code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features a = logging.get_logger(__name__) a = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) a = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __a : __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'Model type selected in the list: ' + ', '.join(_snake_case )} ) __UpperCamelCase : str = field( default=_snake_case, metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __UpperCamelCase : int = field( default=128, metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) }, ) __UpperCamelCase : int = field( default=128, metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'}, ) __UpperCamelCase : int = field( default=64, metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) }, ) __UpperCamelCase : int = field( default=30, metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) }, ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __UpperCamelCase : bool = field( default=_snake_case, metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __UpperCamelCase : float = field( default=0.0, metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __UpperCamelCase : int = field( default=20, metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __UpperCamelCase : int = field( default=0, metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) }, ) __UpperCamelCase : int = field(default=1, metadata={'help': 'multiple threads for converting example to features'} ) class __a ( _snake_case ): __UpperCamelCase : Optional[Any] = 'train' __UpperCamelCase : List[Any] = 'dev' class __a ( _snake_case ): __UpperCamelCase : SquadDataTrainingArguments __UpperCamelCase : List[SquadFeatures] __UpperCamelCase : Split __UpperCamelCase : bool def __init__( self : List[str] ,lowerCamelCase : SquadDataTrainingArguments ,lowerCamelCase : PreTrainedTokenizer ,lowerCamelCase : Optional[int] = None ,lowerCamelCase : Union[str, Split] = Split.train ,lowerCamelCase : Optional[bool] = False ,lowerCamelCase : Optional[str] = None ,lowerCamelCase : Optional[str] = "pt" ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = args __SCREAMING_SNAKE_CASE = is_language_sensitive __SCREAMING_SNAKE_CASE = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(lowerCamelCase ,lowerCamelCase ): try: __SCREAMING_SNAKE_CASE = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) __SCREAMING_SNAKE_CASE = mode # Load data features from cache or dataset file __SCREAMING_SNAKE_CASE = """v2""" if args.version_2_with_negative else """v1""" __SCREAMING_SNAKE_CASE = os.path.join( cache_dir if cache_dir is not None else args.data_dir ,f"""cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}""" ,) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __SCREAMING_SNAKE_CASE = cached_features_file + """.lock""" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not args.overwrite_cache: __SCREAMING_SNAKE_CASE = time.time() __SCREAMING_SNAKE_CASE = torch.load(lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __SCREAMING_SNAKE_CASE = self.old_features["""features"""] __SCREAMING_SNAKE_CASE = self.old_features.get("""dataset""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = self.old_features.get("""examples""" ,lowerCamelCase ) logger.info( f"""Loading features from cached file {cached_features_file} [took %.3f s]""" ,time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"""Deleting cached file {cached_features_file} will allow dataset and examples to be cached in""" """ future run""" ) else: if mode == Split.dev: __SCREAMING_SNAKE_CASE = self.processor.get_dev_examples(args.data_dir ) else: __SCREAMING_SNAKE_CASE = self.processor.get_train_examples(args.data_dir ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = squad_convert_examples_to_features( examples=self.examples ,tokenizer=lowerCamelCase ,max_seq_length=args.max_seq_length ,doc_stride=args.doc_stride ,max_query_length=args.max_query_length ,is_training=mode == Split.train ,threads=args.threads ,return_dataset=lowerCamelCase ,) __SCREAMING_SNAKE_CASE = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} ,lowerCamelCase ,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"""Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]""" ) def __len__( self : Optional[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[Any] ,lowerCamelCase : Optional[int] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.features[i] __SCREAMING_SNAKE_CASE = torch.tensor(feature.input_ids ,dtype=torch.long ) __SCREAMING_SNAKE_CASE = torch.tensor(feature.attention_mask ,dtype=torch.long ) __SCREAMING_SNAKE_CASE = torch.tensor(feature.token_type_ids ,dtype=torch.long ) __SCREAMING_SNAKE_CASE = torch.tensor(feature.cls_index ,dtype=torch.long ) __SCREAMING_SNAKE_CASE = torch.tensor(feature.p_mask ,dtype=torch.float ) __SCREAMING_SNAKE_CASE = torch.tensor(feature.is_impossible ,dtype=torch.float ) __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape ,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __SCREAMING_SNAKE_CASE = torch.tensor(feature.start_position ,dtype=torch.long ) __SCREAMING_SNAKE_CASE = torch.tensor(feature.end_position ,dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
109
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : int =[ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] _UpperCamelCase : Dict =[ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def lowerCamelCase_ ( A_ , A_ ): __lowerCamelCase = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks __lowerCamelCase = int(re.match(R'''.*layer_(\d*).*''' , A_ )[1] ) layer_number -= 3 return f'''h.{layer_number}.''' + key def lowerCamelCase_ ( A_ ): if dtype == torch.bool: return 1 / 8 __lowerCamelCase = re.search(R'''[^\d](\d+)$''' , str(A_ ) ) if bit_search is None: raise ValueError(f'''`dtype` is not a valid dtype: {dtype}.''' ) __lowerCamelCase = int(bit_search.groups()[0] ) return bit_size // 8 def lowerCamelCase_ ( A_ , A_ , A_ , A_ , A_ ): # Construct model if bloom_config_file == "": __lowerCamelCase = BloomConfig() else: __lowerCamelCase = BloomConfig.from_json_file(A_ ) if shard_model: __lowerCamelCase = os.listdir(A_ ) __lowerCamelCase = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s , A_ ) ) __lowerCamelCase = {'''weight_map''': {}, '''metadata''': {}} __lowerCamelCase = 0 __lowerCamelCase = None __lowerCamelCase = BloomConfig() for j, file in enumerate(A_ ): print('''Processing file: {}'''.format(A_ ) ) __lowerCamelCase = None for i in range(A_ ): # load all TP files __lowerCamelCase = file.replace('''model_00''' , f'''model_0{i}''' ) __lowerCamelCase = torch.load(os.path.join(A_ , A_ ) , map_location='''cpu''' ) # Rename keys in the transformers names __lowerCamelCase = list(temp.keys() ) for key in keys: __lowerCamelCase = temp.pop(A_ ) if tensors is None: __lowerCamelCase = temp else: for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCamelCase = torch.cat([tensors[key], temp[key]] , dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCamelCase = tensors[key] / pretraining_tp torch.save( A_ , os.path.join( A_ , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(A_ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): __lowerCamelCase = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: __lowerCamelCase = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(A_ ) ).zfill(5 ) ) __lowerCamelCase = BloomConfig() __lowerCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME __lowerCamelCase = total_size with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A_ , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: __lowerCamelCase = json.dumps(A_ , indent=2 , sort_keys=A_ ) + '''\n''' f.write(A_ ) else: __lowerCamelCase = BloomModel(A_ ) __lowerCamelCase = os.listdir(A_ ) __lowerCamelCase = sorted(filter(lambda A_ : s.startswith('''layer''' ) and "model_00" in s , A_ ) ) __lowerCamelCase = None for i, file in enumerate(A_ ): __lowerCamelCase = None for i in range(A_ ): # load all TP files __lowerCamelCase = file.replace('''model_00''' , f'''model_0{i}''' ) __lowerCamelCase = torch.load(os.path.join(A_ , A_ ) , map_location='''cpu''' ) # Rename keys in the transformers names __lowerCamelCase = list(temp.keys() ) for key in keys: __lowerCamelCase = temp.pop(A_ ) if tensors is None: __lowerCamelCase = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel __lowerCamelCase = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks __lowerCamelCase = torch.cat([tensors[key], temp[key]] , dim=A_ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A_ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): __lowerCamelCase = tensors[key] / pretraining_tp __lowerCamelCase = model.load_state_dict(A_ , strict=A_ ) assert not other_keys.unexpected_keys, f'''The keys {other_keys.unexpected_keys} are unexpected''' if missing_keys is None: __lowerCamelCase = set(other_keys.missing_keys ) else: __lowerCamelCase = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f'''The keys {missing_keys} are missing''' # Save pytorch-model os.makedirs(A_ , exist_ok=A_ ) __lowerCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME __lowerCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f'''Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}''' ) if config.torch_dtype is not None: __lowerCamelCase = model.to(config.torch_dtype ) torch.save(model.state_dict() , A_ ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(A_ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) _UpperCamelCase : Optional[int] =parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
316
0
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def SCREAMING_SNAKE_CASE ( snake_case, snake_case = True, snake_case = math.inf, snake_case = -math.inf, snake_case = math.inf, snake_case = -math.inf, snake_case = False, snake_case = 1_00, snake_case = 0.01, snake_case = 1, ): __snake_case = False __snake_case = search_prob __snake_case = start_temperate __snake_case = [] __snake_case = 0 __snake_case = None while not search_end: __snake_case = current_state.score() if best_state is None or current_score > best_state.score(): __snake_case = current_state scores.append(snake_case) iterations += 1 __snake_case = None __snake_case = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to __snake_case = random.randint(0, len(snake_case) - 1) # picking a random neighbor __snake_case = neighbors.pop(snake_case) __snake_case = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: __snake_case = change * -1 # in case we are finding minimum if change > 0: # improves the solution __snake_case = picked_neighbor else: __snake_case = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability __snake_case = picked_neighbor __snake_case = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor __snake_case = True else: __snake_case = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(snake_case), snake_case) plt.xlabel('''Iterations''') plt.ylabel('''Function values''') plt.show() return best_state if __name__ == "__main__": def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) __lowercase : Dict = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowercase : Union[str, Any] = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) # starting the problem with initial coordinates (12, 47) __lowercase : Any = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) __lowercase : int = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( "The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 " F"""and 50 > y > - 5 found via hill climbing: {local_min.score()}""" ) def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return (3 * x**2) - (6 * y) __lowercase : List[str] = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowercase : Dict = simulated_annealing(prob, find_max=False, visualization=True) print( "The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" ) __lowercase : Any = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) __lowercase : Tuple = simulated_annealing(prob, find_max=True, visualization=True) print( "The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: " F"""{local_min.score()}""" )
93
"""simple docstring""" import re def SCREAMING_SNAKE_CASE ( snake_case): return [char.split() for char in re.split(R'''[^ a-z A-Z 0-9 \s]''', str_)] def SCREAMING_SNAKE_CASE ( snake_case): __snake_case = split_input(str_) return "".join( [''''''.join([char.capitalize() for char in sub_str]) for sub_str in string_split]) def SCREAMING_SNAKE_CASE ( snake_case, snake_case, snake_case): try: __snake_case = split_input(snake_case) if upper: __snake_case = ''''''.join( [ separator.join([char.upper() for char in sub_str]) for sub_str in string_split ]) else: __snake_case = ''''''.join( [ separator.join([char.lower() for char in sub_str]) for sub_str in string_split ]) return res_str except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE ( snake_case): return to_simple_case(snake_case) def SCREAMING_SNAKE_CASE ( snake_case): try: __snake_case = to_simple_case(snake_case) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return to_complex_case(snake_case, snake_case, '''_''') def SCREAMING_SNAKE_CASE ( snake_case, snake_case): return to_complex_case(snake_case, snake_case, '''-''') if __name__ == "__main__": __import__("doctest").testmod()
93
1
from itertools import count def _SCREAMING_SNAKE_CASE ( __lowercase : int = 5_0 ) -> int: """simple docstring""" __A = [1] * min_block_length for n in count(__lowercase ): fill_count_functions.append(1 ) for block_length in range(__lowercase , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(f"""{solution() = }""")
637
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __lowercase : list[int] , __lowercase : int ) -> bool: """simple docstring""" if len(__lowercase ) == 0: return False __A = len(__lowercase ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , __lowercase ) else: return binary_search(a_list[midpoint + 1 :] , __lowercase ) if __name__ == "__main__": __a : Tuple = input("Enter numbers separated by comma:\n").strip() __a : Any = [int(item.strip()) for item in user_input.split(",")] __a : List[Any] = int(input("Enter the number to be found in the list:\n").strip()) __a : Optional[int] = "" if binary_search(sequence, target) else "not " print(f"""{target} was {not_str}found in {sequence}""")
637
1
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCAmelCase_ ( __A ): """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Dict , ) -> List[str]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , '''steps_offset''' ) and scheduler.config.steps_offset != 1: lowercase : str =( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('''steps_offset!=1''' , '''1.0.0''' , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) lowercase : Union[str, Any] =dict(scheduler.config ) lowercase : Optional[int] =1 lowercase : Optional[int] =FrozenDict(UpperCamelCase__ ) if hasattr(scheduler.config , '''skip_prk_steps''' ) and scheduler.config.skip_prk_steps is False: lowercase : Any =( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('''skip_prk_steps not set''' , '''1.0.0''' , UpperCamelCase__ , standard_warn=UpperCamelCase__ ) lowercase : str =dict(scheduler.config ) lowercase : Optional[int] =True lowercase : List[str] =FrozenDict(UpperCamelCase__ ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ''' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered''' ''' results in services or applications open to the public. Both the diffusers team and Hugging Face''' ''' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling''' ''' it only for use-cases that involve analyzing network behavior or auditing its results. For more''' ''' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .''' ) self.register_modules( segmentation_model=UpperCamelCase__ , segmentation_processor=UpperCamelCase__ , vae=UpperCamelCase__ , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__ , unet=UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , ) def A__ ( self : Optional[int] , UpperCAmelCase : Optional[Any] = "auto" ) -> List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : Dict =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def A__ ( self : int ) -> Any: '''simple docstring''' self.enable_attention_slicing(UpperCamelCase__ ) def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowercase : List[str] =torch.device('''cuda''' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__ , UpperCamelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if self.device != torch.device('''meta''' ) or not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__ , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : int = 512 , UpperCAmelCase : List[Any] = 512 , UpperCAmelCase : List[str] = 50 , UpperCAmelCase : Optional[Any] = 7.5 , UpperCAmelCase : Optional[Any] = None , UpperCAmelCase : int = 1 , UpperCAmelCase : int = 0.0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Union[str, Any] = None , UpperCAmelCase : List[str] = "pil" , UpperCAmelCase : str = True , UpperCAmelCase : List[Any] = None , UpperCAmelCase : Dict = 1 , **UpperCAmelCase : List[str] , ) -> Dict: '''simple docstring''' lowercase : Tuple =self.segmentation_processor( text=[text] , images=[image] , padding='''max_length''' , return_tensors='''pt''' ).to(self.device ) lowercase : Optional[int] =self.segmentation_model(**UpperCamelCase__ ) lowercase : List[Any] =torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowercase : Tuple =self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowercase : Dict =StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , height=UpperCamelCase__ , width=UpperCamelCase__ , num_inference_steps=UpperCamelCase__ , guidance_scale=UpperCamelCase__ , negative_prompt=UpperCamelCase__ , num_images_per_prompt=UpperCamelCase__ , eta=UpperCamelCase__ , generator=UpperCamelCase__ , latents=UpperCamelCase__ , output_type=UpperCamelCase__ , return_dict=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=UpperCamelCase__ , )
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowercase : Optional[Any] = _symbol_database.Default() lowercase : int = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) lowercase : Optional[int] = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowercase : Optional[int] = None lowercase : Optional[int] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowercase : str = 4_5 lowercase : str = 1_5_8_1 lowercase : Dict = 1_5_1_7 lowercase : List[Any] = 1_5_7_0 lowercase : Optional[int] = 1_5_8_4 lowercase : Tuple = 1_7_9_3 lowercase : Any = 1_7_9_5 lowercase : Optional[int] = 1_9_1_6 lowercase : List[Any] = 1_8_6_4 lowercase : int = 1_9_0_5 lowercase : Union[str, Any] = 1_9_1_9 lowercase : Union[str, Any] = 2_4_2_9 lowercase : List[Any] = 2_2_0_8 lowercase : Union[str, Any] = 2_4_1_8 lowercase : Optional[Any] = 2_3_2_3 lowercase : Union[str, Any] = 2_4_0_7 # @@protoc_insertion_point(module_scope)
302
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) class a__ ( __snake_case ): def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( 'The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PerceiverImageProcessor instead.' , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
559
0
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _A ( __magic_name__ , __magic_name__ , __magic_name__ = None ): if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path lowercase__ = quote(__magic_name__ ) return hfh.hf_hub_url(__magic_name__ , __magic_name__ , repo_type="dataset" , revision=__magic_name__ )
611
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class lowerCAmelCase ( lowercase_ ): __lowerCamelCase = 'visual_bert' def __init__( self :Dict , _lowercase :Union[str, Any]=3_05_22 , _lowercase :List[Any]=7_68 , _lowercase :List[Any]=5_12 , _lowercase :List[str]=12 , _lowercase :Tuple=12 , _lowercase :Optional[Any]=30_72 , _lowercase :int="gelu" , _lowercase :Any=0.1 , _lowercase :Union[str, Any]=0.1 , _lowercase :str=5_12 , _lowercase :str=2 , _lowercase :Optional[int]=0.02 , _lowercase :Tuple=1e-12 , _lowercase :Optional[int]=False , _lowercase :List[str]=True , _lowercase :Union[str, Any]=1 , _lowercase :List[Any]=0 , _lowercase :int=2 , **_lowercase :List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase ) lowercase__ = vocab_size lowercase__ = max_position_embeddings lowercase__ = hidden_size lowercase__ = visual_embedding_dim lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = initializer_range lowercase__ = type_vocab_size lowercase__ = layer_norm_eps lowercase__ = bypass_transformer lowercase__ = special_visual_initialize
611
1
def snake_case ( snake_case__ :str) -> str: return " ".join( """""".join(word[::-1]) if len(snake_case__) > 4 else word for word in sentence.split()) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words('Hey wollef sroirraw'))
401
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { 'configuration_efficientformer': [ 'EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EfficientFormerConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ['EfficientFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'EfficientFormerForImageClassification', 'EfficientFormerForImageClassificationWithTeacher', 'EfficientFormerModel', 'EfficientFormerPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFEfficientFormerForImageClassification', 'TFEfficientFormerForImageClassificationWithTeacher', 'TFEfficientFormerModel', 'TFEfficientFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
401
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case_ = 16 snake_case_ = 32 def lowerCamelCase__ ( snake_case_ : Accelerator , snake_case_ : int = 16 ) -> Tuple: __snake_case = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __snake_case = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(snake_case_ : List[str] ): # max_length=None => use the model max length (it's actually the default) __snake_case = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case_ , max_length=snake_case_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __snake_case = datasets.map( snake_case_ , batched=snake_case_ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(snake_case_ : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. __snake_case = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __snake_case = 16 elif accelerator.mixed_precision != "no": __snake_case = 8 else: __snake_case = None return tokenizer.pad( snake_case_ , padding='''longest''' , max_length=snake_case_ , pad_to_multiple_of=snake_case_ , return_tensors='''pt''' , ) # Instantiate dataloaders. __snake_case = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) __snake_case = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=snake_case_ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case_ = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( snake_case_ : Optional[int] , snake_case_ : Optional[Any] ) -> List[Any]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , snake_case_ ) == "1": __snake_case = 2 # Initialize accelerator __snake_case = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case = config['''lr'''] __snake_case = int(config['''num_epochs'''] ) __snake_case = int(config['''seed'''] ) __snake_case = int(config['''batch_size'''] ) __snake_case = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation __snake_case = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: __snake_case = batch_size // MAX_GPU_BATCH_SIZE __snake_case = MAX_GPU_BATCH_SIZE set_seed(snake_case_ ) __snake_case , __snake_case = get_dataloaders(snake_case_ , snake_case_ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=snake_case_ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __snake_case = model.to(accelerator.device ) # Instantiate optimizer __snake_case = AdamW(params=model.parameters() , lr=snake_case_ ) # Instantiate scheduler __snake_case = get_linear_schedule_with_warmup( optimizer=snake_case_ , num_warmup_steps=100 , num_training_steps=(len(snake_case_ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Now we train the model for epoch in range(snake_case_ ): model.train() for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __snake_case = model(**snake_case_ ) __snake_case = outputs.loss __snake_case = loss / gradient_accumulation_steps accelerator.backward(snake_case_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() __snake_case = 0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __snake_case = model(**snake_case_ ) __snake_case = outputs.logits.argmax(dim=-1 ) __snake_case , __snake_case = accelerator.gather((predictions, batch['''labels''']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(snake_case_ ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples __snake_case = predictions[: len(eval_dataloader.dataset ) - samples_seen] __snake_case = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=snake_case_ , references=snake_case_ , ) __snake_case = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , snake_case_ ) def lowerCamelCase__ ( ) -> Optional[int]: __snake_case = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case_ , default=snake_case_ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __snake_case = parser.parse_args() __snake_case = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
388
from __future__ import annotations import math def lowerCamelCase__ ( snake_case_ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(snake_case_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCamelCase__ ( snake_case_ : int ) -> list[int]: __snake_case = str(snake_case_ ) __snake_case = [n] for i in range(1 , len(snake_case_ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def lowerCamelCase__ ( snake_case_ : int ) -> bool: if len(str(snake_case_ ) ) > 3: if not is_prime(int(str(snake_case_ )[-3:] ) ) or not is_prime(int(str(snake_case_ )[:3] ) ): return False return True def lowerCamelCase__ ( snake_case_ : int = 11 ) -> list[int]: __snake_case = [] __snake_case = 13 while len(snake_case_ ) != count: if validate(snake_case_ ): __snake_case = list_truncated_nums(snake_case_ ) if all(is_prime(snake_case_ ) for i in list_nums ): list_truncated_primes.append(snake_case_ ) num += 2 return list_truncated_primes def lowerCamelCase__ ( ) -> int: return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(11)) = }')
388
1
"""simple docstring""" import math import sys import cva import numpy as np def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : float ): '''simple docstring''' snake_case_ : Dict = math.sqrt(__UpperCamelCase ) snake_case_ : str = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : int , __UpperCamelCase : int , __UpperCamelCase : int ): '''simple docstring''' snake_case_ : Any = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : float ): '''simple docstring''' snake_case_ : Any = np.zeros((kernel_size, kernel_size) ) for i in range(0 , __UpperCamelCase ): for j in range(0 , __UpperCamelCase ): snake_case_ : int = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(__UpperCamelCase , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : np.ndarray , __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : int , ): '''simple docstring''' snake_case_ : Any = np.zeros(img.shape ) snake_case_ : List[Any] = get_gauss_kernel(__UpperCamelCase , __UpperCamelCase ) snake_case_ , snake_case_ : Dict = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): snake_case_ : Tuple = get_slice(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Optional[Any] = img_s - img_s[kernel_size // 2, kernel_size // 2] snake_case_ : int = vec_gaussian(__UpperCamelCase , __UpperCamelCase ) snake_case_ : List[str] = np.multiply(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Tuple = np.multiply(__UpperCamelCase , __UpperCamelCase ) snake_case_ : Dict = np.sum(__UpperCamelCase ) / np.sum(__UpperCamelCase ) snake_case_ : Any = val return imga def __lowerCAmelCase ( __UpperCamelCase : list ): '''simple docstring''' snake_case_ : Any = args[1] if args[1:] else """../image_data/lena.jpg""" snake_case_ : Union[str, Any] = float(args[2] ) if args[2:] else 1.0 snake_case_ : List[Any] = float(args[3] ) if args[3:] else 1.0 if args[4:]: snake_case_ : Optional[Any] = int(args[4] ) snake_case_ : List[str] = kernel_size + abs(kernel_size % 2 - 1 ) else: snake_case_ : Optional[Any] = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Optional[int] = parse_args(sys.argv) __lowerCAmelCase : Union[str, Any] = cva.imread(filename, 0) cva.imshow('''input image''', img) __lowerCAmelCase : List[Any] = img / 255 __lowerCAmelCase : List[Any] = out.astype('''float32''') __lowerCAmelCase : Optional[Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) __lowerCAmelCase : str = out * 255 __lowerCAmelCase : Union[str, Any] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
58
import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE : def __init__( self : Tuple , __lowercase : Optional[int] , __lowercase : Union[str, Any]=3 , __lowercase : str=32 , __lowercase : Any=3 , __lowercase : List[str]=10 , __lowercase : str=[10, 20, 30, 40] , __lowercase : Union[str, Any]=[1, 1, 2, 1] , __lowercase : List[str]=True , __lowercase : Optional[int]=True , __lowercase : str="relu" , __lowercase : List[Any]=3 , __lowercase : Tuple=None , ): '''simple docstring''' __a = parent __a = batch_size __a = image_size __a = num_channels __a = embeddings_size __a = hidden_sizes __a = depths __a = is_training __a = use_labels __a = hidden_act __a = num_labels __a = scope __a = len(__lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.num_labels ) __a = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Dict , __lowercase : Optional[Any] , __lowercase : Dict , __lowercase : Optional[Any] ): '''simple docstring''' __a = RegNetModel(config=__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def UpperCamelCase_ ( self : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] , __lowercase : Optional[int] ): '''simple docstring''' __a = self.num_labels __a = RegNetForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() __a = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : int =(RegNetModel, RegNetForImageClassification) if is_torch_available() else () __lowerCamelCase : str =( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) __lowerCamelCase : Optional[Any] =False __lowerCamelCase : Any =False __lowerCamelCase : List[str] =False __lowerCamelCase : Tuple =False def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = RegNetModelTester(self ) __a = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : int ): '''simple docstring''' return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(__lowercase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __lowercase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(config=__lowercase ) for name, module in model.named_modules(): if isinstance(__lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(__lowercase : List[Any] , __lowercase : Optional[int] , __lowercase : int ): __a = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(__lowercase , __lowercase ) ) __a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __a = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: __a = layer_type __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def UpperCamelCase_ ( self : str ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = RegNetModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCAmelCase__ ( ): """simple docstring""" __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' __a = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowercase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=__lowercase , return_tensors="""pt""" ).to(__lowercase ) # forward pass with torch.no_grad(): __a = model(**__lowercase ) # verify the logits __a = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) __a = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
225
0
import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowercase = logging.get_logger(__name__) _lowercase = { '''microsoft/conditional-detr-resnet-50''': ( '''https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json''' ), } class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = 'conditional_detr' UpperCamelCase_ = ['past_key_values'] UpperCamelCase_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self : Union[str, Any] ,lowerCAmelCase__ : Optional[int]=True ,lowerCAmelCase__ : Dict=None ,lowerCAmelCase__ : Optional[int]=3 ,lowerCAmelCase__ : int=3_00 ,lowerCAmelCase__ : List[Any]=6 ,lowerCAmelCase__ : int=20_48 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Tuple=6 ,lowerCAmelCase__ : str=20_48 ,lowerCAmelCase__ : str=8 ,lowerCAmelCase__ : Union[str, Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=0.0 ,lowerCAmelCase__ : Optional[Any]=True ,lowerCAmelCase__ : str="relu" ,lowerCAmelCase__ : List[str]=2_56 ,lowerCAmelCase__ : Dict=0.1 ,lowerCAmelCase__ : Optional[int]=0.0 ,lowerCAmelCase__ : Dict=0.0 ,lowerCAmelCase__ : str=0.02 ,lowerCAmelCase__ : List[str]=1.0 ,lowerCAmelCase__ : Any=False ,lowerCAmelCase__ : int="sine" ,lowerCAmelCase__ : int="resnet50" ,lowerCAmelCase__ : Tuple=True ,lowerCAmelCase__ : Tuple=False ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : List[str]=5 ,lowerCAmelCase__ : Any=2 ,lowerCAmelCase__ : Dict=1 ,lowerCAmelCase__ : Any=1 ,lowerCAmelCase__ : Optional[int]=2 ,lowerCAmelCase__ : Tuple=5 ,lowerCAmelCase__ : Any=2 ,lowerCAmelCase__ : Union[str, Any]=0.25 ,**lowerCAmelCase__ : Optional[int] ,) -> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) lowerCAmelCase_ : Dict = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCAmelCase_ : Dict = backbone_config.get("model_type" ) lowerCAmelCase_ : Tuple = CONFIG_MAPPING[backbone_model_type] lowerCAmelCase_ : Tuple = config_class.from_dict(lowerCAmelCase__ ) lowerCAmelCase_ : Optional[int] = use_timm_backbone lowerCAmelCase_ : Optional[int] = backbone_config lowerCAmelCase_ : Union[str, Any] = num_channels lowerCAmelCase_ : int = num_queries lowerCAmelCase_ : Union[str, Any] = d_model lowerCAmelCase_ : Tuple = encoder_ffn_dim lowerCAmelCase_ : Union[str, Any] = encoder_layers lowerCAmelCase_ : List[Any] = encoder_attention_heads lowerCAmelCase_ : Optional[Any] = decoder_ffn_dim lowerCAmelCase_ : Optional[int] = decoder_layers lowerCAmelCase_ : Tuple = decoder_attention_heads lowerCAmelCase_ : Tuple = dropout lowerCAmelCase_ : List[Any] = attention_dropout lowerCAmelCase_ : int = activation_dropout lowerCAmelCase_ : Optional[int] = activation_function lowerCAmelCase_ : Tuple = init_std lowerCAmelCase_ : Optional[Any] = init_xavier_std lowerCAmelCase_ : List[Any] = encoder_layerdrop lowerCAmelCase_ : List[str] = decoder_layerdrop lowerCAmelCase_ : int = encoder_layers lowerCAmelCase_ : List[Any] = auxiliary_loss lowerCAmelCase_ : int = position_embedding_type lowerCAmelCase_ : Tuple = backbone lowerCAmelCase_ : Dict = use_pretrained_backbone lowerCAmelCase_ : str = dilation # Hungarian matcher lowerCAmelCase_ : List[str] = class_cost lowerCAmelCase_ : Union[str, Any] = bbox_cost lowerCAmelCase_ : Dict = giou_cost # Loss coefficients lowerCAmelCase_ : Tuple = mask_loss_coefficient lowerCAmelCase_ : str = dice_loss_coefficient lowerCAmelCase_ : Dict = cls_loss_coefficient lowerCAmelCase_ : str = bbox_loss_coefficient lowerCAmelCase_ : Optional[int] = giou_loss_coefficient lowerCAmelCase_ : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase__ ,**lowerCAmelCase__ ) @property def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase_ ( self : str ) -> int: '''simple docstring''' return self.d_model def UpperCAmelCase_ ( self : Optional[int] ) -> str: '''simple docstring''' lowerCAmelCase_ : int = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: lowerCAmelCase_ : Optional[Any] = self.backbone_config.to_dict() lowerCAmelCase_ : Any = self.__class__.model_type return output class __snake_case ( snake_case__ ): """simple docstring""" UpperCamelCase_ = version.parse('1.11' ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def UpperCAmelCase_ ( self : int ) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase_ ( self : Optional[int] ) -> int: '''simple docstring''' return 12
683
class __snake_case : """simple docstring""" def __init__( self : Optional[int] ,lowerCAmelCase__ : str = "" ,lowerCAmelCase__ : bool = False ) -> None: '''simple docstring''' lowerCAmelCase_ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase_ : int = is_leaf lowerCAmelCase_ : Optional[Any] = prefix def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : str ) -> tuple[str, str, str]: '''simple docstring''' lowerCAmelCase_ : Any = 0 for q, w in zip(self.prefix ,lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCAmelCase_ ( self : Optional[int] ,lowerCAmelCase__ : list[str] ) -> None: '''simple docstring''' for word in words: self.insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Any ,lowerCAmelCase__ : str ) -> None: '''simple docstring''' if self.prefix == word: lowerCAmelCase_ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase_ : List[Any] = RadixNode(prefix=lowerCAmelCase__ ,is_leaf=lowerCAmelCase__ ) else: lowerCAmelCase_ : Tuple = self.nodes[word[0]] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase_ : Optional[int] = remaining_prefix lowerCAmelCase_ : Optional[int] = self.nodes[matching_string[0]] lowerCAmelCase_ : List[Any] = RadixNode(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCAmelCase_ : Dict = aux_node if remaining_word == "": lowerCAmelCase_ : List[str] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ,lowerCAmelCase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : int = self.nodes.get(word[0] ,lowerCAmelCase__ ) if not incoming_node: return False else: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase_ : str = list(self.nodes.values() )[0] lowerCAmelCase_ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase_ : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase_ : Optional[Any] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase_ : Tuple = list(incoming_node.nodes.values() )[0] lowerCAmelCase_ : Union[str, Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase_ : str = merging_node.nodes return True def UpperCAmelCase_ ( self : Dict ,lowerCAmelCase__ : int = 0 ) -> None: '''simple docstring''' if self.prefix != "": print("-" * height ,self.prefix ," (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def UpperCamelCase ( ): lowerCAmelCase_ : Dict = "banana bananas bandana band apple all beast".split() lowerCAmelCase_ : List[Any] = RadixNode() root.insert_many(snake_case__) assert all(root.find(snake_case__) for word in words) assert not root.find("bandanas") assert not root.find("apps") root.delete("all") assert not root.find("all") root.delete("banana") assert not root.find("banana") assert root.find("bananas") return True def UpperCamelCase ( ): assert test_trie() def UpperCamelCase ( ): lowerCAmelCase_ : List[str] = RadixNode() lowerCAmelCase_ : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(snake_case__) print("Words:" , snake_case__) print("Tree:") root.print_tree() if __name__ == "__main__": main()
683
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''bridgetower_vision_model''' def __init__( self : Optional[int] , __magic_name__ : Optional[Any]=768 , __magic_name__ : List[Any]=12 , __magic_name__ : Dict=3 , __magic_name__ : List[str]=16 , __magic_name__ : Any=288 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1e-05 , __magic_name__ : int=False , __magic_name__ : str=True , __magic_name__ : Tuple=False , **__magic_name__ : Any , ) -> str: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_channels SCREAMING_SNAKE_CASE_ = patch_size SCREAMING_SNAKE_CASE_ = image_size SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = stop_gradient SCREAMING_SNAKE_CASE_ = share_layernorm SCREAMING_SNAKE_CASE_ = remove_last_layer @classmethod def __A ( cls : str , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Optional[int] ) -> "PretrainedConfig": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if config_dict.get("model_type" ) == "bridgetower": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''bridgetower_text_model''' def __init__( self : str , __magic_name__ : Optional[Any]=50_265 , __magic_name__ : int=768 , __magic_name__ : str=12 , __magic_name__ : int=12 , __magic_name__ : Optional[int]=1 , __magic_name__ : Dict=3_072 , __magic_name__ : List[Any]="gelu" , __magic_name__ : List[Any]=0.1 , __magic_name__ : Any=0.1 , __magic_name__ : Optional[int]=514 , __magic_name__ : str=1 , __magic_name__ : List[str]=1e-05 , __magic_name__ : Optional[Any]=1 , __magic_name__ : Any=0 , __magic_name__ : Any=2 , __magic_name__ : List[str]="absolute" , __magic_name__ : List[str]=True , **__magic_name__ : int , ) -> Optional[Any]: super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_dropout_prob SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = type_vocab_size SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = position_embedding_type SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = bos_token_id SCREAMING_SNAKE_CASE_ = eos_token_id @classmethod def __A ( cls : List[str] , __magic_name__ : Union[str, os.PathLike] , **__magic_name__ : Tuple ) -> "PretrainedConfig": SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = cls.get_config_dict(__magic_name__ , **__magic_name__ ) if config_dict.get("model_type" ) == "bridgetower": SCREAMING_SNAKE_CASE_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__magic_name__ , **__magic_name__ ) class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''bridgetower''' def __init__( self : int , __magic_name__ : Union[str, Any]=True , __magic_name__ : List[str]="gelu" , __magic_name__ : List[str]=768 , __magic_name__ : Union[str, Any]=1 , __magic_name__ : List[Any]=1e-05 , __magic_name__ : Dict=False , __magic_name__ : int="add" , __magic_name__ : str=12 , __magic_name__ : str=6 , __magic_name__ : Dict=False , __magic_name__ : List[Any]=False , __magic_name__ : Dict=None , __magic_name__ : List[str]=None , **__magic_name__ : List[str] , ) -> Union[str, Any]: # TODO: remove this once the Hub files are updated. SCREAMING_SNAKE_CASE_ = kwargs.pop("text_config_dict" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = kwargs.pop("vision_config_dict" , __magic_name__ ) super().__init__(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = share_cross_modal_transformer_layers SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = initializer_factor SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = share_link_tower_layers SCREAMING_SNAKE_CASE_ = link_tower_type SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = tie_word_embeddings SCREAMING_SNAKE_CASE_ = init_layernorm_from_vision_encoder if text_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: SCREAMING_SNAKE_CASE_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) SCREAMING_SNAKE_CASE_ = BridgeTowerTextConfig(**__magic_name__ ) SCREAMING_SNAKE_CASE_ = BridgeTowerVisionConfig(**__magic_name__ ) @classmethod def __A ( cls : Tuple , __magic_name__ : BridgeTowerTextConfig , __magic_name__ : BridgeTowerVisionConfig , **__magic_name__ : Tuple ) -> int: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__magic_name__ ) def __A ( self : Tuple ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE_ = self.text_config.to_dict() SCREAMING_SNAKE_CASE_ = self.vision_config.to_dict() SCREAMING_SNAKE_CASE_ = self.__class__.model_type return output
140
def a__ ( __UpperCamelCase ): if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(__UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
140
1
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import numpy as np import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForMaskedImageModeling, HfArgumentParser, Trainer, TrainingArguments, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __A =logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt') __A =list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys()) __A =tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : lowerCAmelCase :Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''The column name of the images in the files. If not set, will try to use \'image\' or \'img\'.'''} , ) lowerCAmelCase :Optional[str] = field(default=a__ , metadata={'''help''': '''A folder containing the training data.'''} ) lowerCAmelCase :Optional[str] = field(default=a__ , metadata={'''help''': '''A folder containing the validation data.'''} ) lowerCAmelCase :Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) lowerCAmelCase :int = field(default=32 , metadata={'''help''': '''The size of the square patches to use for masking.'''} ) lowerCAmelCase :float = field( default=0.6 , metadata={'''help''': '''Percentage of patches to mask.'''} , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def snake_case__ ( self): UpperCAmelCase__ : List[Any] = {} if self.train_dir is not None: UpperCAmelCase__ : List[Any] = self.train_dir if self.validation_dir is not None: UpperCAmelCase__ : Tuple = self.validation_dir UpperCAmelCase__ : Optional[Any] = data_files if data_files else None @dataclass class _snake_case : lowerCAmelCase :str = field( default=a__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a ''' '''checkpoint identifier on the hub. ''' '''Don\'t set if you want to train a model from scratch.''' ) } , ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(a__ )} , ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) lowerCAmelCase :Optional[str] = field( default=a__ , metadata={'''help''': '''Where do you want to store (cache) the pretrained models/datasets downloaded from the hub'''} , ) lowerCAmelCase :str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowerCAmelCase :str = field(default=a__ , metadata={'''help''': '''Name or path of preprocessor config.'''} ) lowerCAmelCase :bool = field( default=a__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''The size (resolution) of each image. If not specified, will use `image_size` of the configuration.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={ '''help''': ( '''The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.''' ) } , ) lowerCAmelCase :Optional[int] = field( default=a__ , metadata={'''help''': '''Stride to use for the encoder.'''} , ) class _snake_case : def __init__( self , _lowerCamelCase=192 , _lowerCamelCase=32 , _lowerCamelCase=4 , _lowerCamelCase=0.6): UpperCAmelCase__ : Tuple = input_size UpperCAmelCase__ : Any = mask_patch_size UpperCAmelCase__ : Optional[int] = model_patch_size UpperCAmelCase__ : Tuple = mask_ratio if self.input_size % self.mask_patch_size != 0: raise ValueError("""Input size must be divisible by mask patch size""") if self.mask_patch_size % self.model_patch_size != 0: raise ValueError("""Mask patch size must be divisible by model patch size""") UpperCAmelCase__ : Tuple = self.input_size // self.mask_patch_size UpperCAmelCase__ : List[str] = self.mask_patch_size // self.model_patch_size UpperCAmelCase__ : str = self.rand_size**2 UpperCAmelCase__ : Union[str, Any] = int(np.ceil(self.token_count * self.mask_ratio)) def __call__( self): UpperCAmelCase__ : Any = np.random.permutation(self.token_count)[: self.mask_count] UpperCAmelCase__ : Dict = np.zeros(self.token_count , dtype=_lowerCamelCase) UpperCAmelCase__ : Dict = 1 UpperCAmelCase__ : Optional[Any] = mask.reshape((self.rand_size, self.rand_size)) UpperCAmelCase__ : List[str] = mask.repeat(self.scale , axis=0).repeat(self.scale , axis=1) return torch.tensor(mask.flatten()) def _UpperCamelCase ( UpperCamelCase__ ): UpperCAmelCase__ : List[Any] = torch.stack([example["""pixel_values"""] for example in examples] ) UpperCAmelCase__ : Tuple = torch.stack([example["""mask"""] for example in examples] ) return {"pixel_values": pixel_values, "bool_masked_pos": mask} def _UpperCamelCase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase__ : int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_mim""" , UpperCamelCase__ , UpperCamelCase__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCAmelCase__ : Dict = training_args.get_process_log_level() logger.setLevel(UpperCamelCase__ ) transformers.utils.logging.set_verbosity(UpperCamelCase__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCAmelCase__ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset. UpperCAmelCase__ : Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCAmelCase__ : Optional[int] = None if """validation""" in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , UpperCamelCase__ ) and data_args.train_val_split > 0.0: UpperCAmelCase__ : Dict = ds["""train"""].train_test_split(data_args.train_val_split ) UpperCAmelCase__ : List[Any] = split["""train"""] UpperCAmelCase__ : int = split["""test"""] # Create config # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase__ : int = { """cache_dir""": model_args.cache_dir, """revision""": model_args.model_revision, """use_auth_token""": True if model_args.use_auth_token else None, } if model_args.config_name_or_path: UpperCAmelCase__ : Union[str, Any] = AutoConfig.from_pretrained(model_args.config_name_or_path , **UpperCamelCase__ ) elif model_args.model_name_or_path: UpperCAmelCase__ : str = AutoConfig.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: UpperCAmelCase__ : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(f'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(f'''New config: {config}''' ) # make sure the decoder_type is "simmim" (only relevant for BEiT) if hasattr(UpperCamelCase__ , """decoder_type""" ): UpperCAmelCase__ : str = """simmim""" # adapt config UpperCAmelCase__ : Optional[Any] = model_args.image_size if model_args.image_size is not None else config.image_size UpperCAmelCase__ : int = model_args.patch_size if model_args.patch_size is not None else config.patch_size UpperCAmelCase__ : Dict = ( model_args.encoder_stride if model_args.encoder_stride is not None else config.encoder_stride ) config.update( { """image_size""": model_args.image_size, """patch_size""": model_args.patch_size, """encoder_stride""": model_args.encoder_stride, } ) # create image processor if model_args.image_processor_name: UpperCAmelCase__ : List[Any] = AutoImageProcessor.from_pretrained(model_args.image_processor_name , **UpperCamelCase__ ) elif model_args.model_name_or_path: UpperCAmelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained(model_args.model_name_or_path , **UpperCamelCase__ ) else: UpperCAmelCase__ : Dict = { conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items() } UpperCAmelCase__ : Union[str, Any] = IMAGE_PROCESSOR_TYPES[model_args.model_type]() # create model if model_args.model_name_or_path: UpperCAmelCase__ : Tuple = AutoModelForMaskedImageModeling.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=UpperCamelCase__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) UpperCAmelCase__ : Tuple = AutoModelForMaskedImageModeling.from_config(UpperCamelCase__ ) if training_args.do_train: UpperCAmelCase__ : Optional[Any] = ds["""train"""].column_names else: UpperCAmelCase__ : Union[str, Any] = ds["""validation"""].column_names if data_args.image_column_name is not None: UpperCAmelCase__ : Optional[Any] = data_args.image_column_name elif "image" in column_names: UpperCAmelCase__ : Any = """image""" elif "img" in column_names: UpperCAmelCase__ : Dict = """img""" else: UpperCAmelCase__ : Tuple = column_names[0] # transformations as done in original SimMIM paper # source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py UpperCAmelCase__ : Any = Compose( [ Lambda(lambda UpperCamelCase__ : img.convert("""RGB""" ) if img.mode != "RGB" else img ), RandomResizedCrop(model_args.image_size , scale=(0.67, 1.0) , ratio=(3.0 / 4.0, 4.0 / 3.0) ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) # create mask generator UpperCAmelCase__ : List[Any] = MaskGenerator( input_size=model_args.image_size , mask_patch_size=data_args.mask_patch_size , model_patch_size=model_args.patch_size , mask_ratio=data_args.mask_ratio , ) def preprocess_images(UpperCamelCase__ ): UpperCAmelCase__ : str = [transforms(UpperCamelCase__ ) for image in examples[image_column_name]] UpperCAmelCase__ : List[str] = [mask_generator() for i in range(len(examples[image_column_name] ) )] return examples if training_args.do_train: if "train" not in ds: raise ValueError("""--do_train requires a train dataset""" ) if data_args.max_train_samples is not None: UpperCAmelCase__ : List[str] = ds["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(UpperCamelCase__ ) if training_args.do_eval: if "validation" not in ds: raise ValueError("""--do_eval requires a validation dataset""" ) if data_args.max_eval_samples is not None: UpperCAmelCase__ : List[Any] = ( ds["""validation"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(UpperCamelCase__ ) # Initialize our trainer UpperCAmelCase__ : str = Trainer( model=UpperCamelCase__ , args=UpperCamelCase__ , train_dataset=ds["""train"""] if training_args.do_train else None , eval_dataset=ds["""validation"""] if training_args.do_eval else None , tokenizer=UpperCamelCase__ , data_collator=UpperCamelCase__ , ) # Training if training_args.do_train: UpperCAmelCase__ : str = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase__ : List[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase__ : Dict = last_checkpoint UpperCAmelCase__ : str = trainer.train(resume_from_checkpoint=UpperCamelCase__ ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCAmelCase__ : int = trainer.evaluate() trainer.log_metrics("""eval""" , UpperCamelCase__ ) trainer.save_metrics("""eval""" , UpperCamelCase__ ) # Write model card and (optionally) push to hub UpperCAmelCase__ : Optional[Any] = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """masked-image-modeling""", """dataset""": data_args.dataset_name, """tags""": ["""masked-image-modeling"""], } if training_args.push_to_hub: trainer.push_to_hub(**UpperCamelCase__ ) else: trainer.create_model_card(**UpperCamelCase__ ) if __name__ == "__main__": main()
113
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _UpperCamelCase ( UpperCamelCase__ ): # A local function to see if a dot lands in the circle. def is_in_circle(UpperCamelCase__ , UpperCamelCase__ ) -> bool: UpperCAmelCase__ : List[str] = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle UpperCAmelCase__ : Optional[Any] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(UpperCamelCase__ ) ) # The ratio of the area for circle to square is pi/4. UpperCAmelCase__ : int = proportion * 4 print(f'''The estimated value of pi is {pi_estimate}''' ) print(f'''The numpy value of pi is {pi}''' ) print(f'''The total error is {abs(pi - pi_estimate )}''' ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 , ): return mean( function_to_integrate(uniform(UpperCamelCase__ , UpperCamelCase__ ) ) for _ in range(UpperCamelCase__ ) ) * (max_value - min_value) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ = 0.0 , UpperCamelCase__ = 1.0 ): def identity_function(UpperCamelCase__ ) -> float: return x UpperCAmelCase__ : List[str] = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = (max_value * max_value - min_value * min_value) / 2 print("""******************""" ) print(f'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {expected_value}''' ) print(f'''Total error is {abs(estimated_value - expected_value )}''' ) print("""******************""" ) def _UpperCamelCase ( UpperCamelCase__ ): def function_to_integrate(UpperCamelCase__ ) -> float: return sqrt(4.0 - x * x ) UpperCAmelCase__ : Dict = area_under_curve_estimator( UpperCamelCase__ , UpperCamelCase__ , 0.0 , 2.0 ) print("""******************""" ) print("""Estimating pi using area_under_curve_estimator""" ) print(f'''Estimated value is {estimated_value}''' ) print(f'''Expected value is {pi}''' ) print(f'''Total error is {abs(estimated_value - pi )}''' ) print("""******************""" ) if __name__ == "__main__": import doctest doctest.testmod()
