code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __lowerCAmelCase = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __lowerCAmelCase = {"facebook/blenderbot-3B": 1_2_8} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __lowerCamelCase ( ) -> Optional[Any]: _UpperCAmelCase = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) _UpperCAmelCase = bs[:] _UpperCAmelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(_lowerCAmelCase ) cs.append(2**8 + n ) n += 1 _UpperCAmelCase = [chr(_lowerCAmelCase ) for n in cs] return dict(zip(_lowerCAmelCase , _lowerCAmelCase ) ) def __lowerCamelCase ( _lowerCAmelCase ) -> Any: _UpperCAmelCase = set() _UpperCAmelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _UpperCAmelCase = char return pairs class __SCREAMING_SNAKE_CASE ( lowercase): __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Dict , __UpperCamelCase : int , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any]="replace" , __UpperCamelCase : str="<s>" , __UpperCamelCase : Union[str, Any]="</s>" , __UpperCamelCase : str="</s>" , __UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : List[str]="<pad>" , __UpperCamelCase : List[Any]="<mask>" , __UpperCamelCase : str=False , **__UpperCamelCase : Optional[Any] , ): _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , ) with open(A_ , encoding="utf-8" ) as vocab_handle: _UpperCAmelCase = json.load(A_ ) _UpperCAmelCase = {v: k for k, v in self.encoder.items()} _UpperCAmelCase = errors # how to handle errors in decoding _UpperCAmelCase = bytes_to_unicode() _UpperCAmelCase = {v: k for k, v in self.byte_encoder.items()} with open(A_ , encoding="utf-8" ) as merges_handle: _UpperCAmelCase = merges_handle.read().split("\n" )[1:-1] _UpperCAmelCase = [tuple(merge.split() ) for merge in bpe_merges] _UpperCAmelCase = dict(zip(A_ , range(len(A_ ) ) ) ) _UpperCAmelCase = {} _UpperCAmelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _UpperCAmelCase = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self : Tuple ): return len(self.encoder ) def UpperCAmelCase__ ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : Any , __UpperCamelCase : Tuple ): if token in self.cache: return self.cache[token] _UpperCAmelCase = tuple(A_ ) _UpperCAmelCase = get_pairs(A_ ) if not pairs: return token while True: _UpperCAmelCase = min(A_ , key=lambda __UpperCamelCase : self.bpe_ranks.get(A_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break _UpperCAmelCase = bigram _UpperCAmelCase = [] _UpperCAmelCase = 0 while i < len(A_ ): try: _UpperCAmelCase = word.index(A_ , A_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _UpperCAmelCase = j if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _UpperCAmelCase = tuple(A_ ) _UpperCAmelCase = new_word if len(A_ ) == 1: break else: _UpperCAmelCase = get_pairs(A_ ) _UpperCAmelCase = " ".join(A_ ) _UpperCAmelCase = word return word def UpperCAmelCase__ ( self : Optional[int] , __UpperCamelCase : Optional[Any] ): _UpperCAmelCase = [] for token in re.findall(self.pat , A_ ): _UpperCAmelCase = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(" " ) ) return bpe_tokens def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Tuple ): return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : str ): return self.decoder.get(A_ ) def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Any ): _UpperCAmelCase = "".join(A_ ) _UpperCAmelCase = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def UpperCAmelCase__ ( self : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : int = None ): if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _UpperCAmelCase = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) _UpperCAmelCase = os.path.join( A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(A_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + "\n" ) _UpperCAmelCase = 0 with open(A_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __UpperCamelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) _UpperCAmelCase = token_index writer.write(" ".join(A_ ) + "\n" ) index += 1 return vocab_file, merge_file def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def UpperCAmelCase__ ( self : Union[str, Any] , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Optional[Any]=False , **__UpperCamelCase : int ): _UpperCAmelCase = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()): _UpperCAmelCase = " " + text return (text, kwargs) def UpperCAmelCase__ ( self : str , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] = None ): return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self : Any , __UpperCamelCase : Any ): _UpperCAmelCase = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(A_ ) _UpperCAmelCase = " ".join(A_ ) _UpperCAmelCase = self.encode(A_ ) if len(A_ ) > self.model_max_length: _UpperCAmelCase = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
684
import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: str , lowerCAmelCase: str ) -> Union[str, Any]: # Construct model if gpta_config_file == "": _UpperCAmelCase : Optional[int] = GPTaConfig() else: _UpperCAmelCase : Optional[Any] = GPTaConfig.from_json_file(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = GPTaModel(lowerCAmelCase ) # Load weights from numpy load_tf_weights_in_gpta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model _UpperCAmelCase : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME _UpperCAmelCase : Optional[int] = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , lowerCAmelCase ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
300
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Dict = { '''facebook/s2t-wav2vec2-large-en-de''': ( '''https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class lowerCAmelCase ( __a ): '''simple docstring''' _A : Optional[Any] = '''speech_to_text_2''' _A : Optional[Any] = ['''past_key_values'''] _A : Tuple = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[Any] , __a : str=10000 , __a : str=6 , __a : Optional[int]=2048 , __a : Dict=4 , __a : str=0.0 , __a : Optional[Any]=True , __a : str="relu" , __a : Dict=256 , __a : str=0.1 , __a : Tuple=0.0 , __a : Any=0.0 , __a : Optional[int]=0.02 , __a : Any=2 , __a : Dict=True , __a : Optional[int]=1 , __a : Dict=0 , __a : List[Any]=2 , __a : str=1024 , **__a : Tuple , ) -> Dict: """simple docstring""" __lowercase : str = vocab_size __lowercase : Optional[int] = d_model __lowercase : Union[str, Any] = decoder_ffn_dim __lowercase : str = decoder_layers __lowercase : List[str] = decoder_attention_heads __lowercase : int = dropout __lowercase : List[str] = attention_dropout __lowercase : Any = activation_dropout __lowercase : Optional[Any] = activation_function __lowercase : Any = init_std __lowercase : Dict = decoder_layerdrop __lowercase : Tuple = use_cache __lowercase : Optional[Any] = decoder_layers __lowercase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : Tuple = max_target_positions super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
649
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Any=False ): __lowercase : Any = """backbone.""" if is_semantic else """""" __lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"{prefix}blocks.{i}.norm1.weight", F"beit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm1.bias", F"beit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.weight", F"beit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"{prefix}blocks.{i}.attn.proj.bias", F"beit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.weight", F"beit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"{prefix}blocks.{i}.norm2.bias", F"beit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.weight", F"beit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc1.bias", F"beit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.weight", F"beit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"{prefix}blocks.{i}.mlp.fc2.bias", F"beit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ (F"{prefix}cls_token", """beit.embeddings.cls_token"""), (F"{prefix}patch_embed.proj.weight", """beit.embeddings.patch_embeddings.projection.weight"""), (F"{prefix}patch_embed.proj.bias", """beit.embeddings.patch_embeddings.projection.bias"""), (F"{prefix}pos_embed", """beit.embeddings.position_embeddings"""), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ("""mask_token""", """beit.embeddings.mask_token"""), ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) else: # layernorm + classification head rename_keys.extend( [ ("""fc_norm.weight""", """beit.pooler.layernorm.weight"""), ("""fc_norm.bias""", """beit.pooler.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : List[Any]=False ): for i in range(config.num_hidden_layers ): __lowercase : Tuple = """backbone.""" if is_semantic else """""" # queries, keys and values __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.qkv.weight" ) __lowercase : Dict = state_dict.pop(F"{prefix}blocks.{i}.attn.q_bias" ) __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.attn.v_bias" ) __lowercase : List[str] = in_proj_weight[ : config.hidden_size, : ] __lowercase : Union[str, Any] = q_bias __lowercase : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __lowercase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __lowercase : str = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained __lowercase : int = state_dict.pop(F"{prefix}blocks.{i}.gamma_1" ) __lowercase : str = state_dict.pop(F"{prefix}blocks.{i}.gamma_2" ) __lowercase : List[str] = gamma_a __lowercase : Optional[int] = gamma_a def snake_case_ ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : int ): __lowercase : Tuple = dct.pop(lowerCAmelCase_ ) __lowercase : Tuple = val def snake_case_ ( ): __lowercase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __lowercase : Any = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int]=False ): __lowercase : Dict = False if """rvlcdip""" in checkpoint_url else True __lowercase : Tuple = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase_ , use_mask_token=lowerCAmelCase_ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: __lowercase : Union[str, Any] = 1024 __lowercase : Optional[int] = 4096 __lowercase : List[Any] = 24 __lowercase : Dict = 16 # labels if "rvlcdip" in checkpoint_url: __lowercase : Optional[int] = 16 __lowercase : Any = """huggingface/label-files""" __lowercase : Union[str, Any] = """rvlcdip-id2label.json""" __lowercase : List[str] = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="""dataset""" ) , """r""" ) ) __lowercase : Optional[int] = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} __lowercase : Union[str, Any] = idalabel __lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys __lowercase : Optional[int] = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="""cpu""" )["""model"""] __lowercase : Union[str, Any] = create_rename_keys(lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ , has_lm_head=lowerCAmelCase_ ) # load HuggingFace model __lowercase : Dict = BeitForMaskedImageModeling(lowerCAmelCase_ ) if has_lm_head else BeitForImageClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # Check outputs on an image __lowercase : List[str] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase_ ) __lowercase : List[str] = prepare_img() __lowercase : Optional[Any] = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""" ) __lowercase : Optional[int] = encoding["""pixel_values"""] __lowercase : str = model(lowerCAmelCase_ ) __lowercase : Tuple = outputs.logits # verify logits __lowercase : str = [1, 16] if """rvlcdip""" in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(lowerCAmelCase_ ), "Shape of logits not as expected" Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase_ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: if has_lm_head: __lowercase : Optional[Any] = """dit-base""" if """base""" in checkpoint_url else """dit-large""" else: __lowercase : Tuple = """dit-base-finetuned-rvlcdip""" if """dit-b""" in checkpoint_url else """dit-large-finetuned-rvlcdip""" image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=lowerCAmelCase_ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase_ , lowerCAmelCase_ ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=lowerCAmelCase_ , ) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) lowerCamelCase : List[str] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
649
1
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = "" for i in table: res += inp[i - 1] return res def lowerCamelCase__ (__lowerCamelCase ): return data[1:] + data[0] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Any = "" for i in range(len(lowerCamelCase_ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = int("0b" + data[0] + data[-1], 2 ) _SCREAMING_SNAKE_CASE : Any = int("0b" + data[1:3], 2 ) return bin(s[row][col] )[2:] def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : Tuple = message[:4] _SCREAMING_SNAKE_CASE : Tuple = message[4:] _SCREAMING_SNAKE_CASE : Optional[Any] = apply_table(lowerCamelCase_, lowerCamelCase_ ) _SCREAMING_SNAKE_CASE : List[str] = xor(lowerCamelCase_, lowerCamelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = apply_sbox(lowerCamelCase_, temp[:4] ) # noqa: E741 _SCREAMING_SNAKE_CASE : int = apply_sbox(lowerCamelCase_, temp[4:] ) _SCREAMING_SNAKE_CASE : Any = "0" * (2 - len(lowerCamelCase_ )) + l # noqa: E741 _SCREAMING_SNAKE_CASE : List[Any] = "0" * (2 - len(lowerCamelCase_ )) + r _SCREAMING_SNAKE_CASE : Optional[int] = apply_table(l + r, lowerCamelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = xor(lowerCamelCase_, lowerCamelCase_ ) return temp + right if __name__ == "__main__": UpperCamelCase__ =input('Enter 10 bit key: ') UpperCamelCase__ =input('Enter 8 bit message: ') UpperCamelCase__ =[6, 3, 7, 4, 8, 5, 10, 9] UpperCamelCase__ =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCamelCase__ =[2, 4, 3, 1] UpperCamelCase__ =[2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase__ =[4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase__ =[4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase__ =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase__ =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase__ =apply_table(key, paa_table) UpperCamelCase__ =temp[:5] UpperCamelCase__ =temp[5:] UpperCamelCase__ =left_shift(left) UpperCamelCase__ =left_shift(right) UpperCamelCase__ =apply_table(left + right, pa_table) UpperCamelCase__ =left_shift(left) UpperCamelCase__ =left_shift(right) UpperCamelCase__ =left_shift(left) UpperCamelCase__ =left_shift(right) UpperCamelCase__ =apply_table(left + right, pa_table) # encryption UpperCamelCase__ =apply_table(message, IP) UpperCamelCase__ =function(expansion, sa, sa, keya, temp) UpperCamelCase__ =temp[4:] + temp[:4] UpperCamelCase__ =function(expansion, sa, sa, keya, temp) UpperCamelCase__ =apply_table(temp, IP_inv) print('Cipher text is:', CT) # decryption UpperCamelCase__ =apply_table(CT, IP) UpperCamelCase__ =function(expansion, sa, sa, keya, temp) UpperCamelCase__ =temp[4:] + temp[:4] UpperCamelCase__ =function(expansion, sa, sa, keya, temp) UpperCamelCase__ =apply_table(temp, IP_inv) print('Plain text after decypting is:', PT)
249
import torch from torch import nn class __magic_name__ ( nn.Module ): def __init__( self : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Any=1 , UpperCamelCase__ : int=False ) -> Union[str, Any]: '''simple docstring''' super().__init__() UpperCAmelCase = n_token UpperCAmelCase = d_embed UpperCAmelCase = d_proj UpperCAmelCase = cutoffs + [n_token] UpperCAmelCase = [0] + self.cutoffs UpperCAmelCase = div_val UpperCAmelCase = self.cutoffs[0] UpperCAmelCase = len(self.cutoffs ) - 1 UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) UpperCAmelCase = nn.ModuleList() UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) else: self.out_projs.append(UpperCamelCase__ ) self.out_layers.append(nn.Linear(UpperCamelCase__ , UpperCamelCase__ ) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase , UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(UpperCamelCase__ , UpperCamelCase__ ) ) ) self.out_layers.append(nn.Linear(UpperCamelCase__ , r_idx - l_idx ) ) UpperCAmelCase = keep_order def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' if proj is None: UpperCAmelCase = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: UpperCAmelCase = nn.functional.linear(UpperCamelCase__ , proj.t().contiguous() ) UpperCAmelCase = nn.functional.linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : List[str]=False ) -> Optional[int]: '''simple docstring''' if labels is not None: # Shift so that tokens < n predict n UpperCAmelCase = hidden[..., :-1, :].contiguous() UpperCAmelCase = labels[..., 1:].contiguous() UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: UpperCAmelCase = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: UpperCAmelCase = labels != -1_00 UpperCAmelCase = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase = ( -nn.functional.log_softmax(UpperCamelCase__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: UpperCAmelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase = self.out_layers[i].weight UpperCAmelCase = self.out_layers[i].bias if i == 0: UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[0], biases[0], self.out_projs[0] UpperCAmelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) if labels is None: UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: UpperCAmelCase = torch.zeros_like(UpperCamelCase__ , dtype=hidden.dtype , device=hidden.device ) UpperCAmelCase = 0 UpperCAmelCase = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): UpperCAmelCase , UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue UpperCAmelCase = labels.index_select(0 , UpperCamelCase__ ) - l_idx UpperCAmelCase = head_logprob.index_select(0 , UpperCamelCase__ ) UpperCAmelCase = hidden.index_select(0 , UpperCamelCase__ ) else: UpperCAmelCase = hidden if i == 0: if labels is not None: UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[i], biases[i], self.out_projs[i] UpperCAmelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , UpperCamelCase__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> int: '''simple docstring''' if self.n_clusters == 0: UpperCAmelCase = self._compute_logit(UpperCamelCase__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(UpperCamelCase__ , dim=-1 ) else: # construct weights and biases UpperCAmelCase , UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: UpperCAmelCase , UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: UpperCAmelCase = self.out_layers[i].weight UpperCAmelCase = self.out_layers[i].bias if i == 0: UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(UpperCamelCase__ ) biases.append(UpperCamelCase__ ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[0], biases[0], self.out_projs[0] UpperCAmelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) UpperCAmelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) UpperCAmelCase = [0] + self.cutoffs for i in range(len(UpperCamelCase__ ) - 1 ): UpperCAmelCase , UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = weights[i], biases[i], self.out_projs[i] UpperCAmelCase = self._compute_logit(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase = nn.functional.log_softmax(UpperCamelCase__ , dim=1 ) UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i UpperCAmelCase = logprob_i return out
323
0
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class A_ : '''simple docstring''' def _snake_case ( self: Optional[Any] , a: Optional[int] , a: Optional[Any] , a: Optional[Any] ): return None class A_ : '''simple docstring''' def _snake_case ( self: List[Any] , a: Optional[int] , a: List[Any] , a: List[Any] , a: Dict ): return None class A_ ( unittest.TestCase ): '''simple docstring''' __snake_case = [ # (model_name, model_kwargs) ("""bert-base-cased""", {}), ("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def _snake_case ( self: List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'tf' , 12 , **a ) @require_torch @slow def _snake_case ( self: List[Any] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a , 'pt' , 12 , **a ) @require_torch @slow def _snake_case ( self: Any ): from transformers import BertModel __lowerCamelCase : Any = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words'] with NamedTemporaryFile(mode='w+t' ) as vocab_file: vocab_file.write('\n'.join(a ) ) vocab_file.flush() __lowerCamelCase : List[str] = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: __lowerCamelCase : List[Any] = BertModel(BertConfig(vocab_size=len(a ) ) ) model.save_pretrained(a ) self._test_export(a , 'pt' , 12 , a ) @require_tf @slow def _snake_case ( self: Optional[int] ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowerCamelCase : str = self._test_export(a , 'tf' , 12 , **a ) __lowerCamelCase : int = quantize(Path(a ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) @require_torch @slow def _snake_case ( self: Dict ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: __lowerCamelCase : List[Any] = self._test_export(a , 'pt' , 12 , **a ) __lowerCamelCase : int = quantize(a ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a ).stat().st_size: self.fail('Quantized model is bigger than initial ONNX model' ) def _snake_case ( self: Tuple , a: List[str] , a: Dict , a: Optional[Any] , a: List[str]=None , **a: Optional[int] ): try: # Compute path with TemporaryDirectory() as tempdir: __lowerCamelCase : Union[str, Any] = Path(a ).joinpath('model.onnx' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(a , a , a , a , a , **a ) return path except Exception as e: self.fail(a ) @require_torch @require_tokenizers @slow def _snake_case ( self: Optional[int] ): from transformers import BertModel __lowerCamelCase : str = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __lowerCamelCase : List[Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(a , a , 'pt' ) @require_tf @require_tokenizers @slow def _snake_case ( self: Optional[Any] ): from transformers import TFBertModel __lowerCamelCase : Optional[Any] = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) ) __lowerCamelCase : str = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' ) self._test_infer_dynamic_axis(a , a , 'tf' ) def _snake_case ( self: Any , a: Dict , a: int , a: List[str] ): __lowerCamelCase : List[str] = FeatureExtractionPipeline(a , a ) __lowerCamelCase : List[Any] = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1'] __lowerCamelCase : Optional[Any] = infer_shapes(a , a ) # Assert all variables are present self.assertEqual(len(a ) , len(a ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , a ) self.assertSequenceEqual(variable_names[3:] , a ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} ) self.assertDictEqual(shapes['output_1'] , {0: 'batch'} ) def _snake_case ( self: Optional[int] ): __lowerCamelCase : Dict = ['input_ids', 'attention_mask', 'token_type_ids'] __lowerCamelCase : str = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]} __lowerCamelCase : Optional[Any] = ensure_valid_input(FuncContiguousArgs() , a , a ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(a ) , 3 ) # Should have exactly the same input names self.assertEqual(set(a ) , set(a ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(a , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) __lowerCamelCase : List[Any] = ensure_valid_input(FuncNonContiguousArgs() , a , a ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(a ) , 1 ) self.assertEqual(len(a ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['input_ids'] ) self.assertEqual(ordered_input_names[0] , 'input_ids' ) def _snake_case ( self: List[Any] ): __lowerCamelCase : List[str] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' ) self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
721
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( 'The `inpainting.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionInpaintPipeline` instead.' )
230
0
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset _lowercase : Union[str, Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class _UpperCamelCase ( nn.Module ): """simple docstring""" def __init__( self , a__ ) -> Dict: super().__init__() A = torchvision.models.resnetaaa(pretrained=a__ ) A = list(model.children() )[:-2] A = nn.Sequential(*a__ ) A = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _UpperCAmelCase ( self , a__ ) -> List[str]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 A = self.pool(self.model(a__ ) ) A = torch.flatten(a__ , start_dim=2 ) A = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class _UpperCamelCase ( __snake_case ): """simple docstring""" def __init__( self , a__ , a__ , a__ , a__ , a__ ) -> Union[str, Any]: A = [json.loads(a__ ) for l in open(a__ )] A = os.path.dirname(a__ ) A = tokenizer A = labels A = len(a__ ) A = max_seq_length A = transforms def __len__( self ) -> Tuple: return len(self.data ) def __getitem__( self , a__ ) -> Optional[int]: A = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=a__ ) ) A , A , A = sentence[0], sentence[1:-1], sentence[-1] A = sentence[: self.max_seq_length] A = torch.zeros(self.n_classes ) A = 1 A = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) A = self.transforms(a__ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self ) -> Union[str, Any]: A = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def _lowerCAmelCase ( UpperCamelCase__: int ) -> List[str]: """simple docstring""" A = [len(row["""sentence"""] ) for row in batch] A , A = len(UpperCamelCase__ ), max(UpperCamelCase__ ) A = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) A = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): A = input_row["""sentence"""] A = 1 A = torch.stack([row["""image"""] for row in batch] ) A = torch.stack([row["""label"""] for row in batch] ) A = torch.stack([row["""image_start_token"""] for row in batch] ) A = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _lowerCAmelCase ( ) -> Optional[Any]: """simple docstring""" return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_77_70_44, 0.44_53_14_29, 0.40_66_10_17] , std=[0.12_22_19_94, 0.12_14_58_35, 0.14_38_04_69] , ), ] )
641
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Any = logging.get_logger(__name__) _lowercase : Union[str, Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _UpperCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase = 'efficientformer' def __init__( self , a__ = [3, 2, 6, 4] , a__ = [48, 96, 224, 448] , a__ = [True, True, True, True] , a__ = 448 , a__ = 32 , a__ = 4 , a__ = 7 , a__ = 5 , a__ = 8 , a__ = 4 , a__ = 0.0 , a__ = 16 , a__ = 3 , a__ = 3 , a__ = 3 , a__ = 2 , a__ = 1 , a__ = 0.0 , a__ = 1 , a__ = True , a__ = True , a__ = 1e-5 , a__ = "gelu" , a__ = 0.02 , a__ = 1e-12 , a__ = 224 , a__ = 1e-05 , **a__ , ) -> None: super().__init__(**a__ ) A = hidden_act A = hidden_dropout_prob A = hidden_sizes A = num_hidden_layers A = num_attention_heads A = initializer_range A = layer_norm_eps A = patch_size A = num_channels A = depths A = mlp_expansion_ratio A = downsamples A = dim A = key_dim A = attention_ratio A = resolution A = pool_size A = downsample_patch_size A = downsample_stride A = downsample_pad A = drop_path_rate A = num_metaad_blocks A = distillation A = use_layer_scale A = layer_scale_init_value A = image_size A = batch_norm_eps
641
1
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = int(_UpperCamelCase ) # Initialize Result __lowerCAmelCase = [] # Traverse through all denomination for denomination in reversed(_UpperCamelCase ): # Find denominations while int(_UpperCamelCase ) >= int(_UpperCamelCase ): total_value -= int(_UpperCamelCase ) answer.append(_UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": A : Union[str, Any] = [] A : Optional[int] = "0" if ( input("Do you want to enter your denominations ? (yY/n): ").strip().lower() == "y" ): A : Union[str, Any] = int(input("Enter the number of denominations you want to add: ").strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) A : List[Any] = input("Enter the change you want to make in Indian Currency: ").strip() else: # All denominations of Indian Currency if user does not enter A : Optional[Any] = [1, 2, 5, 1_0, 2_0, 5_0, 1_0_0, 5_0_0, 2_0_0_0] A : Optional[int] = input("Enter the change you want to make: ").strip() if int(value) == 0 or int(value) < 0: print("The total value cannot be zero or negative.") else: print(f'''Following is minimal change for {value}: ''') A : Optional[Any] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=" ")
282
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = len(_UpperCamelCase ) print("The following activities are selected:" ) # The first activity is always selected __lowerCAmelCase = 0 print(_UpperCamelCase , end="," ) # Consider rest of the activities for j in range(_UpperCamelCase ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(_UpperCamelCase , end="," ) __lowerCAmelCase = j if __name__ == "__main__": import doctest doctest.testmod() A : Dict = [1, 3, 0, 5, 8, 5] A : int = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
282
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase :Dict = logging.get_logger(__name__) lowerCamelCase :Dict = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] lowerCamelCase :Tuple = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[str] = torch.load(lowerCamelCase__ , map_location="""cpu""" ) return sd def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=rename_keys_prefix ): '''simple docstring''' A_ : Any = OrderedDict() A_ : List[str] = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A_ : Optional[Any] = key for name_pair in rename_keys_prefix: A_ : Dict = new_key.replace(name_pair[0] , name_pair[1] ) A_ : Any = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A_ : int = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.' # Get Config if "pre" in checkpoint_path: A_ : Tuple = """pretraining""" if "vcr" in checkpoint_path: A_ : Optional[int] = {"""visual_embedding_dim""": 5_12} elif "vqa_advanced" in checkpoint_path: A_ : Any = {"""visual_embedding_dim""": 20_48} elif "vqa" in checkpoint_path: A_ : List[str] = {"""visual_embedding_dim""": 20_48} elif "nlvr" in checkpoint_path: A_ : List[Any] = {"""visual_embedding_dim""": 10_24} else: raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' ) else: if "vcr" in checkpoint_path: A_ : Dict = {"""visual_embedding_dim""": 5_12} A_ : Any = """multichoice""" elif "vqa_advanced" in checkpoint_path: A_ : Tuple = {"""visual_embedding_dim""": 20_48} A_ : int = """vqa_advanced""" elif "vqa" in checkpoint_path: A_ : List[str] = {"""visual_embedding_dim""": 20_48, """num_labels""": 31_29} A_ : Optional[Any] = """vqa""" elif "nlvr" in checkpoint_path: A_ : str = { """visual_embedding_dim""": 10_24, """num_labels""": 2, } A_ : Tuple = """nlvr""" A_ : Union[str, Any] = VisualBertConfig(**lowerCamelCase__ ) # Load State Dict A_ : Any = load_state_dict(lowerCamelCase__ ) A_ : List[str] = get_new_dict(lowerCamelCase__ , lowerCamelCase__ ) if model_type == "pretraining": A_ : Union[str, Any] = VisualBertForPreTraining(lowerCamelCase__ ) elif model_type == "vqa": A_ : Union[str, Any] = VisualBertForQuestionAnswering(lowerCamelCase__ ) elif model_type == "nlvr": A_ : int = VisualBertForVisualReasoning(lowerCamelCase__ ) elif model_type == "multichoice": A_ : Dict = VisualBertForMultipleChoice(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Save Checkpoints Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') lowerCamelCase :Dict = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
667
'''simple docstring''' from __future__ import annotations def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) A_ : int = number_of_bytes // partitions A_ : Union[str, Any] = [] for i in range(lowerCamelCase__ ): A_ : Dict = i * bytes_per_partition + 1 A_ : Tuple = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f'{start_bytes}-{end_bytes}' ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
667
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __A =2_5_0_0_0_4 __A =2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = MBartTokenizer lowerCAmelCase__ = MBartTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def SCREAMING_SNAKE_CASE_( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = MBartTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: lowerCamelCase_ = MBartTokenizer(lowercase , keep_accents=lowercase ) lowerCamelCase_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowercase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def SCREAMING_SNAKE_CASE_( self ) -> Any: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase_ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase_ = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCamelCase_ = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowerCamelCase_ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=True lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) lowerCamelCase_ = tokenizer_p.save_pretrained(lowercase ) # Checks it save with the same files self.assertSequenceEqual(lowercase , lowercase ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) # Save tokenizer rust, legacy_format=False lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = tokenizer_r.save_pretrained(lowercase , legacy_format=lowercase ) lowerCamelCase_ = tokenizer_p.save_pretrained(lowercase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase_ = tokenizer_r.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer_p.from_pretrained(lowercase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase , lowercase ) ) shutil.rmtree(lowercase ) @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): lowerCAmelCase__ = 'facebook/mbart-large-en-ro' lowerCAmelCase__ = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowerCAmelCase__ = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowerCAmelCase__ = [82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def SCREAMING_SNAKE_CASE_( cls ) -> Optional[Any]: lowerCamelCase_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) lowerCamelCase_ = 1 return cls def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 ) def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: self.assertIn(lowercase , self.tokenizer.all_special_ids ) lowerCamelCase_ = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] lowerCamelCase_ = self.tokenizer.decode(lowercase , skip_special_tokens=lowercase ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase ) self.assertEqual(lowercase , lowercase ) self.assertNotIn(self.tokenizer.eos_token , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowercase ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(lowercase , max_length=lowercase , truncation=lowercase ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase ) self.assertEqual(len(lowercase ) , lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> str: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250026, 250001] ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase ) lowerCamelCase_ = MBartTokenizer.from_pretrained(lowercase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase , return_tensors="pt" ) lowerCamelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCamelCase_ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase , lowercase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: lowerCamelCase_ = self.tokenizer(self.src_text , padding=lowercase , truncation=lowercase , max_length=3 , return_tensors="pt" ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=lowercase , truncation=lowercase , max_length=10 , return_tensors="pt" ) lowerCamelCase_ = targets["input_ids"] lowerCamelCase_ = shift_tokens_right(lowercase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(lowercase ) , { # A, test, EOS, en_XX "input_ids": [[62, 3034, 2, 250004]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 250001, } , )
313
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , lowercase , lowercase=7 , lowercase=3 , lowercase=18 , lowercase=30 , lowercase=400 , lowercase=True , lowercase=None , lowercase=True , lowercase=None , lowercase=True , ) -> Union[str, Any]: lowerCamelCase_ = size if size is not None else {"shortest_edge": 20} lowerCamelCase_ = crop_size if crop_size is not None else {"height": 18, "width": 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_flip_channel_order def SCREAMING_SNAKE_CASE_( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class _SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): lowerCAmelCase__ = MobileViTImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: lowerCamelCase_ = MobileViTImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_( self ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase , "do_resize" ) ) self.assertTrue(hasattr(lowercase , "size" ) ) self.assertTrue(hasattr(lowercase , "do_center_crop" ) ) self.assertTrue(hasattr(lowercase , "center_crop" ) ) self.assertTrue(hasattr(lowercase , "do_flip_channel_order" ) ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 20} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: pass def SCREAMING_SNAKE_CASE_( self ) -> Union[str, Any]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def SCREAMING_SNAKE_CASE_( self ) -> str: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase ) for image in image_inputs: self.assertIsInstance(lowercase , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched lowerCamelCase_ = image_processing(lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
313
1
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=UpperCamelCase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _A ( ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) lowerCAmelCase__ = import_module("tasks" ) try: lowerCAmelCase__ = getattr(lowerCAmelCase_ , model_args.task_type ) lowerCAmelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase__ = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase__ = dict(enumerate(lowerCAmelCase_ ) ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid={label: i for i, label in enumerate(lowerCAmelCase_ )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase__ = np.argmax(lowerCAmelCase_ , axis=2 ) lowerCAmelCase__ , lowerCAmelCase__ = preds.shape lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase_ : EvalPrediction ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase_ , lowerCAmelCase_ ), "precision": precision_score(lowerCAmelCase_ , lowerCAmelCase_ ), "recall": recall_score(lowerCAmelCase_ , lowerCAmelCase_ ), "f1": fa_score(lowerCAmelCase_ , lowerCAmelCase_ ), } # Data collator lowerCAmelCase__ = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase__ = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCAmelCase_ ) # Predict if training_args.do_predict: lowerCAmelCase__ = TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = trainer.predict(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return results def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
61
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[str] = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys A__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
353
0
"""simple docstring""" from math import sqrt def _lowerCAmelCase ( UpperCamelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( UpperCamelCase_ = 1_0001 ): __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 while count != nth and number < 3: number += 1 if is_prime(UpperCamelCase_ ): count += 1 while count != nth: number += 2 if is_prime(UpperCamelCase_ ): count += 1 return number if __name__ == "__main__": print(F"""{solution() = }""")
248
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class SCREAMING_SNAKE_CASE_ : """simple docstring""" __lowercase : int __lowercase : TreeNode | None = None __lowercase : TreeNode | None = None __magic_name__ = namedtuple("CoinsDistribResult", "moves excess") def _lowerCAmelCase ( UpperCamelCase_ ): if root is None: return 0 # Validation def count_nodes(UpperCamelCase_ ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase_ ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(UpperCamelCase_ ) != count_coins(UpperCamelCase_ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(UpperCamelCase_ ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = get_distrib(node.left ) __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = get_distrib(node.right ) __SCREAMING_SNAKE_CASE = 1 - left_distrib_excess __SCREAMING_SNAKE_CASE = 1 - right_distrib_excess __SCREAMING_SNAKE_CASE = ( left_distrib_moves + right_distrib_moves + abs(UpperCamelCase_ ) + abs(UpperCamelCase_ ) ) __SCREAMING_SNAKE_CASE = node.data - coins_to_left - coins_to_right return CoinsDistribResult(UpperCamelCase_ , UpperCamelCase_ ) return get_distrib(UpperCamelCase_ )[0] if __name__ == "__main__": import doctest doctest.testmod()
248
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = { """microsoft/unispeech-sat-base-100h-libri-ft""": ( """https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json""" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowerCamelCase_ ( lowerCamelCase ): a__ = '''unispeech-sat''' def __init__( self , __lowerCAmelCase=3_2 , __lowerCAmelCase=7_6_8 , __lowerCAmelCase=1_2 , __lowerCAmelCase=1_2 , __lowerCAmelCase=3_0_7_2 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-5 , __lowerCAmelCase="group" , __lowerCAmelCase="gelu" , __lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase=False , __lowerCAmelCase=1_2_8 , __lowerCAmelCase=1_6 , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0.05 , __lowerCAmelCase=1_0 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0 , __lowerCAmelCase=1_0 , __lowerCAmelCase=0 , __lowerCAmelCase=3_2_0 , __lowerCAmelCase=2 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1_0_0 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=0.1 , __lowerCAmelCase="mean" , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=2_5_6 , __lowerCAmelCase=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 1_5_0_0) , __lowerCAmelCase=(5, 3, 3, 1, 1) , __lowerCAmelCase=(1, 2, 3, 1, 1) , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=0 , __lowerCAmelCase=1 , __lowerCAmelCase=2 , __lowerCAmelCase=5_0_4 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) __magic_name__ :Optional[int] = hidden_size __magic_name__ :Any = feat_extract_norm __magic_name__ :int = feat_extract_activation __magic_name__ :str = list(__lowerCAmelCase ) __magic_name__ :Dict = list(__lowerCAmelCase ) __magic_name__ :Tuple = list(__lowerCAmelCase ) __magic_name__ :Dict = conv_bias __magic_name__ :Dict = num_conv_pos_embeddings __magic_name__ :int = num_conv_pos_embedding_groups __magic_name__ :Any = len(self.conv_dim ) __magic_name__ :Optional[Any] = num_hidden_layers __magic_name__ :List[Any] = intermediate_size __magic_name__ :Union[str, Any] = hidden_act __magic_name__ :List[str] = num_attention_heads __magic_name__ :Tuple = hidden_dropout __magic_name__ :Tuple = attention_dropout __magic_name__ :List[str] = activation_dropout __magic_name__ :Any = feat_proj_dropout __magic_name__ :List[str] = final_dropout __magic_name__ :Tuple = layerdrop __magic_name__ :List[Any] = layer_norm_eps __magic_name__ :List[Any] = initializer_range __magic_name__ :Optional[Any] = vocab_size __magic_name__ :Tuple = num_clusters __magic_name__ :str = do_stable_layer_norm __magic_name__ :Dict = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __magic_name__ :Dict = apply_spec_augment __magic_name__ :List[Any] = mask_time_prob __magic_name__ :Tuple = mask_time_length __magic_name__ :Any = mask_time_min_masks __magic_name__ :Optional[Any] = mask_feature_prob __magic_name__ :int = mask_feature_length __magic_name__ :Optional[int] = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __magic_name__ :Any = num_codevectors_per_group __magic_name__ :Dict = num_codevector_groups __magic_name__ :List[str] = contrastive_logits_temperature __magic_name__ :List[Any] = feat_quantizer_dropout __magic_name__ :List[str] = num_negatives __magic_name__ :Union[str, Any] = codevector_dim __magic_name__ :Optional[int] = proj_codevector_dim __magic_name__ :Optional[Any] = diversity_loss_weight # ctc loss __magic_name__ :Tuple = ctc_loss_reduction __magic_name__ :Tuple = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. __magic_name__ :Tuple = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __magic_name__ :Any = list(__lowerCAmelCase ) __magic_name__ :str = list(__lowerCAmelCase ) __magic_name__ :str = list(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = xvector_output_dim @property def A ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt""" ), } } _SCREAMING_SNAKE_CASE = { """junnyu/roformer_chinese_small""": 1_536, """junnyu/roformer_chinese_base""": 1_536, """junnyu/roformer_chinese_char_small""": 512, """junnyu/roformer_chinese_char_base""": 512, """junnyu/roformer_small_discriminator""": 128, """junnyu/roformer_small_generator""": 128, } _SCREAMING_SNAKE_CASE = { """junnyu/roformer_chinese_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_base""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_small""": {"""do_lower_case""": True}, """junnyu/roformer_chinese_char_base""": {"""do_lower_case""": True}, """junnyu/roformer_small_discriminator""": {"""do_lower_case""": True}, """junnyu/roformer_small_generator""": {"""do_lower_case""": True}, } class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : Tuple = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Dict = PRETRAINED_INIT_CONFIGURATION _SCREAMING_SNAKE_CASE : str = RoFormerTokenizer def __init__( self : Dict , snake_case_ : Union[str, Any]=None , snake_case_ : Any=None , snake_case_ : Dict=True , snake_case_ : List[str]="[UNK]" , snake_case_ : Any="[SEP]" , snake_case_ : Optional[int]="[PAD]" , snake_case_ : Any="[CLS]" , snake_case_ : List[str]="[MASK]" , snake_case_ : int=True , snake_case_ : Union[str, Any]=None , **snake_case_ : Optional[int] , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) __snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("lowercase" , snake_case_ ) != do_lower_case or pre_tok_state.get("strip_accents" , snake_case_ ) != strip_accents ): __snake_case = getattr(snake_case_ , pre_tok_state.pop("type" ) ) __snake_case = do_lower_case __snake_case = strip_accents __snake_case = pre_tok_class(**snake_case_ ) __snake_case = do_lower_case def __getstate__( self : Tuple ): __snake_case = self.__dict__.copy() __snake_case = BertPreTokenizer() return state def __setstate__( self : Optional[Any] , snake_case_ : Dict ): __snake_case = d __snake_case = self.__dict__["_tokenizer"].get_vocab() __snake_case = PreTokenizer.custom(JiebaPreTokenizer(snake_case_ ) ) def lowerCAmelCase ( self : Dict , snake_case_ : Optional[Any] , snake_case_ : List[Any]=None ): __snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : List[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : Tuple , snake_case_ : str , snake_case_ : Optional[str] = None ): __snake_case = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ ) def lowerCAmelCase ( self : Any , snake_case_ : List[Any] , snake_case_ : Any=None , snake_case_ : Dict=None , snake_case_ : Optional[Any]=False , **snake_case_ : Optional[int] , ): __snake_case = BertPreTokenizer() return super().save_pretrained(snake_case_ , snake_case_ , snake_case_ , snake_case_ , **snake_case_ )
163
0
'''simple docstring''' import numpy as np def lowercase__ ( __UpperCamelCase : np.array ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) def lowercase__ ( __UpperCamelCase : np.array ): '''simple docstring''' return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
339
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase : int | str ): '''simple docstring''' __lowercase = str(__UpperCamelCase ) return n == n[::-1] def lowercase__ ( __UpperCamelCase : int = 1000000 ): '''simple docstring''' __lowercase = 0 for i in range(1 , __UpperCamelCase ): if is_palindrome(__UpperCamelCase ) and is_palindrome(bin(__UpperCamelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
339
1
from importlib import import_module from .logging import get_logger snake_case__ : Any = get_logger(__name__) class _A : '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[Any]=None ): '''simple docstring''' __lowercase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) __lowercase = module._original_module if isinstance(lowerCamelCase , _PatchedModuleObj ) else module class _A : '''simple docstring''' _snake_case : List[Any] = [] def __init__( self : Union[str, Any] , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Optional[int]=None ): '''simple docstring''' __lowercase = obj __lowercase = target __lowercase = new __lowercase = target.split("." )[0] __lowercase = {} __lowercase = attrs or [] def __enter__( self : int ): '''simple docstring''' *__lowercase , __lowercase = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase ) ): try: __lowercase = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __lowercase = getattr(self.obj , lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __lowercase = obj_attr # patch at top level setattr(self.obj , lowerCamelCase , _PatchedModuleObj(lowerCamelCase , attrs=self.attrs ) ) __lowercase = getattr(self.obj , lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase , lowerCamelCase , _PatchedModuleObj(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , attrs=self.attrs ) ) __lowercase = getattr(lowerCamelCase , lowerCamelCase ) # finally set the target attribute setattr(lowerCamelCase , lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __lowercase = getattr(import_module(".".join(lowerCamelCase ) ) , lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase ) is attr_value: __lowercase = getattr(self.obj , lowerCamelCase ) setattr(self.obj , lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __lowercase = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCamelCase , self.new ) else: raise RuntimeError(f"""Tried to patch attribute {target_attr} instead of a submodule.""" ) def __exit__( self : Any , *lowerCamelCase : List[str] ): '''simple docstring''' for attr in list(self.original ): setattr(self.obj , lowerCamelCase , self.original.pop(lowerCamelCase ) ) def _snake_case ( self : Optional[int] ): '''simple docstring''' self.__enter__() self._active_patches.append(self ) def _snake_case ( self : int ): '''simple docstring''' try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
402
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : int ): '''simple docstring''' warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
402
1
from __future__ import annotations from collections.abc import Iterator class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] ,_SCREAMING_SNAKE_CASE : Any ) -> Tuple: '''simple docstring''' A = value A = None A = None class UpperCamelCase : """simple docstring""" def __init__( self : Optional[int] ,_SCREAMING_SNAKE_CASE : int ) -> Optional[Any]: '''simple docstring''' A = tree def A( self : Union[str, Any] ,_SCREAMING_SNAKE_CASE : Optional[int] ) -> Union[str, Any]: '''simple docstring''' if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : List[Any] ) -> Any: '''simple docstring''' yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
702
