = image_std
SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale
SCREAMING_SNAKE_CASE : List[str] = rescale_factor
SCREAMING_SNAKE_CASE : int = do_pad
def lowercase__ (self : List[str] ) -> Dict:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def lowercase__ (self : List[str], __UpperCAmelCase : int, __UpperCAmelCase : List[str]=False ) -> Any:
"""simple docstring"""
if not batched:
SCREAMING_SNAKE_CASE : str = image_inputs[0]
if isinstance(UpperCAmelCase_, Image.Image ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = image.size
else:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = image.shape[1], image.shape[2]
if w < h:
SCREAMING_SNAKE_CASE : Optional[Any] = int(self.size['''shortest_edge'''] * h / w )
SCREAMING_SNAKE_CASE : Optional[Any] = self.size['''shortest_edge''']
elif w > h:
SCREAMING_SNAKE_CASE : int = self.size['''shortest_edge''']
SCREAMING_SNAKE_CASE : List[Any] = int(self.size['''shortest_edge'''] * w / h )
else:
SCREAMING_SNAKE_CASE : List[Any] = self.size['''shortest_edge''']
SCREAMING_SNAKE_CASE : List[Any] = self.size['''shortest_edge''']
else:
SCREAMING_SNAKE_CASE : List[str] = []
for image in image_inputs:
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_, key=lambda __UpperCAmelCase : item[0] )[0]
SCREAMING_SNAKE_CASE : str = max(UpperCAmelCase_, key=lambda __UpperCAmelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class a__ ( __UpperCAmelCase, unittest.TestCase ):
__magic_name__ : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None
def lowercase__ (self : str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = ConditionalDetrImageProcessingTester(self )
@property
def lowercase__ (self : Any ) -> int:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ (self : int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(UpperCAmelCase_, '''image_mean''' ) )
self.assertTrue(hasattr(UpperCAmelCase_, '''image_std''' ) )
self.assertTrue(hasattr(UpperCAmelCase_, '''do_normalize''' ) )
self.assertTrue(hasattr(UpperCAmelCase_, '''do_resize''' ) )
self.assertTrue(hasattr(UpperCAmelCase_, '''size''' ) )
def lowercase__ (self : Any ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad, UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict(
self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCAmelCase_ )
self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} )
self.assertEqual(image_processor.do_pad, UpperCAmelCase_ )
def lowercase__ (self : Tuple ) -> Any:
"""simple docstring"""
pass
def lowercase__ (self : Dict ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_, Image.Image )
# Test not batched input
SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(UpperCAmelCase_, batched=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Any = image_processing(UpperCAmelCase_, return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def lowercase__ (self : str ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase_, numpify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_, np.ndarray )
# Test not batched input
SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(UpperCAmelCase_, return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase_, batched=UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
def lowercase__ (self : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase_, torchify=UpperCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(UpperCAmelCase_, torch.Tensor )
# Test not batched input
SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), )
# Test batched
SCREAMING_SNAKE_CASE : Any = image_processing(UpperCAmelCase_, return_tensors='''pt''' ).pixel_values
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase_, batched=UpperCAmelCase_ )
self.assertEqual(
encoded_images.shape, (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
), )
@slow
def lowercase__ (self : Dict ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f:
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Dict = {'''image_id''': 39769, '''annotations''': target}
# encode them
SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' )
SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=UpperCAmelCase_, annotations=UpperCAmelCase_, return_tensors='''pt''' )
# verify pixel values
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape, UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCAmelCase_, atol=1e-4 ) )
# verify area
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCAmelCase_ ) )
# verify boxes
SCREAMING_SNAKE_CASE : Dict = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCAmelCase_, atol=1e-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCAmelCase_ ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCAmelCase_ ) )
# verify class_labels
SCREAMING_SNAKE_CASE : Dict = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCAmelCase_ ) )
# verify orig_size
SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCAmelCase_ ) )
# verify size
SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCAmelCase_ ) )
@slow
def lowercase__ (self : List[str] ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f:
SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() )
SCREAMING_SNAKE_CASE : Optional[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target}
SCREAMING_SNAKE_CASE : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrImageProcessor(format='''coco_panoptic''' )
SCREAMING_SNAKE_CASE : str = image_processing(images=UpperCAmelCase_, annotations=UpperCAmelCase_, masks_path=UpperCAmelCase_, return_tensors='''pt''' )
# verify pixel values
SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape, UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCAmelCase_, atol=1e-4 ) )
# verify area
SCREAMING_SNAKE_CASE : int = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCAmelCase_ ) )
# verify boxes
SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCAmelCase_, atol=1e-3 ) )
# verify image_id
SCREAMING_SNAKE_CASE : Dict = torch.tensor([39769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCAmelCase_ ) )
# verify is_crowd
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCAmelCase_ ) )
# verify class_labels
SCREAMING_SNAKE_CASE : str = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCAmelCase_ ) )
# verify masks
SCREAMING_SNAKE_CASE : Any = 822873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCAmelCase_ )
# verify orig_size
SCREAMING_SNAKE_CASE : List[str] = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCAmelCase_ ) )
# verify size
SCREAMING_SNAKE_CASE : int = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCAmelCase_ ) )
| 711 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class a__ ( metaclass=_lowercase ):
__magic_name__ : Dict = ["torch", "transformers", "onnx"]
def __init__(self : List[str], *__UpperCAmelCase : Dict, **__UpperCAmelCase : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Optional[Any], *__UpperCAmelCase : Tuple, **__UpperCAmelCase : int ) -> int:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Any, *__UpperCAmelCase : Tuple, **__UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
class a__ ( metaclass=_lowercase ):
__magic_name__ : Any = ["torch", "transformers", "onnx"]
def __init__(self : Dict, *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Any, *__UpperCAmelCase : Tuple, **__UpperCAmelCase : List[str] ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : int, *__UpperCAmelCase : List[Any], **__UpperCAmelCase : Any ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
class a__ ( metaclass=_lowercase ):
__magic_name__ : Optional[Any] = ["torch", "transformers", "onnx"]
def __init__(self : Dict, *__UpperCAmelCase : Dict, **__UpperCAmelCase : Any ) -> List[str]:
"""simple docstring"""
requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Tuple, *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Union[str, Any], *__UpperCAmelCase : List[str], **__UpperCAmelCase : str ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
class a__ ( metaclass=_lowercase ):
__magic_name__ : Tuple = ["torch", "transformers", "onnx"]
def __init__(self : Union[str, Any], *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : List[Any] ) -> Tuple:
"""simple docstring"""
requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : str, *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : Tuple ) -> str:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : int, *__UpperCAmelCase : List[Any], **__UpperCAmelCase : List[str] ) -> Tuple:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
class a__ ( metaclass=_lowercase ):
__magic_name__ : List[Any] = ["torch", "transformers", "onnx"]
def __init__(self : Dict, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : int ) -> List[str]:
"""simple docstring"""
requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : List[str], *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Dict ) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Any, *__UpperCAmelCase : List[str], **__UpperCAmelCase : List[Any] ) -> Dict:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
class a__ ( metaclass=_lowercase ):
__magic_name__ : Dict = ["torch", "transformers", "onnx"]
def __init__(self : Tuple, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : List[str] ) -> Any:
"""simple docstring"""
requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Tuple, *__UpperCAmelCase : Any, **__UpperCAmelCase : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
@classmethod
def lowercase__ (cls : Optional[Any], *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Optional[Any] ) -> int:
"""simple docstring"""
requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
| 355 | 0 |
"""simple docstring"""
import importlib.metadata
from typing import Union
from packaging.version import Version, parse
from .constants import STR_OPERATION_TO_FUNC
_lowerCAmelCase : List[str] = parse(importlib.metadata.version('''torch'''))
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]:
'''simple docstring'''
if operation not in STR_OPERATION_TO_FUNC.keys():
raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" )
_lowerCamelCase : Any = STR_OPERATION_TO_FUNC[operation]
if isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCamelCase : Any = parse(importlib.metadata.version(_lowerCamelCase ) )
return operation(_lowerCamelCase , parse(_lowerCamelCase ) )
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int:
'''simple docstring'''
return compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) | 46 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import rescale, resize, to_channel_dimension_format
from ...image_utils import (
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
lowercase : Optional[Any] = logging.get_logger(__name__)
def A_ ( A__ , A__ ) -> Union[str, Any]:
a__ : List[Any] = b.T
a__ : int = np.sum(np.square(A__ ) , axis=1 )
a__ : Any = np.sum(np.square(A__ ) , axis=0 )
a__ : Any = np.matmul(A__ , A__ )
a__ : List[str] = aa[:, None] - 2 * ab + ba[None, :]
return d
def A_ ( A__ , A__ ) -> Any:
a__ : Tuple = x.reshape(-1 , 3 )
a__ : str = squared_euclidean_distance(A__ , A__ )
return np.argmin(A__ , axis=1 )
class A__ ( __UpperCAmelCase ):
"""simple docstring"""
__A : str = ['''pixel_values''']
def __init__( self , lowercase = None , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = True , **lowercase , ) -> None:
'''simple docstring'''
super().__init__(**lowercase)
a__ : Any = size if size is not None else {'height': 256, 'width': 256}
a__ : Optional[int] = get_size_dict(lowercase)
a__ : List[Any] = np.array(lowercase) if clusters is not None else None
a__ : Optional[int] = do_resize
a__ : List[Any] = size
a__ : int = resample
a__ : Optional[int] = do_normalize
a__ : List[str] = do_color_quantize
def __lowercase ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ) -> np.ndarray:
'''simple docstring'''
a__ : List[str] = get_size_dict(lowercase)
if "height" not in size or "width" not in size:
raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}')
return resize(
lowercase , size=(size['height'], size['width']) , resample=lowercase , data_format=lowercase , **lowercase)
def __lowercase ( self , lowercase , lowercase = None , ) -> np.ndarray:
'''simple docstring'''
a__ : Union[str, Any] = rescale(image=lowercase , scale=1 / 1_27.5 , data_format=lowercase)
a__ : Any = image - 1
return image
def __lowercase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image:
'''simple docstring'''
a__ : Any = do_resize if do_resize is not None else self.do_resize
a__ : List[str] = size if size is not None else self.size
a__ : Dict = get_size_dict(lowercase)
a__ : Union[str, Any] = resample if resample is not None else self.resample
a__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize
a__ : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize
a__ : List[Any] = clusters if clusters is not None else self.clusters
a__ : Optional[Any] = np.array(lowercase)
a__ : int = make_list_of_images(lowercase)
if not valid_images(lowercase):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.')
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.')
if do_color_quantize and clusters is None:
raise ValueError('Clusters must be specified if do_color_quantize is True.')
# All transformations expect numpy arrays.
a__ : List[str] = [to_numpy_array(lowercase) for image in images]
if do_resize:
a__ : Any = [self.resize(image=lowercase , size=lowercase , resample=lowercase) for image in images]
if do_normalize:
a__ : List[str] = [self.normalize(image=lowercase) for image in images]
if do_color_quantize:
a__ : Optional[int] = [to_channel_dimension_format(lowercase , ChannelDimension.LAST) for image in images]
# color quantize from (batch_size, height, width, 3) to (batch_size, height, width)
a__ : str = np.array(lowercase)
a__ : str = color_quantize(lowercase , lowercase).reshape(images.shape[:-1])
# flatten to (batch_size, height*width)
a__ : Union[str, Any] = images.shape[0]
a__ : List[Any] = images.reshape(lowercase , -1)
# We need to convert back to a list of images to keep consistent behaviour across processors.
a__ : Tuple = list(lowercase)
else:
a__ : Any = [to_channel_dimension_format(lowercase , lowercase) for image in images]
a__ : List[str] = {'input_ids': images}
return BatchFeature(data=lowercase , tensor_type=lowercase)
| 302 | 0 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ImageGPTImageProcessor
class a_ ( unittest.TestCase ):
def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : List[Any]=1_8 , __lowerCAmelCase : Optional[Any]=3_0 , __lowerCAmelCase : str=4_0_0 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[Any]=True , ):
__snake_case = size if size is not None else {'height': 1_8, 'width': 1_8}
__snake_case = parent
__snake_case = batch_size
__snake_case = num_channels
__snake_case = image_size
__snake_case = min_resolution
__snake_case = max_resolution
__snake_case = do_resize
__snake_case = size
__snake_case = do_normalize
def lowercase__ ( self : List[Any] ):
return {
# here we create 2 clusters for the sake of simplicity
"clusters": np.asarray(
[
[0.8866443634033203, 0.6618829369544983, 0.3891746401786804],
[-0.6042559146881104, -0.02295008860528469, 0.5423797369003296],
] ),
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
}
@require_torch
@require_vision
class a_ ( UpperCAmelCase__ , unittest.TestCase ):
lowercase_ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None
def lowercase__ ( self : Dict ):
__snake_case = ImageGPTImageProcessingTester(self )
@property
def lowercase__ ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowercase__ ( self : Tuple ):
__snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCAmelCase , 'clusters' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) )
self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) )
def lowercase__ ( self : Optional[int] ):
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} )
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 )
self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} )
def lowercase__ ( self : Optional[Any] ):
__snake_case = self.image_processing_class(**self.image_processor_dict )
__snake_case = json.loads(image_processor.to_json_string() )
for key, value in self.image_processor_dict.items():
if key == "clusters":
self.assertTrue(np.array_equal(__lowerCAmelCase , obj[key] ) )
else:
self.assertEqual(obj[key] , __lowerCAmelCase )
def lowercase__ ( self : Any ):
__snake_case = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__snake_case = os.path.join(__lowerCAmelCase , 'image_processor.json' )
image_processor_first.to_json_file(__lowerCAmelCase )
__snake_case = self.image_processing_class.from_json_file(__lowerCAmelCase ).to_dict()
__snake_case = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , __lowerCAmelCase )
def lowercase__ ( self : List[str] ):
__snake_case = self.image_processing_class(**self.image_processor_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
image_processor_first.save_pretrained(__lowerCAmelCase )
__snake_case = self.image_processing_class.from_pretrained(__lowerCAmelCase ).to_dict()
__snake_case = image_processor_first.to_dict()
for key, value in image_processor_first.items():
if key == "clusters":
self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) )
else:
self.assertEqual(image_processor_first[key] , __lowerCAmelCase )
@unittest.skip('ImageGPT requires clusters at initialization' )
def lowercase__ ( self : int ):
pass
def lowerCamelCase__ ( ):
__snake_case = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' )
__snake_case = Image.open(dataset[4]['file'] )
__snake_case = Image.open(dataset[5]['file'] )
__snake_case = [imagea, imagea]
return images
@require_vision
@require_torch
class a_ ( unittest.TestCase ):
@slow
def lowercase__ ( self : List[Any] ):
__snake_case = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' )
__snake_case = prepare_images()
# test non-batched
__snake_case = image_processing(images[0] , return_tensors='pt' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) )
__snake_case = [3_0_6, 1_9_1, 1_9_1]
self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowerCAmelCase )
# test batched
__snake_case = image_processing(__lowerCAmelCase , return_tensors='pt' )
self.assertIsInstance(encoding.input_ids , torch.LongTensor )
self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) )
__snake_case = [3_0_3, 1_3, 1_3]
self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowerCAmelCase ) | 700 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, Union
import datasets
import numpy as np
import torch
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
_lowercase = logging.getLogger(__name__)
@dataclass
class a_ :
lowercase_ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowercase_ : Optional[str] = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowercase_ : Optional[str] = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowercase_ : Optional[str] = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
lowercase_ : bool = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , )
lowercase_ : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
lowercase_ : bool = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
@dataclass
class a_ :
lowercase_ : Optional[str] = field(default=UpperCAmelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} )
lowercase_ : Optional[str] = field(
default=UpperCAmelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , )
lowercase_ : bool = field(
default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
lowercase_ : Optional[int] = field(
default=UpperCAmelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , )
lowercase_ : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. If passed, sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowercase_ : bool = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''Whether to pad all samples to the maximum sentence length. '''
'''If False, will pad the samples dynamically when batching to the maximum length in the batch. More '''
'''efficient on GPU but very bad for TPU.'''
)
} , )
lowercase_ : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
lowercase_ : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowercase__ ( self : List[Any] ):
if self.train_file is not None:
__snake_case = self.train_file.split('.' )[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
__snake_case = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
@dataclass
class a_ :
lowercase_ : PreTrainedTokenizerBase
lowercase_ : Union[bool, str, PaddingStrategy] = True
lowercase_ : Optional[int] = None
lowercase_ : Optional[int] = None
def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ):
__snake_case = 'label' if 'label' in features[0].keys() else 'labels'
__snake_case = [feature.pop(__lowerCAmelCase ) for feature in features]
__snake_case = len(__lowerCAmelCase )
__snake_case = len(features[0]['input_ids'] )
__snake_case = [
[{k: v[i] for k, v in feature.items()} for i in range(__lowerCAmelCase )] for feature in features
]
__snake_case = list(chain(*__lowerCAmelCase ) )
__snake_case = self.tokenizer.pad(
__lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , )
# Un-flatten
__snake_case = {k: v.view(__lowerCAmelCase , __lowerCAmelCase , -1 ) for k, v in batch.items()}
# Add back labels
__snake_case = torch.tensor(__lowerCAmelCase , dtype=torch.intaa )
return batch
def lowerCamelCase__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_swag' , a , a )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
__snake_case = training_args.get_process_log_level()
logger.setLevel(a )
datasets.utils.logging.set_verbosity(a )
transformers.utils.logging.set_verbosity(a )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
__snake_case = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__snake_case = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. '
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.train_file is not None or data_args.validation_file is not None:
__snake_case = {}
if data_args.train_file is not None:
__snake_case = data_args.train_file
if data_args.validation_file is not None:
__snake_case = data_args.validation_file
__snake_case = data_args.train_file.split('.' )[-1]
__snake_case = load_dataset(
a , data_files=a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
# Downloading and loading the swag dataset from the hub.
__snake_case = load_dataset(
'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__snake_case = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
__snake_case = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# When using your own dataset or a different dataset from swag, you will probably need to change this.
__snake_case = [f'ending{i}' for i in range(4 )]
__snake_case = 'sent1'
__snake_case = 'sent2'
if data_args.max_seq_length is None:
__snake_case = tokenizer.model_max_length
if max_seq_length > 1024:
logger.warning(
'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value'
' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can'
' override this default with `--block_size xxx`.' )
__snake_case = 1024
else:
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' )
__snake_case = min(data_args.max_seq_length , tokenizer.model_max_length )
# Preprocessing the datasets.
def preprocess_function(a ):
__snake_case = [[context] * 4 for context in examples[context_name]]
__snake_case = examples[question_header_name]
__snake_case = [
[f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(a )
]
# Flatten out
__snake_case = list(chain(*a ) )
__snake_case = list(chain(*a ) )
# Tokenize
__snake_case = tokenizer(
a , a , truncation=a , max_length=a , padding='max_length' if data_args.pad_to_max_length else False , )
# Un-flatten
return {k: [v[i : i + 4] for i in range(0 , len(a ) , 4 )] for k, v in tokenized_examples.items()}
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('--do_train requires a train dataset' )
__snake_case = raw_datasets['train']
if data_args.max_train_samples is not None:
__snake_case = min(len(a ) , data_args.max_train_samples )
__snake_case = train_dataset.select(range(a ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
__snake_case = train_dataset.map(
a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError('--do_eval requires a validation dataset' )
__snake_case = raw_datasets['validation']
if data_args.max_eval_samples is not None:
__snake_case = min(len(a ) , data_args.max_eval_samples )
__snake_case = eval_dataset.select(range(a ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
__snake_case = eval_dataset.map(
a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , )
# Data collator
__snake_case = (
default_data_collator
if data_args.pad_to_max_length
else DataCollatorForMultipleChoice(tokenizer=a , pad_to_multiple_of=8 if training_args.fpaa else None )
)
# Metric
def compute_metrics(a ):
__snake_case , __snake_case = eval_predictions
__snake_case = np.argmax(a , axis=1 )
return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()}
# Initialize our Trainer
__snake_case = Trainer(
model=a , args=a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a , data_collator=a , compute_metrics=a , )
# Training
if training_args.do_train:
__snake_case = None
if training_args.resume_from_checkpoint is not None:
__snake_case = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
__snake_case = last_checkpoint
__snake_case = trainer.train(resume_from_checkpoint=a )
trainer.save_model() # Saves the tokenizer too for easy upload
__snake_case = train_result.metrics
__snake_case = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(a )
)
__snake_case = min(a , len(a ) )
trainer.log_metrics('train' , a )
trainer.save_metrics('train' , a )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__snake_case = trainer.evaluate()
__snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a )
__snake_case = min(a , len(a ) )
trainer.log_metrics('eval' , a )
trainer.save_metrics('eval' , a )
__snake_case = {
'finetuned_from': model_args.model_name_or_path,
'tasks': 'multiple-choice',
'dataset_tags': 'swag',
'dataset_args': 'regular',
'dataset': 'SWAG',
'language': 'en',
}
if training_args.push_to_hub:
trainer.push_to_hub(**a )
else:
trainer.create_model_card(**a )
def lowerCamelCase__ ( a ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 427 | 0 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
_UpperCAmelCase = random.Random()
def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : int=1.0, lowerCAmelCase : Tuple=None, lowerCAmelCase : Union[str, Any]=None ) -> Union[str, Any]:
if rng is None:
A = global_rng
A = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=400 , UpperCamelCase__ : Union[str, Any]=2000 , UpperCamelCase__ : Dict=2048 , UpperCamelCase__ : List[Any]=128 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : Any=30 , UpperCamelCase__ : Union[str, Any]=44100 , ):
A = parent
A = batch_size
A = min_seq_length
A = max_seq_length
A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
A = spectrogram_length
A = feature_size
A = num_audio_channels
A = hop_length
A = chunk_length
A = sampling_rate
def UpperCamelCase ( self : int ):
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Tuple=False ):
def _flatten(UpperCamelCase__ : Any ):
return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) )
if equal_length:
A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
A = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
A = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class _UpperCAmelCase ( snake_case__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Any = TvltFeatureExtractor
def UpperCamelCase ( self : str ):
A = TvltFeatureExtractionTester(self )
def UpperCamelCase ( self : Tuple ):
A = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'spectrogram_length' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'feature_size' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_audio_channels' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'hop_length' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'chunk_length' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'sampling_rate' ) )
def UpperCamelCase ( self : List[Any] ):
A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0]
check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ )
A = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ )
A = feat_extract_first.to_dict()
A = feat_extract_second.to_dict()
A = dict_first.pop('mel_filters' )
A = dict_second.pop('mel_filters' )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( self : Union[str, Any] ):
A = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
A = os.path.join(SCREAMING_SNAKE_CASE_ , 'feat_extract.json' )
feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ )
A = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ )
A = feat_extract_first.to_dict()
A = feat_extract_second.to_dict()
A = dict_first.pop('mel_filters' )
A = dict_second.pop('mel_filters' )
self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( self : Dict ):
# Initialize feature_extractor
A = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
A = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs]
# Test not batched input
A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=44100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
A = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=44100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
A = feature_extractor(
SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=44100 , mask_audio=SCREAMING_SNAKE_CASE_ ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
A = [floats_list((1, x) )[0] for x in (800, 800, 800)]
A = np.asarray(SCREAMING_SNAKE_CASE_ )
A = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=44100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def UpperCamelCase ( self : Any , UpperCamelCase__ : List[Any] ):
A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' )
# automatic decoding with librispeech
A = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio']
return [x["array"] for x in speech_samples]
def UpperCamelCase ( self : Optional[int] ):
A = self._load_datasamples(1 )
A = TvltFeatureExtractor()
A = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 192, 128) )
A = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
| 699 |
from collections import deque
class lowerCAmelCase_ :
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ):
lowerCAmelCase__ = process_name # process name
lowerCAmelCase__ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowerCAmelCase__ = arrival_time
lowerCAmelCase__ = burst_time # remaining burst time
lowerCAmelCase__ = 0 # total time of the process wait in ready queue
lowerCAmelCase__ = 0 # time from arrival time to completion time
class lowerCAmelCase_ :
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ):
# total number of mlfq's queues
lowerCAmelCase__ = number_of_queues
# time slice of queues that round robin algorithm applied
lowerCAmelCase__ = time_slices
# unfinished process is in this ready_queue
lowerCAmelCase__ = queue
# current time
lowerCAmelCase__ = current_time
# finished process is in this sequence queue
lowerCAmelCase__ = deque()
def __snake_case ( self : Tuple ):
lowerCAmelCase__ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ):
lowerCAmelCase__ = []
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ):
lowerCAmelCase__ = []
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ):
lowerCAmelCase__ = []
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : deque[Process] ):
return [q.burst_time for q in queue]
def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : deque[Process] ):
lowerCAmelCase__ = deque() # sequence deque of finished process
while len(SCREAMING_SNAKE_CASE_ ) != 0:
lowerCAmelCase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(SCREAMING_SNAKE_CASE_ )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowerCAmelCase__ = 0
# set the process's turnaround time because it is finished
lowerCAmelCase__ = self.current_time - cp.arrival_time
# set the completion time
lowerCAmelCase__ = self.current_time
# add the process to queue that has finished queue
finished.append(SCREAMING_SNAKE_CASE_ )
self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ):
lowerCAmelCase__ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(SCREAMING_SNAKE_CASE_ ) ):
lowerCAmelCase__ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(SCREAMING_SNAKE_CASE_ )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowerCAmelCase__ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(SCREAMING_SNAKE_CASE_ )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowerCAmelCase__ = 0
# set the finish time
lowerCAmelCase__ = self.current_time
# update the process' turnaround time because it is finished
lowerCAmelCase__ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(SCREAMING_SNAKE_CASE_ )
self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def __snake_case ( self : int ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
lowerCAmelCase__ , lowerCAmelCase__ = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
_UpperCAmelCase : List[Any] = Process("P1", 0, 53)
_UpperCAmelCase : Tuple = Process("P2", 0, 17)
_UpperCAmelCase : int = Process("P3", 0, 68)
_UpperCAmelCase : str = Process("P4", 0, 24)
_UpperCAmelCase : Tuple = 3
_UpperCAmelCase : List[Any] = [17, 25]
_UpperCAmelCase : Tuple = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])})
_UpperCAmelCase : Tuple = Process("P1", 0, 53)
_UpperCAmelCase : List[str] = Process("P2", 0, 17)
_UpperCAmelCase : Any = Process("P3", 0, 68)
_UpperCAmelCase : List[Any] = Process("P4", 0, 24)
_UpperCAmelCase : Optional[int] = 3
_UpperCAmelCase : int = [17, 25]
_UpperCAmelCase : str = deque([Pa, Pa, Pa, Pa])
_UpperCAmelCase : Tuple = MLFQ(number_of_queues, time_slices, queue, 0)
_UpperCAmelCase : int = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'''waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'''completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'''turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print sequence of finished processes
print(
F'''sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'''
)
| 668 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def lowercase_ ( self ):
__snake_case : Any = 'ZinengTang/tvlt-base'
__snake_case : List[str] = tempfile.mkdtemp()
def lowercase_ ( self , **_UpperCAmelCase ):
return TvltImageProcessor.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowercase_ ( self , **_UpperCAmelCase ):
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_UpperCAmelCase )
def lowercase_ ( self ):
shutil.rmtree(self.tmpdirname )
def lowercase_ ( self ):
__snake_case : Dict = self.get_image_processor()
__snake_case : Optional[int] = self.get_feature_extractor()
__snake_case : Dict = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
__snake_case : Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def lowercase_ ( self ):
__snake_case : Any = self.get_image_processor()
__snake_case : Optional[int] = self.get_feature_extractor()
__snake_case : Optional[Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
__snake_case : Any = np.ones([12_000] )
__snake_case : str = feature_extractor(_UpperCAmelCase , return_tensors='np' )
__snake_case : Any = processor(audio=_UpperCAmelCase , return_tensors='np' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ):
__snake_case : List[Any] = self.get_image_processor()
__snake_case : int = self.get_feature_extractor()
__snake_case : List[str] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
__snake_case : Dict = np.ones([3, 224, 224] )
__snake_case : Optional[Any] = image_processor(_UpperCAmelCase , return_tensors='np' )
__snake_case : Tuple = processor(images=_UpperCAmelCase , return_tensors='np' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowercase_ ( self ):
__snake_case : str = self.get_image_processor()
__snake_case : int = self.get_feature_extractor()
__snake_case : List[Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
__snake_case : Optional[int] = np.ones([12_000] )
__snake_case : Any = np.ones([3, 224, 224] )
__snake_case : Any = processor(audio=_UpperCAmelCase , images=_UpperCAmelCase )
self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] )
# test if it raises when no input is passed
with pytest.raises(_UpperCAmelCase ):
processor()
def lowercase_ ( self ):
__snake_case : int = self.get_image_processor()
__snake_case : Any = self.get_feature_extractor()
__snake_case : List[str] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
| 679 | import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase):
"""simple docstring"""
__UpperCAmelCase = ShapEPipeline
__UpperCAmelCase = ["prompt"]
__UpperCAmelCase = ["prompt"]
__UpperCAmelCase = [
"num_images_per_prompt",
"num_inference_steps",
"generator",
"latents",
"guidance_scale",
"frame_size",
"output_type",
"return_dict",
]
__UpperCAmelCase = False
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return 32
@property
def lowercase_ ( self ):
return self.time_input_dim * 4
@property
def lowercase_ ( self ):
return 8
@property
def lowercase_ ( self ):
__snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
return tokenizer
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Union[str, Any] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(_UpperCAmelCase )
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Any = {
'num_attention_heads': 2,
'attention_head_dim': 16,
'embedding_dim': self.time_input_dim,
'num_embeddings': 32,
'embedding_proj_dim': self.text_embedder_hidden_size,
'time_embed_dim': self.time_embed_dim,
'num_layers': 1,
'clip_embed_dim': self.time_input_dim * 2,
'additional_embeddings': 0,
'time_embed_act_fn': 'gelu',
'norm_in_type': 'layer',
'encoder_hid_proj_type': None,
'added_emb_type': None,
}
__snake_case : Dict = PriorTransformer(**_UpperCAmelCase )
return model
@property
def lowercase_ ( self ):
torch.manual_seed(0 )
__snake_case : Tuple = {
'param_shapes': (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
'd_latent': self.time_input_dim,
'd_hidden': self.renderer_dim,
'n_output': 12,
'background': (
0.1,
0.1,
0.1,
),
}
__snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase )
return model
def lowercase_ ( self ):
__snake_case : Tuple = self.dummy_prior
__snake_case : Dict = self.dummy_text_encoder
__snake_case : Optional[int] = self.dummy_tokenizer
__snake_case : str = self.dummy_renderer
__snake_case : Tuple = HeunDiscreteScheduler(
beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , )
__snake_case : Optional[int] = {
'prior': prior,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'renderer': renderer,
'scheduler': scheduler,
}
return components
def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ):
if str(_UpperCAmelCase ).startswith('mps' ):
__snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase )
else:
__snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase )
__snake_case : Tuple = {
'prompt': 'horse',
'generator': generator,
'num_inference_steps': 1,
'frame_size': 32,
'output_type': 'np',
}
return inputs
def lowercase_ ( self ):
__snake_case : Optional[int] = 'cpu'
__snake_case : Tuple = self.get_dummy_components()
__snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase )
__snake_case : Any = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) )
__snake_case : Union[str, Any] = output.images[0]
__snake_case : Tuple = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
__snake_case : Dict = np.array(
[
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
0.00039216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowercase_ ( self ):
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def lowercase_ ( self ):
__snake_case : List[str] = torch_device == 'cpu'
__snake_case : int = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , )
def lowercase_ ( self ):
__snake_case : Dict = self.get_dummy_components()
__snake_case : Any = self.pipeline_class(**_UpperCAmelCase )
__snake_case : Tuple = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : int = 1
__snake_case : Optional[int] = 2
__snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase )
for key in inputs.keys():
if key in self.batch_params:
__snake_case : Union[str, Any] = batch_size * [inputs[key]]
__snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class __SCREAMING_SNAKE_CASE ( unittest.TestCase):
"""simple docstring"""
def lowercase_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowercase_ ( self ):
__snake_case : str = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/shap_e/test_shap_e_np_out.npy' )
__snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' )
__snake_case : List[str] = pipe.to(_UpperCAmelCase )
pipe.set_progress_bar_config(disable=_UpperCAmelCase )
__snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 )
__snake_case : Optional[Any] = pipe(
'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
| 679 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_mbart import MBartTokenizer
else:
lowerCamelCase :str = None
lowerCamelCase :Optional[Any] = logging.get_logger(__name__)
lowerCamelCase :str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'}
lowerCamelCase :List[str] = {
'vocab_file': {
'facebook/mbart-large-en-ro': (
'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model'
),
'facebook/mbart-large-cc25': (
'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model'
),
},
'tokenizer_file': {
'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json',
'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json',
},
}
lowerCamelCase :Tuple = {
'facebook/mbart-large-en-ro': 1024,
'facebook/mbart-large-cc25': 1024,
}
# fmt: off
lowerCamelCase :str = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN']
class UpperCAmelCase ( __snake_case ):
a: Union[str, Any] = VOCAB_FILES_NAMES
a: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a: List[Any] = PRETRAINED_VOCAB_FILES_MAP
a: Dict = ["input_ids", "attention_mask"]
a: Optional[Any] = MBartTokenizer
a: List[int] = []
a: List[int] = []
def __init__( self: Optional[Any] , __UpperCamelCase: str=None , __UpperCamelCase: Any=None , __UpperCamelCase: int="<s>" , __UpperCamelCase: Dict="</s>" , __UpperCamelCase: Any="</s>" , __UpperCamelCase: Optional[Any]="<s>" , __UpperCamelCase: int="<unk>" , __UpperCamelCase: Dict="<pad>" , __UpperCamelCase: Optional[Any]="<mask>" , __UpperCamelCase: Tuple=None , __UpperCamelCase: int=None , __UpperCamelCase: int=None , **__UpperCamelCase: str , ):
# Mask token behave like a normal word, i.e. include the space before it
_a = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token
super().__init__(
vocab_file=__UpperCamelCase , tokenizer_file=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , )
_a = vocab_file
_a = False if not self.vocab_file else True
_a = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens] )
self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} )
_a = {
lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_a = src_lang if src_lang is not None else '''en_XX'''
_a = self.convert_tokens_to_ids(self._src_lang )
_a = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def _A ( self: int ):
return self._src_lang
@src_lang.setter
def _A ( self: int , __UpperCamelCase: str ):
_a = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def _A ( self: Any , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def _A ( self: int , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None ):
_a = [self.sep_token_id]
_a = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _A ( self: Tuple , __UpperCamelCase: List[str] , __UpperCamelCase: str , __UpperCamelCase: Optional[str] , __UpperCamelCase: Optional[str] , **__UpperCamelCase: Dict ):
if src_lang is None or tgt_lang is None:
raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' )
_a = src_lang
_a = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
_a = self.convert_tokens_to_ids(__UpperCamelCase )
_a = tgt_lang_id
return inputs
def _A ( self: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: str = "en_XX" , __UpperCamelCase: Optional[List[str]] = None , __UpperCamelCase: str = "ro_RO" , **__UpperCamelCase: List[str] , ):
_a = src_lang
_a = tgt_lang
return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase )
def _A ( self: Dict ):
return self.set_src_lang_special_tokens(self.src_lang )
def _A ( self: str ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def _A ( self: Tuple , __UpperCamelCase: List[str] ):
_a = self.convert_tokens_to_ids(__UpperCamelCase )
_a = []
_a = [self.eos_token_id, self.cur_lang_code]
_a = self.convert_ids_to_tokens(self.prefix_tokens )
_a = self.convert_ids_to_tokens(self.suffix_tokens )
_a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _A ( self: Optional[Any] , __UpperCamelCase: str ):
_a = self.convert_tokens_to_ids(__UpperCamelCase )
_a = []
_a = [self.eos_token_id, self.cur_lang_code]
_a = self.convert_ids_to_tokens(self.prefix_tokens )
_a = self.convert_ids_to_tokens(self.suffix_tokens )
_a = processors.TemplateProcessing(
single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , )
def _A ( self: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(__UpperCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory." )
return
_a = os.path.join(
__UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ):
copyfile(self.vocab_file , __UpperCamelCase )
return (out_vocab_file,)
| 487 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class UpperCAmelCase :
def __init__( self: List[str] , __UpperCamelCase: Optional[int] , ):
_a = parent
_a = 13
_a = 7
_a = True
_a = True
_a = True
_a = True
_a = True
_a = False
_a = False
_a = False
_a = 2
_a = 99
_a = 0
_a = 32
_a = 2
_a = 4
_a = 0.1
_a = 0.1
_a = 512
_a = 16
_a = 2
_a = 0.0_2
_a = 3
_a = 4
_a = '''last'''
_a = True
_a = None
_a = 0
def _A ( self: Any ):
_a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_a = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
_a = None
if self.use_input_lengths:
_a = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
_a = None
if self.use_token_type_ids:
_a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
_a = None
_a = None
_a = None
if self.use_labels:
_a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_a = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
_a = ids_tensor([self.batch_size] , self.num_choices )
_a = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def _A ( self: List[str] , __UpperCamelCase: Any , __UpperCamelCase: List[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple , ):
_a = TFFlaubertModel(config=__UpperCamelCase )
_a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
_a = model(__UpperCamelCase )
_a = [input_ids, input_mask]
_a = model(__UpperCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: str , __UpperCamelCase: List[str] , __UpperCamelCase: Any , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: int , __UpperCamelCase: List[Any] , __UpperCamelCase: Dict , ):
_a = TFFlaubertWithLMHeadModel(__UpperCamelCase )
_a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids}
_a = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _A ( self: Tuple , __UpperCamelCase: Optional[int] , __UpperCamelCase: int , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: str , __UpperCamelCase: Dict , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any] , ):
_a = TFFlaubertForQuestionAnsweringSimple(__UpperCamelCase )
_a = {'''input_ids''': input_ids, '''lengths''': input_lengths}
_a = model(__UpperCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _A ( self: Dict , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: Dict , __UpperCamelCase: Dict , __UpperCamelCase: str , __UpperCamelCase: Any , __UpperCamelCase: str , ):
_a = TFFlaubertForSequenceClassification(__UpperCamelCase )
_a = {'''input_ids''': input_ids, '''lengths''': input_lengths}
_a = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _A ( self: Optional[Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: int , __UpperCamelCase: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] , ):
_a = self.num_labels
_a = TFFlaubertForTokenClassification(config=__UpperCamelCase )
_a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
_a = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _A ( self: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: Tuple , __UpperCamelCase: str , __UpperCamelCase: str , ):
_a = self.num_choices
_a = TFFlaubertForMultipleChoice(config=__UpperCamelCase )
_a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) )
_a = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
_a = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _A ( self: Dict ):
_a = self.prepare_config_and_inputs()
(
(
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) , (
_a
) ,
) = config_and_inputs
_a = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''langs''': token_type_ids,
'''lengths''': input_lengths,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
a: List[str] = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
a: List[Any] = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
a: List[Any] = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
a: List[Any] = False
a: Dict = False
def _A ( self: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[str] , __UpperCamelCase: int ):
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('''Fast''' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def _A ( self: Union[str, Any] ):
_a = TFFlaubertModelTester(self )
_a = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=37 )
def _A ( self: str ):
self.config_tester.run_common_tests()
def _A ( self: Optional[int] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase )
def _A ( self: Optional[int] ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase )
def _A ( self: int ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase )
def _A ( self: str ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase )
def _A ( self: int ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCamelCase )
def _A ( self: str ):
_a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCamelCase )
@slow
def _A ( self: List[Any] ):
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_a = TFFlaubertModel.from_pretrained(__UpperCamelCase )
self.assertIsNotNone(__UpperCamelCase )
@require_tf
@require_sentencepiece
@require_tokenizers
class UpperCAmelCase ( unittest.TestCase ):
@slow
def _A ( self: Any ):
_a = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' )
_a = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
_a = model(__UpperCamelCase )[0]
_a = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __UpperCamelCase )