113
1
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a_ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =tmp_path / 'cache' _lowerCamelCase : str ={'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Optional[Any] =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def a_ ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): '''simple docstring''' _lowerCamelCase : str =tmp_path / 'cache' _lowerCamelCase : Tuple ={'text': 'string'} _lowerCamelCase : Dict =features.copy() if features else default_expected_features _lowerCamelCase : List[str] =( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : List[Any] =TextDatasetReader(SCREAMING_SNAKE_CASE__ , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' _lowerCamelCase : Tuple =tmp_path / 'cache' _lowerCamelCase : List[str] ={'text': 'string'} _lowerCamelCase : Any =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , split=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : str =text_path elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : Union[str, Any] =[text_path] _lowerCamelCase : Tuple =tmp_path / 'cache' _lowerCamelCase : Any ={'text': 'string'} _lowerCamelCase : Tuple =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a_ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=("train",) ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for split in splits: _lowerCamelCase : Tuple =dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ): '''simple docstring''' _lowerCamelCase : str =tmp_path / 'cache' _lowerCamelCase : Union[str, Any] ={'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowerCamelCase : Any =TextDatasetReader({'train': text_path} , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def a_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] =tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowerCamelCase : Any ={'text': 'string'} _lowerCamelCase : str =features.copy() if features else default_expected_features _lowerCamelCase : Optional[Any] =( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) _lowerCamelCase : int =TextDatasetReader({'train': text_path} , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def a_ ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' if split: _lowerCamelCase : Any ={split: text_path} else: _lowerCamelCase : Union[str, Any] ='train' _lowerCamelCase : Tuple ={'train': text_path, 'test': text_path} _lowerCamelCase : Any =tmp_path / 'cache' _lowerCamelCase : List[str] ={'text': 'string'} _lowerCamelCase : Any =TextDatasetReader(SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_text_datasetdict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
464
from timeit import timeit lowerCamelCase = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] =0 _lowerCamelCase : Union[str, Any] =len(SCREAMING_SNAKE_CASE__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : List[str] =len(SCREAMING_SNAKE_CASE__ ) // 2 _lowerCamelCase : Optional[Any] =len(SCREAMING_SNAKE_CASE__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(SCREAMING_SNAKE_CASE__ ) ) def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 2: return True if s[0] == s[len(SCREAMING_SNAKE_CASE__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return s == s[::-1] def a_ ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] =F'''all({name}(key) is value for key, value in test_data.items())''' _lowerCamelCase : List[Any] =F'''from __main__ import test_data, {name}''' _lowerCamelCase : Any =500_000 _lowerCamelCase : Dict =timeit(stmt=SCREAMING_SNAKE_CASE__ , setup=SCREAMING_SNAKE_CASE__ , number=SCREAMING_SNAKE_CASE__ ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
464
1
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCamelCase__ = pytest.mark.integration lowerCamelCase__ = {"comet"} lowerCamelCase__ = importlib.util.find_spec("fairseq") is not None lowerCamelCase__ = {"code_eval"} lowerCamelCase__ = os.name == "nt" lowerCamelCase__ = {"bertscore", "frugalscore", "perplexity"} lowerCamelCase__ = importlib.util.find_spec("transformers") is not None def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" @wraps(__A ) def wrapper(self ,lowercase_ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest("\"test requires Fairseq\"" ) else: test_case(self ,__A ) return wrapper def lowercase__ ( lowercase_ ) -> int: """simple docstring""" @wraps(__A ) def wrapper(self ,lowercase_ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest("\"test requires transformers\"" ) else: test_case(self ,__A ) return wrapper def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" @wraps(__A ) def wrapper(self ,lowercase_ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest("\"test not supported on Windows\"" ) else: test_case(self ,__A ) return wrapper def lowercase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[int] = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob("./metrics/*/" )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _snake_case , _snake_case , _snake_case ) @local class __SCREAMING_SNAKE_CASE ( parameterized.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[Any] = {} SCREAMING_SNAKE_CASE__ :List[Any] = None @pytest.mark.filterwarnings("ignore:metric_module_factory is deprecated:FutureWarning" ) @pytest.mark.filterwarnings("ignore:load_metric is deprecated:FutureWarning" ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Tuple ) -> Dict: _UpperCamelCase : List[str] = "[...]" _UpperCamelCase : int = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path ) _UpperCamelCase : List[str] = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase__ ) # check parameters _UpperCamelCase : Union[str, Any] = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase__ , metric_module.__name__ ): with self.use_local_metrics(): try: _UpperCamelCase : Any = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def __SCREAMING_SNAKE_CASE ( self : str , __a : Optional[int] ) -> str: _UpperCamelCase : List[str] = "[...]" _UpperCamelCase : Union[str, Any] = importlib.import_module( datasets.load.metric_module_factory(os.path.join("metrics" , lowerCAmelCase__ ) ).module_path ) # run doctest with self.use_local_metrics(): _UpperCamelCase : str = doctest.testmod(lowerCAmelCase__ , verbose=lowerCAmelCase__ , raise_on_error=lowerCAmelCase__ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Union[str, Any] , __a : Optional[Any] ) -> Dict: if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase__ ): yield else: yield @contextmanager def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: def load_local_metric(__a : Tuple , *__a : str , **__a : Dict ): return load_metric(os.path.join("metrics" , lowerCAmelCase__ ) , *lowerCAmelCase__ , **lowerCAmelCase__ ) with patch("datasets.load_metric" ) as mock_load_metric: _UpperCamelCase : Optional[Any] = load_local_metric yield @classmethod def __SCREAMING_SNAKE_CASE ( cls : List[Any] , __a : Any ) -> str: def wrapper(__a : List[Any] ): _UpperCamelCase : List[str] = contextmanager(lowerCAmelCase__ ) _UpperCamelCase : Tuple = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher("bleurt" ) def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string("sv" ,"" ,"" ) # handle pytest cli flags class __SCREAMING_SNAKE_CASE ( _snake_case ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : Any ) -> int: assert len(input_dict["input_ids"] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch("bleurt.score._create_predictor" ) as mock_create_predictor: _UpperCamelCase : Tuple = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher("bertscore" ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" import torch def bert_cos_score_idf(lowercase_ ,lowercase_ ,*lowercase_ ,**lowercase_ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch("bert_score.scorer.get_model" ), patch( "bert_score.scorer.bert_cos_score_idf" ) as mock_bert_cos_score_idf: _UpperCamelCase : Optional[int] = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher("comet" ) def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" def load_from_checkpoint(lowercase_ ): class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : Optional[int] , *__a : Dict , **__a : str ) -> Dict: assert len(lowerCAmelCase__ ) == 2 _UpperCamelCase : Optional[int] = [0.19, 0.92] return scores, sum(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch("comet.download_model" ) as mock_download_model: _UpperCamelCase : Optional[Any] = None with patch("comet.load_from_checkpoint" ) as mock_load_from_checkpoint: _UpperCamelCase : List[Any] = load_from_checkpoint yield def lowercase__ ( ) -> List[Any]: """simple docstring""" _UpperCamelCase : List[str] = load_metric(os.path.join("metrics" ,"seqeval" ) ) _UpperCamelCase : List[Any] = "ERROR" _UpperCamelCase : List[Any] = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(__A ,match=re.escape(__A ) ): metric.compute(predictions=[] ,references=[] ,scheme=__A )
701
"""simple docstring""" import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append(".") def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Any = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( "`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got " F'''{test_file} instead.''' ) _UpperCamelCase : str = components[-1] if not test_fn.endswith("py" ): raise ValueError(F'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith("test_modeling_" ): raise ValueError( F'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _UpperCamelCase : Dict = components[:-1] + [test_fn.replace(".py" ,"" )] _UpperCamelCase : List[str] = ".".join(lowercase_ ) return test_module_path def lowercase__ ( lowercase_ ) -> List[Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_module_path(lowercase_ ) _UpperCamelCase : str = importlib.import_module(lowercase_ ) return test_module def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): if attr.endswith("ModelTester" ): tester_classes.append(getattr(lowercase_ ,lowercase_ ) ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Tuple: """simple docstring""" _UpperCamelCase : Optional[Any] = [] _UpperCamelCase : Any = get_test_module(lowercase_ ) for attr in dir(lowercase_ ): _UpperCamelCase : int = getattr(lowercase_ ,lowercase_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _UpperCamelCase : Optional[Any] = getattr(lowercase_ ,"all_model_classes" ,[] ) if len(lowercase_ ) > 0: test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Any: """simple docstring""" _UpperCamelCase : Dict = get_test_classes(lowercase_ ) _UpperCamelCase : int = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Optional[Any]: """simple docstring""" _UpperCamelCase : List[str] = test_class() if hasattr(lowercase_ ,"setUp" ): test.setUp() _UpperCamelCase : Tuple = None if hasattr(lowercase_ ,"model_tester" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _UpperCamelCase : Tuple = test.model_tester.__class__ return model_tester def lowercase__ ( lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : str = get_test_classes(lowercase_ ) _UpperCamelCase : Dict = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" _UpperCamelCase : Any = get_test_classes_for_model(lowercase_ ,lowercase_ ) _UpperCamelCase : List[Any] = [] for test_class in test_classes: _UpperCamelCase : List[Any] = get_model_tester_from_test_class(lowercase_ ) if tester_class is not None: tester_classes.append(lowercase_ ) # sort with class names return sorted(lowercase_ ,key=lambda lowercase_ : x.__name__ ) def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Any = get_test_classes(lowercase_ ) _UpperCamelCase : Tuple = {test_class: get_model_tester_from_test_class(lowercase_ ) for test_class in test_classes} return test_tester_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Optional[int] = { model_class: get_test_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_test_mapping def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : Optional[Any] = get_model_classes(lowercase_ ) _UpperCamelCase : Tuple = { model_class: get_tester_classes_for_model(lowercase_ ,lowercase_ ) for model_class in model_classes } return model_to_tester_mapping def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" if isinstance(lowercase_ ,lowercase_ ): return o elif isinstance(lowercase_ ,lowercase_ ): return o.__name__ elif isinstance(lowercase_ ,(list, tuple) ): return [to_json(lowercase_ ) for x in o] elif isinstance(lowercase_ ,lowercase_ ): return {to_json(lowercase_ ): to_json(lowercase_ ) for k, v in o.items()} else: return o
51
0
def SCREAMING_SNAKE_CASE ( ) -> list[list[int]]: return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] lowercase_ = generate_large_matrix() lowercase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: assert all(row == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for row in grid ) assert all(list(_UpperCAmelCase ) == sorted(_UpperCAmelCase , reverse=_UpperCAmelCase ) for col in zip(*_UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: _a = 0 _a = len(_UpperCAmelCase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _a = (left + right) // 2 _a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _a = mid + 1 else: _a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: _a = 0 _a = len(grid[0] ) for i in range(len(_UpperCAmelCase ) ): _a = find_negative_index(grid[i][:bound] ) total += bound return (len(_UpperCAmelCase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: _a = 0 for row in grid: for i, number in enumerate(_UpperCAmelCase ): if number < 0: total += len(_UpperCAmelCase ) - i break return total def SCREAMING_SNAKE_CASE ( ) -> None: from timeit import timeit print('Running benchmarks' ) _a = ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _a = timeit(f"""{func}(grid=grid)""" , setup=_UpperCAmelCase , number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
562
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowercase_ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowercase_ = { 'moussaKam/mbarthez': 10_24, 'moussaKam/barthez': 10_24, 'moussaKam/barthez-orangesum-title': 10_24, } lowercase_ = '▁' class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = VOCAB_FILES_NAMES _A = PRETRAINED_VOCAB_FILES_MAP _A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int="<s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : Optional[Any]="<unk>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<pad>" , SCREAMING_SNAKE_CASE_ : str="<mask>" , SCREAMING_SNAKE_CASE_ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE_ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token _a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE_ , ) _a = vocab_file _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) _a = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} _a = len(self.sp_model ) - 1 _a = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _UpperCAmelCase ( self : Optional[int] ): return len(self.sp_model ) def _UpperCAmelCase ( self : Dict ): _a = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _UpperCAmelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str ): return self.sp_model.encode(SCREAMING_SNAKE_CASE_ , out_type=SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _a = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) return spm_id if spm_id else self.unk_token_id def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ): _a = [] _a = '' _a = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) + token _a = True _a = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE_ ) _a = False out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE_ ) return out_string.strip() def __getstate__( self : List[str] ): _a = self.__dict__.copy() _a = None return state def __setstate__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ): _a = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _a = {} _a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _a = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_ , 'wb' ) as fi: _a = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
562
1
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple ): A__ = len(__UpperCAmelCase ) A__ = len(__UpperCAmelCase ) A__ = ( first_str_length if first_str_length > second_str_length else second_str_length ) A__ = [] for char_count in range(__UpperCAmelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(__UpperCAmelCase ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
713
"""simple docstring""" from __future__ import annotations class a : """simple docstring""" def __init__( self: Any , UpperCamelCase: str , UpperCamelCase: str ): """simple docstring""" A__ , A__ = text, pattern A__ , A__ = len(UpperCamelCase ), len(UpperCamelCase ) def UpperCamelCase ( self: Dict , UpperCamelCase: str ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCamelCase ( self: str , UpperCamelCase: int ): """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase ( self: List[Any] ): """simple docstring""" A__ = [] for i in range(self.textLen - self.patLen + 1 ): A__ = self.mismatch_in_text(UpperCamelCase ) if mismatch_index == -1: positions.append(UpperCamelCase ) else: A__ = self.match_in_pattern(self.text[mismatch_index] ) A__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions SCREAMING_SNAKE_CASE_ : List[Any] = 'ABAABA' SCREAMING_SNAKE_CASE_ : List[Any] = 'AB' SCREAMING_SNAKE_CASE_ : Union[str, Any] = BoyerMooreSearch(text, pattern) SCREAMING_SNAKE_CASE_ : int = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
500
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class A__ ( UpperCAmelCase__ ): __UpperCamelCase : List[str] = "philschmid/bart-large-cnn-samsum" __UpperCamelCase : int = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) __UpperCamelCase : Union[str, Any] = "summarizer" __UpperCamelCase : List[str] = AutoTokenizer __UpperCamelCase : Dict = AutoModelForSeqaSeqLM __UpperCamelCase : List[str] = ["text"] __UpperCamelCase : Tuple = ["text"] def __UpperCAmelCase ( self :List[str] , SCREAMING_SNAKE_CASE :str ) -> int: '''simple docstring''' return self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" , truncation=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> Optional[int]: '''simple docstring''' return self.model.generate(**SCREAMING_SNAKE_CASE )[0] def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :Dict ) -> Dict: '''simple docstring''' return self.pre_processor.decode(SCREAMING_SNAKE_CASE , skip_special_tokens=SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE )
694
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : int = 4000000 ) -> int: _a : Optional[Any] =[] _a , _a : Union[str, Any] =0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_UpperCAmelCase ) _a , _a : Optional[Any] =b, a + b return sum(_UpperCAmelCase ) if __name__ == "__main__": print(F"{solution() = }")
694
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class _lowerCAmelCase ( ctypes.Structure ): '''simple docstring''' a_ : int =[("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowerCamelCase_ ( )-> Any: if os.name == "nt": _snake_case : int = CursorInfo() _snake_case : int = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _snake_case : List[str] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowerCamelCase_ ( )-> Optional[Any]: if os.name == "nt": _snake_case : Dict = CursorInfo() _snake_case : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) _snake_case : Dict = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowerCamelCase_ ( )-> Any: try: hide_cursor() yield finally: show_cursor()
716
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : torch.FloatTensor class _lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' @register_to_config def __init__( self : str , UpperCamelCase : int = 32 , UpperCamelCase : int = 64 , UpperCamelCase : int = 20 , UpperCamelCase : int = 7_68 , UpperCamelCase : Optional[int]=77 , UpperCamelCase : int=4 , UpperCamelCase : float = 0.0 , UpperCamelCase : str = "silu" , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = None , UpperCamelCase : Optional[str] = "linear" , UpperCamelCase : Optional[str] = "prd" , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , UpperCamelCase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case : str = num_attention_heads _snake_case : Optional[int] = attention_head_dim _snake_case : Any = num_attention_heads * attention_head_dim _snake_case : List[Any] = additional_embeddings _snake_case : List[str] = time_embed_dim or inner_dim _snake_case : int = embedding_proj_dim or embedding_dim _snake_case : List[Any] = clip_embed_dim or embedding_dim _snake_case : Optional[Any] = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _snake_case : List[Any] = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _snake_case : str = None elif embedding_proj_norm_type == "layer": _snake_case : List[Any] = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) _snake_case : str = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _snake_case : Any = None elif encoder_hid_proj_type == "linear": _snake_case : Optional[int] = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _snake_case : str = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _snake_case : Dict = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) _snake_case : Optional[int] = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn='gelu' , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _snake_case : Optional[int] = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _snake_case : Optional[Any] = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) _snake_case : Optional[Any] = nn.LayerNorm(UpperCamelCase ) _snake_case : Union[str, Any] = nn.Linear(UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _snake_case : Optional[Any] = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , UpperCamelCase , persistent=UpperCamelCase ) _snake_case : str = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _snake_case : List[str] = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _snake_case : Optional[Any] = {} def fn_recursive_add_processors(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Dict[str, AttentionProcessor] ): if hasattr(UpperCamelCase , 'set_processor' ): _snake_case : Tuple = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ): '''simple docstring''' _snake_case : Optional[int] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(UpperCamelCase : str , UpperCamelCase : torch.nn.Module , UpperCamelCase : Union[str, Any] ): if hasattr(UpperCamelCase , 'set_processor' ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCamelCase_ ( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Union[torch.Tensor, float, int] , UpperCamelCase : torch.FloatTensor , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[torch.BoolTensor] = None , UpperCamelCase : bool = True , ): '''simple docstring''' _snake_case : Dict = hidden_states.shape[0] _snake_case : str = timestep if not torch.is_tensor(UpperCamelCase ): _snake_case : Dict = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _snake_case : Tuple = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _snake_case : Optional[int] = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _snake_case : Union[str, Any] = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _snake_case : Tuple = timesteps_projected.to(dtype=self.dtype ) _snake_case : List[Any] = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _snake_case : Optional[Any] = self.embedding_proj_norm(UpperCamelCase ) _snake_case : Union[str, Any] = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _snake_case : Dict = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) _snake_case : str = self.proj_in(UpperCamelCase ) _snake_case : int = self.positional_embedding.to(hidden_states.dtype ) _snake_case : Optional[int] = [] _snake_case : List[Any] = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _snake_case : str = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _snake_case : str = hidden_states[:, None, :] _snake_case : str = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _snake_case : int = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _snake_case : Optional[int] = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _snake_case : Tuple = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _snake_case : Optional[Any] = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _snake_case : Optional[Any] = hidden_states + positional_embeddings if attention_mask is not None: _snake_case : Any = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _snake_case : Tuple = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _snake_case : int = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _snake_case : str = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _snake_case : Tuple = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _snake_case : Any = block(UpperCamelCase , attention_mask=UpperCamelCase ) _snake_case : Dict = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _snake_case : str = hidden_states[:, -1] else: _snake_case : Any = hidden_states[:, additional_embeddings_len:] _snake_case : List[Any] = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def UpperCamelCase_ ( self : Tuple , UpperCamelCase : Union[str, Any] ): '''simple docstring''' _snake_case : List[Any] = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
669
0
from collections.abc import Sequence def __magic_name__ ( lowerCAmelCase_ = None): '''simple docstring''' if nums is None or not nums: raise ValueError("Input sequence should not be empty") lowerCamelCase_ : Dict = nums[0] for i in range(1 , len(lowerCAmelCase_)): lowerCamelCase_ : Tuple = nums[i] lowerCamelCase_ : List[str] = max(lowerCAmelCase_ , ans + num , lowerCAmelCase_) return ans if __name__ == "__main__": import doctest doctest.testmod() # Try on a sample input from the user __magic_name__ = int(input('''Enter number of elements : ''').strip()) __magic_name__ = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n] print(max_subsequence_sum(array))
250
from math import factorial, radians def __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ = 18 , lowerCAmelCase_ = 10): '''simple docstring''' lowerCamelCase_ : List[str] = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians lowerCamelCase_ : Tuple = radians(lowerCAmelCase_) lowerCamelCase_ : Tuple = angle_in_radians lowerCamelCase_ : Tuple = 3 lowerCamelCase_ : List[Any] = -1 for _ in range(lowerCAmelCase_): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase_) lowerCamelCase_ : List[Any] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase_ , lowerCAmelCase_) if __name__ == "__main__": __import__('''doctest''').testmod()
250
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig SCREAMING_SNAKE_CASE_ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : List[str] = { "Intel/dpt-large": "https://huggingface.co/Intel/dpt-large/resolve/main/config.json", # See all DPT models at https://huggingface.co/models?filter=dpt } class _A ( _lowerCamelCase ): __a = 'dpt' def __init__( self , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1e-12 , SCREAMING_SNAKE_CASE__=384 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[2, 5, 8, 11] , SCREAMING_SNAKE_CASE__="project" , SCREAMING_SNAKE_CASE__=[4, 2, 1, 0.5] , SCREAMING_SNAKE_CASE__=[96, 192, 384, 768] , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=-1 , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.4 , SCREAMING_SNAKE_CASE__=255 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=[1, 1024, 24, 24] , SCREAMING_SNAKE_CASE__=[0, 1] , SCREAMING_SNAKE_CASE__=None , **SCREAMING_SNAKE_CASE__ , ) -> str: super().__init__(**A__ ) lowerCamelCase__ = hidden_size lowerCamelCase__ = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("Initializing the config with a `BiT` backbone." ) lowerCamelCase__ = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, } lowerCamelCase__ = BitConfig(**A__ ) elif isinstance(A__ , A__ ): logger.info("Initializing the config with a `BiT` backbone." ) lowerCamelCase__ = BitConfig(**A__ ) elif isinstance(A__ , A__ ): lowerCamelCase__ = backbone_config else: raise ValueError( f'backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.' ) lowerCamelCase__ = backbone_featmap_shape lowerCamelCase__ = neck_ignore_stages if readout_type != "project": raise ValueError("Readout type must be 'project' when using `DPT-hybrid` mode." ) else: lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = [] lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = initializer_range lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = image_size lowerCamelCase__ = patch_size lowerCamelCase__ = num_channels lowerCamelCase__ = qkv_bias lowerCamelCase__ = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("Readout_type must be one of ['ignore', 'add', 'project']" ) lowerCamelCase__ = readout_type lowerCamelCase__ = reassemble_factors lowerCamelCase__ = neck_hidden_sizes lowerCamelCase__ = fusion_hidden_size lowerCamelCase__ = head_in_index lowerCamelCase__ = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) lowerCamelCase__ = use_auxiliary_head lowerCamelCase__ = auxiliary_loss_weight lowerCamelCase__ = semantic_loss_ignore_index lowerCamelCase__ = semantic_classifier_dropout def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: lowerCamelCase__ = self.backbone_config.to_dict() lowerCamelCase__ = self.__class__.model_type return output
700
"""simple docstring""" import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def UpperCAmelCase__ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__ = torch.nn.Linear(2 , 4 ) lowerCamelCase__ = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCamelCase__ = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCamelCase__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCamelCase__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def UpperCAmelCase__ ( A__ ) -> Any: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def UpperCAmelCase__ ( A__ ) -> Any: """simple docstring""" lowerCamelCase__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class _A ( __a ): @require_cuda def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = Accelerator(cpu=SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ = GradientState() assert state.num_steps == 1 lowerCamelCase__ = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCamelCase__ = False assert state.sync_gradients is False GradientState._reset_state() def _lowerCamelCase ( self ) -> str: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowerCamelCase ( self ) -> Dict: PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): pass with patch("torch.cuda.set_device" , SCREAMING_SNAKE_CASE__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowerCamelCase__ = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = get_signature(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # make sure random weights don't match load_random_weights(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 ) def _lowerCamelCase ( self ) -> Any: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() accelerator.prepare(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = get_signature(SCREAMING_SNAKE_CASE__ ) # saving hook def save_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = {"class_name": models[0].__class__.__name__} with open(os.path.join(SCREAMING_SNAKE_CASE__ , "data.json" ) , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # loading hook def load_config(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): with open(os.path.join(SCREAMING_SNAKE_CASE__ , "data.json" ) , "r" ) as f: lowerCamelCase__ = json.load(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = config["class_name"] lowerCamelCase__ = accelerator.register_save_state_pre_hook(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = accelerator.register_load_state_pre_hook(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # make sure random weights don't match with hooks load_random_weights(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 ) # random class name to verify correct one is loaded lowerCamelCase__ = "random" # make sure loaded weights match with hooks accelerator.load_state(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(SCREAMING_SNAKE_CASE__ ) # make sure random weights don't match with hooks removed load_random_weights(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) > 1e-3 ) # random class name to verify correct one is loaded lowerCamelCase__ = "random" # make sure loaded weights match with hooks removed accelerator.load_state(SCREAMING_SNAKE_CASE__ ) self.assertTrue(abs(model_signature - get_signature(SCREAMING_SNAKE_CASE__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowerCamelCase ( self ) -> Union[str, Any]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() lowerCamelCase__ = None # This should work lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertTrue(dummy_obj is None ) def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = Accelerator() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = create_components() lowerCamelCase__ = [1, 2, 3] # This should work lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(SCREAMING_SNAKE_CASE__ , "_is_accelerate_prepared" , SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def _lowerCamelCase ( self ) -> str: from transformers import AutoModelForCausalLM lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map={"": 0} , ) lowerCamelCase__ = Accelerator() # This should work lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) @slow @require_bnb def _lowerCamelCase ( self ) -> Tuple: from transformers import AutoModelForCausalLM lowerCamelCase__ = Accelerator() with init_empty_weights(): lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = "cpu" lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=SCREAMING_SNAKE_CASE__ , load_in_abit=SCREAMING_SNAKE_CASE__ , llm_inta_enable_fpaa_cpu_offload=SCREAMING_SNAKE_CASE__ ) # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self ) -> Dict: from transformers import AutoModelForCausalLM lowerCamelCase__ = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 1 lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = Accelerator() # This should not work and get value error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self ) -> List[Any]: from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) lowerCamelCase__ = infer_auto_device_map(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = 1 lowerCamelCase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=SCREAMING_SNAKE_CASE__ , device_map=SCREAMING_SNAKE_CASE__ , ) lowerCamelCase__ = Accelerator() # This should work lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ ) @require_cuda def _lowerCamelCase ( self ) -> List[str]: lowerCamelCase__ = torch.nn.Linear(10 , 10 ) lowerCamelCase__ = torch.optim.SGD(model.parameters() , lr=0.01 ) lowerCamelCase__ = Accelerator(cpu=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = accelerator.prepare(SCREAMING_SNAKE_CASE__ )
274
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests SCREAMING_SNAKE_CASE : Any = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user SCREAMING_SNAKE_CASE : Any = BASE_URL + '''/user''' # https://github.com/settings/tokens SCREAMING_SNAKE_CASE : List[str] = os.environ.get('''USER_TOKEN''', '''''') def __lowerCamelCase ( lowerCAmelCase__ ): A__ = { 'Authorization': f'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(lowerCAmelCase__ ,headers=lowerCAmelCase__ ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
260
"""simple docstring""" from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def _UpperCAmelCase ( self , __a ): """simple docstring""" if isinstance(__a , __a ): A__ = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , __a , __a , __a ): """simple docstring""" if len(__a ) == 0 or len(__a ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template "{}" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(__a ) ) if isinstance(__a , __a ): A__ = [sequences] A__ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(_lowerCamelCase ) class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a=ZeroShotClassificationArgumentHandler() , *__a , **__a ): """simple docstring""" A__ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def _UpperCAmelCase ( self ): """simple docstring""" for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def _UpperCAmelCase ( self , __a , __a=True , __a=True , __a=TruncationStrategy.ONLY_FIRST , **__a ): """simple docstring""" A__ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) A__ = self.tokenizer.eos_token try: A__ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. A__ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _UpperCAmelCase ( self , **__a ): """simple docstring""" if kwargs.get('multi_class' , __a ) is not None: A__ = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) A__ = {} if "candidate_labels" in kwargs: A__ = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: A__ = kwargs['hypothesis_template'] A__ = {} if "multi_label" in kwargs: A__ = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , __a , *__a , **__a , ): """simple docstring""" if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: A__ = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(__a , **__a ) def _UpperCAmelCase ( self , __a , __a=None , __a="This example is {}." ): """simple docstring""" A__ , A__ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): A__ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _UpperCAmelCase ( self , __a ): """simple docstring""" A__ = inputs['candidate_label'] A__ = inputs['sequence'] A__ = {k: inputs[k] for k in self.tokenizer.model_input_names} A__ = self.model(**__a ) A__ = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def _UpperCAmelCase ( self , __a , __a=False ): """simple docstring""" A__ = [outputs['candidate_label'] for outputs in model_outputs] A__ = [outputs['sequence'] for outputs in model_outputs] A__ = np.concatenate([output['logits'].numpy() for output in model_outputs] ) A__ = logits.shape[0] A__ = len(__a ) A__ = N // n A__ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently A__ = self.entailment_id A__ = -1 if entailment_id == 0 else 0 A__ = reshaped_outputs[..., [contradiction_id, entailment_id]] A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) A__ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels A__ = reshaped_outputs[..., self.entailment_id] A__ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) A__ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
260
1
from cva import destroyAllWindows, imread, imshow, waitKey def _lowerCAmelCase ( UpperCamelCase__: List[str] ) -> List[str]: """simple docstring""" A , A = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(UpperCamelCase__ ): for j in range(UpperCamelCase__ ): A = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image _lowercase : str = imread("image_data/lena.jpg", 1) # convert to its negative _lowercase : List[str] = convert_to_negative(img) # show result image imshow("negative of original image", img) waitKey(0) destroyAllWindows()
546
from __future__ import annotations from typing import Any class _UpperCamelCase : """simple docstring""" def __init__( self , a__ , a__ , a__ = 0 ) -> None: A , A = row, column A = [[default_value for c in range(a__ )] for r in range(a__ )] def __str__( self ) -> str: A = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier A = 0 for row_vector in self.array: for obj in row_vector: A = max(a__ , len(str(a__ ) ) ) A = f'%{max_element_length}s' # Make string and return def single_line(a__ ) -> str: nonlocal string_format_identifier A = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(a__ ) for row_vector in self.array ) return s def __repr__( self ) -> str: return str(self ) def _UpperCAmelCase ( self , a__ ) -> bool: if not (isinstance(a__ , (list, tuple) ) and len(a__ ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , a__ ) -> Any: assert self.validate_indicies(a__ ) return self.array[loc[0]][loc[1]] def __setitem__( self , a__ , a__ ) -> None: assert self.validate_indicies(a__ ) A = value def __add__( self , a__ ) -> Matrix: assert isinstance(a__ , a__ ) assert self.row == another.row and self.column == another.column # Add A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A = -self[r, c] return result def __sub__( self , a__ ) -> Matrix: return self + (-another) def __mul__( self , a__ ) -> Matrix: if isinstance(a__ , (int, float) ): # Scalar multiplication A = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): A = self[r, c] * another return result elif isinstance(a__ , a__ ): # Matrix multiplication assert self.column == another.row A = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: A = f'Unsupported type given for another ({type(a__ )})' raise TypeError(a__ ) def _UpperCAmelCase ( self ) -> Matrix: A = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): A = self[r, c] return result def _UpperCAmelCase ( self , a__ , a__ ) -> Any: assert isinstance(a__ , a__ ) and isinstance(a__ , a__ ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate A = v.transpose() A = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def _lowerCAmelCase ( ) -> None: """simple docstring""" A = Matrix(3 , 3 , 0 ) for i in range(3 ): A = 1 print(f'a^(-1) is {ainv}' ) # u, v A = Matrix(3 , 1 , 0 ) A , A , A = 1, 2, -3 A = Matrix(3 , 1 , 0 ) A , A , A = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(UpperCamelCase__ , UpperCamelCase__ )}' ) def _lowerCAmelCase ( ) -> None: """simple docstring""" import doctest doctest.testmod() testa()
546
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Any = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : int = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
1
'''simple docstring''' def __A ( lowerCAmelCase_ = 1000 ): _UpperCAmelCase : Any = 3 _UpperCAmelCase : Optional[int] = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(F"{solution() = }")
718
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowerCAmelCase_ : Any = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCAmelCase ( __a ): snake_case : Any = """facebook/nllb-200-distilled-600M""" snake_case : Optional[int] = ( """This is a tool that translates text from a language to another. It takes three inputs: `text`, which should """ """be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, """ """which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in """ """plain English, such as 'Romanian', or 'Albanian'. It returns the text translated in `tgt_lang`.""" ) snake_case : Dict = """translator""" snake_case : str = AutoTokenizer snake_case : Dict = AutoModelForSeqaSeqLM snake_case : Optional[Any] = LANGUAGE_CODES snake_case : List[str] = ["""text""", """text""", """text"""] snake_case : Tuple = ["""text"""] def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if src_lang not in self.lang_to_code: raise ValueError(F"{src_lang} is not a supported language." ) if tgt_lang not in self.lang_to_code: raise ValueError(F"{tgt_lang} is not a supported language." ) _UpperCAmelCase : str = self.lang_to_code[src_lang] _UpperCAmelCase : Tuple = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): return self.model.generate(**lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__ ): return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
156
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { "configuration_distilbert": [ "DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DistilBertConfig", "DistilBertOnnxConfig", ], "tokenization_distilbert": ["DistilBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ["DistilBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "DistilBertForMaskedLM", "DistilBertForMultipleChoice", "DistilBertForQuestionAnswering", "DistilBertForSequenceClassification", "DistilBertForTokenClassification", "DistilBertModel", "DistilBertPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDistilBertForMaskedLM", "TFDistilBertForMultipleChoice", "TFDistilBertForQuestionAnswering", "TFDistilBertForSequenceClassification", "TFDistilBertForTokenClassification", "TFDistilBertMainLayer", "TFDistilBertModel", "TFDistilBertPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "FlaxDistilBertForMaskedLM", "FlaxDistilBertForMultipleChoice", "FlaxDistilBertForQuestionAnswering", "FlaxDistilBertForSequenceClassification", "FlaxDistilBertForTokenClassification", "FlaxDistilBertModel", "FlaxDistilBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
32
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : Dict = logging.get_logger(__name__) class __lowerCAmelCase ( enum.Enum ): UpperCamelCase__ = 0 UpperCamelCase__ = 1 @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''generated''' def __init__( self :Any , *__magic_name__ :Tuple , **__magic_name__ :Tuple ): '''simple docstring''' super().__init__(*__magic_name__ , **__magic_name__ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == """tf""" else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Any=None , __magic_name__ :Optional[Any]=None , __magic_name__ :Any=None , __magic_name__ :List[str]=None , __magic_name__ :Tuple=None , __magic_name__ :str=None , **__magic_name__ :List[Any] , ): '''simple docstring''' a = {} if truncation is not None: a = truncation a = generate_kwargs a = {} if return_tensors is not None and return_type is None: a = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: a = return_type if clean_up_tokenization_spaces is not None: a = clean_up_tokenization_spaces if stop_sequence is not None: a = self.tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) if len(__magic_name__ ) > 1: warnings.warn( """Stopping on a multiple token sequence is not yet supported on transformers. The first token of""" """ the stop sequence will be used as the stop sequence string in the interim.""" ) a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' return True def lowerCamelCase__ ( self :Dict , *__magic_name__ :Optional[int] , __magic_name__ :List[str] ): '''simple docstring''' a = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , __magic_name__ ): if self.tokenizer.pad_token_id is None: raise ValueError("""Please make sure that the tokenizer has a pad_token_id when using a batch input""" ) a = ([prefix + arg for arg in args[0]],) a = True elif isinstance(args[0] , __magic_name__ ): a = (prefix + args[0],) a = False else: raise ValueError( F' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' ) a = self.tokenizer(*__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self :Tuple , *__magic_name__ :Any , **__magic_name__ :str ): '''simple docstring''' a = super().__call__(*__magic_name__ , **__magic_name__ ) if ( isinstance(args[0] , __magic_name__ ) and all(isinstance(__magic_name__ , __magic_name__ ) for el in args[0] ) and all(len(__magic_name__ ) == 1 for res in result ) ): return [res[0] for res in result] return result def lowerCamelCase__ ( self :Dict , __magic_name__ :Optional[Any] , __magic_name__ :List[str]=TruncationStrategy.DO_NOT_TRUNCATE , **__magic_name__ :Any ): '''simple docstring''' a = self._parse_and_tokenize(__magic_name__ , truncation=__magic_name__ , **__magic_name__ ) return inputs def lowerCamelCase__ ( self :Any , __magic_name__ :int , **__magic_name__ :int ): '''simple docstring''' if self.framework == "pt": a , a = model_inputs["""input_ids"""].shape elif self.framework == "tf": a , a = tf.shape(model_inputs["""input_ids"""] ).numpy() a = generate_kwargs.get("""min_length""" , self.model.config.min_length ) a = generate_kwargs.get("""max_length""" , self.model.config.max_length ) self.check_inputs(__magic_name__ , generate_kwargs["""min_length"""] , generate_kwargs["""max_length"""] ) a = self.model.generate(**__magic_name__ , **__magic_name__ ) a = output_ids.shape[0] if self.framework == "pt": a = output_ids.reshape(__magic_name__ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": a = tf.reshape(__magic_name__ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Dict , __magic_name__ :Any=ReturnType.TEXT , __magic_name__ :int=False ): '''simple docstring''' a = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: a = {F'{self.return_name}_token_ids': output_ids} elif return_type == ReturnType.TEXT: a = { F'{self.return_name}_text': self.tokenizer.decode( __magic_name__ , skip_special_tokens=__magic_name__ , clean_up_tokenization_spaces=__magic_name__ , ) } records.append(__magic_name__ ) return records @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''summary''' def __call__( self :Any , *__magic_name__ :List[str] , **__magic_name__ :Optional[int] ): '''simple docstring''' return super().__call__(*__magic_name__ , **__magic_name__ ) def lowerCamelCase__ ( self :Any , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' if max_length < min_length: logger.warning(F'Your min_length={min_length} must be inferior than your max_length={max_length}.' ) if input_length < max_length: logger.warning( F'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ' """a summarization task, where outputs shorter than the input are typically wanted, you might """ F'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' ) @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): UpperCamelCase__ = '''translation''' def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int ): '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( F'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ' """increasing your max_length manually, e.g. translator('...', max_length=400)""" ) return True def lowerCamelCase__ ( self :str , *__magic_name__ :Union[str, Any] , __magic_name__ :Any=TruncationStrategy.DO_NOT_TRUNCATE , __magic_name__ :Optional[Any]=None , __magic_name__ :List[str]=None ): '''simple docstring''' if getattr(self.tokenizer , """_build_translation_inputs""" , __magic_name__ ): return self.tokenizer._build_translation_inputs( *__magic_name__ , return_tensors=self.framework , truncation=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ ) else: return super()._parse_and_tokenize(*__magic_name__ , truncation=__magic_name__ ) def lowerCamelCase__ ( self :int , __magic_name__ :List[str]=None , __magic_name__ :Union[str, Any]=None , **__magic_name__ :Optional[int] ): '''simple docstring''' a , a , a = super()._sanitize_parameters(**__magic_name__ ) if src_lang is not None: a = src_lang if tgt_lang is not None: a = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. a = kwargs.get("""task""" , self.task ) a = task.split("""_""" ) if task and len(__magic_name__ ) == 4: # translation, XX, to YY a = items[1] a = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self :Optional[Any] , *__magic_name__ :Any , **__magic_name__ :str ): '''simple docstring''' return super().__call__(*__magic_name__ , **__magic_name__ )
468
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def snake_case__ ( self : List[str] ): torch.manual_seed(0 ) __magic_name__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def snake_case__ ( self : List[str] ): __magic_name__ = self.dummy_uncond_unet __magic_name__ = PNDMScheduler() __magic_name__ = PNDMPipeline(unet=a__ , scheduler=a__ ) pndm.to(a__ ) pndm.set_progress_bar_config(disable=a__ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pndm(generator=a__ , num_inference_steps=20 , output_type='''numpy''' ).images __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pndm(generator=a__ , num_inference_steps=20 , output_type='''numpy''' , return_dict=a__ )[0] __magic_name__ = image[0, -3:, -3:, -1] __magic_name__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def snake_case__ ( self : List[str] ): __magic_name__ = '''google/ddpm-cifar10-32''' __magic_name__ = UNetaDModel.from_pretrained(a__ ) __magic_name__ = PNDMScheduler() __magic_name__ = PNDMPipeline(unet=a__ , scheduler=a__ ) pndm.to(a__ ) pndm.set_progress_bar_config(disable=a__ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pndm(generator=a__ , output_type='''numpy''' ).images __magic_name__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __magic_name__ = np.array([0.1_564, 0.14_645, 0.1_406, 0.14_715, 0.12_425, 0.14_045, 0.13_115, 0.12_175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
245
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = { "configuration_rembert": ["REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RemBertConfig", "RemBertOnnxConfig"] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["RemBertTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["RemBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RemBertForCausalLM", "RemBertForMaskedLM", "RemBertForMultipleChoice", "RemBertForQuestionAnswering", "RemBertForSequenceClassification", "RemBertForTokenClassification", "RemBertLayer", "RemBertModel", "RemBertPreTrainedModel", "load_tf_weights_in_rembert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ "TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRemBertForCausalLM", "TFRemBertForMaskedLM", "TFRemBertForMultipleChoice", "TFRemBertForQuestionAnswering", "TFRemBertForSequenceClassification", "TFRemBertForTokenClassification", "TFRemBertLayer", "TFRemBertModel", "TFRemBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
245
1
"""simple docstring""" def lowercase ( __UpperCamelCase ) -> list[int]: if length <= 0 or not isinstance(__UpperCamelCase , __UpperCamelCase ): raise ValueError('''Length must be a positive integer.''' ) return [n * (2 * n - 1) for n in range(__UpperCamelCase )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
490