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def snake_case ( UpperCAmelCase : List[str] ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def snake_case ( UpperCAmelCase : str ): # word like '180' or '身高' or '神' for char in word: A = ord(UpperCAmelCase ) if not _is_chinese_char(UpperCAmelCase ): return 0 return 1 def snake_case ( UpperCAmelCase : List[str] ): A = set() for token in tokens: A = len(UpperCAmelCase ) > 1 and is_chinese(UpperCAmelCase ) if chinese_word: word_set.add(UpperCAmelCase ) A = list(UpperCAmelCase ) return word_list def snake_case ( UpperCAmelCase : List[str], UpperCAmelCase : set() ): if not chinese_word_set: return bert_tokens A = max([len(UpperCAmelCase ) for w in chinese_word_set] ) A = bert_tokens A , A = 0, len(UpperCAmelCase ) while start < end: A = True if is_chinese(bert_word[start] ): A = min(end - start, UpperCAmelCase ) for i in range(UpperCAmelCase, 1, -1 ): A = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): A = '##' + bert_word[j] A = start + i A = False break if single_word: start += 1 return bert_word def snake_case ( UpperCAmelCase : List[str], UpperCAmelCase : LTP, UpperCAmelCase : BertTokenizer ): A = [] for i in range(0, len(UpperCAmelCase ), 1_00 ): A = ltp_tokenizer.seg(lines[i : i + 1_00] )[0] A = [get_chinese_word(UpperCAmelCase ) for r in res] ltp_res.extend(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) A = [] for i in range(0, len(UpperCAmelCase ), 1_00 ): A = bert_tokenizer(lines[i : i + 1_00], add_special_tokens=UpperCAmelCase, truncation=UpperCAmelCase, max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) A = [] for input_ids, chinese_word in zip(UpperCAmelCase, UpperCAmelCase ): A = [] for id in input_ids: A = bert_tokenizer._convert_id_to_token(UpperCAmelCase ) input_tokens.append(UpperCAmelCase ) A = add_sub_symbol(UpperCAmelCase, UpperCAmelCase ) A = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase ): if token[:2] == "##": A = token[2:] # save chinese tokens' pos if len(UpperCAmelCase ) == 1 and _is_chinese_char(ord(UpperCAmelCase ) ): ref_id.append(UpperCAmelCase ) ref_ids.append(UpperCAmelCase ) assert len(UpperCAmelCase ) == len(UpperCAmelCase ) return ref_ids def snake_case ( UpperCAmelCase : List[Any] ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name, 'r', encoding='utf-8' ) as f: A = f.readlines() A = [line.strip() for line in data if len(UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' A = LTP(args.ltp ) # faster in GPU device A = BertTokenizer.from_pretrained(args.bert ) A = prepare_ref(UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) with open(args.save_path, 'w', encoding='utf-8' ) as f: A = [json.dumps(UpperCAmelCase ) + '\n' for ref in ref_ids] f.writelines(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') lowerCAmelCase_ = parser.parse_args() main(args)
110
0
"""simple docstring""" def _UpperCamelCase ( _A , _A ) -> bool: """simple docstring""" _UpperCAmelCase = len(_A ) _UpperCAmelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _UpperCAmelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): _UpperCAmelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: _UpperCAmelCase = subset[i - 1][j] if arr[i - 1] <= j: _UpperCAmelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
555
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a : Dict = logging.get_logger(__name__) # TODO: upload to AWS a : Tuple = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class a_ ( _UpperCAmelCase ): a : int = 'retribert' def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=3_05_22 , __UpperCamelCase : int=7_68 , __UpperCamelCase : Any=8 , __UpperCamelCase : Dict=12 , __UpperCamelCase : List[Any]=30_72 , __UpperCamelCase : List[Any]="gelu" , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : Union[str, Any]=5_12 , __UpperCamelCase : Dict=2 , __UpperCamelCase : Tuple=0.0_2 , __UpperCamelCase : List[str]=1e-12 , __UpperCamelCase : int=True , __UpperCamelCase : str=1_28 , __UpperCamelCase : Union[str, Any]=0 , **__UpperCamelCase : Any , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = share_encoders _UpperCAmelCase = projection_dim
555
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( A__ , A__ , unittest.TestCase ): __lowerCamelCase = CycleDiffusionPipeline __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """negative_prompt""", """height""", """width""", """negative_prompt_embeds""", } __lowerCamelCase = PipelineTesterMixin.required_optional_params - {"""latents"""} __lowerCamelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""source_prompt"""} ) __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowerCamelCase = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) lowerCamelCase__: Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , num_train_timesteps=1000 , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) lowerCamelCase__: Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) lowerCamelCase__: List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowerCamelCase__: int = CLIPTextModel(__a ) lowerCamelCase__: Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase_ ( self : List[str] , __a : int , __a : List[Any]=0 ): '''simple docstring''' lowerCamelCase__: Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowerCamelCase__: Any = image / 2 + 0.5 if str(__a ).startswith("""mps""" ): lowerCamelCase__: Optional[int] = torch.manual_seed(__a ) else: lowerCamelCase__: List[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase__: Any = { """prompt""": """An astronaut riding an elephant""", """source_prompt""": """An astronaut riding a horse""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """eta""": 0.1, """strength""": 0.8, """guidance_scale""": 3, """source_guidance_scale""": 1, """output_type""": """numpy""", } return inputs def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: Any = self.get_dummy_components() lowerCamelCase__: Union[str, Any] = CycleDiffusionPipeline(**__a ) lowerCamelCase__: List[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: Tuple = self.get_dummy_inputs(__a ) lowerCamelCase__: List[Any] = pipe(**__a ) lowerCamelCase__: List[Any] = output.images lowerCamelCase__: List[Any] = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase__: str = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: Any = self.get_dummy_components() for name, module in components.items(): if hasattr(__a , """half""" ): lowerCamelCase__: Optional[int] = module.half() lowerCamelCase__: Any = CycleDiffusionPipeline(**__a ) lowerCamelCase__: str = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: Dict = self.get_dummy_inputs(__a ) lowerCamelCase__: Tuple = pipe(**__a ) lowerCamelCase__: int = output.images lowerCamelCase__: int = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) lowerCamelCase__: Optional[int] = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return super().test_save_load_local() @unittest.skip("""non-deterministic pipeline""" ) def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return super().test_inference_batch_single_identical() @skip_mps def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def lowerCamelCase_ ( self : str ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def lowerCamelCase_ ( self : int ): '''simple docstring''' return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__: Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCamelCase__: Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy""" ) lowerCamelCase__: int = init_image.resize((512, 512) ) lowerCamelCase__: Optional[Any] = """CompVis/stable-diffusion-v1-4""" lowerCamelCase__: List[Any] = DDIMScheduler.from_pretrained(__a , subfolder="""scheduler""" ) lowerCamelCase__: List[str] = CycleDiffusionPipeline.from_pretrained( __a , scheduler=__a , safety_checker=__a , torch_dtype=torch.floataa , revision="""fp16""" ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: Union[str, Any] = """A black colored car""" lowerCamelCase__: Optional[Any] = """A blue colored car""" lowerCamelCase__: List[str] = torch.manual_seed(0 ) lowerCamelCase__: str = pipe( prompt=__a , source_prompt=__a , image=__a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__a , output_type="""np""" , ) lowerCamelCase__: Dict = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/cycle-diffusion/black_colored_car.png""" ) lowerCamelCase__: Dict = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy""" ) lowerCamelCase__: List[str] = init_image.resize((512, 512) ) lowerCamelCase__: List[str] = """CompVis/stable-diffusion-v1-4""" lowerCamelCase__: Tuple = DDIMScheduler.from_pretrained(__a , subfolder="""scheduler""" ) lowerCamelCase__: Union[str, Any] = CycleDiffusionPipeline.from_pretrained(__a , scheduler=__a , safety_checker=__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: Optional[int] = """A black colored car""" lowerCamelCase__: str = """A blue colored car""" lowerCamelCase__: Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__: Dict = pipe( prompt=__a , source_prompt=__a , image=__a , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=__a , output_type="""np""" , ) lowerCamelCase__: int = output.images assert np.abs(image - expected_image ).max() < 2e-2
242
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class lowerCamelCase__ ( A__ ): __lowerCamelCase = """efficientnet""" def __init__( self : List[Any] , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.001 , __a : float = 0.99 , __a : float = 0.5 , __a : float = 0.2 , **__a : Optional[Any] , ): '''simple docstring''' super().__init__(**__a ) lowerCamelCase__: str = num_channels lowerCamelCase__: Optional[Any] = image_size lowerCamelCase__: str = width_coefficient lowerCamelCase__: int = depth_coefficient lowerCamelCase__: Optional[Any] = depth_divisor lowerCamelCase__: Union[str, Any] = kernel_sizes lowerCamelCase__: str = in_channels lowerCamelCase__: int = out_channels lowerCamelCase__: Union[str, Any] = depthwise_padding lowerCamelCase__: List[str] = strides lowerCamelCase__: Tuple = num_block_repeats lowerCamelCase__: int = expand_ratios lowerCamelCase__: List[str] = squeeze_expansion_ratio lowerCamelCase__: Tuple = hidden_act lowerCamelCase__: Optional[Any] = hidden_dim lowerCamelCase__: List[Any] = pooling_type lowerCamelCase__: Optional[int] = initializer_range lowerCamelCase__: Any = batch_norm_eps lowerCamelCase__: Union[str, Any] = batch_norm_momentum lowerCamelCase__: List[str] = dropout_rate lowerCamelCase__: Dict = drop_connect_rate lowerCamelCase__: Dict = sum(__a ) * 4 class lowerCamelCase__ ( A__ ): __lowerCamelCase = version.parse("""1.11""" ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' return 1e-5
242
1
'''simple docstring''' import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=50 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=None , ) -> str: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = initializer_range A_ = use_labels A_ = scope def snake_case_ ( self ) -> str: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = self.get_config() return config, input_ids, input_mask, token_labels def snake_case_ ( self ) -> Any: '''simple docstring''' return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def snake_case_ ( self ) -> Any: '''simple docstring''' ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.prepare_config_and_inputs() A_ = True A_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' A_ = BertGenerationEncoder(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ) A_ = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' A_ = True A_ = BertGenerationEncoder(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , ) A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = True A_ = True A_ = BertGenerationDecoder(config=UpperCamelCase__ ).to(UpperCamelCase__ ).eval() # first forward pass A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ , ) A_ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A_ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A_ = torch.cat([input_ids, next_tokens] , dim=-1 ) A_ = torch.cat([input_mask, next_mask] , dim=-1 ) A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] A_ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , encoder_attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ , output_hidden_states=UpperCamelCase__ , )["""hidden_states"""][0] # select random slice A_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A_ = output_from_no_past[:, -3:, random_slice_idx].detach() A_ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , ) -> Any: '''simple docstring''' A_ = BertGenerationDecoder(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ , A_ , A_ , A_ = self.prepare_config_and_inputs() A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__ ( _snake_case , _snake_case , _snake_case , unittest.TestCase ): lowercase = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () lowercase = (BertGenerationDecoder,) if is_torch_available() else () lowercase = ( {"feature-extraction": BertGenerationEncoder, "text-generation": BertGenerationDecoder} if is_torch_available() else {} ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' A_ = BertGenerationEncoderTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ , A_ , A_ , A_ = self.model_tester.prepare_config_and_inputs() A_ = """bert""" self.model_tester.create_and_check_model(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*UpperCamelCase__ ) def snake_case_ ( self ) -> Dict: '''simple docstring''' # This regression test was failing with PyTorch < 1.3 ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = self.model_tester.prepare_config_and_inputs_for_decoder() A_ = None self.model_tester.create_and_check_model_as_decoder( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*UpperCamelCase__ ) @slow def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(UpperCamelCase__ ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> str: '''simple docstring''' A_ = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ )[0] A_ = torch.Size([1, 8, 1024] ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @require_torch class A__ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Tuple: '''simple docstring''' A_ = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) A_ = torch.tensor([[101, 7592, 1010, 2026, 3899, 2003, 10140, 102]] ) with torch.no_grad(): A_ = model(UpperCamelCase__ )[0] A_ = torch.Size([1, 8, 50358] ) self.assertEqual(output.shape , UpperCamelCase__ ) A_ = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
288
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class A__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=12 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=99 , UpperCamelCase__=32 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=0.02 , UpperCamelCase__=0 , UpperCamelCase__=None , ) -> Union[str, Any]: '''simple docstring''' A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = projection_dim A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = dropout A_ = attention_dropout A_ = max_position_embeddings A_ = initializer_range A_ = scope A_ = bos_token_id def snake_case_ ( self ) -> Dict: '''simple docstring''' A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: A_ = input_mask.numpy() A_ , A_ = input_mask.shape A_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCamelCase__ ): A_ = 1 A_ = 0 A_ = self.get_config() return config, input_ids, tf.convert_to_tensor(UpperCamelCase__ ) def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' A_ = TFBlipTextModel(config=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , training=UpperCamelCase__ ) A_ = model(UpperCamelCase__ , training=UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' A_ = self.prepare_config_and_inputs() A_ , A_ , A_ = config_and_inputs A_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A__ ( _snake_case , unittest.TestCase ): lowercase = (TFBlipTextModel,) if is_tf_available() else () lowercase = False lowercase = False lowercase = False def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = BlipTextModelTester(self ) A_ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def snake_case_ ( self ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() def snake_case_ ( self ) -> str: '''simple docstring''' A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""Blip does not use inputs_embeds""" ) def snake_case_ ( self ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def snake_case_ ( self ) -> List[Any]: '''simple docstring''' pass @unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""" ) def snake_case_ ( self ) -> Any: '''simple docstring''' pass @slow def snake_case_ ( self ) -> List[Any]: '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFBlipTextModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__=True ) -> str: '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=UpperCamelCase__ )
288
1
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class __lowerCAmelCase : def __init__( self , lowerCAmelCase , lowerCAmelCase=13 , lowerCAmelCase=10 , lowerCAmelCase=3 , lowerCAmelCase=2 , lowerCAmelCase=2 , lowerCAmelCase=2 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=32 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=37 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=10 , lowerCAmelCase=0.02 , lowerCAmelCase=0.9 , lowerCAmelCase=None , ) -> Optional[int]: '''simple docstring''' _lowercase =parent _lowercase =batch_size _lowercase =image_size _lowercase =num_channels _lowercase =patch_size _lowercase =tubelet_size _lowercase =num_frames _lowercase =is_training _lowercase =use_labels _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =mask_ratio _lowercase =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame _lowercase =(image_size // patch_size) ** 2 _lowercase =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos _lowercase =int(mask_ratio * self.seq_length ) def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =self.get_config() return config, pixel_values, labels def A__ ( self ) -> List[str]: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowercase =VideoMAEModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() _lowercase =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowercase =VideoMAEForPreTraining(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase =torch.ones((self.num_masks,) ) _lowercase =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) _lowercase =mask.expand(self.batch_size , -1 ).bool() _lowercase =model(lowerCAmelCase , lowerCAmelCase ) # model only returns predictions for masked patches _lowercase =mask.sum().item() _lowercase =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() _lowercase =config_and_inputs _lowercase ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): _a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) _a = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =VideoMAEModelTester(self ) _lowercase =ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase , hidden_size=37 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ) -> List[str]: '''simple docstring''' _lowercase =copy.deepcopy(lowerCAmelCase ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch _lowercase =torch.ones((self.model_tester.num_masks,) ) _lowercase =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) _lowercase =mask.expand(self.model_tester.batch_size , -1 ).bool() _lowercase =bool_masked_pos.to(lowerCAmelCase ) if return_labels: if model_class in [ *get_values(lowerCAmelCase ), ]: _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def A__ ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds' ) def A__ ( self ) -> List[str]: '''simple docstring''' pass def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowercase =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase , nn.Linear ) ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =model_class(lowerCAmelCase ) _lowercase =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase =[*signature.parameters.keys()] _lowercase =['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCAmelCase ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =VideoMAEModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' if not self.has_attentions: pass else: _lowercase =self.model_tester.prepare_config_and_inputs_for_common() _lowercase =True for model_class in self.all_model_classes: _lowercase =self.model_tester.seq_length - self.model_tester.num_masks _lowercase =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) _lowercase =True _lowercase =False _lowercase =True _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) _lowercase =outputs.attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _lowercase =True _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) _lowercase =outputs.attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _lowercase =len(lowerCAmelCase ) # Check attention is always last and order is fine _lowercase =True _lowercase =True _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase ) ) _lowercase =outputs.attentions self.assertEqual(len(lowerCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def A__ ( self ) -> Tuple: '''simple docstring''' def check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): _lowercase =model_class(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() with torch.no_grad(): _lowercase =model(**self._prepare_for_class(lowerCAmelCase , lowerCAmelCase ) ) _lowercase =outputs.hidden_states _lowercase =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase ) , lowerCAmelCase ) _lowercase =self.model_tester.seq_length - self.model_tester.num_masks _lowercase =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _lowercase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase =True check_hidden_states_output(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def A__ ( self ) -> str: '''simple docstring''' pass def a ( ) -> Tuple: """simple docstring""" _lowercase =hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _lowercase =np.load(snake_case_ ) return list(snake_case_ ) @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def A__ ( self ) -> List[str]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def A__ ( self ) -> Optional[Any]: '''simple docstring''' _lowercase =VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics' ).to( lowerCAmelCase ) _lowercase =self.default_image_processor _lowercase =prepare_video() _lowercase =image_processor(lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase ) # verify the logits _lowercase =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) _lowercase =torch.tensor([0.3669, -0.0688, -0.2421] ).to(lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase , atol=1e-4 ) ) @slow def A__ ( self ) -> List[str]: '''simple docstring''' _lowercase =VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' ).to(lowerCAmelCase ) _lowercase =self.default_image_processor _lowercase =prepare_video() _lowercase =image_processor(lowerCAmelCase , return_tensors='pt' ).to(lowerCAmelCase ) # add boolean mask, indicating which patches to mask _lowercase =hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _lowercase =torch.load(lowerCAmelCase ) # forward pass with torch.no_grad(): _lowercase =model(**lowerCAmelCase ) # verify the logits _lowercase =torch.Size([1, 1_408, 1_536] ) _lowercase =torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=lowerCAmelCase ) self.assertEqual(outputs.logits.shape , lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) _lowercase =torch.tensor([0.5142] , device=lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) _lowercase =VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowerCAmelCase ).to( lowerCAmelCase ) with torch.no_grad(): _lowercase =model(**lowerCAmelCase ) _lowercase =torch.tensor(torch.tensor([0.6469] ) , device=lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.loss , lowerCAmelCase , atol=1e-4 ) )
719
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def a ( A__ : List[Any] ) -> Union[str, Any]: """simple docstring""" if isinstance(A__ , collections.abc.Iterable ): return x return (x, x) @require_tf class __lowerCAmelCase : def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' pass def A__ ( self ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =VisionTextDualEncoderConfig.from_vision_text_configs(lowerCAmelCase , lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel(lowerCAmelCase ) _lowercase =model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> int: '''simple docstring''' _lowercase , _lowercase =self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase ) _lowercase =model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> Union[str, Any]: '''simple docstring''' _lowercase , _lowercase =self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) _lowercase ={'vision_model': vision_model, 'text_model': text_model} _lowercase =TFVisionTextDualEncoderModel.from_vision_text_pretrained(**lowerCAmelCase ) _lowercase =model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> int: '''simple docstring''' _lowercase , _lowercase =self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase ) _lowercase =model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) _lowercase =output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase ) _lowercase =model(input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase ) _lowercase =after_output[0].numpy() _lowercase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase , 1e-5 ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase , _lowercase =self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase ) _lowercase =model( input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase ) _lowercase =output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) _lowercase =to_atuple(vision_model.config.image_size ) _lowercase =to_atuple(vision_model.config.patch_size ) _lowercase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase =num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowercase =output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' _lowercase =np.abs((a - b) ).max() self.assertLessEqual(lowerCAmelCase , lowerCAmelCase , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def A__ ( self ) -> str: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**lowerCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**lowerCAmelCase ) def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**lowerCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() self.check_save_load(**lowerCAmelCase ) def A__ ( self ) -> Tuple: '''simple docstring''' _lowercase =self.prepare_config_and_inputs() self.check_vision_text_output_attention(**lowerCAmelCase ) @slow def A__ ( self ) -> Union[str, Any]: '''simple docstring''' _lowercase , _lowercase =self.get_pretrained_model_and_inputs() _lowercase =model_a(**lowerCAmelCase ) _lowercase =outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel.from_pretrained(lowerCAmelCase ) _lowercase =model_a(**lowerCAmelCase ) _lowercase =after_outputs[0].numpy() _lowercase =np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCAmelCase , 1e-5 ) @require_tf class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): def A__ ( self ) -> List[Any]: '''simple docstring''' _lowercase =TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) _lowercase =13 _lowercase =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowercase =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowercase =random_attention_mask([batch_size, 4] ) _lowercase ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> List[Any]: '''simple docstring''' _lowercase =TFViTModel(lowerCAmelCase , name='vision_model' ) _lowercase =TFBertModel(lowerCAmelCase , name='text_model' ) return vision_model, text_model def A__ ( self ) -> Any: '''simple docstring''' _lowercase =TFViTModelTester(self ) _lowercase =TFBertModelTester(self ) _lowercase =vit_model_tester.prepare_config_and_inputs() _lowercase =bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): def A__ ( self ) -> str: '''simple docstring''' _lowercase =TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) _lowercase =13 _lowercase =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowercase =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowercase =random_attention_mask([batch_size, 4] ) _lowercase ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=None , **lowerCAmelCase ) -> List[str]: '''simple docstring''' _lowercase , _lowercase =self.get_vision_text_model(lowerCAmelCase , lowerCAmelCase ) _lowercase =TFVisionTextDualEncoderModel(vision_model=lowerCAmelCase , text_model=lowerCAmelCase ) _lowercase =model( input_ids=lowerCAmelCase , pixel_values=lowerCAmelCase , attention_mask=lowerCAmelCase , output_attentions=lowerCAmelCase ) _lowercase =output.vision_model_output.attentions self.assertEqual(len(lowerCAmelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowercase =to_atuple(vision_model.config.image_size ) _lowercase =to_atuple(vision_model.config.patch_size ) _lowercase =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) _lowercase =num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) _lowercase =output.text_model_output.attentions self.assertEqual(len(lowerCAmelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =TFDeiTModel(lowerCAmelCase , name='vision_model' ) _lowercase =TFRobertaModel(lowerCAmelCase , name='text_model' ) return vision_model, text_model def A__ ( self ) -> Any: '''simple docstring''' _lowercase =TFDeiTModelTester(self ) _lowercase =TFRobertaModelTester(self ) _lowercase =vit_model_tester.prepare_config_and_inputs() _lowercase =bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase =vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __lowerCAmelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): def A__ ( self ) -> str: '''simple docstring''' _lowercase =TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) _lowercase =13 _lowercase =floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) _lowercase =ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) _lowercase =random_attention_mask([batch_size, 4] ) _lowercase ={'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def A__ ( self , lowerCAmelCase , lowerCAmelCase ) -> Tuple: '''simple docstring''' _lowercase =TFCLIPVisionModel(lowerCAmelCase , name='vision_model' ) _lowercase =TFBertModel(lowerCAmelCase , name='text_model' ) return vision_model, text_model def A__ ( self ) -> str: '''simple docstring''' _lowercase =TFCLIPVisionModelTester(self ) _lowercase =TFBertModelTester(self ) _lowercase =clip_model_tester.prepare_config_and_inputs() _lowercase =bert_model_tester.prepare_config_and_inputs() _lowercase , _lowercase =vision_config_and_inputs ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) =text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __lowerCAmelCase ( unittest.TestCase ): @slow def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=lowerCAmelCase ) _lowercase =VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) _lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowercase =processor( text=['una foto di un gatto', 'una foto di un cane'] , images=lowerCAmelCase , padding=lowerCAmelCase , return_tensors='np' ) _lowercase =model(**lowerCAmelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) _lowercase =np.array([[1.2284727, 0.3104122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , lowerCAmelCase , atol=1e-3 ) )
380
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow _A : Optional[int] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) _A : Optional[Any] = logging.getLogger() def UpperCamelCase_ ( ) -> List[Any]: '''simple docstring''' __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""-f""" ) __lowerCAmelCase = parser.parse_args() return args.f def UpperCamelCase_ ( snake_case_ : Optional[int] , snake_case_ : str="eval" ) -> str: '''simple docstring''' __lowerCAmelCase = os.path.join(snake_case_ , f"""{split}_results.json""" ) if os.path.exists(snake_case_ ): with open(snake_case_ , """r""" ) as f: return json.load(snake_case_ ) raise ValueError(f"""can't find {path}""" ) _A : Union[str, Any] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' def a ( self : List[Any] ) -> List[Any]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_flax_glue.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) @slow def a ( self : Optional[Any] ) -> Dict: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_clm_flax.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result["""eval_perplexity"""] , 1_00 ) @slow def a ( self : Optional[Any] ) -> Optional[int]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_summarization_flax.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ , split="""test""" ) self.assertGreaterEqual(result["""test_rouge1"""] , 10 ) self.assertGreaterEqual(result["""test_rouge2"""] , 2 ) self.assertGreaterEqual(result["""test_rougeL"""] , 7 ) self.assertGreaterEqual(result["""test_rougeLsum"""] , 7 ) @slow def a ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_mlm_flax.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result["""eval_perplexity"""] , 42 ) @slow def a ( self : Any ) -> Tuple: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_ta_mlm_flax.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.4_2 ) @slow def a ( self : Optional[int] ) -> List[str]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __lowerCAmelCase = 7 if get_gpu_count() > 1 else 2 __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_flax_ner.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.7_5 ) self.assertGreaterEqual(result["""eval_f1"""] , 0.3 ) @slow def a ( self : Any ) -> Optional[Any]: __lowerCAmelCase = self.get_auto_remove_tmp_dir() __lowerCAmelCase = f""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , """argv""" , SCREAMING_SNAKE_CASE__ ): run_qa.main() __lowerCAmelCase = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_f1"""] , 30 ) self.assertGreaterEqual(result["""eval_exact"""] , 30 )
427
'''simple docstring''' import math def UpperCamelCase_ ( snake_case_ : float , snake_case_ : float ) -> float: '''simple docstring''' if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(snake_case_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
427
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase__ ( lowerCamelCase ): lowercase :List[str] = FileLock(str(tmpdir / "foo.lock" ) ) lowercase :Tuple = FileLock(str(tmpdir / "foo.lock" ) ) lowercase :str = 0.01 with locka.acquire(): with pytest.raises(lowercase__ ): lowercase :str = time.time() locka.acquire(lowercase__ ) assert time.time() - _start > timeout def UpperCAmelCase__ ( lowerCamelCase ): lowercase :Union[str, Any] = "a" * 1000 + ".lock" lowercase :Optional[Any] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(lowercase__ ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowercase :Optional[int] = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(lowercase__ ): locka.acquire(0 )
719
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: Union[str, Any]=None , **_lowerCAmelCase: Any ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) lowercase :str = model lowercase :Any = kwargs.get("model_save_dir" , _lowerCAmelCase ) lowercase :Dict = kwargs.get("latest_model_name" , _lowerCAmelCase ) def __call__( self: Optional[Any] , **_lowerCAmelCase: List[Any] ): lowercase :List[str] = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: List[Any]=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) lowercase :int = "CPUExecutionProvider" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: Optional[str] = None , **_lowerCAmelCase: Any ): lowercase :Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowercase :Tuple = self.model_save_dir.joinpath(self.latest_model_name ) lowercase :Optional[int] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowercase :Tuple = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): lowercase :Dict = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: int , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Dict , _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: Optional[Union[bool, str, None]] = None , _lowerCAmelCase: Optional[Union[str, None]] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional["ort.SessionOptions"] = None , **_lowerCAmelCase: Optional[int] , ): lowercase :List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): lowercase :Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) lowercase :Optional[Any] = Path(_lowerCAmelCase ) # load model from hub else: # download model lowercase :str = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) lowercase :Optional[int] = Path(_lowerCAmelCase ).parent lowercase :Tuple = Path(_lowerCAmelCase ).name lowercase :Tuple = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: str , _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional[str] = None , **_lowerCAmelCase: Any , ): lowercase :List[str] = None if len(str(_lowerCAmelCase ).split("@" ) ) == 2: lowercase , lowercase :Tuple = model_id.split("@" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
453
0
'''simple docstring''' from maths.prime_check import is_prime def lowerCamelCase__ ( __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): _UpperCAmelCase : int =f"Input value of [number={number}] must be an integer" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
446
import cva import numpy as np class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase_ : float , lowerCAmelCase_ : int ) -> List[Any]: """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('''invalid k value''' ) def __str__( self : Tuple ) -> str: """simple docstring""" return str(self.k ) def _lowercase ( self : List[str] , lowerCAmelCase_ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" SCREAMING_SNAKE_CASE_ = cva.imread(lowerCAmelCase_ , 0 ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(lowerCAmelCase_ , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = np.gradient(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(lowerCAmelCase_ , h - offset ): for x in range(lowerCAmelCase_ , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A_ = HarrisCorner(0.04, 3) A_ ,A_ = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
393
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase ( __snake_case ): a: torch.FloatTensor class UpperCAmelCase ( __snake_case , __snake_case ): @register_to_config def __init__( self: str , __UpperCamelCase: int = 6_5536 , __UpperCamelCase: Optional[int] = None , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 2 , __UpperCamelCase: int = 0 , __UpperCamelCase: str = "fourier" , __UpperCamelCase: bool = True , __UpperCamelCase: bool = False , __UpperCamelCase: float = 0.0 , __UpperCamelCase: Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , __UpperCamelCase: Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , __UpperCamelCase: Tuple[str] = "UNetMidBlock1D" , __UpperCamelCase: str = None , __UpperCamelCase: Tuple[int] = (32, 32, 64) , __UpperCamelCase: str = None , __UpperCamelCase: int = 8 , __UpperCamelCase: int = 1 , __UpperCamelCase: bool = False , ): super().__init__() _a = sample_size # time if time_embedding_type == "fourier": _a = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=__UpperCamelCase , log=__UpperCamelCase , flip_sin_to_cos=__UpperCamelCase ) _a = 2 * block_out_channels[0] elif time_embedding_type == "positional": _a = Timesteps( block_out_channels[0] , flip_sin_to_cos=__UpperCamelCase , downscale_freq_shift=__UpperCamelCase ) _a = block_out_channels[0] if use_timestep_embedding: _a = block_out_channels[0] * 4 _a = TimestepEmbedding( in_channels=__UpperCamelCase , time_embed_dim=__UpperCamelCase , act_fn=__UpperCamelCase , out_dim=block_out_channels[0] , ) _a = nn.ModuleList([] ) _a = None _a = nn.ModuleList([] ) _a = None # down _a = in_channels for i, down_block_type in enumerate(__UpperCamelCase ): _a = output_channel _a = block_out_channels[i] if i == 0: input_channel += extra_in_channels _a = i == len(__UpperCamelCase ) - 1 _a = get_down_block( __UpperCamelCase , num_layers=__UpperCamelCase , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(__UpperCamelCase ) # mid _a = get_mid_block( __UpperCamelCase , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=__UpperCamelCase , add_downsample=__UpperCamelCase , ) # up _a = list(reversed(__UpperCamelCase ) ) _a = reversed_block_out_channels[0] if out_block_type is None: _a = out_channels else: _a = block_out_channels[0] for i, up_block_type in enumerate(__UpperCamelCase ): _a = output_channel _a = ( reversed_block_out_channels[i + 1] if i < len(__UpperCamelCase ) - 1 else final_upsample_channels ) _a = i == len(__UpperCamelCase ) - 1 _a = get_up_block( __UpperCamelCase , num_layers=__UpperCamelCase , in_channels=__UpperCamelCase , out_channels=__UpperCamelCase , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(__UpperCamelCase ) _a = output_channel # out _a = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) _a = get_out_block( out_block_type=__UpperCamelCase , num_groups_out=__UpperCamelCase , embed_dim=block_out_channels[0] , out_channels=__UpperCamelCase , act_fn=__UpperCamelCase , fc_dim=block_out_channels[-1] // 4 , ) def _A ( self: List[Any] , __UpperCamelCase: torch.FloatTensor , __UpperCamelCase: Union[torch.Tensor, float, int] , __UpperCamelCase: bool = True , ): _a = timestep if not torch.is_tensor(__UpperCamelCase ): _a = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(__UpperCamelCase ) and len(timesteps.shape ) == 0: _a = timesteps[None].to(sample.device ) _a = self.time_proj(__UpperCamelCase ) if self.config.use_timestep_embedding: _a = self.time_mlp(__UpperCamelCase ) else: _a = timestep_embed[..., None] _a = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) _a = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down _a = () for downsample_block in self.down_blocks: _a , _a = downsample_block(hidden_states=__UpperCamelCase , temb=__UpperCamelCase ) down_block_res_samples += res_samples # 3. mid if self.mid_block: _a = self.mid_block(__UpperCamelCase , __UpperCamelCase ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): _a = down_block_res_samples[-1:] _a = down_block_res_samples[:-1] _a = upsample_block(__UpperCamelCase , res_hidden_states_tuple=__UpperCamelCase , temb=__UpperCamelCase ) # 5. post-process if self.out_block: _a = self.out_block(__UpperCamelCase , __UpperCamelCase ) if not return_dict: return (sample,) return UNetaDOutput(sample=__UpperCamelCase )
346
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase :List[str] = logging.get_logger(__name__) lowerCamelCase :List[str] = {} class UpperCAmelCase ( __snake_case ): a: str = "llama" a: List[str] = ["past_key_values"] def __init__( self: Tuple , __UpperCamelCase: Optional[Any]=3_2000 , __UpperCamelCase: Optional[int]=4096 , __UpperCamelCase: Union[str, Any]=1_1008 , __UpperCamelCase: str=32 , __UpperCamelCase: List[str]=32 , __UpperCamelCase: Tuple=None , __UpperCamelCase: Dict="silu" , __UpperCamelCase: Any=2048 , __UpperCamelCase: Optional[int]=0.0_2 , __UpperCamelCase: int=1E-6 , __UpperCamelCase: List[Any]=True , __UpperCamelCase: List[str]=0 , __UpperCamelCase: Union[str, Any]=1 , __UpperCamelCase: str=2 , __UpperCamelCase: int=1 , __UpperCamelCase: Optional[Any]=False , __UpperCamelCase: int=None , **__UpperCamelCase: Optional[int] , ): _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads # for backward compatibility if num_key_value_heads is None: _a = num_attention_heads _a = num_key_value_heads _a = hidden_act _a = initializer_range _a = rms_norm_eps _a = pretraining_tp _a = use_cache _a = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , tie_word_embeddings=__UpperCamelCase , **__UpperCamelCase , ) def _A ( self: Any ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __UpperCamelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"got {self.rope_scaling}" ) _a = self.rope_scaling.get('''type''' , __UpperCamelCase ) _a = self.rope_scaling.get('''factor''' , __UpperCamelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__UpperCamelCase , __UpperCamelCase ) or rope_scaling_factor <= 1.0: raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
346
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class lowerCAmelCase ( unittest.TestCase): def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' __snake_case = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __snake_case = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE ) , x.transpose() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE ) , transpose(__SCREAMING_SNAKE_CASE ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE ) , transpose(__SCREAMING_SNAKE_CASE ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE ) , np.asarray(transpose(__SCREAMING_SNAKE_CASE ) ) ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(__SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(__SCREAMING_SNAKE_CASE , (4, 3) ) ) ) __snake_case = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(__SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(__SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(__SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(__SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(__SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(__SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) __snake_case = np.random.randn(3 , 4 , 5 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(__SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(__SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE ) , np.squeeze(__SCREAMING_SNAKE_CASE ) ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(__SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = np.random.randn(1 , 3 , 4 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE ) , squeeze(__SCREAMING_SNAKE_CASE ).numpy() ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(__SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = np.random.randn(1 , 3 , 4 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE ) , squeeze(__SCREAMING_SNAKE_CASE ).numpy() ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(__SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = np.random.randn(1 , 3 , 4 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(__SCREAMING_SNAKE_CASE ) ) ) ) __snake_case = np.random.randn(1 , 4 , 1 , 5 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(__SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(__SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = torch.tensor(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = tf.constant(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' __snake_case = np.random.randn(3 , 4 ) __snake_case = jnp.array(__SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(__SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
24
def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = b % a, a return b def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' if gcd(_lowercase , _lowercase ) != 1: UpperCAmelCase_ : int = f'''mod inverse of {a!r} and {m!r} does not exist''' raise ValueError(_lowercase ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Union[str, Any] = 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Dict = 0, 1, m while va != 0: UpperCAmelCase_ : List[Any] = ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ : Any = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
30
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __magic_name__ : Union[str, Any] = get_logger() __magic_name__ : Optional[dict] = None class A__ ( TensorFormatter[Mapping, """jax.Array""", Mapping] ): '''simple docstring''' def __init__( self : Dict , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : Optional[Any]=None , **_SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" super().__init__(features=_SCREAMING_SNAKE_CASE ) import jax from jaxlib.xla_client import Device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError( f'Expected {device} to be a `str` not {type(_SCREAMING_SNAKE_CASE )}, as `jaxlib.xla_extension.Device` ' 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) UpperCamelCase = device if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'Device with string identifier {self.device} not listed among the available ' f'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' f'device: {str(jax.devices()[0] )}.' ) UpperCamelCase = str(jax.devices()[0] ) UpperCamelCase = jnp_array_kwargs @staticmethod def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" import jax return {str(_SCREAMING_SNAKE_CASE ): device for device in jax.devices()} def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and column: if all( isinstance(_SCREAMING_SNAKE_CASE , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(_SCREAMING_SNAKE_CASE , axis=0 ) return column def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" import jax import jax.numpy as jnp if isinstance(_SCREAMING_SNAKE_CASE , (str, bytes, type(_SCREAMING_SNAKE_CASE )) ): return value elif isinstance(_SCREAMING_SNAKE_CASE , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase = {} if isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase = {'dtype': jnp.intaa} else: UpperCamelCase = {'dtype': jnp.intaa} elif isinstance(_SCREAMING_SNAKE_CASE , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase = {'dtype': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): UpperCamelCase = np.asarray(_SCREAMING_SNAKE_CASE ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(_SCREAMING_SNAKE_CASE , **{**default_dtype, **self.jnp_array_kwargs} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(_SCREAMING_SNAKE_CASE , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(_SCREAMING_SNAKE_CASE , '__array__' ) and not isinstance(_SCREAMING_SNAKE_CASE , jax.Array ): UpperCamelCase = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ): return self._consolidate([self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for substruct in data_struct] ) return self._tensorize(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : dict ): """simple docstring""" return map_nested(self._recursive_tensorize , _SCREAMING_SNAKE_CASE , map_list=_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_row(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_row(_SCREAMING_SNAKE_CASE ) return self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : str , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_column(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_column(_SCREAMING_SNAKE_CASE , pa_table.column_names[0] ) UpperCamelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self._consolidate(_SCREAMING_SNAKE_CASE ) return column def _SCREAMING_SNAKE_CASE ( self : List[str] , _SCREAMING_SNAKE_CASE : pa.Table ): """simple docstring""" UpperCamelCase = self.numpy_arrow_extractor().extract_batch(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.python_features_decoder.decode_batch(_SCREAMING_SNAKE_CASE ) UpperCamelCase = self.recursive_tensorize(_SCREAMING_SNAKE_CASE ) for column_name in batch: UpperCamelCase = self._consolidate(batch[column_name] ) return batch
410
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : int = logging.get_logger(__name__) __magic_name__ : Optional[Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = """visual_bert""" def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=3_0522 , _SCREAMING_SNAKE_CASE : Dict=768 , _SCREAMING_SNAKE_CASE : Tuple=512 , _SCREAMING_SNAKE_CASE : Optional[Any]=12 , _SCREAMING_SNAKE_CASE : Any=12 , _SCREAMING_SNAKE_CASE : Any=3072 , _SCREAMING_SNAKE_CASE : Dict="gelu" , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE : Any=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=512 , _SCREAMING_SNAKE_CASE : List[Any]=2 , _SCREAMING_SNAKE_CASE : str=0.0_2 , _SCREAMING_SNAKE_CASE : Any=1E-1_2 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Dict=1 , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : str=2 , **_SCREAMING_SNAKE_CASE : Dict , ): """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = visual_embedding_dim UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = bypass_transformer UpperCamelCase = special_visual_initialize
410
1