# compare the actual values for a slice.
_a = tf.convert_to_tensor(
[
[
[-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8],
[-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9],
[-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 487 | 1 |
a :int = "0.18.2"
from .configuration_utils import ConfigMixin
from .utils import (
OptionalDependencyNotAvailable,
is_flax_available,
is_inflect_available,
is_invisible_watermark_available,
is_k_diffusion_available,
is_k_diffusion_version,
is_librosa_available,
is_note_seq_available,
is_onnx_available,
is_scipy_available,
is_torch_available,
is_torchsde_available,
is_transformers_available,
is_transformers_version,
is_unidecode_available,
logging,
)
try:
if not is_onnx_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_onnx_objects import * # noqa F403
else:
from .pipelines import OnnxRuntimeModel
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_pt_objects import * # noqa F403
else:
from .models import (
AutoencoderKL,
ControlNetModel,
ModelMixin,
PriorTransformer,
TaFilmDecoder,
TransformeraDModel,
UNetaDModel,
UNetaDConditionModel,
UNetaDModel,
UNetaDConditionModel,
VQModel,
)
from .optimization import (
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
get_scheduler,
)
from .pipelines import (
AudioPipelineOutput,
ConsistencyModelPipeline,
DanceDiffusionPipeline,
DDIMPipeline,
DDPMPipeline,
DiffusionPipeline,
DiTPipeline,
ImagePipelineOutput,
KarrasVePipeline,
LDMPipeline,
LDMSuperResolutionPipeline,
PNDMPipeline,
RePaintPipeline,
ScoreSdeVePipeline,
)
from .schedulers import (
CMStochasticIterativeScheduler,
DDIMInverseScheduler,
DDIMParallelScheduler,
DDIMScheduler,
DDPMParallelScheduler,
DDPMScheduler,
DEISMultistepScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
IPNDMScheduler,
KarrasVeScheduler,
KDPMaAncestralDiscreteScheduler,
KDPMaDiscreteScheduler,
PNDMScheduler,
RePaintScheduler,
SchedulerMixin,
ScoreSdeVeScheduler,
UnCLIPScheduler,
UniPCMultistepScheduler,
VQDiffusionScheduler,
)
from .training_utils import EMAModel
try:
if not (is_torch_available() and is_scipy_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_scipy_objects import * # noqa F403
else:
from .schedulers import LMSDiscreteScheduler
try:
if not (is_torch_available() and is_torchsde_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_torchsde_objects import * # noqa F403
else:
from .schedulers import DPMSolverSDEScheduler
try:
if not (is_torch_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
AltDiffusionImgaImgPipeline,
AltDiffusionPipeline,
AudioLDMPipeline,
CycleDiffusionPipeline,
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
ImageTextPipelineOutput,
KandinskyImgaImgPipeline,
KandinskyInpaintPipeline,
KandinskyPipeline,
KandinskyPriorPipeline,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaControlnetPipeline,
KandinskyVaaImgaImgPipeline,
KandinskyVaaInpaintPipeline,
KandinskyVaaPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
KandinskyVaaPriorPipeline,
LDMTextToImagePipeline,
PaintByExamplePipeline,
SemanticStableDiffusionPipeline,
ShapEImgaImgPipeline,
ShapEPipeline,
StableDiffusionAttendAndExcitePipeline,
StableDiffusionControlNetImgaImgPipeline,
StableDiffusionControlNetInpaintPipeline,
StableDiffusionControlNetPipeline,
StableDiffusionDepthaImgPipeline,
StableDiffusionDiffEditPipeline,
StableDiffusionImageVariationPipeline,
StableDiffusionImgaImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionInstructPixaPixPipeline,
StableDiffusionLatentUpscalePipeline,
StableDiffusionLDMaDPipeline,
StableDiffusionModelEditingPipeline,
StableDiffusionPanoramaPipeline,
StableDiffusionParadigmsPipeline,
StableDiffusionPipeline,
StableDiffusionPipelineSafe,
StableDiffusionPixaPixZeroPipeline,
StableDiffusionSAGPipeline,
StableDiffusionUpscalePipeline,
StableUnCLIPImgaImgPipeline,
StableUnCLIPPipeline,
TextToVideoSDPipeline,
TextToVideoZeroPipeline,
UnCLIPImageVariationPipeline,
UnCLIPPipeline,
UniDiffuserModel,
UniDiffuserPipeline,
UniDiffuserTextDecoder,
VersatileDiffusionDualGuidedPipeline,
VersatileDiffusionImageVariationPipeline,
VersatileDiffusionPipeline,
VersatileDiffusionTextToImagePipeline,
VideoToVideoSDPipeline,
VQDiffusionPipeline,
)
try:
if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403
else:
from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403
else:
from .pipelines import StableDiffusionKDiffusionPipeline
try:
if not (is_torch_available() and is_transformers_available() and is_onnx_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403
else:
from .pipelines import (
OnnxStableDiffusionImgaImgPipeline,
OnnxStableDiffusionInpaintPipeline,
OnnxStableDiffusionInpaintPipelineLegacy,
OnnxStableDiffusionPipeline,
OnnxStableDiffusionUpscalePipeline,
StableDiffusionOnnxPipeline,
)
try:
if not (is_torch_available() and is_librosa_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_torch_and_librosa_objects import * # noqa F403
else:
from .pipelines import AudioDiffusionPipeline, Mel
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .pipelines import SpectrogramDiffusionPipeline
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_objects import * # noqa F403
else:
from .models.controlnet_flax import FlaxControlNetModel
from .models.modeling_flax_utils import FlaxModelMixin
from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel
from .models.vae_flax import FlaxAutoencoderKL
from .pipelines import FlaxDiffusionPipeline
from .schedulers import (
FlaxDDIMScheduler,
FlaxDDPMScheduler,
FlaxDPMSolverMultistepScheduler,
FlaxKarrasVeScheduler,
FlaxLMSDiscreteScheduler,
FlaxPNDMScheduler,
FlaxSchedulerMixin,
FlaxScoreSdeVeScheduler,
)
try:
if not (is_flax_available() and is_transformers_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_flax_and_transformers_objects import * # noqa F403
else:
from .pipelines import (
FlaxStableDiffusionControlNetPipeline,
FlaxStableDiffusionImgaImgPipeline,
FlaxStableDiffusionInpaintPipeline,
FlaxStableDiffusionPipeline,
)
try:
if not (is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from .utils.dummy_note_seq_objects import * # noqa F403
else:
from .pipelines import MidiProcessor
| 718 |
"""simple docstring"""
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class __a :
'''simple docstring'''
def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = parent
SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size
SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length
SCREAMING_SNAKE_CASE__ : str = decoder_seq_length
# For common tests
SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length
SCREAMING_SNAKE_CASE__ : Tuple = is_training
SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask
SCREAMING_SNAKE_CASE__ : List[str] = use_labels
SCREAMING_SNAKE_CASE__ : str = vocab_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers
SCREAMING_SNAKE_CASE__ : Any = num_attention_heads
SCREAMING_SNAKE_CASE__ : Any = d_ff
SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets
SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate
SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor
SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id
SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id
SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id
SCREAMING_SNAKE_CASE__ : Any = None
SCREAMING_SNAKE_CASE__ : str = decoder_layers
def _a ( self ) -> Tuple:
"""simple docstring"""
return TaConfig.from_pretrained("""google/umt5-base""" )
def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any:
"""simple docstring"""
if attention_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=_a )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def _a ( self ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config()
SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads
SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a )
return config, input_dict
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs()
return config, inputs_dict
def _a ( self ) -> List[str]:
"""simple docstring"""
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self ) -> List[Any]:
"""simple docstring"""
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a )
model.to(_a )
model.eval()
SCREAMING_SNAKE_CASE__ : Dict = model(
input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state
SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values
SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(_a ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval()
# first forward pass
SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a )
SCREAMING_SNAKE_CASE__ : str = model(_a )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a )
self.parent.assertTrue(len(_a ) == len(_a ) )
self.parent.assertTrue(len(_a ) == len(_a ) + 1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""]
SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""]
# select random slice
SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach()
SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) )
def _a ( self , _a , _a , ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval()
SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""]
self.parent.assertFalse(torch.isnan(_a ).any().item() )
@require_torch
class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase):
'''simple docstring'''
_SCREAMING_SNAKE_CASE :Union[str, Any] = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
_SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else ()
_SCREAMING_SNAKE_CASE :List[str] = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
_SCREAMING_SNAKE_CASE :Union[str, Any] = True
_SCREAMING_SNAKE_CASE :Tuple = False
_SCREAMING_SNAKE_CASE :Optional[Any] = False
_SCREAMING_SNAKE_CASE :List[Any] = True
_SCREAMING_SNAKE_CASE :List[str] = True
# The small UMT5 model needs higher percentages for CPU/MP tests
_SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9]
def _a ( self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("""Test has a segmentation fault on torch 1.8.0""" )
def _a ( self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
_a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def _a ( self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*_a )
def _a ( self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""]
SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0]
SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval()
model.to(_a )
SCREAMING_SNAKE_CASE__ : List[str] = {
"""head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ),
"""decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
"""cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ),
}
for attn_name, (name, mask) in zip(_a , head_masking.items() ):
SCREAMING_SNAKE_CASE__ : List[str] = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
SCREAMING_SNAKE_CASE__ : str = torch.ones(
config.num_decoder_layers , config.num_heads , device=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate(
config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , )
# We check the state of decoder_attentions and cross_attentions just from the last step
SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" )
def _a ( self ) -> Dict:
"""simple docstring"""
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class __a (unittest.TestCase):
'''simple docstring'''
@slow
@unittest.skip(
"""Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" )
def _a ( self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a )
SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a )
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"""Bonjour monsieur <extra_id_0> bien <extra_id_1>.""",
"""No se como puedo <extra_id_0>.""",
"""This is the reason why we <extra_id_0> them.""",
"""The <extra_id_0> walks in <extra_id_1>, seats""",
"""A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""",
]
SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids
# fmt: off
SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor(
[
[ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(_a , _a )
SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) )
SCREAMING_SNAKE_CASE__ : int = [
"""<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""",
"""<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
"""<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""",
]
SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a )
self.assertEqual(_a , _a )
| 12 | 0 |
"""simple docstring"""
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class __SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self : List[str] , __a : str = "cpu" , __a : str = "openai/clip-vit-large-patch14" ) -> None:
_UpperCamelCase : List[Any] = device
_UpperCamelCase : List[str] = CLIPTokenizerFast.from_pretrained(__a )
_UpperCamelCase : Optional[int] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73]
_UpperCamelCase : Optional[int] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11]
_UpperCamelCase : int = torchvision.transforms.Normalize(self.image_mean , self.image_std )
_UpperCamelCase : int = torchvision.transforms.Resize(224 )
_UpperCamelCase : Any = torchvision.transforms.CenterCrop(224 )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int ) -> Tuple:
_UpperCamelCase : Optional[Any] = self.resize(__a )
_UpperCamelCase : List[Any] = self.center_crop(__a )
_UpperCamelCase : int = self.normalize(__a )
return images
def __call__( self : Tuple , __a : Tuple=None , __a : Any=None , **__a : Optional[Any] ) -> str:
_UpperCamelCase : Optional[Any] = self.tokenizer(text=__a , **__a )
_UpperCamelCase : int = self.preprocess_img(__a )
_UpperCamelCase : str = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class __SCREAMING_SNAKE_CASE ( nn.Module ):
'''simple docstring'''
def __init__( self : int , __a : int=10 , __a : List[str]=0.01 , __a : str=None , __a : Optional[Any]=None , __a : Dict=None , __a : Optional[int]=None , __a : List[str]=None , __a : Any=None , __a : List[Any]=False , __a : Tuple=True , __a : Optional[int]="image" , __a : Optional[int]=True , __a : Optional[int]=False , __a : Any=False , __a : Any=False , ) -> None:
super().__init__()
_UpperCamelCase : Optional[Any] = None
_UpperCamelCase : List[str] = device if device else get_device()
if vqgan:
_UpperCamelCase : List[Any] = vqgan
else:
_UpperCamelCase : Union[str, Any] = load_vqgan(self.device , conf_path=__a , ckpt_path=__a )
self.vqgan.eval()
if clip:
_UpperCamelCase : int = clip
else:
_UpperCamelCase : Union[str, Any] = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" )
self.clip.to(self.device )
_UpperCamelCase : Tuple = ProcessorGradientFlow(device=self.device )
_UpperCamelCase : Dict = iterations
_UpperCamelCase : str = lr
_UpperCamelCase : List[Any] = log
_UpperCamelCase : str = make_grid
_UpperCamelCase : str = return_val
_UpperCamelCase : Any = quantize
_UpperCamelCase : str = self.vqgan.decoder.z_shape
def __SCREAMING_SNAKE_CASE ( self : Any , __a : int=None , __a : List[str]=None , __a : Union[str, Any]=5 , __a : str=True ) -> List[Any]:
_UpperCamelCase : str = []
if output_path is None:
_UpperCamelCase : Optional[int] = "./animation.gif"
if input_path is None:
_UpperCamelCase : List[Any] = self.save_path
_UpperCamelCase : int = sorted(glob(input_path + "/*" ) )
if not len(__a ):
raise ValueError(
"No images found in save path, aborting (did you pass save_intermediate=True to the generate"
" function?)" )
if len(__a ) == 1:
print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" )
_UpperCamelCase : int = total_duration / len(__a )
_UpperCamelCase : Optional[int] = [frame_duration] * len(__a )
if extend_frames:
_UpperCamelCase : Optional[int] = 1.5
_UpperCamelCase : Optional[int] = 3
for file_name in paths:
if file_name.endswith(".png" ):
images.append(imageio.imread(__a ) )
imageio.mimsave(__a , __a , duration=__a )
print(F'''gif saved to {output_path}''' )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Any=None , __a : Dict=None ) -> List[Any]:
if not (path or img):
raise ValueError("Input either path or tensor" )
if img is not None:
raise NotImplementedError
_UpperCamelCase : int = preprocess(Image.open(__a ) , target_image_size=256 ).to(self.device )
_UpperCamelCase : str = preprocess_vqgan(__a )
_UpperCamelCase, *_UpperCamelCase : List[Any] = self.vqgan.encode(__a )
return z
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[int] ) -> Any:
_UpperCamelCase : Optional[int] = self.latent.detach().requires_grad_()
_UpperCamelCase : List[Any] = base_latent + transform_vector
if self.quantize:
_UpperCamelCase, *_UpperCamelCase : int = self.vqgan.quantize(__a )
else:
_UpperCamelCase : Tuple = trans_latent
return self.vqgan.decode(__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Dict=None ) -> Dict:
_UpperCamelCase : List[str] = self.clip_preprocessor(text=__a , images=__a , return_tensors="pt" , padding=__a )
_UpperCamelCase : Union[str, Any] = self.clip(**__a )
_UpperCamelCase : Any = clip_outputs.logits_per_image
if weights is not None:
_UpperCamelCase : str = similarity_logits * weights
return similarity_logits.sum()
def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Optional[int] , __a : int ) -> List[str]:
_UpperCamelCase : Any = self._get_clip_similarity(pos_prompts["prompts"] , __a , weights=(1 / pos_prompts["weights"]) )
if neg_prompts:
_UpperCamelCase : Dict = self._get_clip_similarity(neg_prompts["prompts"] , __a , weights=neg_prompts["weights"] )
else:
_UpperCamelCase : List[Any] = torch.tensor([1] , device=self.device )
_UpperCamelCase : Any = -torch.log(__a ) + torch.log(__a )
return loss
def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] , __a : List[Any] , __a : Dict ) -> Dict:
_UpperCamelCase : List[str] = torch.randn_like(self.latent , requires_grad=__a , device=self.device )
_UpperCamelCase : Union[str, Any] = torch.optim.Adam([vector] , lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
_UpperCamelCase : Any = self._add_vector(__a )
_UpperCamelCase : Tuple = loop_post_process(__a )
_UpperCamelCase : int = self._get_CLIP_loss(__a , __a , __a )
print("CLIP loss" , __a )
if self.log:
wandb.log({"CLIP Loss": clip_loss} )
clip_loss.backward(retain_graph=__a )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, Any] , __a : str , __a : int ) -> str:
wandb.init(reinit=__a , project="face-editor" )
wandb.config.update({"Positive Prompts": positive_prompts} )
wandb.config.update({"Negative Prompts": negative_prompts} )
wandb.config.update({"lr": self.lr, "iterations": self.iterations} )
if image_path:
_UpperCamelCase : List[str] = Image.open(__a )
_UpperCamelCase : Tuple = image.resize((256, 256) )
wandb.log("Original Image" , wandb.Image(__a ) )
def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, Any] ) -> List[Any]:
if not prompts:
return []
_UpperCamelCase : Tuple = []
_UpperCamelCase : str = []
if isinstance(__a , __a ):
_UpperCamelCase : int = [prompt.strip() for prompt in prompts.split("|" )]
for prompt in prompts:
if isinstance(__a , (tuple, list) ):
_UpperCamelCase : Any = prompt[0]
_UpperCamelCase : Optional[int] = float(prompt[1] )
elif ":" in prompt:
_UpperCamelCase, _UpperCamelCase : Union[str, Any] = prompt.split(":" )
_UpperCamelCase : Any = float(__a )
else:
_UpperCamelCase : Optional[Any] = prompt
_UpperCamelCase : Optional[int] = 1.0
processed_prompts.append(__a )
weights.append(__a )
return {
"prompts": processed_prompts,
"weights": torch.tensor(__a , device=self.device ),
}
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Any , __a : Dict=None , __a : str=None , __a : int=True , __a : Union[str, Any]=False , __a : Tuple=True , __a : Tuple=True , __a : Optional[int]=None , ) -> List[Any]:
if image_path:
_UpperCamelCase : Optional[Any] = self._get_latent(__a )
else:
_UpperCamelCase : Optional[Any] = torch.randn(self.latent_dim , device=self.device )
if self.log:
self._init_logging(__a , __a , __a )
assert pos_prompts, "You must provide at least one positive prompt."
_UpperCamelCase : List[Any] = self.process_prompts(__a )
_UpperCamelCase : Optional[Any] = self.process_prompts(__a )
if save_final and save_path is None:
_UpperCamelCase : str = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) )
if not os.path.exists(__a ):
os.makedirs(__a )
else:
_UpperCamelCase : Tuple = save_path + "_" + get_timestamp()
os.makedirs(__a )
_UpperCamelCase : int = save_path
_UpperCamelCase : List[str] = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print("Original Image" )
show_pil(custom_to_pil(__a ) )
_UpperCamelCase : List[Any] = loop_post_process(__a )
for iter, transformed_img in enumerate(self._optimize_CLIP(__a , __a , __a ) ):
if show_intermediate:
show_pil(__a )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) )
if self.log:
wandb.log({"Image": wandb.Image(__a )} )
if show_final:
show_pil(__a )
if save_final:
transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
| 624 |
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCamelCase__ = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :Optional[int] = ["pixel_values"]
def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : List[Any] , ) -> None:
super().__init__(**__a )
_UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 224}
_UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a )
_UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224}
_UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a , param_name="crop_size" )
_UpperCamelCase : Optional[Any] = do_resize
_UpperCamelCase : Dict = size
_UpperCamelCase : Any = resample
_UpperCamelCase : Tuple = do_center_crop
_UpperCamelCase : str = crop_size
_UpperCamelCase : Any = do_rescale
_UpperCamelCase : Dict = rescale_factor
_UpperCamelCase : int = do_normalize
_UpperCamelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_UpperCamelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD
_UpperCamelCase : List[Any] = do_convert_rgb
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray:
_UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_UpperCamelCase : Dict = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a )
return resize(__a , size=__a , resample=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray:
_UpperCamelCase : List[str] = get_size_dict(__a )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]:
return rescale(__a , scale=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray:
return normalize(__a , mean=__a , std=__a , data_format=__a , **__a )
def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : Union[str, Any] , ) -> PIL.Image.Image:
_UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize
_UpperCamelCase : int = size if size is not None else self.size
_UpperCamelCase : int = get_size_dict(__a , param_name="size" , default_to_square=__a )
_UpperCamelCase : List[Any] = resample if resample is not None else self.resample
_UpperCamelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
_UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size
_UpperCamelCase : List[Any] = get_size_dict(__a , param_name="crop_size" , default_to_square=__a )
_UpperCamelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale
_UpperCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
_UpperCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize
_UpperCamelCase : List[Any] = image_mean if image_mean is not None else self.image_mean
_UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std
_UpperCamelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_UpperCamelCase : Any = make_list_of_images(__a )
if not valid_images(__a ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_UpperCamelCase : int = [convert_to_rgb(__a ) for image in images]
# All transformations expect numpy arrays.
_UpperCamelCase : List[Any] = [to_numpy_array(__a ) for image in images]
if do_resize:
_UpperCamelCase : Union[str, Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images]
if do_center_crop:
_UpperCamelCase : Optional[Any] = [self.center_crop(image=__a , size=__a ) for image in images]
if do_rescale:
_UpperCamelCase : Dict = [self.rescale(image=__a , scale=__a ) for image in images]
if do_normalize:
_UpperCamelCase : List[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images]
_UpperCamelCase : List[Any] = [to_channel_dimension_format(__a , __a ) for image in images]
_UpperCamelCase : str = {"pixel_values": images}
return BatchFeature(data=__a , tensor_type=__a )
| 624 | 1 |
"""simple docstring"""
import math
def _snake_case ( ) -> None:
'''simple docstring'''
_A = input('Enter message: ' )
_A = int(input(F'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) )
_A = input('Encryption/Decryption [e/d]: ' )
if mode.lower().startswith('e' ):
_A = encrypt_message(_snake_case , _snake_case )
elif mode.lower().startswith('d' ):
_A = decrypt_message(_snake_case , _snake_case )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(F'''Output:\n{text + "|"}''' )
def _snake_case ( _snake_case : int , _snake_case : str ) -> str:
'''simple docstring'''
_A = [''] * key
for col in range(_snake_case ):
_A = col
while pointer < len(_snake_case ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : str ) -> str:
'''simple docstring'''
_A = math.ceil(len(_snake_case ) / key )
_A = key
_A = (num_cols * num_rows) - len(_snake_case )
_A = [''] * num_cols
_A = 0
_A = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
_A = 0
row += 1
return "".join(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 505 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''facebook/deit-base-distilled-patch16-224''': (
'''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json'''
),
# See all DeiT models at https://huggingface.co/models?filter=deit
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''deit'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=224 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=16 , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = encoder_stride
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = version.parse('''1.11''' )
@property
def lowerCAmelCase_ ( self : Optional[int] ):
return OrderedDict(
[
('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}),
] )
@property
def lowerCAmelCase_ ( self : Any ):
return 1E-4
| 505 | 1 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
snake_case_ = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def __lowercase (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Tuple=None , _SCREAMING_SNAKE_CASE :List[Any]=None , _SCREAMING_SNAKE_CASE :Any=None , _SCREAMING_SNAKE_CASE :Union[str, Any]=None , _SCREAMING_SNAKE_CASE :int=None , _SCREAMING_SNAKE_CASE :Union[str, Any]=None , ):
if attention_mask is None:
SCREAMING_SNAKE_CASE : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
SCREAMING_SNAKE_CASE : Tuple = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
SCREAMING_SNAKE_CASE : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
SCREAMING_SNAKE_CASE : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
SCREAMING_SNAKE_CASE : str = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class a__ :
def __init__(self : Dict, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Dict=13, __UpperCAmelCase : Tuple=7, __UpperCAmelCase : Optional[int]=True, __UpperCAmelCase : str=False, __UpperCAmelCase : List[Any]=99, __UpperCAmelCase : List[str]=16, __UpperCAmelCase : Union[str, Any]=2, __UpperCAmelCase : Union[str, Any]=4, __UpperCAmelCase : List[str]=4, __UpperCAmelCase : Union[str, Any]="gelu", __UpperCAmelCase : str=0.1, __UpperCAmelCase : str=0.1, __UpperCAmelCase : Dict=32, __UpperCAmelCase : Any=2, __UpperCAmelCase : Any=1, __UpperCAmelCase : Tuple=0, __UpperCAmelCase : str=0.02, ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[Any] = parent
SCREAMING_SNAKE_CASE : List[str] = batch_size
SCREAMING_SNAKE_CASE : List[Any] = seq_length
SCREAMING_SNAKE_CASE : str = is_training
SCREAMING_SNAKE_CASE : Any = use_labels
SCREAMING_SNAKE_CASE : int = vocab_size
SCREAMING_SNAKE_CASE : List[Any] = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers
SCREAMING_SNAKE_CASE : Dict = num_attention_heads
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : int = hidden_act
SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : int = max_position_embeddings
SCREAMING_SNAKE_CASE : Union[str, Any] = eos_token_id
SCREAMING_SNAKE_CASE : int = pad_token_id
SCREAMING_SNAKE_CASE : Dict = bos_token_id
SCREAMING_SNAKE_CASE : List[Any] = initializer_range
def lowercase__ (self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size )
SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 )
SCREAMING_SNAKE_CASE : Union[str, Any] = shift_tokens_right(__UpperCAmelCase, 1, 2 )
SCREAMING_SNAKE_CASE : Any = BlenderbotSmallConfig(
vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=__UpperCAmelCase, )
SCREAMING_SNAKE_CASE : Any = prepare_blenderbot_inputs_dict(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase )
return config, inputs_dict
def lowercase__ (self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase__ (self : List[str], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Optional[Any] ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = 20
SCREAMING_SNAKE_CASE : List[Any] = model_class_name(__UpperCAmelCase )
SCREAMING_SNAKE_CASE : List[Any] = model.encode(inputs_dict['''input_ids'''] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
SCREAMING_SNAKE_CASE : List[str] = model.init_cache(decoder_input_ids.shape[0], __UpperCAmelCase, __UpperCAmelCase )
SCREAMING_SNAKE_CASE : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' )
SCREAMING_SNAKE_CASE : str = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), )
SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode(
decoder_input_ids[:, :-1], __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, past_key_values=__UpperCAmelCase, decoder_position_ids=__UpperCAmelCase, )
SCREAMING_SNAKE_CASE : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' )
SCREAMING_SNAKE_CASE : str = model.decode(
decoder_input_ids[:, -1:], __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=__UpperCAmelCase, )
SCREAMING_SNAKE_CASE : List[str] = model.decode(__UpperCAmelCase, __UpperCAmelCase )
SCREAMING_SNAKE_CASE : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3, msg=F'''Max diff is {diff}''' )
def lowercase__ (self : str, __UpperCAmelCase : List[str], __UpperCAmelCase : str, __UpperCAmelCase : Union[str, Any] ) -> Tuple:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = 20
SCREAMING_SNAKE_CASE : Dict = model_class_name(__UpperCAmelCase )
SCREAMING_SNAKE_CASE : Tuple = model.encode(inputs_dict['''input_ids'''] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = (
inputs_dict['''decoder_input_ids'''],
inputs_dict['''decoder_attention_mask'''],
)
SCREAMING_SNAKE_CASE : Dict = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
], axis=-1, )
SCREAMING_SNAKE_CASE : Optional[Any] = model.init_cache(decoder_input_ids.shape[0], __UpperCAmelCase, __UpperCAmelCase )
SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), )
SCREAMING_SNAKE_CASE : List[str] = model.decode(
decoder_input_ids[:, :-1], __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, past_key_values=__UpperCAmelCase, decoder_position_ids=__UpperCAmelCase, )
SCREAMING_SNAKE_CASE : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' )
SCREAMING_SNAKE_CASE : List[Any] = model.decode(
decoder_input_ids[:, -1:], __UpperCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=__UpperCAmelCase, decoder_position_ids=__UpperCAmelCase, )
SCREAMING_SNAKE_CASE : Any = model.decode(__UpperCAmelCase, __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase )
SCREAMING_SNAKE_CASE : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3, msg=F'''Max diff is {diff}''' )
@require_flax
class a__ ( unittest.TestCase ):
__magic_name__ : str = 99
def lowercase__ (self : List[Any] ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
], dtype=np.intaa, )
SCREAMING_SNAKE_CASE : Dict = input_ids.shape[0]
SCREAMING_SNAKE_CASE : Dict = BlenderbotSmallConfig(
vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, )
return config, input_ids, batch_size
def lowercase__ (self : int ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self._get_config_and_data()
SCREAMING_SNAKE_CASE : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(__UpperCAmelCase )
SCREAMING_SNAKE_CASE : Union[str, Any] = lm_model(input_ids=__UpperCAmelCase )
SCREAMING_SNAKE_CASE : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs['''logits'''].shape, __UpperCAmelCase )
def lowercase__ (self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : str = BlenderbotSmallConfig(
vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, )
SCREAMING_SNAKE_CASE : Dict = FlaxBlenderbotSmallForConditionalGeneration(__UpperCAmelCase )
SCREAMING_SNAKE_CASE : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa )
SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa )
SCREAMING_SNAKE_CASE : List[str] = lm_model(input_ids=__UpperCAmelCase, decoder_input_ids=__UpperCAmelCase )
SCREAMING_SNAKE_CASE : str = (*summary.shape, config.vocab_size)
self.assertEqual(outputs['''logits'''].shape, __UpperCAmelCase )
def lowercase__ (self : Any ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa )
SCREAMING_SNAKE_CASE : Any = shift_tokens_right(__UpperCAmelCase, 1, 2 )
SCREAMING_SNAKE_CASE : Optional[Any] = np.equal(__UpperCAmelCase, 1 ).astype(np.floataa ).sum()
SCREAMING_SNAKE_CASE : Any = np.equal(__UpperCAmelCase, 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape, input_ids.shape )
self.assertEqual(__UpperCAmelCase, n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0], 2 ).all() )
@require_flax
class a__ ( _lowercase, unittest.TestCase, _lowercase ):
__magic_name__ : str = True
__magic_name__ : Optional[Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
__magic_name__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def lowercase__ (self : Any ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = FlaxBlenderbotSmallModelTester(self )
def lowercase__ (self : Tuple ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase )
def lowercase__ (self : str ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase )
def lowercase__ (self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
SCREAMING_SNAKE_CASE : int = self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase )
SCREAMING_SNAKE_CASE : Any = model_class(__UpperCAmelCase )
@jax.jit
def encode_jitted(__UpperCAmelCase : str, __UpperCAmelCase : Dict=None, **__UpperCAmelCase : List[str] ):
return model.encode(input_ids=__UpperCAmelCase, attention_mask=__UpperCAmelCase )
with self.subTest('''JIT Enabled''' ):
SCREAMING_SNAKE_CASE : int = encode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
SCREAMING_SNAKE_CASE : List[Any] = encode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ), len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase, __UpperCAmelCase ):
self.assertEqual(jitted_output.shape, output.shape )
def lowercase__ (self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase )
SCREAMING_SNAKE_CASE : int = model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] )
SCREAMING_SNAKE_CASE : Tuple = {
'''decoder_input_ids''': inputs_dict['''decoder_input_ids'''],
'''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''],
'''encoder_outputs''': encoder_outputs,
}
@jax.jit
def decode_jitted(__UpperCAmelCase : Dict, __UpperCAmelCase : List[Any], __UpperCAmelCase : Optional[Any] ):
return model.decode(
decoder_input_ids=__UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, encoder_outputs=__UpperCAmelCase, )
with self.subTest('''JIT Enabled''' ):
SCREAMING_SNAKE_CASE : Union[str, Any] = decode_jitted(**__UpperCAmelCase ).to_tuple()
with self.subTest('''JIT Disabled''' ):
with jax.disable_jit():
SCREAMING_SNAKE_CASE : List[Any] = decode_jitted(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ), len(__UpperCAmelCase ) )
for jitted_output, output in zip(__UpperCAmelCase, __UpperCAmelCase ):
self.assertEqual(jitted_output.shape, output.shape )
@slow
def lowercase__ (self : int ) -> Optional[int]:
"""simple docstring"""
for model_class_name in self.all_model_classes:
SCREAMING_SNAKE_CASE : List[Any] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((1, 1) ) * model.config.eos_token_id
SCREAMING_SNAKE_CASE : Optional[int] = model(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
| 507 |
'''simple docstring'''
from math import isqrt
def __lowercase (_SCREAMING_SNAKE_CASE :int ):
return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) )
def __lowercase (_SCREAMING_SNAKE_CASE :int = 10**6 ):
SCREAMING_SNAKE_CASE : Union[str, Any] = 0
SCREAMING_SNAKE_CASE : List[str] = 1
SCREAMING_SNAKE_CASE : List[Any] = 7
while prime_candidate < max_prime:
primes_count += is_prime(_SCREAMING_SNAKE_CASE )
cube_index += 1
prime_candidate += 6 * cube_index
return primes_count
if __name__ == "__main__":
print(f'''{solution() = }''')
| 507 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]:
# Initialise PyTorch model
A_ = FunnelConfig.from_json_file(UpperCAmelCase__ )
print(F'''Building PyTorch model from configuration: {config}''' )
A_ = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_funnel(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ )
# Save pytorch-model
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
torch.save(model.state_dict(), UpperCAmelCase__ )
if __name__ == "__main__":
__lowerCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''',
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.'''