"""simple docstring""" import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __lowerCamelCase = "src/diffusers" # Matches is_xxx_available() __lowerCamelCase = re.compile(r"is\_([a-z_]*)_available\(\)") # Matches from xxx import bla __lowerCamelCase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n") __lowerCamelCase = "\n{0} = None\n" __lowerCamelCase = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, {1})\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, {1})\n" __lowerCamelCase = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" def lowercase ( __UpperCamelCase ) -> Tuple: __magic_name__ = _re_backend.findall(__UpperCamelCase ) if len(__UpperCamelCase ) == 0: return None return "_and_".join(__UpperCamelCase ) def lowercase ( ) -> List[str]: with open(os.path.join(__UpperCamelCase , '''__init__.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __magic_name__ = f.readlines() # Get to the point we do the actual imports for type checking __magic_name__ = 0 __magic_name__ = {} # Go through the end of the file while line_index < len(__UpperCamelCase ): # If the line contains is_backend_available, we grab all objects associated with the `else` block __magic_name__ = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while line_index < len(__UpperCamelCase ) and len(lines[line_index] ) > 1: __magic_name__ = lines[line_index] __magic_name__ = _re_single_line_import.search(__UpperCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__UpperCamelCase ) > 0: __magic_name__ = objects else: line_index += 1 return backend_specific_objects def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> str: if name.isupper(): return DUMMY_CONSTANT.format(__UpperCamelCase ) elif name.islower(): return DUMMY_FUNCTION.format(__UpperCamelCase , __UpperCamelCase ) else: return DUMMY_CLASS.format(__UpperCamelCase , __UpperCamelCase ) def lowercase ( __UpperCamelCase=None ) -> List[Any]: if backend_specific_objects is None: __magic_name__ = read_init() # For special correspondence backend to module name as used in the function requires_modulename __magic_name__ = {} for backend, objects in backend_specific_objects.items(): __magic_name__ = '''[''' + ''', '''.join(f'''"{b}"''' for b in backend.split('''_and_''' ) ) + ''']''' __magic_name__ = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__UpperCamelCase , __UpperCamelCase ) for o in objects] ) __magic_name__ = dummy_file return dummy_files def lowercase ( __UpperCamelCase=False ) -> List[str]: __magic_name__ = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py __magic_name__ = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. __magic_name__ = os.path.join(__UpperCamelCase , '''utils''' ) __magic_name__ = { backend: os.path.join(__UpperCamelCase , f'''dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py''' ) for backend in dummy_files.keys() } __magic_name__ = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__UpperCamelCase ): with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: __magic_name__ = f.read() else: __magic_name__ = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py as the main ''' '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' f'''diffusers.utils.dummy_{short_names.get(__UpperCamelCase , __UpperCamelCase )}_objects.py. Run `make fix-copies` ''' '''to fix this.''' ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __lowerCamelCase = parser.parse_args() check_dummies(args.fix_and_overwrite)
490
1
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def _UpperCAmelCase ( ) -> int: """simple docstring""" lowercase_ : Optional[Any] = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) lowercase_ : Union[str, Any] = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) # Let's go lowercase_ : Optional[Any] = parser.parse_args() if not hasattr(lowerCAmelCase__ , 'func' ): parser.print_help() exit(1 ) # Run lowercase_ : Any = args.func(lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
720
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'microsoft/cvt-13': 'https://huggingface.co/microsoft/cvt-13/resolve/main/config.json', # See all Cvt models at https://huggingface.co/models?filter=cvt } class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : Tuple = 'cvt' def __init__( self :Dict , lowercase :Union[str, Any]=3 , lowercase :List[Any]=[7, 3, 3] , lowercase :Optional[Any]=[4, 2, 2] , lowercase :int=[2, 1, 1] , lowercase :List[Any]=[6_4, 1_9_2, 3_8_4] , lowercase :Optional[int]=[1, 3, 6] , lowercase :int=[1, 2, 1_0] , lowercase :str=[4.0, 4.0, 4.0] , lowercase :List[str]=[0.0, 0.0, 0.0] , lowercase :int=[0.0, 0.0, 0.0] , lowercase :Optional[Any]=[0.0, 0.0, 0.1] , lowercase :str=[True, True, True] , lowercase :Tuple=[False, False, True] , lowercase :Union[str, Any]=["dw_bn", "dw_bn", "dw_bn"] , lowercase :Optional[Any]=[3, 3, 3] , lowercase :str=[1, 1, 1] , lowercase :str=[2, 2, 2] , lowercase :Optional[int]=[1, 1, 1] , lowercase :List[str]=[1, 1, 1] , lowercase :List[str]=0.02 , lowercase :str=1e-12 , **lowercase :int , ) -> Any: """simple docstring""" super().__init__(**lowercase ) SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_sizes SCREAMING_SNAKE_CASE = patch_stride SCREAMING_SNAKE_CASE = patch_padding SCREAMING_SNAKE_CASE = embed_dim SCREAMING_SNAKE_CASE = num_heads SCREAMING_SNAKE_CASE = depth SCREAMING_SNAKE_CASE = mlp_ratio SCREAMING_SNAKE_CASE = attention_drop_rate SCREAMING_SNAKE_CASE = drop_rate SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = qkv_bias SCREAMING_SNAKE_CASE = cls_token SCREAMING_SNAKE_CASE = qkv_projection_method SCREAMING_SNAKE_CASE = kernel_qkv SCREAMING_SNAKE_CASE = padding_kv SCREAMING_SNAKE_CASE = stride_kv SCREAMING_SNAKE_CASE = padding_q SCREAMING_SNAKE_CASE = stride_q SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps
201
import os def a ( a = "matrix.txt" ) ->int: '''simple docstring''' with open(os.path.join(os.path.dirname(a ) , a ) ) as in_file: SCREAMING_SNAKE_CASE = in_file.read() SCREAMING_SNAKE_CASE = [[int(a ) for cell in row.split(''',''' )] for row in data.strip().splitlines()] SCREAMING_SNAKE_CASE = [[0 for cell in row] for row in grid] SCREAMING_SNAKE_CASE = len(grid[0] ) SCREAMING_SNAKE_CASE = [[0 for i in range(a )] for j in range(a )] SCREAMING_SNAKE_CASE = grid[0][0] for i in range(1 , a ): SCREAMING_SNAKE_CASE = grid[0][i] + dp[0][i - 1] for i in range(1 , a ): SCREAMING_SNAKE_CASE = grid[i][0] + dp[i - 1][0] for i in range(1 , a ): for j in range(1 , a ): SCREAMING_SNAKE_CASE = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F'''{solution() = }''')
201
1
from __future__ import annotations class lowercase : def __init__( self , _a = 0 ) -> str: _A : Any = key def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : Any = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a ) -> list[str]: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(_a ) ^ key ) for ch in content] def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> str: assert isinstance(_a , _a ) and isinstance(_a , _a ) _A : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned _A : List[str] = """""" for ch in content: ans += chr(ord(_a ) ^ key ) return ans def a__ ( self , _a , _a = 0 ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""encrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(_a , _a ) ) except OSError: return False return True def a__ ( self , _a , _a ) -> bool: assert isinstance(_a , _a ) and isinstance(_a , _a ) try: with open(_a ) as fin, open("""decrypt.out""" , """w+""" ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(_a , _a ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
54
0
'''simple docstring''' import os def _UpperCamelCase ( ): '''simple docstring''' with open(os.path.dirname(SCREAMING_SNAKE_CASE__ ) + """/p022_names.txt""" ) as file: UpperCAmelCase__ = str(file.readlines()[0] ) UpperCAmelCase__ = names.replace("""\"""" , """""" ).split(""",""" ) names.sort() UpperCAmelCase__ = 0 UpperCAmelCase__ = 0 for i, name in enumerate(SCREAMING_SNAKE_CASE__ ): for letter in name: name_score += ord(SCREAMING_SNAKE_CASE__ ) - 64 total_score += (i + 1) * name_score UpperCAmelCase__ = 0 return total_score if __name__ == "__main__": print(solution())
603
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int]=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : int=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Optional[int]=5 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Dict=37 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Union[str, Any]=1_28 , _UpperCAmelCase : List[str]=32 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : int=4 , _UpperCAmelCase : List[Any]=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.prepare_config_and_inputs() UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , ): """simple docstring""" UpperCAmelCase__ = True UpperCAmelCase__ = NezhaModel(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , ) UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , ) UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = NezhaForNextSentencePrediction(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = NezhaForPreTraining(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , next_sentence_label=_UpperCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = NezhaForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = NezhaForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = NezhaForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Any = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ : Tuple = ( { """feature-extraction""": NezhaModel, """fill-mask""": NezhaForMaskedLM, """question-answering""": NezhaForQuestionAnswering, """text-classification""": NezhaForSequenceClassification, """token-classification""": NezhaForTokenClassification, """zero-shot""": NezhaForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : Union[str, Any] = True def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int]=False ): """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase , return_labels=_UpperCAmelCase ) if return_labels: if model_class in get_values(_UpperCAmelCase ): UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_UpperCAmelCase ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_UpperCAmelCase ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = NezhaModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() UpperCAmelCase__ = None self.model_tester.create_and_check_model_as_decoder( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = NezhaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @slow @require_torch_gpu def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return UpperCAmelCase__ = True UpperCAmelCase__ = model_class(config=_UpperCAmelCase ) UpperCAmelCase__ = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = torch.jit.trace( _UpperCAmelCase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(_UpperCAmelCase , os.path.join(_UpperCAmelCase , """bert.pt""" ) ) UpperCAmelCase__ = torch.jit.load(os.path.join(_UpperCAmelCase , """bert.pt""" ) , map_location=_UpperCAmelCase ) loaded(inputs_dict["""input_ids"""].to(_UpperCAmelCase ) , inputs_dict["""attention_mask"""].to(_UpperCAmelCase ) ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([[[0.0685, 0.2441, 0.1102], [0.0600, 0.1906, 0.1349], [0.0221, 0.0819, 0.0586]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) UpperCAmelCase__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 6, 2_11_28) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[-2.7939, -1.7902, -2.2189], [-2.8585, -1.8908, -2.3723], [-2.6499, -1.7750, -2.2558]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
603
1
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Optional[int] = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def snake_case_ (UpperCamelCase : List[str] ): '''simple docstring''' if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: _a = k.replace(UpperCamelCase , UpperCamelCase ) if k.startswith('''encoder''' ): _a = k.replace('''.attn''' , '''.self_attn''' ) _a = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _a = k.replace('''norm2''' , '''final_layer_norm''' ) elif k.startswith('''decoder''' ): _a = k.replace('''norm1''' , '''self_attn_layer_norm''' ) _a = k.replace('''norm2''' , '''encoder_attn_layer_norm''' ) _a = k.replace('''norm3''' , '''final_layer_norm''' ) return k def snake_case_ (UpperCamelCase : Optional[Any] ): '''simple docstring''' _a = [ '''model.encoder.layernorm_embedding.weight''', '''model.encoder.layernorm_embedding.bias''', '''model.decoder.layernorm_embedding.weight''', '''model.decoder.layernorm_embedding.bias''', ] for k in keys: _a = sd.pop(UpperCamelCase ) _a = k.replace('''layernorm_embedding''' , '''layer_norm''' ) assert new_k not in sd _a = v _snake_case : List[str] = ['START'] @torch.no_grad() def snake_case_ (UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : int ): '''simple docstring''' _a = torch.load(UpperCamelCase , map_location='''cpu''' ) _a = model['''model'''] _a = BlenderbotConfig.from_json_file(UpperCamelCase ) _a = BlenderbotForConditionalGeneration(UpperCamelCase ) _a = m.model.state_dict().keys() _a = [] _a = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue _a = rename_state_dict_key(UpperCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: _a = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCamelCase ) m.model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) m.half() m.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _snake_case : int = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) _snake_case : Optional[int] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
377
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports _snake_case : List[str] = '\nimport os\n' _snake_case : Dict = '\ndef foo():\n import os\n return False\n' _snake_case : List[Any] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' _snake_case : Dict = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' _snake_case : Optional[Any] = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' _snake_case : Optional[Any] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' _snake_case : Any = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' _snake_case : List[str] = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' _snake_case : Dict = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' _snake_case : Any = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' _snake_case : Union[str, Any] = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , UpperCamelCase ) def snake_case_ (UpperCamelCase : str , UpperCamelCase : List[Any] ): '''simple docstring''' _a = os.path.join(UpperCamelCase , '''test_file.py''' ) with open(UpperCamelCase , '''w''' ) as _tmp_file: _tmp_file.write(UpperCamelCase ) _a = get_imports(UpperCamelCase ) assert parsed_imports == ["os"]
377
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase_ = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Union[str, Any]: if attention_mask is None: lowercase__ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowercase__ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowercase__ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowercase__ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE : def __init__( self : List[str] , a : str , a : Any=13 , a : List[str]=7 , a : Any=True , a : str=False , a : List[Any]=99 , a : List[Any]=16 , a : Any=2 , a : Dict=4 , a : List[str]=4 , a : int="gelu" , a : int=0.1 , a : List[Any]=0.1 , a : str=32 , a : int=2 , a : Tuple=1 , a : List[str]=0 , a : Optional[Any]=0.02 , )-> List[str]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = initializer_range def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Tuple: """simple docstring""" lowercase__ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowercase__ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowercase__ = shift_tokens_right(a , 1 , 2 ) lowercase__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=a , ) lowercase__ = prepare_blenderbot_inputs_dict(a , a , a ) return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : Any , a : List[Any] , a : int , a : str )-> Optional[int]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(a ) lowercase__ = model.encode(inputs_dict['input_ids'] ) lowercase__ , lowercase__ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , a , a ) lowercase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , a , decoder_attention_mask=a , past_key_values=outputs_cache.past_key_values , decoder_position_ids=a , ) lowercase__ = model.decode(a , a ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE_ ( self : Any , a : Dict , a : Tuple , a : Tuple )-> Union[str, Any]: """simple docstring""" lowercase__ = 20 lowercase__ = model_class_name(a ) lowercase__ = model.encode(inputs_dict['input_ids'] ) lowercase__ , lowercase__ = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) lowercase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowercase__ = model.init_cache(decoder_input_ids.shape[0] , a , a ) lowercase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase__ = model.decode( decoder_input_ids[:, :-1] , a , decoder_attention_mask=a , past_key_values=a , decoder_position_ids=a , ) lowercase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) lowercase__ = model.decode( decoder_input_ids[:, -1:] , a , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=a , decoder_position_ids=a , ) lowercase__ = model.decode(a , a , decoder_attention_mask=a ) lowercase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) @require_flax class SCREAMING_SNAKE_CASE (unittest.TestCase ): _UpperCamelCase : Dict = 99 def SCREAMING_SNAKE_CASE_ ( self : Any )-> Dict: """simple docstring""" lowercase__ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowercase__ = input_ids.shape[0] lowercase__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def SCREAMING_SNAKE_CASE_ ( self : int )-> int: """simple docstring""" lowercase__ , lowercase__ , lowercase__ = self._get_config_and_data() lowercase__ = FlaxBlenderbotSmallForConditionalGeneration(a ) lowercase__ = lm_model(input_ids=a ) lowercase__ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , a ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> Tuple: """simple docstring""" lowercase__ = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowercase__ = FlaxBlenderbotSmallForConditionalGeneration(a ) lowercase__ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowercase__ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowercase__ = lm_model(input_ids=a , decoder_input_ids=a ) lowercase__ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Optional[Any]: """simple docstring""" lowercase__ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowercase__ = shift_tokens_right(a , 1 , 2 ) lowercase__ = np.equal(a , 1 ).astype(np.floataa ).sum() lowercase__ = np.equal(a , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(a , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE (snake_case_ , unittest.TestCase , snake_case_ ): _UpperCamelCase : Any = True _UpperCamelCase : int = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _UpperCamelCase : str = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def SCREAMING_SNAKE_CASE_ ( self : str )-> Union[str, Any]: """simple docstring""" lowercase__ = FlaxBlenderbotSmallModelTester(self ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] )-> List[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(a , a , a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple )-> Dict: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = self._prepare_for_class(a , a ) lowercase__ = model_class(a ) @jax.jit def encode_jitted(a : str , a : Optional[Any]=None , **a : Any ): return model.encode(input_ids=a , attention_mask=a ) with self.subTest('JIT Enabled' ): lowercase__ = encode_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase__ = encode_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE_ ( self : int )-> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowercase__ = model_class(a ) lowercase__ = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) lowercase__ = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(a : List[str] , a : List[str] , a : Union[str, Any] ): return model.decode( decoder_input_ids=a , decoder_attention_mask=a , encoder_outputs=a , ) with self.subTest('JIT Enabled' ): lowercase__ = decode_jitted(**a ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): lowercase__ = decode_jitted(**a ).to_tuple() self.assertEqual(len(a ) , len(a ) ) for jitted_output, output in zip(a , a ): self.assertEqual(jitted_output.shape , output.shape ) @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> List[str]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase__ = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowercase__ = np.ones((1, 1) ) * model.config.eos_token_id lowercase__ = model(a ) self.assertIsNotNone(a )
235
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Optional[int] = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class snake_case__ ( snake_case_ ): _snake_case : Union[str, Any] = """sew-d""" def __init__( self , lowerCamelCase=32 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase=2 , lowerCamelCase=512 , lowerCamelCase=256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=("p2c", "c2p") , lowerCamelCase="layer_norm" , lowerCamelCase="gelu_python" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.0 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=1E-7 , lowerCamelCase=1E-5 , lowerCamelCase="group" , lowerCamelCase="gelu" , lowerCamelCase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowerCamelCase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowerCamelCase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowerCamelCase=False , lowerCamelCase=128 , lowerCamelCase=16 , lowerCamelCase=True , lowerCamelCase=0.05 , lowerCamelCase=10 , lowerCamelCase=2 , lowerCamelCase=0.0 , lowerCamelCase=10 , lowerCamelCase=0 , lowerCamelCase="mean" , lowerCamelCase=False , lowerCamelCase=False , lowerCamelCase=256 , lowerCamelCase=0 , lowerCamelCase=1 , lowerCamelCase=2 , **lowerCamelCase , ): super().__init__(**lowerCamelCase , pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase ) __a = hidden_size __a = feat_extract_norm __a = feat_extract_activation __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = list(lowerCamelCase ) __a = conv_bias __a = num_conv_pos_embeddings __a = num_conv_pos_embedding_groups __a = len(self.conv_dim ) __a = num_hidden_layers __a = intermediate_size __a = squeeze_factor __a = max_position_embeddings __a = position_buckets __a = share_att_key __a = relative_attention __a = norm_rel_ebd __a = list(lowerCamelCase ) __a = hidden_act __a = num_attention_heads __a = hidden_dropout __a = attention_dropout __a = activation_dropout __a = feat_proj_dropout __a = final_dropout __a = layer_norm_eps __a = feature_layer_norm_eps __a = initializer_range __a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" F"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a = apply_spec_augment __a = mask_time_prob __a = mask_time_length __a = mask_time_min_masks __a = mask_feature_prob __a = mask_feature_length __a = mask_feature_min_masks # ctc loss __a = ctc_loss_reduction __a = ctc_zero_infinity # sequence classification __a = use_weighted_layer_sum __a = classifier_proj_size @property def a__ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
528
0
from math import factorial def a__ ( __UpperCamelCase = 1_0_0 ): return sum(int(__UpperCamelCase ) for x in str(factorial(__UpperCamelCase ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
356
from __future__ import annotations def a__ ( __UpperCamelCase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
356
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class lowerCAmelCase_ ( _lowercase ): """simple docstring""" def __lowercase( self , _SCREAMING_SNAKE_CASE ) -> float: return 0.0 def _a ( __lowercase , __lowercase ) -> tuple[int | float, int | float]: """simple docstring""" __UpperCamelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __UpperCamelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def _a ( __lowercase , __lowercase ) -> None: """simple docstring""" __UpperCamelCase = 512 __UpperCamelCase = [1] + [0] * (size - 1) __UpperCamelCase = [filter_type.process(__lowercase ) for item in inputs] __UpperCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase = np.abs(np.fft.fft(__lowercase ) ) __UpperCamelCase = 20 * np.logaa(__lowercase ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) # Display within reasonable bounds __UpperCamelCase = get_bounds(__lowercase , __lowercase ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel('Gain (dB)' ) plt.plot(__lowercase ) plt.show() def _a ( __lowercase , __lowercase ) -> None: """simple docstring""" __UpperCamelCase = 512 __UpperCamelCase = [1] + [0] * (size - 1) __UpperCamelCase = [filter_type.process(__lowercase ) for item in inputs] __UpperCamelCase = [0] * (samplerate - size) # zero-padding outputs += filler __UpperCamelCase = np.angle(np.fft.fft(__lowercase ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel('Frequency (Hz)' ) plt.xscale('log' ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel('Phase shift (Radians)' ) plt.plot(np.unwrap(__lowercase , -2 * pi ) ) plt.show()
383
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class lowerCAmelCase_ : """simple docstring""" @staticmethod def __lowercase( *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: pass def _a ( __lowercase ) -> str: """simple docstring""" return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _snake_case = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: __UpperCamelCase = pipeline( 'document-question-answering' , model=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) ) __UpperCamelCase = 'What is the placebo?' __UpperCamelCase = [ { 'image': load_image(_SCREAMING_SNAKE_CASE ), 'question': question, }, { 'image': image, 'question': question, }, { 'image': image, 'question': question, 'word_boxes': word_boxes, }, ] return dqa_pipeline, examples def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: __UpperCamelCase = dqa_pipeline(_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( _SCREAMING_SNAKE_CASE , [ [ {'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE ), 'start': ANY(_SCREAMING_SNAKE_CASE ), 'end': ANY(_SCREAMING_SNAKE_CASE )}, {'score': ANY(_SCREAMING_SNAKE_CASE ), 'answer': ANY(_SCREAMING_SNAKE_CASE ), 'start': ANY(_SCREAMING_SNAKE_CASE ), 'end': ANY(_SCREAMING_SNAKE_CASE )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __lowercase( self ) -> Dict: __UpperCamelCase = pipeline('document-question-answering' , model='hf-internal-testing/tiny-random-layoutlmv2' ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'How many cats are there?' __UpperCamelCase = [ {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019', 'start': 38, 'end': 39}, {'score': 0.0_0_0_1, 'answer': 'oy 2312/2019 DUE', 'start': 38, 'end': 40}, ] __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , _SCREAMING_SNAKE_CASE ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , _SCREAMING_SNAKE_CASE ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __UpperCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) # We can optionnally pass directly the words and bounding boxes __UpperCamelCase = './tests/fixtures/tests_samples/COCO/000000039769.png' __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , words=_SCREAMING_SNAKE_CASE , boxes=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(_SCREAMING_SNAKE_CASE , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __lowercase( self ) -> str: __UpperCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9_9_4_4, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_0_0_9, 'answer': 'us-001', 'start': 16, 'end': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __lowercase( self ) -> int: __UpperCamelCase = pipeline( 'document-question-answering' , model='tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa' , revision='9977165' , max_seq_len=50 , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9_9_7_4, 'answer': '1110212019', 'start': 23, 'end': 23}, {'score': 0.9_9_4_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __lowercase( self ) -> Optional[int]: __UpperCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_SCREAMING_SNAKE_CASE , revision='3dc6de3' , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __UpperCamelCase = dqa_pipeline({'image': image, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] ] * 2 , ) __UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) ) # This model should also work if `image` is set to None __UpperCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.4_2_5_1, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.0_8_1_9, 'answer': '1110212019', 'start': 23, 'end': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __lowercase( self ) -> Dict: __UpperCamelCase = AutoTokenizer.from_pretrained( 'impira/layoutlm-document-qa' , revision='3dc6de3' , add_prefix_space=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = pipeline( 'document-question-answering' , model='impira/layoutlm-document-qa' , tokenizer=_SCREAMING_SNAKE_CASE , revision='3dc6de3' , max_seq_len=50 , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) __UpperCamelCase = dqa_pipeline( [{'image': image, 'question': question}, {'image': image, 'question': question}] , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] ] * 2 , ) __UpperCamelCase = list(zip(*apply_tesseract(load_image(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , '' ) ) ) # This model should also work if `image` is set to None __UpperCamelCase = dqa_pipeline({'image': None, 'word_boxes': word_boxes, 'question': question} , top_k=2 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.9_9_9_9, 'answer': 'us-001', 'start': 16, 'end': 16}, {'score': 0.9_9_9_8, 'answer': 'us-001', 'start': 16, 'end': 16}, ] , ) @slow @require_torch def __lowercase( self ) -> Union[str, Any]: __UpperCamelCase = pipeline( 'document-question-answering' , model='naver-clova-ix/donut-base-finetuned-docvqa' , tokenizer=AutoTokenizer.from_pretrained('naver-clova-ix/donut-base-finetuned-docvqa' ) , feature_extractor='naver-clova-ix/donut-base-finetuned-docvqa' , ) __UpperCamelCase = INVOICE_URL __UpperCamelCase = 'What is the invoice number?' __UpperCamelCase = dqa_pipeline(image=_SCREAMING_SNAKE_CASE , question=_SCREAMING_SNAKE_CASE , top_k=2 ) self.assertEqual(nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [{'answer': 'us-001'}] ) @require_tf @unittest.skip('Document question answering not implemented in TF' ) def __lowercase( self ) -> Optional[Any]: pass
383
1
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class a__ ( unittest.TestCase ): def __init__(self : Optional[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : Union[str, Any]=7, __UpperCAmelCase : Optional[Any]=3, __UpperCAmelCase : int=30, __UpperCAmelCase : List[Any]=400, __UpperCAmelCase : Union[str, Any]=True, __UpperCAmelCase : Optional[Any]=None, __UpperCAmelCase : Union[str, Any]=True, __UpperCAmelCase : Union[str, Any]=[0.5, 0.5, 0.5], __UpperCAmelCase : Dict=[0.5, 0.5, 0.5], __UpperCAmelCase : str=True, __UpperCAmelCase : List[Any]=1 / 255, __UpperCAmelCase : Union[str, Any]=True, ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : str = batch_size SCREAMING_SNAKE_CASE : int = num_channels SCREAMING_SNAKE_CASE : Dict = min_resolution SCREAMING_SNAKE_CASE : Union[str, Any] = max_resolution SCREAMING_SNAKE_CASE : Union[str, Any] = do_resize SCREAMING_SNAKE_CASE : Optional[int] = size SCREAMING_SNAKE_CASE : Union[str, Any] = do_normalize SCREAMING_SNAKE_CASE : str = image_mean SCREAMING_SNAKE_CASE : Tuple = image_std SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale SCREAMING_SNAKE_CASE : List[str] = rescale_factor SCREAMING_SNAKE_CASE : int = do_pad def lowercase__ (self : List[str] ) -> Dict: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase__ (self : List[str], __UpperCAmelCase : int, __UpperCAmelCase : List[str]=False ) -> Any: """simple docstring""" if not batched: SCREAMING_SNAKE_CASE : str = image_inputs[0] if isinstance(UpperCAmelCase_, Image.Image ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = image.size else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = image.shape[1], image.shape[2] if w < h: SCREAMING_SNAKE_CASE : Optional[Any] = int(self.size['''shortest_edge'''] * h / w ) SCREAMING_SNAKE_CASE : Optional[Any] = self.size['''shortest_edge'''] elif w > h: SCREAMING_SNAKE_CASE : int = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE : List[Any] = int(self.size['''shortest_edge'''] * w / h ) else: SCREAMING_SNAKE_CASE : List[Any] = self.size['''shortest_edge'''] SCREAMING_SNAKE_CASE : List[Any] = self.size['''shortest_edge'''] else: SCREAMING_SNAKE_CASE : List[str] = [] for image in image_inputs: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) SCREAMING_SNAKE_CASE : Any = max(UpperCAmelCase_, key=lambda __UpperCAmelCase : item[0] )[0] SCREAMING_SNAKE_CASE : str = max(UpperCAmelCase_, key=lambda __UpperCAmelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class a__ ( __UpperCAmelCase, unittest.TestCase ): __magic_name__ : Union[str, Any] = ConditionalDetrImageProcessor if is_vision_available() else None def lowercase__ (self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ConditionalDetrImageProcessingTester(self ) @property def lowercase__ (self : Any ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ (self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_, '''image_mean''' ) ) self.assertTrue(hasattr(UpperCAmelCase_, '''image_std''' ) ) self.assertTrue(hasattr(UpperCAmelCase_, '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_, '''do_resize''' ) ) self.assertTrue(hasattr(UpperCAmelCase_, '''size''' ) ) def lowercase__ (self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad, UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.image_processing_class.from_dict( self.image_processor_dict, size=42, max_size=84, pad_and_return_pixel_mask=UpperCAmelCase_ ) self.assertEqual(image_processor.size, {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad, UpperCAmelCase_ ) def lowercase__ (self : Tuple ) -> Any: """simple docstring""" pass def lowercase__ (self : Dict ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_, Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(UpperCAmelCase_, batched=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Any = image_processing(UpperCAmelCase_, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ (self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase_, numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_, np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Optional[int] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(UpperCAmelCase_, return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(UpperCAmelCase_, batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) def lowercase__ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=UpperCAmelCase_, torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_, torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = self.image_processor_tester.get_expected_values(UpperCAmelCase_ ) self.assertEqual( encoded_images.shape, (1, self.image_processor_tester.num_channels, expected_height, expected_width), ) # Test batched SCREAMING_SNAKE_CASE : Any = image_processing(UpperCAmelCase_, return_tensors='''pt''' ).pixel_values SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(UpperCAmelCase_, batched=UpperCAmelCase_ ) self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ), ) @slow def lowercase__ (self : Dict ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''', '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Dict = {'''image_id''': 39769, '''annotations''': target} # encode them SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=UpperCAmelCase_, annotations=UpperCAmelCase_, return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCAmelCase_, atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCAmelCase_ ) ) # verify boxes SCREAMING_SNAKE_CASE : Dict = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCAmelCase_, atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCAmelCase_ ) ) # verify is_crowd SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCAmelCase_ ) ) # verify class_labels SCREAMING_SNAKE_CASE : Dict = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCAmelCase_ ) ) # verify orig_size SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCAmelCase_ ) ) # verify size SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCAmelCase_ ) ) @slow def lowercase__ (self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''', '''r''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = json.loads(f.read() ) SCREAMING_SNAKE_CASE : Optional[Any] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} SCREAMING_SNAKE_CASE : List[Any] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them SCREAMING_SNAKE_CASE : List[Any] = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) SCREAMING_SNAKE_CASE : str = image_processing(images=UpperCAmelCase_, annotations=UpperCAmelCase_, masks_path=UpperCAmelCase_, return_tensors='''pt''' ) # verify pixel values SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape, UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3], UpperCAmelCase_, atol=1e-4 ) ) # verify area SCREAMING_SNAKE_CASE : int = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''], UpperCAmelCase_ ) ) # verify boxes SCREAMING_SNAKE_CASE : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape, UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0], UpperCAmelCase_, atol=1e-3 ) ) # verify image_id SCREAMING_SNAKE_CASE : Dict = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''], UpperCAmelCase_ ) ) # verify is_crowd SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''], UpperCAmelCase_ ) ) # verify class_labels SCREAMING_SNAKE_CASE : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''], UpperCAmelCase_ ) ) # verify masks SCREAMING_SNAKE_CASE : Any = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item(), UpperCAmelCase_ ) # verify orig_size SCREAMING_SNAKE_CASE : List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''], UpperCAmelCase_ ) ) # verify size SCREAMING_SNAKE_CASE : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''], UpperCAmelCase_ ) )
711
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=_lowercase ): __magic_name__ : Dict = ["torch", "transformers", "onnx"] def __init__(self : List[str], *__UpperCAmelCase : Dict, **__UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Optional[Any], *__UpperCAmelCase : Tuple, **__UpperCAmelCase : int ) -> int: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Any, *__UpperCAmelCase : Tuple, **__UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Any = ["torch", "transformers", "onnx"] def __init__(self : Dict, *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Any, *__UpperCAmelCase : Tuple, **__UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : int, *__UpperCAmelCase : List[Any], **__UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Optional[Any] = ["torch", "transformers", "onnx"] def __init__(self : Dict, *__UpperCAmelCase : Dict, **__UpperCAmelCase : Any ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Tuple, *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Union[str, Any], *__UpperCAmelCase : List[str], **__UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Tuple = ["torch", "transformers", "onnx"] def __init__(self : Union[str, Any], *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : List[Any] ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : str, *__UpperCAmelCase : Optional[int], **__UpperCAmelCase : Tuple ) -> str: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : int, *__UpperCAmelCase : List[Any], **__UpperCAmelCase : List[str] ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : List[Any] = ["torch", "transformers", "onnx"] def __init__(self : Dict, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : int ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : List[str], *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Any, *__UpperCAmelCase : List[str], **__UpperCAmelCase : List[Any] ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) class a__ ( metaclass=_lowercase ): __magic_name__ : Dict = ["torch", "transformers", "onnx"] def __init__(self : Tuple, *__UpperCAmelCase : Optional[Any], **__UpperCAmelCase : List[str] ) -> Any: """simple docstring""" requires_backends(self, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Tuple, *__UpperCAmelCase : Any, **__UpperCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] ) @classmethod def lowercase__ (cls : Optional[Any], *__UpperCAmelCase : Union[str, Any], **__UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" requires_backends(cls, ['''torch''', '''transformers''', '''onnx'''] )
355
0
"""simple docstring""" import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC _lowerCAmelCase : List[str] = parse(importlib.metadata.version('''torch''')) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> List[Any]: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _lowerCamelCase : Any = STR_OPERATION_TO_FUNC[operation] if isinstance(_lowerCamelCase , _lowerCamelCase ): _lowerCamelCase : Any = parse(importlib.metadata.version(_lowerCamelCase ) ) return operation(_lowerCamelCase , parse(_lowerCamelCase ) ) def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> int: '''simple docstring''' return compare_versions(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
46
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase : Optional[Any] = logging.get_logger(__name__) def A_ ( A__ , A__ ) -> Union[str, Any]: a__ : List[Any] = b.T a__ : int = np.sum(np.square(A__ ) , axis=1 ) a__ : Any = np.sum(np.square(A__ ) , axis=0 ) a__ : Any = np.matmul(A__ , A__ ) a__ : List[str] = aa[:, None] - 2 * ab + ba[None, :] return d def A_ ( A__ , A__ ) -> Any: a__ : Tuple = x.reshape(-1 , 3 ) a__ : str = squared_euclidean_distance(A__ , A__ ) return np.argmin(A__ , axis=1 ) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : str = ['''pixel_values'''] def __init__( self , lowercase = None , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase) a__ : Any = size if size is not None else {'height': 256, 'width': 256} a__ : Optional[int] = get_size_dict(lowercase) a__ : List[Any] = np.array(lowercase) if clusters is not None else None a__ : Optional[int] = do_resize a__ : List[Any] = size a__ : int = resample a__ : Optional[int] = do_normalize a__ : List[str] = do_color_quantize def __lowercase ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' a__ : List[str] = get_size_dict(lowercase) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}') return resize( lowercase , size=(size['height'], size['width']) , resample=lowercase , data_format=lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None , ) -> np.ndarray: '''simple docstring''' a__ : Union[str, Any] = rescale(image=lowercase , scale=1 / 1_27.5 , data_format=lowercase) a__ : Any = image - 1 return image def __lowercase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' a__ : Any = do_resize if do_resize is not None else self.do_resize a__ : List[str] = size if size is not None else self.size a__ : Dict = get_size_dict(lowercase) a__ : Union[str, Any] = resample if resample is not None else self.resample a__ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize a__ : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a__ : List[Any] = clusters if clusters is not None else self.clusters a__ : Optional[Any] = np.array(lowercase) a__ : int = make_list_of_images(lowercase) if not valid_images(lowercase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.') # All transformations expect numpy arrays. a__ : List[str] = [to_numpy_array(lowercase) for image in images] if do_resize: a__ : Any = [self.resize(image=lowercase , size=lowercase , resample=lowercase) for image in images] if do_normalize: a__ : List[str] = [self.normalize(image=lowercase) for image in images] if do_color_quantize: a__ : Optional[int] = [to_channel_dimension_format(lowercase , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a__ : str = np.array(lowercase) a__ : str = color_quantize(lowercase , lowercase).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) a__ : Union[str, Any] = images.shape[0] a__ : List[Any] = images.reshape(lowercase , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. a__ : Tuple = list(lowercase) else: a__ : Any = [to_channel_dimension_format(lowercase , lowercase) for image in images] a__ : List[str] = {'input_ids': images} return BatchFeature(data=lowercase , tensor_type=lowercase)
302
0
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class a_ ( unittest.TestCase ): def __init__( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict=7 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : List[Any]=1_8 , __lowerCAmelCase : Optional[Any]=3_0 , __lowerCAmelCase : str=4_0_0 , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : List[Any]=True , ): __snake_case = size if size is not None else {'height': 1_8, 'width': 1_8} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize def lowercase__ ( self : List[Any] ): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class a_ ( UpperCAmelCase__ , unittest.TestCase ): lowercase_ : Union[str, Any] = ImageGPTImageProcessor if is_vision_available() else None def lowercase__ ( self : Dict ): __snake_case = ImageGPTImageProcessingTester(self ) @property def lowercase__ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self : Tuple ): __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowerCAmelCase , 'clusters' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'size' ) ) self.assertTrue(hasattr(__lowerCAmelCase , 'do_normalize' ) ) def lowercase__ ( self : Optional[int] ): __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2} ) def lowercase__ ( self : Optional[Any] ): __snake_case = self.image_processing_class(**self.image_processor_dict ) __snake_case = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , obj[key] ) ) else: self.assertEqual(obj[key] , __lowerCAmelCase ) def lowercase__ ( self : Any ): __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = os.path.join(__lowerCAmelCase , 'image_processor.json' ) image_processor_first.to_json_file(__lowerCAmelCase ) __snake_case = self.image_processing_class.from_json_file(__lowerCAmelCase ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) def lowercase__ ( self : List[str] ): __snake_case = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(__lowerCAmelCase ) __snake_case = self.image_processing_class.from_pretrained(__lowerCAmelCase ).to_dict() __snake_case = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(__lowerCAmelCase , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , __lowerCAmelCase ) @unittest.skip('ImageGPT requires clusters at initialization' ) def lowercase__ ( self : int ): pass def lowerCamelCase__ ( ): __snake_case = load_dataset('hf-internal-testing/fixtures_image_utils' , split='test' ) __snake_case = Image.open(dataset[4]['file'] ) __snake_case = Image.open(dataset[5]['file'] ) __snake_case = [imagea, imagea] return images @require_vision @require_torch class a_ ( unittest.TestCase ): @slow def lowercase__ ( self : List[Any] ): __snake_case = ImageGPTImageProcessor.from_pretrained('openai/imagegpt-small' ) __snake_case = prepare_images() # test non-batched __snake_case = image_processing(images[0] , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 1_0_2_4) ) __snake_case = [3_0_6, 1_9_1, 1_9_1] self.assertEqual(encoding.input_ids[0, :3].tolist() , __lowerCAmelCase ) # test batched __snake_case = image_processing(__lowerCAmelCase , return_tensors='pt' ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 1_0_2_4) ) __snake_case = [3_0_3, 1_3, 1_3] self.assertEqual(encoding.input_ids[1, -3:].tolist() , __lowerCAmelCase )
700
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") _lowercase = logging.getLogger(__name__) @dataclass class a_ : lowercase_ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) lowercase_ : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) @dataclass class a_ : lowercase_ : Optional[str] = field(default=UpperCAmelCase__ , metadata={'''help''': '''The input training data file (a text file).'''} ) lowercase_ : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. If passed, sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) lowercase_ : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to the maximum sentence length. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch. More ''' '''efficient on GPU but very bad for TPU.''' ) } , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) lowercase_ : Optional[int] = field( default=UpperCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowercase__ ( self : List[Any] ): if self.train_file is not None: __snake_case = self.train_file.split('.' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: __snake_case = self.validation_file.split('.' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class a_ : lowercase_ : PreTrainedTokenizerBase lowercase_ : Union[bool, str, PaddingStrategy] = True lowercase_ : Optional[int] = None lowercase_ : Optional[int] = None def __call__( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] ): __snake_case = 'label' if 'label' in features[0].keys() else 'labels' __snake_case = [feature.pop(__lowerCAmelCase ) for feature in features] __snake_case = len(__lowerCAmelCase ) __snake_case = len(features[0]['input_ids'] ) __snake_case = [ [{k: v[i] for k, v in feature.items()} for i in range(__lowerCAmelCase )] for feature in features ] __snake_case = list(chain(*__lowerCAmelCase ) ) __snake_case = self.tokenizer.pad( __lowerCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) # Un-flatten __snake_case = {k: v.view(__lowerCAmelCase , __lowerCAmelCase , -1 ) for k, v in batch.items()} # Add back labels __snake_case = torch.tensor(__lowerCAmelCase , dtype=torch.intaa ) return batch def lowerCamelCase__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case , __snake_case , __snake_case = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case , __snake_case , __snake_case = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_swag' , a , a ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __snake_case = training_args.get_process_log_level() logger.setLevel(a ) datasets.utils.logging.set_verbosity(a ) transformers.utils.logging.set_verbosity(a ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. __snake_case = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __snake_case = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: __snake_case = {} if data_args.train_file is not None: __snake_case = data_args.train_file if data_args.validation_file is not None: __snake_case = data_args.validation_file __snake_case = data_args.train_file.split('.' )[-1] __snake_case = load_dataset( a , data_files=a , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. __snake_case = load_dataset( 'swag' , 'regular' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __snake_case = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=a , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. __snake_case = [f'ending{i}' for i in range(4 )] __snake_case = 'sent1' __snake_case = 'sent2' if data_args.max_seq_length is None: __snake_case = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( 'The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value' ' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can' ' override this default with `--block_size xxx`.' ) __snake_case = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f'The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the' f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __snake_case = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(a ): __snake_case = [[context] * 4 for context in examples[context_name]] __snake_case = examples[question_header_name] __snake_case = [ [f'{header} {examples[end][i]}' for end in ending_names] for i, header in enumerate(a ) ] # Flatten out __snake_case = list(chain(*a ) ) __snake_case = list(chain(*a ) ) # Tokenize __snake_case = tokenizer( a , a , truncation=a , max_length=a , padding='max_length' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(a ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('--do_train requires a train dataset' ) __snake_case = raw_datasets['train'] if data_args.max_train_samples is not None: __snake_case = min(len(a ) , data_args.max_train_samples ) __snake_case = train_dataset.select(range(a ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): __snake_case = train_dataset.map( a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('--do_eval requires a validation dataset' ) __snake_case = raw_datasets['validation'] if data_args.max_eval_samples is not None: __snake_case = min(len(a ) , data_args.max_eval_samples ) __snake_case = eval_dataset.select(range(a ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): __snake_case = eval_dataset.map( a , batched=a , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator __snake_case = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=a , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(a ): __snake_case , __snake_case = eval_predictions __snake_case = np.argmax(a , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer __snake_case = Trainer( model=a , args=a , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=a , data_collator=a , compute_metrics=a , ) # Training if training_args.do_train: __snake_case = None if training_args.resume_from_checkpoint is not None: __snake_case = training_args.resume_from_checkpoint elif last_checkpoint is not None: __snake_case = last_checkpoint __snake_case = trainer.train(resume_from_checkpoint=a ) trainer.save_model() # Saves the tokenizer too for easy upload __snake_case = train_result.metrics __snake_case = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a ) ) __snake_case = min(a , len(a ) ) trainer.log_metrics('train' , a ) trainer.save_metrics('train' , a ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case = trainer.evaluate() __snake_case = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a ) __snake_case = min(a , len(a ) ) trainer.log_metrics('eval' , a ) trainer.save_metrics('eval' , a ) __snake_case = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'multiple-choice', 'dataset_tags': 'swag', 'dataset_args': 'regular', 'dataset': 'SWAG', 'language': 'en', } if training_args.push_to_hub: trainer.push_to_hub(**a ) else: trainer.create_model_card(**a ) def lowerCamelCase__ ( a ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
427
0