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ : Dict = 16 a_ : int = 32 def __lowerCAmelCase ( _UpperCamelCase : Accelerator , _UpperCamelCase : DatasetDict , _UpperCamelCase : List[int] , _UpperCamelCase : List[int] , _UpperCamelCase : int = 16 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('bert-base-cased' ) SCREAMING_SNAKE_CASE = DatasetDict( { 'train': dataset['train'].select(_UpperCamelCase ), 'validation': dataset['train'].select(_UpperCamelCase ), 'test': dataset['validation'], } ) def tokenize_function(_UpperCamelCase : int ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=_UpperCamelCase , max_length=_UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE = datasets.map( _UpperCamelCase , batched=_UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(_UpperCamelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE = 8 else: SCREAMING_SNAKE_CASE = None return tokenizer.pad( _UpperCamelCase , padding='longest' , max_length=_UpperCamelCase , pad_to_multiple_of=_UpperCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['train'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['validation'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets['test'] , shuffle=_UpperCamelCase , collate_fn=_UpperCamelCase , batch_size=_UpperCamelCase ) return train_dataloader, eval_dataloader, test_dataloader def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = [] # Download the dataset SCREAMING_SNAKE_CASE = load_dataset('glue' , 'mrpc' ) # Create our splits SCREAMING_SNAKE_CASE = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE = config['lr'] SCREAMING_SNAKE_CASE = int(config['num_epochs'] ) SCREAMING_SNAKE_CASE = int(config['seed'] ) SCREAMING_SNAKE_CASE = int(config['batch_size'] ) SCREAMING_SNAKE_CASE = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation SCREAMING_SNAKE_CASE = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: SCREAMING_SNAKE_CASE = batch_size // MAX_GPU_BATCH_SIZE SCREAMING_SNAKE_CASE = MAX_GPU_BATCH_SIZE set_seed(_UpperCamelCase ) # New Code # # Create our folds: SCREAMING_SNAKE_CASE = kfold.split(np.zeros(datasets['train'].num_rows ) , datasets['train']['label'] ) SCREAMING_SNAKE_CASE = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_UpperCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = get_fold_dataloaders( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=_UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=_UpperCamelCase ) # Instantiate scheduler SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=_UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(_UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.prepare( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # Now we train the model for epoch in range(_UpperCamelCase ): model.train() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.loss SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(_UpperCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_UpperCamelCase , references=_UpperCamelCase , ) SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _UpperCamelCase ) # New Code # # We also run predictions on the test set at the very end SCREAMING_SNAKE_CASE = [] for step, batch in enumerate(_UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_UpperCamelCase , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: SCREAMING_SNAKE_CASE = torch.cat(_UpperCamelCase , dim=0 ) SCREAMING_SNAKE_CASE = torch.stack(_UpperCamelCase , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) SCREAMING_SNAKE_CASE = metric.compute(predictions=_UpperCamelCase , references=_UpperCamelCase ) accelerator.print('Average test metrics from all folds:' , _UpperCamelCase ) def __lowerCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=_UpperCamelCase , default=_UpperCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds' , type=_UpperCamelCase , default=3 , help='The number of splits to perform across the dataset' ) SCREAMING_SNAKE_CASE = parser.parse_args() SCREAMING_SNAKE_CASE = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_UpperCamelCase , _UpperCamelCase ) if __name__ == "__main__": main()
439
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: a_ : int = None a_ : List[Any] = logging.get_logger(__name__) a_ : List[Any] = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"} a_ : Optional[int] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, "tokenizer_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json", }, } a_ : Union[str, Any] = { "google/rembert": 256, } a_ : List[Any] = "▁" class UpperCamelCase ( SCREAMING_SNAKE_CASE ): __UpperCamelCase =VOCAB_FILES_NAMES __UpperCamelCase =PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase =RemBertTokenizer def __init__( self : int , snake_case__ : Any=None , snake_case__ : Optional[Any]=None , snake_case__ : Optional[int]=True , snake_case__ : Any=True , snake_case__ : Any=False , snake_case__ : Dict="[CLS]" , snake_case__ : List[str]="[SEP]" , snake_case__ : List[str]="<unk>" , snake_case__ : Union[str, Any]="[SEP]" , snake_case__ : List[Any]="<pad>" , snake_case__ : Tuple="[CLS]" , snake_case__ : str="[MASK]" , **snake_case__ : Union[str, Any] , ): """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token super().__init__( snake_case__ , tokenizer_file=snake_case__ , do_lower_case=snake_case__ , remove_space=snake_case__ , keep_accents=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , pad_token=snake_case__ , cls_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) SCREAMING_SNAKE_CASE = do_lower_case SCREAMING_SNAKE_CASE = remove_space SCREAMING_SNAKE_CASE = keep_accents SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCamelCase ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error('Vocabulary path ({}) should be a directory'.format(snake_case__ ) ) return SCREAMING_SNAKE_CASE = os.path.join( snake_case__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
439
1
'''simple docstring''' from __future__ import annotations import math def __lowerCAmelCase ( lowerCamelCase : List[str] , lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = u for i in range(1 , lowerCamelCase ): __lowerCAmelCase = temp * (u - i) return temp def __lowerCAmelCase ( ): '''simple docstring''' __lowerCAmelCase = int(input("enter the numbers of values: " ) ) __lowerCAmelCase = [] for _ in range(lowerCamelCase ): y.append([] ) for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): y[i].append(lowerCamelCase ) __lowerCAmelCase = 0 print("enter the values of parameters in a list: " ) __lowerCAmelCase = list(map(lowerCamelCase , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(lowerCamelCase ): __lowerCAmelCase = float(input() ) __lowerCAmelCase = int(input("enter the value to interpolate: " ) ) __lowerCAmelCase = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , lowerCamelCase ): for j in range(n - i ): __lowerCAmelCase = y[j + 1][i - 1] - y[j][i - 1] __lowerCAmelCase = y[0][0] for i in range(1 , lowerCamelCase ): summ += (ucal(lowerCamelCase , lowerCamelCase ) * y[0][i]) / math.factorial(lowerCamelCase ) print(f'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
720
'''simple docstring''' def __lowerCAmelCase ( lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCAmelCase ( ): '''simple docstring''' __lowerCAmelCase = 1 __lowerCAmelCase = 1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
39
0
'''simple docstring''' import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger _A = get_logger(__name__) _A = R"""\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n""" class SCREAMING_SNAKE_CASE_ : @add_start_docstrings(UpperCAmelCase__ ) def __call__( self , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class SCREAMING_SNAKE_CASE_ : @add_start_docstrings(UpperCAmelCase__ ) def __call__( self , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' raise NotImplementedError( f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class SCREAMING_SNAKE_CASE_ ( snake_case_ ): @add_start_docstrings(UpperCAmelCase__ ) def __call__( self , lowercase , lowercase , lowercase , **lowercase ) -> jnp.ndarray: '''simple docstring''' for processor in self: __SCREAMING_SNAKE_CASE : Any = inspect.signature(processor.__call__ ).parameters if len(UpperCAmelCase__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f"""Make sure that all the required parameters: {list(function_args.keys() )} for """ f"""{processor.__class__} are passed to the logits processor.""" ) __SCREAMING_SNAKE_CASE : Optional[int] = processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : List[str] = processor(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase ) -> Dict: '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not (temperature > 0): raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" ) __SCREAMING_SNAKE_CASE : List[Any] = temperature def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = scores / self.temperature return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase , lowercase = -float('''Inf''' ) , lowercase = 1 ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or (min_tokens_to_keep < 1): raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) __SCREAMING_SNAKE_CASE : Any = top_p __SCREAMING_SNAKE_CASE : Optional[int] = filter_value __SCREAMING_SNAKE_CASE : int = min_tokens_to_keep def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = lax.top_k(UpperCAmelCase__ , scores.shape[-1] ) __SCREAMING_SNAKE_CASE : Optional[int] = jnp.full_like(UpperCAmelCase__ , self.filter_value ) __SCREAMING_SNAKE_CASE : List[Any] = jax.nn.softmax(UpperCAmelCase__ , axis=-1 ).cumsum(axis=-1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = cumulative_probs < self.top_p # include the token that is higher than top_p as well __SCREAMING_SNAKE_CASE : Tuple = jnp.roll(UpperCAmelCase__ , 1 ) score_mask |= score_mask.at[:, 0].set(UpperCAmelCase__ ) # min tokens to keep __SCREAMING_SNAKE_CASE : Optional[Any] = score_mask.at[:, : self.min_tokens_to_keep].set(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = jnp.where(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = jax.lax.sort_key_val(UpperCAmelCase__ , UpperCAmelCase__ )[-1] return next_scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase , lowercase = -float('''Inf''' ) , lowercase = 1 ) -> Optional[Any]: '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or top_k <= 0: raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) __SCREAMING_SNAKE_CASE : List[Any] = max(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = filter_value def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = scores.shape __SCREAMING_SNAKE_CASE : int = jnp.full(batch_size * vocab_size , self.filter_value ) __SCREAMING_SNAKE_CASE : Optional[Any] = min(self.top_k , scores.shape[-1] ) # Safety check __SCREAMING_SNAKE_CASE : Tuple = lax.top_k(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = jnp.broadcast_to((jnp.arange(UpperCAmelCase__ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten() __SCREAMING_SNAKE_CASE : Optional[int] = topk_scores.flatten() __SCREAMING_SNAKE_CASE : Optional[int] = topk_indices.flatten() + shift __SCREAMING_SNAKE_CASE : Any = next_scores_flat.at[topk_indices_flat].set(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = next_scores_flat.reshape(UpperCAmelCase__ , UpperCAmelCase__ ) return next_scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = bos_token_id def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.full(scores.shape , -float('''inf''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - 1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase__ , new_scores.at[:, self.bos_token_id].set(0 ) , UpperCAmelCase__ ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase , lowercase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = max_length __SCREAMING_SNAKE_CASE : List[Any] = eos_token_id def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[Any] = jnp.full(scores.shape , -float('''inf''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = 1 - jnp.bool_(cur_len - self.max_length + 1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase__ , new_scores.at[:, self.eos_token_id].set(0 ) , UpperCAmelCase__ ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase , lowercase ) -> int: '''simple docstring''' if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or min_length < 0: raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or eos_token_id < 0: raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) __SCREAMING_SNAKE_CASE : List[Any] = min_length __SCREAMING_SNAKE_CASE : List[str] = eos_token_id def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where(UpperCAmelCase__ , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , UpperCAmelCase__ ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase , lowercase ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE : Dict = list(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = begin_index def __call__( self , lowercase , lowercase , lowercase ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE : int = 1 - jnp.bool_(cur_len - self.begin_index ) __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.where(UpperCAmelCase__ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , UpperCAmelCase__ ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase ) -> Union[str, Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[int] = list(UpperCAmelCase__ ) def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' __SCREAMING_SNAKE_CASE : Union[str, Any] = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase ) -> Optional[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : List[str] = dict(UpperCAmelCase__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. __SCREAMING_SNAKE_CASE : Optional[int] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: __SCREAMING_SNAKE_CASE : Optional[int] = force_token_array.at[index].set(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = jnp.intaa(UpperCAmelCase__ ) def __call__( self , lowercase , lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' def _force_token(lowercase ): __SCREAMING_SNAKE_CASE : Tuple = scores.shape[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.force_token_array[generation_idx] __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.ones_like(UpperCAmelCase__ , dtype=scores.dtype ) * -float('''inf''' ) __SCREAMING_SNAKE_CASE : Optional[int] = jnp.zeros((batch_size, 1) , dtype=scores.dtype ) __SCREAMING_SNAKE_CASE : List[str] = lax.dynamic_update_slice(UpperCAmelCase__ , UpperCAmelCase__ , (0, current_token) ) return new_scores __SCREAMING_SNAKE_CASE : Tuple = lax.cond( cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond( self.force_token_array[cur_len] >= 0 , lambda: _force_token(UpperCAmelCase__ ) , lambda: scores , ) , ) return scores class SCREAMING_SNAKE_CASE_ ( snake_case_ ): def __init__( self , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE : Any = generate_config.eos_token_id __SCREAMING_SNAKE_CASE : Tuple = generate_config.no_timestamps_token_id __SCREAMING_SNAKE_CASE : Optional[Any] = generate_config.no_timestamps_token_id + 1 __SCREAMING_SNAKE_CASE : Dict = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(UpperCAmelCase__ , '''max_initial_timestamp_index''' ): __SCREAMING_SNAKE_CASE : str = generate_config.max_initial_timestamp_index else: __SCREAMING_SNAKE_CASE : Optional[Any] = model_config.vocab_size if self.max_initial_timestamp_index is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = model_config.vocab_size def __call__( self , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' __SCREAMING_SNAKE_CASE : Optional[Any] = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(lowercase , lowercase ): __SCREAMING_SNAKE_CASE : int = jnp.where((cur_len - self.begin_index) >= 1 , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where((cur_len - self.begin_index) < 2 , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin , UpperCAmelCase__ , UpperCAmelCase__ , ) return jnp.where( UpperCAmelCase__ , jnp.where( penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE : int = jax.vmap(UpperCAmelCase__ )(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = jnp.where(cur_len == self.begin_index , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = jnp.where( self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = self.timestamp_begin + self.max_initial_timestamp_index __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.where( UpperCAmelCase__ , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , UpperCAmelCase__ , ) # if sum of probability over timestamps is above any other token, sample timestamp __SCREAMING_SNAKE_CASE : Optional[int] = jax.nn.log_softmax(UpperCAmelCase__ , axis=-1 ) def handle_cumulative_probs(lowercase , lowercase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , UpperCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Optional[int] = jax.vmap(UpperCAmelCase__ )(UpperCAmelCase__ , UpperCAmelCase__ ) return scores
158
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { 'RWKV/rwkv-4-169m-pile': 'https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json', 'RWKV/rwkv-4-430m-pile': 'https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json', 'RWKV/rwkv-4-1b5-pile': 'https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json', 'RWKV/rwkv-4-3b-pile': 'https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json', 'RWKV/rwkv-4-7b-pile': 'https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json', 'RWKV/rwkv-4-14b-pile': 'https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json', 'RWKV/rwkv-raven-1b5': 'https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json', 'RWKV/rwkv-raven-3b': 'https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json', 'RWKV/rwkv-raven-7b': 'https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json', 'RWKV/rwkv-raven-14b': 'https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json', } class UpperCamelCase ( snake_case_ ): UpperCamelCase : Any = '''rwkv''' UpperCamelCase : Optional[int] = {'''max_position_embeddings''': '''context_length'''} def __init__( self : List[Any] , UpperCAmelCase__ : Optional[int]=50277 , UpperCAmelCase__ : List[Any]=1024 , UpperCAmelCase__ : Dict=4096 , UpperCAmelCase__ : Optional[Any]=32 , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : Any=None , UpperCAmelCase__ : int=1E-5 , UpperCAmelCase__ : Tuple=0 , UpperCAmelCase__ : Union[str, Any]=0 , UpperCAmelCase__ : Any=6 , UpperCAmelCase__ : Optional[Any]=False , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : List[Any] , ) -> Optional[int]: _a : Dict = vocab_size _a : List[Any] = context_length _a : int = hidden_size _a : Dict = num_hidden_layers _a : List[Any] = attention_hidden_size if attention_hidden_size is not None else hidden_size _a : Any = intermediate_size if intermediate_size is not None else 4 * hidden_size _a : int = layer_norm_epsilon _a : List[str] = rescale_every _a : List[str] = use_cache _a : List[str] = bos_token_id _a : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ )
389
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE = 1000 ) ->int: a__: List[Any] = 3 a__: Any = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f"{solution() = }")
217
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: lowercase__ = None try: import msvcrt except ImportError: lowercase__ = None try: import fcntl except ImportError: lowercase__ = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase__ = OSError # Data # ------------------------------------------------ lowercase__ = [ 'Timeout', 'BaseFileLock', 'WindowsFileLock', 'UnixFileLock', 'SoftFileLock', 'FileLock', ] lowercase__ = '3.0.12' lowercase__ = None def __a ( ) ->str: global _logger a__: List[Any] = _logger or logging.getLogger(__name__ ) return _logger class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase) -> Optional[int]: '''simple docstring''' a__: Any = lock_file return None def __str__( self) -> str: '''simple docstring''' a__: Optional[int] = f'The file lock \'{self.lock_file}\' could not be acquired.' return temp class __snake_case : def __init__( self , lowercase) -> List[str]: '''simple docstring''' a__: int = lock return None def __enter__( self) -> Dict: '''simple docstring''' return self.lock def __exit__( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' self.lock.release() return None class __snake_case : def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Union[str, Any]: '''simple docstring''' a__: Tuple = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long a__: List[str] = self.hash_filename_if_too_long(lowercase , lowercase) # The path to the lock file. a__: Any = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a__: List[Any] = None # The default timeout value. a__: str = timeout # We use this lock primarily for the lock counter. a__: Union[str, Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a__: Tuple = 0 return None @property def lowerCamelCase_ ( self) -> Any: '''simple docstring''' return self._lock_file @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return self._timeout @timeout.setter def lowerCamelCase_ ( self , lowercase) -> Tuple: '''simple docstring''' a__: str = float(lowercase) return None def lowerCamelCase_ ( self) -> str: '''simple docstring''' raise NotImplementedError() def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return self._lock_file_fd is not None def lowerCamelCase_ ( self , lowercase=None , lowercase=0.05) -> Any: '''simple docstring''' if timeout is None: a__: Optional[Any] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a__: Optional[int] = id(self) a__: List[Any] = self._lock_file a__: List[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}') self._acquire() if self.is_locked: logger().debug(f'Lock {lock_id} acquired on {lock_filename}') break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}') raise Timeout(self._lock_file) else: logger().debug( f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...') time.sleep(lowercase) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a__: Any = max(0 , self._lock_counter - 1) raise return _Acquire_ReturnProxy(lock=self) def lowerCamelCase_ ( self , lowercase=False) -> Optional[int]: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a__: Dict = id(self) a__: Any = self._lock_file logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}') self._release() a__: Tuple = 0 logger().debug(f'Lock {lock_id} released on {lock_filename}') return None def __enter__( self) -> List[Any]: '''simple docstring''' self.acquire() return self def __exit__( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' self.release() return None def __del__( self) -> Dict: '''simple docstring''' self.release(force=lowercase) return None def lowerCamelCase_ ( self , lowercase , lowercase) -> str: '''simple docstring''' a__: Optional[int] = os.path.basename(lowercase) if len(lowercase) > max_length and max_length > 0: a__: Dict = os.path.dirname(lowercase) a__: Union[str, Any] = str(hash(lowercase)) a__: int = filename[: max_length - len(lowercase) - 8] + '...' + hashed_filename + '.lock' return os.path.join(lowercase , lowercase) else: return path class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Optional[Any]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowercase , timeout=lowercase , max_filename_length=lowercase) a__: Any = '\\\\?\\' + relative_to_absolute_path(self.lock_file) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Union[str, Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a__: Optional[Any] = os.open(self._lock_file , lowercase) except OSError: pass else: try: msvcrt.locking(lowercase , msvcrt.LK_NBLCK , 1) except OSError: os.close(lowercase) else: a__: str = fd return None def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Tuple = self._lock_file_fd a__: Optional[int] = None msvcrt.locking(lowercase , msvcrt.LK_UNLCK , 1) os.close(lowercase) try: os.remove(self._lock_file) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __snake_case ( __lowerCAmelCase ): def __init__( self , lowercase , lowercase=-1 , lowercase=None) -> Union[str, Any]: '''simple docstring''' a__: Tuple = os.statvfs(os.path.dirname(lowercase)).f_namemax super().__init__(lowercase , timeout=lowercase , max_filename_length=lowercase) def lowerCamelCase_ ( self) -> int: '''simple docstring''' a__: Optional[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC a__: Union[str, Any] = os.open(self._lock_file , lowercase) try: fcntl.flock(lowercase , fcntl.LOCK_EX | fcntl.LOCK_NB) except OSError: os.close(lowercase) else: a__: List[str] = fd return None def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Union[str, Any] = self._lock_file_fd a__: Dict = None fcntl.flock(lowercase , fcntl.LOCK_UN) os.close(lowercase) return None class __snake_case ( __lowerCAmelCase ): def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Optional[Any] = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a__: Optional[Any] = os.open(self._lock_file , lowercase) except OSError: pass else: a__: Any = fd return None def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' os.close(self._lock_file_fd) a__: Optional[Any] = None try: os.remove(self._lock_file) # The file is already deleted and that's what we want. except OSError: pass return None lowercase__ = None if msvcrt: lowercase__ = WindowsFileLock elif fcntl: lowercase__ = UnixFileLock else: lowercase__ = SoftFileLock if warnings is not None: warnings.warn('only soft file lock is available')
217
1
'''simple docstring''' def A_( A : str): UpperCamelCase = [0] * len(A) for i in range(1 , len(A)): # use last results for better performance - dynamic programming UpperCamelCase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: UpperCamelCase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 UpperCamelCase = j return prefix_result def A_( A : str): return max(prefix_function(A)) if __name__ == "__main__": import doctest doctest.testmod()
3
'''simple docstring''' import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int: return params[f'''{prefix}/{prefix}/relpos_bias/rel_embedding'''][:, i, :] def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase="attention" ) -> List[str]: _UpperCamelCase : Dict = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/key/kernel'''][:, i, :, :] ) _UpperCamelCase : int = k_tmp.reshape(k_tmp.shape[0] ,k_tmp.shape[1] * k_tmp.shape[2] ) _UpperCamelCase : str = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/out/kernel'''][:, i, :, :] ) _UpperCamelCase : Tuple = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] ,o_tmp.shape[2] ) _UpperCamelCase : Any = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/query/kernel'''][:, i, :, :] ) _UpperCamelCase : Optional[int] = q_tmp.reshape(q_tmp.shape[0] ,q_tmp.shape[1] * q_tmp.shape[2] ) _UpperCamelCase : Optional[Any] = np.ascontiguousarray(params[f'''{prefix}/{prefix}/{layer_name}/value/kernel'''][:, i, :, :] ) _UpperCamelCase : List[Any] = v_tmp.reshape(v_tmp.shape[0] ,v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase=False ) -> List[str]: if split_mlp_wi: _UpperCamelCase : int = params[f'''{prefix}/{prefix}/mlp/wi_0/kernel'''][:, i, :] _UpperCamelCase : Tuple = params[f'''{prefix}/{prefix}/mlp/wi_1/kernel'''][:, i, :] _UpperCamelCase : Optional[Any] = (wi_a, wi_a) else: _UpperCamelCase : str = params[f'''{prefix}/{prefix}/mlp/wi/kernel'''][:, i, :] _UpperCamelCase : int = params[f'''{prefix}/{prefix}/mlp/wo/kernel'''][:, i, :] return wi, wo def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: return params[f'''{prefix}/{prefix}/{layer_name}/scale'''][:, i] def snake_case__ ( UpperCamelCase ,*, UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ) -> int: _UpperCamelCase : Any = traverse_util.flatten_dict(variables['''target'''] ) _UpperCamelCase : Optional[Any] = {'''/'''.join(UpperCamelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi _UpperCamelCase : str = '''encoder/encoder/mlp/wi_0/kernel''' in old print('''Split MLP:''' ,UpperCamelCase ) _UpperCamelCase : Optional[int] = collections.OrderedDict() # Shared embeddings. _UpperCamelCase : str = old['''token_embedder/embedding'''] # Encoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). _UpperCamelCase : Optional[int] = tax_layer_norm_lookup(UpperCamelCase ,UpperCamelCase ,'''encoder''' ,'''pre_attention_layer_norm''' ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Optional[Any] = tax_attention_lookup(UpperCamelCase ,UpperCamelCase ,'''encoder''' ,'''attention''' ) _UpperCamelCase : Tuple = layer_norm _UpperCamelCase : int = k.T _UpperCamelCase : int = o.T _UpperCamelCase : List[Any] = q.T _UpperCamelCase : Dict = v.T # Block i, layer 1 (MLP). _UpperCamelCase : Dict = tax_layer_norm_lookup(UpperCamelCase ,UpperCamelCase ,'''encoder''' ,'''pre_mlp_layer_norm''' ) _UpperCamelCase, _UpperCamelCase : int = tax_mlp_lookup(UpperCamelCase ,UpperCamelCase ,'''encoder''' ,UpperCamelCase ) _UpperCamelCase : Union[str, Any] = layer_norm if split_mlp_wi: _UpperCamelCase : Optional[Any] = wi[0].T _UpperCamelCase : Optional[Any] = wi[1].T else: _UpperCamelCase : List[Any] = wi.T _UpperCamelCase : Union[str, Any] = wo.T if scalable_attention: # convert the rel_embedding of each layer _UpperCamelCase : Union[str, Any] = tax_relpos_bias_lookup( UpperCamelCase ,UpperCamelCase ,'''encoder''' ).T _UpperCamelCase : List[str] = old['''encoder/encoder_norm/scale'''] if not scalable_attention: _UpperCamelCase : List[Any] = tax_relpos_bias_lookup( UpperCamelCase ,0 ,'''encoder''' ).T _UpperCamelCase : Optional[Any] = tax_relpos_bias_lookup( UpperCamelCase ,0 ,'''decoder''' ).T if not is_encoder_only: # Decoder. for i in range(UpperCamelCase ): # Block i, layer 0 (Self Attention). _UpperCamelCase : Optional[int] = tax_layer_norm_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ,'''pre_self_attention_layer_norm''' ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : List[Any] = tax_attention_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ,'''self_attention''' ) _UpperCamelCase : int = layer_norm _UpperCamelCase : Union[str, Any] = k.T _UpperCamelCase : Optional[int] = o.T _UpperCamelCase : Dict = q.T _UpperCamelCase : Tuple = v.T # Block i, layer 1 (Cross Attention). _UpperCamelCase : str = tax_layer_norm_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ,'''pre_cross_attention_layer_norm''' ) _UpperCamelCase, _UpperCamelCase, _UpperCamelCase, _UpperCamelCase : Dict = tax_attention_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ,'''encoder_decoder_attention''' ) _UpperCamelCase : Dict = layer_norm _UpperCamelCase : Optional[int] = k.T _UpperCamelCase : int = o.T _UpperCamelCase : List[Any] = q.T _UpperCamelCase : str = v.T # Block i, layer 2 (MLP). _UpperCamelCase : Optional[int] = tax_layer_norm_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ,'''pre_mlp_layer_norm''' ) _UpperCamelCase, _UpperCamelCase : List[Any] = tax_mlp_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ,UpperCamelCase ) _UpperCamelCase : List[str] = layer_norm if split_mlp_wi: _UpperCamelCase : Optional[Any] = wi[0].T _UpperCamelCase : Union[str, Any] = wi[1].T else: _UpperCamelCase : Dict = wi.T _UpperCamelCase : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer _UpperCamelCase : int = tax_relpos_bias_lookup(UpperCamelCase ,UpperCamelCase ,'''decoder''' ).T _UpperCamelCase : Optional[int] = old['''decoder/decoder_norm/scale'''] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: _UpperCamelCase : str = old['''decoder/logits_dense/kernel'''].T return new def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> Optional[int]: _UpperCamelCase : str = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: _UpperCamelCase : str = state_dict['''shared.weight'''] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: _UpperCamelCase : int = state_dict['''shared.weight'''] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('''Using shared word embeddings as lm_head.''' ) _UpperCamelCase : Any = state_dict['''shared.weight'''] return state_dict def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Any: _UpperCamelCase : List[Any] = checkpoints.load_tax_checkpoint(UpperCamelCase ) _UpperCamelCase : str = convert_tax_to_pytorch( UpperCamelCase ,num_layers=config.num_layers ,is_encoder_only=UpperCamelCase ,scalable_attention=UpperCamelCase ) _UpperCamelCase : Optional[Any] = make_state_dict(UpperCamelCase ,UpperCamelCase ) model.load_state_dict(UpperCamelCase ,strict=UpperCamelCase ) def snake_case__ ( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = False ,UpperCamelCase = False ,) -> int: _UpperCamelCase : int = MTaConfig.from_json_file(UpperCamelCase ) print(f'''Building PyTorch model from configuration: {config}''' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: _UpperCamelCase : Optional[int] = UMTaEncoderModel(UpperCamelCase ) else: _UpperCamelCase : Optional[int] = UMTaForConditionalGeneration(UpperCamelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(UpperCamelCase ) # Verify that we can load the checkpoint. model.from_pretrained(UpperCamelCase ) print('''Done''' ) if __name__ == "__main__": _UpperCAmelCase : List[Any] = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""") # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False ) parser.add_argument( """--scalable_attention""", action="""store_true""", help="""Whether the model uses scaled attention (umt5 model)""", default=False, ) _UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
683
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration UpperCamelCase_ = 'facebook/wmt19-en-de' UpperCamelCase_ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model UpperCamelCase_ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) UpperCamelCase_ = FSMTForConditionalGeneration(config) print(f"""num of params {tiny_model.num_parameters()}""") # Test UpperCamelCase_ = tokenizer(['Making tiny model'], return_tensors='pt') UpperCamelCase_ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save UpperCamelCase_ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f"""Generated {mname_tiny}""") # Upload # transformers-cli upload tiny-wmt19-en-de
510
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _UpperCAmelCase ( A ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) UpperCamelCase_ = '\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n' class snake_case_ ( a ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( A_ ) -> Union[str, Any]: UpperCAmelCase__ =parser.add_parser( "convert", help="CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.", ) train_parser.add_argument("--model_type", type=A_, required=A_, help="Model's type." ) train_parser.add_argument( "--tf_checkpoint", type=A_, required=A_, help="TensorFlow checkpoint path or folder." ) train_parser.add_argument( "--pytorch_dump_output", type=A_, required=A_, help="Path to the PyTorch saved model output." ) train_parser.add_argument("--config", type=A_, default="", help="Configuration file path or folder." ) train_parser.add_argument( "--finetuning_task_name", type=A_, default=A_, help="Optional fine-tuning task name if the TF model was a finetuned model.", ) train_parser.set_defaults(func=A_ ) def __init__( self, A_, A_, A_, A_, A_, *A_, ) -> List[str]: UpperCAmelCase__ =logging.get_logger("transformers-cli/converting" ) self._logger.info(f"""Loading model {model_type}""" ) UpperCAmelCase__ =model_type UpperCAmelCase__ =tf_checkpoint UpperCAmelCase__ =pytorch_dump_output UpperCAmelCase__ =config UpperCAmelCase__ =finetuning_task_name def __UpperCAmelCase ( self ) -> Tuple: if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(A_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase__ =self._tf_checkpoint UpperCAmelCase__ ="" else: UpperCAmelCase__ =self._tf_checkpoint UpperCAmelCase__ ="" convert_transfo_xl_checkpoint_to_pytorch( A_, self._config, self._pytorch_dump_output, A_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(A_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint, self._config, self._pytorch_dump_output, self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint, self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint, self._config, self._pytorch_dump_output ) else: raise ValueError( "--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]" )
510
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "facebook/bart-large-mnli" SCREAMING_SNAKE_CASE : Union[str, Any] = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) SCREAMING_SNAKE_CASE : List[str] = "text_classifier" SCREAMING_SNAKE_CASE : Dict = AutoTokenizer SCREAMING_SNAKE_CASE : int = AutoModelForSequenceClassification SCREAMING_SNAKE_CASE : Any = ["text", ["text"]] SCREAMING_SNAKE_CASE : Tuple = ["text"] def snake_case__( self : Any ) ->Tuple: super().setup() snake_case_ = self.model.config snake_case_ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): snake_case_ = int(_UpperCamelCase ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def snake_case__( self : int , _UpperCamelCase : Dict , _UpperCamelCase : str ) ->Union[str, Any]: snake_case_ = labels return self.pre_processor( [text] * len(_UpperCamelCase ) , [f'''This example is {label}''' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def snake_case__( self : int , _UpperCamelCase : str ) ->Dict: snake_case_ = outputs.logits snake_case_ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
39
"""simple docstring""" # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
182
0
import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: __a : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=3 , lowerCamelCase=18 , lowerCamelCase=30 , lowerCamelCase=400 , lowerCamelCase=None , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=None , ) -> List[Any]: """simple docstring""" lowercase__ : Optional[Any] = size if size is not None else {"height": 20, "width": 20} lowercase__ : Dict = parent lowercase__ : Dict = batch_size lowercase__ : str = num_channels lowercase__ : Union[str, Any] = image_size lowercase__ : str = min_resolution lowercase__ : int = max_resolution lowercase__ : Optional[Any] = size lowercase__ : Optional[int] = do_normalize lowercase__ : Union[str, Any] = do_convert_rgb lowercase__ : Optional[Any] = [512, 1024, 2048, 4096] lowercase__ : int = patch_size if patch_size is not None else {"height": 16, "width": 16} def __a ( self ) -> Optional[int]: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Any = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg" lowercase__ : str = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert("RGB" ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : Dict = PixaStructImageProcessor if is_vision_available() else None def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Union[str, Any] = PixaStructImageProcessingTester(self ) @property def __a ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> Any: """simple docstring""" lowercase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_convert_rgb" ) ) def __a ( self ) -> Union[str, Any]: """simple docstring""" lowercase__ : Dict = self.image_processor_tester.prepare_dummy_image() lowercase__ : Dict = self.image_processing_class(**self.image_processor_dict ) lowercase__ : Union[str, Any] = 2048 lowercase__ : int = image_processor(lowerCamelCase , return_tensors="pt" , max_patches=lowerCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06 ) , atol=1E-3 , rtol=1E-3 ) ) def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input lowercase__ : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Tuple = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : int = image_processor( lowerCamelCase , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input lowercase__ : int = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 lowercase__ : List[str] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(lowerCamelCase ): lowercase__ : Optional[Any] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches lowercase__ : Union[str, Any] = "Hello" lowercase__ : int = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase , header_text=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Dict = image_processor( lowerCamelCase , return_tensors="pt" , max_patches=lowerCamelCase , header_text=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) lowercase__ : Optional[Any] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Optional[int] = image_processor( lowerCamelCase , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __a ( self ) -> Dict: """simple docstring""" lowercase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input lowercase__ : List[str] = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Optional[int] = image_processor( lowerCamelCase , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="""`Pix2StructImageProcessor` requires `torch>=1.11.0`.""" , ) @require_torch @require_vision class UpperCAmelCase( snake_case_ , unittest.TestCase ): """simple docstring""" a : Optional[int] = PixaStructImageProcessor if is_vision_available() else None def __a ( self ) -> Any: """simple docstring""" lowercase__ : str = PixaStructImageProcessingTester(self , num_channels=4 ) lowercase__ : Optional[Any] = 3 @property def __a ( self ) -> Dict: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , "do_normalize" ) ) self.assertTrue(hasattr(lowerCamelCase , "do_convert_rgb" ) ) def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input lowercase__ : Dict = ( (self.image_processor_tester.patch_size["height"] * self.image_processor_tester.patch_size["width"]) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input lowercase__ : Tuple = image_processor( image_inputs[0] , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched lowercase__ : Dict = image_processor( lowerCamelCase , return_tensors="pt" , max_patches=lowerCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
298
from ...configuration_utils import PretrainedConfig from ...utils import logging __a : int = logging.get_logger(__name__) __a : Tuple = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCAmelCase( snake_case_ ): """simple docstring""" a : Optional[int] = """visual_bert""" def __init__( self , lowerCamelCase=30522 , lowerCamelCase=768 , lowerCamelCase=512 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=3072 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=512 , lowerCamelCase=2 , lowerCamelCase=0.02 , lowerCamelCase=1E-12 , lowerCamelCase=False , lowerCamelCase=True , lowerCamelCase=1 , lowerCamelCase=0 , lowerCamelCase=2 , **lowerCamelCase , ) -> str: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowercase__ : Optional[Any] = vocab_size lowercase__ : Any = max_position_embeddings lowercase__ : str = hidden_size lowercase__ : Optional[int] = visual_embedding_dim lowercase__ : Optional[Any] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : List[str] = hidden_act lowercase__ : Optional[int] = hidden_dropout_prob lowercase__ : str = attention_probs_dropout_prob lowercase__ : List[str] = initializer_range lowercase__ : Tuple = type_vocab_size lowercase__ : int = layer_norm_eps lowercase__ : Union[str, Any] = bypass_transformer lowercase__ : Dict = special_visual_initialize
298
1
"""simple docstring""" def _snake_case ( snake_case__ : int ): if divisor % 5 == 0 or divisor % 2 == 0: return 0 A = 1 A = 1 while repunit: A = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _snake_case ( snake_case__ : int = 100_0000 ): A = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(snake_case__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F"""{solution() = }""")
91
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __UpperCAmelCase : str = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys __UpperCAmelCase : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
584
0
from __future__ import annotations def A ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' return [ord(__UpperCAmelCase ) - 96 for elem in plain] def A ( __UpperCAmelCase ) -> str: '''simple docstring''' return "".join(chr(elem + 96 ) for elem in encoded ) def A ( ) -> None: '''simple docstring''' UpperCAmelCase_ = encode(input('''-> ''' ).strip().lower() ) print('''Encoded: ''' , __UpperCAmelCase ) print('''Decoded:''' , decode(__UpperCAmelCase ) ) if __name__ == "__main__": main()
561
import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging UpperCamelCase_ = logging.get_logger(__name__) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase_ = os.getenv('''SM_HP_MP_PARAMETERS''' , '''{}''' ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCAmelCase_ = json.loads(__UpperCAmelCase ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCAmelCase_ = os.getenv('''SM_FRAMEWORK_PARAMS''' , '''{}''' ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCAmelCase_ = json.loads(__UpperCAmelCase ) if not mpi_options.get('''sagemaker_mpi_enabled''' , __UpperCAmelCase ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('''smdistributed''' ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class a_ ( _snake_case ): UpperCamelCase__ : str =field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def __a ( self :List[Any]) -> int: super().__post_init__() warnings.warn( '''`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ''' '''`TrainingArguments` instead.''' , _lowercase , ) @cached_property def __a ( self :List[Any]) -> "torch.device": logger.info('''PyTorch: setting up devices''') if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( '''torch.distributed process group is initialized, but local_rank == -1. ''' '''In order to use Torch DDP, launch your script with `python -m torch.distributed.launch''') if self.no_cuda: UpperCAmelCase_ = torch.device('''cpu''') UpperCAmelCase_ = 0 elif is_sagemaker_model_parallel_available(): UpperCAmelCase_ = smp.local_rank() UpperCAmelCase_ = torch.device('''cuda''' , _lowercase) UpperCAmelCase_ = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='''smddp''' , timeout=self.ddp_timeout_delta) UpperCAmelCase_ = int(os.getenv('''SMDATAPARALLEL_LOCAL_RANK''')) UpperCAmelCase_ = torch.device('''cuda''' , self.local_rank) UpperCAmelCase_ = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCAmelCase_ = torch.device('''cuda:0''' if torch.cuda.is_available() else '''cpu''') # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCAmelCase_ = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='''nccl''' , timeout=self.ddp_timeout_delta) UpperCAmelCase_ = torch.device('''cuda''' , self.local_rank) UpperCAmelCase_ = 1 if device.type == "cuda": torch.cuda.set_device(_lowercase) return device @property def __a ( self :str) -> Dict: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __a ( self :Optional[Any]) -> Optional[int]: return not is_sagemaker_model_parallel_available() @property def __a ( self :List[str]) -> List[Any]: return False
561
1
'''simple docstring''' from collections.abc import Callable class _snake_case : def __init__( self ,_snake_case = None ): # Stores actual heap items. UpperCAmelCase_ : list = [] # Stores indexes of each item for supporting updates and deletion. UpperCAmelCase_ : dict = {} # Stores current size of heap. UpperCAmelCase_ : List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. UpperCAmelCase_ : str = key or (lambda _snake_case : x) def UpperCamelCase__ ( self ,_snake_case ): return int((i - 1) / 2 ) if i > 0 else None def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[int] = int(2 * i + 1 ) return left if 0 < left < self.size else None def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Optional[Any] = int(2 * i + 2 ) return right if 0 < right < self.size else None def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = self.arr[j], self.arr[i] def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): return self.arr[i][1] < self.arr[j][1] def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : Dict = self._left(_snake_case ) UpperCAmelCase_ : Dict = self._right(_snake_case ) UpperCAmelCase_ : Tuple = i if left is not None and not self._cmp(_snake_case ,_snake_case ): UpperCAmelCase_ : str = left if right is not None and not self._cmp(_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = right return valid_parent def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[str] = self._parent(_snake_case ) while parent is not None and not self._cmp(_snake_case ,_snake_case ): self._swap(_snake_case ,_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parent, self._parent(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): UpperCAmelCase_ : List[Any] = self._get_valid_parent(_snake_case ) while valid_parent != index: self._swap(_snake_case ,_snake_case ) UpperCAmelCase_ , UpperCAmelCase_ : Any = valid_parent, self._get_valid_parent(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): if item not in self.pos_map: return UpperCAmelCase_ : int = self.pos_map[item] UpperCAmelCase_ : Union[str, Any] = [item, self.key(_snake_case )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(_snake_case ) self._heapify_down(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ): if item not in self.pos_map: return UpperCAmelCase_ : List[str] = self.pos_map[item] del self.pos_map[item] UpperCAmelCase_ : Dict = self.arr[self.size - 1] UpperCAmelCase_ : Any = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(_snake_case ) self._heapify_down(_snake_case ) def UpperCamelCase__ ( self ,_snake_case ,_snake_case ): UpperCAmelCase_ : Optional[Any] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(_snake_case )] ) else: UpperCAmelCase_ : Optional[Any] = [item, self.key(_snake_case )] UpperCAmelCase_ : str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def UpperCamelCase__ ( self ): return self.arr[0] if self.size else None def UpperCamelCase__ ( self ): UpperCAmelCase_ : str = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def a__ ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
71
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class __UpperCamelCase ( lowerCAmelCase_ , unittest.TestCase ): A_ = CpmAntTokenizer A_ = False def __UpperCAmelCase ( self ): '''simple docstring''' super().setUp() __a : str = [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[Any] = CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) __a : int = '今天天气真好!' __a : int = ['今天', '天气', '真', '好', '!'] __a : Optional[Any] = tokenizer.tokenize(__a ) self.assertListEqual(__a , __a ) __a : Dict = '今天天气真好!' __a : Union[str, Any] = [tokenizer.bos_token] + tokens __a : int = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a ) __a : Any = tokenizer.decode(__a ) self.assertEqual(__a , __a )
476
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "s-JoL/Open-Llama-V1": "https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json", } class _a ( __lowerCamelCase): """simple docstring""" UpperCamelCase__ = """open-llama""" def __init__( self : Optional[int] , __UpperCamelCase : Any=1_0_0_0_0_0 , __UpperCamelCase : Union[str, Any]=4_0_9_6 , __UpperCamelCase : int=1_1_0_0_8 , __UpperCamelCase : Dict=3_2 , __UpperCamelCase : List[Any]=3_2 , __UpperCamelCase : Optional[int]="silu" , __UpperCamelCase : Optional[int]=2_0_4_8 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : Optional[Any]=1e-6 , __UpperCamelCase : int=True , __UpperCamelCase : Any=0 , __UpperCamelCase : Optional[int]=1 , __UpperCamelCase : Union[str, Any]=2 , __UpperCamelCase : Any=False , __UpperCamelCase : List[Any]=True , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Tuple=True , __UpperCamelCase : str=True , __UpperCamelCase : List[Any]=None , **__UpperCamelCase : Dict , )->str: _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = rms_norm_eps _UpperCAmelCase = use_cache _UpperCAmelCase = kwargs.pop( '''use_memorry_efficient_attention''' , UpperCAmelCase_ ) _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_dropout_prob _UpperCAmelCase = use_stable_embedding _UpperCAmelCase = shared_input_output_embedding _UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , tie_word_embeddings=UpperCAmelCase_ , **UpperCAmelCase_ , ) def lowercase__ ( self : List[str] )->Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'got {self.rope_scaling}' ) _UpperCAmelCase = self.rope_scaling.get('''type''' , UpperCAmelCase_ ) _UpperCAmelCase = self.rope_scaling.get('''factor''' , UpperCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
706
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __A : Tuple = None __A : Optional[Any] = logging.get_logger(__name__) __A : Union[str, Any] = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A : int = { "vocab_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/spiece.model", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/spiece.model", }, "tokenizer_file": { "google/fnet-base": "https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json", "google/fnet-large": "https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json", }, } __A : Optional[int] = { "google/fnet-base": 512, "google/fnet-large": 512, } __A : List[Any] = "▁" class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ["""input_ids""", """token_type_ids"""] UpperCamelCase__ = FNetTokenizer def __init__( self : Optional[Any] , __UpperCamelCase : Tuple=None , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=False , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Any="[SEP]" , __UpperCamelCase : Dict="<pad>" , __UpperCamelCase : Optional[int]="[CLS]" , __UpperCamelCase : List[Any]="[MASK]" , **__UpperCamelCase : Optional[Any] , )->Dict: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase = ( AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase , normalized=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase__ ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase__ ( self : Optional[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None )->List[int]: _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None )->Tuple[str]: if not os.path.isdir(__UpperCamelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
95
0
def lowerCamelCase__ ( _a , _a): return 1 if input_a == input_a else 0 def lowerCamelCase__ ( ): assert xnor_gate(0 , 0) == 1 assert xnor_gate(0 , 1) == 0 assert xnor_gate(1 , 0) == 0 assert xnor_gate(1 , 1) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
25