)
__lowerCamelCase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model
)
| 667 |
'''simple docstring'''
from __future__ import annotations
import math
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
__lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)]
def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]:
if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ):
raise ValueError("""n must be an integer""" )
if n <= 0:
raise ValueError("""n must be >= 0""" )
A_ = []
for num in range(len(UpperCAmelCase__ ) ):
A_ = 0
while 2 * i * i <= odd_composites[num]:
A_ = odd_composites[num] - 2 * i * i
if is_prime(UpperCAmelCase__ ):
break
i += 1
else:
list_nums.append(odd_composites[num] )
if len(UpperCAmelCase__ ) == n:
return list_nums
return []
def UpperCAmelCase__ ( ) -> int:
return compute_nums(1 )[0]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 667 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of
# Pi and the function
__SCREAMING_SNAKE_CASE =1.054571817E-34 # unit of ℏ : J * s
__SCREAMING_SNAKE_CASE =3E8 # unit of c : m * s^-1
def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ):
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
lowercase_ : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
2_40 * (distance) ** 4
)
return {"force": force}
elif area == 0:
lowercase_ : Union[str, Any] = (2_40 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
lowercase_ : Tuple = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 425 | """simple docstring"""
__SCREAMING_SNAKE_CASE =range(2, 20 + 1)
__SCREAMING_SNAKE_CASE =[10**k for k in range(ks[-1] + 1)]
__SCREAMING_SNAKE_CASE ={}
def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ):
lowercase_ : int = sum(a_i[j] for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) )
lowercase_ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) )
lowercase_ , lowercase_ : str = 0, 0
lowercase_ : Optional[int] = n - i
lowercase_ : Any = memo.get(__SCREAMING_SNAKE_CASE )
if sub_memo is not None:
lowercase_ : List[str] = sub_memo.get(__SCREAMING_SNAKE_CASE )
if jumps is not None and len(__SCREAMING_SNAKE_CASE ) > 0:
# find and make the largest jump without going over
lowercase_ : Optional[Any] = -1
for _k in range(len(__SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ):
if jumps[_k][2] <= k and jumps[_k][1] <= max_dn:
lowercase_ : List[str] = _k
break
if max_jump >= 0:
lowercase_ , lowercase_ , lowercase_ : List[str] = jumps[max_jump]
# since the difference between jumps is cached, add c
lowercase_ : List[Any] = diff + c
for j in range(min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ):
lowercase_ , lowercase_ : Optional[int] = divmod(__SCREAMING_SNAKE_CASE , 10 )
if new_c > 0:
add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
lowercase_ : Dict = []
else:
lowercase_ : List[Any] = {c: []}
lowercase_ : Optional[Any] = sub_memo
if dn >= max_dn or c + diff >= base[k]:
return diff, dn
if k > ks[0]:
while True:
# keep doing smaller jumps
lowercase_ , lowercase_ : Union[str, Any] = next_term(__SCREAMING_SNAKE_CASE , k - 1 , i + dn , __SCREAMING_SNAKE_CASE )
diff += _diff
dn += terms_jumped
if dn >= max_dn or c + diff >= base[k]:
break
else:
# would be too small a jump, just compute sequential terms instead
lowercase_ , lowercase_ : List[str] = compute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + dn , __SCREAMING_SNAKE_CASE )
diff += _diff
dn += terms_jumped
lowercase_ : str = sub_memo[c]
# keep jumps sorted by # of terms skipped
lowercase_ : Union[str, Any] = 0
while j < len(__SCREAMING_SNAKE_CASE ):
if jumps[j][1] > dn:
break
j += 1
# cache the jump for this value digitsum(b) and c
sub_memo[c].insert(__SCREAMING_SNAKE_CASE , (diff, dn, k) )
return (diff, dn)
def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ):
if i >= n:
return 0, i
if k > len(__SCREAMING_SNAKE_CASE ):
a_i.extend([0 for _ in range(k - len(__SCREAMING_SNAKE_CASE ) )] )
# note: a_i -> b * 10^k + c
# ds_b -> digitsum(b)
# ds_c -> digitsum(c)
lowercase_ : str = i
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = 0, 0, 0
for j in range(len(__SCREAMING_SNAKE_CASE ) ):
if j >= k:
ds_b += a_i[j]
else:
ds_c += a_i[j]
while i < n:
i += 1
lowercase_ : Tuple = ds_c + ds_b
diff += addend
lowercase_ : Tuple = 0
for j in range(__SCREAMING_SNAKE_CASE ):
lowercase_ : Optional[Any] = a_i[j] + addend
lowercase_ , lowercase_ : List[str] = divmod(__SCREAMING_SNAKE_CASE , 10 )
ds_c += a_i[j]
if addend > 0:
break
if addend > 0:
add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return diff, i - start_i
def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ):
for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ):
lowercase_ : Optional[int] = digits[j] + addend
if s >= 10:
lowercase_ , lowercase_ : str = divmod(__SCREAMING_SNAKE_CASE , 10 )
lowercase_ : Optional[int] = addend // 10 + quotient
else:
lowercase_ : Optional[int] = s
lowercase_ : Any = addend // 10
if addend == 0:
break
while addend > 0:
lowercase_ , lowercase_ : str = divmod(__SCREAMING_SNAKE_CASE , 10 )
digits.append(__SCREAMING_SNAKE_CASE )
def lowercase__( __SCREAMING_SNAKE_CASE : int = 10**15 ):
lowercase_ : Dict = [1]
lowercase_ : Any = 1
lowercase_ : List[Any] = 0
while True:
lowercase_ , lowercase_ : Tuple = next_term(__SCREAMING_SNAKE_CASE , 20 , i + dn , __SCREAMING_SNAKE_CASE )
dn += terms_jumped
if dn == n - i:
break
lowercase_ : List[str] = 0
for j in range(len(__SCREAMING_SNAKE_CASE ) ):
a_n += digits[j] * 10**j
return a_n
if __name__ == "__main__":
print(F"{solution() = }")
| 425 | 1 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class _UpperCamelCase (a_ ):
def __UpperCAmelCase ( self , __UpperCamelCase )-> float:
return 0.0
def __lowerCAmelCase ( __snake_case , __snake_case ):
__lowerCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
__lowerCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def __lowerCAmelCase ( __snake_case , __snake_case ):
__lowerCAmelCase = 512
__lowerCAmelCase = [1] + [0] * (size - 1)
__lowerCAmelCase = [filter_type.process(__snake_case ) for item in inputs]
__lowerCAmelCase = [0] * (samplerate - size) # zero-padding
outputs += filler
__lowerCAmelCase = np.abs(np.fft.fft(__snake_case ) )
__lowerCAmelCase = 20 * np.logaa(__snake_case )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
# Display within reasonable bounds
__lowerCAmelCase = get_bounds(__snake_case , __snake_case )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("Gain (dB)" )
plt.plot(__snake_case )
plt.show()
def __lowerCAmelCase ( __snake_case , __snake_case ):
__lowerCAmelCase = 512
__lowerCAmelCase = [1] + [0] * (size - 1)
__lowerCAmelCase = [filter_type.process(__snake_case ) for item in inputs]
__lowerCAmelCase = [0] * (samplerate - size) # zero-padding
outputs += filler
__lowerCAmelCase = np.angle(np.fft.fft(__snake_case ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("Phase shift (Radians)" )
plt.plot(np.unwrap(__snake_case , -2 * pi ) )
plt.show()
| 290 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class _UpperCamelCase (unittest.TestCase ):
def __UpperCAmelCase ( self )-> Optional[Any]:
__lowerCAmelCase = tempfile.mkdtemp()
# fmt: off
__lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
__lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
__lowerCAmelCase = {
"do_resize": True,
"size": {"height": 1_8, "width": 1_8},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
__lowerCAmelCase = os.path.join(self.tmpdirname , __UpperCamelCase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(__UpperCamelCase , __UpperCamelCase )
def __UpperCAmelCase ( self , **__UpperCamelCase )-> Optional[Any]:
return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def __UpperCAmelCase ( self , **__UpperCamelCase )-> Any:
return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase )
def __UpperCAmelCase ( self )-> Any:
shutil.rmtree(self.tmpdirname )
def __UpperCAmelCase ( self )-> int:
__lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )]
__lowerCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __UpperCAmelCase ( self )-> Optional[Any]:
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def __UpperCAmelCase ( self )-> str:
__lowerCAmelCase = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
__lowerCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 )
__lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __UpperCamelCase )
def __UpperCAmelCase ( self )-> Union[str, Any]:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = image_processor(__UpperCamelCase , return_tensors="np" )
__lowerCAmelCase = processor(images=__UpperCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __UpperCAmelCase ( self )-> Dict:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__lowerCAmelCase = "lower newer"
__lowerCAmelCase = processor(text=__UpperCamelCase )
__lowerCAmelCase = tokenizer(__UpperCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __UpperCAmelCase ( self )-> List[str]:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__lowerCAmelCase = "lower newer"
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] )
# test if it raises when no input is passed
with self.assertRaises(__UpperCamelCase ):
processor()
def __UpperCAmelCase ( self )-> Optional[int]:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__lowerCAmelCase = processor.batch_decode(__UpperCamelCase )
__lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase )
self.assertListEqual(__UpperCamelCase , __UpperCamelCase )
def __UpperCAmelCase ( self )-> Any:
__lowerCAmelCase = self.get_image_processor()
__lowerCAmelCase = self.get_tokenizer()
__lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase )
__lowerCAmelCase = "lower newer"
__lowerCAmelCase = self.prepare_image_inputs()
__lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 290 | 1 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
_lowerCAmelCase : int = logging.get_logger(__name__)
# General docstring
_lowerCAmelCase : Union[str, Any] = "RegNetConfig"
# Base docstring
_lowerCAmelCase : Optional[Any] = "facebook/regnet-y-040"
_lowerCAmelCase : Any = [1, 1_088, 7, 7]
# Image classification docstring
_lowerCAmelCase : List[Any] = "facebook/regnet-y-040"
_lowerCAmelCase : Union[str, Any] = "tabby, tabby cat"
_lowerCAmelCase : List[str] = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , __snake_case = 3 , __snake_case = 1 , __snake_case = 1 , __snake_case = "relu" , **__snake_case , ) -> List[Any]:
'''simple docstring'''
super().__init__(**__snake_case )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__a =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__a =tf.keras.layers.ConvaD(
filters=__snake_case , kernel_size=__snake_case , strides=__snake_case , padding='VALID' , groups=__snake_case , use_bias=__snake_case , name='convolution' , )
__a =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
__a =ACTaFN[activation] if activation is not None else tf.identity
def __magic_name__ ( self , __snake_case ) -> List[str]:
'''simple docstring'''
__a =self.convolution(self.padding(__snake_case ) )
__a =self.normalization(__snake_case )
__a =self.activation(__snake_case )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , **__snake_case ) -> List[Any]:
'''simple docstring'''
super().__init__(**__snake_case )
__a =config.num_channels
__a =TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , )
def __magic_name__ ( self , __snake_case ) -> Union[str, Any]:
'''simple docstring'''
__a =shape_list(__snake_case )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__a =tf.transpose(__snake_case , perm=(0, 2, 3, 1) )
__a =self.embedder(__snake_case )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , __snake_case = 2 , **__snake_case ) -> str:
'''simple docstring'''
super().__init__(**__snake_case )
__a =tf.keras.layers.ConvaD(
filters=__snake_case , kernel_size=1 , strides=__snake_case , use_bias=__snake_case , name='convolution' )
__a =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' )
def __magic_name__ ( self , __snake_case , __snake_case = False ) -> tf.Tensor:
'''simple docstring'''
return self.normalization(self.convolution(__snake_case ) , training=__snake_case )
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , __snake_case , **__snake_case ) -> List[Any]:
'''simple docstring'''
super().__init__(**__snake_case )
__a =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='pooler' )
__a =[
tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='relu' , name='attention.0' ),
tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='sigmoid' , name='attention.2' ),
]
def __magic_name__ ( self , __snake_case ) -> Tuple:
'''simple docstring'''
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__a =self.pooler(__snake_case )
for layer_module in self.attention:
__a =layer_module(__snake_case )
__a =hidden_state * pooled
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1 , **__snake_case ) -> Any:
'''simple docstring'''
super().__init__(**__snake_case )
__a =in_channels != out_channels or stride != 1
__a =max(1 , out_channels // config.groups_width )
__a =(
TFRegNetShortCut(__snake_case , stride=__snake_case , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__a =[
TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
__snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='layer.1' ),
TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='layer.2' ),
]
__a =ACTaFN[config.hidden_act]
def __magic_name__ ( self , __snake_case ) -> Any:
'''simple docstring'''
__a =hidden_state
for layer_module in self.layers:
__a =layer_module(__snake_case )
__a =self.shortcut(__snake_case )
hidden_state += residual
__a =self.activation(__snake_case )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1 , **__snake_case ) -> Dict:
'''simple docstring'''
super().__init__(**__snake_case )
__a =in_channels != out_channels or stride != 1
__a =max(1 , out_channels // config.groups_width )
__a =(
TFRegNetShortCut(__snake_case , stride=__snake_case , name='shortcut' )
if should_apply_shortcut
else tf.keras.layers.Activation('linear' , name='shortcut' )
)
__a =[
TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='layer.0' ),
TFRegNetConvLayer(
__snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='layer.1' ),
TFRegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ),
TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='layer.3' ),
]
__a =ACTaFN[config.hidden_act]
def __magic_name__ ( self , __snake_case ) -> str:
'''simple docstring'''
__a =hidden_state
for layer_module in self.layers:
__a =layer_module(__snake_case )
__a =self.shortcut(__snake_case )
hidden_state += residual
__a =self.activation(__snake_case )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 2 , __snake_case = 2 , **__snake_case ) -> List[str]:
'''simple docstring'''
super().__init__(**__snake_case )
__a =TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer
__a =[
# downsampling is done in the first layer with stride of 2
layer(__snake_case , __snake_case , __snake_case , stride=__snake_case , name='layers.0' ),
*[layer(__snake_case , __snake_case , __snake_case , name=f'layers.{i+1}' ) for i in range(depth - 1 )],
]
def __magic_name__ ( self , __snake_case ) -> Any:
'''simple docstring'''
for layer_module in self.layers:
__a =layer_module(__snake_case )
return hidden_state
class __magic_name__ ( tf.keras.layers.Layer ):
def __init__( self , __snake_case , **__snake_case ) -> Any:
'''simple docstring'''
super().__init__(**__snake_case )
__a =[]
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
__snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) )
__a =zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(__snake_case , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case , name=f'stages.{i+1}' ) )
def __magic_name__ ( self , __snake_case , __snake_case = False , __snake_case = True ) -> TFBaseModelOutputWithNoAttention:
'''simple docstring'''
__a =() if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__a =hidden_states + (hidden_state,)
__a =stage_module(__snake_case )
if output_hidden_states:
__a =hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case )
@keras_serializable
class __magic_name__ ( tf.keras.layers.Layer ):
SCREAMING_SNAKE_CASE = RegNetConfig
def __init__( self , __snake_case , **__snake_case ) -> List[str]:
'''simple docstring'''
super().__init__(**__snake_case )
__a =config
__a =TFRegNetEmbeddings(__snake_case , name='embedder' )
__a =TFRegNetEncoder(__snake_case , name='encoder' )
__a =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='pooler' )
@unpack_inputs
def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention:
'''simple docstring'''
__a =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__a =return_dict if return_dict is not None else self.config.use_return_dict
__a =self.embedder(__snake_case , training=__snake_case )
__a =self.encoder(
__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case )
__a =encoder_outputs[0]
__a =self.pooler(__snake_case )
# Change to NCHW output format have uniformity in the modules
__a =tf.transpose(__snake_case , perm=(0, 3, 1, 2) )
__a =tf.transpose(__snake_case , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__a =tuple([tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class __magic_name__ ( lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE = RegNetConfig
SCREAMING_SNAKE_CASE = 'regnet'
SCREAMING_SNAKE_CASE = 'pixel_values'
@property
def __magic_name__ ( self ) -> Optional[Any]:
'''simple docstring'''
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )}
_lowerCAmelCase : Union[str, Any] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
_lowerCAmelCase : Optional[Any] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase_ , )
class __magic_name__ ( lowerCAmelCase_ ):
def __init__( self , __snake_case , *__snake_case , **__snake_case ) -> Dict:
'''simple docstring'''
super().__init__(__snake_case , *__snake_case , **__snake_case )
__a =TFRegNetMainLayer(__snake_case , name='regnet' )
@unpack_inputs
@add_start_docstrings_to_model_forward(__snake_case )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
'''simple docstring'''
__a =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__a =return_dict if return_dict is not None else self.config.use_return_dict
__a =self.regnet(
pixel_values=__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase_ , )
class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ ):
def __init__( self , __snake_case , *__snake_case , **__snake_case ) -> int:
'''simple docstring'''
super().__init__(__snake_case , *__snake_case , **__snake_case )
__a =config.num_labels
__a =TFRegNetMainLayer(__snake_case , name='regnet' )
# classification head
__a =[
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(__snake_case )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __magic_name__ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
'''simple docstring'''
__a =(
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__a =return_dict if return_dict is not None else self.config.use_return_dict
__a =self.regnet(
__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case )
__a =outputs.pooler_output if return_dict else outputs[1]
__a =self.classifier[0](__snake_case )
__a =self.classifier[1](__snake_case )
__a =None if labels is None else self.hf_compute_loss(labels=__snake_case , logits=__snake_case )
if not return_dict:
__a =(logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
| 242 |
def UpperCamelCase_( ):
"""simple docstring"""
for n in range(1 , 1000000 ):
yield n * (n + 1) // 2
def UpperCamelCase_( _snake_case : Optional[int] ):
"""simple docstring"""
__a =1
__a =2
while i * i <= n:
__a =0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def UpperCamelCase_( ):
"""simple docstring"""
return next(i for i in triangle_number_generator() if count_divisors(_snake_case ) > 500 )
if __name__ == "__main__":
print(solution())
| 242 | 1 |
from __future__ import annotations
def __UpperCamelCase ( _A : str ) ->list[int]:
"""simple docstring"""
return [ord(_A ) - 96 for elem in plain]
def __UpperCamelCase ( _A : list[int] ) ->str:
"""simple docstring"""
return "".join(chr(elem + 96 ) for elem in encoded )
def __UpperCamelCase ( ) ->None:
"""simple docstring"""
lowerCamelCase_ =encode(input("""-> """ ).strip().lower() )
print("""Encoded: """ , _A )
print("""Decoded:""" , decode(_A ) )
if __name__ == "__main__":
main()
| 716 |
import logging
import numpy as np
import pytest
from scipy.linalg import eigh
logging.basicConfig(level=logging.INFO, format='%(message)s')
def __UpperCamelCase ( _A : np.ndarray ) ->np.ndarray:
"""simple docstring"""
return input_array.reshape((input_array.size, 1) )
def __UpperCamelCase ( _A : np.ndarray , _A : np.ndarray , _A : int ) ->np.ndarray:
"""simple docstring"""
lowerCamelCase_ =np.nan
for i in range(_A ):
lowerCamelCase_ =features[:, labels == i]
lowerCamelCase_ =data.mean(1 )
# Centralize the data of class i
lowerCamelCase_ =data - column_reshape(_A )
if i > 0:
# If covariance_sum is not None
covariance_sum += np.dot(_A , centered_data.T )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCamelCase_ =np.dot(_A , centered_data.T )
return covariance_sum / features.shape[1]
def __UpperCamelCase ( _A : np.ndarray , _A : np.ndarray , _A : int ) ->np.ndarray:
"""simple docstring"""
lowerCamelCase_ =features.mean(1 )
lowerCamelCase_ =np.nan
for i in range(_A ):
lowerCamelCase_ =features[:, labels == i]
lowerCamelCase_ =data.shape[1]
lowerCamelCase_ =data.mean(1 )
if i > 0:
# If covariance_sum is not None
covariance_sum += device_data * np.dot(
column_reshape(_A ) - column_reshape(_A ) , (column_reshape(_A ) - column_reshape(_A )).T , )
else:
# If covariance_sum is np.nan (i.e. first loop)
lowerCamelCase_ =device_data * np.dot(
column_reshape(_A ) - column_reshape(_A ) , (column_reshape(_A ) - column_reshape(_A )).T , )
return covariance_sum / features.shape[1]
def __UpperCamelCase ( _A : np.ndarray , _A : int ) ->np.ndarray:
"""simple docstring"""
# Check if the features have been loaded
if features.any():
lowerCamelCase_ =features.mean(1 )
# Center the dataset
lowerCamelCase_ =features - np.reshape(_A , (data_mean.size, 1) )
lowerCamelCase_ =np.dot(_A , centered_data.T ) / features.shape[1]
lowerCamelCase_ , lowerCamelCase_ =np.linalg.eigh(_A )
# Take all the columns in the reverse order (-1), and then takes only the first
lowerCamelCase_ =eigenvectors[:, ::-1][:, 0:dimensions]
# Project the database on the new space
lowerCamelCase_ =np.dot(filtered_eigenvectors.T , _A )
logging.info("""Principal Component Analysis computed""" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_A )
logging.error("""Dataset empty""" )
raise AssertionError
def __UpperCamelCase ( _A : np.ndarray , _A : np.ndarray , _A : int , _A : int ) ->np.ndarray:
"""simple docstring"""
assert classes > dimensions
# Check if features have been already loaded
if features.any:
lowerCamelCase_ , lowerCamelCase_ =eigh(
covariance_between_classes(_A , _A , _A ) , covariance_within_classes(_A , _A , _A ) , )
lowerCamelCase_ =eigenvectors[:, ::-1][:, :dimensions]
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =np.linalg.svd(_A )
lowerCamelCase_ =svd_matrix[:, 0:dimensions]
lowerCamelCase_ =np.dot(filtered_svd_matrix.T , _A )
logging.info("""Linear Discriminant Analysis computed""" )
return projected_data
else:
logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_A )
logging.error("""Dataset empty""" )
raise AssertionError
def __UpperCamelCase ( ) ->None:
"""simple docstring"""
# Create dummy dataset with 2 classes and 3 features
lowerCamelCase_ =np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] )
lowerCamelCase_ =np.array([0, 0, 0, 1, 1] )
lowerCamelCase_ =2
lowerCamelCase_ =2
# Assert that the function raises an AssertionError if dimensions > classes
with pytest.raises(_A ) as error_info:
lowerCamelCase_ =linear_discriminant_analysis(
_A , _A , _A , _A )
if isinstance(_A , np.ndarray ):
raise AssertionError(
"""Did not raise AssertionError for dimensions > classes""" )
assert error_info.type is AssertionError
def __UpperCamelCase ( ) ->None:
"""simple docstring"""
lowerCamelCase_ =np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] )
lowerCamelCase_ =2
lowerCamelCase_ =np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] )
with pytest.raises(_A ) as error_info:
lowerCamelCase_ =principal_component_analysis(_A , _A )
if not np.allclose(_A , _A ):
raise AssertionError
assert error_info.type is AssertionError
if __name__ == "__main__":
import doctest
doctest.testmod()
| 75 | 0 |
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Dict ) -> int:
__snake_case = k_size // 2
__snake_case , __snake_case = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
__snake_case = 1 / (2 * pi * sigma) * exp(-(square(snake_case_ ) + square(snake_case_ )) / (2 * square(snake_case_ )) )
return g
def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[Any] ) -> str:
__snake_case , __snake_case = image.shape[0], image.shape[1]
# dst image height and width
__snake_case = height - k_size + 1
__snake_case = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
__snake_case = zeros((dst_height * dst_width, k_size * k_size) )
__snake_case = 0
for i, j in product(range(snake_case_ ) , range(snake_case_ ) ):
__snake_case = ravel(image[i : i + k_size, j : j + k_size] )
__snake_case = window
row += 1
# turn the kernel into shape(k*k, 1)
__snake_case = gen_gaussian_kernel(snake_case_ , snake_case_ )
__snake_case = ravel(snake_case_ )
# reshape and get the dst image
__snake_case = dot(snake_case_ , snake_case_ ).reshape(snake_case_ , snake_case_ ).astype(snake_case_ )
return dst
if __name__ == "__main__":
# read original image
snake_case_ = imread(R'../image_data/lena.jpg')
# turn image in gray scale value
snake_case_ = cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
snake_case_ = gaussian_filter(gray, 3, sigma=1)
snake_case_ = gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow('gaussian filter with 3x3 mask', gaussianaxa)
imshow('gaussian filter with 5x5 mask', gaussianaxa)
waitKey()
| 592 |
import math
def lowerCamelCase__ ( snake_case_ : int ) -> bool:
__snake_case = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 )
return exponent == int(snake_case_ )
def lowerCamelCase__ ( snake_case_ : float = 1 / 1_2345 ) -> int:
__snake_case = 0
__snake_case = 0
__snake_case = 3
while True:
__snake_case = (integer**2 - 1) / 4
# if candidate is an integer, then there is a partition for k
if partition_candidate == int(snake_case_ ):
__snake_case = int(snake_case_ )
total_partitions += 1
if check_partition_perfect(snake_case_ ):
perfect_partitions += 1
if perfect_partitions > 0:
if perfect_partitions / total_partitions < max_proportion:
return int(snake_case_ )
integer += 1
if __name__ == "__main__":
print(F'{solution() = }')
| 592 | 1 |
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class _snake_case ( unittest.TestCase ):
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(SCREAMING_SNAKE_CASE_):
lowercase__ : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(SCREAMING_SNAKE_CASE_):
lowercase__ : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
lowercase__ : int = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
lowercase__ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : str = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX)
@jax.jit
def eval(**SCREAMING_SNAKE_CASE_):
return model(**SCREAMING_SNAKE_CASE_)
eval(**SCREAMING_SNAKE_CASE_).block_until_ready()
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE_)
lowercase__ : Any = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX)
@jax.jit
def eval(**SCREAMING_SNAKE_CASE_):
return model(**SCREAMING_SNAKE_CASE_)
eval(**SCREAMING_SNAKE_CASE_).block_until_ready()
def lowercase__ ( self):
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE_ , """bert-base is not a local folder and is not a valid model identifier"""):
lowercase__ : Any = FlaxAutoModel.from_pretrained("""bert-base""")
def lowercase__ ( self):
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"""):
lowercase__ : Dict = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="""aaaaaa""")
def lowercase__ ( self):
'''simple docstring'''
with self.assertRaisesRegex(
SCREAMING_SNAKE_CASE_ , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ):
lowercase__ : Dict = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""")
def lowercase__ ( self):
'''simple docstring'''
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , """Use `from_pt=True` to load this model"""):
lowercase__ : List[Any] = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""")
| 495 |
import argparse
import os
import numpy as np
import tensorflow as tf
import torch
from transformers import BertModel
def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Dict:
'''simple docstring'''
lowercase__ : Dict = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""")
lowercase__ : Union[str, Any] = (
("""layer.""", """layer_"""),
("""word_embeddings.weight""", """word_embeddings"""),
("""position_embeddings.weight""", """position_embeddings"""),
("""token_type_embeddings.weight""", """token_type_embeddings"""),
(""".""", """/"""),
("""LayerNorm/weight""", """LayerNorm/gamma"""),
("""LayerNorm/bias""", """LayerNorm/beta"""),
("""weight""", """kernel"""),
)
if not os.path.isdir(lowercase_ ):
os.makedirs(lowercase_ )
lowercase__ : Optional[Any] = model.state_dict()
def to_tf_var_name(lowercase_ ):
for patt, repl in iter(lowercase_ ):
lowercase__ : str = name.replace(lowercase_ , lowercase_ )
return F'bert/{name}'
def create_tf_var(lowercase_ , lowercase_ , lowercase_ ):
lowercase__ : List[str] = tf.dtypes.as_dtype(tensor.dtype )
lowercase__ : Tuple = tf.get_variable(dtype=lowercase_ , shape=tensor.shape , name=lowercase_ , initializer=tf.zeros_initializer() )
session.run(tf.variables_initializer([tf_var] ) )
session.run(lowercase_ )
return tf_var
tf.reset_default_graph()
with tf.Session() as session:
for var_name in state_dict:
lowercase__ : Any = to_tf_var_name(lowercase_ )
lowercase__ : Dict = state_dict[var_name].numpy()
if any(x in var_name for x in tensors_to_transpose ):
lowercase__ : Optional[int] = torch_tensor.T
lowercase__ : Any = create_tf_var(tensor=lowercase_ , name=lowercase_ , session=lowercase_ )
tf.keras.backend.set_value(lowercase_ , lowercase_ )
lowercase__ : Optional[int] = session.run(lowercase_ )
print(F'Successfully created {tf_name}: {np.allclose(lowercase_ , lowercase_ )}' )
lowercase__ : List[Any] = tf.train.Saver(tf.trainable_variables() )
saver.save(lowercase_ , os.path.join(lowercase_ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) )
def UpperCamelCase ( lowercase_=None ) -> Union[str, Any]:
'''simple docstring'''
lowercase__ : List[str] = argparse.ArgumentParser()
parser.add_argument("""--model_name""" , type=lowercase_ , required=lowercase_ , help="""model name e.g. bert-base-uncased""" )
parser.add_argument(
"""--cache_dir""" , type=lowercase_ , default=lowercase_ , required=lowercase_ , help="""Directory containing pytorch model""" )
parser.add_argument("""--pytorch_model_path""" , type=lowercase_ , required=lowercase_ , help="""/path/to/<pytorch-model-name>.bin""" )
parser.add_argument("""--tf_cache_dir""" , type=lowercase_ , required=lowercase_ , help="""Directory in which to save tensorflow model""" )
lowercase__ : List[str] = parser.parse_args(lowercase_ )
lowercase__ : Any = BertModel.from_pretrained(
pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , )
convert_pytorch_checkpoint_to_tf(model=lowercase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name )
if __name__ == "__main__":
main()
| 495 | 1 |
"""simple docstring"""
import baseaa
def _snake_case ( lowercase__ ):
return baseaa.baaencode(string.encode('utf-8' ) )
def _snake_case ( lowercase__ ):
return baseaa.baadecode(lowercase__ ).decode('utf-8' )
if __name__ == "__main__":
lowercase__ = """Hello World!"""
lowercase__ = baseaa_encode(test)
print(encoded)
lowercase__ = baseaa_decode(encoded)
print(decoded) | 630 |
"""simple docstring"""
def _snake_case ( lowercase__ = 1 , lowercase__ = 1000 ):
_lowerCamelCase : Optional[int] = 1
_lowerCamelCase : List[Any] = 0
for divide_by_number in range(lowercase__ , digit + 1 ):
_lowerCamelCase : list[int] = []
_lowerCamelCase : Dict = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(lowercase__ ):
_lowerCamelCase : Any = len(lowercase__ )
_lowerCamelCase : Any = divide_by_number
else:
has_been_divided.append(lowercase__ )
_lowerCamelCase : int = now_divide * 10 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod() | 630 | 1 |
'''simple docstring'''
def lowercase__ ( __lowercase : int ) -> bool:
"""simple docstring"""
return str(__lowercase ) == str(__lowercase )[::-1]
def lowercase__ ( __lowercase : int ) -> int:
"""simple docstring"""
return int(__lowercase ) + int(str(__lowercase )[::-1] )
def lowercase__ ( __lowercase : int = 10000 ) -> int:
"""simple docstring"""
__UpperCamelCase = []
for num in range(1 , __lowercase ):
__UpperCamelCase = 0
__UpperCamelCase = num
while iterations < 50:
__UpperCamelCase = sum_reverse(__lowercase )
iterations += 1
if is_palindrome(__lowercase ):
break
else:
lychrel_nums.append(__lowercase )
return len(__lowercase )
if __name__ == "__main__":
print(f'{solution() = }')
| 434 |
'''simple docstring'''
a__ : Optional[Any] =[
999,
800,
799,
600,
599,
500,
400,
399,
377,
355,
333,
311,
288,
266,
244,
222,
200,
199,
177,
155,
133,
111,
88,
66,
44,
22,
0,
]
a__ : List[str] =[
999,
976,
952,
928,
905,
882,
858,
857,
810,
762,
715,
714,
572,
429,
428,
286,
285,
238,
190,
143,
142,
118,
95,
71,
47,
24,
0,
]
a__ : int =[
999,
988,
977,
966,
955,
944,
933,
922,
911,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
350,
300,
299,
266,
233,
200,
199,
179,
159,
140,
120,
100,
99,
88,
77,
66,
55,
44,
33,
22,
11,
0,
]
a__ : str =[
999,
995,
992,
989,
985,
981,
978,
975,
971,
967,
964,
961,
957,
956,
951,
947,
942,
937,
933,
928,
923,
919,
914,
913,
908,
903,
897,
892,
887,
881,
876,
871,
870,
864,
858,
852,
846,
840,
834,
828,
827,
820,
813,
806,
799,
792,
785,
784,
777,
770,
763,
756,
749,
742,
741,
733,
724,
716,
707,
699,
698,
688,
677,
666,
656,
655,
645,
634,
623,
613,
612,
598,
584,
570,
569,
555,
541,
527,
526,
505,
484,
483,
462,
440,
439,
396,
395,
352,
351,
308,
307,
264,
263,
220,
219,
176,
132,
88,
44,
0,
]
a__ : Union[str, Any] =[
999,
997,
995,
992,
990,
988,
986,
984,
981,
979,
977,
975,
972,
970,
968,
966,
964,
961,
959,
957,
956,
954,
951,
949,
946,
944,
941,
939,
936,
934,
931,
929,
926,
924,
921,
919,
916,
914,
913,
910,
907,
905,
902,
899,
896,
893,
891,
888,
885,
882,
879,
877,
874,
871,
870,
867,
864,
861,
858,
855,
852,
849,
846,
843,
840,
837,
834,
831,
828,
827,
824,
821,
817,
814,
811,
808,
804,
801,
798,
795,
791,
788,
785,
784,
780,
777,
774,
770,
766,
763,
760,
756,
752,
749,
746,
742,
741,
737,
733,
730,
726,
722,
718,
714,
710,
707,
703,
699,
698,
694,
690,
685,
681,
677,
673,
669,
664,
660,
656,
655,
650,
646,
641,
636,
632,
627,
622,
618,
613,
612,
607,
602,
596,
591,
586,
580,
575,
570,
569,
563,
557,
551,
545,
539,
533,
527,
526,
519,
512,
505,
498,
491,
484,
483,
474,
466,
457,
449,
440,
439,
428,
418,
407,
396,
395,
381,
366,
352,
351,
330,
308,
307,
286,
264,
263,
242,
220,
219,
176,
175,
132,
131,
88,
44,
0,
]
a__ : int =[
999,
991,
982,
974,
966,
958,
950,
941,
933,
925,
916,
908,
900,
899,
874,
850,
825,
800,
799,
700,
600,
500,
400,
300,
200,
100,
0,
]
a__ : Any =[
999,
992,
985,
978,
971,
964,
957,
949,
942,
935,
928,
921,
914,
907,
900,
899,
879,
859,
840,
820,
800,
799,
766,
733,
700,
699,
650,
600,
599,
500,
499,
400,
399,
300,
299,
200,
199,
100,
99,
0,
]
a__ : Any =[
999,
996,
992,
989,
985,
982,
979,
975,
972,
968,
965,
961,
958,
955,
951,
948,
944,
941,
938,
934,
931,
927,
924,
920,
917,
914,
910,
907,
903,
900,
899,
891,
884,
876,
869,
861,
853,
846,
838,
830,
823,
815,
808,
800,
799,
788,
777,
766,
755,
744,
733,
722,
711,
700,
699,
688,
677,
666,
655,
644,
633,
622,
611,
600,
599,
585,
571,
557,
542,
528,
514,
500,
499,
485,
471,
457,
442,
428,
414,
400,
399,
379,
359,
340,
320,
300,
299,
279,
259,
240,
220,
200,
199,
166,
133,
100,
99,
66,
33,
0,
]
| 434 | 1 |
"""simple docstring"""
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any="pt" ):
'''simple docstring'''
lowerCAmelCase : Any = {"add_prefix_space": True} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not line.startswith(" " ) else {}
lowerCAmelCase : Dict = padding_side
return tokenizer(
[line] , max_length=SCREAMING_SNAKE_CASE , padding="max_length" if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int]=None , ):
'''simple docstring'''
lowerCAmelCase : List[str] = input_ids.ne(SCREAMING_SNAKE_CASE ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__="train" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="" , ):
"""simple docstring"""
super().__init__()
lowerCAmelCase : str = Path(snake_case__ ).joinpath(type_path + ".source" )
lowerCAmelCase : Optional[Any] = Path(snake_case__ ).joinpath(type_path + ".target" )
lowerCAmelCase : Tuple = self.get_char_lens(self.src_file )
lowerCAmelCase : str = max_source_length
lowerCAmelCase : Any = max_target_length
assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}"""
lowerCAmelCase : Optional[Any] = tokenizer
lowerCAmelCase : Union[str, Any] = prefix
if n_obs is not None:
lowerCAmelCase : Tuple = self.src_lens[:n_obs]
lowerCAmelCase : int = src_lang
lowerCAmelCase : Union[str, Any] = tgt_lang
def __len__( self ):
"""simple docstring"""
return len(self.src_lens )
def __getitem__( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : str = index + 1 # linecache starts at 1
lowerCAmelCase : List[str] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" )
lowerCAmelCase : Tuple = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" )
assert source_line, f"""empty source line for index {index}"""
assert tgt_line, f"""empty tgt line for index {index}"""
# Need to add eos token manually for T5
if isinstance(self.tokenizer , snake_case__ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
lowerCAmelCase : int = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer
)
lowerCAmelCase : List[str] = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer
lowerCAmelCase : Optional[int] = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" )
lowerCAmelCase : List[Any] = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" )
lowerCAmelCase : int = source_inputs["input_ids"].squeeze()
lowerCAmelCase : List[Any] = target_inputs["input_ids"].squeeze()
lowerCAmelCase : Union[str, Any] = source_inputs["attention_mask"].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def lowercase__ ( snake_case__ ):
"""simple docstring"""
return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()]
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : int = torch.stack([x["input_ids"] for x in batch] )
lowerCAmelCase : List[Any] = torch.stack([x["attention_mask"] for x in batch] )
lowerCAmelCase : Union[str, Any] = torch.stack([x["decoder_input_ids"] for x in batch] )
lowerCAmelCase : List[str] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , snake_case__ )
else self.tokenizer.pad_token_id
)
lowerCAmelCase : Dict = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , snake_case__ )
else self.tokenizer.pad_token_id
)
lowerCAmelCase : int = trim_batch(snake_case__ , snake_case__ )
lowerCAmelCase , lowerCAmelCase : Any = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ )
lowerCAmelCase : List[str] = {
"input_ids": source_ids,
"attention_mask": source_mask,
"decoder_input_ids": y,
}
return batch
lowerCAmelCase__ = getLogger(__name__)
def a__ ( SCREAMING_SNAKE_CASE : List[List] ):
'''simple docstring'''
return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) )
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
lowerCAmelCase : Tuple = get_git_info()
save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , "git_log.json" ) )
def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str=4 , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE , "w" ) as f:
json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def a__ ( SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE ) as f:
return json.load(SCREAMING_SNAKE_CASE )
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[Any] = {
"repo_id": str(SCREAMING_SNAKE_CASE ),
"repo_sha": str(repo.head.object.hexsha ),
"repo_branch": str(repo.active_branch ),
"hostname": str(socket.gethostname() ),
}
return repo_infos
def a__ ( SCREAMING_SNAKE_CASE : Callable , SCREAMING_SNAKE_CASE : Iterable ):
'''simple docstring'''
return list(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
with open(SCREAMING_SNAKE_CASE , "wb" ) as f:
return pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
def remove_articles(SCREAMING_SNAKE_CASE : Union[str, Any] ):
return re.sub(r"\b(a|an|the)\b" , " " , SCREAMING_SNAKE_CASE )
def white_space_fix(SCREAMING_SNAKE_CASE : List[str] ):
return " ".join(text.split() )
def remove_punc(SCREAMING_SNAKE_CASE : Tuple ):
lowerCAmelCase : int = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(SCREAMING_SNAKE_CASE : List[Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) )
def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
lowerCAmelCase : Tuple = normalize_answer(SCREAMING_SNAKE_CASE ).split()
lowerCAmelCase : List[Any] = normalize_answer(SCREAMING_SNAKE_CASE ).split()
lowerCAmelCase : Dict = Counter(SCREAMING_SNAKE_CASE ) & Counter(SCREAMING_SNAKE_CASE )
lowerCAmelCase : List[str] = sum(common.values() )
if num_same == 0:
return 0
lowerCAmelCase : Any = 1.0 * num_same / len(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Dict = (2 * precision * recall) / (precision + recall)
return fa
def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
return normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE )
def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )
lowerCAmelCase : Optional[int] = 0
for hypo, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
em += exact_match_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
em /= len(SCREAMING_SNAKE_CASE )
return {"em": em}
def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
return model_prefix.startswith("rag" )
def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
lowerCAmelCase : List[str] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
lowerCAmelCase : List[str] = "dropout_rate"
for p in extra_params:
if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not hasattr(SCREAMING_SNAKE_CASE , equivalent_param[p] ):
logger.info("config doesn't have a `{}` attribute".format(SCREAMING_SNAKE_CASE ) )
delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
continue
lowerCAmelCase : List[str] = p if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else equivalent_param[p]
setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) )
delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return hparams, config
| 645 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''openai/imagegpt-small''': '''''',
'''openai/imagegpt-medium''': '''''',
'''openai/imagegpt-large''': '''''',
}
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
a : int ="imagegpt"
a : Union[str, Any] =["past_key_values"]
a : Optional[Any] ={
"hidden_size": "n_embd",
"max_position_embeddings": "n_positions",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , snake_case__=512 + 1 , snake_case__=32 * 32 , snake_case__=512 , snake_case__=24 , snake_case__=8 , snake_case__=None , snake_case__="quick_gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , **snake_case__ , ):
"""simple docstring"""
lowerCAmelCase : Tuple = vocab_size
lowerCAmelCase : List[Any] = n_positions
lowerCAmelCase : Union[str, Any] = n_embd
lowerCAmelCase : str = n_layer
lowerCAmelCase : Tuple = n_head
lowerCAmelCase : Optional[Any] = n_inner
lowerCAmelCase : Dict = activation_function
lowerCAmelCase : str = resid_pdrop
lowerCAmelCase : Optional[int] = embd_pdrop
lowerCAmelCase : Optional[int] = attn_pdrop
lowerCAmelCase : Union[str, Any] = layer_norm_epsilon
lowerCAmelCase : Any = initializer_range
lowerCAmelCase : Union[str, Any] = scale_attn_weights
lowerCAmelCase : int = use_cache
lowerCAmelCase : List[Any] = scale_attn_by_inverse_layer_idx
lowerCAmelCase : Optional[int] = reorder_and_upcast_attn
lowerCAmelCase : int = tie_word_embeddings
super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ )
class SCREAMING_SNAKE_CASE__ ( lowercase ):
"""simple docstring"""
@property
def lowercase__ ( self ):
"""simple docstring"""
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def lowercase__ ( self , snake_case__ , snake_case__ = 1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 32 , snake_case__ = 32 , ):
"""simple docstring"""
lowerCAmelCase : Tuple = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ )
lowerCAmelCase : Union[str, Any] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) )
return inputs
| 645 | 1 |
"""simple docstring"""
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__lowerCAmelCase : str = '''
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
__lowerCAmelCase : Optional[int] = '''\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
'''
__lowerCAmelCase : List[Any] = '''
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=["About 95 species are currently accepted ."]
>>> predictions=["About 95 you now get in ."]
>>> references=[["About 95 species are currently known ."]]
>>> wiki_split = datasets.load_metric("wiki_split")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}
'''
def __snake_case ( UpperCamelCase ) -> Dict:
"""simple docstring"""
def remove_articles(UpperCamelCase ):
a__ = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE )
return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase )
def white_space_fix(UpperCamelCase ):
return " ".join(text.split() )
def remove_punc(UpperCamelCase ):
a__ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(UpperCamelCase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) )
def __snake_case ( UpperCamelCase , UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) )
def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[Any]:
"""simple docstring"""
a__ = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )]
return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100
def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]:
"""simple docstring"""
a__ = [rgram for rgrams in rgramslist for rgram in rgrams]
a__ = Counter(UpperCamelCase )
a__ = Counter(UpperCamelCase )
a__ = Counter()
for sgram, scount in sgramcounter.items():
a__ = scount * numref
a__ = Counter(UpperCamelCase )
a__ = Counter()
for cgram, ccount in cgramcounter.items():
a__ = ccount * numref
# KEEP
a__ = sgramcounter_rep & cgramcounter_rep
a__ = keepgramcounter_rep & rgramcounter
a__ = sgramcounter_rep & rgramcounter
a__ = 0
a__ = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
a__ = 1
a__ = 1
if len(UpperCamelCase ) > 0:
a__ = keeptmpscorea / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
a__ = keeptmpscorea / sum(keepgramcounterall_rep.values() )
a__ = 0
if keepscore_precision > 0 or keepscore_recall > 0:
a__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
a__ = sgramcounter_rep - cgramcounter_rep
a__ = delgramcounter_rep - rgramcounter
a__ = sgramcounter_rep - rgramcounter
a__ = 0
a__ = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
a__ = 1
if len(UpperCamelCase ) > 0:
a__ = deltmpscorea / len(UpperCamelCase )
# ADDITION
a__ = set(UpperCamelCase ) - set(UpperCamelCase )
a__ = set(UpperCamelCase ) & set(UpperCamelCase )
a__ = set(UpperCamelCase ) - set(UpperCamelCase )
a__ = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
a__ = 1
a__ = 1
if len(UpperCamelCase ) > 0:
a__ = addtmpscore / len(UpperCamelCase )
if len(UpperCamelCase ) > 0:
a__ = addtmpscore / len(UpperCamelCase )
a__ = 0
if addscore_precision > 0 or addscore_recall > 0:
a__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]:
"""simple docstring"""
a__ = len(UpperCamelCase )
a__ = ssent.split(''' ''' )
a__ = csent.split(''' ''' )
a__ = []
a__ = []
a__ = []
a__ = []
a__ = []
a__ = []
a__ = []
a__ = []
a__ = []
a__ = []
for rsent in rsents:
a__ = rsent.split(''' ''' )
a__ = []
a__ = []
a__ = []
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
a__ = ragrams[i] + ''' ''' + ragrams[i + 1]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
a__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2]
ragrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
a__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3]
ragrams.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
ragramslist.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
a__ = sagrams[i] + ''' ''' + sagrams[i + 1]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
a__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2]
sagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
a__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3]
sagrams.append(UpperCamelCase )
for i in range(0 , len(UpperCamelCase ) - 1 ):
if i < len(UpperCamelCase ) - 1:
a__ = cagrams[i] + ''' ''' + cagrams[i + 1]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 2:
a__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2]
cagrams.append(UpperCamelCase )
if i < len(UpperCamelCase ) - 3:
a__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3]
cagrams.append(UpperCamelCase )
((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
a__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
a__ = sum([delascore, delascore, delascore, delascore] ) / 4
a__ = sum([addascore, addascore, addascore, addascore] ) / 4
a__ = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def __snake_case ( UpperCamelCase , UpperCamelCase = True , UpperCamelCase = "13a" , UpperCamelCase = True ) -> Tuple:
"""simple docstring"""
if lowercase:
a__ = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
a__ = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase )
else:
a__ = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase )
elif tokenizer == "moses":
a__ = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase )
elif tokenizer == "penn":
a__ = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase )
else:
a__ = sentence
if not return_str:
a__ = normalized_sent.split()
return normalized_sent
def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]:
"""simple docstring"""
if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )):
raise ValueError('''Sources length must match predictions and references lengths.''' )
a__ = 0
for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] )
a__ = sari_score / len(UpperCamelCase )
return 100 * sari_score
def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase="exp" , UpperCamelCase=None , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , ) -> int:
"""simple docstring"""
a__ = len(references[0] )
if any(len(UpperCamelCase ) != references_per_prediction for refs in references ):
raise ValueError('''Sacrebleu requires the same number of references for each prediction''' )
a__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )]
a__ = sacrebleu.corpus_bleu(
UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE ( datasets.Metric ):
'''simple docstring'''
def _UpperCamelCase ( self :Union[str, Any] ) -> List[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ),
} ) , codebase_urls=[
'''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''',
'''https://github.com/cocoxu/simplification/blob/master/SARI.py''',
'''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''',
'''https://github.com/mjpost/sacreBLEU''',
] , reference_urls=[
'''https://www.aclweb.org/anthology/Q16-1029.pdf''',
'''https://github.com/mjpost/sacreBLEU''',
'''https://en.wikipedia.org/wiki/BLEU''',
'''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''',
] , )
def _UpperCamelCase ( self :str , __magic_name__ :Dict , __magic_name__ :Optional[int] , __magic_name__ :Dict ) -> List[Any]:
'''simple docstring'''
a__ = {}
result.update({'''sari''': compute_sari(sources=__magic_name__ , predictions=__magic_name__ , references=__magic_name__ )} )
result.update({'''sacrebleu''': compute_sacrebleu(predictions=__magic_name__ , references=__magic_name__ )} )
result.update({'''exact''': compute_em(predictions=__magic_name__ , references=__magic_name__ )} )
return result
| 158 |
"""simple docstring"""
from __future__ import annotations
__lowerCAmelCase : Union[str, Any] = list[tuple[int, int]]
__lowerCAmelCase : Optional[int] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
__lowerCAmelCase : Dict = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self :str , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :float , __magic_name__ :Node | None , ) -> Tuple:
'''simple docstring'''
a__ = pos_x
a__ = pos_y
a__ = (pos_y, pos_x)
a__ = goal_x
a__ = goal_y
a__ = g_cost
a__ = parent
a__ = self.calculate_heuristic()
def _UpperCamelCase ( self :int ) -> float:
'''simple docstring'''
a__ = abs(self.pos_x - self.goal_x )
a__ = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self :List[str] , __magic_name__ :List[Any] ) -> bool:
'''simple docstring'''
return self.f_cost < other.f_cost
class SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__( self :Dict , __magic_name__ :tuple[int, int] , __magic_name__ :tuple[int, int] ) -> Tuple:
'''simple docstring'''
a__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __magic_name__ )
a__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __magic_name__ )
a__ = [self.start]
a__ = []
a__ = False
def _UpperCamelCase ( self :Union[str, Any] ) -> Path | None:
'''simple docstring'''
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
a__ = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
a__ = True
return self.retrace_path(__magic_name__ )
self.closed_nodes.append(__magic_name__ )
a__ = self.get_successors(__magic_name__ )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(__magic_name__ )
else:
# retrieve the best current path
a__ = self.open_nodes.pop(self.open_nodes.index(__magic_name__ ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(__magic_name__ )
else:
self.open_nodes.append(__magic_name__ )
if not self.reached:
return [self.start.pos]
return None
def _UpperCamelCase ( self :List[str] , __magic_name__ :Node ) -> list[Node]:
'''simple docstring'''
a__ = []
for action in delta:
a__ = parent.pos_x + action[1]
a__ = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__magic_name__ ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
__magic_name__ , __magic_name__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __magic_name__ , ) )
return successors
def _UpperCamelCase ( self :Any , __magic_name__ :Node | None ) -> Path:
'''simple docstring'''
a__ = node
a__ = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
a__ = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
__lowerCAmelCase : str = (0, 0)
__lowerCAmelCase : Dict = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print('''------''')
__lowerCAmelCase : Optional[int] = GreedyBestFirst(init, goal)
__lowerCAmelCase : Tuple = greedy_bf.search()
if path:
for pos_x, pos_y in path:
__lowerCAmelCase : Tuple = 2
for elem in grid:
print(elem)
| 158 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_electra import ElectraTokenizer
UpperCamelCase__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase__ : Optional[Any] = {
'''vocab_file''': {
'''google/electra-small-generator''': (
'''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt'''
),
'''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''',
'''google/electra-large-generator''': (
'''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt'''
),
'''google/electra-small-discriminator''': (
'''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt'''
),
'''google/electra-base-discriminator''': (
'''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt'''
),
'''google/electra-large-discriminator''': (
'''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''google/electra-small-generator''': (
'''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json'''
),
'''google/electra-base-generator''': (
'''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json'''
),
'''google/electra-large-generator''': (
'''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json'''
),
'''google/electra-small-discriminator''': (
'''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json'''
),
'''google/electra-base-discriminator''': (
'''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json'''
),
'''google/electra-large-discriminator''': (
'''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase__ : Tuple = {
'''google/electra-small-generator''': 5_12,
'''google/electra-base-generator''': 5_12,
'''google/electra-large-generator''': 5_12,
'''google/electra-small-discriminator''': 5_12,
'''google/electra-base-discriminator''': 5_12,
'''google/electra-large-discriminator''': 5_12,
}
UpperCamelCase__ : Union[str, Any] = {
'''google/electra-small-generator''': {'''do_lower_case''': True},
'''google/electra-base-generator''': {'''do_lower_case''': True},
'''google/electra-large-generator''': {'''do_lower_case''': True},
'''google/electra-small-discriminator''': {'''do_lower_case''': True},
'''google/electra-base-discriminator''': {'''do_lower_case''': True},
'''google/electra-large-discriminator''': {'''do_lower_case''': True},
}
class lowerCAmelCase_ ( a_ ):
__a : Tuple = VOCAB_FILES_NAMES
__a : Any = PRETRAINED_VOCAB_FILES_MAP
__a : Dict = PRETRAINED_INIT_CONFIGURATION
__a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__a : Optional[Any] = ElectraTokenizer
def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__=True ,snake_case__="[UNK]" ,snake_case__="[SEP]" ,snake_case__="[PAD]" ,snake_case__="[CLS]" ,snake_case__="[MASK]" ,snake_case__=True ,snake_case__=None ,**snake_case__ ,):
super().__init__(
lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,tokenize_chinese_chars=lowercase_ ,strip_accents=lowercase_ ,**lowercase_ ,)
SCREAMING_SNAKE_CASE_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' ,lowercase_ ) != do_lower_case
or normalizer_state.get('strip_accents' ,lowercase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' ,lowercase_ ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowercase_ ,normalizer_state.pop('type' ) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_lower_case
SCREAMING_SNAKE_CASE_ : Optional[int] = strip_accents
SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenize_chinese_chars
SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalizer_class(**lowercase_ )
SCREAMING_SNAKE_CASE_ : str = do_lower_case
def snake_case ( self ,snake_case__ ,snake_case__=None ):
SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case ( self ,snake_case__ ,snake_case__ = None ):
SCREAMING_SNAKE_CASE_ : int = [self.sep_token_id]
SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case ( self ,snake_case__ ,snake_case__ = None ):
SCREAMING_SNAKE_CASE_ : List[Any] = self._tokenizer.model.save(lowercase_ ,name=lowercase_ )
return tuple(lowercase_ )
| 105 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def lowerCamelCase ( a_=None ) -> List[str]:
if subparsers is not None:
lowerCAmelCase_ = subparsers.add_parser('test' )
else:
lowerCAmelCase_ = argparse.ArgumentParser('Accelerate test command' )
parser.add_argument(
'--config_file' , default=a_ , help=(
'The path to use to store the config file. Will default to a file named default_config.yaml in the cache '
'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '
'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '
'with \'huggingface\'.'