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset _UpperCAmelCase = random.Random() def __UpperCamelCase (lowerCAmelCase : Tuple, lowerCAmelCase : int=1.0, lowerCAmelCase : Tuple=None, lowerCAmelCase : Union[str, Any]=None ) -> Union[str, Any]: if rng is None: A = global_rng A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : int=400 , UpperCamelCase__ : Union[str, Any]=2000 , UpperCamelCase__ : Dict=2048 , UpperCamelCase__ : List[Any]=128 , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : List[str]=512 , UpperCamelCase__ : Any=30 , UpperCamelCase__ : Union[str, Any]=44100 , ): A = parent A = batch_size A = min_seq_length A = max_seq_length A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) A = spectrogram_length A = feature_size A = num_audio_channels A = hop_length A = chunk_length A = sampling_rate def UpperCamelCase ( self : int ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase ( self : Union[str, Any] , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Tuple=False ): def _flatten(UpperCamelCase__ : Any ): return list(itertools.chain(*SCREAMING_SNAKE_CASE_ ) ) if equal_length: A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: A = [np.asarray(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _UpperCAmelCase ( snake_case__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TvltFeatureExtractor def UpperCamelCase ( self : str ): A = TvltFeatureExtractionTester(self ) def UpperCamelCase ( self : Tuple ): A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'feature_size' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'hop_length' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'chunk_length' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'sampling_rate' ) ) def UpperCamelCase ( self : List[Any] ): A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) A = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) A = feat_extract_first.to_dict() A = feat_extract_second.to_dict() A = dict_first.pop('mel_filters' ) A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Union[str, Any] ): A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: A = os.path.join(SCREAMING_SNAKE_CASE_ , 'feat_extract.json' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) A = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) A = feat_extract_first.to_dict() A = feat_extract_second.to_dict() A = dict_first.pop('mel_filters' ) A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( self : Dict ): # Initialize feature_extractor A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] A = [np.asarray(SCREAMING_SNAKE_CASE_ ) for speech_input in speech_inputs] # Test not batched input A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched A = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking A = feature_extractor( SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=44100 , mask_audio=SCREAMING_SNAKE_CASE_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. A = [floats_list((1, x) )[0] for x in (800, 800, 800)] A = np.asarray(SCREAMING_SNAKE_CASE_ ) A = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase ( self : Any , UpperCamelCase__ : List[Any] ): A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech A = ds.sort('id' ).select(range(SCREAMING_SNAKE_CASE_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def UpperCamelCase ( self : Optional[int] ): A = self._load_datasamples(1 ) A = TvltFeatureExtractor() A = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) A = torch.tensor([[-0.3_032, -0.2_708], [-0.4_434, -0.4_007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
699
from collections import deque class lowerCAmelCase_ : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase__ = process_name # process name lowerCAmelCase__ = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCAmelCase__ = arrival_time lowerCAmelCase__ = burst_time # remaining burst time lowerCAmelCase__ = 0 # total time of the process wait in ready queue lowerCAmelCase__ = 0 # time from arrival time to completion time class lowerCAmelCase_ : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int , ): # total number of mlfq's queues lowerCAmelCase__ = number_of_queues # time slice of queues that round robin algorithm applied lowerCAmelCase__ = time_slices # unfinished process is in this ready_queue lowerCAmelCase__ = queue # current time lowerCAmelCase__ = current_time # finished process is in this sequence queue lowerCAmelCase__ = deque() def __snake_case ( self : Tuple ): lowerCAmelCase__ = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : list[Process] ): lowerCAmelCase__ = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : deque[Process] ): return [q.burst_time for q in queue] def __snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : deque[Process] ): lowerCAmelCase__ = deque() # sequence deque of finished process while len(SCREAMING_SNAKE_CASE_ ) != 0: lowerCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCAmelCase__ = 0 # set the process's turnaround time because it is finished lowerCAmelCase__ = self.current_time - cp.arrival_time # set the completion time lowerCAmelCase__ = self.current_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : deque[Process] , SCREAMING_SNAKE_CASE_ : int ): lowerCAmelCase__ = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(SCREAMING_SNAKE_CASE_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCAmelCase__ = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(SCREAMING_SNAKE_CASE_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCAmelCase__ = 0 # set the finish time lowerCAmelCase__ = self.current_time # update the process' turnaround time because it is finished lowerCAmelCase__ = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(SCREAMING_SNAKE_CASE_ ) self.finish_queue.extend(SCREAMING_SNAKE_CASE_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __snake_case ( self : int ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCAmelCase__ , lowerCAmelCase__ = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _UpperCAmelCase : List[Any] = Process("P1", 0, 53) _UpperCAmelCase : Tuple = Process("P2", 0, 17) _UpperCAmelCase : int = Process("P3", 0, 68) _UpperCAmelCase : str = Process("P4", 0, 24) _UpperCAmelCase : Tuple = 3 _UpperCAmelCase : List[Any] = [17, 25] _UpperCAmelCase : Tuple = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"queue": deque([Pa, Pa, Pa, Pa])}) _UpperCAmelCase : Tuple = Process("P1", 0, 53) _UpperCAmelCase : List[str] = Process("P2", 0, 17) _UpperCAmelCase : Any = Process("P3", 0, 68) _UpperCAmelCase : List[Any] = Process("P4", 0, 24) _UpperCAmelCase : Optional[int] = 3 _UpperCAmelCase : int = [17, 25] _UpperCAmelCase : str = deque([Pa, Pa, Pa, Pa]) _UpperCAmelCase : Tuple = MLFQ(number_of_queues, time_slices, queue, 0) _UpperCAmelCase : int = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
668
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): __snake_case : Any = 'ZinengTang/tvlt-base' __snake_case : List[str] = tempfile.mkdtemp() def lowercase_ ( self , **_UpperCAmelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowercase_ ( self , **_UpperCAmelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **_UpperCAmelCase ) def lowercase_ ( self ): shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ): __snake_case : Dict = self.get_image_processor() __snake_case : Optional[int] = self.get_feature_extractor() __snake_case : Dict = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __snake_case : Union[str, Any] = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , _UpperCAmelCase ) self.assertIsInstance(processor.image_processor , _UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.get_image_processor() __snake_case : Optional[int] = self.get_feature_extractor() __snake_case : Optional[Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) __snake_case : Any = np.ones([12_000] ) __snake_case : str = feature_extractor(_UpperCAmelCase , return_tensors='np' ) __snake_case : Any = processor(audio=_UpperCAmelCase , return_tensors='np' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ): __snake_case : List[Any] = self.get_image_processor() __snake_case : int = self.get_feature_extractor() __snake_case : List[str] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) __snake_case : Dict = np.ones([3, 224, 224] ) __snake_case : Optional[Any] = image_processor(_UpperCAmelCase , return_tensors='np' ) __snake_case : Tuple = processor(images=_UpperCAmelCase , return_tensors='np' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 ) def lowercase_ ( self ): __snake_case : str = self.get_image_processor() __snake_case : int = self.get_feature_extractor() __snake_case : List[Any] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) __snake_case : Optional[int] = np.ones([12_000] ) __snake_case : Any = np.ones([3, 224, 224] ) __snake_case : Any = processor(audio=_UpperCAmelCase , images=_UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['audio_values', 'audio_mask', 'pixel_values', 'pixel_mask'] ) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase ): processor() def lowercase_ ( self ): __snake_case : int = self.get_image_processor() __snake_case : Any = self.get_feature_extractor() __snake_case : List[str] = TvltProcessor(image_processor=_UpperCAmelCase , feature_extractor=_UpperCAmelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='`processor` and `image_processor`+`feature_extractor` model input names do not match' , )
679
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ShapEPipeline __UpperCAmelCase = ["prompt"] __UpperCAmelCase = ["prompt"] __UpperCAmelCase = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __UpperCAmelCase = False @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return 32 @property def lowercase_ ( self ): return self.time_input_dim * 4 @property def lowercase_ ( self ): return 8 @property def lowercase_ ( self ): __snake_case : Optional[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(_UpperCAmelCase ) @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Any = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } __snake_case : Dict = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase_ ( self ): torch.manual_seed(0 ) __snake_case : Tuple = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } __snake_case : Union[str, Any] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase_ ( self ): __snake_case : Tuple = self.dummy_prior __snake_case : Dict = self.dummy_text_encoder __snake_case : Optional[int] = self.dummy_tokenizer __snake_case : str = self.dummy_renderer __snake_case : Tuple = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) __snake_case : Optional[int] = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('mps' ): __snake_case : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: __snake_case : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) __snake_case : Tuple = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowercase_ ( self ): __snake_case : Optional[int] = 'cpu' __snake_case : Tuple = self.get_dummy_components() __snake_case : Tuple = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Any = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Any = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) __snake_case : Union[str, Any] = output.images[0] __snake_case : Tuple = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __snake_case : Dict = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase_ ( self ): __snake_case : List[str] = torch_device == 'cpu' __snake_case : int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase_ ( self ): __snake_case : Dict = self.get_dummy_components() __snake_case : Any = self.pipeline_class(**_UpperCAmelCase ) __snake_case : Tuple = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : int = 1 __snake_case : Optional[int] = 2 __snake_case : List[Any] = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: __snake_case : Union[str, Any] = batch_size * [inputs[key]] __snake_case : Any = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" def lowercase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ): __snake_case : str = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) __snake_case : Any = ShapEPipeline.from_pretrained('openai/shap-e' ) __snake_case : List[str] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __snake_case : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) __snake_case : Optional[Any] = pipe( 'a shark' , generator=_UpperCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
679
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCamelCase :str = None lowerCamelCase :Optional[Any] = logging.get_logger(__name__) lowerCamelCase :str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase :List[str] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCamelCase :Tuple = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off lowerCamelCase :str = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class UpperCAmelCase ( __snake_case ): a: Union[str, Any] = VOCAB_FILES_NAMES a: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a: List[Any] = PRETRAINED_VOCAB_FILES_MAP a: Dict = ["input_ids", "attention_mask"] a: Optional[Any] = MBartTokenizer a: List[int] = [] a: List[int] = [] def __init__( self: Optional[Any] , __UpperCamelCase: str=None , __UpperCamelCase: Any=None , __UpperCamelCase: int="<s>" , __UpperCamelCase: Dict="</s>" , __UpperCamelCase: Any="</s>" , __UpperCamelCase: Optional[Any]="<s>" , __UpperCamelCase: int="<unk>" , __UpperCamelCase: Dict="<pad>" , __UpperCamelCase: Optional[Any]="<mask>" , __UpperCamelCase: Tuple=None , __UpperCamelCase: int=None , __UpperCamelCase: int=None , **__UpperCamelCase: str , ): # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token super().__init__( vocab_file=__UpperCamelCase , tokenizer_file=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , src_lang=__UpperCamelCase , tgt_lang=__UpperCamelCase , additional_special_tokens=__UpperCamelCase , **__UpperCamelCase , ) _a = vocab_file _a = False if not self.vocab_file else True _a = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _a = { lang_code: self.convert_tokens_to_ids(__UpperCamelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _a = src_lang if src_lang is not None else '''en_XX''' _a = self.convert_tokens_to_ids(self._src_lang ) _a = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _A ( self: int ): return self._src_lang @src_lang.setter def _A ( self: int , __UpperCamelCase: str ): _a = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _A ( self: Any , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _A ( self: int , __UpperCamelCase: List[int] , __UpperCamelCase: Optional[List[int]] = None ): _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _A ( self: Tuple , __UpperCamelCase: List[str] , __UpperCamelCase: str , __UpperCamelCase: Optional[str] , __UpperCamelCase: Optional[str] , **__UpperCamelCase: Dict ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _a = src_lang _a = self(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ) _a = self.convert_tokens_to_ids(__UpperCamelCase ) _a = tgt_lang_id return inputs def _A ( self: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: str = "en_XX" , __UpperCamelCase: Optional[List[str]] = None , __UpperCamelCase: str = "ro_RO" , **__UpperCamelCase: List[str] , ): _a = src_lang _a = tgt_lang return super().prepare_seqaseq_batch(__UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ) def _A ( self: Dict ): return self.set_src_lang_special_tokens(self.src_lang ) def _A ( self: str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _A ( self: Tuple , __UpperCamelCase: List[str] ): _a = self.convert_tokens_to_ids(__UpperCamelCase ) _a = [] _a = [self.eos_token_id, self.cur_lang_code] _a = self.convert_ids_to_tokens(self.prefix_tokens ) _a = self.convert_ids_to_tokens(self.suffix_tokens ) _a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self: Optional[Any] , __UpperCamelCase: str ): _a = self.convert_tokens_to_ids(__UpperCamelCase ) _a = [] _a = [self.eos_token_id, self.cur_lang_code] _a = self.convert_ids_to_tokens(self.prefix_tokens ) _a = self.convert_ids_to_tokens(self.suffix_tokens ) _a = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _A ( self: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory." ) return _a = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
487
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class UpperCAmelCase : def __init__( self: List[str] , __UpperCamelCase: Optional[int] , ): _a = parent _a = 13 _a = 7 _a = True _a = True _a = True _a = True _a = True _a = False _a = False _a = False _a = 2 _a = 99 _a = 0 _a = 32 _a = 2 _a = 4 _a = 0.1 _a = 0.1 _a = 512 _a = 16 _a = 2 _a = 0.0_2 _a = 3 _a = 4 _a = '''last''' _a = True _a = None _a = 0 def _A ( self: Any ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A ( self: List[str] , __UpperCamelCase: Any , __UpperCamelCase: List[Any] , __UpperCamelCase: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Tuple , ): _a = TFFlaubertModel(config=__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _a = model(__UpperCamelCase ) _a = [input_ids, input_mask] _a = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self: Dict , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: str , __UpperCamelCase: List[str] , __UpperCamelCase: Any , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: int , __UpperCamelCase: List[Any] , __UpperCamelCase: Dict , ): _a = TFFlaubertWithLMHeadModel(__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths, '''langs''': token_type_ids} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A ( self: Tuple , __UpperCamelCase: Optional[int] , __UpperCamelCase: int , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str , __UpperCamelCase: int , __UpperCamelCase: str , __UpperCamelCase: Dict , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: List[Any] , ): _a = TFFlaubertForQuestionAnsweringSimple(__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A ( self: Dict , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: Any , __UpperCamelCase: Dict , __UpperCamelCase: Dict , __UpperCamelCase: str , __UpperCamelCase: Any , __UpperCamelCase: str , ): _a = TFFlaubertForSequenceClassification(__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''lengths''': input_lengths} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self: Optional[Any] , __UpperCamelCase: List[Any] , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: int , __UpperCamelCase: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: str , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Union[str, Any] , ): _a = self.num_labels _a = TFFlaubertForTokenClassification(config=__UpperCamelCase ) _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A ( self: Optional[int] , __UpperCamelCase: Any , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[Any] , __UpperCamelCase: Optional[Any] , __UpperCamelCase: Dict , __UpperCamelCase: List[str] , __UpperCamelCase: Tuple , __UpperCamelCase: str , __UpperCamelCase: str , ): _a = self.num_choices _a = TFFlaubertForMultipleChoice(config=__UpperCamelCase ) _a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _a = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) _a = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } _a = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A ( self: Dict ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''langs''': token_type_ids, '''lengths''': input_lengths, } return config, inputs_dict @require_tf class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): a: List[str] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) a: List[Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a: List[Any] = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) a: List[Any] = False a: Dict = False def _A ( self: List[str] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: Optional[int] , __UpperCamelCase: List[str] , __UpperCamelCase: int ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A ( self: Union[str, Any] ): _a = TFFlaubertModelTester(self ) _a = ConfigTester(self , config_class=__UpperCamelCase , emb_dim=37 ) def _A ( self: str ): self.config_tester.run_common_tests() def _A ( self: Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCamelCase ) def _A ( self: Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCamelCase ) def _A ( self: int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCamelCase ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCamelCase ) def _A ( self: int ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCamelCase ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCamelCase ) @slow def _A ( self: List[Any] ): for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFFlaubertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): @slow def _A ( self: Any ): _a = TFFlaubertModel.from_pretrained('''jplu/tf-flaubert-small-cased''' ) _a = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" _a = model(__UpperCamelCase )[0] _a = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCamelCase ) # compare the actual values for a slice. _a = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
487
1
a :int = "0.18.2" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
718
"""simple docstring""" import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class __a : '''simple docstring''' def __init__( self , _a , _a=99 , _a=13 , _a=7 , _a=9 , _a=True , _a=True , _a=False , _a=32 , _a=5 , _a=4 , _a=37 , _a=8 , _a=0.1 , _a=0.002 , _a=1 , _a=0 , _a=0 , _a=None , _a=None , ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : Tuple = encoder_seq_length SCREAMING_SNAKE_CASE__ : str = decoder_seq_length # For common tests SCREAMING_SNAKE_CASE__ : Optional[int] = self.decoder_seq_length SCREAMING_SNAKE_CASE__ : Tuple = is_training SCREAMING_SNAKE_CASE__ : Dict = use_attention_mask SCREAMING_SNAKE_CASE__ : List[str] = use_labels SCREAMING_SNAKE_CASE__ : str = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Any = d_ff SCREAMING_SNAKE_CASE__ : Any = relative_attention_num_buckets SCREAMING_SNAKE_CASE__ : Union[str, Any] = dropout_rate SCREAMING_SNAKE_CASE__ : List[str] = initializer_factor SCREAMING_SNAKE_CASE__ : List[Any] = eos_token_id SCREAMING_SNAKE_CASE__ : List[str] = pad_token_id SCREAMING_SNAKE_CASE__ : Any = decoder_start_token_id SCREAMING_SNAKE_CASE__ : Any = None SCREAMING_SNAKE_CASE__ : str = decoder_layers def _a ( self ) -> Tuple: """simple docstring""" return TaConfig.from_pretrained("""google/umt5-base""" ) def _a ( self , _a , _a , _a , _a=None , _a=None , _a=None , _a=None , _a=None , ) -> Any: """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : int = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: SCREAMING_SNAKE_CASE__ : str = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=_a ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=_a ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=_a ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def _a ( self ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input SCREAMING_SNAKE_CASE__ : Tuple = input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Optional[int] = decoder_input_ids.clamp(self.pad_token_id + 1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_config() SCREAMING_SNAKE_CASE__ : List[str] = config.num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[int] = self.prepare_inputs_dict(_a , _a , _a ) return config, input_dict def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self ) -> List[str]: """simple docstring""" return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self ) -> List[Any]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = UMTaModel(config=_a ) model.to(_a ) model.eval() SCREAMING_SNAKE_CASE__ : Dict = model( input_ids=_a , decoder_input_ids=_a , attention_mask=_a , decoder_attention_mask=_a , ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(input_ids=_a , decoder_input_ids=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = result.last_hidden_state SCREAMING_SNAKE_CASE__ : Dict = result.past_key_values SCREAMING_SNAKE_CASE__ : Any = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(_a ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def _a ( self , _a , _a , _a , _a , _a , _a , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).get_decoder().to(_a ).eval() # first forward pass SCREAMING_SNAKE_CASE__ : str = model(_a , use_cache=_a ) SCREAMING_SNAKE_CASE__ : str = model(_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : List[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Optional[int] = torch.cat([input_ids, next_tokens] , dim=-1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_a )["""last_hidden_state"""] SCREAMING_SNAKE_CASE__ : Tuple = model(_a , past_key_values=_a )["""last_hidden_state"""] # select random slice SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() SCREAMING_SNAKE_CASE__ : Optional[Any] = output_from_no_past[:, -1, random_slice_idx].detach() SCREAMING_SNAKE_CASE__ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1E-3 ) ) def _a ( self , _a , _a , ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = UMTaModel(config=_a ).to(_a ).half().eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(**_a )["""last_hidden_state"""] self.parent.assertFalse(torch.isnan(_a ).any().item() ) @require_torch class __a (UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[str, Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE :Optional[int] = (UMTaForConditionalGeneration,) if is_torch_available() else () _SCREAMING_SNAKE_CASE :List[str] = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE :Union[str, Any] = True _SCREAMING_SNAKE_CASE :Tuple = False _SCREAMING_SNAKE_CASE :Optional[Any] = False _SCREAMING_SNAKE_CASE :List[Any] = True _SCREAMING_SNAKE_CASE :List[str] = True # The small UMT5 model needs higher percentages for CPU/MP tests _SCREAMING_SNAKE_CASE :Union[str, Any] = [0.8, 0.9] def _a ( self ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip("""Test has a segmentation fault on torch 1.8.0""" ) def _a ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : Dict = UMTaModel(config_and_inputs[0] ).to(_a ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( _a , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=_a , opset_version=9 , input_names=["""input_ids""", """decoder_input_ids"""] , ) @unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" ) def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*_a ) def _a ( self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""encoder_attentions""", """decoder_attentions""", """cross_attentions"""] SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ : List[Any] = config_and_inputs[0] SCREAMING_SNAKE_CASE__ : Tuple = UMTaForConditionalGeneration(_a ).eval() model.to(_a ) SCREAMING_SNAKE_CASE__ : List[str] = { """head_mask""": torch.zeros(config.num_layers , config.num_heads , device=_a ), """decoder_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), """cross_attn_head_mask""": torch.zeros(config.num_decoder_layers , config.num_heads , device=_a ), } for attn_name, (name, mask) in zip(_a , head_masking.items() ): SCREAMING_SNAKE_CASE__ : List[str] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": SCREAMING_SNAKE_CASE__ : str = torch.ones( config.num_decoder_layers , config.num_heads , device=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.generate( config_and_inputs[1]["""input_ids"""] , num_beams=1 , max_length=3 , output_attentions=_a , return_dict_in_generate=_a , **_a , ) # We check the state of decoder_attentions and cross_attentions just from the last step SCREAMING_SNAKE_CASE__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("""Does not work on the tiny model as we keep hitting edge cases.""" ) def _a ( self ) -> Dict: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class __a (unittest.TestCase): '''simple docstring''' @slow @unittest.skip( """Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged""" ) def _a ( self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("""google/umt5-small""" , return_dict=_a ).to(_a ) SCREAMING_SNAKE_CASE__ : str = AutoTokenizer.from_pretrained("""google/umt5-small""" , use_fast=_a , legacy=_a ) SCREAMING_SNAKE_CASE__ : Optional[Any] = [ """Bonjour monsieur <extra_id_0> bien <extra_id_1>.""", """No se como puedo <extra_id_0>.""", """This is the reason why we <extra_id_0> them.""", """The <extra_id_0> walks in <extra_id_1>, seats""", """A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.""", ] SCREAMING_SNAKE_CASE__ : Tuple = tokenizer(_a , return_tensors="""pt""" , padding=_a ).input_ids # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [ [ 38_530, 210_703, 256_299, 1_410, 256_298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25_922, 256_299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_460, 339, 312, 19_014, 10_620, 758, 256_299, 2_355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256_299, 14_869, 281, 301, 256_298, 275, 119_983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256_299, 14_869, 281, 2_234, 289, 2_275, 333,61_391, 289, 256_298, 543, 256_297, 168_714, 329, 256_296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(_a , _a ) SCREAMING_SNAKE_CASE__ : Optional[int] = model.generate(input_ids.to(_a ) ) SCREAMING_SNAKE_CASE__ : int = [ """<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>""", """<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", """<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>""", ] SCREAMING_SNAKE_CASE__ : List[str] = tokenizer.batch_decode(_a ) self.assertEqual(_a , _a )
12
0
"""simple docstring""" import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __a : str = "cpu" , __a : str = "openai/clip-vit-large-patch14" ) -> None: _UpperCamelCase : List[Any] = device _UpperCamelCase : List[str] = CLIPTokenizerFast.from_pretrained(__a ) _UpperCamelCase : Optional[int] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] _UpperCamelCase : Optional[int] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] _UpperCamelCase : int = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _UpperCamelCase : int = torchvision.transforms.Resize(224 ) _UpperCamelCase : Any = torchvision.transforms.CenterCrop(224 ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : int ) -> Tuple: _UpperCamelCase : Optional[Any] = self.resize(__a ) _UpperCamelCase : List[Any] = self.center_crop(__a ) _UpperCamelCase : int = self.normalize(__a ) return images def __call__( self : Tuple , __a : Tuple=None , __a : Any=None , **__a : Optional[Any] ) -> str: _UpperCamelCase : Optional[Any] = self.tokenizer(text=__a , **__a ) _UpperCamelCase : int = self.preprocess_img(__a ) _UpperCamelCase : str = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self : int , __a : int=10 , __a : List[str]=0.01 , __a : str=None , __a : Optional[Any]=None , __a : Dict=None , __a : Optional[int]=None , __a : List[str]=None , __a : Any=None , __a : List[Any]=False , __a : Tuple=True , __a : Optional[int]="image" , __a : Optional[int]=True , __a : Optional[int]=False , __a : Any=False , __a : Any=False , ) -> None: super().__init__() _UpperCamelCase : Optional[Any] = None _UpperCamelCase : List[str] = device if device else get_device() if vqgan: _UpperCamelCase : List[Any] = vqgan else: _UpperCamelCase : Union[str, Any] = load_vqgan(self.device , conf_path=__a , ckpt_path=__a ) self.vqgan.eval() if clip: _UpperCamelCase : int = clip else: _UpperCamelCase : Union[str, Any] = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) _UpperCamelCase : Tuple = ProcessorGradientFlow(device=self.device ) _UpperCamelCase : Dict = iterations _UpperCamelCase : str = lr _UpperCamelCase : List[Any] = log _UpperCamelCase : str = make_grid _UpperCamelCase : str = return_val _UpperCamelCase : Any = quantize _UpperCamelCase : str = self.vqgan.decoder.z_shape def __SCREAMING_SNAKE_CASE ( self : Any , __a : int=None , __a : List[str]=None , __a : Union[str, Any]=5 , __a : str=True ) -> List[Any]: _UpperCamelCase : str = [] if output_path is None: _UpperCamelCase : Optional[int] = "./animation.gif" if input_path is None: _UpperCamelCase : List[Any] = self.save_path _UpperCamelCase : int = sorted(glob(input_path + "/*" ) ) if not len(__a ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__a ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) _UpperCamelCase : int = total_duration / len(__a ) _UpperCamelCase : Optional[int] = [frame_duration] * len(__a ) if extend_frames: _UpperCamelCase : Optional[int] = 1.5 _UpperCamelCase : Optional[int] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__a ) ) imageio.mimsave(__a , __a , duration=__a ) print(F'''gif saved to {output_path}''' ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Any=None , __a : Dict=None ) -> List[Any]: if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError _UpperCamelCase : int = preprocess(Image.open(__a ) , target_image_size=256 ).to(self.device ) _UpperCamelCase : str = preprocess_vqgan(__a ) _UpperCamelCase, *_UpperCamelCase : List[Any] = self.vqgan.encode(__a ) return z def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Optional[int] ) -> Any: _UpperCamelCase : Optional[int] = self.latent.detach().requires_grad_() _UpperCamelCase : List[Any] = base_latent + transform_vector if self.quantize: _UpperCamelCase, *_UpperCamelCase : int = self.vqgan.quantize(__a ) else: _UpperCamelCase : Tuple = trans_latent return self.vqgan.decode(__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __a : int , __a : Optional[int] , __a : Dict=None ) -> Dict: _UpperCamelCase : List[str] = self.clip_preprocessor(text=__a , images=__a , return_tensors="pt" , padding=__a ) _UpperCamelCase : Union[str, Any] = self.clip(**__a ) _UpperCamelCase : Any = clip_outputs.logits_per_image if weights is not None: _UpperCamelCase : str = similarity_logits * weights return similarity_logits.sum() def __SCREAMING_SNAKE_CASE ( self : int , __a : List[Any] , __a : Optional[int] , __a : int ) -> List[str]: _UpperCamelCase : Any = self._get_clip_similarity(pos_prompts["prompts"] , __a , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: _UpperCamelCase : Dict = self._get_clip_similarity(neg_prompts["prompts"] , __a , weights=neg_prompts["weights"] ) else: _UpperCamelCase : List[Any] = torch.tensor([1] , device=self.device ) _UpperCamelCase : Any = -torch.log(__a ) + torch.log(__a ) return loss def __SCREAMING_SNAKE_CASE ( self : List[str] , __a : Optional[Any] , __a : List[Any] , __a : Dict ) -> Dict: _UpperCamelCase : List[str] = torch.randn_like(self.latent , requires_grad=__a , device=self.device ) _UpperCamelCase : Union[str, Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _UpperCamelCase : Any = self._add_vector(__a ) _UpperCamelCase : Tuple = loop_post_process(__a ) _UpperCamelCase : int = self._get_CLIP_loss(__a , __a , __a ) print("CLIP loss" , __a ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__a ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Union[str, Any] , __a : str , __a : int ) -> str: wandb.init(reinit=__a , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: _UpperCamelCase : List[str] = Image.open(__a ) _UpperCamelCase : Tuple = image.resize((256, 256) ) wandb.log("Original Image" , wandb.Image(__a ) ) def __SCREAMING_SNAKE_CASE ( self : Dict , __a : Union[str, Any] ) -> List[Any]: if not prompts: return [] _UpperCamelCase : Tuple = [] _UpperCamelCase : str = [] if isinstance(__a , __a ): _UpperCamelCase : int = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__a , (tuple, list) ): _UpperCamelCase : Any = prompt[0] _UpperCamelCase : Optional[int] = float(prompt[1] ) elif ":" in prompt: _UpperCamelCase, _UpperCamelCase : Union[str, Any] = prompt.split(":" ) _UpperCamelCase : Any = float(__a ) else: _UpperCamelCase : Optional[Any] = prompt _UpperCamelCase : Optional[int] = 1.0 processed_prompts.append(__a ) weights.append(__a ) return { "prompts": processed_prompts, "weights": torch.tensor(__a , device=self.device ), } def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : Any , __a : Dict=None , __a : str=None , __a : int=True , __a : Union[str, Any]=False , __a : Tuple=True , __a : Tuple=True , __a : Optional[int]=None , ) -> List[Any]: if image_path: _UpperCamelCase : Optional[Any] = self._get_latent(__a ) else: _UpperCamelCase : Optional[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__a , __a , __a ) assert pos_prompts, "You must provide at least one positive prompt." _UpperCamelCase : List[Any] = self.process_prompts(__a ) _UpperCamelCase : Optional[Any] = self.process_prompts(__a ) if save_final and save_path is None: _UpperCamelCase : str = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__a ): os.makedirs(__a ) else: _UpperCamelCase : Tuple = save_path + "_" + get_timestamp() os.makedirs(__a ) _UpperCamelCase : int = save_path _UpperCamelCase : List[str] = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__a ) ) _UpperCamelCase : List[Any] = loop_post_process(__a ) for iter, transformed_img in enumerate(self._optimize_CLIP(__a , __a , __a ) ): if show_intermediate: show_pil(__a ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"Image": wandb.Image(__a )} ) if show_final: show_pil(__a ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
624
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ = logging.get_logger(__name__) if is_vision_available(): import PIL class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[int] = ["pixel_values"] def __init__( self : Tuple , __a : bool = True , __a : Dict[str, int] = None , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : bool = True , __a : Dict[str, int] = None , __a : bool = True , __a : Union[int, float] = 1 / 255 , __a : bool = True , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = True , **__a : List[Any] , ) -> None: super().__init__(**__a ) _UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 224} _UpperCamelCase : Optional[int] = get_size_dict(__a , default_to_square=__a ) _UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : Tuple = get_size_dict(__a , default_to_square=__a , param_name="crop_size" ) _UpperCamelCase : Optional[Any] = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : Any = resample _UpperCamelCase : Tuple = do_center_crop _UpperCamelCase : str = crop_size _UpperCamelCase : Any = do_rescale _UpperCamelCase : Dict = rescale_factor _UpperCamelCase : int = do_normalize _UpperCamelCase : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _UpperCamelCase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD _UpperCamelCase : List[Any] = do_convert_rgb def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : np.ndarray , __a : Dict[str, int] , __a : PILImageResampling = PILImageResampling.BICUBIC , __a : Optional[Union[str, ChannelDimension]] = None , **__a : str , ) -> np.ndarray: _UpperCamelCase : Any = get_size_dict(__a , default_to_square=__a ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCamelCase : Dict = get_resize_output_image_size(__a , size=size["shortest_edge"] , default_to_square=__a ) return resize(__a , size=__a , resample=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : List[Any] , __a : np.ndarray , __a : Dict[str, int] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: _UpperCamelCase : List[str] = get_size_dict(__a ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(__a , size=(size["height"], size["width"]) , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : np.ndarray , __a : Union[int, float] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Optional[Any] , ) -> List[str]: return rescale(__a , scale=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : np.ndarray , __a : Union[float, List[float]] , __a : Union[float, List[float]] , __a : Optional[Union[str, ChannelDimension]] = None , **__a : Tuple , ) -> np.ndarray: return normalize(__a , mean=__a , std=__a , data_format=__a , **__a ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : ImageInput , __a : bool = None , __a : Dict[str, int] = None , __a : PILImageResampling = None , __a : bool = None , __a : int = None , __a : bool = None , __a : float = None , __a : bool = None , __a : Optional[Union[float, List[float]]] = None , __a : Optional[Union[float, List[float]]] = None , __a : bool = None , __a : Optional[Union[str, TensorType]] = None , __a : Optional[ChannelDimension] = ChannelDimension.FIRST , **__a : Union[str, Any] , ) -> PIL.Image.Image: _UpperCamelCase : Tuple = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : int = size if size is not None else self.size _UpperCamelCase : int = get_size_dict(__a , param_name="size" , default_to_square=__a ) _UpperCamelCase : List[Any] = resample if resample is not None else self.resample _UpperCamelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Union[str, Any] = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : List[Any] = get_size_dict(__a , param_name="crop_size" , default_to_square=__a ) _UpperCamelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : List[Any] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : List[str] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _UpperCamelCase : Any = make_list_of_images(__a ) if not valid_images(__a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: _UpperCamelCase : int = [convert_to_rgb(__a ) for image in images] # All transformations expect numpy arrays. _UpperCamelCase : List[Any] = [to_numpy_array(__a ) for image in images] if do_resize: _UpperCamelCase : Union[str, Any] = [self.resize(image=__a , size=__a , resample=__a ) for image in images] if do_center_crop: _UpperCamelCase : Optional[Any] = [self.center_crop(image=__a , size=__a ) for image in images] if do_rescale: _UpperCamelCase : Dict = [self.rescale(image=__a , scale=__a ) for image in images] if do_normalize: _UpperCamelCase : List[Any] = [self.normalize(image=__a , mean=__a , std=__a ) for image in images] _UpperCamelCase : List[Any] = [to_channel_dimension_format(__a , __a ) for image in images] _UpperCamelCase : str = {"pixel_values": images} return BatchFeature(data=__a , tensor_type=__a )
624
1
"""simple docstring""" import math def _snake_case ( ) -> None: '''simple docstring''' _A = input('Enter message: ' ) _A = int(input(F'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) _A = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): _A = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('d' ): _A = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ) -> str: '''simple docstring''' _A = [''] * key for col in range(_snake_case ): _A = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ) -> str: '''simple docstring''' _A = math.ceil(len(_snake_case ) / key ) _A = key _A = (num_cols * num_rows) - len(_snake_case ) _A = [''] * num_cols _A = 0 _A = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _A = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
505
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/deit-base-distilled-patch16-224''': ( '''https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json''' ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = '''deit''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any]=768 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Union[str, Any]=0.0 , _UpperCAmelCase : Tuple=0.0 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Any=1E-1_2 , _UpperCAmelCase : Tuple=224 , _UpperCAmelCase : List[Any]=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : int=16 , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = encoder_stride class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = version.parse('''1.11''' ) @property def lowerCAmelCase_ ( self : Optional[int] ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCAmelCase_ ( self : Any ): return 1E-4
505
1
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html snake_case_ = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __lowercase (_SCREAMING_SNAKE_CASE :Dict , _SCREAMING_SNAKE_CASE :List[Any] , _SCREAMING_SNAKE_CASE :Tuple=None , _SCREAMING_SNAKE_CASE :List[Any]=None , _SCREAMING_SNAKE_CASE :Any=None , _SCREAMING_SNAKE_CASE :Union[str, Any]=None , _SCREAMING_SNAKE_CASE :int=None , _SCREAMING_SNAKE_CASE :Union[str, Any]=None , ): if attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE : Tuple = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: SCREAMING_SNAKE_CASE : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class a__ : def __init__(self : Dict, __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Dict=13, __UpperCAmelCase : Tuple=7, __UpperCAmelCase : Optional[int]=True, __UpperCAmelCase : str=False, __UpperCAmelCase : List[Any]=99, __UpperCAmelCase : List[str]=16, __UpperCAmelCase : Union[str, Any]=2, __UpperCAmelCase : Union[str, Any]=4, __UpperCAmelCase : List[str]=4, __UpperCAmelCase : Union[str, Any]="gelu", __UpperCAmelCase : str=0.1, __UpperCAmelCase : str=0.1, __UpperCAmelCase : Dict=32, __UpperCAmelCase : Any=2, __UpperCAmelCase : Any=1, __UpperCAmelCase : Tuple=0, __UpperCAmelCase : str=0.02, ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = parent SCREAMING_SNAKE_CASE : List[str] = batch_size SCREAMING_SNAKE_CASE : List[Any] = seq_length SCREAMING_SNAKE_CASE : str = is_training SCREAMING_SNAKE_CASE : Any = use_labels SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = eos_token_id SCREAMING_SNAKE_CASE : int = pad_token_id SCREAMING_SNAKE_CASE : Dict = bos_token_id SCREAMING_SNAKE_CASE : List[Any] = initializer_range def lowercase__ (self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ), 3, self.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.intaa )), -1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = shift_tokens_right(__UpperCAmelCase, 1, 2 ) SCREAMING_SNAKE_CASE : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, initializer_range=self.initializer_range, use_cache=__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : Any = prepare_blenderbot_inputs_dict(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) return config, inputs_dict def lowercase__ (self : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ (self : List[str], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Optional[Any], __UpperCAmelCase : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = 20 SCREAMING_SNAKE_CASE : List[Any] = model_class_name(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = model.encode(inputs_dict['''input_ids'''] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE : List[str] = model.init_cache(decoder_input_ids.shape[0], __UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype='''i4''' ) SCREAMING_SNAKE_CASE : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) SCREAMING_SNAKE_CASE : Union[str, Any] = model.decode( decoder_input_ids[:, :-1], __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, past_key_values=__UpperCAmelCase, decoder_position_ids=__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) SCREAMING_SNAKE_CASE : str = model.decode( decoder_input_ids[:, -1:], __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_position_ids=__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : List[str] = model.decode(__UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=F'''Max diff is {diff}''' ) def lowercase__ (self : str, __UpperCAmelCase : List[str], __UpperCAmelCase : str, __UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = 20 SCREAMING_SNAKE_CASE : Dict = model_class_name(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Tuple = model.encode(inputs_dict['''input_ids'''] ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) SCREAMING_SNAKE_CASE : Dict = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ], axis=-1, ) SCREAMING_SNAKE_CASE : Optional[Any] = model.init_cache(decoder_input_ids.shape[0], __UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :], (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1), ) SCREAMING_SNAKE_CASE : List[str] = model.decode( decoder_input_ids[:, :-1], __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, past_key_values=__UpperCAmelCase, decoder_position_ids=__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype='''i4''' ) SCREAMING_SNAKE_CASE : List[Any] = model.decode( decoder_input_ids[:, -1:], __UpperCAmelCase, past_key_values=outputs_cache.past_key_values, decoder_attention_mask=__UpperCAmelCase, decoder_position_ids=__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : Any = model.decode(__UpperCAmelCase, __UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3, msg=F'''Max diff is {diff}''' ) @require_flax class a__ ( unittest.TestCase ): __magic_name__ : str = 99 def lowercase__ (self : List[Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ], dtype=np.intaa, ) SCREAMING_SNAKE_CASE : Dict = input_ids.shape[0] SCREAMING_SNAKE_CASE : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=24, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=32, decoder_ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size def lowercase__ (self : int ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self._get_config_and_data() SCREAMING_SNAKE_CASE : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = lm_model(input_ids=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape, __UpperCAmelCase ) def lowercase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : str = BlenderbotSmallConfig( vocab_size=self.vocab_size, d_model=14, encoder_layers=2, decoder_layers=2, encoder_attention_heads=2, decoder_attention_heads=2, encoder_ffn_dim=8, decoder_ffn_dim=8, max_position_embeddings=48, ) SCREAMING_SNAKE_CASE : Dict = FlaxBlenderbotSmallForConditionalGeneration(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.intaa ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.intaa ) SCREAMING_SNAKE_CASE : List[str] = lm_model(input_ids=__UpperCAmelCase, decoder_input_ids=__UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape, __UpperCAmelCase ) def lowercase__ (self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.intaa ) SCREAMING_SNAKE_CASE : Any = shift_tokens_right(__UpperCAmelCase, 1, 2 ) SCREAMING_SNAKE_CASE : Optional[Any] = np.equal(__UpperCAmelCase, 1 ).astype(np.floataa ).sum() SCREAMING_SNAKE_CASE : Any = np.equal(__UpperCAmelCase, 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape, input_ids.shape ) self.assertEqual(__UpperCAmelCase, n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0], 2 ).all() ) @require_flax class a__ ( _lowercase, unittest.TestCase, _lowercase ): __magic_name__ : str = True __magic_name__ : Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __magic_name__ : List[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase__ (self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = FlaxBlenderbotSmallModelTester(self ) def lowercase__ (self : Tuple ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def lowercase__ (self : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) def lowercase__ (self : List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : int = self._prepare_for_class(__UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = model_class(__UpperCAmelCase ) @jax.jit def encode_jitted(__UpperCAmelCase : str, __UpperCAmelCase : Dict=None, **__UpperCAmelCase : List[str] ): return model.encode(input_ids=__UpperCAmelCase, attention_mask=__UpperCAmelCase ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE : int = encode_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : List[Any] = encode_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ), len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase, __UpperCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) def lowercase__ (self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE : List[Any] = model_class(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : int = model.encode(inputs_dict['''input_ids'''], inputs_dict['''attention_mask'''] ) SCREAMING_SNAKE_CASE : Tuple = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(__UpperCAmelCase : Dict, __UpperCAmelCase : List[Any], __UpperCAmelCase : Optional[Any] ): return model.decode( decoder_input_ids=__UpperCAmelCase, decoder_attention_mask=__UpperCAmelCase, encoder_outputs=__UpperCAmelCase, ) with self.subTest('''JIT Enabled''' ): SCREAMING_SNAKE_CASE : Union[str, Any] = decode_jitted(**__UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): SCREAMING_SNAKE_CASE : List[Any] = decode_jitted(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ), len(__UpperCAmelCase ) ) for jitted_output, output in zip(__UpperCAmelCase, __UpperCAmelCase ): self.assertEqual(jitted_output.shape, output.shape ) @slow def lowercase__ (self : int ) -> Optional[int]: """simple docstring""" for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE : List[Any] = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((1, 1) ) * model.config.eos_token_id SCREAMING_SNAKE_CASE : Optional[int] = model(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase )
507
'''simple docstring''' from math import isqrt def __lowercase (_SCREAMING_SNAKE_CASE :int ): return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE ) + 1 ) ) def __lowercase (_SCREAMING_SNAKE_CASE :int = 10**6 ): SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : List[Any] = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
507
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> Optional[Any]: # Initialise PyTorch model A_ = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) A_ = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict(), UpperCAmelCase__ ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) __lowerCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
667
'''simple docstring''' from __future__ import annotations import math def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(UpperCAmelCase__ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __lowerCamelCase = [num for num in range(3, 10_0001, 2) if not is_prime(num)] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise ValueError("""n must be an integer""" ) if n <= 0: raise ValueError("""n must be >= 0""" ) A_ = [] for num in range(len(UpperCAmelCase__ ) ): A_ = 0 while 2 * i * i <= odd_composites[num]: A_ = odd_composites[num] - 2 * i * i if is_prime(UpperCAmelCase__ ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(UpperCAmelCase__ ) == n: return list_nums return [] def UpperCAmelCase__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f"""{solution() = }""")
667
1
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __SCREAMING_SNAKE_CASE =1.054571817E-34 # unit of ℏ : J * s __SCREAMING_SNAKE_CASE =3E8 # unit of c : m * s^-1 def lowercase__( __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float , __SCREAMING_SNAKE_CASE : float ): if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: lowercase_ : Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: lowercase_ : Union[str, Any] = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowercase_ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
425