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : Any ,lowercase_ : Dict ,lowercase_ : List[str]=7 ,lowercase_ : Tuple=3 ,lowercase_ : List[str]=1_8 ,lowercase_ : Optional[Any]=3_0 ,lowercase_ : List[Any]=4_0_0 ,lowercase_ : List[Any]=True ,lowercase_ : Any=None ,lowercase_ : Optional[Any]=True ,lowercase_ : str=None ,lowercase_ : List[Any]=True ,lowercase_ : Dict=[0.5, 0.5, 0.5] ,lowercase_ : Dict=[0.5, 0.5, 0.5] ,): lowerCAmelCase__ : Any = size if size is not None else {'''shortest_edge''': 1_8} lowerCAmelCase__ : Union[str, Any] = crop_size if crop_size is not None else {'''height''': 1_8, '''width''': 1_8} lowerCAmelCase__ : Dict = parent lowerCAmelCase__ : Dict = batch_size lowerCAmelCase__ : List[str] = num_channels lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : Union[str, Any] = min_resolution lowerCAmelCase__ : Dict = max_resolution lowerCAmelCase__ : List[str] = do_resize lowerCAmelCase__ : Optional[Any] = size lowerCAmelCase__ : Tuple = do_center_crop lowerCAmelCase__ : Optional[int] = crop_size lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Tuple = image_mean lowerCAmelCase__ : int = image_std def __lowerCAmelCase ( self : List[str] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = LevitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Optional[Any] = LevitImageProcessingTester(self ) @property def __lowerCAmelCase ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_resize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_center_crop''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) def __lowerCAmelCase ( self : Any ): lowerCAmelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 1_8} ) self.assertEqual(image_processor.crop_size ,{'''height''': 1_8, '''width''': 1_8} ) lowerCAmelCase__ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCAmelCase ( self : Union[str, Any] ): pass def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : Any = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : Union[str, Any] ): # Initialize image_processing lowerCAmelCase__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Tuple = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Union[str, Any] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : int ): # Initialize image_processing lowerCAmelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : Dict = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[int] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
450
0
"""simple docstring""" def _UpperCAmelCase ( lowerCamelCase__ ): # noqa: E741 """simple docstring""" lowerCAmelCase__ = len(lowerCamelCase__ ) lowerCAmelCase__ = 0 lowerCAmelCase__ = [0] * n lowerCAmelCase__ = [False] * n lowerCAmelCase__ = [False] * n def dfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if parent == root: out_edge_count += 1 lowerCAmelCase__ = True lowerCAmelCase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowerCAmelCase__ = dfs(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowerCAmelCase__ = True # AP found via cycle if at == low[to]: lowerCAmelCase__ = True else: lowerCAmelCase__ = min(low[at] , lowerCamelCase__ ) return out_edge_count for i in range(lowerCamelCase__ ): if not visited[i]: lowerCAmelCase__ = 0 lowerCAmelCase__ = dfs(lowerCamelCase__ , lowerCamelCase__ , -1 , lowerCamelCase__ ) lowerCAmelCase__ = out_edge_count > 1 for x in range(len(lowerCamelCase__ ) ): if is_art[x] is True: print(lowerCamelCase__ ) # Adjacency list of graph __lowerCAmelCase : str = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
704
"""simple docstring""" from __future__ import annotations from math import gcd def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 2 , lowerCamelCase__ = 1 , lowerCamelCase__ = 3 , ): """simple docstring""" if num < 2: raise ValueError("""The input value cannot be less than 2""" ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> int: return (pow(lowerCamelCase__ , 2 ) + step) % modulus for _ in range(lowerCamelCase__ ): # These track the position within the cycle detection logic. lowerCAmelCase__ = seed lowerCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase__ = rand_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. lowerCAmelCase__ = gcd(hare - tortoise , lowerCamelCase__ ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. lowerCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "num", type=int, help="The value to find a divisor of", ) parser.add_argument( "--attempts", type=int, default=3, help="The number of attempts before giving up", ) __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : Dict = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"{args.num} is probably prime") else: __lowerCAmelCase : List[str] = args.num // divisor print(F"{args.num} = {divisor} * {quotient}")
674
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Union[str, Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """ctc_proj""", """mask_emb""": """masked_spec_embed""", } __SCREAMING_SNAKE_CASE : Tuple = [ """ctc_proj""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def UpperCamelCase_ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models _UpperCAmelCase : Tuple = "lm_head" _UpperCAmelCase : List[str] = getattr(_UpperCAmelCase , _UpperCAmelCase ) if weight_type is not None: _UpperCAmelCase : Dict = getattr(_UpperCAmelCase , _UpperCAmelCase ).shape else: _UpperCAmelCase : Tuple = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _UpperCAmelCase : Tuple = value elif weight_type == "weight_g": _UpperCAmelCase : int = value elif weight_type == "weight_v": _UpperCAmelCase : Dict = value elif weight_type == "bias": _UpperCAmelCase : Tuple = value else: _UpperCAmelCase : List[str] = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def UpperCamelCase_ ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = [] _UpperCAmelCase : Union[str, Any] = fairseq_model.state_dict() _UpperCAmelCase : List[str] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _UpperCAmelCase : Tuple = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase : Optional[int] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _UpperCAmelCase : int = True if "*" in mapped_key: _UpperCAmelCase : Tuple = name.split(_UpperCAmelCase )[0].split("." )[-2] _UpperCAmelCase : str = mapped_key.replace("*" , _UpperCAmelCase ) if "weight_g" in name: _UpperCAmelCase : int = "weight_g" elif "weight_v" in name: _UpperCAmelCase : Union[str, Any] = "weight_v" elif "bias" in name: _UpperCAmelCase : Optional[Any] = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase : List[str] = "weight" else: _UpperCAmelCase : Optional[int] = None set_recursively(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) continue if not is_used: unused_weights.append(_UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def UpperCamelCase_ ( _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict ) -> int: """simple docstring""" _UpperCAmelCase : Optional[int] = full_name.split("conv_layers." )[-1] _UpperCAmelCase : Optional[Any] = name.split("." ) _UpperCAmelCase : Union[str, Any] = int(items[0] ) _UpperCAmelCase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _UpperCAmelCase : Any = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _UpperCAmelCase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _UpperCAmelCase : Any = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _UpperCAmelCase : List[str] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_UpperCAmelCase ) @torch.no_grad() def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : List[str] , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=True ) -> List[str]: """simple docstring""" if config_path is not None: _UpperCAmelCase : Optional[Any] = UniSpeechConfig.from_pretrained(_UpperCAmelCase ) else: _UpperCAmelCase : str = UniSpeechConfig() if is_finetuned: if dict_path: _UpperCAmelCase : Tuple = Dictionary.load_from_json(_UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCAmelCase : str = target_dict.pad_index _UpperCAmelCase : Union[str, Any] = target_dict.bos_index _UpperCAmelCase : str = target_dict.eos_index _UpperCAmelCase : int = len(target_dict.symbols ) _UpperCAmelCase : int = os.path.join(_UpperCAmelCase , "vocab.json" ) if not os.path.isdir(_UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_UpperCAmelCase ) ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) _UpperCAmelCase : Tuple = target_dict.indices # fairseq has the <pad> and <s> switched _UpperCAmelCase : Optional[int] = 42 _UpperCAmelCase : List[str] = 43 with open(_UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_UpperCAmelCase , _UpperCAmelCase ) _UpperCAmelCase : str = WavaVecaPhonemeCTCTokenizer( _UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_UpperCAmelCase , ) _UpperCAmelCase : List[Any] = True if config.feat_extract_norm == "layer" else False _UpperCAmelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , ) _UpperCAmelCase : Union[str, Any] = WavaVecaProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase ) processor.save_pretrained(_UpperCAmelCase ) _UpperCAmelCase : Union[str, Any] = UniSpeechForCTC(_UpperCAmelCase ) else: _UpperCAmelCase : Any = UniSpeechForPreTraining(_UpperCAmelCase ) if is_finetuned: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Any = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _UpperCAmelCase : Dict = model[0].eval() recursively_load_weights(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) hf_unispeech.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
244
'''simple docstring''' import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers __SCREAMING_SNAKE_CASE : List[str] = """python tqdm regex requests packaging filelock numpy tokenizers""".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("""dataclasses""") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("""importlib_metadata""") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F'can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py') def UpperCamelCase_ ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" require_version(deps[pkg] , _UpperCAmelCase )
244
1
from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Sequence[float] , __lowerCamelCase: bool = False ): '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("-inf" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCamelCase , __lowerCamelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() SCREAMING_SNAKE_CASE__ = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"""{max_subarray_sum(nums) = }""")
601
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): SCREAMING_SNAKE_CASE__ = True from torch.cuda.amp import autocast SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Whether to log verbose messages or not."} , ) lowerCAmelCase__ = field( default=2.0 , metadata={"help": "Maximum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.5 , metadata={"help": "Minimum temperature for gumbel softmax."} ) lowerCAmelCase__ = field( default=0.999_995 , metadata={"help": "Decay of gumbel temperature during training."} ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: ModelArguments , __lowerCamelCase: TrainingArguments ): '''simple docstring''' logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowercase_ = logging.WARNING if model_args.verbose_logging: lowercase_ = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): lowercase_ = logging.INFO logger.setLevel(__lowerCamelCase ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase__ = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowerCAmelCase__ = field( default="validation" , metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowerCAmelCase__ = field( default="file" , metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"} , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) lowerCAmelCase__ = field( default=1 , metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" } , ) lowerCAmelCase__ = field( default=snake_case_ , metadata={"help": "The number of processes to use for the preprocessing."} , ) lowerCAmelCase__ = field( default=20.0 , metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = "longest" lowerCAmelCase__ = None lowerCAmelCase__ = None def __call__( self , UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' lowercase_ = self.feature_extractor.pad( UpperCAmelCase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" , ) lowercase_ = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] ) lowercase_ = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula lowercase_ = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to( torch.long ) lowercase_ = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to lowercase_ = 1 lowercase_ = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices lowercase_ = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=UpperCAmelCase , min_masks=2 , ) return batch class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , *UpperCAmelCase , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=1.0 , **UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__(*UpperCAmelCase , **UpperCAmelCase ) lowercase_ = 0 lowercase_ = max_gumbel_temp lowercase_ = min_gumbel_temp lowercase_ = gumbel_temp_decay def A__ ( self , UpperCAmelCase , UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' model.train() lowercase_ = self._prepare_inputs(UpperCAmelCase ) if self.use_amp: with autocast(): lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) else: lowercase_ = self.compute_loss(UpperCAmelCase , UpperCAmelCase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": lowercase_ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": lowercase_ = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: lowercase_ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(UpperCAmelCase ).backward() elif self.use_apex: with amp.scale_loss(UpperCAmelCase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(UpperCAmelCase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def SCREAMING_SNAKE_CASE_ ( ): '''simple docstring''' lowercase_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase_ , lowercase_ , lowercase_ = parser.parse_args_into_dataclasses() configure_logger(__lowerCamelCase , __lowerCamelCase ) # Downloading and loading a dataset from the hub. lowercase_ = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[:{data_args.validation_split_percentage}%]' , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}[{data_args.validation_split_percentage}%:]' , cache_dir=model_args.cache_dir , ) else: # make sure only "validation" and "train" keys remain" lowercase_ = DatasetDict() lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , ) lowercase_ = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'{data_args.train_split_name}' , cache_dir=model_args.cache_dir , ) # only normalized-inputs-training is supported lowercase_ = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=__lowerCamelCase ) def prepare_dataset(__lowerCamelCase: Dict ): # check that all files have the correct sampling rate lowercase_ , lowercase_ = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays lowercase_ = datasets.map( __lowerCamelCase , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names ) # filter audio files that are too long lowercase_ = vectorized_datasets.filter( lambda __lowerCamelCase : len(data["speech"] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowerCamelCase: Optional[Any] ): return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` lowercase_ = vectorized_datasets.map( __lowerCamelCase , batched=__lowerCamelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 lowercase_ = WavaVecaConfig.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) lowercase_ = WavaVecaForPreTraining(__lowerCamelCase ) lowercase_ = DataCollatorForWavaVecaPretraining(model=__lowerCamelCase , feature_extractor=__lowerCamelCase ) lowercase_ = WavaVecaPreTrainer( model=__lowerCamelCase , data_collator=__lowerCamelCase , args=__lowerCamelCase , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=__lowerCamelCase , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , ) trainer.train() if __name__ == "__main__": main()
601
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def __lowerCamelCase ( __lowerCAmelCase : Dict ) -> int: snake_case = min(lowerCamelCase_ ) # min() finds the minimum value snake_case = max(lowerCamelCase_ ) # max() finds the maximum value snake_case = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size snake_case = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. snake_case = 0 for count in range(lowerCamelCase_ ): while holes[count] > 0: holes[count] -= 1 snake_case = count + min_val i += 1 def __lowerCamelCase ( ) -> Dict: snake_case = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(lowerCamelCase_ ) print("""Sorted order is:""" , """ """.join(lowerCamelCase_ ) ) if __name__ == "__main__": main()
369
def lowerCAmelCase__ ( lowerCamelCase_ : Dict ,lowerCamelCase_ : Optional[int]): '''simple docstring''' lowerCAmelCase__ : int = (boundary[1] - boundary[0]) / steps lowerCAmelCase__ : Optional[int] = boundary[0] lowerCAmelCase__ : int = boundary[1] lowerCAmelCase__ : Tuple = make_points(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_) lowerCAmelCase__ : str = 0.0 y += (h / 2.0) * f(lowerCamelCase_) for i in x_i: # print(i) y += h * f(lowerCamelCase_) y += (h / 2.0) * f(lowerCamelCase_) return y def lowerCAmelCase__ ( lowerCamelCase_ : List[Any] ,lowerCamelCase_ : Dict ,lowerCamelCase_ : Dict): '''simple docstring''' lowerCAmelCase__ : Dict = a + h while x < (b - h): yield x lowerCAmelCase__ : Any = x + h def lowerCAmelCase__ ( lowerCamelCase_ : str): # enter your function here '''simple docstring''' lowerCAmelCase__ : List[str] = (x - 0) * (x - 0) return y def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = 0.0 # Lower bound of integration lowerCAmelCase__ : Optional[int] = 1.0 # Upper bound of integration lowerCAmelCase__ : List[str] = 10.0 # define number of steps or resolution lowerCAmelCase__ : Dict = [a, b] # define boundary of integration lowerCAmelCase__ : Any = method_a(lowerCamelCase_ ,lowerCamelCase_) print(f"""y = {y}""") if __name__ == "__main__": main()
647
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device lowerCAmelCase__ : Union[str, Any] = False class snake_case ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt='first prompt' ,image=lowerCamelCase__ ,text_to_image_strength=0.7_5 ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ ,torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = generator.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt='first prompt' ,image=lowerCamelCase__ ,text_to_image_strength=0.7_5 ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = 'cyberpunk 2077' UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.dual_guided( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,text_to_image_strength=0.7_5 ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ,).images UpperCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase__ = 'A painting of a squirrel eating a burger ' UpperCAmelCase__ = torch.manual_seed(0 ) UpperCAmelCase__ = pipe.text_to_image( prompt=lowerCamelCase__ ,generator=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ).images UpperCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCAmelCase__ = pipe.image_variation(lowerCamelCase__ ,generator=lowerCamelCase__ ,output_type='numpy' ).images UpperCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) UpperCAmelCase__ = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
632
"""simple docstring""" import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ : Any = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = XLMProphetNetTokenizer snake_case__ = False snake_case__ = True def __lowerCAmelCase ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ = XLMProphetNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ): UpperCAmelCase__ = '[PAD]' UpperCAmelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) ,lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) ,lowerCamelCase__ ) def __lowerCAmelCase ( self : List[str] ): UpperCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'[PAD]' ) self.assertEqual(vocab_keys[1] ,'[CLS]' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(lowerCamelCase__ ) ,1_012 ) def __lowerCAmelCase ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size ,1_012 ) def __lowerCAmelCase ( self : str ): UpperCAmelCase__ = XLMProphetNetTokenizer(lowerCamelCase__ ,keep_accents=lowerCamelCase__ ) UpperCAmelCase__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowerCamelCase__ ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] ,) UpperCAmelCase__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] ,) UpperCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] ,) UpperCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__ ,[ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '[UNK]', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '[UNK]', '.', ] ,) @cached_property def __lowerCAmelCase ( self : Dict ): return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' ) @slow def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = 'Hello World!' UpperCAmelCase__ = [35_389, 6_672, 49, 2] self.assertListEqual(lowerCamelCase__ ,self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def __lowerCAmelCase ( self : List[str] ): # fmt: off UpperCAmelCase__ = {'input_ids': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ ,model_name='microsoft/xprophetnet-large-wiki100-cased' ,revision='1acad1643ddd54a44df6a1b797ada8373685d90e' ,)
632
1
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Dict: lowercase_ = jnp.ones((batch_size, length) ) / length return scores def _lowercase ( self : List[Any] ) -> List[Any]: lowercase_ = None lowercase_ = 2_0 lowercase_ = self._get_uniform_logits(batch_size=2 , length=SCREAMING_SNAKE_CASE_ ) # tweak scores to not be uniform anymore lowercase_ = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch lowercase_ = scores.at[1, 1_0].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax lowercase_ = jax.nn.softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ) lowercase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ = FlaxTemperatureLogitsWarper(temperature=1.3 ) lowercase_ = jax.nn.softmax(temp_dist_warper_sharper(SCREAMING_SNAKE_CASE_ , scores.copy() , cur_len=SCREAMING_SNAKE_CASE_ ) , axis=-1 ) lowercase_ = jax.nn.softmax(temp_dist_warper_smoother(SCREAMING_SNAKE_CASE_ , scores.copy() , cur_len=SCREAMING_SNAKE_CASE_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _lowercase ( self : Optional[Any] ) -> List[str]: lowercase_ = None lowercase_ = 1_0 lowercase_ = 2 # create ramp distribution lowercase_ = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :] , (batch_size, vocab_size) ).copy() lowercase_ = ramp_logits[1:, : vocab_size // 2] + vocab_size lowercase_ = FlaxTopKLogitsWarper(3 ) lowercase_ = top_k_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case lowercase_ = 5 lowercase_ = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) lowercase_ = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :] , (batch_size, length) ).copy() lowercase_ = top_k_warp_safety_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _lowercase ( self : List[Any] ) -> Union[str, Any]: lowercase_ = None lowercase_ = 1_0 lowercase_ = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) lowercase_ = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) lowercase_ = FlaxTopPLogitsWarper(0.8 ) lowercase_ = np.exp(top_p_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 lowercase_ = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # check edge cases with negative and extreme logits lowercase_ = np.broadcast_to(np.arange(SCREAMING_SNAKE_CASE_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme lowercase_ = ramp_logits[1] * 1_00.0 # make sure at least 2 tokens are kept lowercase_ = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) lowercase_ = top_p_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _lowercase ( self : Tuple ) -> Any: lowercase_ = 2_0 lowercase_ = 4 lowercase_ = 0 lowercase_ = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that min length is applied at length 5 lowercase_ = ids_tensor((batch_size, 2_0) , vocab_size=2_0 ) lowercase_ = 5 lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = min_dist_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = 1_5 lowercase_ = min_dist_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def _lowercase ( self : List[str] ) -> Dict: lowercase_ = 2_0 lowercase_ = 4 lowercase_ = 0 lowercase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the bos_token_id score lowercase_ = ids_tensor((batch_size, 1) , vocab_size=2_0 ) lowercase_ = 1 lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = logits_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 lowercase_ = 3 lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = logits_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def _lowercase ( self : int ) -> Optional[int]: lowercase_ = 2_0 lowercase_ = 4 lowercase_ = 0 lowercase_ = 5 lowercase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) # check that all scores are -inf except the eos_token_id when max_length is reached lowercase_ = ids_tensor((batch_size, 4) , vocab_size=2_0 ) lowercase_ = 4 lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = logits_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached lowercase_ = 3 lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = logits_processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) self.assertFalse(jnp.isinf(SCREAMING_SNAKE_CASE_ ).any() ) def _lowercase ( self : int ) -> Tuple: lowercase_ = 4 lowercase_ = 1_0 lowercase_ = 1_5 lowercase_ = 2 lowercase_ = 1 lowercase_ = 1_5 # dummy input_ids and scores lowercase_ = ids_tensor((batch_size, sequence_length) , SCREAMING_SNAKE_CASE_ ) lowercase_ = input_ids.copy() lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = scores.copy() # instantiate all dist processors lowercase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ = FlaxTopKLogitsWarper(3 ) lowercase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase_ = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = 1_0 # no processor list lowercase_ = temp_dist_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = top_k_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = top_p_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = min_dist_proc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = bos_dist_proc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = eos_dist_proc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) # with processor list lowercase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase_ = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _lowercase ( self : List[Any] ) -> List[str]: lowercase_ = 4 lowercase_ = 1_0 lowercase_ = 1_5 lowercase_ = 2 lowercase_ = 1 lowercase_ = 1_5 # dummy input_ids and scores lowercase_ = ids_tensor((batch_size, sequence_length) , SCREAMING_SNAKE_CASE_ ) lowercase_ = input_ids.copy() lowercase_ = self._get_uniform_logits(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = scores.copy() # instantiate all dist processors lowercase_ = FlaxTemperatureLogitsWarper(temperature=0.5 ) lowercase_ = FlaxTopKLogitsWarper(3 ) lowercase_ = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors lowercase_ = FlaxMinLengthLogitsProcessor(min_length=1_0 , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = FlaxForcedEOSTokenLogitsProcessor(max_length=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ ) lowercase_ = 1_0 # no processor list def run_no_processor_list(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : int ): lowercase_ = temp_dist_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = top_k_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = top_p_warp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = min_dist_proc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = bos_dist_proc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) lowercase_ = eos_dist_proc(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) return scores # with processor list def run_processor_list(SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ): lowercase_ = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) lowercase_ = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , cur_len=SCREAMING_SNAKE_CASE_ ) return scores lowercase_ = jax.jit(SCREAMING_SNAKE_CASE_ ) lowercase_ = jax.jit(SCREAMING_SNAKE_CASE_ ) lowercase_ = jitted_run_no_processor_list(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = jitted_run_processor_list(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # scores should be equal self.assertTrue(jnp.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
97
from manim import * class A__ ( __snake_case ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = Rectangle(height=0.5 , width=0.5 ) UpperCamelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) UpperCamelCase = Rectangle(height=0.2_5 , width=0.2_5 ) UpperCamelCase = [mem.copy() for i in range(6 )] UpperCamelCase = [mem.copy() for i in range(6 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('CPU' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [mem.copy() for i in range(4 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('GPU' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) gpu.move_to([-1, -1, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [mem.copy() for i in range(6 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('Model' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) model.move_to([3, -1.0, 0] ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = [] UpperCamelCase = [] for i, rect in enumerate(_SCREAMING_SNAKE_CASE ): UpperCamelCase = fill.copy().set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) target.move_to(_SCREAMING_SNAKE_CASE ) model_arr.append(_SCREAMING_SNAKE_CASE ) UpperCamelCase = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_SCREAMING_SNAKE_CASE , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_SCREAMING_SNAKE_CASE ) self.add(*_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE ) UpperCamelCase = [meta_mem.copy() for i in range(6 )] UpperCamelCase = [meta_mem.copy() for i in range(6 )] UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(*_SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = VGroup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0 ) UpperCamelCase = Text('Disk' , font_size=24 ) UpperCamelCase = Group(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).arrange(_SCREAMING_SNAKE_CASE , buff=0.5 , aligned_edge=_SCREAMING_SNAKE_CASE ) disk.move_to([-4, -1.2_5, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCamelCase = MarkupText( f'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = MarkupText( f'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(_SCREAMING_SNAKE_CASE , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_SCREAMING_SNAKE_CASE ) UpperCamelCase = MarkupText( f'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = Square(0.3 ) input.set_fill(_SCREAMING_SNAKE_CASE , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _SCREAMING_SNAKE_CASE , buff=0.5 ) self.play(Write(_SCREAMING_SNAKE_CASE ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_SCREAMING_SNAKE_CASE , buff=0.0_2 ) self.play(MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.play(FadeOut(_SCREAMING_SNAKE_CASE ) ) UpperCamelCase = Arrow(start=_SCREAMING_SNAKE_CASE , end=_SCREAMING_SNAKE_CASE , color=_SCREAMING_SNAKE_CASE , buff=0.5 ) a.next_to(model_arr[0].get_left() , _SCREAMING_SNAKE_CASE , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) UpperCamelCase = MarkupText( f'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) ) UpperCamelCase = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.0_2} self.play( Write(_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_cpu_arr[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) UpperCamelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , _SCREAMING_SNAKE_CASE , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) UpperCamelCase = AnimationGroup( FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , MoveToTarget(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , FadeIn(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_SCREAMING_SNAKE_CASE ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: UpperCamelCase = 0.7 self.play( Circumscribe(model_arr[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i] , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(model_arr[i + 1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(cpu_left_col_base[-1] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , Circumscribe(gpu_rect[0] , color=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) UpperCamelCase = a_c UpperCamelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(_SCREAMING_SNAKE_CASE ) , FadeOut(_SCREAMING_SNAKE_CASE , run_time=0.5 ) , ) UpperCamelCase = MarkupText(f'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_SCREAMING_SNAKE_CASE , run_time=3 ) , MoveToTarget(_SCREAMING_SNAKE_CASE ) ) self.wait()
280
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCamelCase = '''gpt_neox''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[str]=50432 , _UpperCAmelCase : Any=6144 , _UpperCAmelCase : Tuple=44 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Dict=24576 , _UpperCAmelCase : List[str]="gelu" , _UpperCAmelCase : Tuple=0.25 , _UpperCAmelCase : Union[str, Any]=10000 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Optional[Any]=2048 , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Any=1e-5 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Optional[Any]=None , **_UpperCAmelCase : Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = rotary_pct UpperCAmelCase_ = rotary_emb_base UpperCAmelCase_ = attention_dropout UpperCAmelCase_ = hidden_dropout UpperCAmelCase_ = classifier_dropout UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = use_cache UpperCAmelCase_ = tie_word_embeddings UpperCAmelCase_ = use_parallel_residual UpperCAmelCase_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowercase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"""got {self.rope_scaling}""" ) UpperCAmelCase_ = self.rope_scaling.get("type" , _UpperCAmelCase ) UpperCAmelCase_ = self.rope_scaling.get("factor" , _UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase , _UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
717
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCAmelCase__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCAmelCase_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements UpperCAmelCase_ = [[0.0, 0.0], [0.0, 0.0]] UpperCAmelCase_ , UpperCAmelCase_ = matrix[1][1], matrix[0][0] UpperCAmelCase_ , UpperCAmelCase_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCAmelCase__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCAmelCase__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCAmelCase_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix UpperCAmelCase_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCAmelCase_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCAmelCase_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCAmelCase_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCAmelCase_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCAmelCase_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): UpperCAmelCase_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCAmelCase_ = array(lowerCAmelCase__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCAmelCase__ ) # Calculate the inverse of the matrix return [[float(d(lowerCAmelCase__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
14
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore lowercase__ = "\nHuman: <<task>>\n\nAssistant: " lowercase__ = "huggingface-tools/default-prompts" lowercase__ = {"chat": "chat_prompt_template.txt", "run": "run_prompt_template.txt"} def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__="run" ) -> Dict: '''simple docstring''' if prompt_or_repo_id is None: snake_case : Union[str, Any] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , SCREAMING_SNAKE_CASE__ ) is not None: return prompt_or_repo_id snake_case : List[Any] = cached_file( SCREAMING_SNAKE_CASE__ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name} ) with open(SCREAMING_SNAKE_CASE__ , '''r''' , encoding='''utf-8''' ) as f: return f.read()
638
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowercase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase__ = 1_2_8_0_2_2 lowercase__ = 1_2_8_0_2_8 @require_sentencepiece class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = MaMaaaTokenizer lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() snake_case : int = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case : int = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case : Optional[int] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Dict , **UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : Tuple ) -> str: """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[int] = '''</s>''' snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" snake_case : Tuple = self.get_tokenizer() snake_case : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(UpperCamelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = self.get_tokenizer() snake_case : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case : Optional[int] = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , '''This is a test''' ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Tuple = {'''input_ids''': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" lowerCamelCase = """facebook/m2m100_418M""" lowerCamelCase = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCamelCase = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCamelCase = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def lowerCAmelCase ( cls : List[Any] ) -> int: """simple docstring""" snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) snake_case : List[str] = 1 return cls def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_8063 ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : List[str] = self.tokenizer.get_vocab() self.assertEqual(len(UpperCamelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = '''en''' snake_case : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case : str = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on snake_case : int = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case : Union[str, Any] = tempfile.mkdtemp() snake_case : Union[str, Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCamelCase__ ) snake_case : Optional[int] = MaMaaaTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCamelCase__ ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = '''en''' snake_case : int = '''fr''' snake_case : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='''pt''' ) snake_case : List[str] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case : Tuple = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case : Optional[int] = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : List[Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : int = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # en_XX, A, test, EOS '''input_ids''': [[12_8022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_8006, } , )
638
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase_ = Lock() def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[int]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case_ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase__ : Dict = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase__ : int = min(snake_case_ , snake_case_ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case_ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase__ : List[Any] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase__ : List[Any] = max(snake_case_ , snake_case_ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case_ ) def __lowerCAmelCase ( UpperCamelCase ) -> Dict: lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : List[str] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase__ : List[Any] = Pipe() lowerCAmelCase__ : Any = Pipe() process_array_.append( Process( target=snake_case_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCAmelCase__ : Tuple = temp_rs lowerCAmelCase__ : str = temp_rr for i in range(1 , len(snake_case_ ) - 1 ): lowerCAmelCase__ : Union[str, Any] = Pipe() lowerCAmelCase__ : Union[str, Any] = Pipe() process_array_.append( Process( target=snake_case_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCAmelCase__ : int = temp_rs lowerCAmelCase__ : Union[str, Any] = temp_rr process_array_.append( Process( target=snake_case_ , args=( len(snake_case_ ) - 1, arr[len(snake_case_ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case_ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case_ ) ): lowerCAmelCase__ : Optional[int] = result_pipe[p][0].recv() process_array_[p].join() return arr def __lowerCAmelCase ( ) -> Optional[Any]: lowerCAmelCase__ : int = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*snake_case_ ) lowerCAmelCase__ : Tuple = odd_even_transposition(snake_case_ ) print('''Sorted List\n''' ) print(*snake_case_ ) if __name__ == "__main__": main()
710
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { """configuration_lilt""": ["""LILT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LiltConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ """LILT_PRETRAINED_MODEL_ARCHIVE_LIST""", """LiltForQuestionAnswering""", """LiltForSequenceClassification""", """LiltForTokenClassification""", """LiltModel""", """LiltPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
470
0
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class _snake_case ( snake_case ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = SMALL_MODEL_IDENTIFIER __magic_name__ : Dict = "pt" __magic_name__ : int = "tf" def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_a ) def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : List[str] = TFAutoModel.from_pretrained(self.test_model , from_pt=_a ) model_tf.save_pretrained(_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : List[Any] = "mock_framework" # Framework provided - return whatever the user provides __magic_name__ : Any = FeaturesManager.determine_framework(self.test_model , _a ) self.assertEqual(_a , _a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_a ) __magic_name__ : Dict = FeaturesManager.determine_framework(_a , _a ) self.assertEqual(_a , _a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_a ) __magic_name__ : Union[str, Any] = FeaturesManager.determine_framework(_a , _a ) self.assertEqual(_a , _a ) def SCREAMING_SNAKE_CASE ( self ): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_a ) __magic_name__ : Dict = FeaturesManager.determine_framework(_a ) self.assertEqual(_a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_a ) __magic_name__ : List[Any] = FeaturesManager.determine_framework(_a ) self.assertEqual(_a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_a ): __magic_name__ : Optional[int] = FeaturesManager.determine_framework(_a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = MagicMock(return_value=_a ) with patch("transformers.onnx.features.is_tf_available" , _a ): __magic_name__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow __magic_name__ : List[Any] = MagicMock(return_value=_a ) with patch("transformers.onnx.features.is_torch_available" , _a ): __magic_name__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_a , self.framework_tf ) # Both in environment -> use PyTorch __magic_name__ : Dict = MagicMock(return_value=_a ) __magic_name__ : Any = MagicMock(return_value=_a ) with patch("transformers.onnx.features.is_tf_available" , _a ), patch( "transformers.onnx.features.is_torch_available" , _a ): __magic_name__ : Tuple = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_a , self.framework_pt ) # Both not in environment -> raise error __magic_name__ : Optional[Any] = MagicMock(return_value=_a ) __magic_name__ : List[str] = MagicMock(return_value=_a ) with patch("transformers.onnx.features.is_tf_available" , _a ), patch( "transformers.onnx.features.is_torch_available" , _a ): with self.assertRaises(_a ): __magic_name__ : List[str] = FeaturesManager.determine_framework(self.test_model )
124
import os import sys import unittest snake_case : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path snake_case : str = os.path.join(git_repo_path, "src", "diffusers") class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = find_backend(" if not is_torch_available():" ) self.assertEqual(_a , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __magic_name__ : Optional[int] = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(_a , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __magic_name__ : Optional[int] = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(_a , "torch_and_transformers_and_onnx" ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _a ) self.assertIn("torch_and_transformers" , _a ) self.assertIn("flax_and_transformers" , _a ) self.assertIn("torch_and_transformers_and_onnx" , _a ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Any = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(_a , "\nCONSTANT = None\n" ) __magic_name__ : str = create_dummy_object("function" , "'torch'" ) self.assertEqual( _a , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __magic_name__ : Tuple = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" __magic_name__ : int = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(_a , _a ) def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[int] = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" __magic_name__ : Tuple = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _a )
124
1
from typing import List, Optional from tokenizers import ByteLevelBPETokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot_small import BlenderbotSmallTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __magic_name__ = { '''vocab_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json''' }, '''merges_file''': { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt''' }, '''tokenizer_config_file''': { '''facebook/blenderbot_small-90M''': ( '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json''' ) }, } __magic_name__ = { '''facebook/blenderbot_small-90M''': 512, } class __SCREAMING_SNAKE_CASE ( UpperCamelCase): """simple docstring""" __UpperCAmelCase = VOCAB_FILES_NAMES __UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase = BlenderbotSmallTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase="<|endoftext|>" , _UpperCAmelCase=False , _UpperCAmelCase=True , **_UpperCAmelCase , ): super().__init__( ByteLevelBPETokenizer( vocab=_UpperCAmelCase , merges=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase , ) , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , **_UpperCAmelCase , ) __snake_case : List[Any] = add_prefix_space def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase=None ): __snake_case : str = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __snake_case : Union[str, Any] = [self.sep_token_id] __snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
679
from __future__ import annotations __magic_name__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def UpperCAmelCase__( __UpperCAmelCase : list[list[int]] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int , __UpperCAmelCase : list[list[int]] , ): __snake_case : Optional[int] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the reference grid __snake_case : List[str] = 1 __snake_case : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__UpperCAmelCase ) ) ] # the action grid __snake_case : Dict = init[0] __snake_case : List[str] = init[1] __snake_case : Optional[Any] = 0 __snake_case : Union[str, Any] = g + heuristic[x][y] # cost from starting cell to destination cell __snake_case : Any = [[f, g, x, y]] __snake_case : List[str] = False # flag that is set when search is complete __snake_case : str = False # flag set if we can't find expand while not found and not resign: if len(__UpperCAmelCase ) == 0: raise ValueError('Algorithm is unable to find solution' ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() __snake_case : List[Any] = cell.pop() __snake_case : Optional[int] = next_cell[2] __snake_case : int = next_cell[3] __snake_case : Optional[Any] = next_cell[1] if x == goal[0] and y == goal[1]: __snake_case : Union[str, Any] = True else: for i in range(len(__UpperCAmelCase ) ): # to try out different valid actions __snake_case : Tuple = x + DIRECTIONS[i][0] __snake_case : Tuple = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__UpperCAmelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: __snake_case : List[str] = g + cost __snake_case : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) __snake_case : Dict = 1 __snake_case : Any = i __snake_case : Tuple = [] __snake_case : Dict = goal[0] __snake_case : Optional[int] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: __snake_case : Tuple = x - DIRECTIONS[action[x][y]][0] __snake_case : Optional[Any] = y - DIRECTIONS[action[x][y]][1] __snake_case : Tuple = xa __snake_case : List[str] = ya invpath.append([x, y] ) __snake_case : Dict = [] for i in range(len(__UpperCAmelCase ) ): path.append(invpath[len(__UpperCAmelCase ) - 1 - i] ) return path, action if __name__ == "__main__": __magic_name__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] __magic_name__ = [0, 0] # all coordinates are given in format [y,x] __magic_name__ = [len(grid) - 1, len(grid[0]) - 1] __magic_name__ = 1 # the cost map which pushes the path closer to the goal __magic_name__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): __magic_name__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map __magic_name__ = 99 __magic_name__ , __magic_name__ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
679
1