) , )
if subparsers is not None:
parser.set_defaults(func=a_ )
return parser
def lowerCamelCase ( a_ ) -> List[Any]:
lowerCAmelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] )
if args.config_file is None:
lowerCAmelCase_ = script_name
else:
lowerCAmelCase_ = F'''--config_file={args.config_file} {script_name}'''
lowerCAmelCase_ = ['accelerate-launch'] + test_args.split()
lowerCAmelCase_ = execute_subprocess_async(a_ , env=os.environ.copy() )
if result.returncode == 0:
print('Test is a success! You are ready for your distributed training!' )
def lowerCamelCase ( ) -> Optional[Any]:
lowerCAmelCase_ = test_command_parser()
lowerCAmelCase_ = parser.parse_args()
test_command(a_ )
if __name__ == "__main__":
main()
| 318 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__A : Any = {
'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig']
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = ['RemBertTokenizer']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Tuple = ['RemBertTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Optional[Any] = [
'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RemBertForCausalLM',
'RemBertForMaskedLM',
'RemBertForMultipleChoice',
'RemBertForQuestionAnswering',
'RemBertForSequenceClassification',
'RemBertForTokenClassification',
'RemBertLayer',
'RemBertModel',
'RemBertPreTrainedModel',
'load_tf_weights_in_rembert',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__A : Union[str, Any] = [
'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFRemBertForCausalLM',
'TFRemBertForMaskedLM',
'TFRemBertForMultipleChoice',
'TFRemBertForQuestionAnswering',
'TFRemBertForSequenceClassification',
'TFRemBertForTokenClassification',
'TFRemBertLayer',
'TFRemBertModel',
'TFRemBertPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert import RemBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_rembert_fast import RemBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_rembert import (
REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RemBertForCausalLM,
RemBertForMaskedLM,
RemBertForMultipleChoice,
RemBertForQuestionAnswering,
RemBertForSequenceClassification,
RemBertForTokenClassification,
RemBertLayer,
RemBertModel,
RemBertPreTrainedModel,
load_tf_weights_in_rembert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_rembert import (
TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRemBertForCausalLM,
TFRemBertForMaskedLM,
TFRemBertForMultipleChoice,
TFRemBertForQuestionAnswering,
TFRemBertForSequenceClassification,
TFRemBertForTokenClassification,
TFRemBertLayer,
TFRemBertModel,
TFRemBertPreTrainedModel,
)
else:
import sys
__A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 126 |
'''simple docstring'''
from __future__ import annotations
__A : Optional[int] = list[list[int]]
# assigning initial values to the grid
__A : Matrix = [
[3, 0, 6, 5, 0, 8, 4, 0, 0],
[5, 2, 0, 0, 0, 0, 0, 0, 0],
[0, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
# a grid with no solution
__A : Matrix = [
[5, 0, 6, 5, 0, 8, 4, 0, 3],
[5, 2, 0, 0, 0, 0, 0, 0, 2],
[1, 8, 7, 0, 0, 0, 0, 3, 1],
[0, 0, 3, 0, 1, 0, 0, 8, 0],
[9, 0, 0, 8, 6, 3, 0, 0, 5],
[0, 5, 0, 0, 9, 0, 6, 0, 0],
[1, 3, 0, 0, 0, 0, 2, 5, 0],
[0, 0, 0, 0, 0, 0, 0, 7, 4],
[0, 0, 5, 2, 0, 6, 3, 0, 0],
]
def lowerCAmelCase_ ( a : Matrix , a : int , a : int , a : int ):
for i in range(9 ):
if grid[row][i] == n or grid[i][column] == n:
return False
for i in range(3 ):
for j in range(3 ):
if grid[(row - row % 3) + i][(column - column % 3) + j] == n:
return False
return True
def lowerCAmelCase_ ( a : Matrix ):
for i in range(9 ):
for j in range(9 ):
if grid[i][j] == 0:
return i, j
return None
def lowerCAmelCase_ ( a : Matrix ):
if location := find_empty_location(a ):
a__ , a__ = location
else:
# If the location is ``None``, then the grid is solved.
return grid
for digit in range(1 , 10 ):
if is_safe(a , a , a , a ):
a__ = digit
if sudoku(a ) is not None:
return grid
a__ = 0
return None
def lowerCAmelCase_ ( a : Matrix ):
for row in grid:
for cell in row:
print(a , end=' ' )
print()
if __name__ == "__main__":
# make a copy of grid so that you can compare with the unmodified grid
for example_grid in (initial_grid, no_solution):
print('\nExample grid:\n' + '=' * 20)
print_solution(example_grid)
print('\nExample grid solution:')
__A : Optional[int] = sudoku(example_grid)
if solution is not None:
print_solution(solution)
else:
print('Cannot find a solution.')
| 126 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__A : Optional[Any] = logging.get_logger(__name__)
def __a ( A__ : int ):
SCREAMING_SNAKE_CASE = DPTConfig()
if "large" in checkpoint_url:
SCREAMING_SNAKE_CASE = 1024
SCREAMING_SNAKE_CASE = 4096
SCREAMING_SNAKE_CASE = 24
SCREAMING_SNAKE_CASE = 16
SCREAMING_SNAKE_CASE = [5, 11, 17, 23]
SCREAMING_SNAKE_CASE = [256, 512, 1024, 1024]
SCREAMING_SNAKE_CASE = (1, 384, 384)
if "ade" in checkpoint_url:
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = 150
SCREAMING_SNAKE_CASE = "huggingface/label-files"
SCREAMING_SNAKE_CASE = "ade20k-id2label.json"
SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="dataset" ) ) , "r" ) )
SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = idalabel
SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()}
SCREAMING_SNAKE_CASE = [1, 150, 480, 480]
return config, expected_shape
def __a ( A__ : Optional[Any] ):
SCREAMING_SNAKE_CASE = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def __a ( A__ : Tuple ):
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
SCREAMING_SNAKE_CASE = name.replace("pretrained.model" , "dpt.encoder" )
if "pretrained.model" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.model" , "dpt.embeddings" )
if "patch_embed" in name:
SCREAMING_SNAKE_CASE = name.replace("patch_embed" , "patch_embeddings" )
if "pos_embed" in name:
SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "position_embeddings" )
if "attn.proj" in name:
SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" )
if "proj" in name and "project" not in name:
SCREAMING_SNAKE_CASE = name.replace("proj" , "projection" )
if "blocks" in name:
SCREAMING_SNAKE_CASE = name.replace("blocks" , "layer" )
if "mlp.fc1" in name:
SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" )
if "norm1" in name:
SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" )
if "norm2" in name:
SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" )
if "scratch.output_conv" in name:
SCREAMING_SNAKE_CASE = name.replace("scratch.output_conv" , "head" )
if "scratch" in name:
SCREAMING_SNAKE_CASE = name.replace("scratch" , "neck" )
if "layer1_rn" in name:
SCREAMING_SNAKE_CASE = name.replace("layer1_rn" , "convs.0" )
if "layer2_rn" in name:
SCREAMING_SNAKE_CASE = name.replace("layer2_rn" , "convs.1" )
if "layer3_rn" in name:
SCREAMING_SNAKE_CASE = name.replace("layer3_rn" , "convs.2" )
if "layer4_rn" in name:
SCREAMING_SNAKE_CASE = name.replace("layer4_rn" , "convs.3" )
if "refinenet" in name:
SCREAMING_SNAKE_CASE = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
SCREAMING_SNAKE_CASE = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" )
if "out_conv" in name:
SCREAMING_SNAKE_CASE = name.replace("out_conv" , "projection" )
if "resConfUnit1" in name:
SCREAMING_SNAKE_CASE = name.replace("resConfUnit1" , "residual_layer1" )
if "resConfUnit2" in name:
SCREAMING_SNAKE_CASE = name.replace("resConfUnit2" , "residual_layer2" )
if "conv1" in name:
SCREAMING_SNAKE_CASE = name.replace("conv1" , "convolution1" )
if "conv2" in name:
SCREAMING_SNAKE_CASE = name.replace("conv2" , "convolution2" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" )
if "pretrained.act_postprocess2.0.project.0" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" )
if "pretrained.act_postprocess3.0.project.0" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" )
if "pretrained.act_postprocess4.0.project.0" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" )
if "pretrained.act_postprocess1.4" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" )
if "pretrained.act_postprocess2.3" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" )
if "pretrained.act_postprocess2.4" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" )
if "pretrained.act_postprocess3.3" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" )
if "pretrained.act_postprocess4.3" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" )
if "pretrained.act_postprocess4.4" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" )
if "pretrained" in name:
SCREAMING_SNAKE_CASE = name.replace("pretrained" , "dpt" )
if "bn" in name:
SCREAMING_SNAKE_CASE = name.replace("bn" , "batch_norm" )
if "head" in name:
SCREAMING_SNAKE_CASE = name.replace("head" , "head.head" )
if "encoder.norm" in name:
SCREAMING_SNAKE_CASE = name.replace("encoder.norm" , "layernorm" )
if "auxlayer" in name:
SCREAMING_SNAKE_CASE = name.replace("auxlayer" , "auxiliary_head.head" )
return name
def __a ( A__ : Dict , A__ : List[Any] ):
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
SCREAMING_SNAKE_CASE = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" )
SCREAMING_SNAKE_CASE = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" )
# next, add query, keys and values (in that order) to the state dict
SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :]
SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size]
SCREAMING_SNAKE_CASE = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
SCREAMING_SNAKE_CASE = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
SCREAMING_SNAKE_CASE = in_proj_weight[
-config.hidden_size :, :
]
SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :]
def __a ( ):
SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg"
SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw )
return im
@torch.no_grad()
def __a ( A__ : Tuple , A__ : Tuple , A__ : int , A__ : Tuple ):
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dpt_config(A__ )
# load original state_dict from URL
SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" )
# remove certain keys
remove_ignore_keys_(A__ )
# rename keys
for key in state_dict.copy().keys():
SCREAMING_SNAKE_CASE = state_dict.pop(A__ )
SCREAMING_SNAKE_CASE = val
# read in qkv matrices
read_in_q_k_v(A__ , A__ )
# load HuggingFace model
SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(A__ ) if "ade" in checkpoint_url else DPTForDepthEstimation(A__ )
model.load_state_dict(A__ )
model.eval()
# Check outputs on an image
SCREAMING_SNAKE_CASE = 480 if "ade" in checkpoint_url else 384
SCREAMING_SNAKE_CASE = DPTImageProcessor(size=A__ )
SCREAMING_SNAKE_CASE = prepare_img()
SCREAMING_SNAKE_CASE = image_processor(A__ , return_tensors="pt" )
# forward pass
SCREAMING_SNAKE_CASE = model(**A__ ).logits if "ade" in checkpoint_url else model(**A__ ).predicted_depth
# Assert logits
SCREAMING_SNAKE_CASE = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] )
if "ade" in checkpoint_url:
SCREAMING_SNAKE_CASE = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] )
assert outputs.shape == torch.Size(A__ )
assert (
torch.allclose(outputs[0, 0, :3, :3] , A__ , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , A__ )
)
Path(A__ ).mkdir(exist_ok=A__ )
print(F"Saving model to {pytorch_dump_folder_path}" )
model.save_pretrained(A__ )
print(F"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(A__ )
if push_to_hub:
print("Pushing model to hub..." )
model.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=A__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=A__ , )
if __name__ == "__main__":
__A : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=True,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
__A : Optional[int] = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name) | 16 |
def __a ( A__ : float , A__ : float ):
if mass < 0:
raise ValueError("The mass of a body cannot be negative" )
return 0.5 * mass * abs(A__ ) * abs(A__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) | 16 | 1 |
"""simple docstring"""
import argparse
import datetime
import io
import itertools
import json
import math
import os
import platform
import re
import shlex
import subprocess
import sys
from pathlib import Path
from statistics import fmean
import pandas as pd
import torch
from tqdm import tqdm
import transformers
lowercase__ = float("""nan""")
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self , lowercase ):
_lowerCamelCase : Optional[int] = sys.stdout
_lowerCamelCase : int = open(lowercase , 'a' )
def __getattr__( self , lowercase ):
return getattr(self.stdout , lowercase )
def A_ ( self , lowercase ):
self.stdout.write(lowercase )
# strip tqdm codes
self.file.write(re.sub(r'^.*\r' , '' , lowercase , 0 , re.M ) )
def _snake_case ( lowercase__=80 , lowercase__=False ):
_lowerCamelCase : int = []
# deal with critical env vars
_lowerCamelCase : List[str] = ['CUDA_VISIBLE_DEVICES']
for key in env_keys:
_lowerCamelCase : int = os.environ.get(lowercase__ , lowercase__ )
if val is not None:
cmd.append(f'''{key}={val}''' )
# python executable (not always needed if the script is executable)
_lowerCamelCase : int = sys.executable if full_python_path else sys.executable.split('/' )[-1]
cmd.append(lowercase__ )
# now the normal args
cmd += list(map(shlex.quote , sys.argv ) )
# split up into up to MAX_WIDTH lines with shell multi-line escapes
_lowerCamelCase : Optional[int] = []
_lowerCamelCase : int = ''
while len(lowercase__ ) > 0:
current_line += f'''{cmd.pop(0 )} '''
if len(lowercase__ ) == 0 or len(lowercase__ ) + len(cmd[0] ) + 1 > max_width - 1:
lines.append(lowercase__ )
_lowerCamelCase : Optional[Any] = ''
return "\\\n".join(lowercase__ )
def _snake_case ( lowercase__ , lowercase__ ):
# unwrap multi-line input
_lowerCamelCase : Optional[int] = re.sub(r'[\\\n]+' , ' ' , args.base_cmd )
# remove --output_dir if any and set our own
_lowerCamelCase : List[str] = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd )
args.base_cmd += f''' --output_dir {output_dir}'''
# ensure we have --overwrite_output_dir
_lowerCamelCase : List[str] = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd )
args.base_cmd += " --overwrite_output_dir"
return [sys.executable] + shlex.split(args.base_cmd )
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
# Enable to debug everything but the run itself, to do it fast and see the progress.
# This is useful for debugging the output formatting quickly - we can remove it later once
# everybody is happy with the output
if 0:
import random
from time import sleep
sleep(0 )
return dict(
{k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , )
_lowerCamelCase : Dict = subprocess.run(lowercase__ , capture_output=lowercase__ , text=lowercase__ )
if verbose:
print('STDOUT' , result.stdout )
print('STDERR' , result.stderr )
# save the streams
_lowerCamelCase : int = variation.replace(' ' , '-' )
with open(Path(lowercase__ ) / f'''log.{prefix}.stdout.txt''' , 'w' ) as f:
f.write(result.stdout )
with open(Path(lowercase__ ) / f'''log.{prefix}.stderr.txt''' , 'w' ) as f:
f.write(result.stderr )
if result.returncode != 0:
if verbose:
print('failed' )
return {target_metric_key: nan}
with io.open(f'''{output_dir}/all_results.json''' , 'r' , encoding='utf-8' ) as f:
_lowerCamelCase : int = json.load(lowercase__ )
# filter out just the keys we want
return {k: v for k, v in metrics.items() if k in metric_keys}
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ):
_lowerCamelCase : Union[str, Any] = []
_lowerCamelCase : str = []
_lowerCamelCase : str = f'''{id}: {variation:<{longest_variation_len}}'''
_lowerCamelCase : str = f'''{preamble}: '''
_lowerCamelCase : Optional[int] = set(report_metric_keys + [target_metric_key] )
for i in tqdm(range(lowercase__ ) , desc=lowercase__ , leave=lowercase__ ):
_lowerCamelCase : List[Any] = process_run_single(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ )
_lowerCamelCase : int = single_run_metrics[target_metric_key]
if not math.isnan(lowercase__ ):
metrics.append(lowercase__ )
results.append(lowercase__ )
outcome += "✓"
else:
outcome += "✘"
_lowerCamelCase : Tuple = f'''\33[2K\r{outcome}'''
if len(lowercase__ ) > 0:
_lowerCamelCase : Optional[int] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()}
_lowerCamelCase : str = round(mean_metrics[target_metric_key] , 2 )
_lowerCamelCase : Optional[Any] = f'''{outcome} {mean_target}'''
if len(lowercase__ ) > 1:
results_str += f''' {tuple(round(lowercase__ , 2 ) for x in results )}'''
print(lowercase__ )
_lowerCamelCase : Dict = variation
return mean_metrics
else:
print(lowercase__ )
return {variation_key: variation, target_metric_key: nan}
def _snake_case ( ):
_lowerCamelCase : List[Any] = torch.cuda.get_device_properties(torch.device('cuda' ) )
return f'''
Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}
Software:
transformers: {transformers.__version__}
torch : {torch.__version__}
cuda : {torch.version.cuda}
python : {platform.python_version()}
Hardware:
{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB
'''
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ):
_lowerCamelCase : str = pd.DataFrame(lowercase__ )
_lowerCamelCase : int = 'variation'
_lowerCamelCase : List[Any] = 'diff_%'
_lowerCamelCase : Union[str, Any] = nan
if base_variation is not None and len(df[df[variation_key] == base_variation] ):
# this may still return nan
_lowerCamelCase : Optional[int] = df.loc[df[variation_key] == base_variation][target_metric_key].item()
if math.isnan(lowercase__ ):
# as a fallback, use the minimal value as the sentinel
_lowerCamelCase : Dict = df.loc[df[target_metric_key] != nan][target_metric_key].min()
# create diff column if possible
if not math.isnan(lowercase__ ):
_lowerCamelCase : Any = df.apply(
lambda lowercase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value )
if not math.isnan(r[target_metric_key] )
else 0 , axis='columns' , )
# re-order columns
_lowerCamelCase : int = [variation_key, target_metric_key, diff_key, *report_metric_keys]
_lowerCamelCase : List[str] = df.reindex(lowercase__ , axis='columns' ) # reorder cols
# capitalize
_lowerCamelCase : Dict = df.rename(str.capitalize , axis='columns' )
# make the cols as narrow as possible
_lowerCamelCase : Optional[int] = df.rename(lambda lowercase__ : c.replace('_' , '<br>' ) , axis='columns' )
_lowerCamelCase : Any = df.rename(lambda lowercase__ : c.replace('_' , '\n' ) , axis='columns' )
_lowerCamelCase : Dict = ['', 'Copy between the cut-here-lines and paste as is to github or a forum']
report += ["----------8<-----------------8<--------"]
report += ["*** Results:", df_github.to_markdown(index=lowercase__ , floatfmt='.2f' )]
report += ["```"]
report += ["*** Setup:", get_versions()]
report += ["*** The benchmark command line was:", get_original_command()]
report += ["```"]
report += ["----------8<-----------------8<--------"]
report += ["*** Results (console):", df_console.to_markdown(index=lowercase__ , floatfmt='.2f' )]
print('\n\n'.join(lowercase__ ) )
def _snake_case ( ):
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
'--base-cmd' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Base cmd' , )
parser.add_argument(
'--variations' , default=lowercase__ , type=lowercase__ , nargs='+' , required=lowercase__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , )
parser.add_argument(
'--base-variation' , default=lowercase__ , type=lowercase__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , )
parser.add_argument(
'--target-metric-key' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , )
parser.add_argument(
'--report-metric-keys' , default='' , type=lowercase__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , )
parser.add_argument(
'--repeat-times' , default=1 , type=lowercase__ , help='How many times to re-run each variation - an average will be reported' , )
parser.add_argument(
'--output_dir' , default='output_benchmark' , type=lowercase__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , )
parser.add_argument(
'--verbose' , default=lowercase__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , )
_lowerCamelCase : Optional[Any] = parser.parse_args()
_lowerCamelCase : str = args.output_dir
Path(lowercase__ ).mkdir(exist_ok=lowercase__ )
_lowerCamelCase : List[str] = get_base_command(lowercase__ , lowercase__ )
# split each dimension into its --foo variations
_lowerCamelCase : str = [list(map(str.strip , re.split(r'\|' , lowercase__ ) ) ) for x in args.variations]
# build a cartesian product of dimensions and convert those back into cmd-line arg strings,
# while stripping white space for inputs that were empty
_lowerCamelCase : Dict = list(map(str.strip , map(' '.join , itertools.product(*lowercase__ ) ) ) )
_lowerCamelCase : Tuple = max(len(lowercase__ ) for x in variations )
# split wanted keys
_lowerCamelCase : Union[str, Any] = args.report_metric_keys.split()
# capture prints into a log file for convenience
_lowerCamelCase : int = f'''benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt'''
print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' )
print(f'''and this script\'s output is also piped into {report_fn}''' )
_lowerCamelCase : List[str] = Tee(lowercase__ )
print(f'''\n*** Running {len(lowercase__ )} benchmarks:''' )
print(f'''Base command: {' '.join(lowercase__ )}''' )
_lowerCamelCase : Any = 'variation'
_lowerCamelCase : Union[str, Any] = []
for id, variation in enumerate(tqdm(lowercase__ , desc='Total completion: ' , leave=lowercase__ ) ):
_lowerCamelCase : Any = base_cmd + variation.split()
results.append(
process_run(
id + 1 , lowercase__ , lowercase__ , lowercase__ , lowercase__ , args.target_metric_key , lowercase__ , args.repeat_times , lowercase__ , args.verbose , ) )
process_results(lowercase__ , args.target_metric_key , lowercase__ , args.base_variation , lowercase__ )
if __name__ == "__main__":
main() | 706 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
"""asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class lowerCAmelCase__ ( lowercase ):
'''simple docstring'''
lowerCamelCase__ = """sew-d"""
def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase=2 , lowercase=512 , lowercase=256 , lowercase=True , lowercase=True , lowercase=("p2c", "c2p") , lowercase="layer_norm" , lowercase="gelu_python" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-7 , lowercase=1E-5 , lowercase="group" , lowercase="gelu" , lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase=False , lowercase=128 , lowercase=16 , lowercase=True , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=256 , lowercase=0 , lowercase=1 , lowercase=2 , **lowercase , ):
super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase )
_lowerCamelCase : List[str] = hidden_size
_lowerCamelCase : int = feat_extract_norm
_lowerCamelCase : Optional[Any] = feat_extract_activation
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : Union[str, Any] = list(lowercase )
_lowerCamelCase : Optional[Any] = list(lowercase )
_lowerCamelCase : List[str] = conv_bias
_lowerCamelCase : str = num_conv_pos_embeddings
_lowerCamelCase : Optional[Any] = num_conv_pos_embedding_groups
_lowerCamelCase : Tuple = len(self.conv_dim )
_lowerCamelCase : Optional[int] = num_hidden_layers
_lowerCamelCase : List[str] = intermediate_size
_lowerCamelCase : Dict = squeeze_factor
_lowerCamelCase : Any = max_position_embeddings
_lowerCamelCase : List[str] = position_buckets
_lowerCamelCase : Dict = share_att_key
_lowerCamelCase : List[str] = relative_attention
_lowerCamelCase : Optional[Any] = norm_rel_ebd
_lowerCamelCase : List[Any] = list(lowercase )
_lowerCamelCase : List[Any] = hidden_act
_lowerCamelCase : Optional[Any] = num_attention_heads
_lowerCamelCase : Optional[int] = hidden_dropout
_lowerCamelCase : Optional[int] = attention_dropout
_lowerCamelCase : Any = activation_dropout
_lowerCamelCase : Tuple = feat_proj_dropout
_lowerCamelCase : Any = final_dropout
_lowerCamelCase : str = layer_norm_eps
_lowerCamelCase : Tuple = feature_layer_norm_eps
_lowerCamelCase : Any = initializer_range
_lowerCamelCase : Dict = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect.'
'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'
F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'''
F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowerCamelCase : Dict = apply_spec_augment
_lowerCamelCase : int = mask_time_prob
_lowerCamelCase : Union[str, Any] = mask_time_length
_lowerCamelCase : Optional[Any] = mask_time_min_masks
_lowerCamelCase : List[Any] = mask_feature_prob
_lowerCamelCase : Union[str, Any] = mask_feature_length
_lowerCamelCase : List[Any] = mask_feature_min_masks
# ctc loss
_lowerCamelCase : List[str] = ctc_loss_reduction
_lowerCamelCase : List[str] = ctc_zero_infinity
# sequence classification
_lowerCamelCase : Dict = use_weighted_layer_sum
_lowerCamelCase : List[Any] = classifier_proj_size
@property
def A_ ( self ):
return functools.reduce(operator.mul , self.conv_stride , 1 ) | 492 | 0 |
import importlib
import os
import sys
# This is required to make the module import works (when the python process is running from the root of the repo)
sys.path.append('.')
def lowerCamelCase ( UpperCamelCase : List[str] ) -> Dict:
_lowerCamelCase = test_file.split(os.path.sep )
if components[0:2] != ["tests", "models"]:
raise ValueError(
'`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got '
F"""{test_file} instead.""" )
_lowerCamelCase = components[-1]
if not test_fn.endswith('py' ):
raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" )
if not test_fn.startswith('test_modeling_' ):
raise ValueError(
F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" )
_lowerCamelCase = components[:-1] + [test_fn.replace('.py' , '' )]
_lowerCamelCase = '.'.join(UpperCamelCase )
return test_module_path
def lowerCamelCase ( UpperCamelCase : int ) -> str:
_lowerCamelCase = get_module_path(UpperCamelCase )
_lowerCamelCase = importlib.import_module(UpperCamelCase )
return test_module
def lowerCamelCase ( UpperCamelCase : Tuple ) -> Optional[Any]:
_lowerCamelCase = []
_lowerCamelCase = get_test_module(UpperCamelCase )
for attr in dir(UpperCamelCase ):
if attr.endswith('ModelTester' ):
tester_classes.append(getattr(UpperCamelCase , UpperCamelCase ) )
# sort with class names
return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ )
def lowerCamelCase ( UpperCamelCase : Dict ) -> Any:
_lowerCamelCase = []
_lowerCamelCase = get_test_module(UpperCamelCase )
for attr in dir(UpperCamelCase ):
_lowerCamelCase = getattr(UpperCamelCase , UpperCamelCase )
# (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking
# `all_model_classes` is not empty (which also excludes other special classes).
_lowerCamelCase = getattr(UpperCamelCase , 'all_model_classes' , [] )
if len(UpperCamelCase ) > 0:
test_classes.append(UpperCamelCase )
# sort with class names
return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ )
def lowerCamelCase ( UpperCamelCase : List[str] ) -> Any:
_lowerCamelCase = get_test_classes(UpperCamelCase )
_lowerCamelCase = set()
for test_class in test_classes:
model_classes.update(test_class.all_model_classes )
# sort with class names
return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ )
def lowerCamelCase ( UpperCamelCase : Dict ) -> List[str]:
_lowerCamelCase = test_class()
if hasattr(UpperCamelCase , 'setUp' ):
test.setUp()
_lowerCamelCase = None
if hasattr(UpperCamelCase , 'model_tester' ):
# `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case.
if test.model_tester is not None:
_lowerCamelCase = test.model_tester.__class__
return model_tester
def lowerCamelCase ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> str:
_lowerCamelCase = get_test_classes(UpperCamelCase )
_lowerCamelCase = []
for test_class in test_classes:
if model_class in test_class.all_model_classes:
target_test_classes.append(UpperCamelCase )
# sort with class names
return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ )
def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : List[str] ) -> Any:
_lowerCamelCase = get_test_classes_for_model(UpperCamelCase , UpperCamelCase )
_lowerCamelCase = []
for test_class in test_classes:
_lowerCamelCase = get_model_tester_from_test_class(UpperCamelCase )
if tester_class is not None:
tester_classes.append(UpperCamelCase )
# sort with class names
return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ )
def lowerCamelCase ( UpperCamelCase : Any ) -> Union[str, Any]:
_lowerCamelCase = get_test_classes(UpperCamelCase )
_lowerCamelCase = {test_class: get_model_tester_from_test_class(UpperCamelCase ) for test_class in test_classes}
return test_tester_mapping
def lowerCamelCase ( UpperCamelCase : Tuple ) -> List[Any]:
_lowerCamelCase = get_model_classes(UpperCamelCase )
_lowerCamelCase = {
model_class: get_test_classes_for_model(UpperCamelCase , UpperCamelCase ) for model_class in model_classes
}
return model_test_mapping
def lowerCamelCase ( UpperCamelCase : Optional[int] ) -> Optional[Any]:
_lowerCamelCase = get_model_classes(UpperCamelCase )
_lowerCamelCase = {
model_class: get_tester_classes_for_model(UpperCamelCase , UpperCamelCase ) for model_class in model_classes
}
return model_to_tester_mapping
def lowerCamelCase ( UpperCamelCase : Tuple ) -> int:
if isinstance(UpperCamelCase , UpperCamelCase ):
return o
elif isinstance(UpperCamelCase , UpperCamelCase ):
return o.__name__
elif isinstance(UpperCamelCase , (list, tuple) ):
return [to_json(UpperCamelCase ) for x in o]
elif isinstance(UpperCamelCase , UpperCamelCase ):
return {to_json(UpperCamelCase ): to_json(UpperCamelCase ) for k, v in o.items()}
else:
return o | 544 | A = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n'
A = [{'type': 'code', 'content': INSTALL_CONTENT}]
A = {
'{processor_class}': 'FakeProcessorClass',
'{model_class}': 'FakeModelClass',
'{object_class}': 'FakeObjectClass',
} | 544 | 1 |
"""simple docstring"""
import dataclasses
import json
import warnings
from dataclasses import dataclass, field
from time import time
from typing import List
from ..utils import logging
_A = logging.get_logger(__name__)
def lowercase (_snake_case=None ,_snake_case=None ) -> int:
'''simple docstring'''
return field(default_factory=lambda: default ,metadata=_snake_case )
@dataclass
class __UpperCAmelCase :
"""simple docstring"""
_snake_case : List[str] = list_field(
default=[] , metadata={
'help': (
'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version'
' of all available models'
)
} , )
_snake_case : List[int] = list_field(
default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} )
_snake_case : List[int] = list_field(
default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , )
_snake_case : bool = field(
default=snake_case__ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , )
_snake_case : bool = field(
default=snake_case__ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , )
_snake_case : bool = field(
default=snake_case__ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Use FP16 to accelerate inference.'} )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Benchmark training of model'} )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Verbose memory tracing'} )
_snake_case : bool = field(
default=snake_case__ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , )
_snake_case : bool = field(
default=snake_case__ , metadata={
'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory'
} , )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Trace memory line by line'} )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Save result to a CSV file'} )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Save all print statements in a log file'} )
_snake_case : bool = field(default=snake_case__ , metadata={'help': 'Whether to print environment information'} )
_snake_case : bool = field(
default=snake_case__ , metadata={
'help': (
'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use'
' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled'
' for debugging / testing and on TPU.'
)
} , )
_snake_case : str = field(
default=F'''inference_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv.'} , )
_snake_case : str = field(
default=F'''inference_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , )
_snake_case : str = field(
default=F'''train_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , )
_snake_case : str = field(
default=F'''train_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , )
_snake_case : str = field(
default=F'''env_info_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving environment information.'} , )
_snake_case : str = field(
default=F'''log_{round(time() )}.csv''' , metadata={'help': 'Log filename used if print statements are saved in log.'} , )
_snake_case : int = field(default=3 , metadata={'help': 'Times an experiment will be run.'} )
_snake_case : bool = field(
default=snake_case__ , metadata={
'help': (
'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain'
' model weights.'
)
} , )
def A ( self : Tuple )-> Dict:
warnings.warn(
f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils"""
" are deprecated in general and it is advised to use external Benchmarking libraries "
" to benchmark Transformer models." , A_ , )
def A ( self : Dict )-> Union[str, Any]:
return json.dumps(dataclasses.asdict(self ) , indent=2 )
@property
def A ( self : str )-> List[str]:
if len(self.models ) <= 0:
raise ValueError(
"Please make sure you provide at least one model name / model identifier, *e.g.* `--models"
" bert-base-cased` or `args.models = ['bert-base-cased']." )
return self.models
@property
def A ( self : Union[str, Any] )-> Optional[Any]:
if not self.multi_process:
return False
elif self.is_tpu:
logger.info("Multiprocessing is currently not possible on TPU." )
return False
else:
return True
| 716 |
"""simple docstring"""
import fire
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoTokenizer
from utils import SeqaSeqDataset, pickle_save
def lowercase (_snake_case ,_snake_case ,_snake_case=1024 ,_snake_case=1024 ,_snake_case=False ,**_snake_case ) -> Optional[int]:
'''simple docstring'''
__UpperCamelCase = AutoTokenizer.from_pretrained(_snake_case )
__UpperCamelCase = SeqaSeqDataset(_snake_case ,_snake_case ,_snake_case ,_snake_case ,type_path="train" ,**_snake_case )
__UpperCamelCase = tok.pad_token_id
def get_lens(_snake_case ):
__UpperCamelCase = tqdm(
DataLoader(_snake_case ,batch_size=512 ,num_workers=8 ,shuffle=_snake_case ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,)
__UpperCamelCase = []
for batch in dl:
__UpperCamelCase = batch["input_ids"].ne(_snake_case ).sum(1 ).tolist()
__UpperCamelCase = batch["labels"].ne(_snake_case ).sum(1 ).tolist()
if consider_target:
for src, tgt in zip(_snake_case ,_snake_case ):
max_lens.append(max(_snake_case ,_snake_case ) )
else:
max_lens.extend(_snake_case )
return max_lens
__UpperCamelCase = get_lens(_snake_case )
__UpperCamelCase = SeqaSeqDataset(_snake_case ,_snake_case ,_snake_case ,_snake_case ,type_path="val" ,**_snake_case )
__UpperCamelCase = get_lens(_snake_case )
pickle_save(_snake_case ,train_ds.len_file )
pickle_save(_snake_case ,val_ds.len_file )
if __name__ == "__main__":
fire.Fire(save_len_file) | 228 | 0 |
'''simple docstring'''
from collections.abc import Iterable
from typing import Any
class lowerCAmelCase :
"""simple docstring"""
def __init__( self , _A = None ) -> Optional[int]:
__a : Union[str, Any] = value
__a : Node | None = None # Added in order to delete a node easier
__a : Node | None = None
__a : Node | None = None
def __repr__( self ) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return str(self.value )
return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 )
class lowerCAmelCase :
"""simple docstring"""
def __init__( self , _A = None ) -> List[str]:
__a : Optional[Any] = root
def __str__( self ) -> str:
return str(self.root )
def __magic_name__ ( self , _A , _A ) -> None:
if new_children is not None: # reset its kids
__a : Any = node.parent
if node.parent is not None: # reset its parent
if self.is_right(_A ): # If it is the right children
__a : List[Any] = new_children
else:
__a : Tuple = new_children
else:
__a : str = new_children
def __magic_name__ ( self , _A ) -> bool:
if node.parent and node.parent.right:
return node == node.parent.right
return False
def __magic_name__ ( self ) -> bool:
return self.root is None
def __magic_name__ ( self , _A ) -> None:
__a : Dict = Node(_A ) # create a new Node
if self.empty(): # if Tree is empty
__a : List[str] = new_node # set its root
else: # Tree is not empty
__a : Any = self.root # from root
if parent_node is None:
return
while True: # While we don't get to a leaf
if value < parent_node.value: # We go left
if parent_node.left is None:
__a : str = new_node # We insert the new node in a leaf
break
else:
__a : Tuple = parent_node.left
else:
if parent_node.right is None:
__a : Dict = new_node
break
else:
__a : List[Any] = parent_node.right
__a : Dict = parent_node
def __magic_name__ ( self , *_A ) -> None:
for value in values:
self.__insert(_A )
def __magic_name__ ( self , _A ) -> Node | None:
if self.empty():
raise IndexError('Warning: Tree is empty! please use another.' )
else:
__a : Optional[int] = self.root
# use lazy evaluation here to avoid NoneType Attribute error
while node is not None and node.value is not value:
__a : int = node.left if value < node.value else node.right
return node
def __magic_name__ ( self , _A = None ) -> Node | None:
if node is None:
if self.root is None:
return None
__a : Union[str, Any] = self.root
if not self.empty():
while node.right is not None:
__a : Dict = node.right
return node
def __magic_name__ ( self , _A = None ) -> Node | None:
if node is None:
__a : Optional[Any] = self.root
if self.root is None:
return None
if not self.empty():
__a : Optional[int] = self.root
while node.left is not None:
__a : List[str] = node.left
return node
def __magic_name__ ( self , _A ) -> None:
__a : Any = self.search(_A ) # Look for the node with that label
if node is not None:
if node.left is None and node.right is None: # If it has no children
self.__reassign_nodes(_A , _A )
elif node.left is None: # Has only right children
self.__reassign_nodes(_A , node.right )
elif node.right is None: # Has only left children
self.__reassign_nodes(_A , node.left )
else:
__a : List[str] = self.get_max(
node.left ) # Gets the max value of the left branch
self.remove(tmp_node.value ) # type: ignore
__a : Union[str, Any] = (
tmp_node.value # type: ignore
) # Assigns the value to the node to delete and keep tree structure
def __magic_name__ ( self , _A ) -> Iterable:
if node is not None:
yield node # Preorder Traversal
yield from self.preorder_traverse(node.left )
yield from self.preorder_traverse(node.right )
def __magic_name__ ( self , _A=None ) -> Any:
if traversal_function is None:
return self.preorder_traverse(self.root )
else:
return traversal_function(self.root )
def __magic_name__ ( self , _A , _A ) -> None:
if node:
self.inorder(_A , node.left )
arr.append(node.value )
self.inorder(_A , node.right )
def __magic_name__ ( self , _A , _A ) -> int:
__a : list[int] = []
self.inorder(_A , _A ) # append all values to list using inorder traversal
return arr[k - 1]
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ):
__a : Union[str, Any] = []
if curr_node is not None:
__a : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node]
return node_list
def lowerCAmelCase__ ( ):
__a : Union[str, Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7)
__a : List[str] = BinarySearchTree()
for i in testlist:
t.insert(SCREAMING_SNAKE_CASE__ )
# Prints all the elements of the list in order traversal
print(SCREAMING_SNAKE_CASE__ )
if t.search(6 ) is not None:
print('The value 6 exists' )
else:
print('The value 6 doesn\'t exist' )
if t.search(-1 ) is not None:
print('The value -1 exists' )
else:
print('The value -1 doesn\'t exist' )
if not t.empty():
print('Max Value: ' , t.get_max().value ) # type: ignore
print('Min Value: ' , t.get_min().value ) # type: ignore
for i in testlist:
t.remove(SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 597 |
'''simple docstring'''
from __future__ import annotations
import math
from collections.abc import Callable
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 100 , ):
__a : List[str] = x_start
__a : List[str] = fnc(SCREAMING_SNAKE_CASE__ )
__a : Optional[Any] = 0.0
for _ in range(SCREAMING_SNAKE_CASE__ ):
# Approximates curve as a sequence of linear lines and sums their length
__a : Union[str, Any] = (x_end - x_start) / steps + xa
__a : Tuple = fnc(SCREAMING_SNAKE_CASE__ )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
__a : str = xa
__a : str = fxa
return length
if __name__ == "__main__":
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ):
return math.sin(10 * x )
print("f(x) = sin(10 * x)")
print("The length of the curve from x = -10 to x = 10 is:")
SCREAMING_SNAKE_CASE_ = 1_0
while i <= 1_0_0_0_0_0:
print(F"With {i} steps: {line_length(f, -1_0, 1_0, i)}")
i *= 1_0
| 597 | 1 |
import os
def SCREAMING_SNAKE_CASE ( ) -> str:
with open(os.path.dirname(__lowerCAmelCase ) + '''/p022_names.txt''' ) as file:
snake_case__ = str(file.readlines()[0] )
snake_case__ = names.replace('''"''' , '''''' ).split(''',''' )
names.sort()
snake_case__ = 0
snake_case__ = 0
for i, name in enumerate(__lowerCAmelCase ):
for letter in name:
name_score += ord(__lowerCAmelCase ) - 64
total_score += (i + 1) * name_score
snake_case__ = 0
return total_score
if __name__ == "__main__":
print(solution())
| 208 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__)
lowerCamelCase__ : Union[str, Any] = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : Tuple = 'xlm-roberta'
def __init__( self:Dict , _a:List[Any]=3_05_22 , _a:Optional[Any]=7_68 , _a:Union[str, Any]=12 , _a:str=12 , _a:Union[str, Any]=30_72 , _a:str="gelu" , _a:List[Any]=0.1 , _a:List[str]=0.1 , _a:Dict=5_12 , _a:Optional[int]=2 , _a:Optional[Any]=0.02 , _a:List[str]=1e-12 , _a:Dict=1 , _a:Optional[Any]=0 , _a:str=2 , _a:Optional[int]="absolute" , _a:List[str]=True , _a:List[Any]=None , **_a:str , ):
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
snake_case__ = vocab_size
snake_case__ = hidden_size
snake_case__ = num_hidden_layers
snake_case__ = num_attention_heads
snake_case__ = hidden_act
snake_case__ = intermediate_size
snake_case__ = hidden_dropout_prob
snake_case__ = attention_probs_dropout_prob
snake_case__ = max_position_embeddings
snake_case__ = type_vocab_size
snake_case__ = initializer_range
snake_case__ = layer_norm_eps
snake_case__ = position_embedding_type
snake_case__ = use_cache
snake_case__ = classifier_dropout
class __magic_name__ (snake_case_ ):
'''simple docstring'''
@property
def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ):
if self.task == "multiple-choice":
snake_case__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
snake_case__ = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 208 | 1 |
"""simple docstring"""
# Lint as: python3
import itertools
import os
import re
a : Union[str, Any] = re.compile(R'''([A-Z]+)([A-Z][a-z])''')
a : Optional[int] = re.compile(R'''([a-z\d])([A-Z])''')
a : List[str] = re.compile(R'''(?<!_)_(?!_)''')
a : int = re.compile(R'''(_{2,})''')
a : Union[str, Any] = R'''^\w+(\.\w+)*$'''
a : str = R'''<>:/\|?*'''
def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Tuple:
'''simple docstring'''
a : Optional[Any] = _uppercase_uppercase_re.sub(R"\1_\2" , _lowercase )
a : Optional[Any] = _lowercase_uppercase_re.sub(R"\1_\2" , _lowercase )
return name.lower()
def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->List[Any]:
'''simple docstring'''
a : Tuple = _single_underscore_re.split(_lowercase )
a : Optional[int] = [_multiple_underscores_re.split(_lowercase ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowercase ) if n != "" )
def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Optional[Any]:
'''simple docstring'''
if os.path.basename(_lowercase ) != name:
raise ValueError(F"""Should be a dataset name, not a path: {name}""" )
return camelcase_to_snakecase(_lowercase )
def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Union[str, Any] ) ->List[str]:
'''simple docstring'''
if os.path.basename(_lowercase ) != name:
raise ValueError(F"""Should be a dataset name, not a path: {name}""" )
if not re.match(_split_re , _lowercase ):
raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" )
return F"""{filename_prefix_for_name(_lowercase )}-{split}"""
def _SCREAMING_SNAKE_CASE ( _lowercase : Dict , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : List[str]=None ) ->Tuple:
'''simple docstring'''
a : List[Any] = filename_prefix_for_split(_lowercase , _lowercase )
if filetype_suffix:
prefix += F""".{filetype_suffix}"""
a : List[str] = os.path.join(_lowercase , _lowercase )
return F"""{filepath}*"""
def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Any , _lowercase : Optional[Any]=None , _lowercase : Union[str, Any]=None ) ->str:
'''simple docstring'''
a : Union[str, Any] = filename_prefix_for_split(_lowercase , _lowercase )
a : Dict = os.path.join(_lowercase , _lowercase )
if shard_lengths:
a : int = len(_lowercase )
a : Dict = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(_lowercase )]
if filetype_suffix:
a : Optional[int] = [filename + F""".{filetype_suffix}""" for filename in filenames]
return filenames
else:
a : List[Any] = prefix
if filetype_suffix:
filename += F""".{filetype_suffix}"""
return [filename]
| 633 |
"""simple docstring"""
class __UpperCamelCase : # Public class to implement a graph
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
a : int = row
a : Tuple = col
a : Optional[int] = graph
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool:
return (
0 <= i < self.ROW
and 0 <= j < self.COL
and not visited[i][j]
and self.graph[i][j]
)
def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
# Checking all 8 elements surrounding nth element
a : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order
a : str = [-1, 0, 1, -1, 1, -1, 0, 1]
a : str = True # Make those cells visited
for k in range(8 ):
if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase__ ):
self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase__ )
def __a ( self ) -> int: # And finally, count all islands.