"""simple docstring""" __SCREAMING_SNAKE_CASE =range(2, 20 + 1) __SCREAMING_SNAKE_CASE =[10**k for k in range(ks[-1] + 1)] __SCREAMING_SNAKE_CASE ={} def lowercase__( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ): lowercase_ : int = sum(a_i[j] for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ) lowercase_ : Tuple = sum(a_i[j] * base[j] for j in range(min(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) ) ) lowercase_ , lowercase_ : str = 0, 0 lowercase_ : Optional[int] = n - i lowercase_ : Any = memo.get(__SCREAMING_SNAKE_CASE ) if sub_memo is not None: lowercase_ : List[str] = sub_memo.get(__SCREAMING_SNAKE_CASE ) if jumps is not None and len(__SCREAMING_SNAKE_CASE ) > 0: # find and make the largest jump without going over lowercase_ : Optional[Any] = -1 for _k in range(len(__SCREAMING_SNAKE_CASE ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowercase_ : List[str] = _k break if max_jump >= 0: lowercase_ , lowercase_ , lowercase_ : List[str] = jumps[max_jump] # since the difference between jumps is cached, add c lowercase_ : List[Any] = diff + c for j in range(min(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ) ): lowercase_ , lowercase_ : Optional[int] = divmod(__SCREAMING_SNAKE_CASE , 10 ) if new_c > 0: add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: lowercase_ : Dict = [] else: lowercase_ : List[Any] = {c: []} lowercase_ : Optional[Any] = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowercase_ , lowercase_ : Union[str, Any] = next_term(__SCREAMING_SNAKE_CASE , k - 1 , i + dn , __SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowercase_ , lowercase_ : List[str] = compute(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , i + dn , __SCREAMING_SNAKE_CASE ) diff += _diff dn += terms_jumped lowercase_ : str = sub_memo[c] # keep jumps sorted by # of terms skipped lowercase_ : Union[str, Any] = 0 while j < len(__SCREAMING_SNAKE_CASE ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(__SCREAMING_SNAKE_CASE , (diff, dn, k) ) return (diff, dn) def lowercase__( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict ): if i >= n: return 0, i if k > len(__SCREAMING_SNAKE_CASE ): a_i.extend([0 for _ in range(k - len(__SCREAMING_SNAKE_CASE ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowercase_ : str = i lowercase_ , lowercase_ , lowercase_ : Optional[Any] = 0, 0, 0 for j in range(len(__SCREAMING_SNAKE_CASE ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowercase_ : Tuple = ds_c + ds_b diff += addend lowercase_ : Tuple = 0 for j in range(__SCREAMING_SNAKE_CASE ): lowercase_ : Optional[Any] = a_i[j] + addend lowercase_ , lowercase_ : List[str] = divmod(__SCREAMING_SNAKE_CASE , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return diff, i - start_i def lowercase__( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] ): for j in range(__SCREAMING_SNAKE_CASE , len(__SCREAMING_SNAKE_CASE ) ): lowercase_ : Optional[int] = digits[j] + addend if s >= 10: lowercase_ , lowercase_ : str = divmod(__SCREAMING_SNAKE_CASE , 10 ) lowercase_ : Optional[int] = addend // 10 + quotient else: lowercase_ : Optional[int] = s lowercase_ : Any = addend // 10 if addend == 0: break while addend > 0: lowercase_ , lowercase_ : str = divmod(__SCREAMING_SNAKE_CASE , 10 ) digits.append(__SCREAMING_SNAKE_CASE ) def lowercase__( __SCREAMING_SNAKE_CASE : int = 10**15 ): lowercase_ : Dict = [1] lowercase_ : Any = 1 lowercase_ : List[Any] = 0 while True: lowercase_ , lowercase_ : Tuple = next_term(__SCREAMING_SNAKE_CASE , 20 , i + dn , __SCREAMING_SNAKE_CASE ) dn += terms_jumped if dn == n - i: break lowercase_ : List[str] = 0 for j in range(len(__SCREAMING_SNAKE_CASE ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"{solution() = }")
425
1
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class _UpperCamelCase (a_ ): def __UpperCAmelCase ( self , __UpperCamelCase )-> float: return 0.0 def __lowerCAmelCase ( __snake_case , __snake_case ): __lowerCAmelCase = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) __lowerCAmelCase = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def __lowerCAmelCase ( __snake_case , __snake_case ): __lowerCAmelCase = 512 __lowerCAmelCase = [1] + [0] * (size - 1) __lowerCAmelCase = [filter_type.process(__snake_case ) for item in inputs] __lowerCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCAmelCase = np.abs(np.fft.fft(__snake_case ) ) __lowerCAmelCase = 20 * np.logaa(__snake_case ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) # Display within reasonable bounds __lowerCAmelCase = get_bounds(__snake_case , __snake_case ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("Gain (dB)" ) plt.plot(__snake_case ) plt.show() def __lowerCAmelCase ( __snake_case , __snake_case ): __lowerCAmelCase = 512 __lowerCAmelCase = [1] + [0] * (size - 1) __lowerCAmelCase = [filter_type.process(__snake_case ) for item in inputs] __lowerCAmelCase = [0] * (samplerate - size) # zero-padding outputs += filler __lowerCAmelCase = np.angle(np.fft.fft(__snake_case ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("Frequency (Hz)" ) plt.xscale("log" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("Phase shift (Radians)" ) plt.plot(np.unwrap(__snake_case , -2 * pi ) ) plt.show()
290
import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class _UpperCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"] # fmt: on __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) __lowerCAmelCase = { "do_resize": True, "size": {"height": 1_8, "width": 1_8}, "do_normalize": True, "image_mean": [0.5, 0.5, 0.5], "image_std": [0.5, 0.5, 0.5], } __lowerCAmelCase = os.path.join(self.tmpdirname , __UpperCamelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> Optional[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCAmelCase ( self , **__UpperCamelCase )-> Any: return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] __lowerCAmelCase = [Image.fromarray(np.moveaxis(__UpperCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self )-> Optional[Any]: __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> str: __lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__UpperCamelCase , padding_value=1.0 ) __lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__UpperCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__UpperCamelCase , return_tensors="np" ) __lowerCAmelCase = processor(images=__UpperCamelCase , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = processor(text=__UpperCamelCase ) __lowerCAmelCase = tokenizer(__UpperCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self )-> List[str]: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with self.assertRaises(__UpperCamelCase ): processor() def __UpperCAmelCase ( self )-> Optional[int]: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.batch_decode(__UpperCamelCase ) __lowerCAmelCase = tokenizer.batch_decode(__UpperCamelCase ) self.assertListEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self )-> Any: __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) __lowerCAmelCase = "lower newer" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__UpperCamelCase , images=__UpperCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
290
1
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase : int = logging.get_logger(__name__) # General docstring _lowerCAmelCase : Union[str, Any] = "RegNetConfig" # Base docstring _lowerCAmelCase : Optional[Any] = "facebook/regnet-y-040" _lowerCAmelCase : Any = [1, 1_088, 7, 7] # Image classification docstring _lowerCAmelCase : List[Any] = "facebook/regnet-y-040" _lowerCAmelCase : Union[str, Any] = "tabby, tabby cat" _lowerCAmelCase : List[str] = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case = 3 , __snake_case = 1 , __snake_case = 1 , __snake_case = "relu" , **__snake_case , ) -> List[Any]: '''simple docstring''' super().__init__(**__snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __a =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __a =tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=__snake_case , strides=__snake_case , padding='VALID' , groups=__snake_case , use_bias=__snake_case , name='convolution' , ) __a =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) __a =ACTaFN[activation] if activation is not None else tf.identity def __magic_name__ ( self , __snake_case ) -> List[str]: '''simple docstring''' __a =self.convolution(self.padding(__snake_case ) ) __a =self.normalization(__snake_case ) __a =self.activation(__snake_case ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' super().__init__(**__snake_case ) __a =config.num_channels __a =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def __magic_name__ ( self , __snake_case ) -> Union[str, Any]: '''simple docstring''' __a =shape_list(__snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __a =tf.transpose(__snake_case , perm=(0, 2, 3, 1) ) __a =self.embedder(__snake_case ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case = 2 , **__snake_case ) -> str: '''simple docstring''' super().__init__(**__snake_case ) __a =tf.keras.layers.ConvaD( filters=__snake_case , kernel_size=1 , strides=__snake_case , use_bias=__snake_case , name='convolution' ) __a =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='normalization' ) def __magic_name__ ( self , __snake_case , __snake_case = False ) -> tf.Tensor: '''simple docstring''' return self.normalization(self.convolution(__snake_case ) , training=__snake_case ) class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case , **__snake_case ) -> List[Any]: '''simple docstring''' super().__init__(**__snake_case ) __a =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='pooler' ) __a =[ tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=__snake_case , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def __magic_name__ ( self , __snake_case ) -> Tuple: '''simple docstring''' # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __a =self.pooler(__snake_case ) for layer_module in self.attention: __a =layer_module(__snake_case ) __a =hidden_state * pooled return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1 , **__snake_case ) -> Any: '''simple docstring''' super().__init__(**__snake_case ) __a =in_channels != out_channels or stride != 1 __a =max(1 , out_channels // config.groups_width ) __a =( TFRegNetShortCut(__snake_case , stride=__snake_case , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __a =[ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='layer.2' ), ] __a =ACTaFN[config.hidden_act] def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' __a =hidden_state for layer_module in self.layers: __a =layer_module(__snake_case ) __a =self.shortcut(__snake_case ) hidden_state += residual __a =self.activation(__snake_case ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 1 , **__snake_case ) -> Dict: '''simple docstring''' super().__init__(**__snake_case ) __a =in_channels != out_channels or stride != 1 __a =max(1 , out_channels // config.groups_width ) __a =( TFRegNetShortCut(__snake_case , stride=__snake_case , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) __a =[ TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( __snake_case , stride=__snake_case , groups=__snake_case , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(__snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(__snake_case , kernel_size=1 , activation=__snake_case , name='layer.3' ), ] __a =ACTaFN[config.hidden_act] def __magic_name__ ( self , __snake_case ) -> str: '''simple docstring''' __a =hidden_state for layer_module in self.layers: __a =layer_module(__snake_case ) __a =self.shortcut(__snake_case ) hidden_state += residual __a =self.activation(__snake_case ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , __snake_case , __snake_case , __snake_case = 2 , __snake_case = 2 , **__snake_case ) -> List[str]: '''simple docstring''' super().__init__(**__snake_case ) __a =TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer __a =[ # downsampling is done in the first layer with stride of 2 layer(__snake_case , __snake_case , __snake_case , stride=__snake_case , name='layers.0' ), *[layer(__snake_case , __snake_case , __snake_case , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def __magic_name__ ( self , __snake_case ) -> Any: '''simple docstring''' for layer_module in self.layers: __a =layer_module(__snake_case ) return hidden_state class __magic_name__ ( tf.keras.layers.Layer ): def __init__( self , __snake_case , **__snake_case ) -> Any: '''simple docstring''' super().__init__(**__snake_case ) __a =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) __a =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__snake_case , __snake_case , __snake_case , depth=__snake_case , name=f'stages.{i+1}' ) ) def __magic_name__ ( self , __snake_case , __snake_case = False , __snake_case = True ) -> TFBaseModelOutputWithNoAttention: '''simple docstring''' __a =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __a =hidden_states + (hidden_state,) __a =stage_module(__snake_case ) if output_hidden_states: __a =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__snake_case , hidden_states=__snake_case ) @keras_serializable class __magic_name__ ( tf.keras.layers.Layer ): SCREAMING_SNAKE_CASE = RegNetConfig def __init__( self , __snake_case , **__snake_case ) -> List[str]: '''simple docstring''' super().__init__(**__snake_case ) __a =config __a =TFRegNetEmbeddings(__snake_case , name='embedder' ) __a =TFRegNetEncoder(__snake_case , name='encoder' ) __a =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__snake_case , name='pooler' ) @unpack_inputs def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: '''simple docstring''' __a =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a =return_dict if return_dict is not None else self.config.use_return_dict __a =self.embedder(__snake_case , training=__snake_case ) __a =self.encoder( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) __a =encoder_outputs[0] __a =self.pooler(__snake_case ) # Change to NCHW output format have uniformity in the modules __a =tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) __a =tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __a =tuple([tf.transpose(__snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__snake_case , pooler_output=__snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class __magic_name__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE = RegNetConfig SCREAMING_SNAKE_CASE = 'regnet' SCREAMING_SNAKE_CASE = 'pixel_values' @property def __magic_name__ ( self ) -> Optional[Any]: '''simple docstring''' return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _lowerCAmelCase : Union[str, Any] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase : Optional[Any] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , lowerCAmelCase_ , ) class __magic_name__ ( lowerCAmelCase_ ): def __init__( self , __snake_case , *__snake_case , **__snake_case ) -> Dict: '''simple docstring''' super().__init__(__snake_case , *__snake_case , **__snake_case ) __a =TFRegNetMainLayer(__snake_case , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __magic_name__ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: '''simple docstring''' __a =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a =return_dict if return_dict is not None else self.config.use_return_dict __a =self.regnet( pixel_values=__snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , lowerCAmelCase_ , ) class __magic_name__ ( lowerCAmelCase_ , lowerCAmelCase_ ): def __init__( self , __snake_case , *__snake_case , **__snake_case ) -> int: '''simple docstring''' super().__init__(__snake_case , *__snake_case , **__snake_case ) __a =config.num_labels __a =TFRegNetMainLayer(__snake_case , name='regnet' ) # classification head __a =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __magic_name__ ( self , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case = None , __snake_case=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: '''simple docstring''' __a =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __a =return_dict if return_dict is not None else self.config.use_return_dict __a =self.regnet( __snake_case , output_hidden_states=__snake_case , return_dict=__snake_case , training=__snake_case ) __a =outputs.pooler_output if return_dict else outputs[1] __a =self.classifier[0](__snake_case ) __a =self.classifier[1](__snake_case ) __a =None if labels is None else self.hf_compute_loss(labels=__snake_case , logits=__snake_case ) if not return_dict: __a =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__snake_case , logits=__snake_case , hidden_states=outputs.hidden_states )
242
def UpperCamelCase_( ): """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def UpperCamelCase_( _snake_case : Optional[int] ): """simple docstring""" __a =1 __a =2 while i * i <= n: __a =0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase_( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_snake_case ) > 500 ) if __name__ == "__main__": print(solution())
242
1
from __future__ import annotations def __UpperCamelCase ( _A : str ) ->list[int]: """simple docstring""" return [ord(_A ) - 96 for elem in plain] def __UpperCamelCase ( _A : list[int] ) ->str: """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =encode(input("""-> """ ).strip().lower() ) print("""Encoded: """ , _A ) print("""Decoded:""" , decode(_A ) ) if __name__ == "__main__": main()
716
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def __UpperCamelCase ( _A : np.ndarray ) ->np.ndarray: """simple docstring""" return input_array.reshape((input_array.size, 1) ) def __UpperCamelCase ( _A : np.ndarray , _A : np.ndarray , _A : int ) ->np.ndarray: """simple docstring""" lowerCamelCase_ =np.nan for i in range(_A ): lowerCamelCase_ =features[:, labels == i] lowerCamelCase_ =data.mean(1 ) # Centralize the data of class i lowerCamelCase_ =data - column_reshape(_A ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(_A , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCamelCase_ =np.dot(_A , centered_data.T ) return covariance_sum / features.shape[1] def __UpperCamelCase ( _A : np.ndarray , _A : np.ndarray , _A : int ) ->np.ndarray: """simple docstring""" lowerCamelCase_ =features.mean(1 ) lowerCamelCase_ =np.nan for i in range(_A ): lowerCamelCase_ =features[:, labels == i] lowerCamelCase_ =data.shape[1] lowerCamelCase_ =data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(_A ) - column_reshape(_A ) , (column_reshape(_A ) - column_reshape(_A )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) lowerCamelCase_ =device_data * np.dot( column_reshape(_A ) - column_reshape(_A ) , (column_reshape(_A ) - column_reshape(_A )).T , ) return covariance_sum / features.shape[1] def __UpperCamelCase ( _A : np.ndarray , _A : int ) ->np.ndarray: """simple docstring""" # Check if the features have been loaded if features.any(): lowerCamelCase_ =features.mean(1 ) # Center the dataset lowerCamelCase_ =features - np.reshape(_A , (data_mean.size, 1) ) lowerCamelCase_ =np.dot(_A , centered_data.T ) / features.shape[1] lowerCamelCase_ , lowerCamelCase_ =np.linalg.eigh(_A ) # Take all the columns in the reverse order (-1), and then takes only the first lowerCamelCase_ =eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space lowerCamelCase_ =np.dot(filtered_eigenvectors.T , _A ) logging.info("""Principal Component Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_A ) logging.error("""Dataset empty""" ) raise AssertionError def __UpperCamelCase ( _A : np.ndarray , _A : np.ndarray , _A : int , _A : int ) ->np.ndarray: """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: lowerCamelCase_ , lowerCamelCase_ =eigh( covariance_between_classes(_A , _A , _A ) , covariance_within_classes(_A , _A , _A ) , ) lowerCamelCase_ =eigenvectors[:, ::-1][:, :dimensions] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =np.linalg.svd(_A ) lowerCamelCase_ =svd_matrix[:, 0:dimensions] lowerCamelCase_ =np.dot(filtered_svd_matrix.T , _A ) logging.info("""Linear Discriminant Analysis computed""" ) return projected_data else: logging.basicConfig(level=logging.ERROR , format="""%(message)s""" , force=_A ) logging.error("""Dataset empty""" ) raise AssertionError def __UpperCamelCase ( ) ->None: """simple docstring""" # Create dummy dataset with 2 classes and 3 features lowerCamelCase_ =np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) lowerCamelCase_ =np.array([0, 0, 0, 1, 1] ) lowerCamelCase_ =2 lowerCamelCase_ =2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(_A ) as error_info: lowerCamelCase_ =linear_discriminant_analysis( _A , _A , _A , _A ) if isinstance(_A , np.ndarray ): raise AssertionError( """Did not raise AssertionError for dimensions > classes""" ) assert error_info.type is AssertionError def __UpperCamelCase ( ) ->None: """simple docstring""" lowerCamelCase_ =np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) lowerCamelCase_ =2 lowerCamelCase_ =np.array([[6.9_2_8_2_0_3_2_3, 8.6_6_0_2_5_4_0_4, 1_0.3_9_2_3_0_4_8_5], [3.0, 3.0, 3.0]] ) with pytest.raises(_A ) as error_info: lowerCamelCase_ =principal_component_analysis(_A , _A ) if not np.allclose(_A , _A ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
75
0
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def lowerCamelCase__ ( snake_case_ : Dict , snake_case_ : Dict ) -> int: __snake_case = k_size // 2 __snake_case , __snake_case = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __snake_case = 1 / (2 * pi * sigma) * exp(-(square(snake_case_ ) + square(snake_case_ )) / (2 * square(snake_case_ )) ) return g def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : Optional[Any] ) -> str: __snake_case , __snake_case = image.shape[0], image.shape[1] # dst image height and width __snake_case = height - k_size + 1 __snake_case = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __snake_case = zeros((dst_height * dst_width, k_size * k_size) ) __snake_case = 0 for i, j in product(range(snake_case_ ) , range(snake_case_ ) ): __snake_case = ravel(image[i : i + k_size, j : j + k_size] ) __snake_case = window row += 1 # turn the kernel into shape(k*k, 1) __snake_case = gen_gaussian_kernel(snake_case_ , snake_case_ ) __snake_case = ravel(snake_case_ ) # reshape and get the dst image __snake_case = dot(snake_case_ , snake_case_ ).reshape(snake_case_ , snake_case_ ).astype(snake_case_ ) return dst if __name__ == "__main__": # read original image snake_case_ = imread(R'../image_data/lena.jpg') # turn image in gray scale value snake_case_ = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size snake_case_ = gaussian_filter(gray, 3, sigma=1) snake_case_ = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('gaussian filter with 3x3 mask', gaussianaxa) imshow('gaussian filter with 5x5 mask', gaussianaxa) waitKey()
592
import math def lowerCamelCase__ ( snake_case_ : int ) -> bool: __snake_case = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(snake_case_ ) def lowerCamelCase__ ( snake_case_ : float = 1 / 1_2345 ) -> int: __snake_case = 0 __snake_case = 0 __snake_case = 3 while True: __snake_case = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(snake_case_ ): __snake_case = int(snake_case_ ) total_partitions += 1 if check_partition_perfect(snake_case_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(snake_case_ ) integer += 1 if __name__ == "__main__": print(F'{solution() = }')
592
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _snake_case ( unittest.TestCase ): @slow def lowercase__ ( self): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: with self.subTest(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : int = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_) self.assertIsNotNone(SCREAMING_SNAKE_CASE_) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' for model_name in ["bert-base-cased", "bert-large-uncased"]: lowercase__ : Dict = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = FlaxBertModel.from_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX) @jax.jit def eval(**SCREAMING_SNAKE_CASE_): return model(**SCREAMING_SNAKE_CASE_) eval(**SCREAMING_SNAKE_CASE_).block_until_ready() @slow def lowercase__ ( self): '''simple docstring''' for model_name in ["roberta-base", "roberta-large"]: lowercase__ : Optional[int] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = FlaxRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX) @jax.jit def eval(**SCREAMING_SNAKE_CASE_): return model(**SCREAMING_SNAKE_CASE_) eval(**SCREAMING_SNAKE_CASE_).block_until_ready() def lowercase__ ( self): '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , """bert-base is not a local folder and is not a valid model identifier"""): lowercase__ : Any = FlaxAutoModel.from_pretrained("""bert-base""") def lowercase__ ( self): '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"""): lowercase__ : Dict = FlaxAutoModel.from_pretrained(SCREAMING_SNAKE_CASE_ , revision="""aaaaaa""") def lowercase__ ( self): '''simple docstring''' with self.assertRaisesRegex( SCREAMING_SNAKE_CASE_ , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ): lowercase__ : Dict = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""") def lowercase__ ( self): '''simple docstring''' with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , """Use `from_pt=True` to load this model"""): lowercase__ : List[Any] = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""")
495
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : Dict = ("""dense.weight""", """attention.self.query""", """attention.self.key""", """attention.self.value""") lowercase__ : Union[str, Any] = ( ("""layer.""", """layer_"""), ("""word_embeddings.weight""", """word_embeddings"""), ("""position_embeddings.weight""", """position_embeddings"""), ("""token_type_embeddings.weight""", """token_type_embeddings"""), (""".""", """/"""), ("""LayerNorm/weight""", """LayerNorm/gamma"""), ("""LayerNorm/bias""", """LayerNorm/beta"""), ("""weight""", """kernel"""), ) if not os.path.isdir(lowercase_ ): os.makedirs(lowercase_ ) lowercase__ : Optional[Any] = model.state_dict() def to_tf_var_name(lowercase_ ): for patt, repl in iter(lowercase_ ): lowercase__ : str = name.replace(lowercase_ , lowercase_ ) return F'bert/{name}' def create_tf_var(lowercase_ , lowercase_ , lowercase_ ): lowercase__ : List[str] = tf.dtypes.as_dtype(tensor.dtype ) lowercase__ : Tuple = tf.get_variable(dtype=lowercase_ , shape=tensor.shape , name=lowercase_ , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase__ : Any = to_tf_var_name(lowercase_ ) lowercase__ : Dict = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase__ : Optional[int] = torch_tensor.T lowercase__ : Any = create_tf_var(tensor=lowercase_ , name=lowercase_ , session=lowercase_ ) tf.keras.backend.set_value(lowercase_ , lowercase_ ) lowercase__ : Optional[int] = session.run(lowercase_ ) print(F'Successfully created {tf_name}: {np.allclose(lowercase_ , lowercase_ )}' ) lowercase__ : List[Any] = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase_ , os.path.join(lowercase_ , model_name.replace("""-""" , """_""" ) + """.ckpt""" ) ) def UpperCamelCase ( lowercase_=None ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=lowercase_ , required=lowercase_ , help="""model name e.g. bert-base-uncased""" ) parser.add_argument( """--cache_dir""" , type=lowercase_ , default=lowercase_ , required=lowercase_ , help="""Directory containing pytorch model""" ) parser.add_argument("""--pytorch_model_path""" , type=lowercase_ , required=lowercase_ , help="""/path/to/<pytorch-model-name>.bin""" ) parser.add_argument("""--tf_cache_dir""" , type=lowercase_ , required=lowercase_ , help="""Directory in which to save tensorflow model""" ) lowercase__ : List[str] = parser.parse_args(lowercase_ ) lowercase__ : Any = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
495
1
"""simple docstring""" import baseaa def _snake_case ( lowercase__ ): return baseaa.baaencode(string.encode('utf-8' ) ) def _snake_case ( lowercase__ ): return baseaa.baadecode(lowercase__ ).decode('utf-8' ) if __name__ == "__main__": lowercase__ = """Hello World!""" lowercase__ = baseaa_encode(test) print(encoded) lowercase__ = baseaa_decode(encoded) print(decoded)
630
"""simple docstring""" def _snake_case ( lowercase__ = 1 , lowercase__ = 1000 ): _lowerCamelCase : Optional[int] = 1 _lowerCamelCase : List[Any] = 0 for divide_by_number in range(lowercase__ , digit + 1 ): _lowerCamelCase : list[int] = [] _lowerCamelCase : Dict = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(lowercase__ ): _lowerCamelCase : Any = len(lowercase__ ) _lowerCamelCase : Any = divide_by_number else: has_been_divided.append(lowercase__ ) _lowerCamelCase : int = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
630
1
'''simple docstring''' def lowercase__ ( __lowercase : int ) -> bool: """simple docstring""" return str(__lowercase ) == str(__lowercase )[::-1] def lowercase__ ( __lowercase : int ) -> int: """simple docstring""" return int(__lowercase ) + int(str(__lowercase )[::-1] ) def lowercase__ ( __lowercase : int = 10000 ) -> int: """simple docstring""" __UpperCamelCase = [] for num in range(1 , __lowercase ): __UpperCamelCase = 0 __UpperCamelCase = num while iterations < 50: __UpperCamelCase = sum_reverse(__lowercase ) iterations += 1 if is_palindrome(__lowercase ): break else: lychrel_nums.append(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(f'{solution() = }')
434
'''simple docstring''' a__ : Optional[Any] =[ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] a__ : List[str] =[ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] a__ : int =[ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] a__ : str =[ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] a__ : Union[str, Any] =[ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] a__ : int =[ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] a__ : Any =[ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] a__ : Any =[ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
434
1
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : Any="pt" ): '''simple docstring''' lowerCAmelCase : Any = {"add_prefix_space": True} if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not line.startswith(" " ) else {} lowerCAmelCase : Dict = padding_side return tokenizer( [line] , max_length=SCREAMING_SNAKE_CASE , padding="max_length" if pad_to_max_length else None , truncation=SCREAMING_SNAKE_CASE , return_tensors=SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int]=None , ): '''simple docstring''' lowerCAmelCase : List[str] = input_ids.ne(SCREAMING_SNAKE_CASE ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__="train" , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__="" , ): """simple docstring""" super().__init__() lowerCAmelCase : str = Path(snake_case__ ).joinpath(type_path + ".source" ) lowerCAmelCase : Optional[Any] = Path(snake_case__ ).joinpath(type_path + ".target" ) lowerCAmelCase : Tuple = self.get_char_lens(self.src_file ) lowerCAmelCase : str = max_source_length lowerCAmelCase : Any = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowerCAmelCase : Optional[Any] = tokenizer lowerCAmelCase : Union[str, Any] = prefix if n_obs is not None: lowerCAmelCase : Tuple = self.src_lens[:n_obs] lowerCAmelCase : int = src_lang lowerCAmelCase : Union[str, Any] = tgt_lang def __len__( self ): """simple docstring""" return len(self.src_lens ) def __getitem__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = index + 1 # linecache starts at 1 lowerCAmelCase : List[str] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) lowerCAmelCase : Tuple = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowerCAmelCase : int = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) lowerCAmelCase : List[str] = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer lowerCAmelCase : Optional[int] = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) lowerCAmelCase : List[Any] = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) lowerCAmelCase : int = source_inputs["input_ids"].squeeze() lowerCAmelCase : List[Any] = target_inputs["input_ids"].squeeze() lowerCAmelCase : Union[str, Any] = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowercase__ ( snake_case__ ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = torch.stack([x["input_ids"] for x in batch] ) lowerCAmelCase : List[Any] = torch.stack([x["attention_mask"] for x in batch] ) lowerCAmelCase : Union[str, Any] = torch.stack([x["decoder_input_ids"] for x in batch] ) lowerCAmelCase : List[str] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : Dict = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowerCAmelCase : int = trim_batch(snake_case__ , snake_case__ ) lowerCAmelCase , lowerCAmelCase : Any = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) lowerCAmelCase : List[str] = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowerCAmelCase__ = getLogger(__name__) def a__ ( SCREAMING_SNAKE_CASE : List[List] ): '''simple docstring''' return list(itertools.chain.from_iterable(SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : Tuple = get_git_info() save_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , "git_log.json" ) ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str=4 , **SCREAMING_SNAKE_CASE : str ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "w" ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , indent=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE ) as f: return json.load(SCREAMING_SNAKE_CASE ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = git.Repo(search_parent_directories=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = { "repo_id": str(SCREAMING_SNAKE_CASE ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def a__ ( SCREAMING_SNAKE_CASE : Callable , SCREAMING_SNAKE_CASE : Iterable ): '''simple docstring''' return list(map(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "wb" ) as f: return pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' def remove_articles(SCREAMING_SNAKE_CASE : Union[str, Any] ): return re.sub(r"\b(a|an|the)\b" , " " , SCREAMING_SNAKE_CASE ) def white_space_fix(SCREAMING_SNAKE_CASE : List[str] ): return " ".join(text.split() ) def remove_punc(SCREAMING_SNAKE_CASE : Tuple ): lowerCAmelCase : int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(SCREAMING_SNAKE_CASE : List[Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase : Tuple = normalize_answer(SCREAMING_SNAKE_CASE ).split() lowerCAmelCase : List[Any] = normalize_answer(SCREAMING_SNAKE_CASE ).split() lowerCAmelCase : Dict = Counter(SCREAMING_SNAKE_CASE ) & Counter(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = sum(common.values() ) if num_same == 0: return 0 lowerCAmelCase : Any = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = 1.0 * num_same / len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = (2 * precision * recall) / (precision + recall) return fa def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = 0 for hypo, pred in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): em += exact_match_score(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: em /= len(SCREAMING_SNAKE_CASE ) return {"em": em} def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' return model_prefix.startswith("rag" ) def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowerCAmelCase : List[str] = "dropout_rate" for p in extra_params: if getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if not hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not hasattr(SCREAMING_SNAKE_CASE , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue lowerCAmelCase : List[str] = p if hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else equivalent_param[p] setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) delattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return hparams, config
645
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : int ="imagegpt" a : Union[str, Any] =["past_key_values"] a : Optional[Any] ={ "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , snake_case__=512 + 1 , snake_case__=32 * 32 , snake_case__=512 , snake_case__=24 , snake_case__=8 , snake_case__=None , snake_case__="quick_gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=1e-5 , snake_case__=0.02 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=False , snake_case__=False , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Tuple = vocab_size lowerCAmelCase : List[Any] = n_positions lowerCAmelCase : Union[str, Any] = n_embd lowerCAmelCase : str = n_layer lowerCAmelCase : Tuple = n_head lowerCAmelCase : Optional[Any] = n_inner lowerCAmelCase : Dict = activation_function lowerCAmelCase : str = resid_pdrop lowerCAmelCase : Optional[int] = embd_pdrop lowerCAmelCase : Optional[int] = attn_pdrop lowerCAmelCase : Union[str, Any] = layer_norm_epsilon lowerCAmelCase : Any = initializer_range lowerCAmelCase : Union[str, Any] = scale_attn_weights lowerCAmelCase : int = use_cache lowerCAmelCase : List[Any] = scale_attn_by_inverse_layer_idx lowerCAmelCase : Optional[int] = reorder_and_upcast_attn lowerCAmelCase : int = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ] ) def lowercase__ ( self , snake_case__ , snake_case__ = 1 , snake_case__ = -1 , snake_case__ = False , snake_case__ = None , snake_case__ = 3 , snake_case__ = 32 , snake_case__ = 32 , ): """simple docstring""" lowerCAmelCase : Tuple = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowerCAmelCase : Union[str, Any] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
645
1
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : str = ''' @inproceedings{xu-etal-2016-optimizing, title = {Optimizing Statistical Machine Translation for Text Simplification}, authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris}, journal = {Transactions of the Association for Computational Linguistics}, volume = {4}, year={2016}, url = {https://www.aclweb.org/anthology/Q16-1029}, pages = {401--415 }, @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCAmelCase : Optional[int] = '''\ WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU It can be used to evaluate the quality of machine-generated texts. ''' __lowerCAmelCase : List[Any] = ''' Calculates sari score (between 0 and 100) given a list of source and predicted sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score. Args: sources: list of source sentences where each sentence should be a string. predictions: list of predicted sentences where each sentence should be a string. references: list of lists of reference sentences where each sentence should be a string. Returns: sari: sari score sacrebleu: sacrebleu score exact: exact score Examples: >>> sources=["About 95 species are currently accepted ."] >>> predictions=["About 95 you now get in ."] >>> references=[["About 95 species are currently known ."]] >>> wiki_split = datasets.load_metric("wiki_split") >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references) >>> print(results) {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0} ''' def __snake_case ( UpperCamelCase ) -> Dict: """simple docstring""" def remove_articles(UpperCamelCase ): a__ = re.compile(r'''\b(a|an|the)\b''' , re.UNICODE ) return re.sub(UpperCamelCase , ''' ''' , UpperCamelCase ) def white_space_fix(UpperCamelCase ): return " ".join(text.split() ) def remove_punc(UpperCamelCase ): a__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(UpperCamelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(UpperCamelCase ) ) ) ) def __snake_case ( UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" return int(normalize_answer(UpperCamelCase ) == normalize_answer(UpperCamelCase ) ) def __snake_case ( UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" a__ = [any(compute_exact(UpperCamelCase , UpperCamelCase ) for ref in refs ) for pred, refs in zip(UpperCamelCase , UpperCamelCase )] return (sum(UpperCamelCase ) / len(UpperCamelCase )) * 100 def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: """simple docstring""" a__ = [rgram for rgrams in rgramslist for rgram in rgrams] a__ = Counter(UpperCamelCase ) a__ = Counter(UpperCamelCase ) a__ = Counter() for sgram, scount in sgramcounter.items(): a__ = scount * numref a__ = Counter(UpperCamelCase ) a__ = Counter() for cgram, ccount in cgramcounter.items(): a__ = ccount * numref # KEEP a__ = sgramcounter_rep & cgramcounter_rep a__ = keepgramcounter_rep & rgramcounter a__ = sgramcounter_rep & rgramcounter a__ = 0 a__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(UpperCamelCase ) > 0: a__ = keeptmpscorea / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) a__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) a__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: a__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION a__ = sgramcounter_rep - cgramcounter_rep a__ = delgramcounter_rep - rgramcounter a__ = sgramcounter_rep - rgramcounter a__ = 0 a__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 if len(UpperCamelCase ) > 0: a__ = deltmpscorea / len(UpperCamelCase ) # ADDITION a__ = set(UpperCamelCase ) - set(UpperCamelCase ) a__ = set(UpperCamelCase ) & set(UpperCamelCase ) a__ = set(UpperCamelCase ) - set(UpperCamelCase ) a__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. a__ = 1 a__ = 1 if len(UpperCamelCase ) > 0: a__ = addtmpscore / len(UpperCamelCase ) if len(UpperCamelCase ) > 0: a__ = addtmpscore / len(UpperCamelCase ) a__ = 0 if addscore_precision > 0 or addscore_recall > 0: a__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" a__ = len(UpperCamelCase ) a__ = ssent.split(''' ''' ) a__ = csent.split(''' ''' ) a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] a__ = [] for rsent in rsents: a__ = rsent.split(''' ''' ) a__ = [] a__ = [] a__ = [] ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: a__ = ragrams[i] + ''' ''' + ragrams[i + 1] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: a__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] ragrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: a__ = ragrams[i] + ''' ''' + ragrams[i + 1] + ''' ''' + ragrams[i + 2] + ''' ''' + ragrams[i + 3] ragrams.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) ragramslist.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: a__ = sagrams[i] + ''' ''' + sagrams[i + 1] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: a__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] sagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: a__ = sagrams[i] + ''' ''' + sagrams[i + 1] + ''' ''' + sagrams[i + 2] + ''' ''' + sagrams[i + 3] sagrams.append(UpperCamelCase ) for i in range(0 , len(UpperCamelCase ) - 1 ): if i < len(UpperCamelCase ) - 1: a__ = cagrams[i] + ''' ''' + cagrams[i + 1] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 2: a__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] cagrams.append(UpperCamelCase ) if i < len(UpperCamelCase ) - 3: a__ = cagrams[i] + ''' ''' + cagrams[i + 1] + ''' ''' + cagrams[i + 2] + ''' ''' + cagrams[i + 3] cagrams.append(UpperCamelCase ) ((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) ((a__) , (a__) , (a__)) = SARIngram(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) a__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 a__ = sum([delascore, delascore, delascore, delascore] ) / 4 a__ = sum([addascore, addascore, addascore, addascore] ) / 4 a__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __snake_case ( UpperCamelCase , UpperCamelCase = True , UpperCamelCase = "13a" , UpperCamelCase = True ) -> Tuple: """simple docstring""" if lowercase: a__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: a__ = sacrebleu.metrics.bleu._get_tokenizer(UpperCamelCase )()(UpperCamelCase ) else: a__ = sacrebleu.TOKENIZERS[tokenizer]()(UpperCamelCase ) elif tokenizer == "moses": a__ = sacremoses.MosesTokenizer().tokenize(UpperCamelCase , return_str=UpperCamelCase , escape=UpperCamelCase ) elif tokenizer == "penn": a__ = sacremoses.MosesTokenizer().penn_tokenize(UpperCamelCase , return_str=UpperCamelCase ) else: a__ = sentence if not return_str: a__ = normalized_sent.split() return normalized_sent def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: """simple docstring""" if not (len(UpperCamelCase ) == len(UpperCamelCase ) == len(UpperCamelCase )): raise ValueError('''Sources length must match predictions and references lengths.''' ) a__ = 0 for src, pred, refs in zip(UpperCamelCase , UpperCamelCase , UpperCamelCase ): sari_score += SARIsent(normalize(UpperCamelCase ) , normalize(UpperCamelCase ) , [normalize(UpperCamelCase ) for sent in refs] ) a__ = sari_score / len(UpperCamelCase ) return 100 * sari_score def __snake_case ( UpperCamelCase , UpperCamelCase , UpperCamelCase="exp" , UpperCamelCase=None , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False , ) -> int: """simple docstring""" a__ = len(references[0] ) if any(len(UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) a__ = [[refs[i] for refs in references] for i in range(UpperCamelCase )] a__ = sacrebleu.corpus_bleu( UpperCamelCase , UpperCamelCase , smooth_method=UpperCamelCase , smooth_value=UpperCamelCase , force=UpperCamelCase , lowercase=UpperCamelCase , use_effective_order=UpperCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _UpperCamelCase ( self :Union[str, Any] ) -> List[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=[ '''https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py''', '''https://github.com/cocoxu/simplification/blob/master/SARI.py''', '''https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py''', '''https://github.com/mjpost/sacreBLEU''', ] , reference_urls=[ '''https://www.aclweb.org/anthology/Q16-1029.pdf''', '''https://github.com/mjpost/sacreBLEU''', '''https://en.wikipedia.org/wiki/BLEU''', '''https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213''', ] , ) def _UpperCamelCase ( self :str , __magic_name__ :Dict , __magic_name__ :Optional[int] , __magic_name__ :Dict ) -> List[Any]: '''simple docstring''' a__ = {} result.update({'''sari''': compute_sari(sources=__magic_name__ , predictions=__magic_name__ , references=__magic_name__ )} ) result.update({'''sacrebleu''': compute_sacrebleu(predictions=__magic_name__ , references=__magic_name__ )} ) result.update({'''exact''': compute_em(predictions=__magic_name__ , references=__magic_name__ )} ) return result
158
"""simple docstring""" from __future__ import annotations __lowerCAmelCase : Union[str, Any] = list[tuple[int, int]] __lowerCAmelCase : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCAmelCase : Dict = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :str , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :int , __magic_name__ :float , __magic_name__ :Node | None , ) -> Tuple: '''simple docstring''' a__ = pos_x a__ = pos_y a__ = (pos_y, pos_x) a__ = goal_x a__ = goal_y a__ = g_cost a__ = parent a__ = self.calculate_heuristic() def _UpperCamelCase ( self :int ) -> float: '''simple docstring''' a__ = abs(self.pos_x - self.goal_x ) a__ = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self :List[str] , __magic_name__ :List[Any] ) -> bool: '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self :Dict , __magic_name__ :tuple[int, int] , __magic_name__ :tuple[int, int] ) -> Tuple: '''simple docstring''' a__ = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __magic_name__ ) a__ = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , __magic_name__ ) a__ = [self.start] a__ = [] a__ = False def _UpperCamelCase ( self :Union[str, Any] ) -> Path | None: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() a__ = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: a__ = True return self.retrace_path(__magic_name__ ) self.closed_nodes.append(__magic_name__ ) a__ = self.get_successors(__magic_name__ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__magic_name__ ) else: # retrieve the best current path a__ = self.open_nodes.pop(self.open_nodes.index(__magic_name__ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__magic_name__ ) else: self.open_nodes.append(__magic_name__ ) if not self.reached: return [self.start.pos] return None def _UpperCamelCase ( self :List[str] , __magic_name__ :Node ) -> list[Node]: '''simple docstring''' a__ = [] for action in delta: a__ = parent.pos_x + action[1] a__ = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__magic_name__ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __magic_name__ , __magic_name__ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __magic_name__ , ) ) return successors def _UpperCamelCase ( self :Any , __magic_name__ :Node | None ) -> Path: '''simple docstring''' a__ = node a__ = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) a__ = current_node.parent path.reverse() return path if __name__ == "__main__": __lowerCAmelCase : str = (0, 0) __lowerCAmelCase : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('''------''') __lowerCAmelCase : Optional[int] = GreedyBestFirst(init, goal) __lowerCAmelCase : Tuple = greedy_bf.search() if path: for pos_x, pos_y in path: __lowerCAmelCase : Tuple = 2 for elem in grid: print(elem)
158
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase__ : Union[str, Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase__ : Optional[Any] = { '''vocab_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt''' ), '''google/electra-base-generator''': '''https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt''', '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''google/electra-small-generator''': ( '''https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json''' ), '''google/electra-base-generator''': ( '''https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json''' ), '''google/electra-large-generator''': ( '''https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json''' ), '''google/electra-small-discriminator''': ( '''https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-base-discriminator''': ( '''https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json''' ), '''google/electra-large-discriminator''': ( '''https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json''' ), }, } UpperCamelCase__ : Tuple = { '''google/electra-small-generator''': 5_12, '''google/electra-base-generator''': 5_12, '''google/electra-large-generator''': 5_12, '''google/electra-small-discriminator''': 5_12, '''google/electra-base-discriminator''': 5_12, '''google/electra-large-discriminator''': 5_12, } UpperCamelCase__ : Union[str, Any] = { '''google/electra-small-generator''': {'''do_lower_case''': True}, '''google/electra-base-generator''': {'''do_lower_case''': True}, '''google/electra-large-generator''': {'''do_lower_case''': True}, '''google/electra-small-discriminator''': {'''do_lower_case''': True}, '''google/electra-base-discriminator''': {'''do_lower_case''': True}, '''google/electra-large-discriminator''': {'''do_lower_case''': True}, } class lowerCAmelCase_ ( a_ ): __a : Tuple = VOCAB_FILES_NAMES __a : Any = PRETRAINED_VOCAB_FILES_MAP __a : Dict = PRETRAINED_INIT_CONFIGURATION __a : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : Optional[Any] = ElectraTokenizer def __init__( self ,snake_case__=None ,snake_case__=None ,snake_case__=True ,snake_case__="[UNK]" ,snake_case__="[SEP]" ,snake_case__="[PAD]" ,snake_case__="[CLS]" ,snake_case__="[MASK]" ,snake_case__=True ,snake_case__=None ,**snake_case__ ,): super().__init__( lowercase_ ,tokenizer_file=lowercase_ ,do_lower_case=lowercase_ ,unk_token=lowercase_ ,sep_token=lowercase_ ,pad_token=lowercase_ ,cls_token=lowercase_ ,mask_token=lowercase_ ,tokenize_chinese_chars=lowercase_ ,strip_accents=lowercase_ ,**lowercase_ ,) SCREAMING_SNAKE_CASE_ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' ,lowercase_ ) != do_lower_case or normalizer_state.get('strip_accents' ,lowercase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' ,lowercase_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE_ : List[str] = getattr(lowercase_ ,normalizer_state.pop('type' ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = do_lower_case SCREAMING_SNAKE_CASE_ : Optional[int] = strip_accents SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenize_chinese_chars SCREAMING_SNAKE_CASE_ : Union[str, Any] = normalizer_class(**lowercase_ ) SCREAMING_SNAKE_CASE_ : str = do_lower_case def snake_case ( self ,snake_case__ ,snake_case__=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : int = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self ,snake_case__ ,snake_case__ = None ): SCREAMING_SNAKE_CASE_ : List[Any] = self._tokenizer.model.save(lowercase_ ,name=lowercase_ ) return tuple(lowercase_ )
105
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def lowerCamelCase ( a_=None ) -> List[str]: if subparsers is not None: lowerCAmelCase_ = subparsers.add_parser('test' ) else: lowerCAmelCase_ = argparse.ArgumentParser('Accelerate test command' ) parser.add_argument( '--config_file' , default=a_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=a_ ) return parser def lowerCamelCase ( a_ ) -> List[Any]: lowerCAmelCase_ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['test_utils', 'scripts', 'test_script.py'] ) if args.config_file is None: lowerCAmelCase_ = script_name else: lowerCAmelCase_ = F'''--config_file={args.config_file} {script_name}''' lowerCAmelCase_ = ['accelerate-launch'] + test_args.split() lowerCAmelCase_ = execute_subprocess_async(a_ , env=os.environ.copy() ) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!' ) def lowerCamelCase ( ) -> Optional[Any]: lowerCAmelCase_ = test_command_parser() lowerCAmelCase_ = parser.parse_args() test_command(a_ ) if __name__ == "__main__": main()
318
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Any = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
126
'''simple docstring''' from __future__ import annotations __A : Optional[int] = list[list[int]] # assigning initial values to the grid __A : Matrix = [ [3, 0, 6, 5, 0, 8, 4, 0, 0], [5, 2, 0, 0, 0, 0, 0, 0, 0], [0, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] # a grid with no solution __A : Matrix = [ [5, 0, 6, 5, 0, 8, 4, 0, 3], [5, 2, 0, 0, 0, 0, 0, 0, 2], [1, 8, 7, 0, 0, 0, 0, 3, 1], [0, 0, 3, 0, 1, 0, 0, 8, 0], [9, 0, 0, 8, 6, 3, 0, 0, 5], [0, 5, 0, 0, 9, 0, 6, 0, 0], [1, 3, 0, 0, 0, 0, 2, 5, 0], [0, 0, 0, 0, 0, 0, 0, 7, 4], [0, 0, 5, 2, 0, 6, 3, 0, 0], ] def lowerCAmelCase_ ( a : Matrix , a : int , a : int , a : int ): for i in range(9 ): if grid[row][i] == n or grid[i][column] == n: return False for i in range(3 ): for j in range(3 ): if grid[(row - row % 3) + i][(column - column % 3) + j] == n: return False return True def lowerCAmelCase_ ( a : Matrix ): for i in range(9 ): for j in range(9 ): if grid[i][j] == 0: return i, j return None def lowerCAmelCase_ ( a : Matrix ): if location := find_empty_location(a ): a__ , a__ = location else: # If the location is ``None``, then the grid is solved. return grid for digit in range(1 , 10 ): if is_safe(a , a , a , a ): a__ = digit if sudoku(a ) is not None: return grid a__ = 0 return None def lowerCAmelCase_ ( a : Matrix ): for row in grid: for cell in row: print(a , end=' ' ) print() if __name__ == "__main__": # make a copy of grid so that you can compare with the unmodified grid for example_grid in (initial_grid, no_solution): print('\nExample grid:\n' + '=' * 20) print_solution(example_grid) print('\nExample grid solution:') __A : Optional[int] = sudoku(example_grid) if solution is not None: print_solution(solution) else: print('Cannot find a solution.')