"""simple docstring""" import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def snake_case ( A__ ,A__ ): assert isinstance(A__ ,A__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : int = tmp_path / "cache" UpperCAmelCase_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : Tuple = JsonDatasetReader(A__ ,cache_dir=A__ ,keep_in_memory=A__ ).read() _check_json_dataset(A__ ,A__ ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Union[str, Any] = tmp_path / "cache" UpperCAmelCase_ : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : int = features.copy() if features else default_expected_features UpperCAmelCase_ : Dict = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : List[str] = JsonDatasetReader(A__ ,features=A__ ,cache_dir=A__ ).read() _check_json_dataset(A__ ,A__ ) @pytest.mark.parametrize( "features" ,[ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] ,) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : str = tmp_path / "cache" UpperCAmelCase_ : List[Any] = {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase_ : List[Any] = features.copy() if features else default_expected_features UpperCAmelCase_ : List[str] = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Optional[int] = JsonDatasetReader(A__ ,features=A__ ,cache_dir=A__ ).read() assert isinstance(A__ ,A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def snake_case ( A__ ,A__ ): # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCAmelCase_ : Optional[int] = {"col_2": "int64", "col_3": "float64", "col_1": "string"} UpperCAmelCase_ : Tuple = features.copy() UpperCAmelCase_ : Any = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Dict = tmp_path / "cache" UpperCAmelCase_ : Tuple = JsonDatasetReader(A__ ,features=A__ ,cache_dir=A__ ).read() assert isinstance(A__ ,A__ ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = tmp_path / "cache" UpperCAmelCase_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Any = JsonDatasetReader(A__ ,cache_dir=A__ ,split=A__ ).read() _check_json_dataset(A__ ,A__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" ,[str, list] ) def snake_case ( A__ ,A__ ,A__ ): if issubclass(A__ ,A__ ): UpperCAmelCase_ : Tuple = jsonl_path elif issubclass(A__ ,A__ ): UpperCAmelCase_ : int = [jsonl_path] UpperCAmelCase_ : Dict = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : List[str] = JsonDatasetReader(A__ ,cache_dir=A__ ).read() _check_json_dataset(A__ ,A__ ) def snake_case ( A__ ,A__ ,A__=("train",) ): assert isinstance(A__ ,A__ ) for split in splits: UpperCAmelCase_ : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" ,[False, True] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : List[str] = tmp_path / "cache" UpperCAmelCase_ : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase_ : List[Any] = JsonDatasetReader({"train": jsonl_path} ,cache_dir=A__ ,keep_in_memory=A__ ).read() _check_json_datasetdict(A__ ,A__ ) @pytest.mark.parametrize( "features" ,[ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] ,) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Dict = tmp_path / "cache" UpperCAmelCase_ : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : str = features.copy() if features else default_expected_features UpperCAmelCase_ : Any = ( Features({feature: Value(A__ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase_ : Optional[int] = JsonDatasetReader({"train": jsonl_path} ,features=A__ ,cache_dir=A__ ).read() _check_json_datasetdict(A__ ,A__ ) @pytest.mark.parametrize("split" ,[None, NamedSplit("train" ), "train", "test"] ) def snake_case ( A__ ,A__ ,A__ ): if split: UpperCAmelCase_ : Tuple = {split: jsonl_path} else: UpperCAmelCase_ : List[Any] = "train" UpperCAmelCase_ : str = {"train": jsonl_path, "test": jsonl_path} UpperCAmelCase_ : str = tmp_path / "cache" UpperCAmelCase_ : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} UpperCAmelCase_ : Dict = JsonDatasetReader(A__ ,cache_dir=A__ ).read() _check_json_datasetdict(A__ ,A__ ,splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def snake_case ( A__ ): return json.load(A__ ) def snake_case ( A__ ): return [json.loads(A__ ) for line in buffer] class UpperCamelCase_ : @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase_ , lowerCAmelCase_ , lines=lowerCAmelCase_ ).write() buffer.seek(0 ) UpperCAmelCase_ : Union[str, Any] = load_json_function(lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert isinstance(exported_content[0] , lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[str] ) -> List[str]: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase_ , lowerCAmelCase_ , lines=lowerCAmelCase_ , orient=lowerCAmelCase_ ).write() buffer.seek(0 ) UpperCAmelCase_ : Dict = load_json(lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCAmelCase_ ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> Union[str, Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase_ , lowerCAmelCase_ , lines=lowerCAmelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase_ : str = load_json_function(lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) assert isinstance(exported_content[0] , lowerCAmelCase_ ) assert len(lowerCAmelCase_ ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Dict ) -> Optional[Any]: with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase_ , lowerCAmelCase_ , lines=lowerCAmelCase_ , orient=lowerCAmelCase_ , num_proc=2 ).write() buffer.seek(0 ) UpperCAmelCase_ : Union[str, Any] = load_json(lowerCAmelCase_ ) assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(lowerCAmelCase_ , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(lowerCAmelCase_ ) == 10 def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase_ : Optional[Any] ) -> List[Any]: with pytest.raises(lowerCAmelCase_ ): with io.BytesIO() as buffer: JsonDatasetWriter(lowerCAmelCase_ , lowerCAmelCase_ , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Tuple ) -> List[str]: UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp("data" ) / f"""test.json.{extension}""" UpperCAmelCase_ : Dict = str(shared_datadir / f"""test_file.json.{extension}""" ) JsonDatasetWriter(lowerCAmelCase_ , lowerCAmelCase_ , compression=lowerCAmelCase_ ).write() with fsspec.open(lowerCAmelCase_ , "rb" , compression="infer" ) as f: UpperCAmelCase_ : Optional[Any] = f.read() with fsspec.open(lowerCAmelCase_ , "rb" , compression="infer" ) as f: UpperCAmelCase_ : Optional[int] = f.read() assert exported_content == original_content
95
"""simple docstring""" from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = '''T5Config''' class UpperCamelCase_ (__A ): __magic_name__ = '''mt5''' __magic_name__ = MTaConfig class UpperCamelCase_ (__A ): __magic_name__ = '''mt5''' __magic_name__ = MTaConfig class UpperCamelCase_ (__A ): __magic_name__ = '''mt5''' __magic_name__ = MTaConfig
95
1
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = 0 @slow def UpperCamelCase__ ( self) -> Dict: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertGreater(len(__lowercase) , 0) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsNotNone(__lowercase) self.assertIsInstance(__lowercase , (GPTaTokenizer, GPTaTokenizerFast)) self.assertGreater(len(__lowercase) , 0) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (RobertaTokenizer, RobertaTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 20) def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :List[str] = AutoConfig.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) # Check that tokenizer_type ≠ model_type __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__lowercase , config=__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) self.assertEqual(tokenizer.vocab_size , 12) def UpperCamelCase__ ( self) -> Optional[Any]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowercase , '''vocab.txt''')) __UpperCamelCase :Any = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''bert''' , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowercase , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowercase , '''merges.txt''')) __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''gpt2''' , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) @require_tokenizers def UpperCamelCase__ ( self) -> str: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowercase , '''vocab.txt''')) __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''bert''') self.assertIsInstance(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowercase , '''vocab.json''')) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowercase , '''merges.txt''')) __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__lowercase , tokenizer_type='''gpt2''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Dict: with pytest.raises(__lowercase): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''') @require_tokenizers def UpperCamelCase__ ( self) -> Optional[int]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __UpperCamelCase :Optional[Any] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''') self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) if isinstance(__lowercase , __lowercase): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowercase) else: self.assertEqual(tokenizer.do_lower_case , __lowercase) self.assertEqual(tokenizer.model_max_length , 512) @require_tokenizers def UpperCamelCase__ ( self) -> List[Any]: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowercase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): __UpperCamelCase :Union[str, Any] = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''') def UpperCamelCase__ ( self) -> Optional[int]: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai __UpperCamelCase :List[str] = TOKENIZER_MAPPING.values() __UpperCamelCase :int = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowercase) @require_tokenizers def UpperCamelCase__ ( self) -> Optional[int]: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowercase) , __lowercase) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''') , __lowercase) @require_tokenizers def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :str = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowercase) __UpperCamelCase :Dict = '''Hello, world. How are you?''' __UpperCamelCase :Any = tokenizer.tokenize(__lowercase) self.assertEqual('''[UNK]''' , tokens[0]) __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowercase) __UpperCamelCase :Tuple = tokenizer.tokenize(__lowercase) self.assertEqual('''[UNK]''' , tokens[0]) @require_tokenizers def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''') self.assertEqual(type(__lowercase) , __lowercase) self.assertEqual(tokenizer.model_max_length , 512) self.assertEqual(tokenizer.vocab_size , 30_000) self.assertEqual(tokenizer.unk_token , '''[UNK]''') self.assertEqual(tokenizer.padding_side , '''right''') self.assertEqual(tokenizer.truncation_side , '''right''') def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , (BertTokenizer, BertTokenizerFast)) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , tokenizer.__class__) self.assertEqual(tokenizera.vocab_size , 12) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained('''ctrl''') # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # Check we can load the tokenizer config of an online model. __UpperCamelCase :List[str] = get_tokenizer_config('''bert-base-cased''') __UpperCamelCase :str = config.pop('''_commit_hash''' , __lowercase) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowercase , {'''do_lower_case''': False}) # This model does not have a tokenizer_config so we get back an empty dict. __UpperCamelCase :int = get_tokenizer_config(__lowercase) self.assertDictEqual(__lowercase , {}) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __UpperCamelCase :str = AutoTokenizer.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) __UpperCamelCase :Optional[Any] = get_tokenizer_config(__lowercase) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''') def UpperCamelCase__ ( self) -> List[str]: try: AutoConfig.register('''custom''' , __lowercase) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) __UpperCamelCase :List[Any] = CustomTokenizer.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase__ ( self) -> Optional[int]: try: AutoConfig.register('''custom''' , __lowercase) # Can register in two steps AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None)) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowercase , slow_tokenizer_class=__lowercase , fast_tokenizer_class=__lowercase) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast)) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __UpperCamelCase :str = BertTokenizerFast.from_pretrained(__lowercase) bert_tokenizer.save_pretrained(__lowercase) __UpperCamelCase :List[str] = CustomTokenizerFast.from_pretrained(__lowercase) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) __UpperCamelCase :int = AutoTokenizer.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained(__lowercase , use_fast=__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :int = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase) __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase) self.assertTrue(tokenizer.special_attribute_present) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertTrue(reloaded_tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version __UpperCamelCase :Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowercase) __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained(__lowercase , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(reloaded_tokenizer.special_attribute_present) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''') @require_tokenizers def UpperCamelCase__ ( self) -> Any: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Union[str, Any] = False class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = NewTokenizer a__ : str = False try: AutoConfig.register('''custom''' , __lowercase) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase) AutoTokenizer.register(__lowercase , fast_tokenizer_class=__lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''') self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) __UpperCamelCase :Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote code is disabled, we load the local one. __UpperCamelCase :Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertFalse(tokenizer.special_attribute_present) __UpperCamelCase :Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertFalse(tokenizer.special_attribute_present) # If remote is enabled, we load from the Hub __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') self.assertTrue(tokenizer.special_attribute_present) __UpperCamelCase :Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') self.assertTrue(tokenizer.special_attribute_present) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :List[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowercase) self.assertTrue(tokenizer.special_attribute_present) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''') # Test we can also load the slow version __UpperCamelCase :List[str] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowercase , use_fast=__lowercase) self.assertTrue(tokenizer.special_attribute_present) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''') def UpperCamelCase__ ( self) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''bert-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :str = AutoTokenizer.from_pretrained('''bert-base''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :Optional[Any] = AutoTokenizer.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: # Make sure we have cached the tokenizer. __UpperCamelCase :Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') with RequestCounter() as counter: __UpperCamelCase :Any = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''') self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
452
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = """unispeech""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=80 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=0.5 , **__lowercase , ) -> Optional[int]: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :str = hidden_size __UpperCamelCase :List[str] = feat_extract_norm __UpperCamelCase :str = feat_extract_activation __UpperCamelCase :str = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :Any = conv_bias __UpperCamelCase :List[Any] = num_conv_pos_embeddings __UpperCamelCase :Tuple = num_conv_pos_embedding_groups __UpperCamelCase :Optional[int] = len(self.conv_dim) __UpperCamelCase :Optional[int] = num_hidden_layers __UpperCamelCase :Union[str, Any] = intermediate_size __UpperCamelCase :Tuple = hidden_act __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :Any = hidden_dropout __UpperCamelCase :List[str] = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :int = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Optional[Any] = layerdrop __UpperCamelCase :Any = layer_norm_eps __UpperCamelCase :List[str] = initializer_range __UpperCamelCase :Tuple = num_ctc_classes __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :List[Any] = do_stable_layer_norm __UpperCamelCase :Dict = use_weighted_layer_sum __UpperCamelCase :str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Optional[int] = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Any = mask_time_min_masks __UpperCamelCase :Any = mask_feature_prob __UpperCamelCase :str = mask_feature_length __UpperCamelCase :Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :Dict = num_codevector_groups __UpperCamelCase :Optional[int] = contrastive_logits_temperature __UpperCamelCase :Union[str, Any] = feat_quantizer_dropout __UpperCamelCase :List[str] = num_negatives __UpperCamelCase :Union[str, Any] = codevector_dim __UpperCamelCase :int = proj_codevector_dim __UpperCamelCase :Tuple = diversity_loss_weight # ctc loss __UpperCamelCase :List[Any] = ctc_loss_reduction __UpperCamelCase :int = ctc_zero_infinity # pretraining loss __UpperCamelCase :Optional[Any] = replace_prob @property def UpperCamelCase__ ( self) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
452
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase : List[str] = { '''configuration_distilbert''': [ '''DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DistilBertConfig''', '''DistilBertOnnxConfig''', ], '''tokenization_distilbert''': ['''DistilBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : int = ['''DistilBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ '''DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DistilBertForMaskedLM''', '''DistilBertForMultipleChoice''', '''DistilBertForQuestionAnswering''', '''DistilBertForSequenceClassification''', '''DistilBertForTokenClassification''', '''DistilBertModel''', '''DistilBertPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Dict = [ '''TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDistilBertForMaskedLM''', '''TFDistilBertForMultipleChoice''', '''TFDistilBertForQuestionAnswering''', '''TFDistilBertForSequenceClassification''', '''TFDistilBertForTokenClassification''', '''TFDistilBertMainLayer''', '''TFDistilBertModel''', '''TFDistilBertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[int] = [ '''FlaxDistilBertForMaskedLM''', '''FlaxDistilBertForMultipleChoice''', '''FlaxDistilBertForQuestionAnswering''', '''FlaxDistilBertForSequenceClassification''', '''FlaxDistilBertForTokenClassification''', '''FlaxDistilBertModel''', '''FlaxDistilBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys _lowerCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
454
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class _UpperCAmelCase ( __lowercase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = '''biogpt''' def __init__( self : Optional[Any] , UpperCamelCase__ : str=42384 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : Dict=24 , UpperCamelCase__ : Any=16 , UpperCamelCase__ : str=4096 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[str]=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1024 , UpperCamelCase__ : List[Any]=0.02 , UpperCamelCase__ : Dict=1e-1_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Optional[Any]=0.0 , UpperCamelCase__ : Any=1 , UpperCamelCase__ : List[str]=0 , UpperCamelCase__ : Optional[Any]=2 , **UpperCamelCase__ : List[Any] , ): A = vocab_size A = max_position_embeddings A = hidden_size A = num_hidden_layers A = num_attention_heads A = intermediate_size A = hidden_act A = hidden_dropout_prob A = attention_probs_dropout_prob A = initializer_range A = layer_norm_eps A = scale_embedding A = use_cache A = layerdrop A = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__ )
699
0
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase : def __init__(self : str , _A : int , _A : Union[str, Any]=sys.maxsize) -> Tuple: __snake_case : Optional[int] = '''bilinear''' __snake_case : Optional[Any] = max_size __snake_case : List[Any] = short_edge_length def __call__(self : int , _A : Dict) -> Dict: __snake_case : Any = [] for img in imgs: __snake_case : Optional[Any] = img.shape[:2] # later: provide list and randomly choose index for resize __snake_case : str = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __snake_case : int = size * 1.0 / min(_A , _A) if h < w: __snake_case : Dict = size, scale * w else: __snake_case : str = scale * h, size if max(_A , _A) > self.max_size: __snake_case : Any = self.max_size * 1.0 / max(_A , _A) __snake_case : Tuple = newh * scale __snake_case : Any = neww * scale __snake_case : List[str] = int(neww + 0.5) __snake_case : List[str] = int(newh + 0.5) if img.dtype == np.uinta: __snake_case : Optional[int] = Image.fromarray(_A) __snake_case : List[str] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __snake_case : Optional[Any] = np.asarray(_A) else: __snake_case : Any = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __snake_case : Union[str, Any] = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A).squeeze(0) img_augs.append(_A) return img_augs class UpperCamelCase : def __init__(self : Tuple , _A : Dict) -> Any: __snake_case : Optional[Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __snake_case : Any = cfg.INPUT.FORMAT __snake_case : List[Any] = cfg.SIZE_DIVISIBILITY __snake_case : List[str] = cfg.PAD_VALUE __snake_case : Dict = cfg.INPUT.MAX_SIZE_TEST __snake_case : Optional[Any] = cfg.MODEL.DEVICE __snake_case : int = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : int = lambda _A: (x - self.pixel_mean) / self.pixel_std def _lowercase (self : List[Any] , _A : List[Any]) -> List[Any]: __snake_case : Optional[Any] = tuple(max(_A) for s in zip(*[img.shape for img in images])) __snake_case : Union[str, Any] = [im.shape[-2:] for im in images] __snake_case : Tuple = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A) ] return torch.stack(_A), torch.tensor(_A) def __call__(self : List[Any] , _A : str , _A : Union[str, Any]=False) -> List[Any]: with torch.no_grad(): if not isinstance(_A , _A): __snake_case : Any = [images] if single_image: assert len(_A) == 1 for i in range(len(_A)): if isinstance(images[i] , torch.Tensor): images.insert(_A , images.pop(_A).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __snake_case : Union[str, Any] = torch.tensor([im.shape[:2] for im in images]) __snake_case : Dict = self.aug(_A) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __snake_case : List[str] = [self.normalizer(_A) for x in images] # now pad them to do the following operations __snake_case : Dict = self.pad(_A) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __snake_case : Union[str, Any] = torch.true_divide(_A , _A) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple[int, int] ) -> Union[str, Any]: '''simple docstring''' assert torch.isfinite(__A ).all(), "Box tensor contains infinite or NaN!" __snake_case : Optional[Any] = box_size tensor[:, 0].clamp_(min=0 , max=__A ) tensor[:, 1].clamp_(min=0 , max=__A ) tensor[:, 2].clamp_(min=0 , max=__A ) tensor[:, 3].clamp_(min=0 , max=__A )
708
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase : def __init__(self : Tuple , _A : List[Any] , _A : int=sys.maxsize) -> int: __snake_case : Dict = 'bilinear' __snake_case : int = max_size __snake_case : Any = short_edge_length def __call__(self : Optional[Any] , _A : Any) -> Dict: __snake_case : Any = [] for img in imgs: __snake_case , __snake_case : int = img.shape[:2] # later: provide list and randomly choose index for resize __snake_case : Optional[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __snake_case : int = size * 1.0 / min(_A , _A) if h < w: __snake_case , __snake_case : str = size, scale * w else: __snake_case , __snake_case : List[str] = scale * h, size if max(_A , _A) > self.max_size: __snake_case : str = self.max_size * 1.0 / max(_A , _A) __snake_case : Any = newh * scale __snake_case : Any = neww * scale __snake_case : Optional[int] = int(neww + 0.5) __snake_case : str = int(newh + 0.5) if img.dtype == np.uinta: __snake_case : str = Image.fromarray(_A) __snake_case : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __snake_case : Tuple = np.asarray(_A) else: __snake_case : str = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __snake_case : Dict = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A).squeeze(0) img_augs.append(_A) return img_augs class UpperCamelCase : def __init__(self : List[str] , _A : List[str]) -> Optional[int]: __snake_case : Union[str, Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __snake_case : Union[str, Any] = cfg.INPUT.FORMAT __snake_case : List[Any] = cfg.SIZE_DIVISIBILITY __snake_case : Tuple = cfg.PAD_VALUE __snake_case : int = cfg.INPUT.MAX_SIZE_TEST __snake_case : List[Any] = cfg.MODEL.DEVICE __snake_case : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Any = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Union[str, Any] = lambda _A: (x - self.pixel_mean) / self.pixel_std def _lowercase (self : Tuple , _A : str) -> int: __snake_case : str = tuple(max(_A) for s in zip(*[img.shape for img in images])) __snake_case : int = [im.shape[-2:] for im in images] __snake_case : int = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A) ] return torch.stack(_A), torch.tensor(_A) def __call__(self : Optional[Any] , _A : Dict , _A : Union[str, Any]=False) -> Optional[int]: with torch.no_grad(): if not isinstance(_A , _A): __snake_case : str = [images] if single_image: assert len(_A) == 1 for i in range(len(_A)): if isinstance(images[i] , torch.Tensor): images.insert(_A , images.pop(_A).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __snake_case : Any = torch.tensor([im.shape[:2] for im in images]) __snake_case : Tuple = self.aug(_A) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __snake_case : List[str] = [self.normalizer(_A) for x in images] # now pad them to do the following operations __snake_case , __snake_case : List[Any] = self.pad(_A) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __snake_case : int = torch.true_divide(_A , _A) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple[int, int] ) -> Union[str, Any]: '''simple docstring''' assert torch.isfinite(UpperCAmelCase_ ).all(), "Box tensor contains infinite or NaN!" __snake_case , __snake_case : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase_ )
192
0
'''simple docstring''' from collections.abc import Callable import numpy as np def _snake_case ( A , A , A , A , A ) -> np.array: lowerCAmelCase__ = int(np.ceil((x_end - xa) / step_size ) ) lowerCAmelCase__ = np.zeros((n + 1,) ) lowerCAmelCase__ = ya lowerCAmelCase__ = xa for k in range(A ): lowerCAmelCase__ = y[k] + step_size * ode_func(A , y[k] ) lowerCAmelCase__ = y[k] + ( (step_size / 2) * (ode_func(A , y[k] ) + ode_func(x + step_size , A )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
90
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : list[int] , UpperCamelCase__ : str ): """simple docstring""" a_ : Tuple = int(UpperCamelCase__ ) # Initialize Result a_ : Tuple = [] # Traverse through all denomination for denomination in reversed(UpperCamelCase__ ): # Find denominations while int(UpperCamelCase__ ) >= int(UpperCamelCase__ ): total_value -= int(UpperCamelCase__ ) answer.append(UpperCamelCase__ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): lowerCAmelCase_ : str = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f"Denomination {i}: ").strip())) lowerCAmelCase_ : Union[str, Any] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter lowerCAmelCase_ : List[Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] lowerCAmelCase_ : str = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f"Following is minimal change for {value}: ") lowerCAmelCase_ : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
442
0
def _lowerCamelCase ( lowerCamelCase_ : int ): """simple docstring""" if number > 0: raise ValueError('input must be a negative integer' ) UpperCAmelCase_ : Optional[int] = len(bin(lowerCamelCase_ )[3:] ) UpperCAmelCase_ : int = bin(abs(lowerCamelCase_ ) - (1 << binary_number_length) )[3:] UpperCAmelCase_ : Dict = ( ( '1' + '0' * (binary_number_length - len(lowerCamelCase_ )) + twos_complement_number ) if number < 0 else '0' ) return "0b" + twos_complement_number if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() snake_case__ : Tuple = logging.get_logger(__name__) snake_case__ : Dict = '''Hello world! cécé herlolip''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool ): """simple docstring""" UpperCAmelCase_ : Optional[int] = FairseqRobertaModel.from_pretrained(lowerCamelCase_ ) roberta.eval() # disable dropout UpperCAmelCase_ : Optional[Any] = roberta.model.encoder.sentence_encoder UpperCAmelCase_ : str = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: UpperCAmelCase_ : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowerCamelCase_ ) UpperCAmelCase_ : str = XLMRobertaXLForSequenceClassification(lowerCamelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings UpperCAmelCase_ : List[Any] = roberta_sent_encoder.embed_tokens.weight UpperCAmelCase_ : Union[str, Any] = roberta_sent_encoder.embed_positions.weight UpperCAmelCase_ : Tuple = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. UpperCAmelCase_ : int = roberta_sent_encoder.layer_norm.weight UpperCAmelCase_ : Optional[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer UpperCAmelCase_ : BertLayer = model.roberta.encoder.layer[i] UpperCAmelCase_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] UpperCAmelCase_ : RobertaAttention = layer.attention UpperCAmelCase_ : str = roberta_layer.self_attn_layer_norm.weight UpperCAmelCase_ : Tuple = roberta_layer.self_attn_layer_norm.bias # self attention UpperCAmelCase_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.q_proj.weight UpperCAmelCase_ : str = roberta_layer.self_attn.q_proj.bias UpperCAmelCase_ : List[str] = roberta_layer.self_attn.k_proj.weight UpperCAmelCase_ : Any = roberta_layer.self_attn.k_proj.bias UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.v_proj.weight UpperCAmelCase_ : List[Any] = roberta_layer.self_attn.v_proj.bias # self-attention output UpperCAmelCase_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape UpperCAmelCase_ : Tuple = roberta_layer.self_attn.out_proj.weight UpperCAmelCase_ : str = roberta_layer.self_attn.out_proj.bias # this one is final layer norm UpperCAmelCase_ : Any = roberta_layer.final_layer_norm.weight UpperCAmelCase_ : int = roberta_layer.final_layer_norm.bias # intermediate UpperCAmelCase_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ : Any = roberta_layer.fca.weight UpperCAmelCase_ : Optional[int] = roberta_layer.fca.bias # output UpperCAmelCase_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape UpperCAmelCase_ : Any = roberta_layer.fca.weight UpperCAmelCase_ : Optional[int] = roberta_layer.fca.bias # end of layer if classification_head: UpperCAmelCase_ : Dict = roberta.model.classification_heads['mnli'].dense.weight UpperCAmelCase_ : Dict = roberta.model.classification_heads['mnli'].dense.bias UpperCAmelCase_ : List[str] = roberta.model.classification_heads['mnli'].out_proj.weight UpperCAmelCase_ : Dict = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head UpperCAmelCase_ : Optional[Any] = roberta.model.encoder.lm_head.dense.weight UpperCAmelCase_ : Optional[int] = roberta.model.encoder.lm_head.dense.bias UpperCAmelCase_ : Tuple = roberta.model.encoder.lm_head.layer_norm.weight UpperCAmelCase_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias UpperCAmelCase_ : Dict = roberta.model.encoder.lm_head.weight UpperCAmelCase_ : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCAmelCase_ : torch.Tensor = roberta.encode(lowerCamelCase_ ).unsqueeze(0 ) # batch of size 1 UpperCAmelCase_ : Any = model(lowerCamelCase_ )[0] if classification_head: UpperCAmelCase_ : Tuple = roberta.model.classification_heads['mnli'](roberta.extract_features(lowerCamelCase_ ) ) else: UpperCAmelCase_ : Any = roberta.model(lowerCamelCase_ )[0] print(our_output.shape , their_output.shape ) UpperCAmelCase_ : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(F'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 UpperCAmelCase_ : List[Any] = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowerCamelCase_ ).mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": snake_case__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) snake_case__ : List[str] = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
389
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[Any] = ['''pixel_values'''] def __init__( self : Union[str, Any] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : List[str] , ): super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else {"height": 256, "width": 256} SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = crop_size if crop_size is not None else {"height": 224, "width": 224} SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE : Optional[int] = do_resize SCREAMING_SNAKE_CASE : Any = size SCREAMING_SNAKE_CASE : List[str] = resample SCREAMING_SNAKE_CASE : Optional[int] = do_center_crop SCREAMING_SNAKE_CASE : Dict = crop_size SCREAMING_SNAKE_CASE : Tuple = do_rescale SCREAMING_SNAKE_CASE : int = rescale_factor SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Tuple = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE : Dict = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : int , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PIL.Image.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE : Any = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( lowerCAmelCase__ , size=(size["height"], size["width"]) , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self : Optional[int] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ): SCREAMING_SNAKE_CASE : Tuple = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size["height"], size["width"]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Union[str, Any] , ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self : Tuple , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def _A ( self : Optional[Any] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Optional[Any] , ): SCREAMING_SNAKE_CASE : List[str] = do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE : str = resample if resample is not None else self.resample SCREAMING_SNAKE_CASE : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop SCREAMING_SNAKE_CASE : List[str] = do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE : str = rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE : Any = do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE : Optional[int] = image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else self.size SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = crop_size if crop_size is not None else self.crop_size SCREAMING_SNAKE_CASE : int = get_size_dict(lowerCAmelCase__ , param_name="crop_size" ) SCREAMING_SNAKE_CASE : Dict = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE : List[Any] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: SCREAMING_SNAKE_CASE : Optional[int] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: SCREAMING_SNAKE_CASE : int = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE : Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE : Optional[Any] = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE : Union[str, Any] = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] SCREAMING_SNAKE_CASE : List[Any] = {"pixel_values": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
62
'''simple docstring''' import math def __UpperCAmelCase ( a_: int ): _UpperCAmelCase : Any = [True] * n _UpperCAmelCase : Optional[Any] = False _UpperCAmelCase : str = False _UpperCAmelCase : int = True for i in range(3, int(n**0.5 + 1 ), 2 ): _UpperCAmelCase : Any = i * 2 while index < n: _UpperCAmelCase : List[Any] = False _UpperCAmelCase : int = index + i _UpperCAmelCase : Optional[int] = [2] for i in range(3, a_, 2 ): if is_prime[i]: primes.append(a_ ) return primes def __UpperCAmelCase ( a_: int = 999_966_663_333 ): _UpperCAmelCase : Tuple = math.floor(math.sqrt(a_ ) ) + 100 _UpperCAmelCase : Union[str, Any] = prime_sieve(a_ ) _UpperCAmelCase : Optional[int] = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = primes[prime_index] while (last_prime**2) <= limit: _UpperCAmelCase : List[str] = primes[prime_index + 1] _UpperCAmelCase : Any = last_prime**2 _UpperCAmelCase : Optional[Any] = next_prime**2 # Get numbers divisible by lps(current) _UpperCAmelCase : List[str] = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _UpperCAmelCase : Dict = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _UpperCAmelCase : Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _UpperCAmelCase : Union[str, Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
494
0
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast a_ : str = datasets.utils.logging.get_logger(__name__) @dataclass class _snake_case ( datasets.BuilderConfig ): _lowercase : int = 1_00_00 _lowercase : Optional[List[str]] = None _lowercase : Optional[datasets.Features] = None class _snake_case ( datasets.ArrowBasedBuilder ): _lowercase : Optional[int] = ParquetConfig def SCREAMING_SNAKE_CASE__ ( self) -> int: return datasets.DatasetInfo(features=self.config.features) def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''') SCREAMING_SNAKE_CASE = dl_manager.download_and_extract(self.config.data_files) if isinstance(a , (str, list, tuple)): SCREAMING_SNAKE_CASE = data_files if isinstance(a , a): SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE = [dl_manager.iter_files(a) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] SCREAMING_SNAKE_CASE = [] for split_name, files in data_files.items(): if isinstance(a , a): SCREAMING_SNAKE_CASE = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE = [dl_manager.iter_files(a) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(a): with open(a , 'rb') as f: SCREAMING_SNAKE_CASE = datasets.Features.from_arrow_schema(pq.read_schema(a)) break splits.append(datasets.SplitGenerator(name=a , gen_kwargs={'files': files})) return splits def SCREAMING_SNAKE_CASE__ ( self , a) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE = table_cast(a , self.info.features.arrow_schema) return pa_table def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: SCREAMING_SNAKE_CASE = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema) != sorted(self.config.columns): raise ValueError( f'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''') for file_idx, file in enumerate(itertools.chain.from_iterable(a)): with open(a , 'rb') as f: SCREAMING_SNAKE_CASE = pq.ParquetFile(a) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns)): SCREAMING_SNAKE_CASE = pa.Table.from_batches([record_batch]) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield f'''{file_idx}_{batch_idx}''', self._cast_table(a) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(a)}: {e}''') raise
444
from abc import ABC, abstractmethod from typing import List, Optional class _snake_case ( A__ ): def __init__( self) -> int: # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = False while not completed: if counter == 1: self.reset() SCREAMING_SNAKE_CASE = self.advance() if not self.does_advance(a): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.update(a) counter += 1 if counter > 1_0000: raise Exception('update() does not fulfill the constraint.') if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , a) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self) -> Dict: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , a=False) -> int: raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''') class _snake_case ( A__ ): def __init__( self , a) -> Dict: super(a , self).__init__() if not isinstance(a , a) or len(a) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''') if any((not isinstance(a , a) or token_id < 0) for token_id in token_ids): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''') SCREAMING_SNAKE_CASE = token_ids SCREAMING_SNAKE_CASE = len(self.token_ids) SCREAMING_SNAKE_CASE = -1 # the index of the currently fulfilled step SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self , a) -> Any: if not isinstance(a , a): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(a)}''') if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self , a) -> Optional[int]: if not isinstance(a , a): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(a)}''') SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False if self.does_advance(a): self.fulfilled_idx += 1 SCREAMING_SNAKE_CASE = True if self.fulfilled_idx == (self.seqlen - 1): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = completed else: # failed to make progress. SCREAMING_SNAKE_CASE = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = 0 def SCREAMING_SNAKE_CASE__ ( self) -> Any: return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self , a=False) -> int: SCREAMING_SNAKE_CASE = PhrasalConstraint(self.token_ids) if stateful: SCREAMING_SNAKE_CASE = self.seqlen SCREAMING_SNAKE_CASE = self.fulfilled_idx SCREAMING_SNAKE_CASE = self.completed return new_constraint class _snake_case : def __init__( self , a , a=True) -> Tuple: SCREAMING_SNAKE_CASE = max([len(a) for one in nested_token_ids]) SCREAMING_SNAKE_CASE = {} for token_ids in nested_token_ids: SCREAMING_SNAKE_CASE = root for tidx, token_id in enumerate(a): if token_id not in level: SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = level[token_id] if no_subsets and self.has_subsets(a , a): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' f''' {nested_token_ids}.''') SCREAMING_SNAKE_CASE = root def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.trie for current_token in current_seq: SCREAMING_SNAKE_CASE = start[current_token] SCREAMING_SNAKE_CASE = list(start.keys()) return next_tokens def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = self.next_tokens(a) return len(a) == 0 def SCREAMING_SNAKE_CASE__ ( self , a) -> int: SCREAMING_SNAKE_CASE = list(root.values()) if len(a) == 0: return 1 else: return sum([self.count_leaves(a) for nn in next_nodes]) def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Optional[int]: SCREAMING_SNAKE_CASE = self.count_leaves(a) return len(a) != leaf_count class _snake_case ( A__ ): def __init__( self , a) -> Dict: super(a , self).__init__() if not isinstance(a , a) or len(a) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''') if any(not isinstance(a , a) for token_ids in nested_token_ids): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''') if any( any((not isinstance(a , a) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''') SCREAMING_SNAKE_CASE = DisjunctiveTrie(a) SCREAMING_SNAKE_CASE = nested_token_ids SCREAMING_SNAKE_CASE = self.trie.max_height SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self.trie.next_tokens(self.current_seq) if len(a) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self , a) -> List[str]: if not isinstance(a , a): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(a)}''') SCREAMING_SNAKE_CASE = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self , a) -> List[Any]: if not isinstance(a , a): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(a)}''') SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False if self.does_advance(a): self.current_seq.append(a) SCREAMING_SNAKE_CASE = True else: SCREAMING_SNAKE_CASE = True self.reset() SCREAMING_SNAKE_CASE = self.trie.reached_leaf(self.current_seq) SCREAMING_SNAKE_CASE = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = [] def SCREAMING_SNAKE_CASE__ ( self) -> Dict: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def SCREAMING_SNAKE_CASE__ ( self , a=False) -> Union[str, Any]: SCREAMING_SNAKE_CASE = DisjunctiveConstraint(self.token_ids) if stateful: SCREAMING_SNAKE_CASE = self.seqlen SCREAMING_SNAKE_CASE = self.current_seq SCREAMING_SNAKE_CASE = self.completed return new_constraint class _snake_case : def __init__( self , a) -> Union[str, Any]: SCREAMING_SNAKE_CASE = constraints # max # of steps required to fulfill a given constraint SCREAMING_SNAKE_CASE = max([c.seqlen for c in constraints]) SCREAMING_SNAKE_CASE = len(a) SCREAMING_SNAKE_CASE = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = [constraint.copy(stateful=a) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" SCREAMING_SNAKE_CASE = constraint.advance() if isinstance(a , a): token_list.append(a) elif isinstance(a , a): token_list.extend(a) else: SCREAMING_SNAKE_CASE = self.inprogress_constraint.advance() if isinstance(a , a): token_list.append(a) elif isinstance(a , a): token_list.extend(a) if len(a) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self , a) -> int: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.add(a) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self , a) -> Union[str, Any]: if not isinstance(a , a): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''') SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False, False if self.completed: SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.inprogress_constraint.update(a) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=a)) SCREAMING_SNAKE_CASE = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) SCREAMING_SNAKE_CASE = None if len(self.pending_constraints) == 0: # we're done! SCREAMING_SNAKE_CASE = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(a): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = pending_constraint.update(a) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.') if complete: self.complete_constraints.append(a) SCREAMING_SNAKE_CASE = None if not complete and stepped: SCREAMING_SNAKE_CASE = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". SCREAMING_SNAKE_CASE = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. SCREAMING_SNAKE_CASE = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self , a=True) -> str: SCREAMING_SNAKE_CASE = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: SCREAMING_SNAKE_CASE = [ constraint.copy(stateful=a) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: SCREAMING_SNAKE_CASE = self.inprogress_constraint.copy(stateful=a) SCREAMING_SNAKE_CASE = [constraint.copy() for constraint in self.pending_constraints] return new_state
444
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _a ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _a ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : Union[str, Any] = tmp_path / '''cache''' snake_case__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Union[str, Any] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" snake_case__ : Any = tmp_path / '''cache''' snake_case__ : Optional[int] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Dict = features.copy() if features else default_expected_features snake_case__ : Any = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : Any = ParquetDatasetReader(__lowerCAmelCase , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple ): """simple docstring""" snake_case__ : List[Any] = tmp_path / '''cache''' snake_case__ : Tuple = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Optional[int] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase , split=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('''path_type''' , [str, list] ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict ): """simple docstring""" if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = parquet_path elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : List[Any] = [parquet_path] snake_case__ : List[Any] = tmp_path / '''cache''' snake_case__ : List[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Optional[int] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_dataset(__lowerCAmelCase , __lowerCAmelCase ) def _a ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=("train",) ): """simple docstring""" assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for split in splits: snake_case__ : str = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def _a ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict ): """simple docstring""" snake_case__ : Any = tmp_path / '''cache''' snake_case__ : List[str] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): snake_case__ : Dict = ParquetDatasetReader( {'''train''': parquet_path} , cache_dir=__lowerCAmelCase , keep_in_memory=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int ): """simple docstring""" snake_case__ : Any = tmp_path / '''cache''' snake_case__ : Any = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Optional[Any] = features.copy() if features else default_expected_features snake_case__ : str = ( Features({feature: Value(__lowerCAmelCase ) for feature, dtype in features.items()} ) if features is not None else None ) snake_case__ : Optional[int] = ParquetDatasetReader({'''train''': parquet_path} , features=__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase ) @pytest.mark.parametrize('''split''' , [None, NamedSplit('''train''' ), '''train''', '''test'''] ) def _a ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : int ): """simple docstring""" if split: snake_case__ : List[str] = {split: parquet_path} else: snake_case__ : Any = '''train''' snake_case__ : Union[str, Any] = {'''train''': parquet_path, '''test''': parquet_path} snake_case__ : Any = tmp_path / '''cache''' snake_case__ : str = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} snake_case__ : Union[str, Any] = ParquetDatasetReader(__lowerCAmelCase , cache_dir=__lowerCAmelCase ).read() _check_parquet_datasetdict(__lowerCAmelCase , __lowerCAmelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _a ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" snake_case__ : Optional[int] = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 snake_case__ : str = pq.ParquetFile(tmp_path / '''foo.parquet''' ) snake_case__ : Union[str, Any] = pf.read() assert dataset.data.table == output_table def _a ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" snake_case__ : Tuple = str(shared_datadir / '''test_image_rgb.jpg''' ) snake_case__ : List[Any] = {'''image''': [image_path]} snake_case__ : Union[str, Any] = Features({'''image''': Image()} ) snake_case__ : Optional[Any] = Dataset.from_dict(__lowerCAmelCase , features=__lowerCAmelCase ) snake_case__ : int = ParquetDatasetWriter(__lowerCAmelCase , tmp_path / '''foo.parquet''' ) assert writer.write() > 0 snake_case__ : str = Dataset.from_parquet(str(tmp_path / '''foo.parquet''' ) ) assert dataset.features == reloaded_dataset.features snake_case__ : Optional[Any] = ParquetDatasetReader(str(tmp_path / '''foo.parquet''' ) , streaming=__lowerCAmelCase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( '''feature, expected''' , [ (Features({'''foo''': Value('''int32''' )} ), None), (Features({'''image''': Image(), '''foo''': Value('''int32''' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'''nested''': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _a ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] ): """simple docstring""" assert get_writer_batch_size(__lowerCAmelCase ) == expected
347
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=3 , snake_case_ : Union[str, Any]=6_4 , snake_case_ : Optional[Any]=None ): '''simple docstring''' snake_case__ : List[str] = np.random.default_rng(snake_case_ ) snake_case__ : int = length snake_case__ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) snake_case__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , snake_case_ : int ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): """simple docstring""" def __init__( self : int , snake_case_ : str=0 , snake_case_ : Optional[Any]=0 , snake_case_ : Tuple=False ): '''simple docstring''' super().__init__() snake_case__ : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : int = True def __magic_name__ ( self : int , snake_case_ : str=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : str = False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , snake_case_ : Tuple=0 , snake_case_ : int=0 , snake_case_ : int=False ): '''simple docstring''' super().__init__() snake_case__ : Tuple = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : int = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : Union[str, Any] = True def __magic_name__ ( self : Union[str, Any] , snake_case_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : List[Any] = False return x * self.a + self.b def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : Optional[int] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} snake_case__ : List[Any] = load_dataset('''csv''' , data_files=__lowerCAmelCase ) snake_case__ : Union[str, Any] = datasets['''train'''].unique('''label''' ) snake_case__ : Optional[Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) if "label" in examples: snake_case__ : List[Any] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : List[Any] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowerCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. snake_case__ : str = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) snake_case__ : List[Any] = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
347
1
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
477
"""simple docstring""" import numpy as np def lowercase__( __SCREAMING_SNAKE_CASE : np.array ): return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
477
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
61