a : Union[str, Any] = [[False for j in range(self.COL )] for i in range(self.ROW )]
a : Dict = 0
for i in range(self.ROW ):
for j in range(self.COL ):
if visited[i][j] is False and self.graph[i][j] == 1:
self.diffs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
count += 1
return count
| 633 | 1 |
"""simple docstring"""
from ....utils import logging
lowerCAmelCase_ = logging.get_logger(__name__)
class _snake_case ( lowercase__ ):
"""simple docstring"""
def __init__( self : Union[str, Any] , _A : Any , _A : Tuple=None , _A : int=2_0_4_8):
"""simple docstring"""
_SCREAMING_SNAKE_CASE : Optional[int] = config.__dict__
_SCREAMING_SNAKE_CASE : Optional[Any] = modal_hidden_size
if num_labels:
_SCREAMING_SNAKE_CASE : Tuple = num_labels
| 715 | """simple docstring"""
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 )-> str:
_SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetDict(
{
"""train""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ),
"""validation""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ),
"""test""": dataset["""validation"""],
} )
def tokenize_function(__SCREAMING_SNAKE_CASE ):
# max_length=None => use the model max length (it's actually the default)
_SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_SCREAMING_SNAKE_CASE : str = datasets.map(
__SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__SCREAMING_SNAKE_CASE ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_SCREAMING_SNAKE_CASE : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_SCREAMING_SNAKE_CASE : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
_SCREAMING_SNAKE_CASE : Any = 8
else:
_SCREAMING_SNAKE_CASE : Optional[int] = None
return tokenizer.pad(
__SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , )
# Instantiate dataloaders.
_SCREAMING_SNAKE_CASE : int = DataLoader(
tokenized_datasets["""train"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : Optional[int] = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : Dict = DataLoader(
tokenized_datasets["""test"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader, test_dataloader
def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict:
# New Code #
_SCREAMING_SNAKE_CASE : Union[str, Any] = []
# Download the dataset
_SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("""glue""" , """mrpc""" )
# Create our splits
_SCREAMING_SNAKE_CASE : Dict = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
_SCREAMING_SNAKE_CASE : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_SCREAMING_SNAKE_CASE : Tuple = config["""lr"""]
_SCREAMING_SNAKE_CASE : Tuple = int(config["""num_epochs"""] )
_SCREAMING_SNAKE_CASE : int = int(config["""seed"""] )
_SCREAMING_SNAKE_CASE : int = int(config["""batch_size"""] )
_SCREAMING_SNAKE_CASE : List[str] = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
_SCREAMING_SNAKE_CASE : Any = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_SCREAMING_SNAKE_CASE : List[str] = batch_size // MAX_GPU_BATCH_SIZE
_SCREAMING_SNAKE_CASE : List[str] = MAX_GPU_BATCH_SIZE
set_seed(__SCREAMING_SNAKE_CASE )
# New Code #
# Create our folds:
_SCREAMING_SNAKE_CASE : List[str] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] )
_SCREAMING_SNAKE_CASE : Optional[Any] = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ):
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = get_fold_dataloaders(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_SCREAMING_SNAKE_CASE : Tuple = model.to(accelerator.device )
# Instantiate optimizer
_SCREAMING_SNAKE_CASE : int = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE )
# Instantiate scheduler
_SCREAMING_SNAKE_CASE : int = get_linear_schedule_with_warmup(
optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.prepare(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(__SCREAMING_SNAKE_CASE ):
model.train()
for step, batch in enumerate(__SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_SCREAMING_SNAKE_CASE : Optional[Any] = model(**__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : Dict = outputs.loss
_SCREAMING_SNAKE_CASE : List[Any] = loss / gradient_accumulation_steps
accelerator.backward(__SCREAMING_SNAKE_CASE )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , )
_SCREAMING_SNAKE_CASE : Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , __SCREAMING_SNAKE_CASE )
# New Code #
# We also run predictions on the test set at the very end
_SCREAMING_SNAKE_CASE : str = []
for step, batch in enumerate(__SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE )
_SCREAMING_SNAKE_CASE : List[Any] = outputs.logits
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
_SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 )
_SCREAMING_SNAKE_CASE : List[str] = torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
_SCREAMING_SNAKE_CASE : int = metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE )
accelerator.print("""Average test metrics from all folds:""" , __SCREAMING_SNAKE_CASE )
def lowerCamelCase_()-> Optional[Any]:
_SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
# New Code #
parser.add_argument("""--num_folds""" , type=__SCREAMING_SNAKE_CASE , default=3 , help="""The number of splits to perform across the dataset""" )
_SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args()
_SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 635 | 0 |
'''simple docstring'''
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
snake_case_ : Union[str, Any] = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt''']
snake_case_ : str = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse('''0.9.0'''):
raise Exception('''requires fairseq >= 0.9.0''')
logging.set_verbosity_info()
snake_case_ : Optional[Any] = logging.get_logger(__name__)
snake_case_ : Optional[int] = ''' Hello world! cécé herlolip'''
snake_case_ : Any = [
('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''),
('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''),
('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''),
('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''),
]
def lowercase__( _UpperCamelCase : Optional[int] )-> Optional[int]:
"""simple docstring"""
_UpperCamelCase = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"_float_tensor",
]
for k in ignore_keys:
state_dict.pop(_UpperCamelCase , _UpperCamelCase )
def lowercase__( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] )-> Any:
"""simple docstring"""
_UpperCamelCase = dct.pop(_UpperCamelCase )
_UpperCamelCase = val
def lowercase__( _UpperCamelCase : Union[str, Any] )-> Dict:
"""simple docstring"""
_UpperCamelCase = torch.load(_UpperCamelCase , map_location="cpu" )
_UpperCamelCase = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval()
hub_interface.model.load_state_dict(sd["model"] )
return hub_interface
def lowercase__( _UpperCamelCase : List[str] )-> Dict:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = emb.weight.shape
_UpperCamelCase = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase )
_UpperCamelCase = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any]=None )-> List[Any]:
"""simple docstring"""
if not os.path.exists(_UpperCamelCase ):
_UpperCamelCase = torch.hub.load("pytorch/fairseq" , _UpperCamelCase ).eval()
else:
_UpperCamelCase = load_xsum_checkpoint(_UpperCamelCase )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_UpperCamelCase = checkpoint_path.replace("." , "-" )
_UpperCamelCase = BartConfig.from_pretrained(_UpperCamelCase )
_UpperCamelCase = bart.encode(_UpperCamelCase ).unsqueeze(0 )
_UpperCamelCase = BartTokenizer.from_pretrained(_UpperCamelCase ).encode(_UpperCamelCase , return_tensors="pt" ).unsqueeze(0 )
if not torch.eq(_UpperCamelCase , _UpperCamelCase ).all():
raise ValueError(
f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" )
if checkpoint_path == "bart.large.mnli":
_UpperCamelCase = bart.state_dict()
remove_ignore_keys_(_UpperCamelCase )
_UpperCamelCase = state_dict["model.decoder.embed_tokens.weight"]
for src, dest in mnli_rename_keys:
rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
_UpperCamelCase = BartForSequenceClassification(_UpperCamelCase ).eval()
model.load_state_dict(_UpperCamelCase )
_UpperCamelCase = bart.predict("mnli" , _UpperCamelCase , return_logits=_UpperCamelCase )
_UpperCamelCase = model(_UpperCamelCase )[0] # logits
else: # no classification heads to worry about
_UpperCamelCase = bart.model.state_dict()
remove_ignore_keys_(_UpperCamelCase )
_UpperCamelCase = state_dict["decoder.embed_tokens.weight"]
_UpperCamelCase = bart.extract_features(_UpperCamelCase )
if hf_checkpoint_name == "facebook/bart-large":
_UpperCamelCase = BartModel(_UpperCamelCase ).eval()
model.load_state_dict(_UpperCamelCase )
_UpperCamelCase = model(_UpperCamelCase ).model[0]
else:
_UpperCamelCase = BartForConditionalGeneration(_UpperCamelCase ).eval() # an existing summarization ckpt
model.model.load_state_dict(_UpperCamelCase )
if hasattr(_UpperCamelCase , "lm_head" ):
_UpperCamelCase = make_linear_from_emb(model.model.shared )
_UpperCamelCase = model.model(_UpperCamelCase )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" )
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
model.save_pretrained(_UpperCamelCase )
if __name__ == "__main__":
snake_case_ : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum'''
)
snake_case_ : Any = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 138 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class A_ ( datasets.BuilderConfig ):
'''simple docstring'''
_lowerCAmelCase = None
class A_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
_lowerCAmelCase = PandasConfig
def a ( self ):
return datasets.DatasetInfo(features=self.config.features )
def a ( self , A_ ):
if not self.config.data_files:
raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" )
_UpperCamelCase = dl_manager.download_and_extract(self.config.data_files )
if isinstance(A_ , (str, list, tuple) ):
_UpperCamelCase = data_files
if isinstance(A_ , A_ ):
_UpperCamelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )]
_UpperCamelCase = []
for split_name, files in data_files.items():
if isinstance(A_ , A_ ):
_UpperCamelCase = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files]
splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={"files": files} ) )
return splits
def a ( self , A_ ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_UpperCamelCase = table_cast(A_ , self.config.features.arrow_schema )
return pa_table
def a ( self , A_ ):
for i, file in enumerate(itertools.chain.from_iterable(A_ ) ):
with open(A_ , "rb" ) as f:
_UpperCamelCase = pa.Table.from_pandas(pd.read_pickle(A_ ) )
yield i, self._cast_table(A_ )
| 138 | 1 |
"""simple docstring"""
from arguments import InitializationArguments
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
# Configuration
__snake_case : str = HfArgumentParser(InitializationArguments)
__snake_case : Dict = parser.parse_args()
# Load codeparrot tokenizer trained for Python code tokenization
__snake_case : Any = AutoTokenizer.from_pretrained(args.tokenizer_name)
# Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks
__snake_case : Dict = {
"vocab_size": len(tokenizer),
"scale_attn_by_inverse_layer_idx": True,
"reorder_and_upcast_attn": True,
}
# Load model config (GPT-2 large in this case)
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs)
# Initialize new model with config
__snake_case : List[str] = AutoModelForCausalLM.from_config(config)
# Save model to the hub
model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub) | 718 |
"""simple docstring"""
import torch
from torch import nn
class A__ ( nn.Module ):
'''simple docstring'''
def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any]=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=False) -> Dict:
"""simple docstring"""
super().__init__()
__lowerCAmelCase : Optional[int] = n_token
__lowerCAmelCase : int = d_embed
__lowerCAmelCase : str = d_proj
__lowerCAmelCase : Optional[Any] = cutoffs + [n_token]
__lowerCAmelCase : Any = [0] + self.cutoffs
__lowerCAmelCase : Tuple = div_val
__lowerCAmelCase : Optional[Any] = self.cutoffs[0]
__lowerCAmelCase : Union[str, Any] = len(self.cutoffs) - 1
__lowerCAmelCase : List[str] = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
__lowerCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
__lowerCAmelCase : Dict = nn.Parameter(torch.zeros(self.n_clusters))
__lowerCAmelCase : List[Any] = nn.ModuleList()
__lowerCAmelCase : Any = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)))
else:
self.out_projs.append(_SCREAMING_SNAKE_CASE)
self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))
else:
for i in range(len(self.cutoffs)):
__lowerCAmelCase , __lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowerCAmelCase : str = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)))
self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , r_idx - l_idx))
__lowerCAmelCase : str = keep_order
def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict) -> int:
"""simple docstring"""
if proj is None:
__lowerCAmelCase : Dict = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
__lowerCAmelCase : Optional[Any] = nn.functional.linear(_SCREAMING_SNAKE_CASE , proj.t().contiguous())
__lowerCAmelCase : List[Any] = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: int=False) -> List[str]:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
__lowerCAmelCase : List[Any] = hidden[..., :-1, :].contiguous()
__lowerCAmelCase : Tuple = labels[..., 1:].contiguous()
__lowerCAmelCase : Union[str, Any] = hidden.view(-1 , hidden.size(-1))
__lowerCAmelCase : Optional[int] = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("Input and labels should have the same size in the batch dimension.")
else:
__lowerCAmelCase : List[Any] = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
__lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
__lowerCAmelCase : Any = labels != -100
__lowerCAmelCase : Tuple = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device)
__lowerCAmelCase : List[Any] = (
-nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
__lowerCAmelCase : List[Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1)
else:
# construct weights and biases
__lowerCAmelCase , __lowerCAmelCase : Optional[Any] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
__lowerCAmelCase , __lowerCAmelCase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowerCAmelCase : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
__lowerCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx]
else:
__lowerCAmelCase : int = self.out_layers[i].weight
__lowerCAmelCase : List[Any] = self.out_layers[i].bias
if i == 0:
__lowerCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0)
__lowerCAmelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(_SCREAMING_SNAKE_CASE)
biases.append(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = weights[0], biases[0], self.out_projs[0]
__lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Optional[Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1)
if labels is None:
__lowerCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
__lowerCAmelCase : int = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device)
__lowerCAmelCase : str = 0
__lowerCAmelCase : List[str] = [0] + self.cutoffs
for i in range(len(_SCREAMING_SNAKE_CASE) - 1):
__lowerCAmelCase , __lowerCAmelCase : List[Any] = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
__lowerCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx)
__lowerCAmelCase : Any = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
__lowerCAmelCase : Optional[Any] = labels.index_select(0 , _SCREAMING_SNAKE_CASE) - l_idx
__lowerCAmelCase : List[Any] = head_logprob.index_select(0 , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Tuple = hidden.index_select(0 , _SCREAMING_SNAKE_CASE)
else:
__lowerCAmelCase : List[str] = hidden
if i == 0:
if labels is not None:
__lowerCAmelCase : Optional[int] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
__lowerCAmelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]]
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = weights[i], biases[i], self.out_projs[i]
__lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Tuple = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1)
__lowerCAmelCase : int = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
__lowerCAmelCase : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
__lowerCAmelCase : Optional[int] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
__lowerCAmelCase : Optional[int] = logprob_i
if labels is not None:
if (hasattr(self , "keep_order") and self.keep_order) or keep_order:
out.index_copy_(0 , _SCREAMING_SNAKE_CASE , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[Any]) -> Optional[Any]:
"""simple docstring"""
if self.n_clusters == 0:
__lowerCAmelCase : int = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1)
else:
# construct weights and biases
__lowerCAmelCase , __lowerCAmelCase : Dict = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
__lowerCAmelCase , __lowerCAmelCase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1]
__lowerCAmelCase : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
__lowerCAmelCase : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
__lowerCAmelCase : Dict = self.out_layers[i].weight
__lowerCAmelCase : List[str] = self.out_layers[i].bias
if i == 0:
__lowerCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0)
__lowerCAmelCase : int = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(_SCREAMING_SNAKE_CASE)
biases.append(_SCREAMING_SNAKE_CASE)
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = weights[0], biases[0], self.out_projs[0]
__lowerCAmelCase : str = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
__lowerCAmelCase : Union[str, Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1)
__lowerCAmelCase : Dict = [0] + self.cutoffs
for i in range(len(_SCREAMING_SNAKE_CASE) - 1):
__lowerCAmelCase , __lowerCAmelCase : Optional[Any] = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
__lowerCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = weights[i], biases[i], self.out_projs[i]
__lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
__lowerCAmelCase : List[Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1)
__lowerCAmelCase : int = head_logprob[:, -i] + tail_logprob_i
__lowerCAmelCase : Tuple = logprob_i
return out | 615 | 0 |
"""simple docstring"""
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"""The `inpainting.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionInpaintPipeline` instead."""
)
| 104 |
"""simple docstring"""
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
lowercase__ = logging.get_logger(__name__)
class __lowerCamelCase ( A__ ):
'''simple docstring'''
a_ : Optional[int] = ["""input_features"""]
def __init__( self : int , a_ : Optional[int]=80 , a_ : Any=1_60_00 , a_ : Tuple=1_60 , a_ : Union[str, Any]=30 , a_ : int=4_00 , a_ : List[str]=0.0 , a_ : Dict=False , **a_ : Optional[Any] , ):
super().__init__(
feature_size=a_ , sampling_rate=a_ , padding_value=a_ , return_attention_mask=a_ , **a_ , )
lowerCAmelCase_ : Optional[int] = n_fft
lowerCAmelCase_ : Dict = hop_length
lowerCAmelCase_ : str = chunk_length
lowerCAmelCase_ : Optional[int] = chunk_length * sampling_rate
lowerCAmelCase_ : Any = self.n_samples // hop_length
lowerCAmelCase_ : Optional[Any] = sampling_rate
lowerCAmelCase_ : Optional[Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=a_ , norm="slaney" , mel_scale="slaney" , )
def lowerCamelCase ( self : Optional[int] , a_ : np.array ):
lowerCAmelCase_ : List[Any] = spectrogram(
a_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , )
lowerCAmelCase_ : Tuple = log_spec[:, :-1]
lowerCAmelCase_ : Dict = np.maximum(a_ , log_spec.max() - 8.0 )
lowerCAmelCase_ : str = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCamelCase ( a_ : List[np.ndarray] , a_ : List[np.ndarray] , a_ : float = 0.0 ):
if attention_mask is not None:
lowerCAmelCase_ : Tuple = np.array(a_ , np.intaa )
lowerCAmelCase_ : Dict = []
for vector, length in zip(a_ , attention_mask.sum(-1 ) ):
lowerCAmelCase_ : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 )
if length < normed_slice.shape[0]:
lowerCAmelCase_ : Union[str, Any] = padding_value
normed_input_values.append(a_ )
else:
lowerCAmelCase_ : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values]
return normed_input_values
def __call__( self : Optional[int] , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : bool = True , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[bool] = None , a_ : Optional[str] = "max_length" , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : Optional[bool] = None , **a_ : Any , ):
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowerCAmelCase_ : Tuple = isinstance(a_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
lowerCAmelCase_ : Tuple = is_batched_numpy or (
isinstance(a_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase_ : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(a_ , np.ndarray ):
lowerCAmelCase_ : Optional[Any] = np.asarray(a_ , dtype=np.floataa )
elif isinstance(a_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase_ : Optional[Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase_ : List[str] = [np.asarray([raw_speech] ).T]
lowerCAmelCase_ : List[Any] = BatchFeature({"input_features": raw_speech} )
# convert into correct format for padding
lowerCAmelCase_ : Optional[int] = self.pad(
a_ , padding=a_ , max_length=max_length if max_length else self.n_samples , truncation=a_ , pad_to_multiple_of=a_ , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
lowerCAmelCase_ : Tuple = self.zero_mean_unit_var_norm(
padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , )
lowerCAmelCase_ : str = np.stack(padded_inputs["input_features"] , axis=0 )
# make sure list is in array format
lowerCAmelCase_ : Dict = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 )
lowerCAmelCase_ : List[Any] = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]]
if isinstance(input_features[0] , a_ ):
lowerCAmelCase_ : Any = [np.asarray(a_ , dtype=np.floataa ) for feature in input_features]
else:
lowerCAmelCase_ : List[str] = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
lowerCAmelCase_ : Union[str, Any] = padded_inputs["attention_mask"][:, :: self.hop_length]
if return_tensors is not None:
lowerCAmelCase_ : List[Any] = padded_inputs.convert_to_tensors(a_ )
return padded_inputs
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ : Optional[int] = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 610 | 0 |
import unittest
import numpy as np
import requests
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11
else:
lowercase : List[Any] = False
if is_vision_available():
from PIL import Image
from transformers import PixaStructImageProcessor
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> str:
snake_case_ : str = size if size is not None else {"height": 20, "width": 20}
snake_case_ : Dict = parent
snake_case_ : List[str] = batch_size
snake_case_ : Any = num_channels
snake_case_ : str = image_size
snake_case_ : Optional[Any] = min_resolution
snake_case_ : List[str] = max_resolution
snake_case_ : Union[str, Any] = size
snake_case_ : Any = do_normalize
snake_case_ : Any = do_convert_rgb
snake_case_ : List[Any] = [512, 1024, 2048, 4096]
snake_case_ : Tuple = patch_size if patch_size is not None else {"height": 16, "width": 16}
def _lowerCAmelCase ( self ) -> Any:
return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb}
def _lowerCAmelCase ( self ) -> Optional[int]:
snake_case_ : List[Any] = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg"
snake_case_ : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert("RGB" )
return raw_image
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
'''simple docstring'''
A : List[Any] = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self ) -> Optional[int]:
snake_case_ : Optional[int] = PixaStructImageProcessingTester(self )
@property
def _lowerCAmelCase ( self ) -> int:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self ) -> Tuple:
snake_case_ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_convert_rgb" ) )
def _lowerCAmelCase ( self ) -> List[str]:
snake_case_ : List[str] = self.image_processor_tester.prepare_dummy_image()
snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
snake_case_ : List[str] = 2048
snake_case_ : Union[str, Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) )
def _lowerCAmelCase ( self ) -> List[str]:
# Initialize image_processor
snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case_ : Union[str, Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case_ : Optional[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case_ : Any = image_processor(
_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self ) -> List[Any]:
# Initialize image_processor
snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case_ : str = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
snake_case_ : int = True
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
with self.assertRaises(_SCREAMING_SNAKE_CASE ):
snake_case_ : List[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
snake_case_ : Any = "Hello"
snake_case_ : Union[str, Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case_ : List[Any] = image_processor(
_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self ) -> Dict:
# Initialize image_processor
snake_case_ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray )
snake_case_ : Any = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case_ : str = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case_ : Union[str, Any] = image_processor(
_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
def _lowerCAmelCase ( self ) -> List[Any]:
# Initialize image_processor
snake_case_ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor )
# Test not batched input
snake_case_ : List[Any] = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* self.image_processor_tester.num_channels
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case_ : Any = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case_ : str = image_processor(
_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
@unittest.skipIf(
not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , )
@require_torch
@require_vision
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ):
'''simple docstring'''
A : int = PixaStructImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self ) -> int:
snake_case_ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 )
snake_case_ : Optional[Any] = 3
@property
def _lowerCAmelCase ( self ) -> Tuple:
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self ) -> Tuple:
snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) )
self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_convert_rgb" ) )
def _lowerCAmelCase ( self ) -> str:
# Initialize image_processor
snake_case_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE )
for image in image_inputs:
self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image )
# Test not batched input
snake_case_ : Tuple = (
(self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"])
* (self.image_processor_tester.num_channels - 1)
) + 2
for max_patch in self.image_processor_tester.max_patches:
# Test not batched input
snake_case_ : Optional[Any] = image_processor(
image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (1, max_patch, expected_hidden_dim) , )
# Test batched
snake_case_ : int = image_processor(
_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches
self.assertEqual(
encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
| 712 |
def lowerCAmelCase__ ( _a : int ):
snake_case_ : str = 1
for i in range(1 , num + 1 ):
fact *= i
return fact
def lowerCAmelCase__ ( _a : int ):
snake_case_ : List[str] = 0
while number > 0:
snake_case_ : Dict = number % 10
sum_of_digits += last_digit
snake_case_ : List[Any] = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def lowerCAmelCase__ ( _a : int = 1_00 ):
snake_case_ : Optional[Any] = factorial(_a )
snake_case_ : Optional[int] = split_and_add(_a )
return result
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 114 | 0 |
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
UpperCamelCase_ = TypeVar("KEY")
UpperCamelCase_ = TypeVar("VAL")
@dataclass(frozen=__UpperCAmelCase , slots=__UpperCAmelCase )
class a ( Generic[KEY, VAL] ):
lowercase_ : KEY
lowercase_ : VAL
class a ( _Item ):
def __init__( self : Optional[Any] ):
"""simple docstring"""
super().__init__(snake_case__ , snake_case__ )
def __bool__( self : str ):
"""simple docstring"""
return False
UpperCamelCase_ = _DeletedItem()
class a ( MutableMapping[KEY, VAL] ):
def __init__( self : int , snake_case__ : int = 8 , snake_case__ : float = 0.7_5 ):
"""simple docstring"""
__lowerCAmelCase = initial_block_size
__lowerCAmelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__lowerCAmelCase = capacity_factor
__lowerCAmelCase = 0
def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : KEY ):
"""simple docstring"""
return hash(snake_case__ ) % len(self._buckets )
def UpperCAmelCase__ ( self : Tuple , snake_case__ : int ):
"""simple docstring"""
return (ind + 1) % len(self._buckets )
def UpperCAmelCase__ ( self : Dict , snake_case__ : int , snake_case__ : KEY , snake_case__ : VAL ):
"""simple docstring"""
__lowerCAmelCase = self._buckets[ind]
if not stored:
__lowerCAmelCase = _Item(snake_case__ , snake_case__ )
self._len += 1
return True
elif stored.key == key:
__lowerCAmelCase = _Item(snake_case__ , snake_case__ )
return True
else:
return False
def UpperCAmelCase__ ( self : List[Any] ):
"""simple docstring"""
__lowerCAmelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(snake_case__ )
def UpperCAmelCase__ ( self : int ):
"""simple docstring"""
if len(self._buckets ) <= self._initial_block_size:
return False
__lowerCAmelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def UpperCAmelCase__ ( self : Any , snake_case__ : int ):
"""simple docstring"""
__lowerCAmelCase = self._buckets
__lowerCAmelCase = [None] * new_size
__lowerCAmelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
self._resize(len(self._buckets ) * 2 )
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
self._resize(len(self._buckets ) // 2 )
def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : KEY ):
"""simple docstring"""
__lowerCAmelCase = self._get_bucket_index(snake_case__ )
for _ in range(len(self._buckets ) ):
yield ind
__lowerCAmelCase = self._get_next_ind(snake_case__ )
def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : KEY , snake_case__ : VAL ):
"""simple docstring"""
for ind in self._iterate_buckets(snake_case__ ):
if self._try_set(snake_case__ , snake_case__ , snake_case__ ):
break
def __setitem__( self : Optional[Any] , snake_case__ : KEY , snake_case__ : VAL ):
"""simple docstring"""
if self._is_full():
self._size_up()
self._add_item(snake_case__ , snake_case__ )
def __delitem__( self : List[str] , snake_case__ : KEY ):
"""simple docstring"""
for ind in self._iterate_buckets(snake_case__ ):
__lowerCAmelCase = self._buckets[ind]
if item is None:
raise KeyError(snake_case__ )
if item is _deleted:
continue
if item.key == key:
__lowerCAmelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self : Union[str, Any] , snake_case__ : KEY ):
"""simple docstring"""
for ind in self._iterate_buckets(snake_case__ ):
__lowerCAmelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(snake_case__ )
def __len__( self : Union[str, Any] ):
"""simple docstring"""
return self._len
def __iter__( self : Tuple ):
"""simple docstring"""
yield from (item.key for item in self._buckets if item)
def __repr__( self : List[Any] ):
"""simple docstring"""
__lowerCAmelCase = " ,".join(
F"{item.key}: {item.val}" for item in self._buckets if item )
return F"HashMap({val_string})"
| 611 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = OrderedDict(
[
("align", "EfficientNetImageProcessor"),
("beit", "BeitImageProcessor"),
("bit", "BitImageProcessor"),
("blip", "BlipImageProcessor"),
("blip-2", "BlipImageProcessor"),
("bridgetower", "BridgeTowerImageProcessor"),
("chinese_clip", "ChineseCLIPImageProcessor"),
("clip", "CLIPImageProcessor"),
("clipseg", "ViTImageProcessor"),
("conditional_detr", "ConditionalDetrImageProcessor"),
("convnext", "ConvNextImageProcessor"),
("convnextv2", "ConvNextImageProcessor"),
("cvt", "ConvNextImageProcessor"),
("data2vec-vision", "BeitImageProcessor"),
("deformable_detr", "DeformableDetrImageProcessor"),
("deit", "DeiTImageProcessor"),
("deta", "DetaImageProcessor"),
("detr", "DetrImageProcessor"),
("dinat", "ViTImageProcessor"),
("donut-swin", "DonutImageProcessor"),
("dpt", "DPTImageProcessor"),
("efficientformer", "EfficientFormerImageProcessor"),
("efficientnet", "EfficientNetImageProcessor"),
("flava", "FlavaImageProcessor"),
("focalnet", "BitImageProcessor"),
("git", "CLIPImageProcessor"),
("glpn", "GLPNImageProcessor"),
("groupvit", "CLIPImageProcessor"),
("imagegpt", "ImageGPTImageProcessor"),
("instructblip", "BlipImageProcessor"),
("layoutlmv2", "LayoutLMv2ImageProcessor"),
("layoutlmv3", "LayoutLMv3ImageProcessor"),
("levit", "LevitImageProcessor"),
("mask2former", "Mask2FormerImageProcessor"),
("maskformer", "MaskFormerImageProcessor"),
("mgp-str", "ViTImageProcessor"),
("mobilenet_v1", "MobileNetV1ImageProcessor"),
("mobilenet_v2", "MobileNetV2ImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevit", "MobileViTImageProcessor"),
("mobilevitv2", "MobileViTImageProcessor"),
("nat", "ViTImageProcessor"),
("oneformer", "OneFormerImageProcessor"),
("owlvit", "OwlViTImageProcessor"),
("perceiver", "PerceiverImageProcessor"),
("pix2struct", "Pix2StructImageProcessor"),
("poolformer", "PoolFormerImageProcessor"),
("regnet", "ConvNextImageProcessor"),
("resnet", "ConvNextImageProcessor"),
("sam", "SamImageProcessor"),
("segformer", "SegformerImageProcessor"),
("swiftformer", "ViTImageProcessor"),
("swin", "ViTImageProcessor"),
("swin2sr", "Swin2SRImageProcessor"),
("swinv2", "ViTImageProcessor"),
("table-transformer", "DetrImageProcessor"),
("timesformer", "VideoMAEImageProcessor"),
("tvlt", "TvltImageProcessor"),
("upernet", "SegformerImageProcessor"),
("van", "ConvNextImageProcessor"),
("videomae", "VideoMAEImageProcessor"),
("vilt", "ViltImageProcessor"),
("vit", "ViTImageProcessor"),
("vit_hybrid", "ViTHybridImageProcessor"),
("vit_mae", "ViTImageProcessor"),
("vit_msn", "ViTImageProcessor"),
("xclip", "CLIPImageProcessor"),
("yolos", "YolosImageProcessor"),
]
)
UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def _UpperCAmelCase ( UpperCamelCase: str ):
"""simple docstring"""
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
__lowerCAmelCase = model_type_to_module_name(UpperCamelCase )
__lowerCAmelCase = importlib.import_module(F".{module_name}" , "transformers.models" )
try:
return getattr(UpperCamelCase , UpperCamelCase )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(UpperCamelCase , "__name__" , UpperCamelCase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
__lowerCAmelCase = importlib.import_module("transformers" )
if hasattr(UpperCamelCase , UpperCamelCase ):
return getattr(UpperCamelCase , UpperCamelCase )
return None
def _UpperCAmelCase ( UpperCamelCase: Union[str, os.PathLike] , UpperCamelCase: Optional[Union[str, os.PathLike]] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: Optional[Dict[str, str]] = None , UpperCamelCase: Optional[Union[bool, str]] = None , UpperCamelCase: Optional[str] = None , UpperCamelCase: bool = False , **UpperCamelCase: List[Any] , ):
"""simple docstring"""
__lowerCAmelCase = get_file_from_repo(
UpperCamelCase , UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , resume_download=UpperCamelCase , proxies=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , local_files_only=UpperCamelCase , )
if resolved_config_file is None:
logger.info(
"Could not locate the image processor configuration file, will try to use the model config instead." )
return {}
with open(UpperCamelCase , encoding="utf-8" ) as reader:
return json.load(UpperCamelCase )
class a :
def __init__( self : Optional[Any] ):
"""simple docstring"""
raise EnvironmentError(
"AutoImageProcessor is designed to be instantiated "
"using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." )
@classmethod
@replace_list_option_in_docstrings(snake_case__ )
def UpperCAmelCase__ ( cls : Tuple , snake_case__ : Dict , **snake_case__ : Any ):
"""simple docstring"""
__lowerCAmelCase = kwargs.pop("config" , snake_case__ )
__lowerCAmelCase = kwargs.pop("trust_remote_code" , snake_case__ )
__lowerCAmelCase = True
__lowerCAmelCase , __lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(snake_case__ , **snake_case__ )
__lowerCAmelCase = config_dict.get("image_processor_type" , snake_case__ )
__lowerCAmelCase = None
if "AutoImageProcessor" in config_dict.get("auto_map" , {} ):
__lowerCAmelCase = config_dict["auto_map"]["AutoImageProcessor"]
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
__lowerCAmelCase = config_dict.pop("feature_extractor_type" , snake_case__ )
if feature_extractor_class is not None:
logger.warning(
"Could not find image processor class in the image processor config or the model config. Loading"
" based on pattern matching with the model's feature extractor configuration." )
__lowerCAmelCase = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" )
if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ):
__lowerCAmelCase = config_dict["auto_map"]["AutoFeatureExtractor"]
__lowerCAmelCase = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" )
logger.warning(
"Could not find image processor auto map in the image processor config or the model config."