126
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def __a ( A__ : int ): SCREAMING_SNAKE_CASE = DPTConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE = 1024 SCREAMING_SNAKE_CASE = 4096 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 SCREAMING_SNAKE_CASE = [5, 11, 17, 23] SCREAMING_SNAKE_CASE = [256, 512, 1024, 1024] SCREAMING_SNAKE_CASE = (1, 384, 384) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = 150 SCREAMING_SNAKE_CASE = "huggingface/label-files" SCREAMING_SNAKE_CASE = "ade20k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(A__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = [1, 150, 480, 480] return config, expected_shape def __a ( A__ : Optional[Any] ): SCREAMING_SNAKE_CASE = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(A__ , A__ ) def __a ( A__ : Tuple ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): SCREAMING_SNAKE_CASE = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: SCREAMING_SNAKE_CASE = name.replace("patch_embed" , "patch_embeddings" ) if "pos_embed" in name: SCREAMING_SNAKE_CASE = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: SCREAMING_SNAKE_CASE = name.replace("proj" , "projection" ) if "blocks" in name: SCREAMING_SNAKE_CASE = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name: SCREAMING_SNAKE_CASE = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: SCREAMING_SNAKE_CASE = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: SCREAMING_SNAKE_CASE = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: SCREAMING_SNAKE_CASE = name.replace("scratch" , "neck" ) if "layer1_rn" in name: SCREAMING_SNAKE_CASE = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: SCREAMING_SNAKE_CASE = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: SCREAMING_SNAKE_CASE = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: SCREAMING_SNAKE_CASE = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: SCREAMING_SNAKE_CASE = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 SCREAMING_SNAKE_CASE = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: SCREAMING_SNAKE_CASE = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: SCREAMING_SNAKE_CASE = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: SCREAMING_SNAKE_CASE = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: SCREAMING_SNAKE_CASE = name.replace("conv1" , "convolution1" ) if "conv2" in name: SCREAMING_SNAKE_CASE = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: SCREAMING_SNAKE_CASE = name.replace("pretrained" , "dpt" ) if "bn" in name: SCREAMING_SNAKE_CASE = name.replace("bn" , "batch_norm" ) if "head" in name: SCREAMING_SNAKE_CASE = name.replace("head" , "head.head" ) if "encoder.norm" in name: SCREAMING_SNAKE_CASE = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: SCREAMING_SNAKE_CASE = name.replace("auxlayer" , "auxiliary_head.head" ) return name def __a ( A__ : Dict , A__ : List[Any] ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[: config.hidden_size, :] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __a ( ): SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def __a ( A__ : Tuple , A__ : Tuple , A__ : int , A__ : Tuple ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_dpt_config(A__ ) # load original state_dict from URL SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(A__ , map_location="cpu" ) # remove certain keys remove_ignore_keys_(A__ ) # rename keys for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE = state_dict.pop(A__ ) SCREAMING_SNAKE_CASE = val # read in qkv matrices read_in_q_k_v(A__ , A__ ) # load HuggingFace model SCREAMING_SNAKE_CASE = DPTForSemanticSegmentation(A__ ) if "ade" in checkpoint_url else DPTForDepthEstimation(A__ ) model.load_state_dict(A__ ) model.eval() # Check outputs on an image SCREAMING_SNAKE_CASE = 480 if "ade" in checkpoint_url else 384 SCREAMING_SNAKE_CASE = DPTImageProcessor(size=A__ ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(A__ , return_tensors="pt" ) # forward pass SCREAMING_SNAKE_CASE = model(**A__ ).logits if "ade" in checkpoint_url else model(**A__ ).predicted_depth # Assert logits SCREAMING_SNAKE_CASE = torch.tensor([[6.3_1_9_9, 6.3_6_2_9, 6.4_1_4_8], [6.3_8_5_0, 6.3_6_1_5, 6.4_1_6_6], [6.3_5_1_9, 6.3_1_7_6, 6.3_5_7_5]] ) if "ade" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[4.0_4_8_0, 4.2_4_2_0, 4.4_3_6_0], [4.3_1_2_4, 4.5_6_9_3, 4.8_2_6_1], [4.5_7_6_8, 4.8_9_6_5, 5.2_1_6_3]] ) assert outputs.shape == torch.Size(A__ ) assert ( torch.allclose(outputs[0, 0, :3, :3] , A__ , atol=1E-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , A__ ) ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(A__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(A__ ) if push_to_hub: print("Pushing model to hub..." ) model.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization="nielsr" , commit_message="Add model" , use_temp_dir=A__ , ) image_processor.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization="nielsr" , commit_message="Add image processor" , use_temp_dir=A__ , ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) __A : Optional[int] = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
16
def __a ( A__ : float , A__ : float ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(A__ ) * abs(A__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
16
1
"""simple docstring""" import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase__ = float("""nan""") class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[int] = sys.stdout _lowerCamelCase : int = open(lowercase , 'a' ) def __getattr__( self , lowercase ): return getattr(self.stdout , lowercase ) def A_ ( self , lowercase ): self.stdout.write(lowercase ) # strip tqdm codes self.file.write(re.sub(r'^.*\r' , '' , lowercase , 0 , re.M ) ) def _snake_case ( lowercase__=80 , lowercase__=False ): _lowerCamelCase : int = [] # deal with critical env vars _lowerCamelCase : List[str] = ['CUDA_VISIBLE_DEVICES'] for key in env_keys: _lowerCamelCase : int = os.environ.get(lowercase__ , lowercase__ ) if val is not None: cmd.append(f'''{key}={val}''' ) # python executable (not always needed if the script is executable) _lowerCamelCase : int = sys.executable if full_python_path else sys.executable.split('/' )[-1] cmd.append(lowercase__ ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes _lowerCamelCase : Optional[int] = [] _lowerCamelCase : int = '' while len(lowercase__ ) > 0: current_line += f'''{cmd.pop(0 )} ''' if len(lowercase__ ) == 0 or len(lowercase__ ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(lowercase__ ) _lowerCamelCase : Optional[Any] = '' return "\\\n".join(lowercase__ ) def _snake_case ( lowercase__ , lowercase__ ): # unwrap multi-line input _lowerCamelCase : Optional[int] = re.sub(r'[\\\n]+' , ' ' , args.base_cmd ) # remove --output_dir if any and set our own _lowerCamelCase : List[str] = re.sub('--output_dir\s+[^\s]+' , '' , args.base_cmd ) args.base_cmd += f''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir _lowerCamelCase : List[str] = re.sub('--overwrite_output_dir\s+' , '' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): # Enable to debug everything but the run itself, to do it fast and see the progress. # This is useful for debugging the output formatting quickly - we can remove it later once # everybody is happy with the output if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 100 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 100.2, 55.6666, 222.22222222] )} , ) _lowerCamelCase : Dict = subprocess.run(lowercase__ , capture_output=lowercase__ , text=lowercase__ ) if verbose: print('STDOUT' , result.stdout ) print('STDERR' , result.stderr ) # save the streams _lowerCamelCase : int = variation.replace(' ' , '-' ) with open(Path(lowercase__ ) / f'''log.{prefix}.stdout.txt''' , 'w' ) as f: f.write(result.stdout ) with open(Path(lowercase__ ) / f'''log.{prefix}.stderr.txt''' , 'w' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('failed' ) return {target_metric_key: nan} with io.open(f'''{output_dir}/all_results.json''' , 'r' , encoding='utf-8' ) as f: _lowerCamelCase : int = json.load(lowercase__ ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : str = [] _lowerCamelCase : str = f'''{id}: {variation:<{longest_variation_len}}''' _lowerCamelCase : str = f'''{preamble}: ''' _lowerCamelCase : Optional[int] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(lowercase__ ) , desc=lowercase__ , leave=lowercase__ ): _lowerCamelCase : List[Any] = process_run_single( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCamelCase : int = single_run_metrics[target_metric_key] if not math.isnan(lowercase__ ): metrics.append(lowercase__ ) results.append(lowercase__ ) outcome += "✓" else: outcome += "✘" _lowerCamelCase : Tuple = f'''\33[2K\r{outcome}''' if len(lowercase__ ) > 0: _lowerCamelCase : Optional[int] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} _lowerCamelCase : str = round(mean_metrics[target_metric_key] , 2 ) _lowerCamelCase : Optional[Any] = f'''{outcome} {mean_target}''' if len(lowercase__ ) > 1: results_str += f''' {tuple(round(lowercase__ , 2 ) for x in results )}''' print(lowercase__ ) _lowerCamelCase : Dict = variation return mean_metrics else: print(lowercase__ ) return {variation_key: variation, target_metric_key: nan} def _snake_case ( ): _lowerCamelCase : List[Any] = torch.cuda.get_device_properties(torch.device('cuda' ) ) return f''' Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): _lowerCamelCase : str = pd.DataFrame(lowercase__ ) _lowerCamelCase : int = 'variation' _lowerCamelCase : List[Any] = 'diff_%' _lowerCamelCase : Union[str, Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan _lowerCamelCase : Optional[int] = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(lowercase__ ): # as a fallback, use the minimal value as the sentinel _lowerCamelCase : Dict = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(lowercase__ ): _lowerCamelCase : Any = df.apply( lambda lowercase__ : round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='columns' , ) # re-order columns _lowerCamelCase : int = [variation_key, target_metric_key, diff_key, *report_metric_keys] _lowerCamelCase : List[str] = df.reindex(lowercase__ , axis='columns' ) # reorder cols # capitalize _lowerCamelCase : Dict = df.rename(str.capitalize , axis='columns' ) # make the cols as narrow as possible _lowerCamelCase : Optional[int] = df.rename(lambda lowercase__ : c.replace('_' , '<br>' ) , axis='columns' ) _lowerCamelCase : Any = df.rename(lambda lowercase__ : c.replace('_' , '\n' ) , axis='columns' ) _lowerCamelCase : Dict = ['', 'Copy between the cut-here-lines and paste as is to github or a forum'] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=lowercase__ , floatfmt='.2f' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=lowercase__ , floatfmt='.2f' )] print('\n\n'.join(lowercase__ ) ) def _snake_case ( ): _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '--base-cmd' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Base cmd' , ) parser.add_argument( '--variations' , default=lowercase__ , type=lowercase__ , nargs='+' , required=lowercase__ , help='Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'' , ) parser.add_argument( '--base-variation' , default=lowercase__ , type=lowercase__ , help='Baseline variation to compare to. if None the minimal target value will be used to compare against' , ) parser.add_argument( '--target-metric-key' , default=lowercase__ , type=lowercase__ , required=lowercase__ , help='Target metric key in output_dir/all_results.json, e.g., train_samples_per_second' , ) parser.add_argument( '--report-metric-keys' , default='' , type=lowercase__ , help='Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples' , ) parser.add_argument( '--repeat-times' , default=1 , type=lowercase__ , help='How many times to re-run each variation - an average will be reported' , ) parser.add_argument( '--output_dir' , default='output_benchmark' , type=lowercase__ , help='The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked' , ) parser.add_argument( '--verbose' , default=lowercase__ , action='store_true' , help='Whether to show the outputs of each run or just the benchmark progress' , ) _lowerCamelCase : Optional[Any] = parser.parse_args() _lowerCamelCase : str = args.output_dir Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) _lowerCamelCase : List[str] = get_base_command(lowercase__ , lowercase__ ) # split each dimension into its --foo variations _lowerCamelCase : str = [list(map(str.strip , re.split(r'\|' , lowercase__ ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _lowerCamelCase : Dict = list(map(str.strip , map(' '.join , itertools.product(*lowercase__ ) ) ) ) _lowerCamelCase : Tuple = max(len(lowercase__ ) for x in variations ) # split wanted keys _lowerCamelCase : Union[str, Any] = args.report_metric_keys.split() # capture prints into a log file for convenience _lowerCamelCase : int = f'''benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt''' print(f'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''' ) print(f'''and this script\'s output is also piped into {report_fn}''' ) _lowerCamelCase : List[str] = Tee(lowercase__ ) print(f'''\n*** Running {len(lowercase__ )} benchmarks:''' ) print(f'''Base command: {' '.join(lowercase__ )}''' ) _lowerCamelCase : Any = 'variation' _lowerCamelCase : Union[str, Any] = [] for id, variation in enumerate(tqdm(lowercase__ , desc='Total completion: ' , leave=lowercase__ ) ): _lowerCamelCase : Any = base_cmd + variation.split() results.append( process_run( id + 1 , lowercase__ , lowercase__ , lowercase__ , lowercase__ , args.target_metric_key , lowercase__ , args.repeat_times , lowercase__ , args.verbose , ) ) process_results(lowercase__ , args.target_metric_key , lowercase__ , args.base_variation , lowercase__ ) if __name__ == "__main__": main()
706
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """sew-d""" def __init__( self , lowercase=32 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase=2 , lowercase=512 , lowercase=256 , lowercase=True , lowercase=True , lowercase=("p2c", "c2p") , lowercase="layer_norm" , lowercase="gelu_python" , lowercase=0.1 , lowercase=0.1 , lowercase=0.1 , lowercase=0.0 , lowercase=0.1 , lowercase=0.02 , lowercase=1E-7 , lowercase=1E-5 , lowercase="group" , lowercase="gelu" , lowercase=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , lowercase=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , lowercase=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , lowercase=False , lowercase=128 , lowercase=16 , lowercase=True , lowercase=0.05 , lowercase=10 , lowercase=2 , lowercase=0.0 , lowercase=10 , lowercase=0 , lowercase="mean" , lowercase=False , lowercase=False , lowercase=256 , lowercase=0 , lowercase=1 , lowercase=2 , **lowercase , ): super().__init__(**lowercase , pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase ) _lowerCamelCase : List[str] = hidden_size _lowerCamelCase : int = feat_extract_norm _lowerCamelCase : Optional[Any] = feat_extract_activation _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : Union[str, Any] = list(lowercase ) _lowerCamelCase : Optional[Any] = list(lowercase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : str = num_conv_pos_embeddings _lowerCamelCase : Optional[Any] = num_conv_pos_embedding_groups _lowerCamelCase : Tuple = len(self.conv_dim ) _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Dict = squeeze_factor _lowerCamelCase : Any = max_position_embeddings _lowerCamelCase : List[str] = position_buckets _lowerCamelCase : Dict = share_att_key _lowerCamelCase : List[str] = relative_attention _lowerCamelCase : Optional[Any] = norm_rel_ebd _lowerCamelCase : List[Any] = list(lowercase ) _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Optional[Any] = num_attention_heads _lowerCamelCase : Optional[int] = hidden_dropout _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : Any = activation_dropout _lowerCamelCase : Tuple = feat_proj_dropout _lowerCamelCase : Any = final_dropout _lowerCamelCase : str = layer_norm_eps _lowerCamelCase : Tuple = feature_layer_norm_eps _lowerCamelCase : Any = initializer_range _lowerCamelCase : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Dict = apply_spec_augment _lowerCamelCase : int = mask_time_prob _lowerCamelCase : Union[str, Any] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[Any] = mask_feature_prob _lowerCamelCase : Union[str, Any] = mask_feature_length _lowerCamelCase : List[Any] = mask_feature_min_masks # ctc loss _lowerCamelCase : List[str] = ctc_loss_reduction _lowerCamelCase : List[str] = ctc_zero_infinity # sequence classification _lowerCamelCase : Dict = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size @property def A_ ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
492
0
import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def lowerCamelCase ( UpperCamelCase : List[str] ) -> Dict: _lowerCamelCase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' F"""{test_file} instead.""" ) _lowerCamelCase = components[-1] if not test_fn.endswith('py' ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith('test_modeling_' ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) _lowerCamelCase = components[:-1] + [test_fn.replace('.py' , '' )] _lowerCamelCase = '.'.join(UpperCamelCase ) return test_module_path def lowerCamelCase ( UpperCamelCase : int ) -> str: _lowerCamelCase = get_module_path(UpperCamelCase ) _lowerCamelCase = importlib.import_module(UpperCamelCase ) return test_module def lowerCamelCase ( UpperCamelCase : Tuple ) -> Optional[Any]: _lowerCamelCase = [] _lowerCamelCase = get_test_module(UpperCamelCase ) for attr in dir(UpperCamelCase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(UpperCamelCase , UpperCamelCase ) ) # sort with class names return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ ) def lowerCamelCase ( UpperCamelCase : Dict ) -> Any: _lowerCamelCase = [] _lowerCamelCase = get_test_module(UpperCamelCase ) for attr in dir(UpperCamelCase ): _lowerCamelCase = getattr(UpperCamelCase , UpperCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowerCamelCase = getattr(UpperCamelCase , 'all_model_classes' , [] ) if len(UpperCamelCase ) > 0: test_classes.append(UpperCamelCase ) # sort with class names return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ ) def lowerCamelCase ( UpperCamelCase : List[str] ) -> Any: _lowerCamelCase = get_test_classes(UpperCamelCase ) _lowerCamelCase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ ) def lowerCamelCase ( UpperCamelCase : Dict ) -> List[str]: _lowerCamelCase = test_class() if hasattr(UpperCamelCase , 'setUp' ): test.setUp() _lowerCamelCase = None if hasattr(UpperCamelCase , 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowerCamelCase = test.model_tester.__class__ return model_tester def lowerCamelCase ( UpperCamelCase : Optional[int] , UpperCamelCase : Union[str, Any] ) -> str: _lowerCamelCase = get_test_classes(UpperCamelCase ) _lowerCamelCase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(UpperCamelCase ) # sort with class names return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ ) def lowerCamelCase ( UpperCamelCase : Any , UpperCamelCase : List[str] ) -> Any: _lowerCamelCase = get_test_classes_for_model(UpperCamelCase , UpperCamelCase ) _lowerCamelCase = [] for test_class in test_classes: _lowerCamelCase = get_model_tester_from_test_class(UpperCamelCase ) if tester_class is not None: tester_classes.append(UpperCamelCase ) # sort with class names return sorted(UpperCamelCase , key=lambda UpperCamelCase : x.__name__ ) def lowerCamelCase ( UpperCamelCase : Any ) -> Union[str, Any]: _lowerCamelCase = get_test_classes(UpperCamelCase ) _lowerCamelCase = {test_class: get_model_tester_from_test_class(UpperCamelCase ) for test_class in test_classes} return test_tester_mapping def lowerCamelCase ( UpperCamelCase : Tuple ) -> List[Any]: _lowerCamelCase = get_model_classes(UpperCamelCase ) _lowerCamelCase = { model_class: get_test_classes_for_model(UpperCamelCase , UpperCamelCase ) for model_class in model_classes } return model_test_mapping def lowerCamelCase ( UpperCamelCase : Optional[int] ) -> Optional[Any]: _lowerCamelCase = get_model_classes(UpperCamelCase ) _lowerCamelCase = { model_class: get_tester_classes_for_model(UpperCamelCase , UpperCamelCase ) for model_class in model_classes } return model_to_tester_mapping def lowerCamelCase ( UpperCamelCase : Tuple ) -> int: if isinstance(UpperCamelCase , UpperCamelCase ): return o elif isinstance(UpperCamelCase , UpperCamelCase ): return o.__name__ elif isinstance(UpperCamelCase , (list, tuple) ): return [to_json(UpperCamelCase ) for x in o] elif isinstance(UpperCamelCase , UpperCamelCase ): return {to_json(UpperCamelCase ): to_json(UpperCamelCase ) for k, v in o.items()} else: return o
544
A = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' A = [{'type': 'code', 'content': INSTALL_CONTENT}] A = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
544
1
"""simple docstring""" import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _A = logging.get_logger(__name__) def lowercase (_snake_case=None ,_snake_case=None ) -> int: '''simple docstring''' return field(default_factory=lambda: default ,metadata=_snake_case ) @dataclass class __UpperCAmelCase : """simple docstring""" _snake_case : List[str] = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) _snake_case : List[int] = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) _snake_case : List[int] = list_field( default=[8, 3_2, 1_2_8, 5_1_2] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) _snake_case : bool = field( default=snake_case__ , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) _snake_case : bool = field( default=snake_case__ , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) _snake_case : bool = field( default=snake_case__ , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Use FP16 to accelerate inference.'} ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Benchmark training of model'} ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Verbose memory tracing'} ) _snake_case : bool = field( default=snake_case__ , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) _snake_case : bool = field( default=snake_case__ , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Trace memory line by line'} ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Save result to a CSV file'} ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Save all print statements in a log file'} ) _snake_case : bool = field(default=snake_case__ , metadata={'help': 'Whether to print environment information'} ) _snake_case : bool = field( default=snake_case__ , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) _snake_case : str = field( default=F'''inference_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) _snake_case : str = field( default=F'''inference_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) _snake_case : str = field( default=F'''train_time_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) _snake_case : str = field( default=F'''train_memory_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) _snake_case : str = field( default=F'''env_info_{round(time() )}.csv''' , metadata={'help': 'CSV filename used if saving environment information.'} , ) _snake_case : str = field( default=F'''log_{round(time() )}.csv''' , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) _snake_case : int = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) _snake_case : bool = field( default=snake_case__ , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def A ( self : Tuple )-> Dict: warnings.warn( f"""The class {self.__class__} is deprecated. Hugging Face Benchmarking utils""" " are deprecated in general and it is advised to use external Benchmarking libraries " " to benchmark Transformer models." , A_ , ) def A ( self : Dict )-> Union[str, Any]: return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def A ( self : str )-> List[str]: if len(self.models ) <= 0: raise ValueError( "Please make sure you provide at least one model name / model identifier, *e.g.* `--models" " bert-base-cased` or `args.models = ['bert-base-cased']." ) return self.models @property def A ( self : Union[str, Any] )-> Optional[Any]: if not self.multi_process: return False elif self.is_tpu: logger.info("Multiprocessing is currently not possible on TPU." ) return False else: return True
716
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowercase (_snake_case ,_snake_case ,_snake_case=1024 ,_snake_case=1024 ,_snake_case=False ,**_snake_case ) -> Optional[int]: '''simple docstring''' __UpperCamelCase = AutoTokenizer.from_pretrained(_snake_case ) __UpperCamelCase = SeqaSeqDataset(_snake_case ,_snake_case ,_snake_case ,_snake_case ,type_path="train" ,**_snake_case ) __UpperCamelCase = tok.pad_token_id def get_lens(_snake_case ): __UpperCamelCase = tqdm( DataLoader(_snake_case ,batch_size=512 ,num_workers=8 ,shuffle=_snake_case ,collate_fn=ds.collate_fn ) ,desc=str(ds.len_file ) ,) __UpperCamelCase = [] for batch in dl: __UpperCamelCase = batch["input_ids"].ne(_snake_case ).sum(1 ).tolist() __UpperCamelCase = batch["labels"].ne(_snake_case ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_snake_case ,_snake_case ): max_lens.append(max(_snake_case ,_snake_case ) ) else: max_lens.extend(_snake_case ) return max_lens __UpperCamelCase = get_lens(_snake_case ) __UpperCamelCase = SeqaSeqDataset(_snake_case ,_snake_case ,_snake_case ,_snake_case ,type_path="val" ,**_snake_case ) __UpperCamelCase = get_lens(_snake_case ) pickle_save(_snake_case ,train_ds.len_file ) pickle_save(_snake_case ,val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
228
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCAmelCase : """simple docstring""" def __init__( self , _A = None ) -> Optional[int]: __a : Union[str, Any] = value __a : Node | None = None # Added in order to delete a node easier __a : Node | None = None __a : Node | None = None def __repr__( self ) -> str: from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class lowerCAmelCase : """simple docstring""" def __init__( self , _A = None ) -> List[str]: __a : Optional[Any] = root def __str__( self ) -> str: return str(self.root ) def __magic_name__ ( self , _A , _A ) -> None: if new_children is not None: # reset its kids __a : Any = node.parent if node.parent is not None: # reset its parent if self.is_right(_A ): # If it is the right children __a : List[Any] = new_children else: __a : Tuple = new_children else: __a : str = new_children def __magic_name__ ( self , _A ) -> bool: if node.parent and node.parent.right: return node == node.parent.right return False def __magic_name__ ( self ) -> bool: return self.root is None def __magic_name__ ( self , _A ) -> None: __a : Dict = Node(_A ) # create a new Node if self.empty(): # if Tree is empty __a : List[str] = new_node # set its root else: # Tree is not empty __a : Any = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __a : str = new_node # We insert the new node in a leaf break else: __a : Tuple = parent_node.left else: if parent_node.right is None: __a : Dict = new_node break else: __a : List[Any] = parent_node.right __a : Dict = parent_node def __magic_name__ ( self , *_A ) -> None: for value in values: self.__insert(_A ) def __magic_name__ ( self , _A ) -> Node | None: if self.empty(): raise IndexError('Warning: Tree is empty! please use another.' ) else: __a : Optional[int] = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __a : int = node.left if value < node.value else node.right return node def __magic_name__ ( self , _A = None ) -> Node | None: if node is None: if self.root is None: return None __a : Union[str, Any] = self.root if not self.empty(): while node.right is not None: __a : Dict = node.right return node def __magic_name__ ( self , _A = None ) -> Node | None: if node is None: __a : Optional[Any] = self.root if self.root is None: return None if not self.empty(): __a : Optional[int] = self.root while node.left is not None: __a : List[str] = node.left return node def __magic_name__ ( self , _A ) -> None: __a : Any = self.search(_A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_A , _A ) elif node.left is None: # Has only right children self.__reassign_nodes(_A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(_A , node.left ) else: __a : List[str] = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore __a : Union[str, Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def __magic_name__ ( self , _A ) -> Iterable: if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def __magic_name__ ( self , _A=None ) -> Any: if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def __magic_name__ ( self , _A , _A ) -> None: if node: self.inorder(_A , node.left ) arr.append(node.value ) self.inorder(_A , node.right ) def __magic_name__ ( self , _A , _A ) -> int: __a : list[int] = [] self.inorder(_A , _A ) # append all values to list using inorder traversal return arr[k - 1] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): __a : Union[str, Any] = [] if curr_node is not None: __a : Optional[int] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def lowerCAmelCase__ ( ): __a : Union[str, Any] = (8, 3, 6, 1, 10, 14, 13, 4, 7) __a : List[str] = BinarySearchTree() for i in testlist: t.insert(SCREAMING_SNAKE_CASE__ ) # Prints all the elements of the list in order traversal print(SCREAMING_SNAKE_CASE__ ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
597
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 100 , ): __a : List[str] = x_start __a : List[str] = fnc(SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = 0.0 for _ in range(SCREAMING_SNAKE_CASE__ ): # Approximates curve as a sequence of linear lines and sums their length __a : Union[str, Any] = (x_end - x_start) / steps + xa __a : Tuple = fnc(SCREAMING_SNAKE_CASE__ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __a : str = xa __a : str = fxa return length if __name__ == "__main__": def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ ): return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") SCREAMING_SNAKE_CASE_ = 1_0 while i <= 1_0_0_0_0_0: print(F"With {i} steps: {line_length(f, -1_0, 1_0, i)}") i *= 1_0
597
1
import os def SCREAMING_SNAKE_CASE ( ) -> str: with open(os.path.dirname(__lowerCAmelCase ) + '''/p022_names.txt''' ) as file: snake_case__ = str(file.readlines()[0] ) snake_case__ = names.replace('''"''' , '''''' ).split(''',''' ) names.sort() snake_case__ = 0 snake_case__ = 0 for i, name in enumerate(__lowerCAmelCase ): for letter in name: name_score += ord(__lowerCAmelCase ) - 64 total_score += (i + 1) * name_score snake_case__ = 0 return total_score if __name__ == "__main__": print(solution())
208
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Tuple = 'xlm-roberta' def __init__( self:Dict , _a:List[Any]=3_05_22 , _a:Optional[Any]=7_68 , _a:Union[str, Any]=12 , _a:str=12 , _a:Union[str, Any]=30_72 , _a:str="gelu" , _a:List[Any]=0.1 , _a:List[str]=0.1 , _a:Dict=5_12 , _a:Optional[int]=2 , _a:Optional[Any]=0.02 , _a:List[str]=1e-12 , _a:Dict=1 , _a:Optional[Any]=0 , _a:str=2 , _a:Optional[int]="absolute" , _a:List[str]=True , _a:List[Any]=None , **_a:str , ): super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = hidden_act snake_case__ = intermediate_size snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = initializer_range snake_case__ = layer_norm_eps snake_case__ = position_embedding_type snake_case__ = use_cache snake_case__ = classifier_dropout class __magic_name__ (snake_case_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): if self.task == "multiple-choice": snake_case__ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: snake_case__ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
208
1
"""simple docstring""" # Lint as: python3 import itertools import os import re a : Union[str, Any] = re.compile(R'''([A-Z]+)([A-Z][a-z])''') a : Optional[int] = re.compile(R'''([a-z\d])([A-Z])''') a : List[str] = re.compile(R'''(?<!_)_(?!_)''') a : int = re.compile(R'''(_{2,})''') a : Union[str, Any] = R'''^\w+(\.\w+)*$''' a : str = R'''<>:/\|?*''' def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Tuple: '''simple docstring''' a : Optional[Any] = _uppercase_uppercase_re.sub(R"\1_\2" , _lowercase ) a : Optional[Any] = _lowercase_uppercase_re.sub(R"\1_\2" , _lowercase ) return name.lower() def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->List[Any]: '''simple docstring''' a : Tuple = _single_underscore_re.split(_lowercase ) a : Optional[int] = [_multiple_underscores_re.split(_lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(_lowercase ) if n != "" ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] ) ->Optional[Any]: '''simple docstring''' if os.path.basename(_lowercase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(_lowercase ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : Union[str, Any] ) ->List[str]: '''simple docstring''' if os.path.basename(_lowercase ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , _lowercase ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(_lowercase )}-{split}""" def _SCREAMING_SNAKE_CASE ( _lowercase : Dict , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : List[str]=None ) ->Tuple: '''simple docstring''' a : List[Any] = filename_prefix_for_split(_lowercase , _lowercase ) if filetype_suffix: prefix += F""".{filetype_suffix}""" a : List[str] = os.path.join(_lowercase , _lowercase ) return F"""{filepath}*""" def _SCREAMING_SNAKE_CASE ( _lowercase : Union[str, Any] , _lowercase : Dict , _lowercase : Any , _lowercase : Optional[Any]=None , _lowercase : Union[str, Any]=None ) ->str: '''simple docstring''' a : Union[str, Any] = filename_prefix_for_split(_lowercase , _lowercase ) a : Dict = os.path.join(_lowercase , _lowercase ) if shard_lengths: a : int = len(_lowercase ) a : Dict = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(_lowercase )] if filetype_suffix: a : Optional[int] = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: a : List[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
633
"""simple docstring""" class __UpperCamelCase : # Public class to implement a graph def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: a : int = row a : Tuple = col a : Optional[int] = graph def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: # Checking all 8 elements surrounding nth element a : Optional[Any] = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order a : str = [-1, 0, 1, -1, 1, -1, 0, 1] a : str = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase__ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , lowerCAmelCase__ ) def __a ( self ) -> int: # And finally, count all islands. a : Union[str, Any] = [[False for j in range(self.COL )] for i in range(self.ROW )] a : Dict = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) count += 1 return count
633
1
"""simple docstring""" from ....utils import logging lowerCAmelCase_ = logging.get_logger(__name__) class _snake_case ( lowercase__ ): """simple docstring""" def __init__( self : Union[str, Any] , _A : Any , _A : Tuple=None , _A : int=2_0_4_8): """simple docstring""" _SCREAMING_SNAKE_CASE : Optional[int] = config.__dict__ _SCREAMING_SNAKE_CASE : Optional[Any] = modal_hidden_size if num_labels: _SCREAMING_SNAKE_CASE : Tuple = num_labels
715
"""simple docstring""" import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCAmelCase_ = 16 lowerCAmelCase_ = 32 def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 )-> str: _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE : Union[str, Any] = DatasetDict( { """train""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ), """validation""": dataset["""train"""].select(__SCREAMING_SNAKE_CASE ), """test""": dataset["""validation"""], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE : str = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE : Optional[Any] = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE : Any = 8 else: _SCREAMING_SNAKE_CASE : Optional[int] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding="""longest""" , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" , ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE : int = DataLoader( tokenized_datasets["""train"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["""test"""] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Dict: # New Code # _SCREAMING_SNAKE_CASE : Union[str, Any] = [] # Download the dataset _SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("""glue""" , """mrpc""" ) # Create our splits _SCREAMING_SNAKE_CASE : Dict = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _SCREAMING_SNAKE_CASE : Any = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE : Tuple = config["""lr"""] _SCREAMING_SNAKE_CASE : Tuple = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE : int = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE : int = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE : List[str] = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _SCREAMING_SNAKE_CASE : Any = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _SCREAMING_SNAKE_CASE : List[str] = batch_size // MAX_GPU_BATCH_SIZE _SCREAMING_SNAKE_CASE : List[str] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: _SCREAMING_SNAKE_CASE : List[str] = kfold.split(np.zeros(datasets["""train"""].num_rows ) , datasets["""train"""]["""label"""] ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = get_fold_dataloaders( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE : Any = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE : Tuple = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE : int = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler _SCREAMING_SNAKE_CASE : int = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Union[str, Any] = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _SCREAMING_SNAKE_CASE : Optional[Any] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Dict = outputs.loss _SCREAMING_SNAKE_CASE : List[Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : str = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) _SCREAMING_SNAKE_CASE : Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end _SCREAMING_SNAKE_CASE : str = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : List[str] = model(**__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : List[Any] = outputs.logits _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _SCREAMING_SNAKE_CASE : Optional[int] = torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) _SCREAMING_SNAKE_CASE : List[str] = torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _SCREAMING_SNAKE_CASE : int = metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE ) accelerator.print("""Average test metrics from all folds:""" , __SCREAMING_SNAKE_CASE ) def lowerCamelCase_()-> Optional[Any]: _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) # New Code # parser.add_argument("""--num_folds""" , type=__SCREAMING_SNAKE_CASE , default=3 , help="""The number of splits to perform across the dataset""" ) _SCREAMING_SNAKE_CASE : List[Any] = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[int] = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
635
0
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging snake_case_ : Union[str, Any] = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] snake_case_ : str = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : Optional[int] = ''' Hello world! cécé herlolip''' snake_case_ : Any = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def lowercase__( _UpperCamelCase : Optional[int] )-> Optional[int]: """simple docstring""" _UpperCamelCase = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", ] for k in ignore_keys: state_dict.pop(_UpperCamelCase , _UpperCamelCase ) def lowercase__( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] )-> Any: """simple docstring""" _UpperCamelCase = dct.pop(_UpperCamelCase ) _UpperCamelCase = val def lowercase__( _UpperCamelCase : Union[str, Any] )-> Dict: """simple docstring""" _UpperCamelCase = torch.load(_UpperCamelCase , map_location="cpu" ) _UpperCamelCase = torch.hub.load("pytorch/fairseq" , "bart.large.cnn" ).eval() hub_interface.model.load_state_dict(sd["model"] ) return hub_interface def lowercase__( _UpperCamelCase : List[str] )-> Dict: """simple docstring""" _UpperCamelCase , _UpperCamelCase = emb.weight.shape _UpperCamelCase = nn.Linear(_UpperCamelCase , _UpperCamelCase , bias=_UpperCamelCase ) _UpperCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowercase__( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any]=None )-> List[Any]: """simple docstring""" if not os.path.exists(_UpperCamelCase ): _UpperCamelCase = torch.hub.load("pytorch/fairseq" , _UpperCamelCase ).eval() else: _UpperCamelCase = load_xsum_checkpoint(_UpperCamelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _UpperCamelCase = checkpoint_path.replace("." , "-" ) _UpperCamelCase = BartConfig.from_pretrained(_UpperCamelCase ) _UpperCamelCase = bart.encode(_UpperCamelCase ).unsqueeze(0 ) _UpperCamelCase = BartTokenizer.from_pretrained(_UpperCamelCase ).encode(_UpperCamelCase , return_tensors="pt" ).unsqueeze(0 ) if not torch.eq(_UpperCamelCase , _UpperCamelCase ).all(): raise ValueError( f"converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}" ) if checkpoint_path == "bart.large.mnli": _UpperCamelCase = bart.state_dict() remove_ignore_keys_(_UpperCamelCase ) _UpperCamelCase = state_dict["model.decoder.embed_tokens.weight"] for src, dest in mnli_rename_keys: rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _UpperCamelCase = BartForSequenceClassification(_UpperCamelCase ).eval() model.load_state_dict(_UpperCamelCase ) _UpperCamelCase = bart.predict("mnli" , _UpperCamelCase , return_logits=_UpperCamelCase ) _UpperCamelCase = model(_UpperCamelCase )[0] # logits else: # no classification heads to worry about _UpperCamelCase = bart.model.state_dict() remove_ignore_keys_(_UpperCamelCase ) _UpperCamelCase = state_dict["decoder.embed_tokens.weight"] _UpperCamelCase = bart.extract_features(_UpperCamelCase ) if hf_checkpoint_name == "facebook/bart-large": _UpperCamelCase = BartModel(_UpperCamelCase ).eval() model.load_state_dict(_UpperCamelCase ) _UpperCamelCase = model(_UpperCamelCase ).model[0] else: _UpperCamelCase = BartForConditionalGeneration(_UpperCamelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(_UpperCamelCase ) if hasattr(_UpperCamelCase , "lm_head" ): _UpperCamelCase = make_linear_from_emb(model.model.shared ) _UpperCamelCase = model.model(_UpperCamelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("Some values in `fairseq_output` are different from `new_model_outputs`" ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": snake_case_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) snake_case_ : Any = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
138
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class A_ ( datasets.BuilderConfig ): '''simple docstring''' _lowerCAmelCase = None class A_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' _lowerCAmelCase = PandasConfig def a ( self ): return datasets.DatasetInfo(features=self.config.features ) def a ( self , A_ ): if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}" ) _UpperCamelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(A_ , (str, list, tuple) ): _UpperCamelCase = data_files if isinstance(A_ , A_ ): _UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _UpperCamelCase = [] for split_name, files in data_files.items(): if isinstance(A_ , A_ ): _UpperCamelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _UpperCamelCase = [dl_manager.iter_files(A_ ) for file in files] splits.append(datasets.SplitGenerator(name=A_ , gen_kwargs={"files": files} ) ) return splits def a ( self , A_ ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _UpperCamelCase = table_cast(A_ , self.config.features.arrow_schema ) return pa_table def a ( self , A_ ): for i, file in enumerate(itertools.chain.from_iterable(A_ ) ): with open(A_ , "rb" ) as f: _UpperCamelCase = pa.Table.from_pandas(pd.read_pickle(A_ ) ) yield i, self._cast_table(A_ )
138
1
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration __snake_case : str = HfArgumentParser(InitializationArguments) __snake_case : Dict = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization __snake_case : Any = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks __snake_case : Dict = { "vocab_size": len(tokenizer), "scale_attn_by_inverse_layer_idx": True, "reorder_and_upcast_attn": True, } # Load model config (GPT-2 large in this case) __snake_case : Union[str, Any] = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config __snake_case : List[str] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
718
"""simple docstring""" import torch from torch import nn class A__ ( nn.Module ): '''simple docstring''' def __init__( self: Optional[Any] , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: List[str] , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Optional[Any]=1 , _SCREAMING_SNAKE_CASE: Optional[Any]=False) -> Dict: """simple docstring""" super().__init__() __lowerCAmelCase : Optional[int] = n_token __lowerCAmelCase : int = d_embed __lowerCAmelCase : str = d_proj __lowerCAmelCase : Optional[Any] = cutoffs + [n_token] __lowerCAmelCase : Any = [0] + self.cutoffs __lowerCAmelCase : Tuple = div_val __lowerCAmelCase : Optional[Any] = self.cutoffs[0] __lowerCAmelCase : Union[str, Any] = len(self.cutoffs) - 1 __lowerCAmelCase : List[str] = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __lowerCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) __lowerCAmelCase : Dict = nn.Parameter(torch.zeros(self.n_clusters)) __lowerCAmelCase : List[Any] = nn.ModuleList() __lowerCAmelCase : Any = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))) else: self.out_projs.append(_SCREAMING_SNAKE_CASE) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)) else: for i in range(len(self.cutoffs)): __lowerCAmelCase , __lowerCAmelCase : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase : str = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE))) self.out_layers.append(nn.Linear(_SCREAMING_SNAKE_CASE , r_idx - l_idx)) __lowerCAmelCase : str = keep_order def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , _SCREAMING_SNAKE_CASE: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: Dict) -> int: """simple docstring""" if proj is None: __lowerCAmelCase : Dict = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __lowerCAmelCase : Optional[Any] = nn.functional.linear(_SCREAMING_SNAKE_CASE , proj.t().contiguous()) __lowerCAmelCase : List[Any] = nn.functional.linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _SCREAMING_SNAKE_CASE ( self: Dict , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: Tuple=None , _SCREAMING_SNAKE_CASE: int=False) -> List[str]: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n __lowerCAmelCase : List[Any] = hidden[..., :-1, :].contiguous() __lowerCAmelCase : Tuple = labels[..., 1:].contiguous() __lowerCAmelCase : Union[str, Any] = hidden.view(-1 , hidden.size(-1)) __lowerCAmelCase : Optional[int] = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("Input and labels should have the same size in the batch dimension.") else: __lowerCAmelCase : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: __lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: __lowerCAmelCase : Any = labels != -100 __lowerCAmelCase : Tuple = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device) __lowerCAmelCase : List[Any] = ( -nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: __lowerCAmelCase : List[Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1) else: # construct weights and biases __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: __lowerCAmelCase , __lowerCAmelCase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] __lowerCAmelCase : Optional[int] = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCAmelCase : int = self.out_layers[i].weight __lowerCAmelCase : List[Any] = self.out_layers[i].bias if i == 0: __lowerCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0) __lowerCAmelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_SCREAMING_SNAKE_CASE) biases.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = weights[0], biases[0], self.out_projs[0] __lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1) if labels is None: __lowerCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: __lowerCAmelCase : int = torch.zeros_like(_SCREAMING_SNAKE_CASE , dtype=hidden.dtype , device=hidden.device) __lowerCAmelCase : str = 0 __lowerCAmelCase : List[str] = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE) - 1): __lowerCAmelCase , __lowerCAmelCase : List[Any] = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __lowerCAmelCase : List[str] = (labels >= l_idx) & (labels < r_idx) __lowerCAmelCase : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __lowerCAmelCase : Optional[Any] = labels.index_select(0 , _SCREAMING_SNAKE_CASE) - l_idx __lowerCAmelCase : List[Any] = head_logprob.index_select(0 , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = hidden.index_select(0 , _SCREAMING_SNAKE_CASE) else: __lowerCAmelCase : List[str] = hidden if i == 0: if labels is not None: __lowerCAmelCase : Optional[int] = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: __lowerCAmelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = weights[i], biases[i], self.out_projs[i] __lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1) __lowerCAmelCase : int = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __lowerCAmelCase : List[str] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: __lowerCAmelCase : Optional[int] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __lowerCAmelCase : Optional[int] = logprob_i if labels is not None: if (hasattr(self , "keep_order") and self.keep_order) or keep_order: out.index_copy_(0 , _SCREAMING_SNAKE_CASE , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: List[Any]) -> Optional[Any]: """simple docstring""" if self.n_clusters == 0: __lowerCAmelCase : int = self._compute_logit(_SCREAMING_SNAKE_CASE , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=-1) else: # construct weights and biases __lowerCAmelCase , __lowerCAmelCase : Dict = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: __lowerCAmelCase , __lowerCAmelCase : int = self.cutoff_ends[i], self.cutoff_ends[i + 1] __lowerCAmelCase : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] __lowerCAmelCase : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: __lowerCAmelCase : Dict = self.out_layers[i].weight __lowerCAmelCase : List[str] = self.out_layers[i].bias if i == 0: __lowerCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0) __lowerCAmelCase : int = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(_SCREAMING_SNAKE_CASE) biases.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[Any] = weights[0], biases[0], self.out_projs[0] __lowerCAmelCase : str = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) __lowerCAmelCase : Union[str, Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1) __lowerCAmelCase : Dict = [0] + self.cutoffs for i in range(len(_SCREAMING_SNAKE_CASE) - 1): __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = cutoff_values[i], cutoff_values[i + 1] if i == 0: __lowerCAmelCase : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Dict = weights[i], biases[i], self.out_projs[i] __lowerCAmelCase : Any = self._compute_logit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = nn.functional.log_softmax(_SCREAMING_SNAKE_CASE , dim=1) __lowerCAmelCase : int = head_logprob[:, -i] + tail_logprob_i __lowerCAmelCase : Tuple = logprob_i return out
615
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
104
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase__ = logging.get_logger(__name__) class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Optional[int] = ["""input_features"""] def __init__( self : int , a_ : Optional[int]=80 , a_ : Any=1_60_00 , a_ : Tuple=1_60 , a_ : Union[str, Any]=30 , a_ : int=4_00 , a_ : List[str]=0.0 , a_ : Dict=False , **a_ : Optional[Any] , ): super().__init__( feature_size=a_ , sampling_rate=a_ , padding_value=a_ , return_attention_mask=a_ , **a_ , ) lowerCAmelCase_ : Optional[int] = n_fft lowerCAmelCase_ : Dict = hop_length lowerCAmelCase_ : str = chunk_length lowerCAmelCase_ : Optional[int] = chunk_length * sampling_rate lowerCAmelCase_ : Any = self.n_samples // hop_length lowerCAmelCase_ : Optional[Any] = sampling_rate lowerCAmelCase_ : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=a_ , norm="slaney" , mel_scale="slaney" , ) def lowerCamelCase ( self : Optional[int] , a_ : np.array ): lowerCAmelCase_ : List[Any] = spectrogram( a_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowerCAmelCase_ : Tuple = log_spec[:, :-1] lowerCAmelCase_ : Dict = np.maximum(a_ , log_spec.max() - 8.0 ) lowerCAmelCase_ : str = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCamelCase ( a_ : List[np.ndarray] , a_ : List[np.ndarray] , a_ : float = 0.0 ): if attention_mask is not None: lowerCAmelCase_ : Tuple = np.array(a_ , np.intaa ) lowerCAmelCase_ : Dict = [] for vector, length in zip(a_ , attention_mask.sum(-1 ) ): lowerCAmelCase_ : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowerCAmelCase_ : Union[str, Any] = padding_value normed_input_values.append(a_ ) else: lowerCAmelCase_ : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] , a_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a_ : bool = True , a_ : Optional[int] = None , a_ : Optional[Union[str, TensorType]] = None , a_ : Optional[bool] = None , a_ : Optional[str] = "max_length" , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : Optional[bool] = None , **a_ : Any , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCAmelCase_ : Tuple = isinstance(a_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase_ : Tuple = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase_ : Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_ , np.ndarray ): lowerCAmelCase_ : Optional[Any] = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase_ : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase_ : List[str] = [np.asarray([raw_speech] ).T] lowerCAmelCase_ : List[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowerCAmelCase_ : Optional[int] = self.pad( a_ , padding=a_ , max_length=max_length if max_length else self.n_samples , truncation=a_ , pad_to_multiple_of=a_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase_ : Tuple = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowerCAmelCase_ : str = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowerCAmelCase_ : Dict = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowerCAmelCase_ : List[Any] = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]] if isinstance(input_features[0] , a_ ): lowerCAmelCase_ : Any = [np.asarray(a_ , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase_ : List[str] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase_ : Union[str, Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase_ : List[Any] = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def lowerCamelCase ( self : Tuple ): lowerCAmelCase_ : Tuple = copy.deepcopy(self.__dict__ ) lowerCAmelCase_ : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
610
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : List[Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=18 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=400 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> str: snake_case_ : str = size if size is not None else {"height": 20, "width": 20} snake_case_ : Dict = parent snake_case_ : List[str] = batch_size snake_case_ : Any = num_channels snake_case_ : str = image_size snake_case_ : Optional[Any] = min_resolution snake_case_ : List[str] = max_resolution snake_case_ : Union[str, Any] = size snake_case_ : Any = do_normalize snake_case_ : Any = do_convert_rgb snake_case_ : List[Any] = [512, 1024, 2048, 4096] snake_case_ : Tuple = patch_size if patch_size is not None else {"height": 16, "width": 16} def _lowerCAmelCase ( self ) -> Any: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : List[Any] = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" snake_case_ : List[str] = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[Any] = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Optional[int] = PixaStructImageProcessingTester(self ) @property def _lowerCAmelCase ( self ) -> int: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_convert_rgb" ) ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : List[str] = self.image_processor_tester.prepare_dummy_image() snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) snake_case_ : List[str] = 2048 snake_case_ : Union[str, Any] = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def _lowerCAmelCase ( self ) -> List[str]: # Initialize image_processor snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case_ : Union[str, Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Any = image_processor( _SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self ) -> List[Any]: # Initialize image_processor snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case_ : str = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 snake_case_ : int = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_SCREAMING_SNAKE_CASE ): snake_case_ : List[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches snake_case_ : Any = "Hello" snake_case_ : Union[str, Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : List[Any] = image_processor( _SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE , header_text=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self ) -> Dict: # Initialize image_processor snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , numpify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , np.ndarray ) snake_case_ : Any = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : str = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : Union[str, Any] = image_processor( _SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def _lowerCAmelCase ( self ) -> List[Any]: # Initialize image_processor snake_case_ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE , torchify=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case_ : List[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Any = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : str = image_processor( _SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : int = PixaStructImageProcessor if is_vision_available() else None def _lowerCAmelCase ( self ) -> int: snake_case_ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4 ) snake_case_ : Optional[Any] = 3 @property def _lowerCAmelCase ( self ) -> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_normalize" ) ) self.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , "do_convert_rgb" ) ) def _lowerCAmelCase ( self ) -> str: # Initialize image_processor snake_case_ : str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(_SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case_ : Tuple = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input snake_case_ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched snake_case_ : int = image_processor( _SCREAMING_SNAKE_CASE , return_tensors="pt" , max_patches=_SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
712
def lowerCAmelCase__ ( _a : int ): snake_case_ : str = 1 for i in range(1 , num + 1 ): fact *= i return fact def lowerCAmelCase__ ( _a : int ): snake_case_ : List[str] = 0 while number > 0: snake_case_ : Dict = number % 10 sum_of_digits += last_digit snake_case_ : List[Any] = number // 10 # Removing the last_digit from the given number return sum_of_digits def lowerCAmelCase__ ( _a : int = 1_00 ): snake_case_ : Optional[Any] = factorial(_a ) snake_case_ : Optional[int] = split_and_add(_a ) return result if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
114
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase_ = TypeVar("KEY") UpperCamelCase_ = TypeVar("VAL") @dataclass(frozen=__UpperCAmelCase , slots=__UpperCAmelCase ) class a ( Generic[KEY, VAL] ): lowercase_ : KEY lowercase_ : VAL class a ( _Item ): def __init__( self : Optional[Any] ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) def __bool__( self : str ): """simple docstring""" return False UpperCamelCase_ = _DeletedItem() class a ( MutableMapping[KEY, VAL] ): def __init__( self : int , snake_case__ : int = 8 , snake_case__ : float = 0.7_5 ): """simple docstring""" __lowerCAmelCase = initial_block_size __lowerCAmelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __lowerCAmelCase = capacity_factor __lowerCAmelCase = 0 def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : KEY ): """simple docstring""" return hash(snake_case__ ) % len(self._buckets ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : int ): """simple docstring""" return (ind + 1) % len(self._buckets ) def UpperCAmelCase__ ( self : Dict , snake_case__ : int , snake_case__ : KEY , snake_case__ : VAL ): """simple docstring""" __lowerCAmelCase = self._buckets[ind] if not stored: __lowerCAmelCase = _Item(snake_case__ , snake_case__ ) self._len += 1 return True elif stored.key == key: __lowerCAmelCase = _Item(snake_case__ , snake_case__ ) return True else: return False def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" if len(self._buckets ) <= self._initial_block_size: return False __lowerCAmelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase__ ( self : Any , snake_case__ : int ): """simple docstring""" __lowerCAmelCase = self._buckets __lowerCAmelCase = [None] * new_size __lowerCAmelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : KEY ): """simple docstring""" __lowerCAmelCase = self._get_bucket_index(snake_case__ ) for _ in range(len(self._buckets ) ): yield ind __lowerCAmelCase = self._get_next_ind(snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : KEY , snake_case__ : VAL ): """simple docstring""" for ind in self._iterate_buckets(snake_case__ ): if self._try_set(snake_case__ , snake_case__ , snake_case__ ): break def __setitem__( self : Optional[Any] , snake_case__ : KEY , snake_case__ : VAL ): """simple docstring""" if self._is_full(): self._size_up() self._add_item(snake_case__ , snake_case__ ) def __delitem__( self : List[str] , snake_case__ : KEY ): """simple docstring""" for ind in self._iterate_buckets(snake_case__ ): __lowerCAmelCase = self._buckets[ind] if item is None: raise KeyError(snake_case__ ) if item is _deleted: continue if item.key == key: __lowerCAmelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Union[str, Any] , snake_case__ : KEY ): """simple docstring""" for ind in self._iterate_buckets(snake_case__ ): __lowerCAmelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(snake_case__ ) def __len__( self : Union[str, Any] ): """simple docstring""" return self._len def __iter__( self : Tuple ): """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : List[Any] ): """simple docstring""" __lowerCAmelCase = " ,".join( F"{item.key}: {item.val}" for item in self._buckets if item ) return F"HashMap({val_string})"