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: snake_case_ : Optional[Any] = None snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : str = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} snake_case_ : int = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } snake_case_ : Optional[Any] = { "facebook/mbart-large-en-ro": 1024, "facebook/mbart-large-cc25": 1024, } # fmt: off snake_case_ : Any = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class snake_case_ ( __A ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = ["input_ids", "attention_mask"] lowerCamelCase = MBartTokenizer lowerCamelCase = [] lowerCamelCase = [] def __init__( self : Optional[Any] , __magic_name__ : Tuple=None , __magic_name__ : int=None , __magic_name__ : Dict="<s>" , __magic_name__ : int="</s>" , __magic_name__ : List[str]="</s>" , __magic_name__ : List[Any]="<s>" , __magic_name__ : Optional[int]="<unk>" , __magic_name__ : Any="<pad>" , __magic_name__ : Any="<mask>" , __magic_name__ : Optional[Any]=None , __magic_name__ : List[Any]=None , __magic_name__ : str=None , **__magic_name__ : List[str] , ) -> str: # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Dict = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token super().__init__( vocab_file=__magic_name__ , tokenizer_file=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , **__magic_name__ , ) lowerCamelCase_ : List[str] = vocab_file lowerCamelCase_ : Optional[Any] = False if not self.vocab_file else True lowerCamelCase_ : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) lowerCamelCase_ : str = { lang_code: self.convert_tokens_to_ids(__magic_name__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowerCamelCase_ : Optional[int] = src_lang if src_lang is not None else "en_XX" lowerCamelCase_ : Optional[Any] = self.convert_tokens_to_ids(self._src_lang ) lowerCamelCase_ : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> str: return self._src_lang @src_lang.setter def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ) -> None: lowerCamelCase_ : int = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __SCREAMING_SNAKE_CASE ( self : Tuple , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[int] , __magic_name__ : Optional[List[int]] = None ) -> List[int]: lowerCamelCase_ : Any = [self.sep_token_id] lowerCamelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : Optional[str] , __magic_name__ : Optional[str] , **__magic_name__ : Any ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ : Optional[Any] = src_lang lowerCamelCase_ : Tuple = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) lowerCamelCase_ : Union[str, Any] = self.convert_tokens_to_ids(__magic_name__ ) lowerCamelCase_ : List[Any] = tgt_lang_id return inputs def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : List[str] , __magic_name__ : str = "en_XX" , __magic_name__ : Optional[List[str]] = None , __magic_name__ : str = "ro_RO" , **__magic_name__ : Optional[int] , ) -> BatchEncoding: lowerCamelCase_ : Optional[int] = src_lang lowerCamelCase_ : Any = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: return self.set_src_lang_special_tokens(self.src_lang ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Tuple ) -> None: lowerCamelCase_ : Union[str, Any] = self.convert_tokens_to_ids(__magic_name__ ) lowerCamelCase_ : Any = [] lowerCamelCase_ : str = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ : int = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ : str = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : str ) -> None: lowerCamelCase_ : Dict = self.convert_tokens_to_ids(__magic_name__ ) lowerCamelCase_ : Any = [] lowerCamelCase_ : List[Any] = [self.eos_token_id, self.cur_lang_code] lowerCamelCase_ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens ) lowerCamelCase_ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens ) lowerCamelCase_ : int = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : str , __magic_name__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__magic_name__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return lowerCamelCase_ : Optional[Any] = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ): copyfile(self.vocab_file , __magic_name__ ) return (out_vocab_file,)
488
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any =OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) __lowerCAmelCase : Any =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _UpperCamelCase ( lowercase__ ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: __SCREAMING_SNAKE_CASE : str = model_type_to_module_name(lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = importlib.import_module(F'''.{module_name}''' , '''transformers.models''' ) try: return getattr(lowercase__ , lowercase__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase__ , '''__name__''' , lowercase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module('''transformers''' ) if hasattr(lowercase__ , lowercase__ ): return getattr(lowercase__ , lowercase__ ) return None def _UpperCamelCase ( lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , **lowercase__ , ): __SCREAMING_SNAKE_CASE : List[Any] = get_file_from_repo( lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowercase__ , encoding='''utf-8''' ) as reader: return json.load(lowercase__ ) class _lowercase : '''simple docstring''' def __init__( self :str ) -> List[Any]: raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase__ ) def __magic_name__( cls :Any , lowerCAmelCase__ :Any , **lowerCAmelCase__ :Union[str, Any] ) -> Any: __SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''config''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = kwargs.pop('''trust_remote_code''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = True __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = config_dict.get('''image_processor_type''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): __SCREAMING_SNAKE_CASE : Optional[int] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = config_dict.pop('''feature_extractor_type''' , lowerCAmelCase__ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) __SCREAMING_SNAKE_CASE : int = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): __SCREAMING_SNAKE_CASE : Any = config_dict['''auto_map''']['''AutoFeatureExtractor'''] __SCREAMING_SNAKE_CASE : Optional[int] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) # It could be in `config.image_processor_type`` __SCREAMING_SNAKE_CASE : List[Any] = getattr(lowerCAmelCase__ , '''image_processor_type''' , lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: __SCREAMING_SNAKE_CASE : Union[str, Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: __SCREAMING_SNAKE_CASE : str = image_processor_class_from_name(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor_auto_map is not None __SCREAMING_SNAKE_CASE : Tuple = image_processor_class is not None or type(lowerCAmelCase__ ) in IMAGE_PROCESSOR_MAPPING __SCREAMING_SNAKE_CASE : Any = resolve_trust_remote_code( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if has_remote_code and trust_remote_code: __SCREAMING_SNAKE_CASE : Tuple = get_class_from_dynamic_module( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs.pop('''code_revision''' , lowerCAmelCase__ ) if os.path.isdir(lowerCAmelCase__ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase__ ) in IMAGE_PROCESSOR_MAPPING: __SCREAMING_SNAKE_CASE : Dict = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase__ )] return image_processor_class.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __magic_name__( lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :str ) -> Optional[Any]: IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase__ , lowerCAmelCase__ )
260
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Any =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = SwinConfig.from_pretrained( '''microsoft/swin-tiny-patch4-window7-224''' , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) __SCREAMING_SNAKE_CASE : str = MaskFormerConfig(backbone_config=lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[Any] = 847 __SCREAMING_SNAKE_CASE : Optional[int] = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Dict = 150 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Union[str, Any] = 171 __SCREAMING_SNAKE_CASE : Tuple = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO __SCREAMING_SNAKE_CASE : Dict = 133 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Optional[int] = 19 __SCREAMING_SNAKE_CASE : Optional[Any] = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok __SCREAMING_SNAKE_CASE : Tuple = 65 __SCREAMING_SNAKE_CASE : Optional[Any] = '''mapillary-vistas-id2label.json''' __SCREAMING_SNAKE_CASE : List[str] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : Any = {int(lowercase__ ): v for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = [] # stem # fmt: off rename_keys.append(('''backbone.patch_embed.proj.weight''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.patch_embed.proj.bias''', '''model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.patch_embed.norm.weight''', '''model.pixel_level_module.encoder.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.patch_embed.norm.bias''', '''model.pixel_level_module.encoder.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.norm2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((F'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((F'''backbone.layers.{i}.downsample.reduction.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.weight''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((F'''backbone.layers.{i}.downsample.norm.bias''', F'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('''sem_seg_head.layer_4.weight''', '''model.pixel_level_module.decoder.fpn.stem.0.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.weight''', '''model.pixel_level_module.decoder.fpn.stem.1.weight''') ) rename_keys.append(('''sem_seg_head.layer_4.norm.bias''', '''model.pixel_level_module.decoder.fpn.stem.1.bias''') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F'''sem_seg_head.adapter_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((F'''sem_seg_head.adapter_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.weight''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((F'''sem_seg_head.layer_{source_index}.norm.bias''', F'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('''sem_seg_head.mask_features.weight''', '''model.pixel_level_module.decoder.mask_projection.weight''') ) rename_keys.append(('''sem_seg_head.mask_features.bias''', '''model.pixel_level_module.decoder.mask_projection.bias''') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', F'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', F'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', F'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', F'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', F'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.weight''', '''model.transformer_module.decoder.layernorm.weight''') ) rename_keys.append(('''sem_seg_head.predictor.transformer.decoder.norm.bias''', '''model.transformer_module.decoder.layernorm.bias''') ) # heads on top rename_keys.append(('''sem_seg_head.predictor.query_embed.weight''', '''model.transformer_module.queries_embedder.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.weight''', '''model.transformer_module.input_projection.weight''') ) rename_keys.append(('''sem_seg_head.predictor.input_proj.bias''', '''model.transformer_module.input_projection.bias''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.weight''', '''class_predictor.weight''') ) rename_keys.append(('''sem_seg_head.predictor.class_embed.bias''', '''class_predictor.bias''') ) for i in range(3 ): rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', F'''mask_embedder.{i}.0.weight''') ) rename_keys.append((F'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', F'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = dct.pop(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = val def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __SCREAMING_SNAKE_CASE : List[Any] = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Optional[Any] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) __SCREAMING_SNAKE_CASE : Optional[int] = state_dict.pop(F'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Dict = in_proj_weight[:dim, :] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_bias[: dim] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_weight[ -dim :, : ] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[-dim :] # fmt: on def _UpperCamelCase ( lowercase__ , lowercase__ ): # fmt: off __SCREAMING_SNAKE_CASE : Any = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : List[Any] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Optional[int] = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Dict = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : List[str] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __SCREAMING_SNAKE_CASE : Any = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) __SCREAMING_SNAKE_CASE : List[str] = state_dict.pop(F'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE : Tuple = in_proj_weight[: hidden_size, :] __SCREAMING_SNAKE_CASE : Union[str, Any] = in_proj_bias[:config.hidden_size] __SCREAMING_SNAKE_CASE : Any = in_proj_weight[hidden_size : hidden_size * 2, :] __SCREAMING_SNAKE_CASE : Optional[Any] = in_proj_bias[hidden_size : hidden_size * 2] __SCREAMING_SNAKE_CASE : List[Any] = in_proj_weight[-hidden_size :, :] __SCREAMING_SNAKE_CASE : Tuple = in_proj_bias[-hidden_size :] # fmt: on def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ) return im @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ): __SCREAMING_SNAKE_CASE : Dict = get_maskformer_config(lowercase__ ) # load original state_dict with open(lowercase__ , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Any = pickle.load(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __SCREAMING_SNAKE_CASE : Dict = create_rename_keys(lowercase__ ) for src, dest in rename_keys: rename_key(lowercase__ , lowercase__ , lowercase__ ) read_in_swin_q_k_v(lowercase__ , config.backbone_config ) read_in_decoder_q_k_v(lowercase__ , lowercase__ ) # update to torch tensors for key, value in state_dict.items(): __SCREAMING_SNAKE_CASE : Any = torch.from_numpy(lowercase__ ) # load 🤗 model __SCREAMING_SNAKE_CASE : Union[str, Any] = MaskFormerForInstanceSegmentation(lowercase__ ) model.eval() for name, param in model.named_parameters(): print(lowercase__ , param.shape ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(lowercase__ , strict=lowercase__ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowercase__ ) == 0, F'''Unexpected keys: {unexpected_keys}''' # verify results __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_img() if "vistas" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 65 elif "cityscapes" in model_name: __SCREAMING_SNAKE_CASE : str = 65535 else: __SCREAMING_SNAKE_CASE : Optional[Any] = 255 __SCREAMING_SNAKE_CASE : Dict = True if '''ade''' in model_name else False __SCREAMING_SNAKE_CASE : int = MaskFormerImageProcessor(ignore_index=lowercase__ , reduce_labels=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = image_processor(lowercase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Any = model(**lowercase__ ) print('''Logits:''' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) model.save_pretrained(lowercase__ ) image_processor.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model and image processor to the hub...''' ) model.push_to_hub(F'''nielsr/{model_name}''' ) image_processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Optional[int] =parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
260
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model'''} _A = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _A = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class A ( UpperCamelCase__ ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['input_ids', 'attention_mask'] def __init__( self, UpperCamelCase__, UpperCamelCase__="<s>", UpperCamelCase__="</s>", UpperCamelCase__="</s>", UpperCamelCase__="<s>", UpperCamelCase__="<unk>", UpperCamelCase__="<pad>", UpperCamelCase__="<mask>", UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(snake_case_, lstrip=snake_case_, rstrip=snake_case_ ) if isinstance(snake_case_, snake_case_ ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case_, eos_token=snake_case_, unk_token=snake_case_, sep_token=snake_case_, cls_token=snake_case_, pad_token=snake_case_, mask_token=snake_case_, sp_model_kwargs=self.sp_model_kwargs, **snake_case_, ) lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case_ ) ) lowerCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ = 1 lowerCAmelCase_ = len(self.sp_model ) + self.fairseq_offset lowerCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None lowerCAmelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_, token_ids_a=snake_case_, already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(snake_case_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.encode(snake_case_, out_type=snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ = self.sp_model.PieceToId(snake_case_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = ''''''.join(snake_case_ ).replace(snake_case_, ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( snake_case_, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, snake_case_ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case_, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(snake_case_ ) return (out_vocab_file,)
431
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer _A = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} _A = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } _A = { """unc-nlp/lxmert-base-uncased""": 512, } _A = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _lowerCAmelCase ( UpperCamelCase__ ): lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = LxmertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ) -> Union[str, Any]: super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) SCREAMING_SNAKE_CASE : List[str] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : str =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[str] =do_lower_case SCREAMING_SNAKE_CASE : Dict =strip_accents SCREAMING_SNAKE_CASE : Dict =tokenize_chinese_chars SCREAMING_SNAKE_CASE : Union[str, Any] =normalizer_class(**snake_case_ ) SCREAMING_SNAKE_CASE : str =do_lower_case def __a ( self , snake_case_ , snake_case_=None ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , snake_case_ , snake_case_ = None ) -> List[int]: SCREAMING_SNAKE_CASE : Dict =[self.sep_token_id] SCREAMING_SNAKE_CASE : Any =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: SCREAMING_SNAKE_CASE : List[Any] =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
258
0
'''simple docstring''' def snake_case_ (_a : float , _a : float ): if mass < 0: raise ValueError('''The mass of a body cannot be negative''' ) return 0.5 * mass * abs(_a ) * abs(_a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
358
'''simple docstring''' def snake_case_ (_a : list[list[int]] , _a : int , _a : int , _a : list[int] ): # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def snake_case_ (_a : list[list[int]] , _a : list[int] , _a : int ): # Base Case if curr_ind == len(_a ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(_a ) ): if valid_connection(_a , _a , _a , _a ): # Insert current vertex into path as next transition UpperCAmelCase = next_ver # Validate created path if util_hamilton_cycle(_a , _a , curr_ind + 1 ): return True # Backtrack UpperCAmelCase = -1 return False def snake_case_ (_a : list[list[int]] , _a : int = 0 ): UpperCAmelCase = [-1] * (len(_a ) + 1) # initialize start and end of path with starting index UpperCAmelCase = UpperCAmelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(_a , _a , 1 ) else []
358
1
__UpperCamelCase : int = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ __UpperCamelCase : Optional[int] = [{"""type""": """code""", """content""": INSTALL_CONTENT}] __UpperCamelCase : Tuple = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
80
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
0
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a__ ( __a , __a , unittest.TestCase ): _a : str = IFInpaintingSuperResolutionPipeline _a : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} _a : int = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) _a : Dict = PipelineTesterMixin.required_optional_params - {"""latents"""} def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self._get_superresolution_dummy_components() def __SCREAMING_SNAKE_CASE( self , _A , _A=0 ): """simple docstring""" if str(A__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(A__ ) else: __lowerCAmelCase = torch.Generator(device=A__ ).manual_seed(A__ ) __lowerCAmelCase = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(A__ ) ).to(A__ ) __lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A__ ) ).to(A__ ) __lowerCAmelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(A__ ) ).to(A__ ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_save_load_local() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase__ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
552
0
def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square(SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 SCREAMING_SNAKE_CASE__ : Tuple = update_area_of_max_square(SCREAMING_SNAKE_CASE__ , col + 1 ) SCREAMING_SNAKE_CASE__ : Tuple = update_area_of_max_square(row + 1 , col + 1 ) SCREAMING_SNAKE_CASE__ : List[Any] = update_area_of_max_square(row + 1 , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: SCREAMING_SNAKE_CASE__ : Optional[Any] = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ : Optional[int] = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ : int = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' def update_area_of_max_square_using_dp_array( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] SCREAMING_SNAKE_CASE__ : List[str] = update_area_of_max_square_using_dp_array(SCREAMING_SNAKE_CASE__ , col + 1 , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = update_area_of_max_square_using_dp_array(row + 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if mat[row][col]: SCREAMING_SNAKE_CASE__ : Any = 1 + min([right, diagonal, down] ) SCREAMING_SNAKE_CASE__ : Any = max(largest_square_area[0] , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = sub_problem_sol return sub_problem_sol else: return 0 SCREAMING_SNAKE_CASE__ : str = [0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [[-1] * cols for _ in range(SCREAMING_SNAKE_CASE__ )] update_area_of_max_square_using_dp_array(0 , 0 , SCREAMING_SNAKE_CASE__ ) return largest_square_area[0] def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = [[0] * (cols + 1) for _ in range(rows + 1 )] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE__ : Tuple = dp_array[row][col + 1] SCREAMING_SNAKE_CASE__ : str = dp_array[row + 1][col + 1] SCREAMING_SNAKE_CASE__ : int = dp_array[row + 1][col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = max(dp_array[row][col] , SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : List[Any] = 0 return largest_square_area def _a ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ : Union[str, Any] = [0] * (cols + 1) SCREAMING_SNAKE_CASE__ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = current_row[col + 1] SCREAMING_SNAKE_CASE__ : Union[str, Any] = next_row[col + 1] SCREAMING_SNAKE_CASE__ : List[Any] = next_row[col] if mat[row][col] == 1: SCREAMING_SNAKE_CASE__ : Tuple = 1 + min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = max(current_row[col] , SCREAMING_SNAKE_CASE__ ) else: SCREAMING_SNAKE_CASE__ : Any = 0 SCREAMING_SNAKE_CASE__ : int = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
663
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : """simple docstring""" def __init__( self : Any, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Union[str, Any]=1_3, _UpperCAmelCase : Union[str, Any]=3_2, _UpperCAmelCase : Optional[Any]=2, _UpperCAmelCase : Tuple=3, _UpperCAmelCase : str=1_6, _UpperCAmelCase : Tuple=[1, 2, 1], _UpperCAmelCase : List[str]=[2, 2, 4], _UpperCAmelCase : Tuple=2, _UpperCAmelCase : str=2.0, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : int=0.0, _UpperCAmelCase : Any=0.0, _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : int="gelu", _UpperCAmelCase : Any=False, _UpperCAmelCase : Any=True, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : Any=1E-5, _UpperCAmelCase : Optional[int]=True, _UpperCAmelCase : List[Any]=None, _UpperCAmelCase : str=True, _UpperCAmelCase : Union[str, Any]=1_0, _UpperCAmelCase : List[str]=8, _UpperCAmelCase : Union[str, Any]=["stage1", "stage2", "stage3"], _UpperCAmelCase : Any=[1, 2, 3], ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : Optional[int] = patch_size SCREAMING_SNAKE_CASE__ : List[str] = num_channels SCREAMING_SNAKE_CASE__ : Optional[int] = embed_dim SCREAMING_SNAKE_CASE__ : List[Any] = depths SCREAMING_SNAKE_CASE__ : List[str] = num_heads SCREAMING_SNAKE_CASE__ : str = window_size SCREAMING_SNAKE_CASE__ : Any = mlp_ratio SCREAMING_SNAKE_CASE__ : List[str] = qkv_bias SCREAMING_SNAKE_CASE__ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = drop_path_rate SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE__ : Tuple = patch_norm SCREAMING_SNAKE_CASE__ : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = scope SCREAMING_SNAKE_CASE__ : Optional[int] = use_labels SCREAMING_SNAKE_CASE__ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Optional[int] = encoder_stride SCREAMING_SNAKE_CASE__ : List[Any] = out_features SCREAMING_SNAKE_CASE__ : Dict = out_indices def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : str = None if self.use_labels: SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_config() return config, pixel_values, labels def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" return MaskFormerSwinConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, embed_dim=self.embed_dim, depths=self.depths, num_heads=self.num_heads, window_size=self.window_size, mlp_ratio=self.mlp_ratio, qkv_bias=self.qkv_bias, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, drop_path_rate=self.drop_path_rate, hidden_act=self.hidden_act, use_absolute_embeddings=self.use_absolute_embeddings, path_norm=self.patch_norm, layer_norm_eps=self.layer_norm_eps, initializer_range=self.initializer_range, encoder_stride=self.encoder_stride, out_features=self.out_features, out_indices=self.out_indices, ) def A_ ( self : Dict, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) SCREAMING_SNAKE_CASE__ : Union[str, Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim) ) def A_ ( self : Optional[int], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Any, _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MaskFormerSwinBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ), len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ), [1_3, 1_6, 1_6, 1_6] ) # verify channels self.parent.assertEqual(len(model.channels ), len(config.out_features ) ) self.parent.assertListEqual(model.channels, [1_6, 3_2, 6_4] ) # verify ValueError with self.parent.assertRaises(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = ["stem"] SCREAMING_SNAKE_CASE__ : str = MaskFormerSwinBackbone(config=_UpperCAmelCase ) def A_ ( self : str ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = config_and_inputs SCREAMING_SNAKE_CASE__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) UpperCAmelCase_ = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : int ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = MaskFormerSwinModelTester(self ) SCREAMING_SNAKE_CASE__ : Any = ConfigTester(self, config_class=_UpperCAmelCase, embed_dim=3_7 ) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" ) ) def A_ ( self : Any ) -> List[Any]: """simple docstring""" pass def A_ ( self : Tuple ) -> Any: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A_ ( self : int ) -> Optional[Any]: """simple docstring""" return def A_ ( self : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def A_ ( self : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) @unittest.skip("Swin does not use inputs_embeds" ) def A_ ( self : Any ) -> Optional[int]: """simple docstring""" pass @unittest.skip("Swin does not support feedforward chunking" ) def A_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass def A_ ( self : Any ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase, nn.Linear ) ) def A_ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE__ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE__ : Tuple = ["pixel_values"] self.assertListEqual(arg_names[:1], _UpperCAmelCase ) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions" ) def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone" ) def A_ ( self : Dict ) -> List[str]: """simple docstring""" pass def A_ ( self : List[str], _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE__ : Dict = model(**self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[Any] = outputs.hidden_states SCREAMING_SNAKE_CASE__ : Optional[Any] = getattr( self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ), _UpperCAmelCase ) # Swin has a different seq_length SCREAMING_SNAKE_CASE__ : Optional[Any] = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [num_patches, self.model_tester.embed_dim], ) def A_ ( self : Optional[int] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : int = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Optional[int] = 3 SCREAMING_SNAKE_CASE__ : str = ( self.model_tester.image_size if isinstance(self.model_tester.image_size, collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) SCREAMING_SNAKE_CASE__ : str = ( config.patch_size if isinstance(config.patch_size, collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) SCREAMING_SNAKE_CASE__ : Dict = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) SCREAMING_SNAKE_CASE__ : List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE__ : Any = True self.check_hidden_states_output(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, (padded_height, padded_width) ) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints" ) def A_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def A_ ( self : Dict ) -> str: """simple docstring""" pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin" ) def A_ ( self : Optional[Any] ) -> List[str]: """simple docstring""" pass def A_ ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_UpperCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Dict = 0 return t def check_equivalence(_UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Optional[Any]={} ): with torch.no_grad(): SCREAMING_SNAKE_CASE__ : str = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model(**_UpperCAmelCase, return_dict=_UpperCAmelCase, **_UpperCAmelCase ).to_tuple() def recursive_check(_UpperCAmelCase : int, _UpperCAmelCase : Dict ): if isinstance(_UpperCAmelCase, (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_UpperCAmelCase, _UpperCAmelCase ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif isinstance(_UpperCAmelCase, _UpperCAmelCase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values(), dict_object.values() ): recursive_check(_UpperCAmelCase, _UpperCAmelCase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_UpperCAmelCase ), set_nan_tensor_to_zero(_UpperCAmelCase ), atol=1E-5 ), msg=( "Tuple and dict output are not equal. Difference:" F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}. Dict has''' F''' `nan`: {torch.isnan(_UpperCAmelCase ).any()} and `inf`: {torch.isinf(_UpperCAmelCase )}.''' ), ) recursive_check(_UpperCAmelCase, _UpperCAmelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : List[Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) SCREAMING_SNAKE_CASE__ : Dict = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = self._prepare_for_class(_UpperCAmelCase, _UpperCAmelCase, return_labels=_UpperCAmelCase ) check_equivalence(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, {"output_hidden_states": True} ) @require_torch class lowerCamelCase (unittest.TestCase , __lowerCamelCase ): """simple docstring""" UpperCAmelCase_ = (MaskFormerSwinBackbone,) if is_torch_available() else () UpperCAmelCase_ = MaskFormerSwinConfig def A_ ( self : Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = MaskFormerSwinModelTester(self ) def A_ ( self : int ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE__ : Any = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : str = backbone_class(_UpperCAmelCase ) backbone.to(_UpperCAmelCase ) backbone.eval() SCREAMING_SNAKE_CASE__ : Optional[int] = backbone(**_UpperCAmelCase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps, _UpperCAmelCase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels ): self.assertTrue(feature_map.shape[:2], (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True SCREAMING_SNAKE_CASE__ : Optional[int] = backbone(**_UpperCAmelCase, output_hidden_states=_UpperCAmelCase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ), len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: SCREAMING_SNAKE_CASE__ : int = backbone(**_UpperCAmelCase, output_attentions=_UpperCAmelCase ) self.assertIsNotNone(outputs.attentions )
663
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
712
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__: Any = logging.get_logger(__name__) A__: List[str] = { '''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''', '''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''', '''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''', '''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''', '''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''', '''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''', '''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''', '''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''', '''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''', '''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''', } class A__ ( UpperCAmelCase__ ): __UpperCamelCase : str = "xlm" __UpperCamelCase : List[str] = { "hidden_size": "emb_dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", "n_words": "vocab_size", # For backward compatibility } def __init__( self :List[str] , SCREAMING_SNAKE_CASE :int=3_0_1_4_5 , SCREAMING_SNAKE_CASE :List[str]=2_0_4_8 , SCREAMING_SNAKE_CASE :str=1_2 , SCREAMING_SNAKE_CASE :Tuple=1_6 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE :Optional[Any]=0.1 , SCREAMING_SNAKE_CASE :List[Any]=True , SCREAMING_SNAKE_CASE :str=False , SCREAMING_SNAKE_CASE :List[Any]=False , SCREAMING_SNAKE_CASE :Optional[int]=False , SCREAMING_SNAKE_CASE :str=1 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :int=5_1_2 , SCREAMING_SNAKE_CASE :Any=2_0_4_8**-0.5 , SCREAMING_SNAKE_CASE :Any=1e-12 , SCREAMING_SNAKE_CASE :Union[str, Any]=0.02 , SCREAMING_SNAKE_CASE :Dict=0 , SCREAMING_SNAKE_CASE :Tuple=1 , SCREAMING_SNAKE_CASE :Tuple=2 , SCREAMING_SNAKE_CASE :Optional[int]=3 , SCREAMING_SNAKE_CASE :Dict=5 , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :List[Any]="first" , SCREAMING_SNAKE_CASE :Optional[Any]=True , SCREAMING_SNAKE_CASE :Dict=None , SCREAMING_SNAKE_CASE :List[str]=True , SCREAMING_SNAKE_CASE :Tuple=0.1 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :List[str]=5 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :Tuple=0 , SCREAMING_SNAKE_CASE :Any=2 , SCREAMING_SNAKE_CASE :Optional[int]=0 , **SCREAMING_SNAKE_CASE :Tuple , ) -> List[str]: '''simple docstring''' _a : Tuple =vocab_size _a : int =emb_dim _a : Dict =n_layers _a : List[Any] =n_heads _a : str =dropout _a : Tuple =attention_dropout _a : Dict =gelu_activation _a : Any =sinusoidal_embeddings _a : str =causal _a : str =asm _a : Tuple =n_langs _a : str =use_lang_emb _a : Dict =layer_norm_eps _a : Union[str, Any] =bos_index _a : int =eos_index _a : Optional[int] =pad_index _a : List[Any] =unk_index _a : int =mask_index _a : Any =is_encoder _a : Tuple =max_position_embeddings _a : Optional[Any] =embed_init_std _a : List[Any] =init_std _a : str =summary_type _a : Optional[int] =summary_use_proj _a : List[str] =summary_activation _a : Tuple =summary_proj_to_labels _a : List[Any] =summary_first_dropout _a : Union[str, Any] =start_n_top _a : Optional[int] =end_n_top _a : List[Any] =mask_token_id _a : List[Any] =lang_id if "n_words" in kwargs: _a : Dict =kwargs["""n_words"""] super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class A__ ( UpperCAmelCase__ ): @property def __UpperCAmelCase ( self :Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _a : Optional[Any] ={0: """batch""", 1: """choice""", 2: """sequence"""} else: _a : Tuple ={0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
506
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ : """simple docstring""" def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=1_6 , _A=3_6 , _A=6 , _A=6 , _A=6 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): '''simple docstring''' UpperCamelCase : Optional[int] = parent UpperCamelCase : List[str] = batch_size UpperCamelCase : List[str] = seq_length UpperCamelCase : str = is_training UpperCamelCase : Optional[Any] = use_input_mask UpperCamelCase : Tuple = use_token_type_ids UpperCamelCase : List[str] = use_labels UpperCamelCase : List[Any] = vocab_size UpperCamelCase : Optional[int] = embedding_size UpperCamelCase : Dict = hidden_size UpperCamelCase : Any = num_hidden_layers UpperCamelCase : Tuple = num_hidden_groups UpperCamelCase : str = num_attention_heads UpperCamelCase : str = intermediate_size UpperCamelCase : int = hidden_act UpperCamelCase : Union[str, Any] = hidden_dropout_prob UpperCamelCase : int = attention_probs_dropout_prob UpperCamelCase : Union[str, Any] = max_position_embeddings UpperCamelCase : Union[str, Any] = type_vocab_size UpperCamelCase : Tuple = type_sequence_label_size UpperCamelCase : Optional[int] = initializer_range UpperCamelCase : Any = num_labels UpperCamelCase : Dict = num_choices UpperCamelCase : List[str] = scope def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : Union[str, Any] = None if self.use_input_mask: UpperCamelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Any = None if self.use_token_type_ids: UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase : Tuple = None UpperCamelCase : Tuple = None UpperCamelCase : int = None if self.use_labels: UpperCamelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Dict = AlbertModel(config=_A ) model.to(_A ) model.eval() UpperCamelCase : Union[str, Any] = model(_A , attention_mask=_A , token_type_ids=_A ) UpperCamelCase : str = model(_A , token_type_ids=_A ) UpperCamelCase : List[Any] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = AlbertForPreTraining(config=_A ) model.to(_A ) model.eval() UpperCamelCase : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , sentence_order_label=_A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : List[str] = AlbertForMaskedLM(config=_A ) model.to(_A ) model.eval() UpperCamelCase : List[Any] = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Tuple = AlbertForQuestionAnswering(config=_A ) model.to(_A ) model.eval() UpperCamelCase : Tuple = model( _A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : int = AlbertForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCamelCase : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.num_labels UpperCamelCase : Optional[Any] = AlbertForTokenClassification(config=_A ) model.to(_A ) model.eval() UpperCamelCase : int = model(_A , attention_mask=_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , _A , _A , _A , _A , _A , _A , _A ): '''simple docstring''' UpperCamelCase : int = self.num_choices UpperCamelCase : Any = AlbertForMultipleChoice(config=_A ) model.to(_A ) model.eval() UpperCamelCase : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase : Optional[Any] = model( _A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[Any] = config_and_inputs UpperCamelCase : List[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : str = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __lowerCAmelCase : str = ( { """feature-extraction""": AlbertModel, """fill-mask""": AlbertForMaskedLM, """question-answering""": AlbertForQuestionAnswering, """text-classification""": AlbertForSequenceClassification, """token-classification""": AlbertForTokenClassification, """zero-shot""": AlbertForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase : int = True def _a ( self , _A , _A , _A=False ): '''simple docstring''' UpperCamelCase : List[str] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class in get_values(_A ): UpperCamelCase : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=_A ) UpperCamelCase : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = AlbertModelTester(self ) UpperCamelCase : str = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def _a ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase : int = type self.model_tester.create_and_check_model(*_A ) @slow def _a ( self ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : int = AlbertModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowercase__ ( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): '''simple docstring''' UpperCamelCase : List[str] = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCamelCase : Optional[int] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) UpperCamelCase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCamelCase : Tuple = model(_A , attention_mask=_A )[0] UpperCamelCase : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , _A ) UpperCamelCase : int = torch.tensor( [[[-0.65_13, 1.50_35, -0.27_66], [-0.65_15, 1.50_46, -0.27_80], [-0.65_12, 1.50_49, -0.27_84]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _A , atol=1e-4 ) )
102
"""simple docstring""" def snake_case ( _a: int , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): lowerCamelCase__ = n - k # Calculate C(n,k) for i in range(_a ): result *= n - i result //= i + 1 return result def snake_case ( _a: int )-> int: '''simple docstring''' return binomial_coefficient(2 * node_count , _a ) // (node_count + 1) def snake_case ( _a: int )-> int: '''simple docstring''' if n < 0: raise ValueError('factorial() not defined for negative values' ) lowerCamelCase__ = 1 for i in range(1 , n + 1 ): result *= i return result def snake_case ( _a: int )-> int: '''simple docstring''' return catalan_number(_a ) * factorial(_a ) if __name__ == "__main__": _snake_case = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f"""Given {node_count} nodes, there are {binary_tree_count(node_count)} """ f"""binary trees and {catalan_number(node_count)} binary search trees.""" )
510
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __A ( lowercase__ , unittest.TestCase ): a__ : List[Any] = ShapEPipeline a__ : List[Any] = ["""prompt"""] a__ : Union[str, Any] = ["""prompt"""] a__ : Optional[int] = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] a__ : Dict = False @property def _lowercase (self : Dict ): return 32 @property def _lowercase (self : str ): return 32 @property def _lowercase (self : Tuple ): return self.time_input_dim * 4 @property def _lowercase (self : Any ): return 8 @property def _lowercase (self : List[str] ): UpperCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def _lowercase (self : Dict ): torch.manual_seed(0 ) UpperCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__a ) @property def _lowercase (self : Optional[int] ): torch.manual_seed(0 ) UpperCAmelCase_ = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } UpperCAmelCase_ = PriorTransformer(**__a ) return model @property def _lowercase (self : Dict ): torch.manual_seed(0 ) UpperCAmelCase_ = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } UpperCAmelCase_ = ShapERenderer(**__a ) return model def _lowercase (self : List[str] ): UpperCAmelCase_ = self.dummy_prior UpperCAmelCase_ = self.dummy_text_encoder UpperCAmelCase_ = self.dummy_tokenizer UpperCAmelCase_ = self.dummy_renderer UpperCAmelCase_ = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=__a , clip_sample=__a , clip_sample_range=1.0 , ) UpperCAmelCase_ = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def _lowercase (self : Tuple , __a : str , __a : str=0 ): if str(__a ).startswith("mps" ): UpperCAmelCase_ = torch.manual_seed(__a ) else: UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(__a ) UpperCAmelCase_ = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def _lowercase (self : str ): UpperCAmelCase_ = "cpu" UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = pipe(**self.get_dummy_inputs(__a ) ) UpperCAmelCase_ = output.images[0] UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase_ = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase (self : List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _lowercase (self : List[str] ): UpperCAmelCase_ = torch_device == "cpu" UpperCAmelCase_ = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__a , relax_max_difference=__a , ) def _lowercase (self : Dict ): UpperCAmelCase_ = self.get_dummy_components() UpperCAmelCase_ = self.pipeline_class(**__a ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = 1 UpperCAmelCase_ = 2 UpperCAmelCase_ = self.get_dummy_inputs(__a ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase_ = batch_size * [inputs[key]] UpperCAmelCase_ = pipe(**__a , num_images_per_prompt=__a )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __A ( unittest.TestCase ): def _lowercase (self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase (self : Tuple ): UpperCAmelCase_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_np_out.npy" ) UpperCAmelCase_ = ShapEPipeline.from_pretrained("openai/shap-e" ) UpperCAmelCase_ = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) UpperCAmelCase_ = torch.Generator(device=__a ).manual_seed(0 ) UpperCAmelCase_ = pipe( "a shark" , generator=__a , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__a , __a )
704
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __A : @staticmethod def _lowercase (*__a : Any , **__a : Union[str, Any] ): pass @is_pipeline_test @require_vision class __A ( unittest.TestCase ): @require_torch def _lowercase (self : int ): UpperCAmelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , ) UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ = image_classifier(__a , candidate_labels=["a", "b", "c"] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__a ) , [ [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}], [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "c"}, {"score": 0.3_33, "label": "b"}], ] , ) UpperCAmelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], ] , ) @require_tf def _lowercase (self : List[str] ): UpperCAmelCase_ = pipeline( model="hf-internal-testing/tiny-random-clip-zero-shot-image-classification" , framework="tf" ) UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ = image_classifier(__a , candidate_labels=["a", "b", "c"] ) self.assertEqual( nested_simplify(__a ) , [{"score": 0.3_33, "label": "a"}, {"score": 0.3_33, "label": "b"}, {"score": 0.3_33, "label": "c"}] , ) UpperCAmelCase_ = image_classifier([image] * 5 , candidate_labels=["A", "B", "C"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], [ {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, {"score": 0.3_33, "label": ANY(__a )}, ], ] , ) @slow @require_torch def _lowercase (self : Dict ): UpperCAmelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ = image_classifier(__a , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__a ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , ) @slow @require_tf def _lowercase (self : Union[str, Any] ): UpperCAmelCase_ = pipeline( task="zero-shot-image-classification" , model="openai/clip-vit-base-patch32" , framework="tf" ) # This is an image of 2 cats with remotes and no planes UpperCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) UpperCAmelCase_ = image_classifier(__a , candidate_labels=["cat", "plane", "remote"] ) self.assertEqual( nested_simplify(__a ) , [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ] , ) UpperCAmelCase_ = image_classifier([image] * 5 , candidate_labels=["cat", "plane", "remote"] , batch_size=2 ) self.assertEqual( nested_simplify(__a ) , [ [ {"score": 0.5_11, "label": "remote"}, {"score": 0.4_85, "label": "cat"}, {"score": 0.0_04, "label": "plane"}, ], ] * 5 , )
415
0
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowerCamelCase__ =0 lowerCamelCase__ =len(__lowerCAmelCase ) - 1 while left <= right: # avoid divided by 0 during interpolation if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCamelCase__ =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowerCAmelCase ): return None lowerCamelCase__ =sorted_collection[point] if current_item == item: return point else: if point < left: lowerCamelCase__ =left lowerCamelCase__ =point elif point > right: lowerCamelCase__ =right lowerCamelCase__ =point else: if item < current_item: lowerCamelCase__ =point - 1 else: lowerCamelCase__ =point + 1 return None def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: '''simple docstring''' if sorted_collection[left] == sorted_collection[right]: if sorted_collection[left] == item: return left else: return None lowerCamelCase__ =left + ((item - sorted_collection[left]) * (right - left)) // ( sorted_collection[right] - sorted_collection[left] ) # out of range check if point < 0 or point >= len(__lowerCAmelCase ): return None if sorted_collection[point] == item: return point elif point < left: return interpolation_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) elif point > right: return interpolation_search_by_recursion(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) else: if sorted_collection[point] > item: return interpolation_search_by_recursion( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , point - 1 ) else: return interpolation_search_by_recursion( __lowerCAmelCase , __lowerCAmelCase , point + 1 , __lowerCAmelCase ) def lowerCamelCase_ ( __lowerCAmelCase ) -> Tuple: '''simple docstring''' if collection != sorted(__lowerCAmelCase ): raise ValueError("Collection must be ascending sorted" ) return True if __name__ == "__main__": import sys a =0 if debug == 1: a =[10, 30, 40, 45, 50, 66, 77, 93] try: __assert_sorted(collection) except ValueError: sys.exit('Sequence must be ascending sorted to apply interpolation search') a =67 a =interpolation_search(collection, target) if result is not None: print(F'''{target} found at positions: {result}''') else: print('Not found')
530
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __UpperCAmelCase ( __lowerCAmelCase ): A__ : List[Any] = '''Wav2Vec2FeatureExtractor''' A__ : Any = '''AutoTokenizer''' def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False @classmethod def _a ( cls , _lowerCamelCase , **_lowerCamelCase ): try: return super().from_pretrained(_lowerCamelCase , **_lowerCamelCase ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , _lowerCamelCase , ) lowerCamelCase__ =WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =WavaVecaCTCTokenizer.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) return cls(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) def __call__( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase__ =kwargs.pop("raw_speech" ) else: lowerCamelCase__ =kwargs.pop("audio" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("sampling_rate" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("text" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase__ =self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: lowerCamelCase__ =self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ =encodings["input_ids"] return inputs def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ =kwargs.pop("input_features" , _lowerCamelCase ) lowerCamelCase__ =kwargs.pop("labels" , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: lowerCamelCase__ =args[0] lowerCamelCase__ =args[1:] if input_features is not None: lowerCamelCase__ =self.feature_extractor.pad(_lowerCamelCase , *_lowerCamelCase , **_lowerCamelCase ) if labels is not None: lowerCamelCase__ =self.tokenizer.pad(_lowerCamelCase , **_lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase__ =labels["input_ids"] return input_features def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def _a ( self , *_lowerCamelCase , **_lowerCamelCase ): return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def _a ( self ): warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase__ =True lowerCamelCase__ =self.tokenizer yield lowerCamelCase__ =self.feature_extractor lowerCamelCase__ =False
530
1