" Loading based on pattern matching with the model's feature extractor configuration." )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(snake_case__ , snake_case__ ):
__lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ , **snake_case__ )
# It could be in `config.image_processor_type``
__lowerCAmelCase = getattr(snake_case__ , "image_processor_type" , snake_case__ )
if hasattr(snake_case__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map:
__lowerCAmelCase = config.auto_map["AutoImageProcessor"]
if image_processor_class is not None:
__lowerCAmelCase = image_processor_class_from_name(snake_case__ )
__lowerCAmelCase = image_processor_auto_map is not None
__lowerCAmelCase = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING
__lowerCAmelCase = resolve_trust_remote_code(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if has_remote_code and trust_remote_code:
__lowerCAmelCase = get_class_from_dynamic_module(
snake_case__ , snake_case__ , **snake_case__ )
__lowerCAmelCase = kwargs.pop("code_revision" , snake_case__ )
if os.path.isdir(snake_case__ ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(snake_case__ , **snake_case__ )
elif image_processor_class is not None:
return image_processor_class.from_dict(snake_case__ , **snake_case__ )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING:
__lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )]
return image_processor_class.from_dict(snake_case__ , **snake_case__ )
raise ValueError(
F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a "
F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following "
F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" )
@staticmethod
def UpperCAmelCase__ ( snake_case__ : str , snake_case__ : List[str] ):
"""simple docstring"""
IMAGE_PROCESSOR_MAPPING.register(snake_case__ , snake_case__ )
| 611 | 1 |
'''simple docstring'''
def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int ):
return 1 if input_a == input_a else 0
def __lowercase ():
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 704 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case_ = logging.get_logger(__name__)
snake_case_ = {
"""facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""",
}
class a__ ( _lowercase ):
__magic_name__ : Optional[Any] = "nllb-moe"
__magic_name__ : Optional[Any] = ["past_key_values"]
__magic_name__ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(self : int, __UpperCAmelCase : Tuple=128112, __UpperCAmelCase : Any=1024, __UpperCAmelCase : Optional[Any]=12, __UpperCAmelCase : Optional[int]=4096, __UpperCAmelCase : Any=16, __UpperCAmelCase : Any=12, __UpperCAmelCase : Optional[Any]=4096, __UpperCAmelCase : Optional[int]=16, __UpperCAmelCase : List[Any]=0.05, __UpperCAmelCase : Dict=0.05, __UpperCAmelCase : Dict=True, __UpperCAmelCase : List[Any]=True, __UpperCAmelCase : Any="relu", __UpperCAmelCase : Union[str, Any]=1024, __UpperCAmelCase : Optional[int]=0.1, __UpperCAmelCase : Tuple=0.1, __UpperCAmelCase : List[Any]=0.0, __UpperCAmelCase : Optional[int]=0.02, __UpperCAmelCase : Tuple=2, __UpperCAmelCase : int=True, __UpperCAmelCase : int=False, __UpperCAmelCase : int="float32", __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : List[str]=128, __UpperCAmelCase : Dict=64, __UpperCAmelCase : Dict=4, __UpperCAmelCase : Optional[Any]=4, __UpperCAmelCase : Optional[Any]=0.001, __UpperCAmelCase : Optional[Any]=0.001, __UpperCAmelCase : Optional[Any]="all", __UpperCAmelCase : List[str]=False, __UpperCAmelCase : Dict=False, __UpperCAmelCase : Any=1.0, __UpperCAmelCase : Dict=0.2, __UpperCAmelCase : int=1, __UpperCAmelCase : Union[str, Any]=0, __UpperCAmelCase : Any=2, __UpperCAmelCase : Union[str, Any]=False, **__UpperCAmelCase : Dict, ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = vocab_size
SCREAMING_SNAKE_CASE : int = max_position_embeddings
SCREAMING_SNAKE_CASE : Optional[int] = d_model
SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim
SCREAMING_SNAKE_CASE : int = encoder_layers
SCREAMING_SNAKE_CASE : str = encoder_attention_heads
SCREAMING_SNAKE_CASE : Optional[Any] = decoder_ffn_dim
SCREAMING_SNAKE_CASE : str = decoder_layers
SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads
SCREAMING_SNAKE_CASE : Dict = dropout
SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout
SCREAMING_SNAKE_CASE : Dict = activation_dropout
SCREAMING_SNAKE_CASE : List[str] = activation_function
SCREAMING_SNAKE_CASE : Union[str, Any] = init_std
SCREAMING_SNAKE_CASE : Any = encoder_layerdrop
SCREAMING_SNAKE_CASE : Optional[int] = decoder_layerdrop
SCREAMING_SNAKE_CASE : Dict = use_cache
SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers
SCREAMING_SNAKE_CASE : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True
SCREAMING_SNAKE_CASE : List[str] = router_z_loss_coef
SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef
SCREAMING_SNAKE_CASE : int = decoder_sparse_step
SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_sparse_step
SCREAMING_SNAKE_CASE : Union[str, Any] = num_experts
SCREAMING_SNAKE_CASE : List[Any] = expert_capacity
SCREAMING_SNAKE_CASE : Optional[Any] = router_bias
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' )
SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype
SCREAMING_SNAKE_CASE : int = router_ignore_padding_tokens
SCREAMING_SNAKE_CASE : Dict = batch_prioritized_routing
SCREAMING_SNAKE_CASE : Dict = second_expert_policy
SCREAMING_SNAKE_CASE : Tuple = normalize_router_prob_before_dropping
SCREAMING_SNAKE_CASE : List[str] = moe_eval_capacity_token_fraction
SCREAMING_SNAKE_CASE : List[Any] = moe_token_dropout
SCREAMING_SNAKE_CASE : List[Any] = output_router_logits
super().__init__(
pad_token_id=__UpperCAmelCase, bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, is_encoder_decoder=__UpperCAmelCase, decoder_start_token_id=__UpperCAmelCase, **__UpperCAmelCase, )
| 355 | 0 |
import collections
import json
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
import numpy as np
from ...tokenization_utils_fast import PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'}
UpperCamelCase = {
'vocab_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt',
},
'emoji_file': {
'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json',
},
}
UpperCamelCase = {
'abeja/gpt-neox-japanese-2.7b': 2048,
}
def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ):
"""simple docstring"""
with open(lowerCAmelCase_ , "r" , encoding="utf-8" ) as f:
lowerCAmelCase__ = json.loads(f.read() )
lowerCAmelCase__ = collections.OrderedDict()
lowerCAmelCase__ = collections.OrderedDict()
lowerCAmelCase__ = collections.OrderedDict()
with open(lowerCAmelCase_ , "r" , encoding="utf-8" ) as f:
lowerCAmelCase__ = f.readlines()
lowerCAmelCase__ = [[t.rstrip("\n" )] if (t == ''',''' or ''',''' not in t) else t.rstrip("\n" ).split("," ) for t in token]
for idx, b in enumerate(lowerCAmelCase_ ):
lowerCAmelCase__ = b
lowerCAmelCase__ = idx
for wd in b:
lowerCAmelCase__ = idx
return vocab, raw_vocab, ids_to_tokens, emoji
class __lowerCamelCase ( lowerCAmelCase_ ):
"""simple docstring"""
snake_case__ = VOCAB_FILES_NAMES
snake_case__ = PRETRAINED_VOCAB_FILES_MAP
snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case__ = ["input_ids", "attention_mask"]
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<|startoftext|>" , SCREAMING_SNAKE_CASE__ : int="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE__ : Any , ) -> Any:
super().__init__(
unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , do_clean_text=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
if not os.path.isfile(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained'
" model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
if not os.path.isfile(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google'
" pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" )
lowerCAmelCase__ = do_clean_text
lowerCAmelCase__ = load_vocab_and_emoji(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = SubWordJapaneseTokenizer(
vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji )
@property
def a ( self : str ) -> Tuple:
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
return len(self.raw_vocab )
def a ( self : Union[str, Any] ) -> Dict:
return dict(self.raw_vocab , **self.added_tokens_encoder )
def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str:
return self.subword_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , clean=self.do_clean_text )
def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
return self.vocab.get(SCREAMING_SNAKE_CASE__ , self.vocab.get(self.unk_token ) )
def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
return self.subword_tokenizer.convert_id_to_token(SCREAMING_SNAKE_CASE__ )
def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict:
lowerCAmelCase__ = ''''''.join(SCREAMING_SNAKE_CASE__ ).strip()
return out_string
def a ( self : str , SCREAMING_SNAKE_CASE__ : "Conversation" ) -> List[int]:
lowerCAmelCase__ = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [self.eos_token_id] )
if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length:
lowerCAmelCase__ = input_ids[-self.model_max_length :]
return input_ids
def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]:
lowerCAmelCase__ = 0
if os.path.isdir(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase__ = os.path.join(
SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] )
else:
lowerCAmelCase__ = (
(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file''']
)
lowerCAmelCase__ = (
(filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file''']
)
with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer:
for token_index, token in self.ids_to_tokens.items():
if index != token_index:
logger.warning(
f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'
" Please check that the vocabulary is not corrupted!" )
lowerCAmelCase__ = token_index
writer.write(",".join(SCREAMING_SNAKE_CASE__ ) + "\n" )
index += 1
with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer:
json.dump(self.emoji , SCREAMING_SNAKE_CASE__ )
return vocab_file, emoji_file
class __lowerCamelCase ( lowerCAmelCase_ ):
"""simple docstring"""
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]:
lowerCAmelCase__ = vocab # same as swe
lowerCAmelCase__ = ids_to_tokens # same as bpe
lowerCAmelCase__ = emoji
lowerCAmelCase__ = np.max([len(SCREAMING_SNAKE_CASE__ ) for w in self.vocab.keys()] )
lowerCAmelCase__ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" )
lowerCAmelCase__ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" )
lowerCAmelCase__ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" )
lowerCAmelCase__ = re.compile(
r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
lowerCAmelCase__ = re.compile(
r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" )
lowerCAmelCase__ = re.compile(
r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" )
lowerCAmelCase__ = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿'''
lowerCAmelCase__ = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟'''
lowerCAmelCase__ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} )
def __len__( self : str ) -> Optional[int]:
return len(self.ids_to_tokens )
def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
lowerCAmelCase__ = self.content_repattera.sub("<URL>" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.content_repattera.sub("<EMAIL>" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.content_repattera.sub("<TEL>" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.content_repattera.sub("<DATE>" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.content_repattera.sub("<DATE>" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = self.content_repattera.sub("<PRICE>" , SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = content.translate(self.content_transa )
while "<BLOCK><BLOCK>" in content:
lowerCAmelCase__ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" )
return content
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[Any]:
lowerCAmelCase__ = text.replace(" " , "<SP>" )
lowerCAmelCase__ = text.replace(" " , "<SP>" )
lowerCAmelCase__ = text.replace("\r\n" , "<BR>" )
lowerCAmelCase__ = text.replace("\n" , "<BR>" )
lowerCAmelCase__ = text.replace("\r" , "<BR>" )
lowerCAmelCase__ = text.replace("\t" , "<TAB>" )
lowerCAmelCase__ = text.replace("—" , "ー" )
lowerCAmelCase__ = text.replace("−" , "ー" )
for k, v in self.emoji["emoji"].items():
if k in text:
lowerCAmelCase__ = text.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if clean:
lowerCAmelCase__ = self.clean_text(SCREAMING_SNAKE_CASE__ )
def check_simbol(SCREAMING_SNAKE_CASE__ : Dict ):
lowerCAmelCase__ = x.encode()
if len(SCREAMING_SNAKE_CASE__ ) == 1 and len(SCREAMING_SNAKE_CASE__ ) == 2:
lowerCAmelCase__ = (int(e[0] ) << 8) + int(e[1] )
if (
(c >= 0XC_2A1 and c <= 0XC_2BF)
or (c >= 0XC_780 and c <= 0XC_783)
or (c >= 0XC_AB9 and c <= 0XC_BBF)
or (c >= 0XC_C80 and c <= 0XC_DA2)
):
return True
return False
def checkuae(SCREAMING_SNAKE_CASE__ : List[Any] ):
lowerCAmelCase__ = x.encode()
if len(SCREAMING_SNAKE_CASE__ ) == 1 and len(SCREAMING_SNAKE_CASE__ ) == 3:
lowerCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] )
if c >= 0XE28_080 and c <= 0XE2B_07F:
return True
return False
lowerCAmelCase__ = 0
lowerCAmelCase__ = []
while pos < len(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3
lowerCAmelCase__ = [] # (token_id, token, pos)
for e in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ):
lowerCAmelCase__ = text[pos:e]
if wd in self.vocab:
if wd[0] == "<" and len(SCREAMING_SNAKE_CASE__ ) > 2:
lowerCAmelCase__ = [(self.vocab[wd], wd, e)]
break
else:
candidates.append((self.vocab[wd], wd, e) )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
# the smallest token_id is adopted
lowerCAmelCase__ = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[0] )[0]
result.append(SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = e
else:
lowerCAmelCase__ = pos + 1
lowerCAmelCase__ = text[pos:end]
if check_simbol(SCREAMING_SNAKE_CASE__ ):
result.append("<KIGOU>" )
elif checkuae(SCREAMING_SNAKE_CASE__ ):
result.append("<U2000U2BFF>" )
else:
for i in wd.encode("utf-8" ):
result.append("<|byte%d|>" % i )
lowerCAmelCase__ = end
return result
def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]="\n" ) -> Optional[Any]:
lowerCAmelCase__ = []
lowerCAmelCase__ = []
lowerCAmelCase__ = self.ids_to_tokens[index][0]
if word[:6] == "<|byte" and word[-2:] == "|>":
byte_tokens.append(int(word[6:-2] ) )
else:
if len(SCREAMING_SNAKE_CASE__ ) > 0:
words.append(bytearray(SCREAMING_SNAKE_CASE__ ).decode("utf-8" , errors="replace" ) )
lowerCAmelCase__ = []
if word[:7] == "<|emoji" and word[-2:] == "|>":
words.append(self.emoji["emoji_inv"][word] )
elif word == "<SP>":
words.append(" " )
elif word == "<BR>":
words.append(SCREAMING_SNAKE_CASE__ )
elif word == "<TAB>":
words.append("\t" )
elif word == "<BLOCK>":
words.append("▀" )
elif word == "<KIGOU>":
words.append("ǀ" )
elif word == "<U2000U2BFF>":
words.append("‖" )
else:
words.append(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) > 0:
words.append(bytearray(SCREAMING_SNAKE_CASE__ ).decode("utf-8" , errors="replace" ) )
lowerCAmelCase__ = ''''''.join(SCREAMING_SNAKE_CASE__ )
return text
| 61 |
from __future__ import annotations
from collections.abc import Callable
_A : Tuple = list[list[float | int]]
def _a ( UpperCAmelCase , UpperCAmelCase ) -> Matrix:
"""simple docstring"""
lowerCamelCase__ : int = len(UpperCAmelCase )
lowerCamelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase )]
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : float
for row in range(UpperCAmelCase ):
for col in range(UpperCAmelCase ):
lowerCamelCase__ : Union[str, Any] = matrix[row][col]
lowerCamelCase__ : Union[str, Any] = vector[row][0]
lowerCamelCase__ : str = 0
lowerCamelCase__ : Optional[Any] = 0
while row < size and col < size:
# pivoting
lowerCamelCase__ : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase , UpperCAmelCase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
lowerCamelCase__ , lowerCamelCase__ : List[str] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , UpperCAmelCase ):
lowerCamelCase__ : str = augmented[rowa][col] / augmented[row][col]
lowerCamelCase__ : Any = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , UpperCAmelCase ):
for row in range(UpperCAmelCase ):
lowerCamelCase__ : Tuple = augmented[row][col] / augmented[col][col]
for cola in range(UpperCAmelCase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase )
]
def _a ( UpperCAmelCase ) -> Callable[[int], int]:
"""simple docstring"""
lowerCamelCase__ : int = len(UpperCAmelCase )
lowerCamelCase__ : Matrix = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )]
lowerCamelCase__ : Matrix = [[0] for _ in range(UpperCAmelCase )]
lowerCamelCase__ : Matrix
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
for x_val, y_val in enumerate(UpperCAmelCase ):
for col in range(UpperCAmelCase ):
lowerCamelCase__ : Optional[int] = (x_val + 1) ** (size - col - 1)
lowerCamelCase__ : List[Any] = y_val
lowerCamelCase__ : Tuple = solve(UpperCAmelCase , UpperCAmelCase )
def interpolated_func(UpperCAmelCase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(UpperCAmelCase ) )
return interpolated_func
def _a ( UpperCAmelCase ) -> int:
"""simple docstring"""
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def _a ( UpperCAmelCase = question_function , UpperCAmelCase = 10 ) -> int:
"""simple docstring"""
lowerCamelCase__ : list[int] = [func(UpperCAmelCase ) for x_val in range(1 , order + 1 )]
lowerCamelCase__ : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
lowerCamelCase__ : int = 0
lowerCamelCase__ : Callable[[int], int]
lowerCamelCase__ : int
for poly in polynomials:
lowerCamelCase__ : Any = 1
while func(UpperCAmelCase ) == poly(UpperCAmelCase ):
x_val += 1
ret += poly(UpperCAmelCase )
return ret
if __name__ == "__main__":
print(F'''{solution() = }''')
| 315 | 0 |
'''simple docstring'''
from math import factorial
_lowerCAmelCase = {str(d): factorial(d) for d in range(10)}
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
return sum(DIGIT_FACTORIAL[d] for d in str(snake_case_ ) )
def _SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowerCAmelCase__ : Union[str, Any] = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , snake_case_ ) if sum_of_digit_factorial(snake_case_ ) == i )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 719 |
'''simple docstring'''
from ..utils import DummyObject, requires_backends
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ):
"""simple docstring"""
requires_backends(UpperCamelCase , ["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Any = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Any = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Tuple = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : int = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : str = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[int] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Any = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Union[str, Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : List[str] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Optional[Any] = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(cls ,["""torch"""] )
class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
__lowercase : Dict = ['''torch''']
def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]:
requires_backends(self ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple:
requires_backends(cls ,["""torch"""] )
@classmethod
def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]:
requires_backends(cls ,["""torch"""] )
| 160 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase = logging.get_logger(__name__)
lowerCamelCase = {
"""bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""",
"""bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""",
"""bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""",
"""bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""",
"""bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""",
"""bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""",
"""bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""",
"""bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""",
"""bert-large-uncased-whole-word-masking""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json"""
),
"""bert-large-uncased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-large-cased-whole-word-masking-finetuned-squad""": (
"""https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json"""
),
"""bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""",
"""bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""",
"""bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""",
"""cl-tohoku/bert-base-japanese-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json"""
),
"""cl-tohoku/bert-base-japanese-char-whole-word-masking""": (
"""https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-cased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json"""
),
"""TurkuNLP/bert-base-finnish-uncased-v1""": (
"""https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json"""
),
"""wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""",
# See all BERT models at https://huggingface.co/models?filter=bert
}
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
UpperCamelCase = '''bert'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : int=1e-12 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : str , ) -> int:
'''simple docstring'''
super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase )
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = type_vocab_size
UpperCAmelCase_ = initializer_range
UpperCAmelCase_ = layer_norm_eps
UpperCAmelCase_ = position_embedding_type
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = classifier_dropout
class lowercase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"}
else:
UpperCAmelCase_ = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
] )
| 82 |
'''simple docstring'''
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class UpperCAmelCase ( a_ ):
"""simple docstring"""
A__ : str = ['image_processor', 'tokenizer']
A__ : Dict = 'CLIPImageProcessor'
A__ : str = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast')
def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> List[Any]:
_UpperCamelCase : Optional[int] = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , _snake_case , )
_UpperCamelCase : Optional[Any] = kwargs.pop('''feature_extractor''' )
_UpperCamelCase : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(_snake_case , _snake_case )
def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Dict:
if text is None and images is None:
raise ValueError('''You have to specify either text or images. Both cannot be none.''' )
if text is not None:
_UpperCamelCase : List[str] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case )
if images is not None:
_UpperCamelCase : str = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case )
if text is not None and images is not None:
_UpperCamelCase : Any = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case )
def _lowercase ( self , *_snake_case , **_snake_case ) -> Tuple:
return self.tokenizer.batch_decode(*_snake_case , **_snake_case )
def _lowercase ( self , *_snake_case , **_snake_case ) -> Any:
return self.tokenizer.decode(*_snake_case , **_snake_case )
@property
def _lowercase ( self ) -> int:
_UpperCamelCase : Optional[int] = self.tokenizer.model_input_names
_UpperCamelCase : List[str] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 683 | 0 |
"""simple docstring"""
import math
import numpy as np
import qiskit
from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute
def _snake_case ( lowercase__ : str = 3 ) -> qiskit.result.counts.Counts:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise TypeError("""number of qubits must be a integer.""" )
if number_of_qubits <= 0:
raise ValueError("""number of qubits must be > 0.""" )
if math.floor(SCREAMING_SNAKE_CASE_ ) != number_of_qubits:
raise ValueError("""number of qubits must be exact integer.""" )
if number_of_qubits > 1_0:
raise ValueError("""number of qubits too large to simulate(>10).""" )
lowerCAmelCase_ :Any = QuantumRegister(SCREAMING_SNAKE_CASE_ , """qr""" )
lowerCAmelCase_ :List[Any] = ClassicalRegister(SCREAMING_SNAKE_CASE_ , """cr""" )
lowerCAmelCase_ :Optional[int] = QuantumCircuit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCAmelCase_ :Optional[Any] = number_of_qubits
for i in range(SCREAMING_SNAKE_CASE_ ):
quantum_circuit.h(number_of_qubits - i - 1 )
counter -= 1
for j in range(SCREAMING_SNAKE_CASE_ ):
quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
for k in range(number_of_qubits // 2 ):
quantum_circuit.swap(SCREAMING_SNAKE_CASE_ , number_of_qubits - k - 1 )
# measure all the qubits
quantum_circuit.measure(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# simulate with 10000 shots
lowerCAmelCase_ :str = Aer.get_backend("""qasm_simulator""" )
lowerCAmelCase_ :List[Any] = execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0_0 )
return job.result().get_counts(SCREAMING_SNAKE_CASE_ )
if __name__ == "__main__":
print(
F"""Total count for quantum fourier transform state is: \
{quantum_fourier_transform(3)}"""
)
| 703 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class _SCREAMING_SNAKE_CASE ( A__ ):
UpperCAmelCase_ :Tuple = ["image_processor", "tokenizer"]
UpperCAmelCase_ :int = "OwlViTImageProcessor"
UpperCAmelCase_ :List[str] = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __A=None , __A=None , **__A ) -> List[str]:
lowerCAmelCase_ :Optional[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __A , )
lowerCAmelCase_ :Any = kwargs.pop("""feature_extractor""" )
lowerCAmelCase_ :Dict = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__A , __A )
def __call__( self , __A=None , __A=None , __A=None , __A="max_length" , __A="np" , **__A ) -> Any:
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )):
lowerCAmelCase_ :int = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )]
elif isinstance(__A , __A ) and isinstance(text[0] , __A ):
lowerCAmelCase_ :Optional[Any] = []
# Maximum number of queries across batch
lowerCAmelCase_ :List[str] = max([len(__A ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__A ) != max_num_queries:
lowerCAmelCase_ :str = t + [""" """] * (max_num_queries - len(__A ))
lowerCAmelCase_ :Dict = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )
encodings.append(__A )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
lowerCAmelCase_ :Dict = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
lowerCAmelCase_ :List[str] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowerCAmelCase_ :str = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
lowerCAmelCase_ :Optional[int] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowerCAmelCase_ :List[str] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
lowerCAmelCase_ :Optional[int] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowerCAmelCase_ :Tuple = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
lowerCAmelCase_ :List[Any] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
lowerCAmelCase_ :int = BatchEncoding()
lowerCAmelCase_ :List[str] = input_ids
lowerCAmelCase_ :Dict = attention_mask
if query_images is not None:
lowerCAmelCase_ :Optional[int] = BatchEncoding()
lowerCAmelCase_ :str = self.image_processor(
__A , return_tensors=__A , **__A ).pixel_values
lowerCAmelCase_ :int = query_pixel_values
if images is not None:
lowerCAmelCase_ :int = self.image_processor(__A , return_tensors=__A , **__A )
if text is not None and images is not None:
lowerCAmelCase_ :str = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowerCAmelCase_ :Dict = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__A ) , tensor_type=__A )
def __lowerCAmelCase ( self , *__A , **__A ) -> Any:
return self.image_processor.post_process(*__A , **__A )
def __lowerCAmelCase ( self , *__A , **__A ) -> int:
return self.image_processor.post_process_object_detection(*__A , **__A )
def __lowerCAmelCase ( self , *__A , **__A ) -> List[Any]:
return self.image_processor.post_process_image_guided_detection(*__A , **__A )
def __lowerCAmelCase ( self , *__A , **__A ) -> int:
return self.tokenizer.batch_decode(*__A , **__A )
def __lowerCAmelCase ( self , *__A , **__A ) -> Dict:
return self.tokenizer.decode(*__A , **__A )
@property
def __lowerCAmelCase ( self ) -> List[str]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , )
return self.image_processor_class
@property
def __lowerCAmelCase ( self ) -> Optional[int]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , )
return self.image_processor
| 256 | 0 |
from math import sqrt
def _a ( lowercase__ : int = 1_00_00_00 ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = 0
SCREAMING_SNAKE_CASE__ : int = 0
SCREAMING_SNAKE_CASE__ : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(lowercase__ , sum_shortest_sides // 2 )
- max(1 , sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(F"""{solution() = }""")
| 85 |
'''simple docstring'''
import unittest
from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
_snake_case = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class a__ ( lowerCamelCase_ , unittest.TestCase ):
_SCREAMING_SNAKE_CASE : str = ReformerTokenizer
_SCREAMING_SNAKE_CASE : str = ReformerTokenizerFast
_SCREAMING_SNAKE_CASE : List[Any] = True
_SCREAMING_SNAKE_CASE : str = False
_SCREAMING_SNAKE_CASE : Optional[Any] = True
def _lowerCamelCase ( self ):
"""simple docstring"""
super().setUp()
_lowercase : int = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : List[Any] = "<s>"
_lowercase : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase )
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<unk>" )
self.assertEqual(vocab_keys[1] , "<s>" )
self.assertEqual(vocab_keys[-1] , "j" )
self.assertEqual(len(_UpperCamelCase ) , 1000 )
def _lowerCamelCase ( self ):
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def _lowerCamelCase ( self ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
_lowercase : str = self.get_tokenizer()
_lowercase : List[Any] = self.get_rust_tokenizer()
_lowercase : Any = "I was born in 92000, and this is falsé."
_lowercase : Dict = tokenizer.tokenize(_UpperCamelCase )
_lowercase : List[Any] = rust_tokenizer.tokenize(_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
_lowercase : Union[str, Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase )
_lowercase : int = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
_lowercase : Tuple = self.get_rust_tokenizer()
_lowercase : Optional[Any] = tokenizer.encode(_UpperCamelCase )
_lowercase : Any = rust_tokenizer.encode(_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , _UpperCamelCase )
def _lowerCamelCase ( self , _UpperCamelCase=15 ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
_lowercase : int = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase )
# Simple input
_lowercase : int = "This is a simple input"
_lowercase : Tuple = ["This is a simple input 1", "This is a simple input 2"]
_lowercase : str = ("This is a simple input", "This is a pair")
_lowercase : int = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" )
# Simple input
self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" )
# Simple input
self.assertRaises(
_UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , )
# Pair input
self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" )
# Pair input
self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" )
# Pair input
self.assertRaises(
_UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , )
def _lowerCamelCase ( self ):
"""simple docstring"""
pass
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase )
_lowercase : List[Any] = tokenizer.tokenize("This is a test" )
self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , )
_lowercase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
_UpperCamelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
] , )
_lowercase : Dict = tokenizer.convert_tokens_to_ids(_UpperCamelCase )
self.assertListEqual(
_UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , )
_lowercase : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase )
self.assertListEqual(
_UpperCamelCase , [
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
] , )
@cached_property
def _lowerCamelCase ( self ):
"""simple docstring"""
return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" )
@slow
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Optional[int] = "Hello World!"
_lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287]
self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) )
@slow
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Union[str, Any] = (
"This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"
" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"
)
_lowercase : Optional[Any] = [
108,
265,
24,
111,
4,
258,
156,
35,
28,
275,
3,
259,
297,
260,
84,
4,
35,
110,
44,
8,
259,
91,
268,
21,
11,
209,
274,
109,
266,
277,
117,
86,
93,
315,
258,
278,
258,
277,
258,
0,
258,
288,
258,
319,
258,
0,
258,
0,
258,
0,
258,
0,
258,
287,
258,
315,
258,
289,
258,
278,
99,
269,
266,
262,
8,
259,
241,
4,
217,
230,
268,
266,
55,
168,
106,
75,
193,
266,
223,
27,
49,
26,
282,
25,
264,
299,
19,
26,
0,
258,
277,
117,
86,
93,
176,
183,
270,
11,
262,
42,
61,
265,
]
self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) )
@require_torch
@slow
def _lowerCamelCase ( self ):
"""simple docstring"""
import torch
from transformers import ReformerConfig, ReformerModel
# Build sequence
_lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10]
_lowercase : Tuple = " ".join(_UpperCamelCase )
_lowercase : Tuple = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" )
_lowercase : int = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" )
_lowercase : int = ReformerConfig()
# The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024)
_lowercase : Optional[int] = encoded_sequence["input_ids"].shape
_lowercase : List[Any] = ReformerModel(_UpperCamelCase )
# Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320)
assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size
with torch.no_grad():
model(**_UpperCamelCase )
model(**_UpperCamelCase )
@slow
def _lowerCamelCase ( self ):
"""simple docstring"""
_lowercase : Tuple = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# This tokenizer does not know some characters like ")".
# That is the reason why we use very simple texts here.
# Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064
_lowercase : Dict = [
"This is a very simple sentence.",
"The quick brown fox jumps over the lazy dog.",
]
self.tokenizer_integration_test_util(
expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
| 245 | 0 |
import math
import os
import re
import sys
import unittest
from pathlib import Path
from typing import Tuple
from unittest.mock import patch
from parameterized import parameterized
from transformers.testing_utils import (
CaptureStderr,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
get_torch_dist_unique_port,
require_apex,
require_bitsandbytes,
require_fairscale,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
require_torch_non_multi_gpu,
slow,
)
from transformers.trainer_callback import TrainerState
from transformers.trainer_utils import set_seed
lowerCAmelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__))
with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""):
from run_translation import main # noqa
set_seed(42)
lowerCAmelCase__ : List[str] = 'sshleifer/student_marian_en_ro_6_1'
lowerCAmelCase__ : Optional[int] = 'sshleifer/tiny-mbart'
@require_torch
class snake_case ( __UpperCAmelCase ):
"""simple docstring"""
def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : int=True ,):
UpperCAmelCase__ = self.run_trainer(
eval_steps=1 ,max_len=12 ,model_name=lowerCamelCase__ ,num_train_epochs=1 ,distributed=lowerCamelCase__ ,extra_args_str=lowerCamelCase__ ,predict_with_generate=lowerCamelCase__ ,do_train=lowerCamelCase__ ,do_eval=lowerCamelCase__ ,do_predict=lowerCamelCase__ ,)
UpperCAmelCase__ = TrainerState.load_from_json(os.path.join(lowerCamelCase__ ,'trainer_state.json' ) ).log_history
if not do_eval:
return
UpperCAmelCase__ = [log for log in logs if 'eval_loss' in log.keys()]
UpperCAmelCase__ = eval_metrics[0]
if predict_with_generate:
assert "eval_bleu" in first_step_stats
UpperCAmelCase__ = eval_metrics[-1]
assert isinstance(last_step_stats['eval_bleu'] ,lowerCamelCase__ )
assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`"
@require_torch_non_multi_gpu
def __lowerCAmelCase ( self : Any ):
self.run_seqaseq_quick()
@require_torch_multi_gpu
def __lowerCAmelCase ( self : Tuple ):
self.run_seqaseq_quick(distributed=lowerCamelCase__ )
@require_torch_multi_gpu
def __lowerCAmelCase ( self : int ):
self.run_seqaseq_quick(distributed=lowerCamelCase__ )
@unittest.skip('Requires an update of the env running those tests' )
@require_torch_multi_gpu
@require_fairscale
def __lowerCAmelCase ( self : Union[str, Any] ):
self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp simple' )
@unittest.skip('Requires an update of the env running those tests' )
@require_torch_multi_gpu
@require_fairscale
def __lowerCAmelCase ( self : Optional[int] ):
self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp simple --fp16' )
@unittest.skip('Requires an update of the env running those tests' )
@require_torch_multi_gpu
@require_fairscale
def __lowerCAmelCase ( self : Tuple ):
self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp zero_dp_2' ,predict_with_generate=lowerCamelCase__ )
@unittest.skip('Requires an update of the env running those tests' )
@require_torch_multi_gpu
@require_fairscale
def __lowerCAmelCase ( self : Dict ):
self.run_seqaseq_quick(
distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp zero_dp_2 --fp16' ,predict_with_generate=lowerCamelCase__ )
@require_apex
@require_torch_gpu
def __lowerCAmelCase ( self : int ):
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same
# program and it breaks other tests that run from the same pytest worker, therefore until this is
# sorted out it must be run only in an external program, that is distributed=True in this
# test and only under one or more gpus - if we want cpu will need to make a special test
#
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via
# 2nd main() call it botches the future eval.
#
self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--fp16 --fp16_backend=apex' )
# test 2nd time - was getting eval_loss': nan'
# to reproduce the problem set distributed=False
self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--fp16 --fp16_backend=apex' )
@parameterized.expand(['base', 'low', 'high', 'mixed'] )
@require_torch_multi_gpu
def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Any ):
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout
UpperCAmelCase__ = {
# test with the default log_level - should be info and thus log info once
'base': {'extra_args_str': '', 'n_matches': 1},
# test with low log_level and log_level_replica - should be noisy on all processes
# now the info string should appear twice on 2 processes
'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2},
# test with high log_level and low log_level_replica
# now the info string should appear once only on the replica
'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1},
# test with high log_level and log_level_replica - should be quiet on all processes
'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0},
}
UpperCAmelCase__ = experiments[experiment_id]
UpperCAmelCase__ = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False}
UpperCAmelCase__ = 'Running training'
with CaptureStderr() as cl:
self.run_seqaseq_quick(**lowerCamelCase__ ,extra_args_str=data['extra_args_str'] )
UpperCAmelCase__ = len(re.findall(lowerCamelCase__ ,cl.err ) )
self.assertEqual(lowerCamelCase__ ,data['n_matches'] )
@slow
def __lowerCAmelCase ( self : Optional[int] ):
UpperCAmelCase__ = self.run_trainer(
eval_steps=2 ,max_len=128 ,model_name=lowerCamelCase__ ,learning_rate=3e-4 ,num_train_epochs=10 ,distributed=lowerCamelCase__ ,)
# Check metrics
UpperCAmelCase__ = TrainerState.load_from_json(os.path.join(lowerCamelCase__ ,'trainer_state.json' ) ).log_history
UpperCAmelCase__ = [log for log in logs if 'eval_loss' in log.keys()]
UpperCAmelCase__ = eval_metrics[0]
UpperCAmelCase__ = eval_metrics[-1]
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing"
assert isinstance(last_step_stats['eval_bleu'] ,lowerCamelCase__ )
# test if do_predict saves generations and metrics
UpperCAmelCase__ = os.listdir(lowerCamelCase__ )
UpperCAmelCase__ = {os.path.basename(lowerCamelCase__ ) for p in contents}
assert "generated_predictions.txt" in contents
assert "predict_results.json" in contents
@slow
@require_bitsandbytes
def __lowerCAmelCase ( self : Tuple ):
from transformers.training_args import OptimizerNames
def train_and_return_metrics(lowerCamelCase__ : str ) -> Tuple[int, float]:
UpperCAmelCase__ = '--skip_memory_metrics 0'
UpperCAmelCase__ = self.run_trainer(
max_len=128 ,model_name=lowerCamelCase__ ,learning_rate=3e-4 ,num_train_epochs=1 ,optim=lowerCamelCase__ ,distributed=lowerCamelCase__ ,extra_args_str=lowerCamelCase__ ,do_eval=lowerCamelCase__ ,do_predict=lowerCamelCase__ ,n_gpus_to_use=1 ,)
# Check metrics
UpperCAmelCase__ = TrainerState.load_from_json(Path(lowerCamelCase__ ,'trainer_state.json' ) ).log_history
UpperCAmelCase__ = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 )
UpperCAmelCase__ = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 )
UpperCAmelCase__ = logs[0]['train_loss']
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value )
UpperCAmelCase__ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb
UpperCAmelCase__ = gpu_peak_mem_orig + gpu_alloc_mem_orig
UpperCAmelCase__ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb
UpperCAmelCase__ = gpu_total_mem_orig - gpu_total_mem_bnb
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized
# in 2 bytes and the diff in optim memory usage is derived as so:
#
# - normal 25*8=~200MB (8 bytes per param)
# - bnb 25*2= ~50MB (2 bytes per param)
#
# Thus we should expect ~150MB total memory saved.
#
# Peak memory should be the same - the total should be different by about that same margin
#
# After leaving a small margin to accommodate for differences between gpus let's check
# that we have at least 120MB in savings
UpperCAmelCase__ = 120
# uncomment the following if this test starts failing - requires py38 for a new print feature
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB")
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB")
# print(f"{gpu_alloc_mem_diff=}MB")
# print(f"{gpu_peak_mem_diff=}MB")
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB")
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB")
self.assertGreater(
lowerCamelCase__ ,lowerCamelCase__ ,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got'
f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and'''
f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' ,)
self.assertGreater(
lowerCamelCase__ ,lowerCamelCase__ ,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got'
f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and'''
f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' ,)
self.assertEqual(
lowerCamelCase__ ,lowerCamelCase__ ,f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' )
def __lowerCAmelCase ( self : int ,lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : float = 3e-3 ,lowerCamelCase__ : str = "adafactor" ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : str = None ,lowerCamelCase__ : int = 0 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : int = None ,):
UpperCAmelCase__ = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro'
UpperCAmelCase__ = self.get_auto_remove_tmp_dir()
UpperCAmelCase__ = f'''
--model_name_or_path {model_name}
--train_file {data_dir}/train.json
--validation_file {data_dir}/val.json
--test_file {data_dir}/test.json
--output_dir {output_dir}
--overwrite_output_dir
--max_train_samples 8
--max_source_length {max_len}
--max_target_length {max_len}
--do_train
--num_train_epochs {str(lowerCamelCase__ )}
--per_device_train_batch_size 4
--learning_rate {learning_rate}
--warmup_steps 8
--logging_steps 0
--logging_strategy no
--save_steps {str(lowerCamelCase__ )}
--group_by_length
--label_smoothing_factor 0.1
--target_lang ro_RO
--source_lang en_XX
'''.split()
UpperCAmelCase__ = f'''
--do_eval
--per_device_eval_batch_size 4
--max_eval_samples 8
--val_max_target_length {max_len}
--evaluation_strategy steps
--eval_steps {str(lowerCamelCase__ )}
'''.split()
UpperCAmelCase__ = '\n --do_predict\n '.split()
UpperCAmelCase__ = []
if do_train:
args += args_train
if do_eval:
args += args_eval
if do_predict:
args += args_predict
if predict_with_generate:
args += "--predict_with_generate".split()
if do_train:
if optim == "adafactor":
args += "--adafactor".split()
else:
args += f'''--optim {optim}'''.split()
if extra_args_str is not None:
args += extra_args_str.split()
if distributed:
if n_gpus_to_use is None:
UpperCAmelCase__ = get_gpu_count()
UpperCAmelCase__ = get_torch_dist_unique_port()
UpperCAmelCase__ = f'''
-m torch.distributed.run
--nproc_per_node={n_gpus_to_use}
--master_port={master_port}
{self.examples_dir_str}/pytorch/translation/run_translation.py
'''.split()
UpperCAmelCase__ = [sys.executable] + distributed_args + args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(lowerCamelCase__ ,env=self.get_env() )
else:
UpperCAmelCase__ = ['run_translation.py'] + args
with patch.object(lowerCamelCase__ ,'argv' ,lowerCamelCase__ ):
main()
return output_dir
| 704 | """simple docstring"""
import socket
def a_ ( ):
UpperCAmelCase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM )
UpperCAmelCase__ = socket.gethostname()
UpperCAmelCase__ = 1_2_3_1_2
sock.connect((host, port) )
sock.send(b'Hello server!' )
with open('Received_file' , 'wb' ) as out_file:
print('File opened' )
print('Receiving data...' )
while True:
UpperCAmelCase__ = sock.recv(1_0_2_4 )
if not data:
break
out_file.write(lowerCamelCase )
print('Successfully received the file' )
sock.close()
print('Connection closed' )
if __name__ == "__main__":
main()
| 632 | 0 |
import random
from .binary_exp_mod import bin_exp_mod
def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=10_00 ) -> Optional[int]:
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
SCREAMING_SNAKE_CASE_ = n - 1
SCREAMING_SNAKE_CASE_ = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
SCREAMING_SNAKE_CASE_ = 0
while count < prec:
SCREAMING_SNAKE_CASE_ = random.randint(2 , n - 1 )
SCREAMING_SNAKE_CASE_ = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if b != 1:
SCREAMING_SNAKE_CASE_ = True
for _ in range(__UpperCAmelCase ):
if b == n - 1:
SCREAMING_SNAKE_CASE_ = False
break
SCREAMING_SNAKE_CASE_ = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
lowerCamelCase__ : str = abs(int(input('Enter bound : ').strip()))
print('Here\'s the list of primes:')
print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i))) | 31 |
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int:
assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer"
if number == 1:
return 2
elif number < 1:
SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0"
raise ValueError(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ = sylvester(number - 1 )
SCREAMING_SNAKE_CASE_ = num - 1
SCREAMING_SNAKE_CASE_ = num
return lower * upper + 1
if __name__ == "__main__":
print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''') | 31 | 1 |
'''simple docstring'''
from __future__ import annotations
def _UpperCAmelCase ( a : list , a : int ) -> Optional[Any]:
"""simple docstring"""
# Checks if the entire collection has been sorted
if len(a ) <= 1 or n <= 1:
return
insert_next(a , n - 1 )
rec_insertion_sort(a , n - 1 )
def _UpperCAmelCase ( a : list , a : int ) -> Dict:
"""simple docstring"""
# Checks order between adjacent elements
if index >= len(a ) or collection[index - 1] <= collection[index]:
return
# Swaps adjacent elements since they are not in ascending order
lowercase_ , lowercase_ : Tuple = (
collection[index],
collection[index - 1],
)
insert_next(a , index + 1 )
if __name__ == "__main__":
A: str = input("Enter integers separated by spaces: ")
A: list[int] = [int(num) for num in numbers.split()]
rec_insertion_sort(number_list, len(number_list))
print(number_list)
| 7 |
'''simple docstring'''
import unittest
from diffusers.pipelines.pipeline_utils import is_safetensors_compatible
class __magic_name__ ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : Tuple = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Dict:
lowercase_ : Tuple = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> str:
lowercase_ : int = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
# Removed: 'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Any:
lowercase_ : Dict = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
self.assertTrue(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Optional[Any]:
lowercase_ : List[Any] = [
'safety_checker/pytorch_model.bin',
'safety_checker/model.safetensors',
'vae/diffusion_pytorch_model.bin',
'vae/diffusion_pytorch_model.safetensors',
'text_encoder/pytorch_model.bin',
# Removed: 'text_encoder/model.safetensors',
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
self.assertFalse(is_safetensors_compatible(_lowercase ) )
def lowerCamelCase__ ( self ) -> Optional[int]:
lowercase_ : str = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Union[str, Any] = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : Optional[int] = [
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
# pass variant but use the non-variant filenames
lowercase_ : Optional[int] = [
'unet/diffusion_pytorch_model.bin',
'unet/diffusion_pytorch_model.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> Union[str, Any]:
lowercase_ : int = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
# Removed: 'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> int:
lowercase_ : str = [
'text_encoder/pytorch_model.fp16.bin',
'text_encoder/model.fp16.safetensors',
]
lowercase_ : str = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> List[str]:
# pass variant but use the non-variant filenames
lowercase_ : List[Any] = [
'text_encoder/pytorch_model.bin',
'text_encoder/model.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
def lowerCamelCase__ ( self ) -> List[str]:
lowercase_ : Union[str, Any] = [
'safety_checker/pytorch_model.fp16.bin',
'safety_checker/model.fp16.safetensors',
'vae/diffusion_pytorch_model.fp16.bin',
'vae/diffusion_pytorch_model.fp16.safetensors',
'text_encoder/pytorch_model.fp16.bin',
# 'text_encoder/model.fp16.safetensors',
'unet/diffusion_pytorch_model.fp16.bin',
'unet/diffusion_pytorch_model.fp16.safetensors',
]
lowercase_ : Dict = 'fp16'
self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
| 7 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
lowercase = [
'''python''',
'''tqdm''',
'''regex''',
'''requests''',
'''packaging''',
'''filelock''',
'''numpy''',
'''tokenizers''',
'''huggingface-hub''',
'''safetensors''',
'''accelerate''',
'''pyyaml''',
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def __lowerCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None ) -> Optional[int]:
require_version(deps[pkg] , UpperCAmelCase__ )
| 272 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name
def __lowerCAmelCase ( UpperCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> int:
warnings.warn(
"""The preprocess method is deprecated and will be removed in a future version. Please"""
""" use VaeImageProcessor.preprocess instead""" , UpperCAmelCase__ , )
if isinstance(UpperCAmelCase__ , torch.Tensor ):
return image
elif isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowerCamelCase_ = [image]
if isinstance(image[0] , PIL.Image.Image ):
lowerCamelCase_ , lowerCamelCase_ = image[0].size
lowerCamelCase_ , lowerCamelCase_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image]
lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 )
lowerCamelCase_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 2_5_5.0
lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 )
lowerCamelCase_ = 2.0 * image - 1.0
lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ )
elif isinstance(image[0] , torch.Tensor ):
lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 )
return image
def __lowerCAmelCase ( UpperCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Any:
if isinstance(UpperCAmelCase__ , torch.Tensor ):
return mask
elif isinstance(UpperCAmelCase__ , PIL.Image.Image ):
lowerCamelCase_ = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
lowerCamelCase_ , lowerCamelCase_ = mask[0].size
lowerCamelCase_ , lowerCamelCase_ = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32
lowerCamelCase_ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask]
lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 )
lowerCamelCase_ = mask.astype(np.floataa ) / 2_5_5.0
lowerCamelCase_ = 0
lowerCamelCase_ = 1
lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ )
elif isinstance(mask[0] , torch.Tensor ):
lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 )
return mask
class __A( UpperCAmelCase ):
SCREAMING_SNAKE_CASE = 42
SCREAMING_SNAKE_CASE = 42
def __init__( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ):
super().__init__()
self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase )
@torch.no_grad()
def __call__( self : List[str] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : int = 2_5_0 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 1_0 , __UpperCamelCase : int = 1_0 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ):
lowerCamelCase_ = image
lowerCamelCase_ = _preprocess_image(__UpperCamelCase )
lowerCamelCase_ = original_image.to(device=self.device , dtype=self.unet.dtype )
lowerCamelCase_ = _preprocess_mask(__UpperCamelCase )
lowerCamelCase_ = mask_image.to(device=self.device , dtype=self.unet.dtype )
lowerCamelCase_ = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
lowerCamelCase_ = original_image.shape
lowerCamelCase_ = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.device )
lowerCamelCase_ = eta
lowerCamelCase_ = self.scheduler.timesteps[0] + 1
lowerCamelCase_ = generator[0] if isinstance(__UpperCamelCase , __UpperCamelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
lowerCamelCase_ = self.unet(__UpperCamelCase , __UpperCamelCase ).sample
# compute previous image: x_t -> x_t-1
lowerCamelCase_ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
lowerCamelCase_ = self.scheduler.undo_step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
lowerCamelCase_ = t
lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 )
lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCamelCase_ = self.numpy_to_pil(__UpperCamelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=__UpperCamelCase )
| 272 | 1 |
'''simple docstring'''
import argparse
import OmegaConf
import torch
from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel
def A__ ( A : int , A : List[Any] , A : Optional[Any]):
'''simple docstring'''
UpperCamelCase : Optional[Any] = OmegaConf.load(A)
UpperCamelCase : str = torch.load(A , map_location="cpu")["model"]
UpperCamelCase : str = list(state_dict.keys())
# extract state_dict for VQVAE
UpperCamelCase : Optional[int] = {}
UpperCamelCase : Union[str, Any] = "first_stage_model."