611
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) UpperCamelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _UpperCAmelCase ( UpperCamelCase: str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __lowerCAmelCase = model_type_to_module_name(UpperCamelCase ) __lowerCAmelCase = importlib.import_module(F".{module_name}" , "transformers.models" ) try: return getattr(UpperCamelCase , UpperCamelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(UpperCamelCase , "__name__" , UpperCamelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __lowerCAmelCase = importlib.import_module("transformers" ) if hasattr(UpperCamelCase , UpperCamelCase ): return getattr(UpperCamelCase , UpperCamelCase ) return None def _UpperCAmelCase ( UpperCamelCase: Union[str, os.PathLike] , UpperCamelCase: Optional[Union[str, os.PathLike]] = None , UpperCamelCase: bool = False , UpperCamelCase: bool = False , UpperCamelCase: Optional[Dict[str, str]] = None , UpperCamelCase: Optional[Union[bool, str]] = None , UpperCamelCase: Optional[str] = None , UpperCamelCase: bool = False , **UpperCamelCase: List[Any] , ): """simple docstring""" __lowerCAmelCase = get_file_from_repo( UpperCamelCase , UpperCamelCase , cache_dir=UpperCamelCase , force_download=UpperCamelCase , resume_download=UpperCamelCase , proxies=UpperCamelCase , use_auth_token=UpperCamelCase , revision=UpperCamelCase , local_files_only=UpperCamelCase , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(UpperCamelCase , encoding="utf-8" ) as reader: return json.load(UpperCamelCase ) class a : def __init__( self : Optional[Any] ): """simple docstring""" raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(snake_case__ ) def UpperCAmelCase__ ( cls : Tuple , snake_case__ : Dict , **snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = kwargs.pop("config" , snake_case__ ) __lowerCAmelCase = kwargs.pop("trust_remote_code" , snake_case__ ) __lowerCAmelCase = True __lowerCAmelCase , __lowerCAmelCase = ImageProcessingMixin.get_image_processor_dict(snake_case__ , **snake_case__ ) __lowerCAmelCase = config_dict.get("image_processor_type" , snake_case__ ) __lowerCAmelCase = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __lowerCAmelCase = config_dict.pop("feature_extractor_type" , snake_case__ ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) __lowerCAmelCase = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): __lowerCAmelCase = config_dict["auto_map"]["AutoFeatureExtractor"] __lowerCAmelCase = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(snake_case__ , snake_case__ ): __lowerCAmelCase = AutoConfig.from_pretrained(snake_case__ , **snake_case__ ) # It could be in `config.image_processor_type`` __lowerCAmelCase = getattr(snake_case__ , "image_processor_type" , snake_case__ ) if hasattr(snake_case__ , "auto_map" ) and "AutoImageProcessor" in config.auto_map: __lowerCAmelCase = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: __lowerCAmelCase = image_processor_class_from_name(snake_case__ ) __lowerCAmelCase = image_processor_auto_map is not None __lowerCAmelCase = image_processor_class is not None or type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING __lowerCAmelCase = resolve_trust_remote_code( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) if has_remote_code and trust_remote_code: __lowerCAmelCase = get_class_from_dynamic_module( snake_case__ , snake_case__ , **snake_case__ ) __lowerCAmelCase = kwargs.pop("code_revision" , snake_case__ ) if os.path.isdir(snake_case__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(snake_case__ , **snake_case__ ) elif image_processor_class is not None: return image_processor_class.from_dict(snake_case__ , **snake_case__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(snake_case__ ) in IMAGE_PROCESSOR_MAPPING: __lowerCAmelCase = IMAGE_PROCESSOR_MAPPING[type(snake_case__ )] return image_processor_class.from_dict(snake_case__ , **snake_case__ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCAmelCase__ ( snake_case__ : str , snake_case__ : List[str] ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(snake_case__ , snake_case__ )
611
1
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :int , _SCREAMING_SNAKE_CASE :int ): return 1 if input_a == input_a else 0 def __lowercase (): assert xnor_gate(0 , 0 ) == 1 assert xnor_gate(0 , 1 ) == 0 assert xnor_gate(1 , 0 ) == 0 assert xnor_gate(1 , 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( _lowercase ): __magic_name__ : Optional[Any] = "nllb-moe" __magic_name__ : Optional[Any] = ["past_key_values"] __magic_name__ : Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__(self : int, __UpperCAmelCase : Tuple=128112, __UpperCAmelCase : Any=1024, __UpperCAmelCase : Optional[Any]=12, __UpperCAmelCase : Optional[int]=4096, __UpperCAmelCase : Any=16, __UpperCAmelCase : Any=12, __UpperCAmelCase : Optional[Any]=4096, __UpperCAmelCase : Optional[int]=16, __UpperCAmelCase : List[Any]=0.05, __UpperCAmelCase : Dict=0.05, __UpperCAmelCase : Dict=True, __UpperCAmelCase : List[Any]=True, __UpperCAmelCase : Any="relu", __UpperCAmelCase : Union[str, Any]=1024, __UpperCAmelCase : Optional[int]=0.1, __UpperCAmelCase : Tuple=0.1, __UpperCAmelCase : List[Any]=0.0, __UpperCAmelCase : Optional[int]=0.02, __UpperCAmelCase : Tuple=2, __UpperCAmelCase : int=True, __UpperCAmelCase : int=False, __UpperCAmelCase : int="float32", __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : List[str]=128, __UpperCAmelCase : Dict=64, __UpperCAmelCase : Dict=4, __UpperCAmelCase : Optional[Any]=4, __UpperCAmelCase : Optional[Any]=0.001, __UpperCAmelCase : Optional[Any]=0.001, __UpperCAmelCase : Optional[Any]="all", __UpperCAmelCase : List[str]=False, __UpperCAmelCase : Dict=False, __UpperCAmelCase : Any=1.0, __UpperCAmelCase : Dict=0.2, __UpperCAmelCase : int=1, __UpperCAmelCase : Union[str, Any]=0, __UpperCAmelCase : Any=2, __UpperCAmelCase : Union[str, Any]=False, **__UpperCAmelCase : Dict, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : int = max_position_embeddings SCREAMING_SNAKE_CASE : Optional[int] = d_model SCREAMING_SNAKE_CASE : Dict = encoder_ffn_dim SCREAMING_SNAKE_CASE : int = encoder_layers SCREAMING_SNAKE_CASE : str = encoder_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = decoder_ffn_dim SCREAMING_SNAKE_CASE : str = decoder_layers SCREAMING_SNAKE_CASE : Dict = decoder_attention_heads SCREAMING_SNAKE_CASE : Dict = dropout SCREAMING_SNAKE_CASE : Optional[Any] = attention_dropout SCREAMING_SNAKE_CASE : Dict = activation_dropout SCREAMING_SNAKE_CASE : List[str] = activation_function SCREAMING_SNAKE_CASE : Union[str, Any] = init_std SCREAMING_SNAKE_CASE : Any = encoder_layerdrop SCREAMING_SNAKE_CASE : Optional[int] = decoder_layerdrop SCREAMING_SNAKE_CASE : Dict = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layers SCREAMING_SNAKE_CASE : Optional[Any] = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE : List[str] = router_z_loss_coef SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef SCREAMING_SNAKE_CASE : int = decoder_sparse_step SCREAMING_SNAKE_CASE : Union[str, Any] = encoder_sparse_step SCREAMING_SNAKE_CASE : Union[str, Any] = num_experts SCREAMING_SNAKE_CASE : List[Any] = expert_capacity SCREAMING_SNAKE_CASE : Optional[Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = router_dtype SCREAMING_SNAKE_CASE : int = router_ignore_padding_tokens SCREAMING_SNAKE_CASE : Dict = batch_prioritized_routing SCREAMING_SNAKE_CASE : Dict = second_expert_policy SCREAMING_SNAKE_CASE : Tuple = normalize_router_prob_before_dropping SCREAMING_SNAKE_CASE : List[str] = moe_eval_capacity_token_fraction SCREAMING_SNAKE_CASE : List[Any] = moe_token_dropout SCREAMING_SNAKE_CASE : List[Any] = output_router_logits super().__init__( pad_token_id=__UpperCAmelCase, bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, is_encoder_decoder=__UpperCAmelCase, decoder_start_token_id=__UpperCAmelCase, **__UpperCAmelCase, )
355
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} UpperCamelCase = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } UpperCamelCase = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def _A ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any ): """simple docstring""" with open(lowerCAmelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = json.loads(f.read() ) lowerCAmelCase__ = collections.OrderedDict() lowerCAmelCase__ = collections.OrderedDict() lowerCAmelCase__ = collections.OrderedDict() with open(lowerCAmelCase_ , "r" , encoding="utf-8" ) as f: lowerCAmelCase__ = f.readlines() lowerCAmelCase__ = [[t.rstrip("\n" )] if (t == ''',''' or ''',''' not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ = b lowerCAmelCase__ = idx for wd in b: lowerCAmelCase__ = idx return vocab, raw_vocab, ids_to_tokens, emoji class __lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<|startoftext|>" , SCREAMING_SNAKE_CASE__ : int="<|endoftext|>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE__ : Any , ) -> Any: super().__init__( unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , do_clean_text=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained' " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError( f'Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google' " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCAmelCase__ = do_clean_text lowerCAmelCase__ = load_vocab_and_emoji(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def a ( self : str ) -> Tuple: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def a ( self : Union[str, Any] ) -> Dict: return dict(self.raw_vocab , **self.added_tokens_encoder ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: return self.subword_tokenizer.tokenize(SCREAMING_SNAKE_CASE__ , clean=self.do_clean_text ) def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: return self.vocab.get(SCREAMING_SNAKE_CASE__ , self.vocab.get(self.unk_token ) ) def a ( self : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: return self.subword_tokenizer.convert_id_to_token(SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> Dict: lowerCAmelCase__ = ''''''.join(SCREAMING_SNAKE_CASE__ ).strip() return out_string def a ( self : str , SCREAMING_SNAKE_CASE__ : "Conversation" ) -> List[int]: lowerCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE__ , add_special_tokens=SCREAMING_SNAKE_CASE__ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length: lowerCAmelCase__ = input_ids[-self.model_max_length :] return input_ids def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: lowerCAmelCase__ = 0 if os.path.isdir(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCAmelCase__ = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase__ = token_index writer.write(",".join(SCREAMING_SNAKE_CASE__ ) + "\n" ) index += 1 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , SCREAMING_SNAKE_CASE__ ) return vocab_file, emoji_file class __lowerCamelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[int]: lowerCAmelCase__ = vocab # same as swe lowerCAmelCase__ = ids_to_tokens # same as bpe lowerCAmelCase__ = emoji lowerCAmelCase__ = np.max([len(SCREAMING_SNAKE_CASE__ ) for w in self.vocab.keys()] ) lowerCAmelCase__ = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCAmelCase__ = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCAmelCase__ = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCAmelCase__ = re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase__ = re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCAmelCase__ = re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCAmelCase__ = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' lowerCAmelCase__ = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' lowerCAmelCase__ = str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : str ) -> Optional[int]: return len(self.ids_to_tokens ) def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase__ = self.content_repattera.sub("<URL>" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.content_repattera.sub("<EMAIL>" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.content_repattera.sub("<TEL>" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.content_repattera.sub("<DATE>" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.content_repattera.sub("<DATE>" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.content_repattera.sub("<PRICE>" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCAmelCase__ = content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int=False ) -> Optional[Any]: lowerCAmelCase__ = text.replace(" " , "<SP>" ) lowerCAmelCase__ = text.replace(" " , "<SP>" ) lowerCAmelCase__ = text.replace("\r\n" , "<BR>" ) lowerCAmelCase__ = text.replace("\n" , "<BR>" ) lowerCAmelCase__ = text.replace("\r" , "<BR>" ) lowerCAmelCase__ = text.replace("\t" , "<TAB>" ) lowerCAmelCase__ = text.replace("—" , "ー" ) lowerCAmelCase__ = text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCAmelCase__ = text.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if clean: lowerCAmelCase__ = self.clean_text(SCREAMING_SNAKE_CASE__ ) def check_simbol(SCREAMING_SNAKE_CASE__ : Dict ): lowerCAmelCase__ = x.encode() if len(SCREAMING_SNAKE_CASE__ ) == 1 and len(SCREAMING_SNAKE_CASE__ ) == 2: lowerCAmelCase__ = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(SCREAMING_SNAKE_CASE__ : List[Any] ): lowerCAmelCase__ = x.encode() if len(SCREAMING_SNAKE_CASE__ ) == 1 and len(SCREAMING_SNAKE_CASE__ ) == 3: lowerCAmelCase__ = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False lowerCAmelCase__ = 0 lowerCAmelCase__ = [] while pos < len(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = min(len(SCREAMING_SNAKE_CASE__ ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 lowerCAmelCase__ = [] # (token_id, token, pos) for e in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): lowerCAmelCase__ = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(SCREAMING_SNAKE_CASE__ ) > 2: lowerCAmelCase__ = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(SCREAMING_SNAKE_CASE__ ) > 0: # the smallest token_id is adopted lowerCAmelCase__ = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x[0] )[0] result.append(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = e else: lowerCAmelCase__ = pos + 1 lowerCAmelCase__ = text[pos:end] if check_simbol(SCREAMING_SNAKE_CASE__ ): result.append("<KIGOU>" ) elif checkuae(SCREAMING_SNAKE_CASE__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCAmelCase__ = end return result def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any]="\n" ) -> Optional[Any]: lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(SCREAMING_SNAKE_CASE__ ) > 0: words.append(bytearray(SCREAMING_SNAKE_CASE__ ).decode("utf-8" , errors="replace" ) ) lowerCAmelCase__ = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(SCREAMING_SNAKE_CASE__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: words.append(bytearray(SCREAMING_SNAKE_CASE__ ).decode("utf-8" , errors="replace" ) ) lowerCAmelCase__ = ''''''.join(SCREAMING_SNAKE_CASE__ ) return text
61
from __future__ import annotations from collections.abc import Callable _A : Tuple = list[list[float | int]] def _a ( UpperCAmelCase , UpperCAmelCase ) -> Matrix: """simple docstring""" lowerCamelCase__ : int = len(UpperCAmelCase ) lowerCamelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(UpperCAmelCase )] lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float for row in range(UpperCAmelCase ): for col in range(UpperCAmelCase ): lowerCamelCase__ : Union[str, Any] = matrix[row][col] lowerCamelCase__ : Union[str, Any] = vector[row][0] lowerCamelCase__ : str = 0 lowerCamelCase__ : Optional[Any] = 0 while row < size and col < size: # pivoting lowerCamelCase__ : Dict = max((abs(augmented[rowa][col] ), rowa) for rowa in range(UpperCAmelCase , UpperCAmelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCamelCase__ , lowerCamelCase__ : List[str] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , UpperCAmelCase ): lowerCamelCase__ : str = augmented[rowa][col] / augmented[row][col] lowerCamelCase__ : Any = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , UpperCAmelCase ): for row in range(UpperCAmelCase ): lowerCamelCase__ : Tuple = augmented[row][col] / augmented[col][col] for cola in range(UpperCAmelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(UpperCAmelCase ) ] def _a ( UpperCAmelCase ) -> Callable[[int], int]: """simple docstring""" lowerCamelCase__ : int = len(UpperCAmelCase ) lowerCamelCase__ : Matrix = [[0 for _ in range(UpperCAmelCase )] for _ in range(UpperCAmelCase )] lowerCamelCase__ : Matrix = [[0] for _ in range(UpperCAmelCase )] lowerCamelCase__ : Matrix lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for x_val, y_val in enumerate(UpperCAmelCase ): for col in range(UpperCAmelCase ): lowerCamelCase__ : Optional[int] = (x_val + 1) ** (size - col - 1) lowerCamelCase__ : List[Any] = y_val lowerCamelCase__ : Tuple = solve(UpperCAmelCase , UpperCAmelCase ) def interpolated_func(UpperCAmelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(UpperCAmelCase ) ) return interpolated_func def _a ( UpperCAmelCase ) -> int: """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def _a ( UpperCAmelCase = question_function , UpperCAmelCase = 10 ) -> int: """simple docstring""" lowerCamelCase__ : list[int] = [func(UpperCAmelCase ) for x_val in range(1 , order + 1 )] lowerCamelCase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCamelCase__ : int = 0 lowerCamelCase__ : Callable[[int], int] lowerCamelCase__ : int for poly in polynomials: lowerCamelCase__ : Any = 1 while func(UpperCAmelCase ) == poly(UpperCAmelCase ): x_val += 1 ret += poly(UpperCAmelCase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
315
0
'''simple docstring''' from math import factorial _lowerCAmelCase = {str(d): factorial(d) for d in range(10)} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(snake_case_ ) ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case_ ) if sum_of_digit_factorial(snake_case_ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
719
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) def _SCREAMING_SNAKE_CASE ( *UpperCamelCase , **UpperCamelCase ): """simple docstring""" requires_backends(UpperCamelCase , ["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> str: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""torch"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Dict = ['''torch'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(self ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""torch"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""torch"""] )
160
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """bert-base-uncased""": """https://huggingface.co/bert-base-uncased/resolve/main/config.json""", """bert-large-uncased""": """https://huggingface.co/bert-large-uncased/resolve/main/config.json""", """bert-base-cased""": """https://huggingface.co/bert-base-cased/resolve/main/config.json""", """bert-large-cased""": """https://huggingface.co/bert-large-cased/resolve/main/config.json""", """bert-base-multilingual-uncased""": """https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json""", """bert-base-multilingual-cased""": """https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json""", """bert-base-chinese""": """https://huggingface.co/bert-base-chinese/resolve/main/config.json""", """bert-base-german-cased""": """https://huggingface.co/bert-base-german-cased/resolve/main/config.json""", """bert-large-uncased-whole-word-masking""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking""": ( """https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json""" ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( """https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json""" ), """bert-base-cased-finetuned-mrpc""": """https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json""", """bert-base-german-dbmdz-cased""": """https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json""", """bert-base-german-dbmdz-uncased""": """https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json""", """cl-tohoku/bert-base-japanese""": """https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json""", """cl-tohoku/bert-base-japanese-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json""" ), """cl-tohoku/bert-base-japanese-char-whole-word-masking""": ( """https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-cased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json""" ), """TurkuNLP/bert-base-finnish-uncased-v1""": ( """https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json""" ), """wietsedv/bert-base-dutch-cased""": """https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json""", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''bert''' def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[int]=30522 , _UpperCAmelCase : Tuple=768 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : int=12 , _UpperCAmelCase : Optional[Any]=3072 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : int=512 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Optional[Any]=0.02 , _UpperCAmelCase : int=1e-12 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : List[str]="absolute" , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : str , ) -> int: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def lowercase__ ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
82
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase ( a_ ): """simple docstring""" A__ : str = ['image_processor', 'tokenizer'] A__ : Dict = 'CLIPImageProcessor' A__ : str = ('XLMRobertaTokenizer', 'XLMRobertaTokenizerFast') def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ) -> List[Any]: _UpperCamelCase : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _snake_case , ) _UpperCamelCase : Optional[Any] = kwargs.pop('''feature_extractor''' ) _UpperCamelCase : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_snake_case , _snake_case ) def __call__( self , _snake_case=None , _snake_case=None , _snake_case=None , **_snake_case ) -> Dict: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _UpperCamelCase : List[str] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: _UpperCamelCase : str = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: _UpperCamelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Tuple: return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def _lowercase ( self , *_snake_case , **_snake_case ) -> Any: return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def _lowercase ( self ) -> int: _UpperCamelCase : Optional[int] = self.tokenizer.model_input_names _UpperCamelCase : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
683
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _snake_case ( lowercase__ : str = 3 ) -> qiskit.result.counts.Counts: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(SCREAMING_SNAKE_CASE_ ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 1_0: raise ValueError("""number of qubits too large to simulate(>10).""" ) lowerCAmelCase_ :Any = QuantumRegister(SCREAMING_SNAKE_CASE_ , """qr""" ) lowerCAmelCase_ :List[Any] = ClassicalRegister(SCREAMING_SNAKE_CASE_ , """cr""" ) lowerCAmelCase_ :Optional[int] = QuantumCircuit(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ :Optional[Any] = number_of_qubits for i in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(SCREAMING_SNAKE_CASE_ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(SCREAMING_SNAKE_CASE_ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # simulate with 10000 shots lowerCAmelCase_ :str = Aer.get_backend("""qasm_simulator""" ) lowerCAmelCase_ :List[Any] = execute(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shots=1_0_0_0_0 ) return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": print( F"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
703
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = ["image_processor", "tokenizer"] UpperCAmelCase_ :int = "OwlViTImageProcessor" UpperCAmelCase_ :List[str] = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __A=None , __A=None , **__A ) -> List[str]: lowerCAmelCase_ :Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) lowerCAmelCase_ :Any = kwargs.pop("""feature_extractor""" ) lowerCAmelCase_ :Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self , __A=None , __A=None , __A=None , __A="max_length" , __A="np" , **__A ) -> Any: if text is None and query_images is None and images is None: raise ValueError( """You have to specify at least one text or query image or image. All three cannot be none.""" ) if text is not None: if isinstance(__A , __A ) or (isinstance(__A , __A ) and not isinstance(text[0] , __A )): lowerCAmelCase_ :int = [self.tokenizer(__A , padding=__A , return_tensors=__A , **__A )] elif isinstance(__A , __A ) and isinstance(text[0] , __A ): lowerCAmelCase_ :Optional[Any] = [] # Maximum number of queries across batch lowerCAmelCase_ :List[str] = max([len(__A ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__A ) != max_num_queries: lowerCAmelCase_ :str = t + [""" """] * (max_num_queries - len(__A )) lowerCAmelCase_ :Dict = self.tokenizer(__A , padding=__A , return_tensors=__A , **__A ) encodings.append(__A ) else: raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" ) if return_tensors == "np": lowerCAmelCase_ :Dict = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) lowerCAmelCase_ :List[str] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase_ :str = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) lowerCAmelCase_ :Optional[int] = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase_ :List[str] = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 ) lowerCAmelCase_ :Optional[int] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase_ :Tuple = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 ) lowerCAmelCase_ :List[Any] = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 ) else: raise ValueError("""Target return tensor type could not be returned""" ) lowerCAmelCase_ :int = BatchEncoding() lowerCAmelCase_ :List[str] = input_ids lowerCAmelCase_ :Dict = attention_mask if query_images is not None: lowerCAmelCase_ :Optional[int] = BatchEncoding() lowerCAmelCase_ :str = self.image_processor( __A , return_tensors=__A , **__A ).pixel_values lowerCAmelCase_ :int = query_pixel_values if images is not None: lowerCAmelCase_ :int = self.image_processor(__A , return_tensors=__A , **__A ) if text is not None and images is not None: lowerCAmelCase_ :str = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase_ :Dict = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> Any: return self.image_processor.post_process(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> int: return self.image_processor.post_process_object_detection(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> List[Any]: return self.image_processor.post_process_image_guided_detection(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> int: return self.tokenizer.batch_decode(*__A , **__A ) def __lowerCAmelCase ( self , *__A , **__A ) -> Dict: return self.tokenizer.decode(*__A , **__A ) @property def __lowerCAmelCase ( self ) -> List[str]: warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def __lowerCAmelCase ( self ) -> Optional[int]: warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
256
0
from math import sqrt def _a ( lowercase__ : int = 1_00_00_00 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : int = 0 SCREAMING_SNAKE_CASE__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
85
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : str = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : List[Any] = True _SCREAMING_SNAKE_CASE : str = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : int = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : str = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer() _lowercase : Any = "I was born in 92000, and this is falsé." _lowercase : Dict = tokenizer.tokenize(_UpperCamelCase ) _lowercase : List[Any] = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : int = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = self.get_rust_tokenizer() _lowercase : Optional[Any] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : int = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : int = "This is a simple input" _lowercase : Tuple = ["This is a simple input 1", "This is a simple input 2"] _lowercase : str = ("This is a simple input", "This is a pair") _lowercase : int = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Any = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : Dict = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : List[Any] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Optional[Any] = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : int = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : Tuple = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : int = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : int = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : Optional[int] = encoded_sequence["input_ids"].shape _lowercase : List[Any] = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Dict = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
245
0
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed lowerCAmelCase__ : Tuple = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(F"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) lowerCAmelCase__ : List[str] = 'sshleifer/student_marian_en_ro_6_1' lowerCAmelCase__ : Optional[int] = 'sshleifer/tiny-mbart' @require_torch class snake_case ( __UpperCAmelCase ): """simple docstring""" def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : int=True ,): UpperCAmelCase__ = self.run_trainer( eval_steps=1 ,max_len=12 ,model_name=lowerCamelCase__ ,num_train_epochs=1 ,distributed=lowerCamelCase__ ,extra_args_str=lowerCamelCase__ ,predict_with_generate=lowerCamelCase__ ,do_train=lowerCamelCase__ ,do_eval=lowerCamelCase__ ,do_predict=lowerCamelCase__ ,) UpperCAmelCase__ = TrainerState.load_from_json(os.path.join(lowerCamelCase__ ,'trainer_state.json' ) ).log_history if not do_eval: return UpperCAmelCase__ = [log for log in logs if 'eval_loss' in log.keys()] UpperCAmelCase__ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase__ = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] ,lowerCamelCase__ ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __lowerCAmelCase ( self : Any ): self.run_seqaseq_quick() @require_torch_multi_gpu def __lowerCAmelCase ( self : Tuple ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ) @require_torch_multi_gpu def __lowerCAmelCase ( self : int ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self : Union[str, Any] ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self : Optional[int] ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self : Tuple ): self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp zero_dp_2' ,predict_with_generate=lowerCamelCase__ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def __lowerCAmelCase ( self : Dict ): self.run_seqaseq_quick( distributed=lowerCamelCase__ ,extra_args_str='--sharded_ddp zero_dp_2 --fp16' ,predict_with_generate=lowerCamelCase__ ) @require_apex @require_torch_gpu def __lowerCAmelCase ( self : int ): # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=lowerCamelCase__ ,extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def __lowerCAmelCase ( self : Any ,lowerCamelCase__ : Any ): # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout UpperCAmelCase__ = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } UpperCAmelCase__ = experiments[experiment_id] UpperCAmelCase__ = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} UpperCAmelCase__ = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**lowerCamelCase__ ,extra_args_str=data['extra_args_str'] ) UpperCAmelCase__ = len(re.findall(lowerCamelCase__ ,cl.err ) ) self.assertEqual(lowerCamelCase__ ,data['n_matches'] ) @slow def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = self.run_trainer( eval_steps=2 ,max_len=128 ,model_name=lowerCamelCase__ ,learning_rate=3e-4 ,num_train_epochs=10 ,distributed=lowerCamelCase__ ,) # Check metrics UpperCAmelCase__ = TrainerState.load_from_json(os.path.join(lowerCamelCase__ ,'trainer_state.json' ) ).log_history UpperCAmelCase__ = [log for log in logs if 'eval_loss' in log.keys()] UpperCAmelCase__ = eval_metrics[0] UpperCAmelCase__ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] ,lowerCamelCase__ ) # test if do_predict saves generations and metrics UpperCAmelCase__ = os.listdir(lowerCamelCase__ ) UpperCAmelCase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __lowerCAmelCase ( self : Tuple ): from transformers.training_args import OptimizerNames def train_and_return_metrics(lowerCamelCase__ : str ) -> Tuple[int, float]: UpperCAmelCase__ = '--skip_memory_metrics 0' UpperCAmelCase__ = self.run_trainer( max_len=128 ,model_name=lowerCamelCase__ ,learning_rate=3e-4 ,num_train_epochs=1 ,optim=lowerCamelCase__ ,distributed=lowerCamelCase__ ,extra_args_str=lowerCamelCase__ ,do_eval=lowerCamelCase__ ,do_predict=lowerCamelCase__ ,n_gpus_to_use=1 ,) # Check metrics UpperCAmelCase__ = TrainerState.load_from_json(Path(lowerCamelCase__ ,'trainer_state.json' ) ).log_history UpperCAmelCase__ = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**20 ) UpperCAmelCase__ = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**20 ) UpperCAmelCase__ = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase__ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase__ = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase__ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase__ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase__ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( lowerCamelCase__ ,lowerCamelCase__ ,'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' ,) self.assertGreater( lowerCamelCase__ ,lowerCamelCase__ ,'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' ,) self.assertEqual( lowerCamelCase__ ,lowerCamelCase__ ,f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def __lowerCAmelCase ( self : int ,lowerCamelCase__ : int ,lowerCamelCase__ : str ,lowerCamelCase__ : int ,lowerCamelCase__ : float = 3e-3 ,lowerCamelCase__ : str = "adafactor" ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : str = None ,lowerCamelCase__ : int = 0 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : int = None ,): UpperCAmelCase__ = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' UpperCAmelCase__ = self.get_auto_remove_tmp_dir() UpperCAmelCase__ = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(lowerCamelCase__ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(lowerCamelCase__ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() UpperCAmelCase__ = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(lowerCamelCase__ )} '''.split() UpperCAmelCase__ = '\n --do_predict\n '.split() UpperCAmelCase__ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase__ = get_gpu_count() UpperCAmelCase__ = get_torch_dist_unique_port() UpperCAmelCase__ = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() UpperCAmelCase__ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(lowerCamelCase__ ,env=self.get_env() ) else: UpperCAmelCase__ = ['run_translation.py'] + args with patch.object(lowerCamelCase__ ,'argv' ,lowerCamelCase__ ): main() return output_dir
704
"""simple docstring""" import socket def a_ ( ): UpperCAmelCase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase__ = socket.gethostname() UpperCAmelCase__ = 1_2_3_1_2 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: UpperCAmelCase__ = sock.recv(1_0_2_4 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
632
0
import random from .binary_exp_mod import bin_exp_mod def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]=10_00 ) -> Optional[int]: if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd SCREAMING_SNAKE_CASE_ = n - 1 SCREAMING_SNAKE_CASE_ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) SCREAMING_SNAKE_CASE_ = 0 while count < prec: SCREAMING_SNAKE_CASE_ = random.randint(2 , n - 1 ) SCREAMING_SNAKE_CASE_ = bin_exp_mod(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if b != 1: SCREAMING_SNAKE_CASE_ = True for _ in range(__UpperCAmelCase ): if b == n - 1: SCREAMING_SNAKE_CASE_ = False break SCREAMING_SNAKE_CASE_ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": lowerCamelCase__ : str = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
31
def UpperCAmelCase_ ( __UpperCAmelCase : int ) -> int: assert isinstance(__UpperCAmelCase , __UpperCAmelCase ), f"The input value of [n={number}] is not an integer" if number == 1: return 2 elif number < 1: SCREAMING_SNAKE_CASE_ = f"The input value of [n={number}] has to be > 0" raise ValueError(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ = sylvester(number - 1 ) SCREAMING_SNAKE_CASE_ = num - 1 SCREAMING_SNAKE_CASE_ = num return lower * upper + 1 if __name__ == "__main__": print(f'''The 8th number in Sylvester\'s sequence: {sylvester(8)}''')
31
1
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : list , a : int ) -> Optional[Any]: """simple docstring""" # Checks if the entire collection has been sorted if len(a ) <= 1 or n <= 1: return insert_next(a , n - 1 ) rec_insertion_sort(a , n - 1 ) def _UpperCAmelCase ( a : list , a : int ) -> Dict: """simple docstring""" # Checks order between adjacent elements if index >= len(a ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowercase_ , lowercase_ : Tuple = ( collection[index], collection[index - 1], ) insert_next(a , index + 1 ) if __name__ == "__main__": A: str = input("Enter integers separated by spaces: ") A: list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
7
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : Tuple = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Dict: lowercase_ : Tuple = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> str: lowercase_ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Any: lowercase_ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[Any]: lowercase_ : List[Any] = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def lowerCamelCase__ ( self ) -> Optional[int]: lowercase_ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: # pass variant but use the non-variant filenames lowercase_ : Optional[int] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> Union[str, Any]: lowercase_ : int = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> int: lowercase_ : str = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] lowercase_ : str = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: # pass variant but use the non-variant filenames lowercase_ : List[Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] lowercase_ : Dict = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def lowerCamelCase__ ( self ) -> List[str]: lowercase_ : Union[str, Any] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] lowercase_ : Dict = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
7
1
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers lowercase = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __lowerCAmelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict=None ) -> Optional[int]: require_version(deps[pkg] , UpperCAmelCase__ )
272
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def __lowerCAmelCase ( UpperCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> int: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , torch.Tensor ): return image elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCamelCase_ , lowerCamelCase_ = image[0].size lowerCamelCase_ , lowerCamelCase_ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCamelCase_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 ) lowerCamelCase_ = np.array(UpperCAmelCase__ ).astype(np.floataa ) / 2_5_5.0 lowerCamelCase_ = image.transpose(0 , 3 , 1 , 2 ) lowerCamelCase_ = 2.0 * image - 1.0 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(image[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 ) return image def __lowerCAmelCase ( UpperCAmelCase__ : Union[List, PIL.Image.Image, torch.Tensor] ) -> Any: if isinstance(UpperCAmelCase__ , torch.Tensor ): return mask elif isinstance(UpperCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCamelCase_ , lowerCamelCase_ = mask[0].size lowerCamelCase_ , lowerCamelCase_ = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 lowerCamelCase_ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] lowerCamelCase_ = np.concatenate(UpperCAmelCase__ , axis=0 ) lowerCamelCase_ = mask.astype(np.floataa ) / 2_5_5.0 lowerCamelCase_ = 0 lowerCamelCase_ = 1 lowerCamelCase_ = torch.from_numpy(UpperCAmelCase__ ) elif isinstance(mask[0] , torch.Tensor ): lowerCamelCase_ = torch.cat(UpperCAmelCase__ , dim=0 ) return mask class __A( UpperCAmelCase ): SCREAMING_SNAKE_CASE = 42 SCREAMING_SNAKE_CASE = 42 def __init__( self : Optional[int] , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict ): super().__init__() self.register_modules(unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__( self : List[str] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : Union[torch.Tensor, PIL.Image.Image] , __UpperCamelCase : int = 2_5_0 , __UpperCamelCase : float = 0.0 , __UpperCamelCase : int = 1_0 , __UpperCamelCase : int = 1_0 , __UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __UpperCamelCase : Optional[str] = "pil" , __UpperCamelCase : bool = True , ): lowerCamelCase_ = image lowerCamelCase_ = _preprocess_image(__UpperCamelCase ) lowerCamelCase_ = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCamelCase_ = _preprocess_mask(__UpperCamelCase ) lowerCamelCase_ = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCamelCase_ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(__UpperCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__UpperCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) lowerCamelCase_ = original_image.shape lowerCamelCase_ = randn_tensor(__UpperCamelCase , generator=__UpperCamelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , self.device ) lowerCamelCase_ = eta lowerCamelCase_ = self.scheduler.timesteps[0] + 1 lowerCamelCase_ = generator[0] if isinstance(__UpperCamelCase , __UpperCamelCase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCamelCase_ = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute previous image: x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCamelCase_ = self.scheduler.undo_step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = t lowerCamelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) lowerCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
272
1
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A__ ( A : int , A : List[Any] , A : Optional[Any]): '''simple docstring''' UpperCamelCase : Optional[Any] = OmegaConf.load(A) UpperCamelCase : str = torch.load(A , map_location="cpu")["model"] UpperCamelCase : str = list(state_dict.keys()) # extract state_dict for VQVAE UpperCamelCase : Optional[int] = {} UpperCamelCase : Union[str, Any] = "first_stage_model." for key in keys: if key.startswith(A): UpperCamelCase : Optional[Any] = state_dict[key] # extract state_dict for UNetLDM UpperCamelCase : int = {} UpperCamelCase : Union[str, Any] = "model.diffusion_model." for key in keys: if key.startswith(A): UpperCamelCase : Union[str, Any] = state_dict[key] UpperCamelCase : Tuple = config.model.params.first_stage_config.params UpperCamelCase : List[Any] = config.model.params.unet_config.params UpperCamelCase : int = VQModel(**A).eval() vqvae.load_state_dict(A) UpperCamelCase : Tuple = UNetLDMModel(**A).eval() unet.load_state_dict(A) UpperCamelCase : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=A , ) UpperCamelCase : int = LDMPipeline(A , A , A) pipeline.save_pretrained(A) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) lowerCAmelCase_ = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
721
'''simple docstring''' class UpperCAmelCase_ : """simple docstring""" def __init__( self , lowerCamelCase ) -> Dict: '''simple docstring''' UpperCamelCase : Union[str, Any] = arr.split("," ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' UpperCamelCase : Optional[Any] = [int(self.array[0] )] * len(self.array ) UpperCamelCase : int = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): UpperCamelCase : Tuple = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) UpperCamelCase : Optional[Any] = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": lowerCAmelCase_ = input('please input some numbers:') lowerCAmelCase_ = SubArray(whole_array) lowerCAmelCase_ = array.solve_sub_array() print(('the results is:', re))
435
0
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() __snake_case :str =logging.get_logger(__name__) def lowerCamelCase_ ( lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> Optional[Any]: '''simple docstring''' A = original_name.split('.' )[0] A = key.split('.' ) A = int(key_list[key_list.index(lowerCAmelCase__ ) - 2] ) A = int(key_list[key_list.index(lowerCAmelCase__ ) - 1] ) A = orig_block_num - offset A = key.replace(F'''{orig_block_num}.{layer_num}.{original_name}''' , F'''block.{new_block_num}.{layer_num}.{new_name}''' ) return key def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' A = OrderedDict() A , A = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): A = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 A = key[: key.find('proj' )] A = key.replace(lowerCAmelCase__ , F'''patch_embeddings.{total_embed_found}.''' ) A = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: A = 'poolformer.encoder.' + key if "mlp.fc1" in key: A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'norm1' , 'before_norm' ) if "norm2" in key: A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: A = replace_key_with_offset(lowerCAmelCase__ , lowerCAmelCase__ , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: A = key.replace('head' , 'classifier' ) A = value return new_state_dict def lowerCamelCase_ ( ) -> Any: '''simple docstring''' A = 'http://images.cocodataset.org/val2017/000000039769.jpg' A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A = PoolFormerConfig() # set attributes based on model_name A = 'huggingface/label-files' A = model_name[-3:] A = 1000 A = 'imagenet-1k-id2label.json' A = (1, 1000) # set config attributes A = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset' ) , 'r' ) ) A = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} A = idalabel A = {v: k for k, v in idalabel.items()} if size == "s12": A = [2, 2, 6, 2] A = [64, 128, 320, 512] A = 4.0 A = 0.9 elif size == "s24": A = [4, 4, 12, 4] A = [64, 128, 320, 512] A = 4.0 A = 0.9 elif size == "s36": A = [6, 6, 18, 6] A = [64, 128, 320, 512] A = 4.0 A = 1E-6 A = 0.9 elif size == "m36": A = [6, 6, 18, 6] A = [96, 192, 384, 768] A = 4.0 A = 1E-6 A = 0.95 elif size == "m48": A = [8, 8, 24, 8] A = [96, 192, 384, 768] A = 4.0 A = 1E-6 A = 0.95 else: raise ValueError(F'''Size {size} not supported''' ) # load image processor A = PoolFormerImageProcessor(crop_pct=lowerCAmelCase__ ) # Prepare image A = prepare_img() A = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).pixel_values logger.info(F'''Converting model {model_name}...''' ) # load original state dict A = torch.load(lowerCAmelCase__ , map_location=torch.device('cpu' ) ) # rename keys A = rename_keys(lowerCAmelCase__ ) # create HuggingFace model and load state dict A = PoolFormerForImageClassification(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Define image processor A = PoolFormerImageProcessor(crop_pct=lowerCAmelCase__ ) A = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass A = model(lowerCAmelCase__ ) A = outputs.logits # define expected logit slices for different models if size == "s12": A = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": A = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": A = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": A = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": A = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(F'''Size {size} not supported''' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1E-2 ) # finally, save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __snake_case :Any =argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) __snake_case :Any =parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
106
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def snake_case_ (__A : Dict ) -> List[Any]: __lowerCAmelCase : Any = """huggingface/label-files""" __lowerCAmelCase : List[Any] = """imagenet-1k-id2label.json""" __lowerCAmelCase : Dict = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) __lowerCAmelCase : List[str] = {int(__A ): v for k, v in idalabel.items()} __lowerCAmelCase : Tuple = {v: k for k, v in idalabel.items()} __lowerCAmelCase : Tuple = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" __lowerCAmelCase : List[Any] = BitConfig( conv_layer=__A , num_labels=1_0_0_0 , idalabel=__A , labelaid=__A , ) return config def snake_case_ (__A : Dict ) -> str: if "stem.conv" in name: __lowerCAmelCase : List[str] = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: __lowerCAmelCase : str = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: __lowerCAmelCase : str = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): __lowerCAmelCase : List[Any] = """bit.""" + name if "bit" not in name and "classifier" not in name: __lowerCAmelCase : Optional[int] = """bit.encoder.""" + name return name def snake_case_ () -> Optional[int]: __lowerCAmelCase : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowerCAmelCase : str = Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def snake_case_ (__A : Optional[int] , __A : List[str] , __A : Any=False ) -> str: __lowerCAmelCase : int = get_config(__A ) # load original model from timm __lowerCAmelCase : Any = create_model(__A , pretrained=__A ) timm_model.eval() # load state_dict of original model __lowerCAmelCase : List[Any] = timm_model.state_dict() for key in state_dict.copy().keys(): __lowerCAmelCase : Dict = state_dict.pop(__A ) __lowerCAmelCase : str = val.squeeze() if """head""" in key else val # load HuggingFace model __lowerCAmelCase : Dict = BitForImageClassification(__A ) model.eval() model.load_state_dict(__A ) # create image processor __lowerCAmelCase : Optional[int] = create_transform(**resolve_data_config({} , model=__A ) ) __lowerCAmelCase : Optional[Any] = transform.transforms __lowerCAmelCase : List[Any] = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } __lowerCAmelCase : int = BitImageProcessor( do_resize=__A , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=__A , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=__A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) __lowerCAmelCase : str = prepare_img() __lowerCAmelCase : str = transform(__A ).unsqueeze(0 ) __lowerCAmelCase : Optional[int] = processor(__A , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(__A , __A ) # verify logits with torch.no_grad(): __lowerCAmelCase : Dict = model(__A ) __lowerCAmelCase : List[Any] = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) __lowerCAmelCase : List[Any] = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) processor.save_pretrained(__A ) if push_to_hub: print(f'''Pushing model {model_name} and processor to the hub''' ) model.push_to_hub(f'''ybelkada/{model_name}''' ) processor.push_to_hub(f'''ybelkada/{model_name}''' ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""resnetv2_50x1_bitm""", type=str, help="""Name of the BiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model to the hub.""", ) __UpperCAmelCase = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
651
0
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase: str = logging.get_logger(__name__) lowerCAmelCase: str = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase: Optional[int] = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase: List[str] = {'facebook/blenderbot-3B': 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCamelCase__ ( ): a : str = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) a : List[Any] = bs[:] a : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 a : Tuple = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowerCamelCase__ ( _A ): a : Union[str, Any] = set() a : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a : Optional[Any] = char return pairs class a__( lowerCamelCase__ ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ["""input_ids""", """attention_mask"""] def __init__( self : int , __snake_case : Dict , __snake_case : List[Any] , __snake_case : List[Any]="replace" , __snake_case : int="<s>" , __snake_case : Optional[int]="</s>" , __snake_case : Optional[int]="</s>" , __snake_case : Optional[int]="<s>" , __snake_case : Tuple="<unk>" , __snake_case : int="<pad>" , __snake_case : Any="<mask>" , __snake_case : List[str]=False , **__snake_case : List[str] , ): a : str = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else bos_token a : int = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else sep_token a : Any = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else cls_token a : Tuple = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token a : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a : Optional[Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token super().__init__( errors=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , cls_token=__snake_case , pad_token=__snake_case , mask_token=__snake_case , add_prefix_space=__snake_case , **__snake_case , ) with open(__snake_case , encoding='utf-8' ) as vocab_handle: a : Any = json.load(__snake_case ) a : Tuple = {v: k for k, v in self.encoder.items()} a : List[str] = errors # how to handle errors in decoding a : int = bytes_to_unicode() a : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__snake_case , encoding='utf-8' ) as merges_handle: a : Union[str, Any] = merges_handle.read().split('\n' )[1:-1] a : Dict = [tuple(merge.split() ) for merge in bpe_merges] a : int = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) a : Optional[int] = {} a : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a : Optional[int] = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self : Optional[Any] ): return len(self.encoder ) def lowercase_ ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase_ ( self : str , __snake_case : Union[str, Any] ): if token in self.cache: return self.cache[token] a : str = tuple(__snake_case ) a : Any = get_pairs(__snake_case ) if not pairs: return token while True: a : Dict = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break a , a : List[Any] = bigram a : Union[str, Any] = [] a : int = 0 while i < len(__snake_case ): try: a : str = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a : Dict = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a : List[Any] = tuple(__snake_case ) a : Tuple = new_word if len(__snake_case ) == 1: break else: a : Optional[int] = get_pairs(__snake_case ) a : List[str] = ' '.join(__snake_case ) a : Dict = word return word def lowercase_ ( self : Any , __snake_case : Dict ): a : str = [] for token in re.findall(self.pat , __snake_case ): a : List[Any] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__snake_case ).split(' ' ) ) return bpe_tokens def lowercase_ ( self : str , __snake_case : Any ): return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowercase_ ( self : Tuple , __snake_case : Optional[Any] ): return self.decoder.get(__snake_case ) def lowercase_ ( self : str , __snake_case : Optional[Any] ): a : Dict = ''.join(__snake_case ) a : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def lowercase_ ( self : Tuple , __snake_case : str , __snake_case : Optional[str] = None ): if not os.path.isdir(__snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a : List[str] = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a : Dict = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '\n' ) a : List[str] = 0 with open(__snake_case , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) a : Optional[Any] = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return vocab_file, merge_file def lowercase_ ( self : List[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None , __snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is None: return [1] + ([0] * len(__snake_case )) + [1] return [1] + ([0] * len(__snake_case )) + [1, 1] + ([0] * len(__snake_case )) + [1] def lowercase_ ( self : Optional[Any] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): a : str = [self.sep_token_id] a : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : List[str] , __snake_case : Optional[int] , __snake_case : List[str]=False , **__snake_case : int ): a : List[str] = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__snake_case ) > 0 and not text[0].isspace()): a : str = ' ' + text return (text, kwargs) def lowercase_ ( self : List[str] , __snake_case : List[int] , __snake_case : Optional[List[int]] = None ): return token_ids_a + [self.eos_token_id] def lowercase_ ( self : Tuple , __snake_case : "Conversation" ): a : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(__snake_case ) a : Dict = ' '.join(__snake_case ) a : Any = self.encode(__snake_case ) if len(__snake_case ) > self.model_max_length: a : int = input_ids[-self.model_max_length :] logger.warning(F"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
195
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py lowerCAmelCase: Tuple = 'src/transformers' lowerCAmelCase: Union[str, Any] = 'docs/source/en' lowerCAmelCase: Dict = '.' def lowerCamelCase__ ( _A , _A , _A ): with open(_A , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Optional[Any] = f.readlines() # Find the start prompt. a : Dict = 0 while not lines[start_index].startswith(_A ): start_index += 1 start_index += 1 a : Optional[Any] = start_index while not lines[end_index].startswith(_A ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | lowerCAmelCase: List[str] = 'Model|Encoder|Decoder|ForConditionalGeneration' # Regexes that match TF/Flax/PT model names. lowerCAmelCase: Dict = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCAmelCase: Any = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCAmelCase: Dict = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase: List[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase__ ( _A ): a : Tuple = re.finditer('.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)' , _A ) return [m.group(0 ) for m in matches] def lowerCamelCase__ ( _A , _A ): a : List[Any] = 2 if text == '✅' or text == '❌' else len(_A ) a : Optional[int] = (width - text_length) // 2 a : List[Any] = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase__ ( ): a : Union[str, Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES a : Union[str, Any] = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } a : Tuple = {name: config.replace('Config' , '' ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. a : int = collections.defaultdict(_A ) a : List[Any] = collections.defaultdict(_A ) a : List[Any] = collections.defaultdict(_A ) a : Union[str, Any] = collections.defaultdict(_A ) a : int = collections.defaultdict(_A ) # Let's lookup through all transformers object (once). for attr_name in dir(_A ): a : Optional[Any] = None if attr_name.endswith('Tokenizer' ): a : int = slow_tokenizers a : Any = attr_name[:-9] elif attr_name.endswith('TokenizerFast' ): a : str = fast_tokenizers a : List[Any] = attr_name[:-13] elif _re_tf_models.match(_A ) is not None: a : Optional[Any] = tf_models a : Dict = _re_tf_models.match(_A ).groups()[0] elif _re_flax_models.match(_A ) is not None: a : int = flax_models a : Optional[Any] = _re_flax_models.match(_A ).groups()[0] elif _re_pt_models.match(_A ) is not None: a : Tuple = pt_models a : Optional[int] = _re_pt_models.match(_A ).groups()[0] if lookup_dict is not None: while len(_A ) > 0: if attr_name in model_name_to_prefix.values(): a : Tuple = True break # Try again after removing the last word in the name a : Tuple = ''.join(camel_case_split(_A )[:-1] ) # Let's build that table! a : List[Any] = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) a : Tuple = ['Model', 'Tokenizer slow', 'Tokenizer fast', 'PyTorch support', 'TensorFlow support', 'Flax Support'] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). a : Tuple = [len(_A ) + 2 for c in columns] a : str = max([len(_A ) for name in model_names] ) + 2 # Build the table per se a : List[Any] = '|' + '|'.join([_center_text(_A , _A ) for c, w in zip(_A , _A )] ) + '|\n' # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([':' + '-' * (w - 2) + ':' for w in widths] ) + "|\n" a : str = {True: '✅', False: '❌'} for name in model_names: a : Any = model_name_to_prefix[name] a : Optional[Any] = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(_A , _A ) for l, w in zip(_A , _A )] ) + "|\n" return table def lowerCamelCase__ ( _A=False ): a , a , a , a : Tuple = _find_text_in_file( filename=os.path.join(_A , 'index.md' ) , start_prompt='<!--This table is updated automatically from the auto modules' , end_prompt='<!-- End table-->' , ) a : Optional[int] = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(_A , 'index.md' ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( 'The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.' ) if __name__ == "__main__": lowerCAmelCase: Dict = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase: Any = parser.parse_args() check_model_table(args.fix_and_overwrite)