class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Optional[int]: snake_case__ = 0 snake_case__ = 0 snake_case__ = {} def lowerCAmelCase_ ( self: Any , UpperCamelCase: List[Any] ) -> List[Any]: if vertex not in self.adjacency: snake_case__ = {} self.num_vertices += 1 def lowerCAmelCase_ ( self: int , UpperCamelCase: List[Any] , UpperCamelCase: Optional[int] , UpperCamelCase: Dict ) -> Tuple: self.add_vertex(UpperCamelCase ) self.add_vertex(UpperCamelCase ) if head == tail: return snake_case__ = weight snake_case__ = weight def lowerCAmelCase_ ( self: Dict ) -> str: snake_case__ = self.get_edges() for edge in edges: snake_case__ = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCamelCase ) ): snake_case__ = list(edges[i] ) edges.sort(key=lambda UpperCamelCase : e[2] ) for i in range(len(UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: snake_case__ = edges[i][2] + 1 for edge in edges: snake_case__ = edge snake_case__ = weight snake_case__ = weight def __str__( self: List[Any] ) -> Optional[Any]: snake_case__ = "" for tail in self.adjacency: for head in self.adjacency[tail]: snake_case__ = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip('\n' ) def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: snake_case__ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowerCAmelCase_ ( self: Tuple ) -> Optional[Any]: return self.adjacency.keys() @staticmethod def lowerCAmelCase_ ( UpperCamelCase: int=None , UpperCamelCase: Any=None ) -> List[Any]: snake_case__ = Graph() if vertices is None: snake_case__ = [] if edges is None: snake_case__ = [] for vertex in vertices: g.add_vertex(UpperCamelCase ) for edge in edges: g.add_edge(*UpperCamelCase ) return g class __SCREAMING_SNAKE_CASE: def __init__( self: Optional[Any] ) -> List[str]: snake_case__ = {} snake_case__ = {} def __len__( self: Any ) -> List[str]: return len(self.parent ) def lowerCAmelCase_ ( self: str , UpperCamelCase: Dict ) -> List[str]: if item in self.parent: return self.find(UpperCamelCase ) snake_case__ = item snake_case__ = 0 return item def lowerCAmelCase_ ( self: Optional[Any] , UpperCamelCase: Any ) -> Any: if item not in self.parent: return self.make_set(UpperCamelCase ) if item != self.parent[item]: snake_case__ = self.find(self.parent[item] ) return self.parent[item] def lowerCAmelCase_ ( self: Dict , UpperCamelCase: List[str] , UpperCamelCase: Optional[Any] ) -> List[Any]: snake_case__ = self.find(UpperCamelCase ) snake_case__ = self.find(UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: snake_case__ = roota return roota if self.rank[roota] < self.rank[roota]: snake_case__ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 snake_case__ = roota return roota return None @staticmethod def lowerCAmelCase_ ( UpperCamelCase: Optional[Any] ) -> List[str]: snake_case__ = graph.num_vertices snake_case__ = Graph.UnionFind() snake_case__ = [] while num_components > 1: snake_case__ = {} for vertex in graph.get_vertices(): snake_case__ = -1 snake_case__ = graph.get_edges() for edge in edges: snake_case__ = edge edges.remove((tail, head, weight) ) for edge in edges: snake_case__ = edge snake_case__ = union_find.find(UpperCamelCase ) snake_case__ = union_find.find(UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: snake_case__ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: snake_case__ = cheap_edge[vertex] if union_find.find(UpperCamelCase ) != union_find.find(UpperCamelCase ): union_find.union(UpperCamelCase , UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) snake_case__ = num_components - 1 snake_case__ = Graph.build(edges=UpperCamelCase ) return mst
704
from argparse import ArgumentParser from .env import EnvironmentCommand def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) snake_case__ = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(_A ) # Let's go snake_case__ = parser.parse_args() if not hasattr(_A , 'func' ): parser.print_help() exit(1 ) # Run snake_case__ = args.func(_A ) service.run() if __name__ == "__main__": main()
372
0
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class UpperCAmelCase_ (tf.keras.optimizers.schedules.LearningRateSchedule ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = 1.0 , SCREAMING_SNAKE_CASE_ = None , ) -> Any: super().__init__() __lowerCamelCase : Optional[Any] = initial_learning_rate __lowerCamelCase : Optional[Any] = warmup_steps __lowerCamelCase : Union[str, Any] = power __lowerCamelCase : Optional[int] = decay_schedule_fn __lowerCamelCase : Any = name def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: with tf.name_scope(self.name or 'WarmUp' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. __lowerCamelCase : str = tf.cast(SCREAMING_SNAKE_CASE_ , tf.floataa ) __lowerCamelCase : Optional[int] = tf.cast(self.warmup_steps , tf.floataa ) __lowerCamelCase : List[Any] = global_step_float / warmup_steps_float __lowerCamelCase : Optional[Any] = self.initial_learning_rate * tf.math.pow(SCREAMING_SNAKE_CASE_ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=SCREAMING_SNAKE_CASE_ , ) def lowercase_ ( self ) -> Optional[Any]: return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def UpperCAmelCase__ ( UpperCAmelCase_ : float , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 0.9 , UpperCAmelCase_ : float = 0.999 , UpperCAmelCase_ : float = 1e-8 , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : Optional[float] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : Optional[List[str]] = None , ) -> int: __lowerCamelCase : int = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=UpperCAmelCase_ , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase_ , ) if num_warmup_steps: __lowerCamelCase : str = WarmUp( initial_learning_rate=UpperCAmelCase_ , decay_schedule_fn=UpperCAmelCase_ , warmup_steps=UpperCAmelCase_ , ) if weight_decay_rate > 0.0: __lowerCamelCase : List[Any] = AdamWeightDecay( learning_rate=UpperCAmelCase_ , weight_decay_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , exclude_from_weight_decay=['LayerNorm', 'layer_norm', 'bias'] , include_in_weight_decay=UpperCAmelCase_ , ) else: __lowerCamelCase : Tuple = tf.keras.optimizers.Adam( learning_rate=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , beta_a=UpperCAmelCase_ , epsilon=UpperCAmelCase_ , clipnorm=UpperCAmelCase_ , global_clipnorm=UpperCAmelCase_ , ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ = 0.0_0_1 , SCREAMING_SNAKE_CASE_ = 0.9 , SCREAMING_SNAKE_CASE_ = 0.9_9_9 , SCREAMING_SNAKE_CASE_ = 1E-7 , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "AdamWeightDecay" , **SCREAMING_SNAKE_CASE_ , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = weight_decay_rate __lowerCamelCase : str = include_in_weight_decay __lowerCamelCase : List[Any] = exclude_from_weight_decay @classmethod def lowercase_ ( cls , SCREAMING_SNAKE_CASE_ ) -> Dict: __lowerCamelCase : Any = {'WarmUp': WarmUp} return super(SCREAMING_SNAKE_CASE_ , cls ).from_config(SCREAMING_SNAKE_CASE_ , custom_objects=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: super(SCREAMING_SNAKE_CASE_ , self )._prepare_local(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Union[str, Any] = tf.constant( self.weight_decay_rate , name='adam_weight_decay_rate' ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: __lowerCamelCase : Tuple = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['weight_decay_rate'] , use_locking=self._use_locking , ) return tf.no_op() def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> List[str]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = list(zip(*SCREAMING_SNAKE_CASE_ ) ) return super(SCREAMING_SNAKE_CASE_ , self ).apply_gradients(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , name=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: if apply_state is None: return self._decayed_lr_t[var_dtype], {} __lowerCamelCase : Optional[int] = apply_state or {} __lowerCamelCase : Dict = apply_state.get((var_device, var_dtype) ) if coefficients is None: __lowerCamelCase : List[Any] = self._fallback_apply_state(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> str: __lowerCamelCase , __lowerCamelCase : Dict = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_dense(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> Union[str, Any]: __lowerCamelCase , __lowerCamelCase : Tuple = self._get_lr(var.device , var.dtype.base_dtype , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : List[Any] = self._decay_weights_op(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with tf.control_dependencies([decay] ): return super(SCREAMING_SNAKE_CASE_ , self )._resource_apply_sparse(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : Any = super().get_config() config.update({'weight_decay_rate': self.weight_decay_rate} ) return config def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Dict: if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) is not None: return False return True class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def __init__( self ) -> Tuple: __lowerCamelCase : Tuple = [] __lowerCamelCase : Optional[Any] = None @property def lowercase_ ( self ) -> List[str]: if self._accum_steps is None: __lowerCamelCase : Tuple = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def lowercase_ ( self ) -> List[str]: if not self._gradients: raise ValueError('The accumulator should be called first to initialize the gradients' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , SCREAMING_SNAKE_CASE_ ) -> str: if not self._gradients: __lowerCamelCase : List[str] = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(SCREAMING_SNAKE_CASE_ ) , trainable=SCREAMING_SNAKE_CASE_ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(SCREAMING_SNAKE_CASE_ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(SCREAMING_SNAKE_CASE_ )}' ) for accum_gradient, gradient in zip(self._gradients , SCREAMING_SNAKE_CASE_ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(SCREAMING_SNAKE_CASE_ ) self._accum_steps.assign_add(1 ) def lowercase_ ( self ) -> int: if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(SCREAMING_SNAKE_CASE_ ) )
13
import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __UpperCamelCase : Tuple = "." # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) __UpperCamelCase : List[str] = [ "Assert", "AssignVariableOp", "EmptyTensorList", "MergeV2Checkpoints", "ReadVariableOp", "ResourceGather", "RestoreV2", "SaveV2", "ShardedFilename", "StatefulPartitionedCall", "StaticRegexFullMatch", "VarHandleOp", ] def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = SavedModel() a = [] with open(os.path.join(__lowerCamelCase , """utils""" , """tf_ops""" , """onnx.json""" ) ) as f: a = json.load(__lowerCamelCase )["""opsets"""] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(__lowerCamelCase )] ) with open(__lowerCamelCase , """rb""" ) as f: saved_model.ParseFromString(f.read() ) a = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want a = sorted(__lowerCamelCase ) a = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(__lowerCamelCase ) if strict and len(__lowerCamelCase ) > 0: raise Exception(f'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(__lowerCamelCase ) > 0: print(f'Found the following incompatible ops for the opset {opset}:' ) print(*__lowerCamelCase , sep="""\n""" ) else: print(f'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": __UpperCamelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--saved_model_path", help="Path of the saved model to check (the .pb file).") parser.add_argument( "--opset", default=12, type=int, help="The ONNX opset against which the model has to be tested." ) parser.add_argument( "--framework", choices=["onnx"], default="onnx", help="Frameworks against which to test the saved model." ) parser.add_argument( "--strict", action="store_true", help="Whether make the checking strict (raise errors) or not (raise warnings)" ) __UpperCamelCase : str = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
468
0
'''simple docstring''' import re from ..utils import cached_file # docstyle-ignore lowerCamelCase :int = ''' Human: <<task>> Assistant: ''' lowerCamelCase :Union[str, Any] = '''huggingface-tools/default-prompts''' lowerCamelCase :List[Any] = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="run" ): '''simple docstring''' if prompt_or_repo_id is None: A_ : Optional[int] = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search("""\\s""" , lowerCamelCase__ ) is not None: return prompt_or_repo_id A_ : str = cached_file( lowerCamelCase__ , PROMPT_FILES[mode] , repo_type="""dataset""" , user_agent={"""agent""": agent_name} ) with open(lowerCamelCase__ , """r""" , encoding="""utf-8""" ) as f: return f.read()
712
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = 'beit' def __init__(self , lowercase=8192 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = vocab_size A_ : List[str] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[int] = hidden_act A_ : str = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : str = layer_norm_eps A_ : Any = image_size A_ : int = patch_size A_ : List[str] = num_channels A_ : Any = use_mask_token A_ : Dict = use_absolute_position_embeddings A_ : List[Any] = use_relative_position_bias A_ : Tuple = use_shared_relative_position_bias A_ : Optional[int] = layer_scale_init_value A_ : Tuple = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : Optional[int] = use_auxiliary_head A_ : Union[str, Any] = auxiliary_loss_weight A_ : Tuple = auxiliary_channels A_ : List[Any] = auxiliary_num_convs A_ : Dict = auxiliary_concat_input A_ : Optional[Any] = semantic_loss_ignore_index class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4
686
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase =logging.get_logger(__name__) UpperCamelCase ={ "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json", # See all REALM models at https://huggingface.co/models?filter=realm } class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : str = '''realm''' def __init__( self , __lowerCAmelCase=3_05_22 , __lowerCAmelCase=7_68 , __lowerCAmelCase=1_28 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=8 , __lowerCAmelCase=30_72 , __lowerCAmelCase="gelu_new" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_12 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=1E-12 , __lowerCAmelCase=2_56 , __lowerCAmelCase=10 , __lowerCAmelCase=1E-3 , __lowerCAmelCase=5 , __lowerCAmelCase=3_20 , __lowerCAmelCase=13_35_37_18 , __lowerCAmelCase=50_00 , __lowerCAmelCase=1 , __lowerCAmelCase=0 , __lowerCAmelCase=2 , **__lowerCAmelCase , ): super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) # Common config UpperCamelCase_ : Optional[int] = vocab_size UpperCamelCase_ : List[Any] = max_position_embeddings UpperCamelCase_ : str = hidden_size UpperCamelCase_ : str = retriever_proj_size UpperCamelCase_ : int = num_hidden_layers UpperCamelCase_ : int = num_attention_heads UpperCamelCase_ : str = num_candidates UpperCamelCase_ : Any = intermediate_size UpperCamelCase_ : int = hidden_act UpperCamelCase_ : List[str] = hidden_dropout_prob UpperCamelCase_ : List[Any] = attention_probs_dropout_prob UpperCamelCase_ : Union[str, Any] = initializer_range UpperCamelCase_ : str = type_vocab_size UpperCamelCase_ : Tuple = layer_norm_eps # Reader config UpperCamelCase_ : List[Any] = span_hidden_size UpperCamelCase_ : int = max_span_width UpperCamelCase_ : List[str] = reader_layer_norm_eps UpperCamelCase_ : Optional[int] = reader_beam_size UpperCamelCase_ : Any = reader_seq_len # Retrieval config UpperCamelCase_ : Tuple = num_block_records UpperCamelCase_ : str = searcher_beam_size
208
'''simple docstring''' import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate UpperCamelCase =TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) UpperCamelCase =[] UpperCamelCase =[] UpperCamelCase ={"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} UpperCamelCase =[ { "type": "header", "text": { "type": "plain_text", "text": f"🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results", "emoji": True, }, } ] UpperCamelCase =0 for log in Path().glob("*.log"): UpperCamelCase =0 with open(log, "r") as f: for line in f: UpperCamelCase =json.loads(line) if line.get("nodeid", "") != "": UpperCamelCase =line["nodeid"] if line.get("duration", None) is not None: UpperCamelCase =f"{line['duration']:.4f}" if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) UpperCamelCase =[] log.unlink() UpperCamelCase ="" UpperCamelCase =[] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" UpperCamelCase =[] UpperCamelCase ={} for test in failed_tests: UpperCamelCase =test[0].split("::") UpperCamelCase =data[0].split("/")[-1] if data[0] not in filesafailed: UpperCamelCase =[data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) UpperCamelCase =[test[0] for test in failed_table] UpperCamelCase =list(set(files)) # Count number of instances in failed_tests UpperCamelCase =[] for file in individual_files: table.append([file, len(filesafailed[file])]) UpperCamelCase =tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: UpperCamelCase ="Too many failed tests, please see the full report in the Action results." UpperCamelCase =len(err) + 10 UpperCamelCase =message[: 3000 - offset] + f"\n...\n```\n{err}" print(f"### {message}") else: UpperCamelCase ="No failed tests! 🤗" print(f"## {message}") payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient UpperCamelCase =WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": UpperCamelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) UpperCamelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": f"https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}", }, } payload.append(action_button) UpperCamelCase ={ "type": "context", "elements": [ { "type": "plain_text", "text": f"Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}", } ], } payload.append(date_report) UpperCamelCase =client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) UpperCamelCase =response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name UpperCamelCase ="" for i, row in enumerate(test_failures): if row[0] != test_class: UpperCamelCase =row[0] else: UpperCamelCase ="" UpperCamelCase ={ "type": "section", "text": { "type": "mrkdwn", "text": f"Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```", }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
208
1
'''simple docstring''' from torch import nn class __SCREAMING_SNAKE_CASE (nn.Module ): """simple docstring""" def __init__( self : int , __a : Optional[int] , __a : Tuple ): super().__init__() _a = class_size _a = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _a = nn.Linear(__a , __a ) def UpperCamelCase__ ( self : Tuple , __a : Tuple ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _a = self.mlp(__a ) return logits
521
'''simple docstring''' import os from datetime import datetime as dt from github import Github lowerCAmelCase_ : List[Any] = [ 'good first issue', 'feature request', 'wip', ] def _lowerCamelCase ( ) -> Dict: _a = Github(os.environ["GITHUB_TOKEN"] ) _a = g.get_repo("huggingface/accelerate" ) _a = repo.get_issues(state="open" ) for issue in open_issues: _a = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase : i.created_at , reverse=lowercase ) _a = comments[0] if len(lowercase ) > 0 else None _a = dt.utcnow() _a = (current_time - issue.updated_at).days _a = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state="closed" ) elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Add stale comment issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
521
1
from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) ): __snake_case : List[Any] = tau * frequency / samplerate __snake_case : Union[str, Any] = sin(__lowerCamelCase ) __snake_case : int = cos(__lowerCamelCase ) __snake_case : Union[str, Any] = _sin / (2 * q_factor) __snake_case : str = (1 - _cos) / 2 __snake_case : List[Any] = 1 - _cos __snake_case : Any = 1 + alpha __snake_case : List[str] = -2 * _cos __snake_case : List[str] = 1 - alpha __snake_case : str = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) ): __snake_case : Dict = tau * frequency / samplerate __snake_case : List[str] = sin(__lowerCamelCase ) __snake_case : Dict = cos(__lowerCamelCase ) __snake_case : int = _sin / (2 * q_factor) __snake_case : Tuple = (1 + _cos) / 2 __snake_case : Tuple = -1 - _cos __snake_case : List[Any] = 1 + alpha __snake_case : Optional[Any] = -2 * _cos __snake_case : Optional[Any] = 1 - alpha __snake_case : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) ): __snake_case : Union[str, Any] = tau * frequency / samplerate __snake_case : Optional[Any] = sin(__lowerCamelCase ) __snake_case : Optional[Any] = cos(__lowerCamelCase ) __snake_case : Tuple = _sin / (2 * q_factor) __snake_case : Any = _sin / 2 __snake_case : Tuple = 0 __snake_case : Optional[int] = -ba __snake_case : List[str] = 1 + alpha __snake_case : Dict = -2 * _cos __snake_case : int = 1 - alpha __snake_case : int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) ): __snake_case : Tuple = tau * frequency / samplerate __snake_case : Union[str, Any] = sin(__lowerCamelCase ) __snake_case : str = cos(__lowerCamelCase ) __snake_case : Any = _sin / (2 * q_factor) __snake_case : Optional[Any] = 1 - alpha __snake_case : Optional[int] = -2 * _cos __snake_case : Optional[Any] = 1 + alpha __snake_case : List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) , ): __snake_case : Tuple = tau * frequency / samplerate __snake_case : List[str] = sin(__lowerCamelCase ) __snake_case : List[Any] = cos(__lowerCamelCase ) __snake_case : Optional[int] = _sin / (2 * q_factor) __snake_case : Optional[int] = 1_0 ** (gain_db / 4_0) __snake_case : Optional[int] = 1 + alpha * big_a __snake_case : Dict = -2 * _cos __snake_case : Optional[Any] = 1 - alpha * big_a __snake_case : Optional[int] = 1 + alpha / big_a __snake_case : Union[str, Any] = -2 * _cos __snake_case : Optional[Any] = 1 - alpha / big_a __snake_case : Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) , ): __snake_case : Tuple = tau * frequency / samplerate __snake_case : int = sin(__lowerCamelCase ) __snake_case : Union[str, Any] = cos(__lowerCamelCase ) __snake_case : str = _sin / (2 * q_factor) __snake_case : Union[str, Any] = 1_0 ** (gain_db / 4_0) __snake_case : Dict = (big_a + 1) - (big_a - 1) * _cos __snake_case : Tuple = (big_a + 1) + (big_a - 1) * _cos __snake_case : int = (big_a - 1) - (big_a + 1) * _cos __snake_case : Tuple = (big_a - 1) + (big_a + 1) * _cos __snake_case : Any = 2 * sqrt(__lowerCamelCase ) * alpha __snake_case : Any = big_a * (pmc + aaa) __snake_case : Any = 2 * big_a * mpc __snake_case : Any = big_a * (pmc - aaa) __snake_case : List[Any] = ppmc + aaa __snake_case : List[str] = -2 * pmpc __snake_case : str = ppmc - aaa __snake_case : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = 1 / sqrt(2 ) , ): __snake_case : List[Any] = tau * frequency / samplerate __snake_case : Dict = sin(__lowerCamelCase ) __snake_case : List[Any] = cos(__lowerCamelCase ) __snake_case : int = _sin / (2 * q_factor) __snake_case : str = 1_0 ** (gain_db / 4_0) __snake_case : Optional[int] = (big_a + 1) - (big_a - 1) * _cos __snake_case : List[str] = (big_a + 1) + (big_a - 1) * _cos __snake_case : Tuple = (big_a - 1) - (big_a + 1) * _cos __snake_case : Any = (big_a - 1) + (big_a + 1) * _cos __snake_case : str = 2 * sqrt(__lowerCamelCase ) * alpha __snake_case : Any = big_a * (ppmc + aaa) __snake_case : Tuple = -2 * big_a * pmpc __snake_case : Tuple = big_a * (ppmc - aaa) __snake_case : Dict = pmc + aaa __snake_case : Tuple = 2 * mpc __snake_case : List[Any] = pmc - aaa __snake_case : Optional[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
81
_snake_case : Optional[int] = {"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} _snake_case : Dict = ["a", "b", "c", "d", "e"] def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = start # add current to visited visited.append(__lowerCamelCase ) __snake_case : List[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __snake_case : Tuple = topological_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # if all neighbors visited add current to sort sort.append(__lowerCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__lowerCamelCase ) != len(__lowerCamelCase ): for vertice in vertices: if vertice not in visited: __snake_case : int = topological_sort(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # return sort return sort if __name__ == "__main__": _snake_case : List[Any] = topological_sort("a", [], []) print(sort)
81
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() snake_case_ : List[str] =logging.get_logger(__name__) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: __A = 1024 __A = 4096 __A = 24 __A = 16 __A = [5, 11, 17, 23] __A = [256, 512, 1024, 1024] __A = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: __A = 768 __A = [1, 1, 1, 0.5] __A = [256, 512, 768, 768] __A = 150 __A = 16 __A = (1, 384, 384) __A = False __A = "project" if "ade" in checkpoint_url: __A = True __A = 768 __A = [1, 1, 1, 0.5] __A = 150 __A = 16 __A = "huggingface/label-files" __A = "ade20k-id2label.json" __A = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) ) , "r" ) ) __A = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} __A = idalabel __A = {v: k for k, v in idalabel.items()} __A = [1, 150, 480, 480] return config, expected_shape def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' __A = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCAmelCase ( lowerCAmelCase__ ): '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __A = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: __A = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: __A = name.replace("patch_embed" , "" ) if "pos_embed" in name: __A = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: __A = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: __A = name.replace("proj" , "projection" ) if "blocks" in name: __A = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: __A = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __A = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: __A = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: __A = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: __A = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: __A = name.replace("scratch" , "neck" ) if "layer1_rn" in name: __A = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: __A = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: __A = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: __A = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: __A = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __A = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: __A = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: __A = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: __A = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: __A = name.replace("conv1" , "convolution1" ) if "conv2" in name: __A = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __A = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: __A = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: __A = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: __A = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: __A = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: __A = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: __A = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: __A = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: __A = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: __A = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: __A = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: __A = name.replace("pretrained" , "dpt" ) if "bn" in name: __A = name.replace("bn" , "batch_norm" ) if "head" in name: __A = name.replace("head" , "head.head" ) if "encoder.norm" in name: __A = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: __A = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: __A = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: __A = name.replace(".." , "." ) if "stem.conv" in name: __A = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: __A = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: __A = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: __A = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: __A = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: __A = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: __A = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) __A = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __A = in_proj_weight[: config.hidden_size, :] __A = in_proj_bias[: config.hidden_size] __A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A = in_proj_weight[ -config.hidden_size :, : ] __A = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( ): '''simple docstring''' __A = "http://images.cocodataset.org/val2017/000000039769.jpg" __A = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' __A , __A = get_dpt_config(lowerCAmelCase__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __A = torch.load(lowerCAmelCase__ , map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): __A = state_dict.pop(lowerCAmelCase__ ) __A = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # load HuggingFace model __A = DPTForSemanticSegmentation(lowerCAmelCase__ ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # Check outputs on an image __A = 480 if "ade" in checkpoint_url else 384 __A = DPTImageProcessor(size=lowerCAmelCase__ ) __A = prepare_img() __A = image_processor(lowerCAmelCase__ , return_tensors="pt" ) # forward pass __A = model(**lowerCAmelCase__ ).logits if "ade" in checkpoint_url else model(**lowerCAmelCase__ ).predicted_depth if show_prediction: __A = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=lowerCAmelCase__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCAmelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": snake_case_ : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) snake_case_ : Tuple =parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
721
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , ): '''simple docstring''' __A = {} if train_file is not None: __A = [train_file] if eval_file is not None: __A = [eval_file] if test_file is not None: __A = [test_file] __A = datasets.load_dataset("csv" , data_files=lowerCAmelCase__ ) __A = list(ds[list(files.keys() )[0]].features.keys() ) __A = features_name.pop(lowerCAmelCase__ ) __A = list(set(ds[list(files.keys() )[0]][label_name] ) ) __A = {label: i for i, label in enumerate(lowerCAmelCase__ )} __A = tokenizer.model_input_names __A = {} if len(lowerCAmelCase__ ) == 1: for k in files.keys(): __A = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" ) , batched=lowerCAmelCase__ , ) elif len(lowerCAmelCase__ ) == 2: for k in files.keys(): __A = ds[k].map( lambda lowerCAmelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding="max_length" , ) , batched=lowerCAmelCase__ , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __A = {k: v for k, v in ex.items() if k in input_names} __A = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __A = {k: v for k, v in ex.items() if k in input_names} __A = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __A = {k: v for k, v in ex.items() if k in input_names} __A = labelaid[ex[label_name]] yield (d, label) __A = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __A = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __A = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __A = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __A = ( tf.data.Dataset.from_generator( lowerCAmelCase__ , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __A = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid snake_case_ : str =logging.getLogger(__name__) @dataclass class a__ : UpperCAmelCase_ : int = field(metadata={'help': 'Which column contains the label'} ) UpperCAmelCase_ : str = field(default=lowerCAmelCase__ , metadata={'help': 'The path of the training file'} ) UpperCAmelCase_ : Optional[str] = field(default=lowerCAmelCase__ , metadata={'help': 'The path of the development file'} ) UpperCAmelCase_ : Optional[str] = field(default=lowerCAmelCase__ , metadata={'help': 'The path of the test file'} ) UpperCAmelCase_ : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) UpperCAmelCase_ : bool = field( default=lowerCAmelCase__ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) @dataclass class a__ : UpperCAmelCase_ : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) UpperCAmelCase_ : bool = field(default=lowerCAmelCase__ , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. UpperCAmelCase_ : Optional[str] = field( default=lowerCAmelCase__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) def UpperCAmelCase ( ): '''simple docstring''' __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __A , __A , __A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __A , __A , __A , __A = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=lowerCAmelCase__ , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(lowerCAmelCase__ ) , labelaid=lowerCAmelCase__ , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __A = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=lowerCAmelCase__ , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCAmelCase__ ) -> Dict: __A = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __A = TFTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , compute_metrics=lowerCAmelCase__ , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __A = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __A = trainer.evaluate() __A = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(lowerCAmelCase__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(lowerCAmelCase__ ) return results if __name__ == "__main__": main()
205
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class _A : def __init__( self : Optional[Any] , __magic_name__ : Optional[int] , __magic_name__ : List[str]=13 , __magic_name__ : List[Any]=7 , __magic_name__ : str=True , __magic_name__ : Union[str, Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Optional[Any]=True , __magic_name__ : Any=99 , __magic_name__ : List[Any]=[1, 1, 2] , __magic_name__ : Optional[Any]=1 , __magic_name__ : str=32 , __magic_name__ : Optional[Any]=4 , __magic_name__ : Tuple=8 , __magic_name__ : int=37 , __magic_name__ : str="gelu_new" , __magic_name__ : Any=0.1 , __magic_name__ : List[Any]=0.1 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : List[Any]=5_12 , __magic_name__ : Any=3 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=3 , __magic_name__ : Optional[int]=4 , __magic_name__ : Any=None , __magic_name__ : int=False , ) -> Union[str, Any]: """simple docstring""" __snake_case : Any = parent __snake_case : Optional[int] = batch_size __snake_case : List[str] = seq_length __snake_case : Optional[int] = is_training __snake_case : List[str] = use_input_mask __snake_case : Union[str, Any] = use_token_type_ids __snake_case : Optional[int] = use_labels __snake_case : Any = vocab_size __snake_case : Union[str, Any] = block_sizes __snake_case : List[str] = num_decoder_layers __snake_case : List[str] = d_model __snake_case : List[Any] = n_head __snake_case : Tuple = d_head __snake_case : Union[str, Any] = d_inner __snake_case : Union[str, Any] = hidden_act __snake_case : Optional[Any] = hidden_dropout __snake_case : Union[str, Any] = attention_dropout __snake_case : Any = activation_dropout __snake_case : List[str] = max_position_embeddings __snake_case : Any = type_vocab_size __snake_case : Tuple = 2 __snake_case : int = num_labels __snake_case : List[Any] = num_choices __snake_case : Any = scope __snake_case : str = initializer_std # Used in the tests to check the size of the first attention layer __snake_case : Any = n_head # Used in the tests to check the size of the first hidden state __snake_case : Tuple = self.d_model # Used in the tests to check the number of output hidden states/attentions __snake_case : int = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __snake_case : Dict = self.num_hidden_layers + 2 def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : str = None if self.use_input_mask: __snake_case : int = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Optional[int] = None if self.use_token_type_ids: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : Union[str, Any] = None __snake_case : Optional[int] = None __snake_case : Tuple = None if self.use_labels: __snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : int = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : List[Any] = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Any , __magic_name__ : Tuple , __magic_name__ : Any , __magic_name__ : Any , __magic_name__ : str , __magic_name__ : Dict , __magic_name__ : str , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" __snake_case : Dict = TFFunnelModel(config=__magic_name__ ) __snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[Any] = model(__magic_name__ ) __snake_case : Tuple = [input_ids, input_mask] __snake_case : Tuple = model(__magic_name__ ) __snake_case : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __snake_case : str = False __snake_case : Dict = TFFunnelModel(config=__magic_name__ ) __snake_case : str = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) __snake_case : List[Any] = False __snake_case : Any = TFFunnelModel(config=__magic_name__ ) __snake_case : List[str] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase__ ( self : Any , __magic_name__ : Dict , __magic_name__ : Dict , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Dict , ) -> List[Any]: """simple docstring""" __snake_case : str = TFFunnelBaseModel(config=__magic_name__ ) __snake_case : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Any = model(__magic_name__ ) __snake_case : List[Any] = [input_ids, input_mask] __snake_case : Dict = model(__magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) __snake_case : str = False __snake_case : List[str] = TFFunnelBaseModel(config=__magic_name__ ) __snake_case : Optional[int] = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) __snake_case : Tuple = False __snake_case : Optional[int] = TFFunnelBaseModel(config=__magic_name__ ) __snake_case : Dict = model(__magic_name__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase__ ( self : int , __magic_name__ : List[Any] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : List[Any] , ) -> Optional[Any]: """simple docstring""" __snake_case : str = TFFunnelForPreTraining(config=__magic_name__ ) __snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Tuple = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : List[Any] , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : List[Any] , ) -> Dict: """simple docstring""" __snake_case : Optional[Any] = TFFunnelForMaskedLM(config=__magic_name__ ) __snake_case : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : str = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] , __magic_name__ : Tuple , __magic_name__ : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Tuple , ) -> Dict: """simple docstring""" __snake_case : Union[str, Any] = self.num_labels __snake_case : str = TFFunnelForSequenceClassification(config=__magic_name__ ) __snake_case : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Union[str, Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[int] , __magic_name__ : Optional[int] , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : List[Any] , __magic_name__ : Optional[int] , __magic_name__ : Any , __magic_name__ : int , ) -> List[Any]: """simple docstring""" __snake_case : List[Any] = self.num_choices __snake_case : List[str] = TFFunnelForMultipleChoice(config=__magic_name__ ) __snake_case : str = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) __snake_case : Tuple = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) __snake_case : int = tf.tile(tf.expand_dims(__magic_name__ , 1 ) , (1, self.num_choices, 1) ) __snake_case : Dict = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } __snake_case : Dict = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[int] , __magic_name__ : str , __magic_name__ : Optional[int] , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Union[str, Any] , __magic_name__ : str , ) -> Any: """simple docstring""" __snake_case : Optional[int] = self.num_labels __snake_case : List[str] = TFFunnelForTokenClassification(config=__magic_name__ ) __snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __magic_name__ : List[Any] , __magic_name__ : int , __magic_name__ : Dict , __magic_name__ : List[str] , __magic_name__ : List[str] , __magic_name__ : Tuple , __magic_name__ : Optional[Any] , ) -> Union[str, Any]: """simple docstring""" __snake_case : int = TFFunnelForQuestionAnswering(config=__magic_name__ ) __snake_case : Union[str, Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} __snake_case : Any = model(__magic_name__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : List[str] ) -> int: """simple docstring""" __snake_case : List[Any] = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : Optional[Any] = config_and_inputs __snake_case : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( __lowercase , __lowercase , unittest.TestCase ): lowercase__: int = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) lowercase__: List[Any] = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) lowercase__: List[Any] = False lowercase__: str = False def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : Dict = TFFunnelModelTester(self ) __snake_case : Tuple = ConfigTester(self , config_class=__magic_name__ ) def lowercase__ ( self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__magic_name__ ) def lowercase__ ( self : Any ) -> Union[str, Any]: """simple docstring""" __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__magic_name__ ) def lowercase__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__magic_name__ ) @require_tf class _A ( __lowercase , unittest.TestCase ): lowercase__: Dict = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) lowercase__: List[str] = False lowercase__: List[str] = False def lowercase__ ( self : Tuple ) -> Dict: """simple docstring""" __snake_case : Any = TFFunnelModelTester(self , base=__magic_name__ ) __snake_case : List[Any] = ConfigTester(self , config_class=__magic_name__ ) def lowercase__ ( self : str ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> Tuple: """simple docstring""" __snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__magic_name__ )
26
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ : Optional[int] = { """configuration_biogpt""": ["""BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BioGptConfig"""], """tokenization_biogpt""": ["""BioGptTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = [ """BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """BioGptForCausalLM""", """BioGptForTokenClassification""", """BioGptForSequenceClassification""", """BioGptModel""", """BioGptPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __magic_name__ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
615
0
import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir("fixtures/test_sentencepiece_with_bytefallback.model") @require_sentencepiece @require_tokenizers class lowerCamelCase ( _A , unittest.TestCase ): UpperCAmelCase__ : List[Any] = GPTSwaTokenizer UpperCAmelCase__ : Any = False UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : Any = False def UpperCAmelCase(self : Dict ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing snake_case = GPTSwaTokenizer(__lowerCamelCase , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase(self : Any , _A : Optional[Any] ) -> Optional[Any]: snake_case = "This is a test" snake_case = "This is a test" return input_text, output_text def UpperCAmelCase(self : List[str] ) -> Union[str, Any]: snake_case = "<s>" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCAmelCase(self : List[Any] ) -> Optional[int]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__lowerCamelCase ) , 2_0_0_0 ) def UpperCAmelCase(self : List[Any] ) -> str: self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def UpperCAmelCase(self : Optional[int] ) -> Any: snake_case = GPTSwaTokenizer(__lowerCamelCase ) snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) snake_case = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( __lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on snake_case = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) snake_case = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) # fmt: off self.assertListEqual( __lowerCamelCase , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def UpperCAmelCase(self : Dict ) -> Tuple: snake_case = GPTSwaTokenizer(__lowerCamelCase ) snake_case = ["This is a test", "I was born in 92000, and this is falsé."] snake_case = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(__lowerCamelCase , __lowerCamelCase ): self.assertListEqual(tokenizer.encode_fast(__lowerCamelCase ) , __lowerCamelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.decode_fast(__lowerCamelCase ) , __lowerCamelCase ) @slow def UpperCAmelCase(self : int ) -> Any: snake_case = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off snake_case = {"input_ids": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="AI-Sweden/gpt-sw3-126m" , sequences=__lowerCamelCase , )
717
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class lowerCamelCase ( A_ ): UpperCAmelCase__ : Any = "poolformer" def __init__(self : Optional[int] , _A : Optional[Any]=3 , _A : Optional[int]=1_6 , _A : Dict=1_6 , _A : Tuple=3 , _A : Tuple=4.0 , _A : int=[2, 2, 6, 2] , _A : Dict=[6_4, 1_2_8, 3_2_0, 5_1_2] , _A : int=[7, 3, 3, 3] , _A : List[str]=[4, 2, 2, 2] , _A : str=[2, 1, 1, 1] , _A : List[Any]=4 , _A : Any=0.0 , _A : Optional[Any]="gelu" , _A : Optional[Any]=True , _A : List[str]=1E-5 , _A : List[str]=0.02 , **_A : str , ) -> Tuple: snake_case = num_channels snake_case = patch_size snake_case = stride snake_case = padding snake_case = pool_size snake_case = hidden_sizes snake_case = mlp_ratio snake_case = depths snake_case = patch_sizes snake_case = strides snake_case = num_encoder_blocks snake_case = drop_path_rate snake_case = hidden_act snake_case = use_layer_scale snake_case = layer_scale_init_value snake_case = initializer_range super().__init__(**_A ) class lowerCamelCase ( A_ ): UpperCAmelCase__ : Tuple = version.parse("1.11" ) @property def UpperCAmelCase(self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def UpperCAmelCase(self : int ) -> float: return 2E-3
294
0
"""simple docstring""" def _lowercase ( __snake_case ,__snake_case ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def _lowercase ( ) -> None: assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
293
"""simple docstring""" import argparse from collections import defaultdict def _lowercase ( __snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) -> Optional[int]: __lowerCAmelCase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__snake_case ,"r" ) as f: __lowerCAmelCase : List[str] = f.readlines() __lowerCAmelCase : Tuple = F"""class {class_name}(""" __lowerCAmelCase : Tuple = F"""{4 * ' '}def {test_name}(""" __lowerCAmelCase : List[str] = F"""{8 * ' '}{correct_line.split()[0]}""" __lowerCAmelCase : List[Any] = F"""{16 * ' '}{correct_line.split()[0]}""" __lowerCAmelCase : Any = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Optional[Any] = False __lowerCAmelCase : str = False __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : Dict = 0 __lowerCAmelCase : int = [] for line in lines: if line.startswith(__snake_case ): __lowerCAmelCase : Any = True elif in_class and line.startswith(__snake_case ): __lowerCAmelCase : str = True elif in_class and in_func and (line.startswith(__snake_case ) or line.startswith(__snake_case )): __lowerCAmelCase : Optional[Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: __lowerCAmelCase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: __lowerCAmelCase : Dict = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * ' '}{correct_line}""" ) __lowerCAmelCase : Union[str, Any] = False else: new_lines.append(__snake_case ) with open(__snake_case ,"w" ) as f: for line in new_lines: f.write(__snake_case ) def _lowercase ( __snake_case ,__snake_case=None ) -> int: if fail is not None: with open(__snake_case ,"r" ) as f: __lowerCAmelCase : Union[str, Any] = {l.strip() for l in f.readlines()} else: __lowerCAmelCase : Optional[Any] = None with open(__snake_case ,"r" ) as f: __lowerCAmelCase : Union[str, Any] = f.readlines() __lowerCAmelCase : Optional[Any] = defaultdict(__snake_case ) for line in correct_lines: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : List[str] = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__snake_case ,__snake_case ,__snake_case ,__snake_case ,__snake_case ) if __name__ == "__main__": __snake_case : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--correct_filename', help='filename of tests with expected result') parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None) __snake_case : int = parser.parse_args() main(args.correct_filename, args.fail_filename)
293
1
"""simple docstring""" def lowerCAmelCase_( lowercase_ : list[int] ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError('''List is empty''' ) _lowerCamelCase = sum(lowercase_ ) / len(lowercase_ ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase_ ) if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __SCREAMING_SNAKE_CASE : List[Any] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __SCREAMING_SNAKE_CASE : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
623
0
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": 5_1_2, "facebook/dpr-ctx_encoder-multiset-base": 5_1_2, } UpperCamelCase_ = { "facebook/dpr-question_encoder-single-nq-base": 5_1_2, "facebook/dpr-question_encoder-multiset-base": 5_1_2, } UpperCamelCase_ = { "facebook/dpr-reader-single-nq-base": 5_1_2, "facebook/dpr-reader-multiset-base": 5_1_2, } UpperCamelCase_ = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase_ = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } UpperCamelCase_ = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : Tuple = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Dict = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A : Union[str, Any] = DPRContextEncoderTokenizer class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Optional[int] = VOCAB_FILES_NAMES A : str = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A : List[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : List[str] = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A : List[Any] = DPRQuestionEncoderTokenizer UpperCamelCase_ = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) UpperCamelCase_ = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) UpperCamelCase_ = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(SCREAMING_SNAKE_CASE ) class _a : '''simple docstring''' def __call__( self, A, A = None, A = None, A = False, A = False, A = None, A = None, A = None, **A, ): '''simple docstring''' if titles is None and texts is None: return super().__call__( A, padding=A, truncation=A, max_length=A, return_tensors=A, return_attention_mask=A, **A, ) elif titles is None or texts is None: SCREAMING_SNAKE_CASE : int = titles if texts is None else texts return super().__call__( A, A, padding=A, truncation=A, max_length=A, return_tensors=A, return_attention_mask=A, **A, ) SCREAMING_SNAKE_CASE : Dict = titles if not isinstance(A, A ) else [titles] SCREAMING_SNAKE_CASE : int = texts if not isinstance(A, A ) else [texts] SCREAMING_SNAKE_CASE : Union[str, Any] = len(A ) SCREAMING_SNAKE_CASE : Tuple = questions if not isinstance(A, A ) else [questions] * n_passages assert len(A ) == len( A ), F"There should be as many titles than texts but got {len(A )} titles and {len(A )} texts." SCREAMING_SNAKE_CASE : str = super().__call__(A, A, padding=A, truncation=A )['input_ids'] SCREAMING_SNAKE_CASE : int = super().__call__(A, add_special_tokens=A, padding=A, truncation=A )['input_ids'] SCREAMING_SNAKE_CASE : Optional[int] = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(A, A ) ] } if return_attention_mask is not False: SCREAMING_SNAKE_CASE : List[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) SCREAMING_SNAKE_CASE : Optional[Any] = attention_mask return self.pad(A, padding=A, max_length=A, return_tensors=A ) def UpperCamelCase_ ( self, A, A, A = 16, A = 64, A = 4, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = reader_input['input_ids'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = reader_output[:3] SCREAMING_SNAKE_CASE : Optional[int] = len(A ) SCREAMING_SNAKE_CASE : List[str] = sorted(range(A ), reverse=A, key=relevance_logits.__getitem__ ) SCREAMING_SNAKE_CASE : List[DPRReaderOutput] = [] for doc_id in sorted_docs: SCREAMING_SNAKE_CASE : List[Any] = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence SCREAMING_SNAKE_CASE : Dict = sequence_ids.index(self.sep_token_id, 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: SCREAMING_SNAKE_CASE : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = len(A ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len], end_logits=end_logits[doc_id][passage_offset:sequence_len], max_answer_length=A, top_spans=A, ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index], relevance_score=relevance_logits[doc_id], doc_id=A, start_index=A, end_index=A, text=self.decode(sequence_ids[start_index : end_index + 1] ), ) ) if len(A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCamelCase_ ( self, A, A, A, A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [] for start_index, start_score in enumerate(A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) SCREAMING_SNAKE_CASE : List[Any] = sorted(A, key=lambda A : x[1], reverse=A ) SCREAMING_SNAKE_CASE : str = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F"Wrong span indices: [{start_index}:{end_index}]" SCREAMING_SNAKE_CASE : Dict = end_index - start_index + 1 assert length <= max_answer_length, F"Span is too long: {length} > {max_answer_length}" if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : List[Any] = READER_PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[int] = READER_PRETRAINED_INIT_CONFIGURATION A : Dict = ['''input_ids''', '''attention_mask'''] A : str = DPRReaderTokenizer