for key in keys:
if key.startswith(A):
UpperCamelCase : Optional[Any] = state_dict[key]
# extract state_dict for UNetLDM
UpperCamelCase : int = {}
UpperCamelCase : Union[str, Any] = "model.diffusion_model."
for key in keys:
if key.startswith(A):
UpperCamelCase : Union[str, Any] = state_dict[key]
UpperCamelCase : Tuple = config.model.params.first_stage_config.params
UpperCamelCase : List[Any] = config.model.params.unet_config.params
UpperCamelCase : int = VQModel(**A).eval()
vqvae.load_state_dict(A)
UpperCamelCase : Tuple = UNetLDMModel(**A).eval()
unet.load_state_dict(A)
UpperCamelCase : Union[str, Any] = DDIMScheduler(
timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , )
UpperCamelCase : int = LDMPipeline(A , A , A)
pipeline.save_pretrained(A)
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', type=str, required=True)
parser.add_argument('--config_path', type=str, required=True)
parser.add_argument('--output_path', type=str, required=True)
lowerCAmelCase_ = parser.parse_args()
convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
| 721 |
'''simple docstring'''
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , lowerCamelCase ) -> Dict:
'''simple docstring'''
UpperCamelCase : Union[str, Any] = arr.split("," )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
'''simple docstring'''
UpperCamelCase : Optional[Any] = [int(self.array[0] )] * len(self.array )
UpperCamelCase : int = [int(self.array[0] )] * len(self.array )
for i in range(1 , len(self.array ) ):
UpperCamelCase : Tuple = max(
int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) )
UpperCamelCase : Optional[Any] = max(sum_value[i] , rear[i - 1] )
return rear[len(self.array ) - 1]
if __name__ == "__main__":
lowerCAmelCase_ = input('please input some numbers:')
lowerCAmelCase_ = SubArray(whole_array)
lowerCAmelCase_ = array.solve_sub_array()
print(('the results is:', re))
| 435 | 0 |
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
__snake_case :str =logging.get_logger(__name__)
def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
A = original_name.split('.' )[0]
A = key.split('.' )
A = int(key_list[key_list.index(lowerCAmelCase__ ) - 2] )
A = int(key_list[key_list.index(lowerCAmelCase__ ) - 1] )
A = orig_block_num - offset
A = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' )
return key
def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Tuple:
'''simple docstring'''
A = OrderedDict()
A , A = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
A = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
A = key[: key.find('proj' )]
A = key.replace(lowerCAmelCase__ , F'''patch_embeddings.{total_embed_found}.''' )
A = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
A = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'norm1' , 'before_norm' )
if "norm2" in key:
A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
A = key.replace('head' , 'classifier' )
A = value
return new_state_dict
def lowerCamelCase_ ( ) -> Any:
'''simple docstring'''
A = 'http://images.cocodataset.org/val2017/000000039769.jpg'
A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw )
return image
@torch.no_grad()
def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A = PoolFormerConfig()
# set attributes based on model_name
A = 'huggingface/label-files'
A = model_name[-3:]
A = 1000
A = 'imagenet-1k-id2label.json'
A = (1, 1000)
# set config attributes
A = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) )
A = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()}
A = idalabel
A = {v: k for k, v in idalabel.items()}
if size == "s12":
A = [2, 2, 6, 2]
A = [64, 128, 320, 512]
A = 4.0
A = 0.9
elif size == "s24":
A = [4, 4, 12, 4]
A = [64, 128, 320, 512]
A = 4.0
A = 0.9
elif size == "s36":
A = [6, 6, 18, 6]
A = [64, 128, 320, 512]
A = 4.0
A = 1E-6
A = 0.9
elif size == "m36":
A = [6, 6, 18, 6]
A = [96, 192, 384, 768]
A = 4.0
A = 1E-6
A = 0.95
elif size == "m48":
A = [8, 8, 24, 8]
A = [96, 192, 384, 768]
A = 4.0
A = 1E-6
A = 0.95
else:
raise ValueError(F'''Size {size} not supported''' )
# load image processor
A = PoolFormerImageProcessor(crop_pct=lowerCAmelCase__ )
# Prepare image
A = prepare_img()
A = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values
logger.info(F'''Converting model {model_name}...''' )
# load original state dict
A = torch.load(lowerCAmelCase__ , map_location=torch.device('cpu' ) )
# rename keys
A = rename_keys(lowerCAmelCase__ )
# create HuggingFace model and load state dict
A = PoolFormerForImageClassification(lowerCAmelCase__ )
model.load_state_dict(lowerCAmelCase__ )
model.eval()
# Define image processor
A = PoolFormerImageProcessor(crop_pct=lowerCAmelCase__ )
A = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
A = model(lowerCAmelCase__ )
A = outputs.logits
# define expected logit slices for different models
if size == "s12":
A = torch.tensor([-0.3045, -0.6758, -0.4869] )
elif size == "s24":
A = torch.tensor([0.4402, -0.1374, -0.8045] )
elif size == "s36":
A = torch.tensor([-0.6080, -0.5133, -0.5898] )
elif size == "m36":
A = torch.tensor([0.3952, 0.2263, -1.2668] )
elif size == "m48":
A = torch.tensor([0.1167, -0.0656, -0.3423] )
else:
raise ValueError(F'''Size {size} not supported''' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-2 )
# finally, save model and image processor
logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ )
model.save_pretrained(lowerCAmelCase__ )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
__snake_case :Any =argparse.ArgumentParser()
parser.add_argument(
'--model_name',
default='poolformer_s12',
type=str,
help='Name of the model you\'d like to convert.',
)
parser.add_argument(
'--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
__snake_case :Any =parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path) | 106 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCAmelCase = logging.get_logger(__name__)
def snake_case_ (__A : Dict ) -> List[Any]:
__lowerCAmelCase : Any = """huggingface/label-files"""
__lowerCAmelCase : List[Any] = """imagenet-1k-id2label.json"""
__lowerCAmelCase : Dict = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) )
__lowerCAmelCase : List[str] = {int(__A ): v for k, v in idalabel.items()}
__lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()}
__lowerCAmelCase : Tuple = """std_conv""" if """bit""" in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
__lowerCAmelCase : List[Any] = BitConfig(
conv_layer=__A , num_labels=1_0_0_0 , idalabel=__A , labelaid=__A , )
return config
def snake_case_ (__A : Dict ) -> str:
if "stem.conv" in name:
__lowerCAmelCase : List[str] = name.replace("""stem.conv""" , """bit.embedder.convolution""" )
if "blocks" in name:
__lowerCAmelCase : str = name.replace("""blocks""" , """layers""" )
if "head.fc" in name:
__lowerCAmelCase : str = name.replace("""head.fc""" , """classifier.1""" )
if name.startswith("""norm""" ):
__lowerCAmelCase : List[Any] = """bit.""" + name
if "bit" not in name and "classifier" not in name:
__lowerCAmelCase : Optional[int] = """bit.encoder.""" + name
return name
def snake_case_ () -> Optional[int]:
__lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__lowerCAmelCase : str = Image.open(requests.get(__A , stream=__A ).raw )
return im
@torch.no_grad()
def snake_case_ (__A : Optional[int] , __A : List[str] , __A : Any=False ) -> str:
__lowerCAmelCase : int = get_config(__A )
# load original model from timm
__lowerCAmelCase : Any = create_model(__A , pretrained=__A )
timm_model.eval()
# load state_dict of original model
__lowerCAmelCase : List[Any] = timm_model.state_dict()
for key in state_dict.copy().keys():
__lowerCAmelCase : Dict = state_dict.pop(__A )
__lowerCAmelCase : str = val.squeeze() if """head""" in key else val
# load HuggingFace model
__lowerCAmelCase : Dict = BitForImageClassification(__A )
model.eval()
model.load_state_dict(__A )
# create image processor
__lowerCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=__A ) )
__lowerCAmelCase : Optional[Any] = transform.transforms
__lowerCAmelCase : List[Any] = {
"""bilinear""": PILImageResampling.BILINEAR,
"""bicubic""": PILImageResampling.BICUBIC,
"""nearest""": PILImageResampling.NEAREST,
}
__lowerCAmelCase : int = BitImageProcessor(
do_resize=__A , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__A , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , )
__lowerCAmelCase : str = prepare_img()
__lowerCAmelCase : str = transform(__A ).unsqueeze(0 )
__lowerCAmelCase : Optional[int] = processor(__A , return_tensors="""pt""" ).pixel_values
# verify pixel values
assert torch.allclose(__A , __A )
# verify logits
with torch.no_grad():
__lowerCAmelCase : Dict = model(__A )
__lowerCAmelCase : List[Any] = outputs.logits
print("""Logits:""" , logits[0, :3] )
print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] )
__lowerCAmelCase : List[Any] = timm_model(__A )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(__A , outputs.logits , atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(__A ).mkdir(exist_ok=__A )
print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(__A )
processor.save_pretrained(__A )
if push_to_hub:
print(f'''Pushing model {model_name} and processor to the hub''' )
model.push_to_hub(f'''ybelkada/{model_name}''' )
processor.push_to_hub(f'''ybelkada/{model_name}''' )
if __name__ == "__main__":
__UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default="""resnetv2_50x1_bitm""",
type=str,
help="""Name of the BiT timm model you'd like to convert.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model to the hub.""",
)
__UpperCAmelCase = parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 651 | 0 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCAmelCase: str = logging.get_logger(__name__)
lowerCAmelCase: str = {
'vocab_file': 'vocab.json',
'merges_file': 'merges.txt',
'tokenizer_config_file': 'tokenizer_config.json',
}
lowerCAmelCase: Optional[int] = {
'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'},
'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'},
'tokenizer_config_file': {
'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json'
},
}
lowerCAmelCase: List[str] = {'facebook/blenderbot-3B': 1_2_8}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def lowerCamelCase__ ( ):
a : str = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
a : List[Any] = bs[:]
a : Optional[int] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
a : Tuple = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowerCamelCase__ ( _A ):
a : Union[str, Any] = set()
a : Dict = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
a : Optional[Any] = char
return pairs
class a__( lowerCamelCase__ ):
lowercase__ = VOCAB_FILES_NAMES
lowercase__ = PRETRAINED_VOCAB_FILES_MAP
lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ = ["""input_ids""", """attention_mask"""]
def __init__( self : int , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any]="replace" , __snake_case : int="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : Optional[int]="<s>" , __snake_case : Tuple="<unk>" , __snake_case : int="<pad>" , __snake_case : Any="<mask>" , __snake_case : List[str]=False , **__snake_case : List[str] , ):
a : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token
a : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token
a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token
a : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token
a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token
a : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
a : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token
super().__init__(
errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , )
with open(__snake_case , encoding='utf-8' ) as vocab_handle:
a : Any = json.load(__snake_case )
a : Tuple = {v: k for k, v in self.encoder.items()}
a : List[str] = errors # how to handle errors in decoding
a : int = bytes_to_unicode()
a : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(__snake_case , encoding='utf-8' ) as merges_handle:
a : Union[str, Any] = merges_handle.read().split('\n' )[1:-1]
a : Dict = [tuple(merge.split() ) for merge in bpe_merges]
a : int = dict(zip(__snake_case , range(len(__snake_case ) ) ) )
a : Optional[int] = {}
a : List[str] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
a : Optional[int] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def lowercase_ ( self : Optional[Any] ):
return len(self.encoder )
def lowercase_ ( self : Tuple ):
return dict(self.encoder , **self.added_tokens_encoder )
def lowercase_ ( self : str , __snake_case : Union[str, Any] ):
if token in self.cache:
return self.cache[token]
a : str = tuple(__snake_case )
a : Any = get_pairs(__snake_case )
if not pairs:
return token
while True:
a : Dict = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
a , a : List[Any] = bigram
a : Union[str, Any] = []
a : int = 0
while i < len(__snake_case ):
try:
a : str = word.index(__snake_case , __snake_case )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
a : Dict = j
if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
a : List[Any] = tuple(__snake_case )
a : Tuple = new_word
if len(__snake_case ) == 1:
break
else:
a : Optional[int] = get_pairs(__snake_case )
a : List[str] = ' '.join(__snake_case )
a : Dict = word
return word
def lowercase_ ( self : Any , __snake_case : Dict ):
a : str = []
for token in re.findall(self.pat , __snake_case ):
a : List[Any] = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(' ' ) )
return bpe_tokens
def lowercase_ ( self : str , __snake_case : Any ):
return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) )
def lowercase_ ( self : Tuple , __snake_case : Optional[Any] ):
return self.decoder.get(__snake_case )
def lowercase_ ( self : str , __snake_case : Optional[Any] ):
a : Dict = ''.join(__snake_case )
a : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def lowercase_ ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ):
if not os.path.isdir(__snake_case ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
a : List[str] = os.path.join(
__snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
a : Dict = os.path.join(
__snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(__snake_case , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '\n' )
a : List[str] = 0
with open(__snake_case , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ):
if index != token_index:
logger.warning(
F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
a : Optional[Any] = token_index
writer.write(' '.join(__snake_case ) + '\n' )
index += 1
return vocab_file, merge_file
def lowercase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case )
if token_ids_a is None:
return [1] + ([0] * len(__snake_case )) + [1]
return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1]
def lowercase_ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ):
a : str = [self.sep_token_id]
a : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowercase_ ( self : List[str] , __snake_case : Optional[int] , __snake_case : List[str]=False , **__snake_case : int ):
a : List[str] = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()):
a : str = ' ' + text
return (text, kwargs)
def lowercase_ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ):
return token_ids_a + [self.eos_token_id]
def lowercase_ ( self : Tuple , __snake_case : "Conversation" ):
a : Tuple = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(__snake_case )
a : Dict = ' '.join(__snake_case )
a : Any = self.encode(__snake_case )
if len(__snake_case ) > self.model_max_length:
a : int = input_ids[-self.model_max_length :]
logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids | 195 |
'''simple docstring'''
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
lowerCAmelCase: Tuple = 'src/transformers'
lowerCAmelCase: Union[str, Any] = 'docs/source/en'
lowerCAmelCase: Dict = '.'
def lowerCamelCase__ ( _A , _A , _A ):
with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f:
a : Optional[Any] = f.readlines()
# Find the start prompt.
a : Dict = 0
while not lines[start_index].startswith(_A ):
start_index += 1
start_index += 1
a : Optional[Any] = start_index
while not lines[end_index].startswith(_A ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
lowerCAmelCase: List[str] = 'Model|Encoder|Decoder|ForConditionalGeneration'
# Regexes that match TF/Flax/PT model names.
lowerCAmelCase: Dict = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
lowerCAmelCase: Any = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
lowerCAmelCase: Dict = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)')
# This is to make sure the transformers module imported is the one in the repo.
lowerCAmelCase: List[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def lowerCamelCase__ ( _A ):
a : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _A )
return [m.group(0 ) for m in matches]
def lowerCamelCase__ ( _A , _A ):
a : List[Any] = 2 if text == '✅' or text == '❌' else len(_A )
a : Optional[int] = (width - text_length) // 2
a : List[Any] = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def lowerCamelCase__ ( ):
a : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
a : Union[str, Any] = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
a : Tuple = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
a : int = collections.defaultdict(_A )
a : List[Any] = collections.defaultdict(_A )
a : List[Any] = collections.defaultdict(_A )
a : Union[str, Any] = collections.defaultdict(_A )
a : int = collections.defaultdict(_A )
# Let's lookup through all transformers object (once).
for attr_name in dir(_A ):
a : Optional[Any] = None
if attr_name.endswith('Tokenizer' ):
a : int = slow_tokenizers
a : Any = attr_name[:-9]
elif attr_name.endswith('TokenizerFast' ):
a : str = fast_tokenizers
a : List[Any] = attr_name[:-13]
elif _re_tf_models.match(_A ) is not None:
a : Optional[Any] = tf_models
a : Dict = _re_tf_models.match(_A ).groups()[0]
elif _re_flax_models.match(_A ) is not None:
a : int = flax_models
a : Optional[Any] = _re_flax_models.match(_A ).groups()[0]
elif _re_pt_models.match(_A ) is not None:
a : Tuple = pt_models
a : Optional[int] = _re_pt_models.match(_A ).groups()[0]
if lookup_dict is not None:
while len(_A ) > 0:
if attr_name in model_name_to_prefix.values():
a : Tuple = True
break
# Try again after removing the last word in the name
a : Tuple = ''.join(camel_case_split(_A )[:-1] )
# Let's build that table!
a : List[Any] = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
a : Tuple = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support']
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
a : Tuple = [len(_A ) + 2 for c in columns]
a : str = max([len(_A ) for name in model_names] ) + 2
# Build the table per se
a : List[Any] = '|' + '|'.join([_center_text(_A , _A ) for c, w in zip(_A , _A )] ) + '|\n'
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n"
a : str = {True: '✅', False: '❌'}
for name in model_names:
a : Any = model_name_to_prefix[name]
a : Optional[Any] = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_A , _A ) for l, w in zip(_A , _A )] ) + "|\n"
return table
def lowerCamelCase__ ( _A=False ):
a , a , a , a : Tuple = _find_text_in_file(
filename=os.path.join(_A , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , )
a : Optional[int] = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_A , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' )
if __name__ == "__main__":
lowerCAmelCase: Dict = argparse.ArgumentParser()
parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.')
lowerCAmelCase: Any = parser.parse_args()
check_model_table(args.fix_and_overwrite) | 195 | 1 |
'''simple docstring'''
from collections.abc import Callable
def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ):
_UpperCamelCase : List[str] = a
_UpperCamelCase : Tuple = b
if function(UpperCAmelCase_ ) == 0: # one of the a or b is a root for the function
return a
elif function(UpperCAmelCase_ ) == 0:
return b
elif (
function(UpperCAmelCase_ ) * function(UpperCAmelCase_ ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_UpperCamelCase : Union[str, Any] = start + (end - start) / 2.0
while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7
if function(UpperCAmelCase_ ) == 0:
return mid
elif function(UpperCAmelCase_ ) * function(UpperCAmelCase_ ) < 0:
_UpperCamelCase : int = mid
else:
_UpperCamelCase : Dict = mid
_UpperCamelCase : Optional[Any] = start + (end - start) / 2.0
return mid
def A__ ( UpperCAmelCase_ ):
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 195 |
'''simple docstring'''
def UpperCamelCase_( snake_case : Dict , snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] ):
'''simple docstring'''
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
snake_case_ = mf_knapsack(i - 1 , snake_case , snake_case , snake_case )
else:
snake_case_ = max(
mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) , mf_knapsack(i - 1 , snake_case , snake_case , j - wt[i - 1] ) + val[i - 1] , )
snake_case_ = val
return f[i][j]
def UpperCamelCase_( snake_case : Dict , snake_case : Tuple , snake_case : Dict , snake_case : int ):
'''simple docstring'''
snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1 , n + 1 ):
for w_ in range(1 , w + 1 ):
if wt[i - 1] <= w_:
snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] )
else:
snake_case_ = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase_( snake_case : int , snake_case : list , snake_case : list ):
'''simple docstring'''
if not (isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) )):
raise ValueError(
"Both the weights and values vectors must be either lists or tuples" )
snake_case_ = len(snake_case )
if num_items != len(snake_case ):
snake_case_ = (
"The number of weights must be the same as the number of values.\n"
f'But got {num_items} weights and {len(snake_case )} values'
)
raise ValueError(snake_case )
for i in range(snake_case ):
if not isinstance(wt[i] , snake_case ):
snake_case_ = (
"All weights must be integers but got weight of "
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(snake_case )
snake_case_ , snake_case_ = knapsack(snake_case , snake_case , snake_case , snake_case )
snake_case_ = set()
_construct_solution(snake_case , snake_case , snake_case , snake_case , snake_case )
return optimal_val, example_optional_set
def UpperCamelCase_( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : set ):
'''simple docstring'''
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(snake_case , snake_case , i - 1 , snake_case , snake_case )
else:
optimal_set.add(snake_case )
_construct_solution(snake_case , snake_case , i - 1 , j - wt[i - 1] , snake_case )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : Tuple = [3, 2, 4, 4]
_SCREAMING_SNAKE_CASE : int = [4, 3, 2, 3]
_SCREAMING_SNAKE_CASE : List[Any] = 4
_SCREAMING_SNAKE_CASE : List[Any] = 6
_SCREAMING_SNAKE_CASE : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 400 | 0 |
from collections.abc import Iterable
from typing import Generic, TypeVar
_UpperCAmelCase : int = TypeVar("_T")
class __lowerCAmelCase ( Generic[_T]):
def __init__( self: Tuple , _lowerCAmelCase: Iterable[_T] | None = None ):
lowercase :list[_T] = list(iterable or [] )
lowercase :list[_T] = []
def __len__( self: Dict ):
return len(self._stacka ) + len(self._stacka )
def __repr__( self: Optional[int] ):
return F"Queue({tuple(self._stacka[::-1] + self._stacka )})"
def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: _T ):
self._stacka.append(_lowerCAmelCase )
def SCREAMING_SNAKE_CASE ( self: List[str] ):
lowercase :Tuple = self._stacka.pop
lowercase :Optional[int] = self._stacka.append
if not self._stacka:
while self._stacka:
stacka_append(stacka_pop() )
if not self._stacka:
raise IndexError("Queue is empty" )
return self._stacka.pop()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 704 |
def UpperCAmelCase__ ( lowerCamelCase ):
return 10 - x * x
def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ):
# Bolzano theory in order to find if there is a root between a and b
if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0:
raise ValueError("Wrong space!" )
lowercase :Optional[int] = a
while (b - a) >= 0.01:
# Find middle point
lowercase :Optional[Any] = (a + b) / 2
# Check if middle point is root
if equation(lowerCamelCase ) == 0.0:
break
# Decide the side to repeat the steps
if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0:
lowercase :Any = c
else:
lowercase :List[Any] = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 453 | 0 |
"""simple docstring"""
from cva import destroyAllWindows, imread, imshow, waitKey
def lowercase ( lowerCAmelCase__ ):
# getting number of pixels in the image
lowerCamelCase_ , lowerCamelCase_ = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(lowerCAmelCase__ ):
for j in range(lowerCAmelCase__ ):
lowerCamelCase_ = [255, 255, 255] - img[i][j]
return img
if __name__ == "__main__":
# read original image
A_ = imread("""image_data/lena.jpg""", 1)
# convert to its negative
A_ = convert_to_negative(img)
# show result image
imshow("""negative of original image""", img)
waitKey(0)
destroyAllWindows()
| 29 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
a :Union[str, Any] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :str = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a :str = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
a :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 680 | 0 |
'''simple docstring'''
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
UpperCamelCase_ = logging.getLogger(__name__)
class __UpperCAmelCase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__( self , _UpperCAmelCase=-1 ):
# in NER datasets, the last column is usually reserved for NER label
UpperCAmelCase__ : str = label_idx
def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ : Union[str, Any] = mode.value
UpperCAmelCase__ : List[Any] = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" )
UpperCAmelCase__ : Optional[Any] = 1
UpperCAmelCase__ : Union[str, Any] = []
with open(_UpperCAmelCase , encoding='''utf-8''' ) as f:
UpperCAmelCase__ : str = []
UpperCAmelCase__ : List[Any] = []
for line in f:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
UpperCAmelCase__ : List[Any] = []
UpperCAmelCase__ : Optional[Any] = []
else:
UpperCAmelCase__ : List[Any] = line.split(''' ''' )
words.append(splits[0] )
if len(_UpperCAmelCase ) > 1:
labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) )
else:
# Examples could have no label for mode = "test"
labels.append('''O''' )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
return examples
def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ : Any = 0
for line in test_input_reader:
if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n":
writer.write(_UpperCAmelCase )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
UpperCAmelCase__ : List[Any] = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n'''
writer.write(_UpperCAmelCase )
else:
logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] )
def lowerCamelCase ( self , _UpperCAmelCase ):
if path:
with open(_UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase__ : Union[str, Any] = f.read().splitlines()
if "O" not in labels:
UpperCAmelCase__ : Tuple = ['''O'''] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __UpperCAmelCase ( UpperCamelCase__ ):
'''simple docstring'''
def __init__( self ):
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def lowerCamelCase ( self , _UpperCAmelCase ):
if path:
with open(_UpperCAmelCase , '''r''' ) as f:
UpperCAmelCase__ : Union[str, Any] = f.read().splitlines()
if "O" not in labels:
UpperCAmelCase__ : Union[str, Any] = ['''O'''] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __UpperCAmelCase ( UpperCamelCase__ ):
'''simple docstring'''
def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ):
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ : int = mode.value
UpperCAmelCase__ : str = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" )
UpperCAmelCase__ : List[Any] = 1
UpperCAmelCase__ : Union[str, Any] = []
with open(_UpperCAmelCase , encoding='''utf-8''' ) as f:
for sentence in parse_incr(_UpperCAmelCase ):
UpperCAmelCase__ : Any = []
UpperCAmelCase__ : Optional[int] = []
for token in sentence:
words.append(token['''form'''] )
labels.append(token['''upos'''] )
assert len(_UpperCAmelCase ) == len(_UpperCAmelCase )
if words:
examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) )
guid_index += 1
return examples
def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ : Optional[Any] = 0
for sentence in parse_incr(_UpperCAmelCase ):
UpperCAmelCase__ : str = preds_list[example_id]
UpperCAmelCase__ : Tuple = ''''''
for token in sentence:
out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """
out += "\n"
writer.write(_UpperCAmelCase )
example_id += 1
def lowerCamelCase ( self , _UpperCAmelCase ):
if path:
with open(_UpperCAmelCase , '''r''' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
] | 599 |
'''simple docstring'''
def lowerCAmelCase__ ( a_ : int = 1_0_0_0_0_0_0 ) -> int:
UpperCAmelCase__ : Optional[int] = set(range(3 , a_ , 2 ) )
primes.add(2 )
for p in range(3 , a_ , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , a_ , a_ ) ) )
UpperCAmelCase__ : Tuple = [float(a_ ) for n in range(limit + 1 )]
for p in primes:
for n in range(a_ , limit + 1 , a_ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f'{solution() = }') | 599 | 1 |
import itertools
import string
from collections.abc import Generator, Iterable
def a_ ( __magic_name__ , __magic_name__ ) -> Generator[tuple[str, ...], None, None]:
"""simple docstring"""
snake_case : Optional[int] = iter(__magic_name__ )
while True:
snake_case : Dict = tuple(itertools.islice(__magic_name__ , __magic_name__ ) )
if not chunk:
return
yield chunk
def a_ ( __magic_name__ ) -> str:
"""simple docstring"""
snake_case : Tuple = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] )
snake_case : List[str] = ''''''
if len(__magic_name__ ) < 2:
return dirty
for i in range(len(__magic_name__ ) - 1 ):
clean += dirty[i]
if dirty[i] == dirty[i + 1]:
clean += "X"
clean += dirty[-1]
if len(__magic_name__ ) & 1:
clean += "X"
return clean
def a_ ( __magic_name__ ) -> list[str]:
"""simple docstring"""
snake_case : List[str] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ'''
# we're using a list instead of a '2d' array because it makes the math
# for setting up the table and doing the actual encoding/decoding simpler
snake_case : Optional[int] = []
# copy key chars into the table if they are in `alphabet` ignoring duplicates
for char in key.upper():
if char not in table and char in alphabet:
table.append(__magic_name__ )
# fill the rest of the table in with the remaining alphabet chars
for char in alphabet:
if char not in table:
table.append(__magic_name__ )
return table
def a_ ( __magic_name__ , __magic_name__ ) -> str:
"""simple docstring"""
snake_case : int = generate_table(__magic_name__ )
snake_case : Optional[int] = prepare_input(__magic_name__ )
snake_case : Union[str, Any] = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__magic_name__ , 2 ):
snake_case , snake_case : Tuple = divmod(table.index(__magic_name__ ) , 5 )
snake_case , snake_case : Union[str, Any] = divmod(table.index(__magic_name__ ) , 5 )
if rowa == rowa:
ciphertext += table[rowa * 5 + (cola + 1) % 5]
ciphertext += table[rowa * 5 + (cola + 1) % 5]
elif cola == cola:
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
ciphertext += table[((rowa + 1) % 5) * 5 + cola]
else: # rectangle
ciphertext += table[rowa * 5 + cola]
ciphertext += table[rowa * 5 + cola]
return ciphertext
def a_ ( __magic_name__ , __magic_name__ ) -> str:
"""simple docstring"""
snake_case : Optional[int] = generate_table(__magic_name__ )
snake_case : List[Any] = ''''''
# https://en.wikipedia.org/wiki/Playfair_cipher#Description
for chara, chara in chunker(__magic_name__ , 2 ):
snake_case , snake_case : Optional[int] = divmod(table.index(__magic_name__ ) , 5 )
snake_case , snake_case : List[str] = divmod(table.index(__magic_name__ ) , 5 )
if rowa == rowa:
plaintext += table[rowa * 5 + (cola - 1) % 5]
plaintext += table[rowa * 5 + (cola - 1) % 5]
elif cola == cola:
plaintext += table[((rowa - 1) % 5) * 5 + cola]
plaintext += table[((rowa - 1) % 5) * 5 + cola]
else: # rectangle
plaintext += table[rowa * 5 + cola]
plaintext += table[rowa * 5 + cola]
return plaintext
| 598 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=a )
class a_ ( a ):
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
A__ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} )
A__ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} )
A__ : ClassVar[Features] = Features(
{
'answers': Sequence(
{
'text': Value('string' ),
'answer_start': Value('int32' ),
} )
} )
A__ : str = "question"
A__ : str = "context"
A__ : str = "answers"
@property
def lowerCAmelCase( self : Optional[int] ):
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 598 | 1 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class A_ :
'''simple docstring'''
def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=False , snake_case=True , snake_case="None" , snake_case=3 , snake_case=4 , snake_case=None , ):
lowercase = parent
lowercase = batch_size
lowercase = seq_length
lowercase = is_training
lowercase = use_input_mask
lowercase = use_token_type_ids
lowercase = use_labels
lowercase = vocab_size
lowercase = hidden_size
lowercase = num_hidden_layers
lowercase = num_attention_heads
lowercase = intermediate_size
lowercase = hidden_act
lowercase = hidden_dropout_prob
lowercase = attention_probs_dropout_prob
lowercase = max_position_embeddings
lowercase = type_vocab_size
lowercase = type_sequence_label_size
lowercase = initializer_range
lowercase = num_labels
lowercase = num_choices
lowercase = relative_attention
lowercase = position_biased_input
lowercase = pos_att_type
lowercase = scope
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase = None
if self.use_input_mask:
lowercase = random_attention_mask([self.batch_size, self.seq_length] )
lowercase = None
if self.use_token_type_ids:
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase = None
lowercase = None
lowercase = None
if self.use_labels:
lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=snake_case , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
lowercase = TFDebertaVaModel(config=snake_case )
lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
lowercase = [input_ids, input_mask]
lowercase = model(snake_case )
lowercase = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
lowercase = TFDebertaVaForMaskedLM(config=snake_case )
lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowercase = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
lowercase = self.num_labels
lowercase = TFDebertaVaForSequenceClassification(config=snake_case )
lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowercase = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
lowercase = self.num_labels
lowercase = TFDebertaVaForTokenClassification(config=snake_case )
lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowercase = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ):
lowercase = TFDebertaVaForQuestionAnswering(config=snake_case )
lowercase = {
'input_ids': input_ids,
'attention_mask': input_mask,
'token_type_ids': token_type_ids,
}
lowercase = model(snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) = config_and_inputs
lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ):
'''simple docstring'''
_UpperCamelCase : int = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
_UpperCamelCase : int = (
{
"""feature-extraction""": TFDebertaVaModel,
"""fill-mask""": TFDebertaVaForMaskedLM,
"""question-answering""": TFDebertaVaForQuestionAnswering,
"""text-classification""": TFDebertaVaForSequenceClassification,
"""token-classification""": TFDebertaVaForTokenClassification,
"""zero-shot""": TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : Dict = False
_UpperCamelCase : List[Any] = False
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = TFDebertaVaModelTester(self )
lowercase = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def SCREAMING_SNAKE_CASE__ ( self ):
self.config_tester.run_common_tests()
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*snake_case )
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case )
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' )
self.assertIsNotNone(snake_case )
@require_tf
class A_ ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip(reason='Model not available yet' )
def SCREAMING_SNAKE_CASE__ ( self ):
pass
@slow
def SCREAMING_SNAKE_CASE__ ( self ):
lowercase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' )
lowercase = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] )
lowercase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowercase = model(snake_case , attention_mask=snake_case )[0]
lowercase = tf.constant(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , snake_case , atol=1E-4 )
| 565 |
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 6008_5147_5143 ):
try:
lowercase = int(__SCREAMING_SNAKE_CASE )
except (TypeError, ValueError):
raise TypeError('Parameter n must be int or castable to int.' )
if n <= 0:
raise ValueError('Parameter n must be greater than or equal to one.' )
lowercase = 1
lowercase = 2
while i * i <= n:
while n % i == 0:
lowercase = i
n //= i
i += 1
if n > 1:
lowercase = n
return int(__SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 565 | 1 |
"""simple docstring"""
import json
import re
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from ...utils import is_tf_available, is_torch_available, logging
if TYPE_CHECKING:
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_codegen import CodeGenTokenizer
A__ : Optional[int] = logging.get_logger(__name__)
A__ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'}
A__ : Tuple = {
'vocab_file': {
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json',
},
'merges_file': {
'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt',
},
'tokenizer_file': {
'Salesforce/codegen-350M-mono': (
'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json'
),
},
}
A__ : List[Any] = {
'Salesforce/codegen-350M-mono': 2_0_4_8,
}
class __magic_name__ ( SCREAMING_SNAKE_CASE__ ):
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['''input_ids''', '''attention_mask''']
UpperCamelCase_ = CodeGenTokenizer
def __init__( self , A_=None , A_=None , A_=None , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(
A_ , A_ , tokenizer_file=A_ , unk_token=A_ , bos_token=A_ , eos_token=A_ , add_prefix_space=A_ , **A_ , )
if kwargs.pop('''add_bos_token''' , A_ ):
_lowercase: List[Any] = kwargs.pop('''name_or_path''' , '''''' )
raise ValueError(
'''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.'''
'''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n'''
f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n'''
f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n'''
'''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.'''
''' so that the fast tokenizer works correctly.''' )
_lowercase: List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space:
_lowercase: Dict = getattr(A_ , pre_tok_state.pop('''type''' ) )
_lowercase: Optional[int] = add_prefix_space
_lowercase: Dict = pre_tok_class(**A_ )
_lowercase: Tuple = add_prefix_space
def lowercase_ ( self , *A_ , **A_ ) -> BatchEncoding:
"""simple docstring"""
_lowercase: str = kwargs.get('''is_split_into_words''' , A_ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*A_ , **A_ )
def lowercase_ ( self , *A_ , **A_ ) -> BatchEncoding:
"""simple docstring"""
_lowercase: Optional[int] = kwargs.get('''is_split_into_words''' , A_ )
assert self.add_prefix_space or not is_split_into_words, (
f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"to use it with pretokenized inputs."