195
1
'''simple docstring''' from collections.abc import Callable def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = a _UpperCamelCase : Tuple = b if function(UpperCAmelCase_ ) == 0: # one of the a or b is a root for the function return a elif function(UpperCAmelCase_ ) == 0: return b elif ( function(UpperCAmelCase_ ) * function(UpperCAmelCase_ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _UpperCamelCase : Union[str, Any] = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(UpperCAmelCase_ ) == 0: return mid elif function(UpperCAmelCase_ ) * function(UpperCAmelCase_ ) < 0: _UpperCamelCase : int = mid else: _UpperCamelCase : Dict = mid _UpperCamelCase : Optional[Any] = start + (end - start) / 2.0 return mid def A__ ( UpperCAmelCase_ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1000)) import doctest doctest.testmod()
195
'''simple docstring''' def UpperCamelCase_( snake_case : Dict , snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] ): '''simple docstring''' global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: snake_case_ = mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) else: snake_case_ = max( mf_knapsack(i - 1 , snake_case , snake_case , snake_case ) , mf_knapsack(i - 1 , snake_case , snake_case , j - wt[i - 1] ) + val[i - 1] , ) snake_case_ = val return f[i][j] def UpperCamelCase_( snake_case : Dict , snake_case : Tuple , snake_case : Dict , snake_case : int ): '''simple docstring''' snake_case_ = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: snake_case_ = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: snake_case_ = dp[i - 1][w_] return dp[n][w_], dp def UpperCamelCase_( snake_case : int , snake_case : list , snake_case : list ): '''simple docstring''' if not (isinstance(snake_case , (list, tuple) ) and isinstance(snake_case , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) snake_case_ = len(snake_case ) if num_items != len(snake_case ): snake_case_ = ( "The number of weights must be the same as the number of values.\n" f'But got {num_items} weights and {len(snake_case )} values' ) raise ValueError(snake_case ) for i in range(snake_case ): if not isinstance(wt[i] , snake_case ): snake_case_ = ( "All weights must be integers but got weight of " f'type {type(wt[i] )} at index {i}' ) raise TypeError(snake_case ) snake_case_ , snake_case_ = knapsack(snake_case , snake_case , snake_case , snake_case ) snake_case_ = set() _construct_solution(snake_case , snake_case , snake_case , snake_case , snake_case ) return optimal_val, example_optional_set def UpperCamelCase_( snake_case : list , snake_case : list , snake_case : int , snake_case : int , snake_case : set ): '''simple docstring''' if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(snake_case , snake_case , i - 1 , snake_case , snake_case ) else: optimal_set.add(snake_case ) _construct_solution(snake_case , snake_case , i - 1 , j - wt[i - 1] , snake_case ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = [3, 2, 4, 4] _SCREAMING_SNAKE_CASE : int = [4, 3, 2, 3] _SCREAMING_SNAKE_CASE : List[Any] = 4 _SCREAMING_SNAKE_CASE : List[Any] = 6 _SCREAMING_SNAKE_CASE : List[str] = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("optimal_value = ", optimal_solution) print("An optimal subset corresponding to the optimal value", optimal_subset)
400
0
from collections.abc import Iterable from typing import Generic, TypeVar _UpperCAmelCase : int = TypeVar("_T") class __lowerCAmelCase ( Generic[_T]): def __init__( self: Tuple , _lowerCAmelCase: Iterable[_T] | None = None ): lowercase :list[_T] = list(iterable or [] ) lowercase :list[_T] = [] def __len__( self: Dict ): return len(self._stacka ) + len(self._stacka ) def __repr__( self: Optional[int] ): return F"Queue({tuple(self._stacka[::-1] + self._stacka )})" def SCREAMING_SNAKE_CASE ( self: Any , _lowerCAmelCase: _T ): self._stacka.append(_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :Tuple = self._stacka.pop lowercase :Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("Queue is empty" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
704
def UpperCAmelCase__ ( lowerCamelCase ): return 10 - x * x def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase ): # Bolzano theory in order to find if there is a root between a and b if equation(lowerCamelCase ) * equation(lowerCamelCase ) >= 0: raise ValueError("Wrong space!" ) lowercase :Optional[int] = a while (b - a) >= 0.01: # Find middle point lowercase :Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(lowerCamelCase ) == 0.0: break # Decide the side to repeat the steps if equation(lowerCamelCase ) * equation(lowerCamelCase ) < 0: lowercase :Any = c else: lowercase :List[Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
453
0
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def lowercase ( lowerCAmelCase__ ): # getting number of pixels in the image lowerCamelCase_ , lowerCamelCase_ = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): lowerCamelCase_ = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image A_ = imread("""image_data/lena.jpg""", 1) # convert to its negative A_ = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
29
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a :Union[str, Any] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :str = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a :str = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
680
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask UpperCamelCase_ = logging.getLogger(__name__) class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self , _UpperCAmelCase=-1 ): # in NER datasets, the last column is usually reserved for NER label UpperCAmelCase__ : str = label_idx def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Union[str, Any] = mode.value UpperCAmelCase__ : List[Any] = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" ) UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : Union[str, Any] = [] with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: UpperCAmelCase__ : str = [] UpperCAmelCase__ : List[Any] = [] for line in f: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) guid_index += 1 UpperCAmelCase__ : List[Any] = [] UpperCAmelCase__ : Optional[Any] = [] else: UpperCAmelCase__ : List[Any] = line.split(''' ''' ) words.append(splits[0] ) if len(_UpperCAmelCase ) > 1: labels.append(splits[self.label_idx].replace('''\n''' , '''''' ) ) else: # Examples could have no label for mode = "test" labels.append('''O''' ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) return examples def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Any = 0 for line in test_input_reader: if line.startswith('''-DOCSTART-''' ) or line == "" or line == "\n": writer.write(_UpperCAmelCase ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase__ : List[Any] = line.split()[0] + ''' ''' + preds_list[example_id].pop(0 ) + '''\n''' writer.write(_UpperCAmelCase ) else: logger.warning('''Maximum sequence length exceeded: No prediction for \'%s\'.''' , line.split()[0] ) def lowerCamelCase ( self , _UpperCAmelCase ): if path: with open(_UpperCAmelCase , '''r''' ) as f: UpperCAmelCase__ : Union[str, Any] = f.read().splitlines() if "O" not in labels: UpperCAmelCase__ : Tuple = ['''O'''] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def __init__( self ): # in CONLL2003 dataset chunk column is second-to-last super().__init__(label_idx=-2 ) def lowerCamelCase ( self , _UpperCAmelCase ): if path: with open(_UpperCAmelCase , '''r''' ) as f: UpperCAmelCase__ : Union[str, Any] = f.read().splitlines() if "O" not in labels: UpperCAmelCase__ : Union[str, Any] = ['''O'''] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : int = mode.value UpperCAmelCase__ : str = os.path.join(_UpperCAmelCase , F"""{mode}.txt""" ) UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : Union[str, Any] = [] with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: for sentence in parse_incr(_UpperCAmelCase ): UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[int] = [] for token in sentence: words.append(token['''form'''] ) labels.append(token['''upos'''] ) assert len(_UpperCAmelCase ) == len(_UpperCAmelCase ) if words: examples.append(InputExample(guid=F"""{mode}-{guid_index}""" , words=_UpperCAmelCase , labels=_UpperCAmelCase ) ) guid_index += 1 return examples def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : Optional[Any] = 0 for sentence in parse_incr(_UpperCAmelCase ): UpperCAmelCase__ : str = preds_list[example_id] UpperCAmelCase__ : Tuple = '''''' for token in sentence: out += F"""{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) """ out += "\n" writer.write(_UpperCAmelCase ) example_id += 1 def lowerCamelCase ( self , _UpperCAmelCase ): if path: with open(_UpperCAmelCase , '''r''' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
599
'''simple docstring''' def lowerCAmelCase__ ( a_ : int = 1_0_0_0_0_0_0 ) -> int: UpperCAmelCase__ : Optional[int] = set(range(3 , a_ , 2 ) ) primes.add(2 ) for p in range(3 , a_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , a_ , a_ ) ) ) UpperCAmelCase__ : Tuple = [float(a_ ) for n in range(limit + 1 )] for p in primes: for n in range(a_ , limit + 1 , a_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'{solution() = }')
599
1
import itertools import string from collections.abc import Generator, Iterable def a_ ( __magic_name__ , __magic_name__ ) -> Generator[tuple[str, ...], None, None]: """simple docstring""" snake_case : Optional[int] = iter(__magic_name__ ) while True: snake_case : Dict = tuple(itertools.islice(__magic_name__ , __magic_name__ ) ) if not chunk: return yield chunk def a_ ( __magic_name__ ) -> str: """simple docstring""" snake_case : Tuple = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) snake_case : List[str] = '''''' if len(__magic_name__ ) < 2: return dirty for i in range(len(__magic_name__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__magic_name__ ) & 1: clean += "X" return clean def a_ ( __magic_name__ ) -> list[str]: """simple docstring""" snake_case : List[str] = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler snake_case : Optional[int] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__magic_name__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__magic_name__ ) return table def a_ ( __magic_name__ , __magic_name__ ) -> str: """simple docstring""" snake_case : int = generate_table(__magic_name__ ) snake_case : Optional[int] = prepare_input(__magic_name__ ) snake_case : Union[str, Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): snake_case , snake_case : Tuple = divmod(table.index(__magic_name__ ) , 5 ) snake_case , snake_case : Union[str, Any] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def a_ ( __magic_name__ , __magic_name__ ) -> str: """simple docstring""" snake_case : Optional[int] = generate_table(__magic_name__ ) snake_case : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): snake_case , snake_case : Optional[int] = divmod(table.index(__magic_name__ ) , 5 ) snake_case , snake_case : List[str] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
598
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a ) class a_ ( a ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization A__ : str = field(default='question-answering-extractive' , metadata={'include_in_asdict_even_if_is_default': True} ) A__ : ClassVar[Features] = Features({'question': Value('string' ), 'context': Value('string' )} ) A__ : ClassVar[Features] = Features( { 'answers': Sequence( { 'text': Value('string' ), 'answer_start': Value('int32' ), } ) } ) A__ : str = "question" A__ : str = "context" A__ : str = "answers" @property def lowerCAmelCase( self : Optional[int] ): """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
598
1
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=32 , snake_case=2 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=False , snake_case=True , snake_case="None" , snake_case=3 , snake_case=4 , snake_case=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = relative_attention lowercase = position_biased_input lowercase = pos_att_type lowercase = scope def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = TFDebertaVaModel(config=snake_case ) lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} lowercase = [input_ids, input_mask] lowercase = model(snake_case ) lowercase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = TFDebertaVaForMaskedLM(config=snake_case ) lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = self.num_labels lowercase = TFDebertaVaForSequenceClassification(config=snake_case ) lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = self.num_labels lowercase = TFDebertaVaForTokenClassification(config=snake_case ) lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): lowercase = TFDebertaVaForQuestionAnswering(config=snake_case ) lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } lowercase = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A_ ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _UpperCamelCase : int = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _UpperCamelCase : int = ( { """feature-extraction""": TFDebertaVaModel, """fill-mask""": TFDebertaVaForMaskedLM, """question-answering""": TFDebertaVaForQuestionAnswering, """text-classification""": TFDebertaVaForSequenceClassification, """token-classification""": TFDebertaVaForTokenClassification, """zero-shot""": TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : Dict = False _UpperCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TFDebertaVaModelTester(self ) lowercase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) self.assertIsNotNone(snake_case ) @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def SCREAMING_SNAKE_CASE__ ( self ): pass @slow def SCREAMING_SNAKE_CASE__ ( self ): lowercase = TFDebertaVaModel.from_pretrained('kamalkraj/deberta-v2-xlarge' ) lowercase = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowercase = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase = model(snake_case , attention_mask=snake_case )[0] lowercase = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , snake_case , atol=1E-4 )
565
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE = 6008_5147_5143 ): try: lowercase = int(__SCREAMING_SNAKE_CASE ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) lowercase = 1 lowercase = 2 while i * i <= n: while n % i == 0: lowercase = i n //= i i += 1 if n > 1: lowercase = n return int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(F"""{solution() = }""")
565
1
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer A__ : Optional[int] = logging.get_logger(__name__) A__ : Union[str, Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} A__ : Tuple = { 'vocab_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json', }, 'merges_file': { 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt', }, 'tokenizer_file': { 'Salesforce/codegen-350M-mono': ( 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json' ), }, } A__ : List[Any] = { 'Salesforce/codegen-350M-mono': 2_0_4_8, } class __magic_name__ ( SCREAMING_SNAKE_CASE__ ): UpperCamelCase_ = VOCAB_FILES_NAMES UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ = ['''input_ids''', '''attention_mask'''] UpperCamelCase_ = CodeGenTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ) -> Union[str, Any]: """simple docstring""" super().__init__( A_ , A_ , tokenizer_file=A_ , unk_token=A_ , bos_token=A_ , eos_token=A_ , add_prefix_space=A_ , **A_ , ) if kwargs.pop('''add_bos_token''' , A_ ): _lowercase: List[Any] = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) _lowercase: List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: _lowercase: Dict = getattr(A_ , pre_tok_state.pop('''type''' ) ) _lowercase: Optional[int] = add_prefix_space _lowercase: Dict = pre_tok_class(**A_ ) _lowercase: Tuple = add_prefix_space def lowercase_ ( self , *A_ , **A_ ) -> BatchEncoding: """simple docstring""" _lowercase: str = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def lowercase_ ( self , *A_ , **A_ ) -> BatchEncoding: """simple docstring""" _lowercase: Optional[int] = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def lowercase_ ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" _lowercase: Any = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def lowercase_ ( self , A_ , A_ = False , A_ = None , A_ = None , **A_ , ) -> str: """simple docstring""" _lowercase: Any = super().decode( token_ids=A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , **A_ , ) if truncate_before_pattern is not None and len(A_ ) > 0: _lowercase: List[str] = self.truncate(A_ , A_ ) return decoded_text def lowercase_ ( self , A_ , A_ ) -> List[Any]: """simple docstring""" def find_re(A_ , A_ , A_ ): _lowercase: Any = pattern.search(A_ , A_ ) return m.start() if m else -1 _lowercase: Union[str, Any] = [re.compile(A_ , re.MULTILINE ) for pattern in truncate_before_pattern] _lowercase: Union[str, Any] = list(re.finditer('''^print''' , A_ , re.MULTILINE ) ) if len(A_ ) > 1: _lowercase: Dict = completion[: prints[1].start()] _lowercase: Optional[Any] = list(re.finditer('''^def''' , A_ , re.MULTILINE ) ) if len(A_ ) > 1: _lowercase: str = completion[: defs[1].start()] _lowercase: Optional[int] = 0 _lowercase: str = [ pos for pos in [find_re(A_ , A_ , A_ ) for terminal in terminals] if pos != -1 ] if len(A_ ) > 0: return completion[: min(A_ )] else: return completion
353
"""simple docstring""" from collections.abc import Callable def _lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase: float = a _lowercase: float = b if function(_UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(_UpperCamelCase ) == 0: return b elif ( function(_UpperCamelCase ) * function(_UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: _lowercase: float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_UpperCamelCase ) == 0: return mid elif function(_UpperCamelCase ) * function(_UpperCamelCase ) < 0: _lowercase: Union[str, Any] = mid else: _lowercase: Any = mid _lowercase: List[Any] = start + (end - start) / 2.0 return mid def _lowerCAmelCase ( _UpperCamelCase ): """simple docstring""" return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
353
1
"""simple docstring""" from maths.prime_check import is_prime def a__ ( lowerCAmelCase : int ): '''simple docstring''' if not isinstance(lowerCAmelCase , lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCAmelCase ) if is_prime(lowerCAmelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
710
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import _LazyModule A__ : List[str] = {"""tokenization_tapex""": ["""TapexTokenizer"""]} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys A__ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
660
0
"""simple docstring""" from math import factorial class snake_case_ : """simple docstring""" def __init__( self , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase = real if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [1] * rank else: UpperCamelCase = rank def __repr__( self) -> Any: return ( F'{self.real}+' F'{"+".join(str(lowerCamelCase_)+"E"+str(n+1)for n,dual in enumerate(self.duals))}' ) def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = self.duals.copy() while cur[-1] == 0: cur.pop(-1) return Dual(self.real , lowerCamelCase_) def __add__( self , lowerCamelCase_) -> List[str]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): return Dual(self.real + other , self.duals) UpperCamelCase = self.duals.copy() UpperCamelCase = other.duals.copy() if len(lowerCamelCase_) > len(lowerCamelCase_): o_dual.extend([1] * (len(lowerCamelCase_) - len(lowerCamelCase_))) elif len(lowerCamelCase_) < len(lowerCamelCase_): s_dual.extend([1] * (len(lowerCamelCase_) - len(lowerCamelCase_))) UpperCamelCase = [] for i in range(len(lowerCamelCase_)): new_duals.append(s_dual[i] + o_dual[i]) return Dual(self.real + other.real , lowerCamelCase_) A_ = __add__ def __sub__( self , lowerCamelCase_) -> str: return self + other * -1 def __mul__( self , lowerCamelCase_) -> Union[str, Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in self.duals: new_duals.append(i * other) return Dual(self.real * other , lowerCamelCase_) UpperCamelCase = [0] * (len(self.duals) + len(other.duals) + 1) for i, item in enumerate(self.duals): for j, jtem in enumerate(other.duals): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals)): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals)): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase_) A_ = __mul__ def __truediv__( self , lowerCamelCase_) -> List[str]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in self.duals: new_duals.append(i / other) return Dual(self.real / other , lowerCamelCase_) raise ValueError def __floordiv__( self , lowerCamelCase_) -> Optional[Any]: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase = [] for i in self.duals: new_duals.append(i // other) return Dual(self.real // other , lowerCamelCase_) raise ValueError def __pow__( self , lowerCamelCase_) -> str: if n < 0 or isinstance(lowerCamelCase_ , lowerCamelCase_): raise ValueError('''power must be a positive integer''') if n == 0: return 1 if n == 1: return self UpperCamelCase = self for _ in range(n - 1): x *= self return x def __snake_case ( _lowercase ,_lowercase ,_lowercase ): """simple docstring""" if not callable(_lowercase ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(_lowercase ,(float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(_lowercase ,_lowercase ): raise ValueError('''differentiate() requires an int as input for order''' ) UpperCamelCase = Dual(_lowercase ,1 ) UpperCamelCase = func(_lowercase ) if order == 0: return result.real return result.duals[order - 1] * factorial(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod() def __snake_case ( _lowercase ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
34
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ : str = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Tuple = """▁""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE__ : List[Any] = { """vocab_file""": { """google/reformer-crime-and-punishment""": ( """https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model""" ) } } SCREAMING_SNAKE_CASE__ : Optional[int] = { """google/reformer-crime-and-punishment""": 52_42_88, } class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase=[] , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" __magic_name__ :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) __magic_name__ :Optional[Any] = vocab_file __magic_name__ :int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def A ( self ): """simple docstring""" return self.sp_model.get_piece_size() def A ( self ): """simple docstring""" __magic_name__ :str = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" __magic_name__ :Optional[Any] = self.__dict__.copy() __magic_name__ :Optional[Any] = None return state def __setstate__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __magic_name__ :Optional[int] = {} __magic_name__ :Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" return self.sp_model.piece_to_id(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" if index < self.sp_model.get_piece_size(): __magic_name__ :int = self.sp_model.IdToPiece(__lowerCAmelCase ) return token def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = [] __magic_name__ :Tuple = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token __magic_name__ :Optional[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" if not os.path.isdir(__lowerCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __magic_name__ :Optional[int] = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , '''wb''' ) as fi: __magic_name__ :Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
0
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = """▁""" __snake_case = {"""vocab_file""": """sentencepiece.bpe.model"""} __snake_case = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } __snake_case = { """facebook/mbart-large-50-one-to-many-mmt""": 10_24, } # fmt: off __snake_case = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =VOCAB_FILES_NAMES A__ : Optional[int] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP A__ : Any =["""input_ids""", """attention_mask"""] A__ : List[int] =[] A__ : List[int] =[] def __init__( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Tuple="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : Any = None , **UpperCAmelCase_ : int , ): # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else mask_token SCREAMING_SNAKE_CASE__ = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE__ = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowercase__ , tgt_lang=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , sp_model_kwargs=self.sp_model_kwargs , **lowercase__ , ) SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase__ ) ) SCREAMING_SNAKE_CASE__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token SCREAMING_SNAKE_CASE__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = len(self.sp_model ) SCREAMING_SNAKE_CASE__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowercase__ ) } SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.lang_code_to_id.items()} SCREAMING_SNAKE_CASE__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} SCREAMING_SNAKE_CASE__ = src_lang if src_lang is not None else """en_XX""" SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[self._src_lang] SCREAMING_SNAKE_CASE__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A_ ( self : List[Any] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def A_ ( self : Union[str, Any] ): return self._src_lang @src_lang.setter def A_ ( self : List[str] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = self.__dict__.copy() SCREAMING_SNAKE_CASE__ = None return state def __setstate__( self : List[str] , UpperCAmelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = {self.convert_ids_to_tokens(lowercase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A_ ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] ): return self.sp_model.encode(lowercase__ , out_type=lowercase__ ) def A_ ( self : Dict , UpperCAmelCase_ : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] SCREAMING_SNAKE_CASE__ = self.sp_model.PieceToId(lowercase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A_ ( self : int , UpperCAmelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = """""" SCREAMING_SNAKE_CASE__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase__ ) + token SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = [] else: current_sub_tokens.append(lowercase__ ) SCREAMING_SNAKE_CASE__ = False out_string += self.sp_model.decode(lowercase__ ) return out_string.strip() def A_ ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict = None ): if not os.path.isdir(lowercase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE__ = os.path.join( lowercase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase__ , 'wb' ) as fi: SCREAMING_SNAKE_CASE__ = self.sp_model.serialized_model_proto() fi.write(lowercase__ ) return (out_vocab_file,) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int = None , UpperCAmelCase_ : str = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__ ) SCREAMING_SNAKE_CASE__ = [1] * len(self.prefix_tokens ) SCREAMING_SNAKE_CASE__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowercase__ )) + suffix_ones return prefix_ones + ([0] * len(lowercase__ )) + ([0] * len(lowercase__ )) + suffix_ones def A_ ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A_ ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : str ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = self(lowercase__ , add_special_tokens=lowercase__ , return_tensors=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE__ = self.convert_tokens_to_ids(lowercase__ ) SCREAMING_SNAKE_CASE__ = tgt_lang_id return inputs def A_ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "en_XX" , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : Optional[Any] = "ro_RO" , **UpperCAmelCase_ : List[Any] , ): SCREAMING_SNAKE_CASE__ = src_lang SCREAMING_SNAKE_CASE__ = tgt_lang return super().prepare_seqaseq_batch(lowercase__ , lowercase__ , **lowercase__ ) def A_ ( self : Tuple ): return self.set_src_lang_special_tokens(self.src_lang ) def A_ ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A_ ( self : Tuple , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[src_lang] SCREAMING_SNAKE_CASE__ = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id] def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Tuple ): SCREAMING_SNAKE_CASE__ = self.lang_code_to_id[tgt_lang] SCREAMING_SNAKE_CASE__ = [self.cur_lang_code_id] SCREAMING_SNAKE_CASE__ = [self.eos_token_id]
704
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _lowercase ( UpperCamelCase_ ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.exp(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.sum(UpperCamelCase_ , dim=1 ) # sum of exp(x_i) SCREAMING_SNAKE_CASE__ = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(UpperCamelCase_ ) - B / A class lowercase__ ( nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase_ : Any ): super().__init__() SCREAMING_SNAKE_CASE__ = config.output_attentions SCREAMING_SNAKE_CASE__ = config.output_hidden_states SCREAMING_SNAKE_CASE__ = nn.ModuleList([BertLayer(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE__ = nn.ModuleList([BertHighway(UpperCAmelCase_ ) for _ in range(config.num_hidden_layers )] ) SCREAMING_SNAKE_CASE__ = [-1 for _ in range(config.num_hidden_layers )] def A_ ( self : Tuple , UpperCAmelCase_ : Optional[int] ): if (type(UpperCAmelCase_ ) is float) or (type(UpperCAmelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): SCREAMING_SNAKE_CASE__ = x else: SCREAMING_SNAKE_CASE__ = x def A_ ( self : Optional[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def A_ ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , ): SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = () SCREAMING_SNAKE_CASE__ = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__ = layer_module( UpperCAmelCase_ , UpperCAmelCase_ , head_mask[i] , UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = layer_outputs[0] if self.output_attentions: SCREAMING_SNAKE_CASE__ = all_attentions + (layer_outputs[1],) SCREAMING_SNAKE_CASE__ = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = current_outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE__ = current_outputs + (all_attentions,) SCREAMING_SNAKE_CASE__ = self.highway[i](UpperCAmelCase_ ) # logits, pooled_output if not self.training: SCREAMING_SNAKE_CASE__ = highway_exit[0] SCREAMING_SNAKE_CASE__ = entropy(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy SCREAMING_SNAKE_CASE__ = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: SCREAMING_SNAKE_CASE__ = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCAmelCase_ , i + 1 ) else: SCREAMING_SNAKE_CASE__ = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = all_hidden_states + (hidden_states,) SCREAMING_SNAKE_CASE__ = (hidden_states,) if self.output_hidden_states: SCREAMING_SNAKE_CASE__ = outputs + (all_hidden_states,) if self.output_attentions: SCREAMING_SNAKE_CASE__ = outputs + (all_attentions,) SCREAMING_SNAKE_CASE__ = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , _UpperCAmelCase , ) class lowercase__ ( _UpperCAmelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : str ): super().__init__(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = config SCREAMING_SNAKE_CASE__ = BertEmbeddings(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DeeBertEncoder(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = BertPooler(UpperCAmelCase_ ) self.init_weights() def A_ ( self : Optional[int] ): self.encoder.init_highway_pooler(self.pooler ) def A_ ( self : Optional[Any] ): return self.embeddings.word_embeddings def A_ ( self : List[str] , UpperCAmelCase_ : Any ): SCREAMING_SNAKE_CASE__ = value def A_ ( self : Any , UpperCAmelCase_ : List[str] ): for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCAmelCase_ ) @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def A_ ( self : Optional[int] , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Tuple=None , ): if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: SCREAMING_SNAKE_CASE__ = input_ids.size() elif inputs_embeds is not None: SCREAMING_SNAKE_CASE__ = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) SCREAMING_SNAKE_CASE__ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if encoder_attention_mask is None: SCREAMING_SNAKE_CASE__ = torch.ones(UpperCAmelCase_ , device=UpperCAmelCase_ ) if token_type_ids is None: SCREAMING_SNAKE_CASE__ = torch.zeros(UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. SCREAMING_SNAKE_CASE__ = self.get_extended_attention_mask(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: SCREAMING_SNAKE_CASE__ = encoder_attention_mask[:, None, None, :] SCREAMING_SNAKE_CASE__ = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility SCREAMING_SNAKE_CASE__ = (1.0 - encoder_extended_attention_mask) * -10_000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] SCREAMING_SNAKE_CASE__ = self.get_head_mask(UpperCAmelCase_ , self.config.num_hidden_layers ) SCREAMING_SNAKE_CASE__ = self.embeddings( input_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.encoder( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , encoder_attention_mask=UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE__ = encoder_outputs[0] SCREAMING_SNAKE_CASE__ = self.pooler(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowercase__ ( _UpperCAmelCase ): def __init__( self : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int] ): SCREAMING_SNAKE_CASE__ = message SCREAMING_SNAKE_CASE__ = exit_layer # start from 1! class lowercase__ ( nn.Module ): def __init__( self : int , UpperCAmelCase_ : Union[str, Any] ): super().__init__() SCREAMING_SNAKE_CASE__ = BertPooler(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , config.num_labels ) def A_ ( self : Dict , UpperCAmelCase_ : Dict ): # Pooler SCREAMING_SNAKE_CASE__ = encoder_outputs[0] SCREAMING_SNAKE_CASE__ = self.pooler(UpperCAmelCase_ ) # "return" pooler_output # BertModel SCREAMING_SNAKE_CASE__ = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification SCREAMING_SNAKE_CASE__ = bmodel_output[1] SCREAMING_SNAKE_CASE__ = self.dropout(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.classifier(UpperCAmelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , _UpperCAmelCase , ) class lowercase__ ( _UpperCAmelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ): super().__init__(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = config.num_labels SCREAMING_SNAKE_CASE__ = config.num_hidden_layers SCREAMING_SNAKE_CASE__ = DeeBertModel(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = nn.Dropout(config.hidden_dropout_prob ) SCREAMING_SNAKE_CASE__ = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCAmelCase_ ) def A_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=-1 , UpperCAmelCase_ : Optional[int]=False , ): SCREAMING_SNAKE_CASE__ = self.num_layers try: SCREAMING_SNAKE_CASE__ = self.bert( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , head_mask=UpperCAmelCase_ , inputs_embeds=UpperCAmelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits SCREAMING_SNAKE_CASE__ = outputs[1] SCREAMING_SNAKE_CASE__ = self.dropout(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.classifier(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: SCREAMING_SNAKE_CASE__ = e.message SCREAMING_SNAKE_CASE__ = e.exit_layer SCREAMING_SNAKE_CASE__ = outputs[0] if not self.training: SCREAMING_SNAKE_CASE__ = entropy(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = [] if labels is not None: if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits SCREAMING_SNAKE_CASE__ = [] for highway_exit in outputs[-1]: SCREAMING_SNAKE_CASE__ = highway_exit[0] if not self.training: highway_logits_all.append(UpperCAmelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression SCREAMING_SNAKE_CASE__ = MSELoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: SCREAMING_SNAKE_CASE__ = CrossEntropyLoss() SCREAMING_SNAKE_CASE__ = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCAmelCase_ ) if train_highway: SCREAMING_SNAKE_CASE__ = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: SCREAMING_SNAKE_CASE__ = (loss,) + outputs if not self.training: SCREAMING_SNAKE_CASE__ = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: SCREAMING_SNAKE_CASE__ = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
400
0
import argparse import json from tqdm import tqdm def __lowerCAmelCase ( ): _lowercase: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--src_path" , type=__magic_name__ , default="biencoder-nq-dev.json" , help="Path to raw DPR training data" , ) parser.add_argument( "--evaluation_set" , type=__magic_name__ , help="where to store parsed evaluation_set file" , ) parser.add_argument( "--gold_data_path" , type=__magic_name__ , help="where to store parsed gold_data_path file" , ) _lowercase: Union[str, Any] = parser.parse_args() with open(args.src_path , "r" ) as src_file, open(args.evaluation_set , "w" ) as eval_file, open( args.gold_data_path , "w" ) as gold_file: _lowercase: str = json.load(__magic_name__ ) for dpr_record in tqdm(__magic_name__ ): _lowercase: str = dpr_record["question"] _lowercase: int = [context["title"] for context in dpr_record["positive_ctxs"]] eval_file.write(question + "\n" ) gold_file.write("\t".join(__magic_name__ ) + "\n" ) if __name__ == "__main__": main()
226
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE : Dict = { 'configuration_electra': ['ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ElectraConfig', 'ElectraOnnxConfig'], 'tokenization_electra': ['ElectraTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = ['ElectraTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Optional[Any] = [ 'ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'ElectraForCausalLM', 'ElectraForMaskedLM', 'ElectraForMultipleChoice', 'ElectraForPreTraining', 'ElectraForQuestionAnswering', 'ElectraForSequenceClassification', 'ElectraForTokenClassification', 'ElectraModel', 'ElectraPreTrainedModel', 'load_tf_weights_in_electra', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[str] = [ 'TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFElectraForMaskedLM', 'TFElectraForMultipleChoice', 'TFElectraForPreTraining', 'TFElectraForQuestionAnswering', 'TFElectraForSequenceClassification', 'TFElectraForTokenClassification', 'TFElectraModel', 'TFElectraPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Any = [ 'FlaxElectraForCausalLM', 'FlaxElectraForMaskedLM', 'FlaxElectraForMultipleChoice', 'FlaxElectraForPreTraining', 'FlaxElectraForQuestionAnswering', 'FlaxElectraForSequenceClassification', 'FlaxElectraForTokenClassification', 'FlaxElectraModel', 'FlaxElectraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
226
1
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _lowerCAmelCase : Union[str, Any] = 'python tqdm regex requests packaging filelock numpy tokenizers'.split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append('dataclasses') if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append('importlib_metadata') for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __UpperCamelCase ( _A : List[str] , _A : Any=None ) -> List[Any]: """simple docstring""" require_version(deps[pkg] , SCREAMING_SNAKE_CASE__ )
704
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase : int = { 'configuration_nezha': ['NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NezhaConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Tuple = [ 'NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST', 'NezhaForNextSentencePrediction', 'NezhaForMaskedLM', 'NezhaForPreTraining', 'NezhaForMultipleChoice', 'NezhaForQuestionAnswering', 'NezhaForSequenceClassification', 'NezhaForTokenClassification', 'NezhaModel', 'NezhaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
646
0
'''simple docstring''' import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase_ = logging.getLogger(__name__) class __lowercase : def __init__( self ) -> str: __a = False def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: if not self.initialized: __a = RagRetriever( UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , index=UpperCamelCase , init_retrieval=UpperCamelCase , ) __a = True def UpperCamelCase__ ( self ) -> Any: self.retriever.index.init_index() def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> str: __a , __a = self.retriever._main_retrieve(UpperCamelCase , UpperCamelCase ) return doc_ids, retrieved_doc_embeds class __lowercase ( __magic_name__ ): def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> Optional[int]: if index is not None and index.is_initialized() and len(UpperCamelCase ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , index=UpperCamelCase , init_retrieval=UpperCamelCase , ) __a = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for worker in self.retrieval_workers ] ) def UpperCamelCase__ ( self ) -> Optional[Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase ) -> Dict: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. __a = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] __a , __a = ray.get(random_worker.retrieve.remote(UpperCamelCase , UpperCamelCase ) ) else: __a , __a = self._main_retrieve(UpperCamelCase , UpperCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase ) @classmethod def UpperCamelCase__ ( cls , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ) -> Union[str, Any]: return super(UpperCamelCase , cls ).get_tokenizers(UpperCamelCase , UpperCamelCase , **UpperCamelCase ) @classmethod def UpperCamelCase__ ( cls , UpperCamelCase , UpperCamelCase , UpperCamelCase=None , **UpperCamelCase ) -> Optional[Any]: __a = kwargs.pop('config' , UpperCamelCase ) or RagConfig.from_pretrained(UpperCamelCase , **UpperCamelCase ) __a = RagTokenizer.from_pretrained(UpperCamelCase , config=UpperCamelCase ) __a = rag_tokenizer.question_encoder __a = rag_tokenizer.generator if indexed_dataset is not None: __a = 'custom' __a = CustomHFIndex(config.retrieval_vector_size , UpperCamelCase ) else: __a = cls._build_index(UpperCamelCase ) return cls( UpperCamelCase , question_encoder_tokenizer=UpperCamelCase , generator_tokenizer=UpperCamelCase , retrieval_workers=UpperCamelCase , index=UpperCamelCase , )
539
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class __lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): _a = StableUnCLIPImgaImgPipeline _a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS _a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def UpperCamelCase__ ( self ) -> List[str]: __a = 32 __a = embedder_hidden_size # image encoding components __a = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __a = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=UpperCamelCase , projection_dim=UpperCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __a = StableUnCLIPImageNormalizer(embedding_dim=UpperCamelCase ) __a = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) __a = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) __a = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=UpperCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __a = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=UpperCamelCase , layers_per_block=1 , upcast_attention=UpperCamelCase , use_linear_projection=UpperCamelCase , ) torch.manual_seed(0 ) __a = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.00_085 , beta_end=0.012 , prediction_type='v_prediction' , set_alpha_to_one=UpperCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __a = AutoencoderKL() __a = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCamelCase__ ( self , UpperCamelCase , UpperCamelCase=0 , UpperCamelCase=True ) -> Dict: if str(UpperCamelCase ).startswith('mps' ): __a = torch.manual_seed(UpperCamelCase ) else: __a = torch.Generator(device=UpperCamelCase ).manual_seed(UpperCamelCase ) __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase ) ).to(UpperCamelCase ) if pil_image: __a = input_image * 0.5 + 0.5 __a = input_image.clamp(0 , 1 ) __a = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a = DiffusionPipeline.numpy_to_pil(UpperCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCamelCase__ ( self ) -> int: __a = 'cpu' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableUnCLIPImgaImgPipeline(**UpperCamelCase ) __a = sd_pipe.to(UpperCamelCase ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase ) __a = self.get_dummy_inputs(UpperCamelCase ) inputs.update({'image_embeds': None} ) __a = sd_pipe(**UpperCamelCase ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __a = np.array([0.3_872, 0.7_224, 0.5_601, 0.4_741, 0.6_872, 0.5_814, 0.4_636, 0.3_867, 0.5_078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def UpperCamelCase__ ( self ) -> Any: __a = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=UpperCamelCase ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ) -> Optional[Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=UpperCamelCase ) @slow @require_torch_gpu class __lowercase ( unittest.TestCase ): def UpperCamelCase__ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self ) -> str: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Optional[int]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) __a = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy' ) __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = torch.Generator(device='cpu' ).manual_seed(0 ) __a = pipe(UpperCamelCase , 'anime turle' , generator=UpperCamelCase , output_type='np' ) __a = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: __a = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa ) __a = pipe.to(UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __a = pipe( UpperCamelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
539
1
lowerCamelCase__ = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355_818, } def A(__a: str , __a: str , __a: float ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase_ = ( F"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n" F"Valid values are: {', '.join(__a )}" ) raise ValueError(__a ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
226
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ) -> Dict: lowerCAmelCase_ = 1 lowerCAmelCase_ = 3 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def __a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_a ) @property def __a ( self ) -> List[str]: def extract(*_a , **_a ): class __magic_name__ : def __init__( self ) -> List[str]: lowerCAmelCase_ = torch.ones([0] ) def __a ( self , _a ) -> int: self.pixel_values.to(_a ) return self return Out() return extract def __a ( self ) -> Dict: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a ) assert isinstance(_a , _a ) assert isinstance(pipe.scheduler , _a ) assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self ) -> Any: lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ = unet.half() lowerCAmelCase_ = vae.half() lowerCAmelCase_ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ = 4003660346 lowerCAmelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ = 2734971755 lowerCAmelCase_ = 7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> int: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ = 1044355234 lowerCAmelCase_ = 12 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
226
1
def lowerCamelCase_ ( UpperCamelCase__ : int = 400_0000 ): '''simple docstring''' UpperCamelCase__ = [] UpperCamelCase__ , UpperCamelCase__ = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(UpperCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ = b, a + b return sum(UpperCamelCase__ ) if __name__ == "__main__": print(f'{solution() = }')
240
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCamelCase_ ( UpperCamelCase__ : Dataset, UpperCamelCase__ : Dict[str, str] ): '''simple docstring''' UpperCamelCase__ = args.log_outputs UpperCamelCase__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric UpperCamelCase__ = load_metric('''wer''' ) UpperCamelCase__ = load_metric('''cer''' ) # compute metrics UpperCamelCase__ = wer.compute(references=result['''target'''], predictions=result['''prediction'''] ) UpperCamelCase__ = cer.compute(references=result['''target'''], predictions=result['''prediction'''] ) # print & log results UpperCamelCase__ = F"""WER: {wer_result}\nCER: {cer_result}""" print(UpperCamelCase__ ) with open(F"""{dataset_id}_eval_results.txt""", '''w''' ) as f: f.write(UpperCamelCase__ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase__ = F"""log_{dataset_id}_predictions.txt""" UpperCamelCase__ = F"""log_{dataset_id}_targets.txt""" with open(UpperCamelCase__, '''w''' ) as p, open(UpperCamelCase__, '''w''' ) as t: # mapping function to write output def write_to_file(UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Tuple ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(UpperCamelCase__, with_indices=UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase__ = re.sub(UpperCamelCase__, '''''', text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: UpperCamelCase__ = ''' '''.join(text.split(UpperCamelCase__ ) ) return text def lowerCamelCase_ ( UpperCamelCase__ : Tuple ): '''simple docstring''' UpperCamelCase__ = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=UpperCamelCase__ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase__ = feature_extractor.sampling_rate # resample audio UpperCamelCase__ = dataset.cast_column('''audio''', Audio(sampling_rate=UpperCamelCase__ ) ) # load eval pipeline if args.device is None: UpperCamelCase__ = 0 if torch.cuda.is_available() else -1 UpperCamelCase__ = pipeline('''automatic-speech-recognition''', model=args.model_id, device=args.device ) # map function to decode audio def map_to_pred(UpperCamelCase__ : Any ): UpperCamelCase__ = asr( batch['''audio''']['''array'''], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) UpperCamelCase__ = prediction['''text'''] UpperCamelCase__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples UpperCamelCase__ = dataset.map(UpperCamelCase__, remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) lowercase = parser.parse_args() main(args)
240
1
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowercase ( __snake_case : Optional[int] ): if isinstance(__snake_case , collections.abc.Iterable ): return x return (x, x) @require_tf class _UpperCAmelCase : def A ( self : Any , A : Union[str, Any] , A : Optional[Any] ) -> Any: pass def A ( self : List[Any] ) -> Optional[Any]: pass def A ( self : Union[str, Any] ) -> Optional[int]: pass def A ( self : Dict , A : Tuple , A : Optional[Any] , A : List[str] , A : Dict , A : List[str]=None , **A : List[Any] ) -> List[str]: lowercase_ : List[Any] = VisionTextDualEncoderConfig.from_vision_text_configs(A , A ) lowercase_ : Union[str, Any] = TFVisionTextDualEncoderModel(A ) lowercase_ : Dict = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], config.projection_dim) ) def A ( self : Tuple , A : List[str] , A : Optional[int] , A : Any , A : Tuple , A : List[Any]=None , **A : int ) -> Union[str, Any]: lowercase_ , lowercase_ : Tuple = self.get_vision_text_model(A , A ) lowercase_ : Any = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) lowercase_ : List[str] = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A ( self : List[Any] , A : Tuple , A : Dict , A : Union[str, Any] , A : List[Any] , A : str=None , **A : Optional[int] ) -> Any: lowercase_ , lowercase_ : Dict = self.get_vision_text_model(A , A ) lowercase_ : str = {'''vision_model''': vision_model, '''text_model''': text_model} lowercase_ : Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**A ) lowercase_ : List[str] = model(input_ids=A , pixel_values=A , attention_mask=A ) self.assertEqual(output['''text_embeds'''].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['''image_embeds'''].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A ( self : Optional[Any] , A : Union[str, Any] , A : Optional[int] , A : int , A : List[str] , A : List[Any]=None , **A : Dict ) -> List[Any]: lowercase_ , lowercase_ : str = self.get_vision_text_model(A , A ) lowercase_ : Dict = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) lowercase_ : Union[str, Any] = model(input_ids=A , pixel_values=A , attention_mask=A ) lowercase_ : Dict = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) lowercase_ : Tuple = TFVisionTextDualEncoderModel.from_pretrained(A ) lowercase_ : str = model(input_ids=A , pixel_values=A , attention_mask=A ) lowercase_ : Union[str, Any] = after_output[0].numpy() lowercase_ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1e-5 ) def A ( self : Any , A : Optional[int] , A : List[str] , A : List[Any] , A : Any , A : Tuple=None , **A : Union[str, Any] ) -> Any: lowercase_ , lowercase_ : str = self.get_vision_text_model(A , A ) lowercase_ : str = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) lowercase_ : Optional[Any] = model( input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A ) lowercase_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(A ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowercase_ : List[Any] = to_atuple(vision_model.config.image_size ) lowercase_ : List[Any] = to_atuple(vision_model.config.patch_size ) lowercase_ : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : Tuple = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : List[str] = output.text_model_output.attentions self.assertEqual(len(A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A ( self : Any , A : np.ndarray , A : np.ndarray , A : float ) -> Tuple: lowercase_ : Union[str, Any] = np.abs((a - b) ).max() self.assertLessEqual(A , A , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def A ( self : List[Any] ) -> List[str]: lowercase_ : str = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**A ) def A ( self : Optional[Any] ) -> List[str]: lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**A ) def A ( self : Any ) -> Optional[Any]: lowercase_ : Optional[int] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**A ) def A ( self : List[Any] ) -> Tuple: lowercase_ : Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**A ) def A ( self : int ) -> Optional[Any]: lowercase_ : int = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**A ) @slow def A ( self : Union[str, Any] ) -> str: lowercase_ , lowercase_ : Dict = self.get_pretrained_model_and_inputs() lowercase_ : List[str] = model_a(**A ) lowercase_ : Tuple = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(A ) lowercase_ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(A ) lowercase_ : str = model_a(**A ) lowercase_ : int = after_outputs[0].numpy() lowercase_ : Union[str, Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(A , 1e-5 ) @require_tf class _UpperCAmelCase ( _A , unittest.TestCase ): def A ( self : Optional[int] ) -> Dict: lowercase_ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''hf-internal-testing/tiny-random-vit''' , '''hf-internal-testing/tiny-random-bert''' ) lowercase_ : Optional[Any] = 13 lowercase_ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase_ : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase_ : Dict = random_attention_mask([batch_size, 4] ) lowercase_ : Optional[int] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def A ( self : int , A : str , A : Dict ) -> str: lowercase_ : int = TFViTModel(A , name='''vision_model''' ) lowercase_ : Optional[Any] = TFBertModel(A , name='''text_model''' ) return vision_model, text_model def A ( self : str ) -> Dict: lowercase_ : str = TFViTModelTester(self ) lowercase_ : str = TFBertModelTester(self ) lowercase_ : Optional[int] = vit_model_tester.prepare_config_and_inputs() lowercase_ : Dict = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Optional[Any] = vision_config_and_inputs ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( _A , unittest.TestCase ): def A ( self : List[Any] ) -> Optional[int]: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. lowercase_ : Optional[int] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-deit-tf''' , '''hf-internal-testing/tiny-random-roberta''' ) lowercase_ : List[str] = 13 lowercase_ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase_ : str = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase_ : Any = random_attention_mask([batch_size, 4] ) lowercase_ : List[str] = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def A ( self : Optional[int] , A : int , A : Dict , A : str , A : Any , A : str=None , **A : Union[str, Any] ) -> Union[str, Any]: lowercase_ , lowercase_ : List[Any] = self.get_vision_text_model(A , A ) lowercase_ : List[str] = TFVisionTextDualEncoderModel(vision_model=A , text_model=A ) lowercase_ : Any = model( input_ids=A , pixel_values=A , attention_mask=A , output_attentions=A ) lowercase_ : List[str] = output.vision_model_output.attentions self.assertEqual(len(A ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowercase_ : Optional[Any] = to_atuple(vision_model.config.image_size ) lowercase_ : Optional[int] = to_atuple(vision_model.config.patch_size ) lowercase_ : List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowercase_ : List[str] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowercase_ : Union[str, Any] = output.text_model_output.attentions self.assertEqual(len(A ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A ( self : Optional[Any] , A : str , A : int ) -> Any: lowercase_ : Union[str, Any] = TFDeiTModel(A , name='''vision_model''' ) lowercase_ : Any = TFRobertaModel(A , name='''text_model''' ) return vision_model, text_model def A ( self : Optional[Any] ) -> Dict: lowercase_ : Any = TFDeiTModelTester(self ) lowercase_ : Any = TFRobertaModelTester(self ) lowercase_ : Any = vit_model_tester.prepare_config_and_inputs() lowercase_ : str = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ : Dict = vision_config_and_inputs ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _UpperCAmelCase ( _A , unittest.TestCase ): def A ( self : Any ) -> Optional[int]: lowercase_ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( '''Rocketknight1/tiny-random-clip-tf''' , '''hf-internal-testing/tiny-random-bert''' ) lowercase_ : Optional[int] = 13 lowercase_ : Dict = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowercase_ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowercase_ : Dict = random_attention_mask([batch_size, 4] ) lowercase_ : Tuple = {'''pixel_values''': pixel_values, '''input_ids''': input_ids, '''attention_mask''': attention_mask} return model, inputs def A ( self : int , A : Tuple , A : List[str] ) -> Any: lowercase_ : str = TFCLIPVisionModel(A , name='''vision_model''' ) lowercase_ : Any = TFBertModel(A , name='''text_model''' ) return vision_model, text_model def A ( self : Dict ) -> Tuple: lowercase_ : Optional[int] = TFCLIPVisionModelTester(self ) lowercase_ : Tuple = TFBertModelTester(self ) lowercase_ : Optional[int] = clip_model_tester.prepare_config_and_inputs() lowercase_ : str = bert_model_tester.prepare_config_and_inputs() lowercase_ , lowercase_ : Tuple = vision_config_and_inputs ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _UpperCAmelCase ( unittest.TestCase ): @slow def A ( self : Union[str, Any] ) -> Tuple: lowercase_ : str = TFVisionTextDualEncoderModel.from_pretrained( '''clip-italian/clip-italian''' , logit_scale_init_value=1.0 , from_pt=A ) lowercase_ : Optional[int] = VisionTextDualEncoderProcessor.from_pretrained('''clip-italian/clip-italian''' ) lowercase_ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase_ : List[Any] = processor( text=['''una foto di un gatto''', '''una foto di un cane'''] , images=A , padding=A , return_tensors='''np''' ) lowercase_ : List[Any] = model(**A ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowercase_ : Any = np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , A , atol=1e-3 ) )
141
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCAmelCase ( _A ): def __init__( self : Optional[int] , A : VQModel , A : UNetaDModel , A : DDIMScheduler ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=A , unet=A , scheduler=A ) @torch.no_grad() def __call__( self : List[Any] , A : int = 1 , A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , A : float = 0.0 , A : int = 50 , A : Optional[str] = "pil" , A : bool = True , **A : Optional[int] , ) -> Union[Tuple, ImagePipelineOutput]: lowercase_ : Optional[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=A , ) lowercase_ : List[Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase_ : Union[str, Any] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature lowercase_ : Dict = '''eta''' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase_ : Dict = {} if accepts_eta: lowercase_ : int = eta for t in self.progress_bar(self.scheduler.timesteps ): lowercase_ : Optional[Any] = self.scheduler.scale_model_input(A , A ) # predict the noise residual lowercase_ : int = self.unet(A , A ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase_ : List[Any] = self.scheduler.step(A , A , A , **A ).prev_sample # decode the image latents with the VAE lowercase_ : int = self.vqvae.decode(A ).sample lowercase_ : List[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase_ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase_ : Tuple = self.numpy_to_pil(A ) if not return_dict: return (image,) return ImagePipelineOutput(images=A )
141
1