)
return super()._encode_plus(*A_ , **A_ )
def lowercase_ ( self , A_ , A_ = None ) -> Tuple[str]:
"""simple docstring"""
_lowercase: Any = self._tokenizer.model.save(A_ , name=A_ )
return tuple(A_ )
def lowercase_ ( self , A_ , A_ = False , A_ = None , A_ = None , **A_ , ) -> str:
"""simple docstring"""
_lowercase: Any = super().decode(
token_ids=A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , **A_ , )
if truncate_before_pattern is not None and len(A_ ) > 0:
_lowercase: List[str] = self.truncate(A_ , A_ )
return decoded_text
def lowercase_ ( self , A_ , A_ ) -> List[Any]:
"""simple docstring"""
def find_re(A_ , A_ , A_ ):
_lowercase: Any = pattern.search(A_ , A_ )
return m.start() if m else -1
_lowercase: Union[str, Any] = [re.compile(A_ , re.MULTILINE ) for pattern in truncate_before_pattern]
_lowercase: Union[str, Any] = list(re.finditer('''^print''' , A_ , re.MULTILINE ) )
if len(A_ ) > 1:
_lowercase: Dict = completion[: prints[1].start()]
_lowercase: Optional[Any] = list(re.finditer('''^def''' , A_ , re.MULTILINE ) )
if len(A_ ) > 1:
_lowercase: str = completion[: defs[1].start()]
_lowercase: Optional[int] = 0
_lowercase: str = [
pos for pos in [find_re(A_ , A_ , A_ ) for terminal in terminals] if pos != -1
]
if len(A_ ) > 0:
return completion[: min(A_ )]
else:
return completion
| 353 |
"""simple docstring"""
from collections.abc import Callable
def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
_lowercase: float = a
_lowercase: float = b
if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function
return a
elif function(_UpperCamelCase ) == 0:
return b
elif (
function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('''could not find root in given interval.''' )
else:
_lowercase: float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_UpperCamelCase ) == 0:
return mid
elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0:
_lowercase: Union[str, Any] = mid
else:
_lowercase: Any = mid
_lowercase: List[Any] = start + (end - start) / 2.0
return mid
def _lowerCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_0_0_0))
import doctest
doctest.testmod()
| 353 | 1 |
"""simple docstring"""
from maths.prime_check import is_prime
def a__ ( lowerCAmelCase : int ):
'''simple docstring'''
if not isinstance(lowerCAmelCase , lowerCAmelCase ):
UpperCAmelCase__ : Union[str, Any] = F"Input value of [number={number}] must be an integer"
raise TypeError(lowerCAmelCase )
if is_prime(lowerCAmelCase ) and is_prime(number + 2 ):
return number + 2
else:
return -1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 710 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import _LazyModule
A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 660 | 0 |
"""simple docstring"""
from math import factorial
class snake_case_ :
"""simple docstring"""
def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> str:
UpperCamelCase = real
if isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = [1] * rank
else:
UpperCamelCase = rank
def __repr__( self) -> Any:
return (
F'{self.real}+'
F'{"+".join(str(lowerCamelCase_)+"E"+str(n+1)for n,dual in enumerate(self.duals))}'
)
def UpperCAmelCase__ ( self) -> Optional[Any]:
UpperCamelCase = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1)
return Dual(self.real , lowerCamelCase_)
def __add__( self , lowerCamelCase_) -> List[str]:
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
return Dual(self.real + other , self.duals)
UpperCamelCase = self.duals.copy()
UpperCamelCase = other.duals.copy()
if len(lowerCamelCase_) > len(lowerCamelCase_):
o_dual.extend([1] * (len(lowerCamelCase_) - len(lowerCamelCase_)))
elif len(lowerCamelCase_) < len(lowerCamelCase_):
s_dual.extend([1] * (len(lowerCamelCase_) - len(lowerCamelCase_)))
UpperCamelCase = []
for i in range(len(lowerCamelCase_)):
new_duals.append(s_dual[i] + o_dual[i])
return Dual(self.real + other.real , lowerCamelCase_)
A_ = __add__
def __sub__( self , lowerCamelCase_) -> str:
return self + other * -1
def __mul__( self , lowerCamelCase_) -> Union[str, Any]:
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = []
for i in self.duals:
new_duals.append(i * other)
return Dual(self.real * other , lowerCamelCase_)
UpperCamelCase = [0] * (len(self.duals) + len(other.duals) + 1)
for i, item in enumerate(self.duals):
for j, jtem in enumerate(other.duals):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals)):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals)):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real , lowerCamelCase_)
A_ = __mul__
def __truediv__( self , lowerCamelCase_) -> List[str]:
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = []
for i in self.duals:
new_duals.append(i / other)
return Dual(self.real / other , lowerCamelCase_)
raise ValueError
def __floordiv__( self , lowerCamelCase_) -> Optional[Any]:
if not isinstance(lowerCamelCase_ , lowerCamelCase_):
UpperCamelCase = []
for i in self.duals:
new_duals.append(i // other)
return Dual(self.real // other , lowerCamelCase_)
raise ValueError
def __pow__( self , lowerCamelCase_) -> str:
if n < 0 or isinstance(lowerCamelCase_ , lowerCamelCase_):
raise ValueError('''power must be a positive integer''')
if n == 0:
return 1
if n == 1:
return self
UpperCamelCase = self
for _ in range(n - 1):
x *= self
return x
def __snake_case ( _lowercase ,_lowercase ,_lowercase ):
"""simple docstring"""
if not callable(_lowercase ):
raise ValueError('''differentiate() requires a function as input for func''' )
if not isinstance(_lowercase ,(float, int) ):
raise ValueError('''differentiate() requires a float as input for position''' )
if not isinstance(_lowercase ,_lowercase ):
raise ValueError('''differentiate() requires an int as input for order''' )
UpperCamelCase = Dual(_lowercase ,1 )
UpperCamelCase = func(_lowercase )
if order == 0:
return result.real
return result.duals[order - 1] * factorial(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
def __snake_case ( _lowercase ):
"""simple docstring"""
return y**2 * y**4
print(differentiate(f, 9, 2)) | 34 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : Tuple = """▁"""
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""}
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""vocab_file""": {
"""google/reformer-crime-and-punishment""": (
"""https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"""
)
}
}
SCREAMING_SNAKE_CASE__ : Optional[int] = {
"""google/reformer-crime-and-punishment""": 52_42_88,
}
class lowerCamelCase_ ( lowerCamelCase ):
a__ = VOCAB_FILES_NAMES
a__ = PRETRAINED_VOCAB_FILES_MAP
a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a__ = ['''input_ids''', '''attention_mask''']
def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ):
"""simple docstring"""
__magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , )
__magic_name__ :Optional[Any] = vocab_file
__magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCAmelCase )
@property
def A ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def A ( self ):
"""simple docstring"""
__magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
__magic_name__ :Optional[Any] = self.__dict__.copy()
__magic_name__ :Optional[Any] = None
return state
def __setstate__( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__magic_name__ :Optional[int] = {}
__magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
return self.sp_model.piece_to_id(__lowerCAmelCase )
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
__magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase )
return token
def A ( self , __lowerCAmelCase ):
"""simple docstring"""
__magic_name__ :Optional[Any] = []
__magic_name__ :Tuple = ''''''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__lowerCAmelCase ) + token
__magic_name__ :Optional[Any] = []
else:
current_sub_tokens.append(__lowerCAmelCase )
out_string += self.sp_model.decode(__lowerCAmelCase )
return out_string.strip()
def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ):
"""simple docstring"""
if not os.path.isdir(__lowerCAmelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
__magic_name__ :Optional[int] = os.path.join(
__lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCAmelCase , '''wb''' ) as fi:
__magic_name__ :Dict = self.sp_model.serialized_model_proto()
fi.write(__lowerCAmelCase )
return (out_vocab_file,)
| 0 | 0 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = """▁"""
__snake_case = {"""vocab_file""": """sentencepiece.bpe.model"""}
__snake_case = {
"""vocab_file""": {
"""facebook/mbart-large-50-one-to-many-mmt""": (
"""https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model"""
),
}
}
__snake_case = {
"""facebook/mbart-large-50-one-to-many-mmt""": 10_24,
}
# fmt: off
__snake_case = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""]
class lowercase__ ( _UpperCAmelCase ):
A__ : Tuple =VOCAB_FILES_NAMES
A__ : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP
A__ : Any =["""input_ids""", """attention_mask"""]
A__ : List[int] =[]
A__ : List[int] =[]
def __init__( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Any = None , **UpperCAmelCase_ : int , ):
# Mask token behave like a normal word, i.e. include the space before it
SCREAMING_SNAKE_CASE__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token
SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs
SCREAMING_SNAKE_CASE__ = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=lowercase__ , tgt_lang=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , )
SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowercase__ ) )
SCREAMING_SNAKE_CASE__ = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
SCREAMING_SNAKE_CASE__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
SCREAMING_SNAKE_CASE__ = 1
SCREAMING_SNAKE_CASE__ = len(self.sp_model )
SCREAMING_SNAKE_CASE__ = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ )
}
SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.lang_code_to_id.items()}
SCREAMING_SNAKE_CASE__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else """en_XX"""
SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[self._src_lang]
SCREAMING_SNAKE_CASE__ = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
@property
def A_ ( self : List[Any] ):
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def A_ ( self : Union[str, Any] ):
return self._src_lang
@src_lang.setter
def A_ ( self : List[str] , UpperCAmelCase_ : int ):
SCREAMING_SNAKE_CASE__ = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ = self.__dict__.copy()
SCREAMING_SNAKE_CASE__ = None
return state
def __setstate__( self : List[str] , UpperCAmelCase_ : Dict ):
SCREAMING_SNAKE_CASE__ = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def A_ ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def A_ ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] ):
return self.sp_model.encode(lowercase__ , out_type=lowercase__ )
def A_ ( self : Dict , UpperCAmelCase_ : Optional[int] ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(lowercase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def A_ ( self : int , UpperCAmelCase_ : List[Any] ):
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = """"""
SCREAMING_SNAKE_CASE__ = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(lowercase__ ) + token
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = []
else:
current_sub_tokens.append(lowercase__ )
SCREAMING_SNAKE_CASE__ = False
out_string += self.sp_model.decode(lowercase__ )
return out_string.strip()
def A_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict = None ):
if not os.path.isdir(lowercase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
SCREAMING_SNAKE_CASE__ = os.path.join(
lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowercase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowercase__ , 'wb' ) as fi:
SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto()
fi.write(lowercase__ )
return (out_vocab_file,)
def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : str = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ )
SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens )
SCREAMING_SNAKE_CASE__ = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones
def A_ ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] = None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def A_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ):
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
SCREAMING_SNAKE_CASE__ = src_lang
SCREAMING_SNAKE_CASE__ = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ )
SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(lowercase__ )
SCREAMING_SNAKE_CASE__ = tgt_lang_id
return inputs
def A_ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "en_XX" , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Optional[Any] = "ro_RO" , **UpperCAmelCase_ : List[Any] , ):
SCREAMING_SNAKE_CASE__ = src_lang
SCREAMING_SNAKE_CASE__ = tgt_lang
return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ )
def A_ ( self : Tuple ):
return self.set_src_lang_special_tokens(self.src_lang )
def A_ ( self : Dict ):
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def A_ ( self : Tuple , UpperCAmelCase_ : int ):
SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[src_lang]
SCREAMING_SNAKE_CASE__ = [self.cur_lang_code_id]
SCREAMING_SNAKE_CASE__ = [self.eos_token_id]
def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ):
SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[tgt_lang]
SCREAMING_SNAKE_CASE__ = [self.cur_lang_code_id]
SCREAMING_SNAKE_CASE__ = [self.eos_token_id]
| 704 |
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def _lowercase ( UpperCamelCase_ ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = torch.exp(UpperCamelCase_ )
SCREAMING_SNAKE_CASE__ = torch.sum(UpperCamelCase_ , dim=1 ) # sum of exp(x_i)
SCREAMING_SNAKE_CASE__ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i)
return torch.log(UpperCamelCase_ ) - B / A
class lowercase__ ( nn.Module ):
def __init__( self : Optional[int] , UpperCAmelCase_ : Any ):
super().__init__()
SCREAMING_SNAKE_CASE__ = config.output_attentions
SCREAMING_SNAKE_CASE__ = config.output_hidden_states
SCREAMING_SNAKE_CASE__ = nn.ModuleList([BertLayer(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] )
SCREAMING_SNAKE_CASE__ = nn.ModuleList([BertHighway(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] )
SCREAMING_SNAKE_CASE__ = [-1 for _ in range(config.num_hidden_layers )]
def A_ ( self : Tuple , UpperCAmelCase_ : Optional[int] ):
if (type(UpperCAmelCase_ ) is float) or (type(UpperCAmelCase_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
SCREAMING_SNAKE_CASE__ = x
else:
SCREAMING_SNAKE_CASE__ = x
def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ):
SCREAMING_SNAKE_CASE__ = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def A_ ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , ):
SCREAMING_SNAKE_CASE__ = ()
SCREAMING_SNAKE_CASE__ = ()
SCREAMING_SNAKE_CASE__ = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE__ = layer_module(
UpperCAmelCase_ , UpperCAmelCase_ , head_mask[i] , UpperCAmelCase_ , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = layer_outputs[0]
if self.output_attentions:
SCREAMING_SNAKE_CASE__ = all_attentions + (layer_outputs[1],)
SCREAMING_SNAKE_CASE__ = (hidden_states,)
if self.output_hidden_states:
SCREAMING_SNAKE_CASE__ = current_outputs + (all_hidden_states,)
if self.output_attentions:
SCREAMING_SNAKE_CASE__ = current_outputs + (all_attentions,)
SCREAMING_SNAKE_CASE__ = self.highway[i](UpperCAmelCase_ )
# logits, pooled_output
if not self.training:
SCREAMING_SNAKE_CASE__ = highway_exit[0]
SCREAMING_SNAKE_CASE__ = entropy(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
SCREAMING_SNAKE_CASE__ = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
SCREAMING_SNAKE_CASE__ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCAmelCase_ , i + 1 )
else:
SCREAMING_SNAKE_CASE__ = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,)
SCREAMING_SNAKE_CASE__ = (hidden_states,)
if self.output_hidden_states:
SCREAMING_SNAKE_CASE__ = outputs + (all_hidden_states,)
if self.output_attentions:
SCREAMING_SNAKE_CASE__ = outputs + (all_attentions,)
SCREAMING_SNAKE_CASE__ = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"""The Bert Model transformer with early exiting (DeeBERT). """ , _UpperCAmelCase , )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self : List[Any] , UpperCAmelCase_ : str ):
super().__init__(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = config
SCREAMING_SNAKE_CASE__ = BertEmbeddings(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = DeeBertEncoder(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = BertPooler(UpperCAmelCase_ )
self.init_weights()
def A_ ( self : Optional[int] ):
self.encoder.init_highway_pooler(self.pooler )
def A_ ( self : Optional[Any] ):
return self.embeddings.word_embeddings
def A_ ( self : List[str] , UpperCAmelCase_ : Any ):
SCREAMING_SNAKE_CASE__ = value
def A_ ( self : Any , UpperCAmelCase_ : List[str] ):
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase_ )
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def A_ ( self : Optional[int] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , ):
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
SCREAMING_SNAKE_CASE__ = input_ids.size()
elif inputs_embeds is not None:
SCREAMING_SNAKE_CASE__ = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
SCREAMING_SNAKE_CASE__ = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
SCREAMING_SNAKE_CASE__ = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
if encoder_attention_mask is None:
SCREAMING_SNAKE_CASE__ = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ )
if token_type_ids is None:
SCREAMING_SNAKE_CASE__ = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
SCREAMING_SNAKE_CASE__ = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, None, :]
SCREAMING_SNAKE_CASE__ = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
SCREAMING_SNAKE_CASE__ = (1.0 - encoder_extended_attention_mask) * -10_000.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
SCREAMING_SNAKE_CASE__ = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers )
SCREAMING_SNAKE_CASE__ = self.embeddings(
input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = self.encoder(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , )
SCREAMING_SNAKE_CASE__ = encoder_outputs[0]
SCREAMING_SNAKE_CASE__ = self.pooler(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class lowercase__ ( _UpperCAmelCase ):
def __init__( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ):
SCREAMING_SNAKE_CASE__ = message
SCREAMING_SNAKE_CASE__ = exit_layer # start from 1!
class lowercase__ ( nn.Module ):
def __init__( self : int , UpperCAmelCase_ : Union[str, Any] ):
super().__init__()
SCREAMING_SNAKE_CASE__ = BertPooler(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob )
SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.num_labels )
def A_ ( self : Dict , UpperCAmelCase_ : Dict ):
# Pooler
SCREAMING_SNAKE_CASE__ = encoder_outputs[0]
SCREAMING_SNAKE_CASE__ = self.pooler(UpperCAmelCase_ )
# "return" pooler_output
# BertModel
SCREAMING_SNAKE_CASE__ = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
SCREAMING_SNAKE_CASE__ = bmodel_output[1]
SCREAMING_SNAKE_CASE__ = self.dropout(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = self.classifier(UpperCAmelCase_ )
return logits, pooled_output
@add_start_docstrings(
"""Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. """ , _UpperCAmelCase , )
class lowercase__ ( _UpperCAmelCase ):
def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ):
super().__init__(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = config.num_labels
SCREAMING_SNAKE_CASE__ = config.num_hidden_layers
SCREAMING_SNAKE_CASE__ = DeeBertModel(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob )
SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
def A_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=-1 , UpperCAmelCase_ : Optional[int]=False , ):
SCREAMING_SNAKE_CASE__ = self.num_layers
try:
SCREAMING_SNAKE_CASE__ = self.bert(
UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
SCREAMING_SNAKE_CASE__ = outputs[1]
SCREAMING_SNAKE_CASE__ = self.dropout(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = self.classifier(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
SCREAMING_SNAKE_CASE__ = e.message
SCREAMING_SNAKE_CASE__ = e.exit_layer
SCREAMING_SNAKE_CASE__ = outputs[0]
if not self.training:
SCREAMING_SNAKE_CASE__ = entropy(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
SCREAMING_SNAKE_CASE__ = MSELoss()
SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
SCREAMING_SNAKE_CASE__ = CrossEntropyLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
SCREAMING_SNAKE_CASE__ = []
for highway_exit in outputs[-1]:
SCREAMING_SNAKE_CASE__ = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCAmelCase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
SCREAMING_SNAKE_CASE__ = MSELoss()
SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
SCREAMING_SNAKE_CASE__ = CrossEntropyLoss()
SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCAmelCase_ )
if train_highway:
SCREAMING_SNAKE_CASE__ = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
SCREAMING_SNAKE_CASE__ = (loss,) + outputs
if not self.training:
SCREAMING_SNAKE_CASE__ = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
SCREAMING_SNAKE_CASE__ = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 400 | 0 |
import argparse
import json
from tqdm import tqdm
def __lowerCAmelCase ( ):
_lowercase: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--src_path" , type=__magic_name__ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , )
parser.add_argument(
"--evaluation_set" , type=__magic_name__ , help="where to store parsed evaluation_set file" , )
parser.add_argument(
"--gold_data_path" , type=__magic_name__ , help="where to store parsed gold_data_path file" , )
_lowercase: Union[str, Any] = parser.parse_args()
with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open(
args.gold_data_path , "w" ) as gold_file:
_lowercase: str = json.load(__magic_name__ )
for dpr_record in tqdm(__magic_name__ ):
_lowercase: str = dpr_record["question"]
_lowercase: int = [context["title"] for context in dpr_record["positive_ctxs"]]
eval_file.write(question + "\n" )
gold_file.write("\t".join(__magic_name__ ) + "\n" )
if __name__ == "__main__":
main()
| 226 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_SCREAMING_SNAKE_CASE : Dict = {
'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'],
'tokenization_electra': ['ElectraTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : List[Any] = ['ElectraTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Optional[Any] = [
'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'ElectraForCausalLM',
'ElectraForMaskedLM',
'ElectraForMultipleChoice',
'ElectraForPreTraining',
'ElectraForQuestionAnswering',
'ElectraForSequenceClassification',
'ElectraForTokenClassification',
'ElectraModel',
'ElectraPreTrainedModel',
'load_tf_weights_in_electra',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : List[str] = [
'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST',
'TFElectraForMaskedLM',
'TFElectraForMultipleChoice',
'TFElectraForPreTraining',
'TFElectraForQuestionAnswering',
'TFElectraForSequenceClassification',
'TFElectraForTokenClassification',
'TFElectraModel',
'TFElectraPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_SCREAMING_SNAKE_CASE : Any = [
'FlaxElectraForCausalLM',
'FlaxElectraForMaskedLM',
'FlaxElectraForMultipleChoice',
'FlaxElectraForPreTraining',
'FlaxElectraForQuestionAnswering',
'FlaxElectraForSequenceClassification',
'FlaxElectraForTokenClassification',
'FlaxElectraModel',
'FlaxElectraPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig
from .tokenization_electra import ElectraTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_electra_fast import ElectraTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_electra import (
ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
ElectraForCausalLM,
ElectraForMaskedLM,
ElectraForMultipleChoice,
ElectraForPreTraining,
ElectraForQuestionAnswering,
ElectraForSequenceClassification,
ElectraForTokenClassification,
ElectraModel,
ElectraPreTrainedModel,
load_tf_weights_in_electra,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_electra import (
TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFElectraForMaskedLM,
TFElectraForMultipleChoice,
TFElectraForPreTraining,
TFElectraForQuestionAnswering,
TFElectraForSequenceClassification,
TFElectraForTokenClassification,
TFElectraModel,
TFElectraPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_electra import (
FlaxElectraForCausalLM,
FlaxElectraForMaskedLM,
FlaxElectraForMultipleChoice,
FlaxElectraForPreTraining,
FlaxElectraForQuestionAnswering,
FlaxElectraForSequenceClassification,
FlaxElectraForTokenClassification,
FlaxElectraModel,
FlaxElectraPreTrainedModel,
)
else:
import sys
_SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 226 | 1 |
'''simple docstring'''
import sys
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
_lowerCAmelCase : Union[str, Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split()
if sys.version_info < (3, 7):
pkgs_to_check_at_runtime.append('dataclasses')
if sys.version_info < (3, 8):
pkgs_to_check_at_runtime.append('importlib_metadata')
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(f"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def __UpperCamelCase ( _A : List[str] , _A : Any=None ) -> List[Any]:
"""simple docstring"""
require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
| 704 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowerCAmelCase : int = {
'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCAmelCase : Tuple = [
'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST',
'NezhaForNextSentencePrediction',
'NezhaForMaskedLM',
'NezhaForPreTraining',
'NezhaForMultipleChoice',
'NezhaForQuestionAnswering',
'NezhaForSequenceClassification',
'NezhaForTokenClassification',
'NezhaModel',
'NezhaPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
_lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 646 | 0 |
'''simple docstring'''
import logging
import random
import ray
from transformers import RagConfig, RagRetriever, RagTokenizer
from transformers.models.rag.retrieval_rag import CustomHFIndex
UpperCAmelCase_ = logging.getLogger(__name__)
class __lowercase :
def __init__( self ) -> str:
__a = False
def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str:
if not self.initialized:
__a = RagRetriever(
UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , index=UpperCamelCase , init_retrieval=UpperCamelCase , )
__a = True
def UpperCamelCase__ ( self ) -> Any:
self.retriever.index.init_index()
def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> str:
__a , __a = self.retriever._main_retrieve(UpperCamelCase , UpperCamelCase )
return doc_ids, retrieved_doc_embeds
class __lowercase ( __magic_name__ ):
def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> Optional[int]:
if index is not None and index.is_initialized() and len(UpperCamelCase ) > 0:
raise ValueError(
'When using Ray for distributed fine-tuning, '
'you\'ll need to provide the paths instead, '
'as the dataset and the index are loaded '
'separately. More info in examples/rag/use_own_knowledge_dataset.py ' )
super().__init__(
UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , index=UpperCamelCase , init_retrieval=UpperCamelCase , )
__a = retrieval_workers
if len(self.retrieval_workers ) > 0:
ray.get(
[
worker.create_rag_retriever.remote(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
for worker in self.retrieval_workers
] )
def UpperCamelCase__ ( self ) -> Optional[Any]:
logger.info('initializing retrieval' )
if len(self.retrieval_workers ) > 0:
ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] )
else:
# Non-distributed training. Load index into this same process.
self.index.init_index()
def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> Dict:
if len(self.retrieval_workers ) > 0:
# Select a random retrieval actor.
__a = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )]
__a , __a = ray.get(random_worker.retrieve.remote(UpperCamelCase , UpperCamelCase ) )
else:
__a , __a = self._main_retrieve(UpperCamelCase , UpperCamelCase )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase )
@classmethod
def UpperCamelCase__ ( cls , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ) -> Union[str, Any]:
return super(UpperCamelCase , cls ).get_tokenizers(UpperCamelCase , UpperCamelCase , **UpperCamelCase )
@classmethod
def UpperCamelCase__ ( cls , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ) -> Optional[Any]:
__a = kwargs.pop('config' , UpperCamelCase ) or RagConfig.from_pretrained(UpperCamelCase , **UpperCamelCase )
__a = RagTokenizer.from_pretrained(UpperCamelCase , config=UpperCamelCase )
__a = rag_tokenizer.question_encoder
__a = rag_tokenizer.generator
if indexed_dataset is not None:
__a = 'custom'
__a = CustomHFIndex(config.retrieval_vector_size , UpperCamelCase )
else:
__a = cls._build_index(UpperCamelCase )
return cls(
UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , retrieval_workers=UpperCamelCase , index=UpperCamelCase , )
| 539 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import (
CLIPImageProcessor,
CLIPTextConfig,
CLIPTextModel,
CLIPTokenizer,
CLIPVisionConfig,
CLIPVisionModelWithProjection,
)
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import (
enable_full_determinism,
floats_tensor,
load_image,
load_numpy,
require_torch_gpu,
skip_mps,
slow,
torch_device,
)
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
assert_mean_pixel_difference,
)
enable_full_determinism()
class __lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ):
_a = StableUnCLIPImgaImgPipeline
_a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS
_a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_a = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_a = frozenset([] )
def UpperCamelCase__ ( self ) -> List[str]:
__a = 32
__a = embedder_hidden_size
# image encoding components
__a = CLIPImageProcessor(crop_size=32 , size=32 )
torch.manual_seed(0 )
__a = CLIPVisionModelWithProjection(
CLIPVisionConfig(
hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) )
# regular denoising components
torch.manual_seed(0 )
__a = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase )
__a = DDPMScheduler(beta_schedule='squaredcos_cap_v2' )
torch.manual_seed(0 )
__a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
torch.manual_seed(0 )
__a = CLIPTextModel(
CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) )
torch.manual_seed(0 )
__a = UNetaDConditionModel(
sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , )
torch.manual_seed(0 )
__a = DDIMScheduler(
beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , )
torch.manual_seed(0 )
__a = AutoencoderKL()
__a = {
# image encoding components
'feature_extractor': feature_extractor,
'image_encoder': image_encoder.eval(),
# image noising components
'image_normalizer': image_normalizer.eval(),
'image_noising_scheduler': image_noising_scheduler,
# regular denoising components
'tokenizer': tokenizer,
'text_encoder': text_encoder.eval(),
'unet': unet.eval(),
'scheduler': scheduler,
'vae': vae.eval(),
}
return components
def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 , UpperCamelCase=True ) -> Dict:
if str(UpperCamelCase ).startswith('mps' ):
__a = torch.manual_seed(UpperCamelCase )
else:
__a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase )
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase )
if pil_image:
__a = input_image * 0.5 + 0.5
__a = input_image.clamp(0 , 1 )
__a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
__a = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0]
return {
"prompt": "An anime racoon running a marathon",
"image": input_image,
"generator": generator,
"num_inference_steps": 2,
"output_type": "np",
}
@skip_mps
def UpperCamelCase__ ( self ) -> int:
__a = 'cpu' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableUnCLIPImgaImgPipeline(**UpperCamelCase )
__a = sd_pipe.to(UpperCamelCase )
sd_pipe.set_progress_bar_config(disable=UpperCamelCase )
__a = self.get_dummy_inputs(UpperCamelCase )
inputs.update({'image_embeds': None} )
__a = sd_pipe(**UpperCamelCase ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__a = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def UpperCamelCase__ ( self ) -> Any:
__a = torch_device in ['cpu', 'mps']
self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
__a = torch_device in ['cpu', 'mps']
self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCamelCase__ ( self ) -> Optional[Any]:
self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase )
@slow
@require_torch_gpu
class __lowercase ( unittest.TestCase ):
def UpperCamelCase__ ( self ) -> List[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase__ ( self ) -> str:
__a = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
__a = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' )
__a = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa )
pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__a = torch.Generator(device='cpu' ).manual_seed(0 )
__a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' )
__a = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ ( self ) -> Optional[int]:
__a = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
__a = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' )
__a = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa )
pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
# stable unclip will oom when integration tests are run on a V100,
# so turn on memory savings
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__a = torch.Generator(device='cpu' ).manual_seed(0 )
__a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' )
__a = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ ( self ) -> Union[str, Any]:
__a = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' )
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = StableUnCLIPImgaImgPipeline.from_pretrained(
'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa )
__a = pipe.to(UpperCamelCase )
pipe.set_progress_bar_config(disable=UpperCamelCase )
pipe.enable_attention_slicing()
pipe.enable_sequential_cpu_offload()
__a = pipe(
UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 7 GB is allocated
assert mem_bytes < 7 * 10**9
| 539 | 1 |
lowerCamelCase__ = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_02_17_66_34e-19,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.355_818,
}
def A(__a: str , __a: str , __a: float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
lowerCAmelCase_ = (
F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
F"Valid values are: {', '.join(__a )}"
)
raise ValueError(__a )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 226 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class __magic_name__ (unittest.TestCase ):
def __a ( self ) -> Dict:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def __a ( self ) -> Dict:
lowerCAmelCase_ = 1
lowerCAmelCase_ = 3
lowerCAmelCase_ = (32, 32)
lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a )
return image
@property
def __a ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase_ = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def __a ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase_ = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def __a ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase_ = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(_a )
@property
def __a ( self ) -> List[str]:
def extract(*_a , **_a ):
class __magic_name__ :
def __init__( self ) -> List[str]:
lowerCAmelCase_ = torch.ones([0] )
def __a ( self , _a ) -> int:
self.pixel_values.to(_a )
return self
return Out()
return extract
def __a ( self ) -> Dict:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Union[str, Any]:
lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0]
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Any:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a )
assert isinstance(_a , _a )
assert isinstance(pipe.scheduler , _a )
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(_a )
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def __a ( self ) -> Any:
lowerCAmelCase_ = self.dummy_cond_unet
lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a )
lowerCAmelCase_ = self.dummy_vae
lowerCAmelCase_ = self.dummy_text_encoder
lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
lowerCAmelCase_ = unet.half()
lowerCAmelCase_ = vae.half()
lowerCAmelCase_ = bert.half()
# make sure here that pndm scheduler skips prk
lowerCAmelCase_ = StableDiffusionPipeline(
unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "A painting of a squirrel eating a burger"
lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class __magic_name__ (unittest.TestCase ):
def __a ( self ) -> Union[str, Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __a ( self ) -> Any:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
lowerCAmelCase_ = 4003660346
lowerCAmelCase_ = 7
# without safety guidance (sld_guidance_scale = 0)
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> Optional[Any]:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a )
lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity"
lowerCAmelCase_ = 2734971755
lowerCAmelCase_ = 7
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __a ( self ) -> int:
lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
lowerCAmelCase_ = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
lowerCAmelCase_ = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
lowerCAmelCase_ = 1044355234
lowerCAmelCase_ = 12
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowerCAmelCase_ = torch.manual_seed(_a )
lowerCAmelCase_ = sd_pipe(
[prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCAmelCase_ = output.images
lowerCAmelCase_ = image[0, -3:, -3:, -1]
lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 226 | 1 |
def lowerCamelCase_ ( UpperCamelCase__ : int = 400_0000 ):
'''simple docstring'''
UpperCamelCase__ = []
UpperCamelCase__ , UpperCamelCase__ = 0, 1
while b <= n:
if b % 2 == 0:
even_fibs.append(UpperCamelCase__ )
UpperCamelCase__ , UpperCamelCase__ = b, a + b
return sum(UpperCamelCase__ )
if __name__ == "__main__":
print(f'{solution() = }')
| 240 | import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def lowerCamelCase_ ( UpperCamelCase__ : Dataset, UpperCamelCase__ : Dict[str, str] ):
'''simple docstring'''
UpperCamelCase__ = args.log_outputs
UpperCamelCase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] )
# load metric
UpperCamelCase__ = load_metric('''wer''' )
UpperCamelCase__ = load_metric('''cer''' )
# compute metrics
UpperCamelCase__ = wer.compute(references=result['''target'''], predictions=result['''prediction'''] )
UpperCamelCase__ = cer.compute(references=result['''target'''], predictions=result['''prediction'''] )
# print & log results
UpperCamelCase__ = F"""WER: {wer_result}\nCER: {cer_result}"""
print(UpperCamelCase__ )
with open(F"""{dataset_id}_eval_results.txt""", '''w''' ) as f:
f.write(UpperCamelCase__ )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase__ = F"""log_{dataset_id}_predictions.txt"""
UpperCamelCase__ = F"""log_{dataset_id}_targets.txt"""
with open(UpperCamelCase__, '''w''' ) as p, open(UpperCamelCase__, '''w''' ) as t:
# mapping function to write output
def write_to_file(UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Tuple ):
p.write(F"""{i}""" + '''\n''' )
p.write(batch['''prediction'''] + '''\n''' )
t.write(F"""{i}""" + '''\n''' )
t.write(batch['''target'''] + '''\n''' )
result.map(UpperCamelCase__, with_indices=UpperCamelCase__ )
def lowerCamelCase_ ( UpperCamelCase__ : str ):
'''simple docstring'''
UpperCamelCase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase__ = re.sub(UpperCamelCase__, '''''', text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase__ = ['''\n\n''', '''\n''', ''' ''', ''' ''']
for t in token_sequences_to_ignore:
UpperCamelCase__ = ''' '''.join(text.split(UpperCamelCase__ ) )
return text
def lowerCamelCase_ ( UpperCamelCase__ : Tuple ):
'''simple docstring'''
UpperCamelCase__ = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=UpperCamelCase__ )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase__ = feature_extractor.sampling_rate
# resample audio
UpperCamelCase__ = dataset.cast_column('''audio''', Audio(sampling_rate=UpperCamelCase__ ) )
# load eval pipeline
if args.device is None:
UpperCamelCase__ = 0 if torch.cuda.is_available() else -1
UpperCamelCase__ = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device )
# map function to decode audio
def map_to_pred(UpperCamelCase__ : Any ):
UpperCamelCase__ = asr(
batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s )
UpperCamelCase__ = prediction['''text''']
UpperCamelCase__ = normalize_text(batch['''sentence'''] )
return batch
# run inference on all examples
UpperCamelCase__ = dataset.map(UpperCamelCase__, remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(UpperCamelCase__, UpperCamelCase__ )
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument(
"""--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers"""
)
parser.add_argument(
"""--dataset""",
type=str,
required=True,
help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""",
)
parser.add_argument(
"""--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice"""
)
parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""")
parser.add_argument(
"""--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds."""
)
parser.add_argument(
"""--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second."""
)
parser.add_argument(
"""--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis."""
)
parser.add_argument(
"""--device""",
type=int,
default=None,
help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""",
)
lowercase = parser.parse_args()
main(args)
| 240 | 1 |
"""simple docstring"""
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def lowercase ( __snake_case : Optional[int] ):
if isinstance(__snake_case , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class _UpperCAmelCase :
def A ( self : Any , A : Union[str, Any] , A : Optional[Any] ) -> Any:
pass
def A ( self : List[Any] ) -> Optional[Any]:
pass
def A ( self : Union[str, Any] ) -> Optional[int]:
pass
def A ( self : Dict , A : Tuple , A : Optional[Any] , A : List[str] , A : Dict , A : List[str]=None , **A : List[Any] ) -> List[str]:
lowercase_ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(A , A )
lowercase_ : Union[str, Any] = TFVisionTextDualEncoderModel(A )
lowercase_ : Dict = model(input_ids=A , pixel_values=A , attention_mask=A )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) )
def A ( self : Tuple , A : List[str] , A : Optional[int] , A : Any , A : Tuple , A : List[Any]=None , **A : int ) -> Union[str, Any]:
lowercase_ , lowercase_ : Tuple = self.get_vision_text_model(A , A )
lowercase_ : Any = TFVisionTextDualEncoderModel(vision_model=A , text_model=A )
lowercase_ : List[str] = model(input_ids=A , pixel_values=A , attention_mask=A )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def A ( self : List[Any] , A : Tuple , A : Dict , A : Union[str, Any] , A : List[Any] , A : str=None , **A : Optional[int] ) -> Any:
lowercase_ , lowercase_ : Dict = self.get_vision_text_model(A , A )
lowercase_ : str = {'''vision_model''': vision_model, '''text_model''': text_model}
lowercase_ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**A )
lowercase_ : List[str] = model(input_ids=A , pixel_values=A , attention_mask=A )
self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) )
def A ( self : Optional[Any] , A : Union[str, Any] , A : Optional[int] , A : int , A : List[str] , A : List[Any]=None , **A : Dict ) -> List[Any]:
lowercase_ , lowercase_ : str = self.get_vision_text_model(A , A )
lowercase_ : Dict = TFVisionTextDualEncoderModel(vision_model=A , text_model=A )
lowercase_ : Union[str, Any] = model(input_ids=A , pixel_values=A , attention_mask=A )
lowercase_ : Dict = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A )
lowercase_ : Tuple = TFVisionTextDualEncoderModel.from_pretrained(A )
lowercase_ : str = model(input_ids=A , pixel_values=A , attention_mask=A )
lowercase_ : Union[str, Any] = after_output[0].numpy()
lowercase_ : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(A , 1e-5 )
def A ( self : Any , A : Optional[int] , A : List[str] , A : List[Any] , A : Any , A : Tuple=None , **A : Union[str, Any] ) -> Any:
lowercase_ , lowercase_ : str = self.get_vision_text_model(A , A )
lowercase_ : str = TFVisionTextDualEncoderModel(vision_model=A , text_model=A )
lowercase_ : Optional[Any] = model(
input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A )
lowercase_ : List[str] = output.vision_model_output.attentions
self.assertEqual(len(A ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowercase_ : List[Any] = to_atuple(vision_model.config.image_size )
lowercase_ : List[Any] = to_atuple(vision_model.config.patch_size )
lowercase_ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : Tuple = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : List[str] = output.text_model_output.attentions
self.assertEqual(len(A ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def A ( self : Any , A : np.ndarray , A : np.ndarray , A : float ) -> Tuple:
lowercase_ : Union[str, Any] = np.abs((a - b) ).max()
self.assertLessEqual(A , A , F'''Difference between torch and flax is {diff} (>= {tol}).''' )
def A ( self : List[Any] ) -> List[str]:
lowercase_ : str = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**A )
def A ( self : Optional[Any] ) -> List[str]:
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**A )
def A ( self : Any ) -> Optional[Any]:
lowercase_ : Optional[int] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**A )
def A ( self : List[Any] ) -> Tuple:
lowercase_ : Union[str, Any] = self.prepare_config_and_inputs()
self.check_save_load(**A )
def A ( self : int ) -> Optional[Any]:
lowercase_ : int = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**A )
@slow
def A ( self : Union[str, Any] ) -> str:
lowercase_ , lowercase_ : Dict = self.get_pretrained_model_and_inputs()
lowercase_ : List[str] = model_a(**A )
lowercase_ : Tuple = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(A )
lowercase_ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(A )
lowercase_ : str = model_a(**A )
lowercase_ : int = after_outputs[0].numpy()
lowercase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(A , 1e-5 )
@require_tf
class _UpperCAmelCase ( _A , unittest.TestCase ):
def A ( self : Optional[int] ) -> Dict:
lowercase_ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' )
lowercase_ : Optional[Any] = 13
lowercase_ : Dict = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowercase_ : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowercase_ : Dict = random_attention_mask([batch_size, 4] )
lowercase_ : Optional[int] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def A ( self : int , A : str , A : Dict ) -> str:
lowercase_ : int = TFViTModel(A , name='''vision_model''' )
lowercase_ : Optional[Any] = TFBertModel(A , name='''text_model''' )
return vision_model, text_model
def A ( self : str ) -> Dict:
lowercase_ : str = TFViTModelTester(self )
lowercase_ : str = TFBertModelTester(self )
lowercase_ : Optional[int] = vit_model_tester.prepare_config_and_inputs()
lowercase_ : Dict = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Optional[Any] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _UpperCAmelCase ( _A , unittest.TestCase ):
def A ( self : List[Any] ) -> Optional[int]:
# DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's
# just reinitialize it.
lowercase_ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' )
lowercase_ : List[str] = 13
lowercase_ : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowercase_ : str = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowercase_ : Any = random_attention_mask([batch_size, 4] )
lowercase_ : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def A ( self : Optional[int] , A : int , A : Dict , A : str , A : Any , A : str=None , **A : Union[str, Any] ) -> Union[str, Any]:
lowercase_ , lowercase_ : List[Any] = self.get_vision_text_model(A , A )
lowercase_ : List[str] = TFVisionTextDualEncoderModel(vision_model=A , text_model=A )
lowercase_ : Any = model(
input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A )
lowercase_ : List[str] = output.vision_model_output.attentions
self.assertEqual(len(A ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowercase_ : Optional[Any] = to_atuple(vision_model.config.image_size )
lowercase_ : Optional[int] = to_atuple(vision_model.config.patch_size )
lowercase_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowercase_ : List[str] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowercase_ : Union[str, Any] = output.text_model_output.attentions
self.assertEqual(len(A ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def A ( self : Optional[Any] , A : str , A : int ) -> Any:
lowercase_ : Union[str, Any] = TFDeiTModel(A , name='''vision_model''' )
lowercase_ : Any = TFRobertaModel(A , name='''text_model''' )
return vision_model, text_model
def A ( self : Optional[Any] ) -> Dict:
lowercase_ : Any = TFDeiTModelTester(self )
lowercase_ : Any = TFRobertaModelTester(self )
lowercase_ : Any = vit_model_tester.prepare_config_and_inputs()
lowercase_ : str = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ : Dict = vision_config_and_inputs
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _UpperCAmelCase ( _A , unittest.TestCase ):
def A ( self : Any ) -> Optional[int]:
lowercase_ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
'''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' )
lowercase_ : Optional[int] = 13
lowercase_ : Dict = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowercase_ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowercase_ : Dict = random_attention_mask([batch_size, 4] )
lowercase_ : Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask}
return model, inputs
def A ( self : int , A : Tuple , A : List[str] ) -> Any:
lowercase_ : str = TFCLIPVisionModel(A , name='''vision_model''' )
lowercase_ : Any = TFBertModel(A , name='''text_model''' )
return vision_model, text_model
def A ( self : Dict ) -> Tuple:
lowercase_ : Optional[int] = TFCLIPVisionModelTester(self )
lowercase_ : Tuple = TFBertModelTester(self )
lowercase_ : Optional[int] = clip_model_tester.prepare_config_and_inputs()
lowercase_ : str = bert_model_tester.prepare_config_and_inputs()
lowercase_ , lowercase_ : Tuple = vision_config_and_inputs
(
(
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) , (
lowercase_
) ,
) : List[str] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
@slow
def A ( self : Union[str, Any] ) -> Tuple:
lowercase_ : str = TFVisionTextDualEncoderModel.from_pretrained(
'''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=A )
lowercase_ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' )
lowercase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
lowercase_ : List[Any] = processor(
text=['''una foto di un gatto''', '''una foto di un cane'''] , images=A , padding=A , return_tensors='''np''' )
lowercase_ : List[Any] = model(**A )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowercase_ : Any = np.array([[1.2284727, 0.3104122]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , A , atol=1e-3 ) )
| 141 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _UpperCAmelCase ( _A ):
def __init__( self : Optional[int] , A : VQModel , A : UNetaDModel , A : DDIMScheduler ) -> Union[str, Any]:
super().__init__()
self.register_modules(vqvae=A , unet=A , scheduler=A )
@torch.no_grad()
def __call__( self : List[Any] , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[str] = "pil" , A : bool = True , **A : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]:
lowercase_ : Optional[Any] = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , )
lowercase_ : List[Any] = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
lowercase_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(A )
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
lowercase_ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
lowercase_ : Dict = {}
if accepts_eta:
lowercase_ : int = eta
for t in self.progress_bar(self.scheduler.timesteps ):
lowercase_ : Optional[Any] = self.scheduler.scale_model_input(A , A )
# predict the noise residual
lowercase_ : int = self.unet(A , A ).sample
# compute the previous noisy sample x_t -> x_t-1
lowercase_ : List[Any] = self.scheduler.step(A , A , A , **A ).prev_sample
# decode the image latents with the VAE
lowercase_ : int = self.vqvae.decode(A ).sample
lowercase_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 )
lowercase_ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowercase_ : Tuple = self.numpy_to_pil(A )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=A )
| 141 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.