28
"""simple docstring""" # Lint as: python3 import itertools import os import re _snake_case = re.compile(r'([A-Z]+)([A-Z][a-z])') _snake_case = re.compile(r'([a-z\d])([A-Z])') _snake_case = re.compile(r'(?<!_)_(?!_)') _snake_case = re.compile(r'(_{2,})') _snake_case = r'^\w+(\.\w+)*$' _snake_case = r'<>:/\|?*' def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : str = _uppercase_uppercase_re.sub(R"""\1_\2""" , UpperCamelCase__ ) _a : Optional[Any] = _lowercase_uppercase_re.sub(R"""\1_\2""" , UpperCamelCase__ ) return name.lower() def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : int = _single_underscore_re.split(UpperCamelCase__ ) _a : Union[str, Any] = [_multiple_underscores_re.split(UpperCamelCase__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(UpperCamelCase__ ) if n != """""" ) def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(UpperCamelCase__ ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if os.path.basename(UpperCamelCase__ ) != name: raise ValueError(F"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , UpperCamelCase__ ): raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" ) return F"""{filename_prefix_for_name(UpperCamelCase__ )}-{split}""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' _a : Dict = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) if filetype_suffix: prefix += F""".{filetype_suffix}""" _a : Any = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) return F"""{filepath}*""" def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None ): '''simple docstring''' _a : int = filename_prefix_for_split(UpperCamelCase__ , UpperCamelCase__ ) _a : Tuple = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if shard_lengths: _a : List[str] = len(UpperCamelCase__ ) _a : Optional[int] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(UpperCamelCase__ )] if filetype_suffix: _a : Optional[int] = [filename + F""".{filetype_suffix}""" for filename in filenames] return filenames else: _a : List[Any] = prefix if filetype_suffix: filename += F""".{filetype_suffix}""" return [filename]
389
0
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _snake_case = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _snake_case = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _snake_case = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _snake_case = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _snake_case = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _snake_case = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _snake_case = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def snake_case ( )-> Optional[int]: '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = randrange(len(_a ) ), randrange(len(_a ) ) lowerCamelCase__ = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] lowerCamelCase__ , lowerCamelCase__ = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def snake_case ( _a: int = 100 )-> Dict: '''simple docstring''' return (generate_random_hand() for _ in range(_a )) @pytest.mark.parametrize('hand, expected' , _a ) def snake_case ( _a: Dict , _a: Any )-> List[str]: '''simple docstring''' assert PokerHand(_a )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , _a ) def snake_case ( _a: List[str] , _a: Dict )-> Union[str, Any]: '''simple docstring''' assert PokerHand(_a )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , _a ) def snake_case ( _a: Dict , _a: Dict , _a: List[str] )-> Any: '''simple docstring''' lowerCamelCase__ = PokerHand(_a ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , _a ) def snake_case ( _a: str , _a: Tuple )-> Any: '''simple docstring''' assert PokerHand(_a )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , _a ) def snake_case ( _a: Union[str, Any] , _a: Any )-> str: '''simple docstring''' assert PokerHand(_a )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , _a ) def snake_case ( _a: int , _a: Optional[Any] , _a: str )-> List[str]: '''simple docstring''' assert PokerHand(_a ).compare_with(PokerHand(_a ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def snake_case ( _a: List[Any] , _a: Optional[Any] , _a: Tuple )-> Dict: '''simple docstring''' assert PokerHand(_a ).compare_with(PokerHand(_a ) ) == expected def snake_case ( )-> Optional[int]: '''simple docstring''' lowerCamelCase__ = [PokerHand(_a ) for hand in SORTED_HANDS] lowerCamelCase__ = poker_hands.copy() shuffle(_a ) lowerCamelCase__ = chain(sorted(_a ) ) for index, hand in enumerate(_a ): assert hand == poker_hands[index] def snake_case ( )-> Dict: '''simple docstring''' lowerCamelCase__ = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_a ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def snake_case ( )-> List[Any]: '''simple docstring''' lowerCamelCase__ = PokerHand('2C 4S AS 3D 5C' ) lowerCamelCase__ = True lowerCamelCase__ = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def snake_case ( )-> List[str]: '''simple docstring''' lowerCamelCase__ = 0 lowerCamelCase__ = os.path.abspath(os.path.dirname(_a ) ) lowerCamelCase__ = os.path.join(_a , 'poker_hands.txt' ) with open(_a ) as file_hand: for line in file_hand: lowerCamelCase__ = line[:14].strip() lowerCamelCase__ = line[15:].strip() lowerCamelCase__ , lowerCamelCase__ = PokerHand(_a ), PokerHand(_a ) lowerCamelCase__ = player.compare_with(_a ) if output == "Win": answer += 1 assert answer == 376
659
"""simple docstring""" def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations(_a: int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' def count_of_possible_combinations_with_dp_array( _a: int , _a: list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase__ = sum( count_of_possible_combinations_with_dp_array(target - item , _a ) for item in array ) lowerCamelCase__ = answer return answer lowerCamelCase__ = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_a , _a ) def snake_case ( _a: int , _a: list[int] , _a: int )-> int: '''simple docstring''' lowerCamelCase__ = [0] * (target + 1) lowerCamelCase__ = 1 for i in range(1 , target + 1 ): for j in range(_a ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _snake_case = 3 _snake_case = 5 _snake_case = [1, 2, 5] print(combination_sum_iv(n, array, target))
659
1
"""simple docstring""" def _snake_case ( snake_case__ : str , snake_case__ : str = " " ): A = [] A = 0 for index, char in enumerate(snake_case__ ): if char == separator: split_words.append(string[last_index:index] ) A = index + 1 elif index + 1 == len(snake_case__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
91
def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case ) -> int: # Return True if there is node that has not iterated. __lowercase = [False] * len(snake_case ) __lowercase = [] queue.append(snake_case ) __lowercase = True while queue: __lowercase = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(snake_case ) __lowercase = True __lowercase = u return visited[t] def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Dict: # This array is filled by BFS and to store path __lowercase = [-1] * (len(snake_case )) __lowercase = 0 while bfs(snake_case , snake_case , snake_case , snake_case ): __lowercase = float('Inf' ) __lowercase = sink while s != source: # Find the minimum value in select path __lowercase = min(snake_case , graph[parent[s]][s] ) __lowercase = parent[s] max_flow += path_flow __lowercase = sink while v != source: __lowercase = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __lowercase = parent[v] return max_flow SCREAMING_SNAKE_CASE_ : Any = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : Optional[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
375
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = [] __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=UpperCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions if self.add_downsample: __lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: List[str] , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int=True ): __lowerCamelCase = () for resnet, attn in zip(self.resnets , self.attentions ): __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCamelCase = self.downsamplers_a(UpperCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=UpperCamelCase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets if self.add_downsample: __lowerCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: str , UpperCamelCase_: Any , UpperCamelCase_: Optional[int] , UpperCamelCase_: int=True ): __lowerCamelCase = () for resnet in self.resnets: __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) output_states += (hidden_states,) if self.add_downsample: __lowerCamelCase = self.downsamplers_a(UpperCamelCase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = [] __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions if self.add_upsample: __lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: List[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __lowerCamelCase = res_hidden_states_tuple[-1] __lowerCamelCase = res_hidden_states_tuple[:-1] __lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) if self.add_upsample: __lowerCamelCase = self.upsamplers_a(UpperCamelCase_ ) return hidden_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = True UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = [] for i in range(self.num_layers ): __lowerCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __lowerCamelCase = self.prev_output_channel if i == 0 else self.out_channels __lowerCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets if self.add_upsample: __lowerCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: List[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Optional[Any]=True ): for resnet in self.resnets: # pop res hidden states __lowerCamelCase = res_hidden_states_tuple[-1] __lowerCamelCase = res_hidden_states_tuple[:-1] __lowerCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) if self.add_upsample: __lowerCamelCase = self.upsamplers_a(UpperCamelCase_ ) return hidden_states class lowerCamelCase__( nn.Module): UpperCAmelCase__ : int UpperCAmelCase__ : float = 0.0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : bool = False UpperCAmelCase__ : bool = False UpperCAmelCase__ : jnp.dtype = jnp.floataa def lowerCAmelCase__ ( self: int ): # there is always at least one resnet __lowerCamelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __lowerCamelCase = [] for _ in range(self.num_layers ): __lowerCamelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(UpperCamelCase_ ) __lowerCamelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(UpperCamelCase_ ) __lowerCamelCase = resnets __lowerCamelCase = attentions def __call__( self: int , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Dict , UpperCamelCase_: Optional[int]=True ): __lowerCamelCase = self.resnets[0](UpperCamelCase_ , UpperCamelCase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __lowerCamelCase = attn(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) __lowerCamelCase = resnet(UpperCamelCase_ , UpperCamelCase_ , deterministic=UpperCamelCase_ ) return hidden_states
706
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: str ): __lowerCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) __lowerCamelCase = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(UpperCamelCase_ ) , torch_builtin(UpperCamelCase_ ) ) ) self.assertFalse(torch.allclose(gelu_python(UpperCamelCase_ ) , gelu_new(UpperCamelCase_ ) ) ) def lowerCAmelCase__ ( self: str ): __lowerCamelCase = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) __lowerCamelCase = get_activation("""gelu""" ) __lowerCamelCase = get_activation("""gelu_10""" ) __lowerCamelCase = torch_builtin(UpperCamelCase_ ) __lowerCamelCase = geluaa(UpperCamelCase_ ) __lowerCamelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(UpperCamelCase_ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCAmelCase__ ( self: str ): get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(UpperCamelCase_ ): get_activation("""bogus""" ) with self.assertRaises(UpperCamelCase_ ): get_activation(UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): __lowerCamelCase = get_activation("""gelu""" ) __lowerCamelCase = 1 __lowerCamelCase = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(UpperCamelCase_ ): __lowerCamelCase = acta.a
80
0
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCAmelCase = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""") def __magic_name__ ( lowercase , lowercase=None ): require_version(deps[pkg] , lowercase )
409
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __A : List[str] = BigBirdConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"Building PyTorch model from configuration: {config}" ) if is_trivia_qa: __A : List[str] = BigBirdForQuestionAnswering(SCREAMING_SNAKE_CASE ) else: __A : List[Any] = BigBirdForPreTraining(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , is_trivia_qa=SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--big_bird_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--is_trivia_qa""", action="""store_true""", help="""Whether to convert a model with a trivia_qa head.""" ) _UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
111
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __SCREAMING_SNAKE_CASE : str = 0b10_11_00_11_11_10_11_00_10_01_00_00_01_11_10_11_10_11_00_01_10_01_11_10 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __SCREAMING_SNAKE_CASE : str = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __lowerCamelCase : """simple docstring""" def __init__( self : str ): _lowerCAmelCase =WATERMARK_BITS _lowerCAmelCase =WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def lowerCAmelCase__ ( self : str , lowerCamelCase_ : torch.FloatTensor ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images _lowerCAmelCase =(255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowerCAmelCase =[self.encoder.encode(lowerCamelCase_ , """dwtDct""" ) for image in images] _lowerCAmelCase =torch.from_numpy(np.array(lowerCamelCase_ ) ).permute(0 , 3 , 1 , 2 ) _lowerCAmelCase =torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
705
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __SCREAMING_SNAKE_CASE : List[str] = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } __SCREAMING_SNAKE_CASE : Dict = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def snake_case_ ( lowercase__ : Any , lowercase__ : Union[str, Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =create_model( """HTSAT-tiny""" , """roberta""" , lowercase__ , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=lowercase__ , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def snake_case_ ( lowercase__ : str ): '''simple docstring''' _lowerCAmelCase ={} _lowerCAmelCase =r""".*sequential.(\d+).*""" _lowerCAmelCase =r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: _lowerCAmelCase =key.replace(lowercase__ , lowercase__ ) if re.match(lowercase__ , lowercase__ ): # replace sequential layers with list _lowerCAmelCase =re.match(lowercase__ , lowercase__ ).group(1 ) _lowerCAmelCase =key.replace(f"sequential.{sequential_layer}." , f"layers.{int(lowercase__ )//3}.linear." ) elif re.match(lowercase__ , lowercase__ ): _lowerCAmelCase =int(re.match(lowercase__ , lowercase__ ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... _lowerCAmelCase =1 if projecton_layer == 0 else 2 _lowerCAmelCase =key.replace(f"_projection.{projecton_layer}." , f"_projection.linear{transformers_projection_layer}." ) if "audio" and "qkv" in key: # split qkv into query key and value _lowerCAmelCase =value _lowerCAmelCase =mixed_qkv.size(0 ) // 3 _lowerCAmelCase =mixed_qkv[:qkv_dim] _lowerCAmelCase =mixed_qkv[qkv_dim : qkv_dim * 2] _lowerCAmelCase =mixed_qkv[qkv_dim * 2 :] _lowerCAmelCase =query_layer _lowerCAmelCase =key_layer _lowerCAmelCase =value_layer else: _lowerCAmelCase =value return model_state_dict def snake_case_ ( lowercase__ : int , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Optional[Any]=False ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase =init_clap(lowercase__ , enable_fusion=lowercase__ ) clap_model.eval() _lowerCAmelCase =clap_model.state_dict() _lowerCAmelCase =rename_state_dict(lowercase__ ) _lowerCAmelCase =ClapConfig() _lowerCAmelCase =enable_fusion _lowerCAmelCase =ClapModel(lowercase__ ) # ignore the spectrogram embedding layer model.load_state_dict(lowercase__ , strict=lowercase__ ) model.save_pretrained(lowercase__ ) transformers_config.save_pretrained(lowercase__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') __SCREAMING_SNAKE_CASE : int = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
149
0
"""simple docstring""" import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCAmelCase : Union[str, Any] = False, False, False @dataclass class SCREAMING_SNAKE_CASE__ : lowercase__ = None lowercase__ = True lowercase__ = True lowercase__ = None # Automatically constructed lowercase__ = "dict" lowercase__ = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) lowercase__ = field(default="Audio" , init=UpperCamelCase_ , repr=UpperCamelCase_ ) def __call__( self : Dict): """simple docstring""" return self.pa_type def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Union[str, bytes, dict]): """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""") from err if isinstance(__A , __A): return {"bytes": None, "path": value} elif isinstance(__A , __A): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes lowercase_ = BytesIO() sf.write(__A , value["""array"""] , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""") is not None and os.path.isfile(value["""path"""]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm"""): # "PCM" only has raw audio bytes if value.get("""sampling_rate""") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""") if value.get("""bytes"""): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) lowercase_ = np.frombuffer(value["""bytes"""] , dtype=np.intaa).astype(np.floataa) / 3_2_7_6_7 else: lowercase_ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""").astype(np.floataa) / 3_2_7_6_7 lowercase_ = BytesIO(bytes()) sf.write(__A , __A , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""")} elif value.get("""bytes""") is not None or value.get("""path""") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes"""), "path": value.get("""path""")} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''') def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : dict , lowerCAmelCase_ : Optional[Dict[str, Union[str, bool, None]]] = None): """simple docstring""" if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""") lowercase_ = (value["path"], BytesIO(value["""bytes"""])) if value["bytes"] is not None else (value["path"], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''') try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""") from err lowercase_ = xsplitext(__A)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) if file is None: lowercase_ = token_per_repo_id or {} lowercase_ = path.split("""::""")[-1] try: lowercase_ = string_to_dict(__A , config.HUB_DATASETS_URL)["repo_id"] lowercase_ = token_per_repo_id[repo_id] except (ValueError, KeyError): lowercase_ = None with xopen(__A , """rb""" , use_auth_token=__A) as f: lowercase_ = sf.read(__A) else: lowercase_ = sf.read(__A) lowercase_ = array.T if self.mono: lowercase_ = librosa.to_mono(__A) if self.sampling_rate and self.sampling_rate != sampling_rate: lowercase_ = librosa.resample(__A , orig_sr=__A , target_sr=self.sampling_rate) lowercase_ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _UpperCAmelCase ( self : Tuple): """simple docstring""" from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""") return { "bytes": Value("""binary"""), "path": Value("""string"""), } def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : Union[pa.StringArray, pa.StructArray]): """simple docstring""" if pa.types.is_string(storage.type): lowercase_ = pa.array([None] * len(__A) , type=pa.binary()) lowercase_ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): lowercase_ = pa.array([None] * len(__A) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("""array"""): lowercase_ = pa.array([Audio().encode_example(__A) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("""bytes""") >= 0: lowercase_ = storage.field("""bytes""") else: lowercase_ = pa.array([None] * len(__A) , type=pa.binary()) if storage.type.get_field_index("""path""") >= 0: lowercase_ = storage.field("""path""") else: lowercase_ = pa.array([None] * len(__A) , type=pa.string()) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) return array_cast(__A , self.pa_type) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : pa.StructArray): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(lowerCAmelCase_ : Optional[Any]): with xopen(__A , """rb""") as f: lowercase_ = f.read() return bytes_ lowercase_ = pa.array( [ (path_to_bytes(x["""path"""]) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) lowercase_ = pa.array( [os.path.basename(__A) if path is not None else None for path in storage.field("""path""").to_pylist()] , type=pa.string() , ) lowercase_ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null()) return array_cast(__A , self.pa_type)
567
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : List[str] , __A : Dict , __A : str=1_3 , __A : str=7 , __A : Optional[int]=True , __A : int=True , __A : str=True , __A : Tuple=True , __A : Optional[int]=9_9 , __A : Optional[int]=3_2 , __A : Any=5 , __A : List[Any]=4 , __A : str=3_7 , __A : Union[str, Any]="gelu" , __A : str=0.1 , __A : Dict=0.1 , __A : Union[str, Any]=5_1_2 , __A : str=1_6 , __A : Optional[int]=2 , __A : List[Any]=0.0_2 , __A : Union[str, Any]=3 , __A : Optional[Any]=4 , __A : Optional[int]=None , ): snake_case__ : int = parent snake_case__ : str = batch_size snake_case__ : List[str] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Dict = use_input_mask snake_case__ : Any = use_token_type_ids snake_case__ : Optional[Any] = use_labels snake_case__ : Tuple = vocab_size snake_case__ : int = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : str = intermediate_size snake_case__ : Dict = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : Union[str, Any] = initializer_range snake_case__ : str = num_labels snake_case__ : List[Any] = num_choices snake_case__ : Union[str, Any] = scope def _lowercase ( self : int ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : str = None if self.use_input_mask: snake_case__ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Union[str, Any] = None snake_case__ : Dict = None snake_case__ : str = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : str = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Optional[Any] ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__A , initializer_range=self.initializer_range , ) def _lowercase ( self : Tuple , __A : Optional[Any] , __A : Optional[int] , __A : List[str] , __A : Optional[int] , __A : Union[str, Any] , __A : List[Any] , __A : Tuple ): snake_case__ : List[str] = NystromformerModel(config=__A ) model.to(__A ) model.eval() snake_case__ : str = model(__A , attention_mask=__A , token_type_ids=__A ) snake_case__ : Optional[int] = model(__A , token_type_ids=__A ) snake_case__ : Any = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : Optional[Any] , __A : Tuple , __A : Tuple , __A : Union[str, Any] , __A : List[Any] , __A : List[str] , __A : Union[str, Any] , __A : Tuple ): snake_case__ : Dict = NystromformerForMaskedLM(config=__A ) model.to(__A ) model.eval() snake_case__ : Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : Optional[int] , __A : List[str] , __A : Tuple , __A : Optional[Any] , __A : Optional[Any] , __A : Union[str, Any] , __A : Dict , __A : Union[str, Any] ): snake_case__ : Any = NystromformerForQuestionAnswering(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowercase ( self : str , __A : str , __A : Any , __A : str , __A : Optional[int] , __A : str , __A : Optional[Any] , __A : Union[str, Any] ): snake_case__ : List[str] = self.num_labels snake_case__ : Dict = NystromformerForSequenceClassification(__A ) model.to(__A ) model.eval() snake_case__ : Optional[Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] , __A : Optional[Any] , __A : Any , __A : Optional[Any] , __A : int , __A : Union[str, Any] , __A : List[str] , __A : Any ): snake_case__ : int = self.num_labels snake_case__ : Tuple = NystromformerForTokenClassification(config=__A ) model.to(__A ) model.eval() snake_case__ : Union[str, Any] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Union[str, Any] , __A : List[str] , __A : Union[str, Any] , __A : List[str] , __A : Dict , __A : List[Any] , __A : str , __A : Optional[int] ): snake_case__ : str = self.num_choices snake_case__ : Optional[int] = NystromformerForMultipleChoice(config=__A ) model.to(__A ) model.eval() snake_case__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[int] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowercase ( self : Tuple ): snake_case__ : Tuple = self.prepare_config_and_inputs() ( ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ( snake_case__ ), ) : str = config_and_inputs snake_case__ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): """simple docstring""" a_ = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) a_ = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) a_ = False a_ = False def _lowercase ( self : Any ): snake_case__ : int = NystromformerModelTester(self ) snake_case__ : Any = ConfigTester(self , config_class=__A , hidden_size=3_7 ) def _lowercase ( self : str ): self.config_tester.run_common_tests() def _lowercase ( self : Any ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ : str = type self.model_tester.create_and_check_model(*__A ) def _lowercase ( self : Tuple ): snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def _lowercase ( self : int ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def _lowercase ( self : Optional[Any] ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def _lowercase ( self : Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def _lowercase ( self : Any ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__A ) @slow def _lowercase ( self : int ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = NystromformerModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : List[Any] ): snake_case__ : str = NystromformerModel.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ : int = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): snake_case__ : Any = model(__A )[0] snake_case__ : List[Any] = torch.Size((1, 6, 7_6_8) ) self.assertEqual(output.shape , __A ) snake_case__ : Union[str, Any] = torch.tensor( [[[-0.4_5_3_2, -0.0_9_3_6, 0.5_1_3_7], [-0.2_6_7_6, 0.0_6_2_8, 0.6_1_8_6], [-0.3_6_2_9, -0.1_7_2_6, 0.4_7_1_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __A , atol=1e-4 ) ) @slow def _lowercase ( self : Optional[int] ): snake_case__ : Union[str, Any] = "the [MASK] of Belgium is Brussels" snake_case__ : Optional[int] = AutoTokenizer.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ : Tuple = NystromformerForMaskedLM.from_pretrained("uw-madison/nystromformer-512" ) snake_case__ : List[Any] = tokenizer(__A , return_tensors="pt" ) with torch.no_grad(): snake_case__ : List[str] = model(encoding.input_ids ).logits snake_case__ : Optional[int] = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(__A ) , "capital" )
297
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase ( a , unittest.TestCase ): _lowerCamelCase : Dict = KandinskyVaaControlnetImgaImgPipeline _lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase : Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase : Optional[int] = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase : Any = False @property def lowercase ( self ): return 32 @property def lowercase ( self ): return 32 @property def lowercase ( self ): return self.time_input_dim @property def lowercase ( self ): return self.time_input_dim * 4 @property def lowercase ( self ): return 100 @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : Optional[int] = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase : int = UNetaDConditionModel(**snake_case__ ) return model @property def lowercase ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowercase ( self ): torch.manual_seed(0 ) lowerCAmelCase : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def lowercase ( self ): lowerCAmelCase : Dict = self.dummy_unet lowerCAmelCase : int = self.dummy_movq lowerCAmelCase : str = { 'num_train_timesteps': 1000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase : Dict = DDIMScheduler(**snake_case__ ) lowerCAmelCase : str = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase ( self , snake_case__ , snake_case__=0 ): lowerCAmelCase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : Tuple = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create init_image lowerCAmelCase : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) lowerCAmelCase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase : int = Image.fromarray(np.uinta(snake_case__ ) ).convert('RGB' ).resize((256, 256) ) # create hint lowerCAmelCase : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('mps' ): lowerCAmelCase : Dict = torch.manual_seed(snake_case__ ) else: lowerCAmelCase : str = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowerCAmelCase : str = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase ( self ): lowerCAmelCase : Tuple = 'cpu' lowerCAmelCase : int = self.get_dummy_components() lowerCAmelCase : Optional[Any] = self.pipeline_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) lowerCAmelCase : Any = output.images lowerCAmelCase : str = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] lowerCAmelCase : int = image[0, -3:, -3:, -1] lowerCAmelCase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase : List[Any] = np.array( [0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): def lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self ): lowerCAmelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCAmelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase : List[Any] = init_image.resize((512, 512) ) lowerCAmelCase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 lowerCAmelCase : int = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase : List[str] = 'A robot, 4k photo' lowerCAmelCase : int = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) lowerCAmelCase : Union[str, Any] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCAmelCase : str = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) lowerCAmelCase : Dict = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase : int = pipe_prior( snake_case__ , image=snake_case__ , strength=0.8_5 , generator=snake_case__ , negative_prompt='' , ).to_tuple() lowerCAmelCase : int = pipeline( image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='np' , ) lowerCAmelCase : List[str] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
706
'''simple docstring''' _lowerCAmelCase : List[str] = {str(digit): digit**5 for digit in range(10)} def __UpperCamelCase ( _A : int ) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_A ) ) def __UpperCamelCase ( ) -> int: """simple docstring""" return sum( number for number in range(10_00 , 1_00_00_00 ) if number == digits_fifth_powers_sum(_A ) ) if __name__ == "__main__": print(solution())
646
0
import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class a ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = { '''task_specific_params''': { '''summarization''': {'''length_penalty''': 1.0, '''max_length''': 128, '''min_length''': 12, '''num_beams''': 4}, '''summarization_cnn''': {'''length_penalty''': 2.0, '''max_length''': 142, '''min_length''': 56, '''num_beams''': 4}, '''summarization_xsum''': {'''length_penalty''': 1.0, '''max_length''': 62, '''min_length''': 11, '''num_beams''': 6}, } } __SCREAMING_SNAKE_CASE: Dict = { '''task_specific_params.summarization.length_penalty''': 1.0, '''task_specific_params.summarization.max_length''': 128, '''task_specific_params.summarization.min_length''': 12, '''task_specific_params.summarization.num_beams''': 4, '''task_specific_params.summarization_cnn.length_penalty''': 2.0, '''task_specific_params.summarization_cnn.max_length''': 142, '''task_specific_params.summarization_cnn.min_length''': 56, '''task_specific_params.summarization_cnn.num_beams''': 4, '''task_specific_params.summarization_xsum.length_penalty''': 1.0, '''task_specific_params.summarization_xsum.max_length''': 62, '''task_specific_params.summarization_xsum.min_length''': 11, '''task_specific_params.summarization_xsum.num_beams''': 6, } self.assertEqual(flatten_dict(_lowerCAmelCase ) , _lowerCAmelCase ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , x.transpose() ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Tuple = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , transpose(_lowerCAmelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE: Tuple = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE: int = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , transpose(_lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Dict = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , transpose(_lowerCAmelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE: Dict = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE: Optional[int] = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , transpose(_lowerCAmelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase ) , np.asarray(transpose(_lowerCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE: Tuple = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) , np.asarray(transpose(_lowerCAmelCase , axes=(1, 2, 0) ) ) ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , np.reshape(_lowerCAmelCase , (4, 3) ) ) ) __SCREAMING_SNAKE_CASE: List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , np.reshape(_lowerCAmelCase , (12, 5) ) ) ) @require_torch def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: List[str] = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , reshape(_lowerCAmelCase , (4, 3) ).numpy() ) ) __SCREAMING_SNAKE_CASE: List[Any] = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE: Any = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , reshape(_lowerCAmelCase , (12, 5) ).numpy() ) ) @require_tf def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Optional[int] = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , reshape(_lowerCAmelCase , (4, 3) ).numpy() ) ) __SCREAMING_SNAKE_CASE: Tuple = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE: Optional[Any] = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , reshape(_lowerCAmelCase , (12, 5) ).numpy() ) ) @require_flax def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Any = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Any = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (4, 3) ) , np.asarray(reshape(_lowerCAmelCase , (4, 3) ) ) ) ) __SCREAMING_SNAKE_CASE: str = np.random.randn(3 , 4 , 5 ) __SCREAMING_SNAKE_CASE: Any = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(reshape(_lowerCAmelCase , (12, 5) ) , np.asarray(reshape(_lowerCAmelCase , (12, 5) ) ) ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: int = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , np.squeeze(_lowerCAmelCase ) ) ) __SCREAMING_SNAKE_CASE: List[Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , np.squeeze(_lowerCAmelCase , axis=2 ) ) ) @require_torch def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Union[str, Any] = np.random.randn(1 , 3 , 4 ) __SCREAMING_SNAKE_CASE: List[str] = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , squeeze(_lowerCAmelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE: Optional[int] = np.random.randn(1 , 4 , 1 , 5 ) __SCREAMING_SNAKE_CASE: Union[str, Any] = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , squeeze(_lowerCAmelCase , axis=2 ).numpy() ) ) @require_tf def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = np.random.randn(1 , 3 , 4 ) __SCREAMING_SNAKE_CASE: Tuple = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , squeeze(_lowerCAmelCase ).numpy() ) ) __SCREAMING_SNAKE_CASE: Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) __SCREAMING_SNAKE_CASE: Any = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , squeeze(_lowerCAmelCase , axis=2 ).numpy() ) ) @require_flax def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = np.random.randn(1 , 3 , 4 ) __SCREAMING_SNAKE_CASE: Optional[Any] = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase ) , np.asarray(squeeze(_lowerCAmelCase ) ) ) ) __SCREAMING_SNAKE_CASE: Any = np.random.randn(1 , 4 , 1 , 5 ) __SCREAMING_SNAKE_CASE: Any = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(squeeze(_lowerCAmelCase , axis=2 ) , np.asarray(squeeze(_lowerCAmelCase , axis=2 ) ) ) ) def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: List[str] = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , np.expand_dims(_lowerCAmelCase , axis=1 ) ) ) @require_torch def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: List[str] = torch.tensor(_lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , expand_dims(_lowerCAmelCase , axis=1 ).numpy() ) ) @require_tf def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Optional[int] = tf.constant(_lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , expand_dims(_lowerCAmelCase , axis=1 ).numpy() ) ) @require_flax def snake_case_ ( self ): """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = np.random.randn(3 , 4 ) __SCREAMING_SNAKE_CASE: Optional[int] = jnp.array(_lowerCAmelCase ) self.assertTrue(np.allclose(expand_dims(_lowerCAmelCase , axis=1 ) , np.asarray(expand_dims(_lowerCAmelCase , axis=1 ) ) ) )
202
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) lowerCAmelCase : Dict = """\ Text data. Second line of data.""" lowerCAmelCase : str = """file""" @pytest.fixture(scope='''session''' ) def lowerCAmelCase ( UpperCamelCase__ : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: Any = tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') __SCREAMING_SNAKE_CASE: Optional[Any] = bytes(UpperCamelCase__ , '''utf-8''' ) with zstd.open(UpperCamelCase__ , '''wb''' ) as f: f.write(UpperCamelCase__ ) return path @pytest.fixture def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , UpperCamelCase__ ) , '''w''' ) as f: f.write(UpperCamelCase__ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE: Dict = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} __SCREAMING_SNAKE_CASE: List[str] = input_paths[compression_format] __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''cache''' __SCREAMING_SNAKE_CASE: List[str] = DownloadConfig(cache_dir=UpperCamelCase__ , extract_compressed_file=UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Tuple = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) with open(UpperCamelCase__ ) as f: __SCREAMING_SNAKE_CASE: Optional[Any] = f.read() with open(UpperCamelCase__ ) as f: __SCREAMING_SNAKE_CASE: Dict = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def lowerCAmelCase ( UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = '''custom_cache''' __SCREAMING_SNAKE_CASE: Optional[int] = '''custom_extracted_dir''' __SCREAMING_SNAKE_CASE: List[Any] = tmp_path / '''custom_extracted_path''' if default_extracted: __SCREAMING_SNAKE_CASE: int = ('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , UpperCamelCase__ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(UpperCamelCase__ ) ) __SCREAMING_SNAKE_CASE: Union[str, Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) __SCREAMING_SNAKE_CASE: Dict = xz_file __SCREAMING_SNAKE_CASE: Optional[Any] = ( DownloadConfig(extract_compressed_file=UpperCamelCase__ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=UpperCamelCase__ ) ) __SCREAMING_SNAKE_CASE: int = cached_path(UpperCamelCase__ , download_config=UpperCamelCase__ ) assert Path(UpperCamelCase__ ).parent.parts[-2:] == expected def lowerCAmelCase ( UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = str(Path(UpperCamelCase__ ).resolve() ) assert cached_path(UpperCamelCase__ ) == text_file # relative path __SCREAMING_SNAKE_CASE: Optional[int] = str(Path(UpperCamelCase__ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(UpperCamelCase__ ) == text_file def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) # relative path __SCREAMING_SNAKE_CASE: int = '''./__missing_file__.txt''' with pytest.raises(UpperCamelCase__ ): cached_path(UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Tuple ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = get_from_cache(F"""tmp://{tmpfs_file}""" ) with open(UpperCamelCase__ ) as f: __SCREAMING_SNAKE_CASE: Tuple = f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , UpperCamelCase__ ) def lowerCAmelCase ( ) -> Any: """simple docstring""" with pytest.raises(UpperCamelCase__ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(UpperCamelCase__ ): http_get('''https://huggingface.co''' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Dict ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE: List[Any] = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(UpperCamelCase__ ): ftp_get('''ftp://huggingface.co''' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , UpperCamelCase__ ) def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE: Tuple = tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(UpperCamelCase__ ): fsspec_get('''s3://huggingface.co''' , temp_file=UpperCamelCase__ ) with pytest.raises(UpperCamelCase__ ): fsspec_head('''s3://huggingface.co''' )
202
1
def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 200 ): """simple docstring""" UpperCamelCase = [1, 2, 5, 10, 20, 50, 100, 200] UpperCamelCase = [0] * (pence + 1) UpperCamelCase = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(SCREAMING_SNAKE_CASE_ , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(200) == 73_682
181
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def _lowercase ( *SCREAMING_SNAKE_CASE_ : List[Any] ): """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase = list(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def _lowercase ( SCREAMING_SNAKE_CASE_ : Exception ): """simple docstring""" UpperCamelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def _lowercase ( SCREAMING_SNAKE_CASE_ : callable = None , SCREAMING_SNAKE_CASE_ : int = 128 ): """simple docstring""" if function is None: return functools.partial(SCREAMING_SNAKE_CASE_ , starting_batch_size=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() UpperCamelCase = list(inspect.signature(SCREAMING_SNAKE_CASE_ ).parameters.keys() ) # Guard against user error if len(SCREAMING_SNAKE_CASE_ ) < (len(SCREAMING_SNAKE_CASE_ ) + 1): UpperCamelCase = """, """.join([f'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'Batch size was passed into `{function.__name__}` as the first argument when called.' f'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) except Exception as e: if should_reduce_batch_size(SCREAMING_SNAKE_CASE_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
181
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCAmelCase__( lowerCamelCase , lowerCamelCase , lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : Optional[Any] = StableUnCLIPImgaImgPipeline A : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS A : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A : str = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess A : List[Any] = frozenset([] ) def UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" lowercase__ = 32 lowercase__ = embedder_hidden_size # image encoding components lowercase__ = CLIPImageProcessor(crop_size=32 , size=32) torch.manual_seed(0) lowercase__ = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase , projection_dim=lowerCAmelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , )) # regular denoising components torch.manual_seed(0) lowercase__ = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase) lowercase__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2') torch.manual_seed(0) lowercase__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') torch.manual_seed(0) lowercase__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , )) torch.manual_seed(0) lowercase__ = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase , layers_per_block=1 , upcast_attention=lowerCAmelCase , use_linear_projection=lowerCAmelCase , ) torch.manual_seed(0) lowercase__ = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , ) torch.manual_seed(0) lowercase__ = AutoencoderKL() lowercase__ = { # image encoding components 'feature_extractor': feature_extractor, 'image_encoder': image_encoder.eval(), # image noising components 'image_normalizer': image_normalizer.eval(), 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder.eval(), 'unet': unet.eval(), 'scheduler': scheduler, 'vae': vae.eval(), } return components def UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict=0 , lowerCAmelCase : Union[str, Any]=True) -> Tuple: """simple docstring""" if str(lowerCAmelCase).startswith('mps'): lowercase__ = torch.manual_seed(lowerCAmelCase) else: lowercase__ = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) lowercase__ = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase)).to(lowerCAmelCase) if pil_image: lowercase__ = input_image * 0.5 + 0.5 lowercase__ = input_image.clamp(0 , 1) lowercase__ = input_image.cpu().permute(0 , 2 , 3 , 1).float().numpy() lowercase__ = DiffusionPipeline.numpy_to_pil(lowerCAmelCase)[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" lowercase__ = 'cpu' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableUnCLIPImgaImgPipeline(**lowerCAmelCase) lowercase__ = sd_pipe.to(lowerCAmelCase) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase) lowercase__ = self.get_dummy_inputs(lowerCAmelCase) inputs.update({'image_embeds': None}) lowercase__ = sd_pipe(**lowerCAmelCase).images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase__ = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" lowercase__ = torch_device in ['cpu', 'mps'] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase) def UpperCAmelCase ( self : Optional[Any]) -> List[Any]: """simple docstring""" lowercase__ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase) @slow @require_torch_gpu class UpperCAmelCase__( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : Any) -> Optional[int]: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') lowercase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy') lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-l-img2img' , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device='cpu').manual_seed(0) lowercase__ = pipe(lowerCAmelCase , 'anime turle' , generator=lowerCAmelCase , output_type='np') lowercase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') lowercase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy') lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = torch.Generator(device='cpu').manual_seed(0) lowercase__ = pipe(lowerCAmelCase , 'anime turle' , generator=lowerCAmelCase , output_type='np') lowercase__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase) def UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" lowercase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png') torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ = StableUnCLIPImgaImgPipeline.from_pretrained( 'fusing/stable-unclip-2-1-h-img2img' , torch_dtype=torch.floataa) lowercase__ = pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowercase__ = pipe( lowerCAmelCase , 'anime turtle' , num_inference_steps=2 , output_type='np' , ) lowercase__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
622
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCAmelCase__( lowerCamelCase , unittest.TestCase ): '''simple docstring''' A : int = CTRLTokenizer A : Tuple = False A : Any = False def UpperCAmelCase ( self : int) -> Any: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase__ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] lowercase__ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase)))) lowercase__ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] lowercase__ = {'unk_token': '<unk>'} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCAmelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowerCAmelCase)) def UpperCAmelCase ( self : int , **lowerCAmelCase : str) -> Dict: """simple docstring""" kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCAmelCase ( self : List[str] , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" lowercase__ = 'adapt react readapt apt' lowercase__ = 'adapt react readapt apt' return input_text, output_text def UpperCAmelCase ( self : Optional[int]) -> str: """simple docstring""" lowercase__ = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) lowercase__ = 'adapt react readapt apt' lowercase__ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() lowercase__ = tokenizer.tokenize(lowerCAmelCase) self.assertListEqual(lowerCAmelCase , lowerCAmelCase) lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , lowerCAmelCase)
622
1
def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) if n == 0: return 0 UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , __lowercase)) return max_revue def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] return _top_down_cut_rod_recursive(__lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __lowercase , __lowercase) , ) UpperCamelCase_ = max_revenue return max_rev[n] def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] UpperCamelCase_ = 0 for i in range(1 , n + 1): UpperCamelCase_ = max_rev[i] for j in range(1 , i + 1): UpperCamelCase_ = max(__lowercase , prices[j - 1] + max_rev[i - j]) UpperCamelCase_ = max_revenue_i return max_rev[n] def _snake_case (__lowercase , __lowercase): if n < 0: UpperCamelCase_ = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__lowercase) if n > len(__lowercase): UpperCamelCase_ = ( 'Each integral piece of rod must have a corresponding price. ' f"""Got n = {n} but length of prices = {len(__lowercase)}""" ) raise ValueError(__lowercase) def _snake_case (): UpperCamelCase_ = [6, 10, 12, 15, 20, 23] UpperCamelCase_ = len(__lowercase) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase_ = 36 UpperCamelCase_ = top_down_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = bottom_up_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = naive_cut_rod_recursive(__lowercase , __lowercase) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
618
def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) if n == 0: return 0 UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + naive_cut_rod_recursive(n - i , __lowercase)) return max_revue def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] return _top_down_cut_rod_recursive(__lowercase , __lowercase , __lowercase) def _snake_case (__lowercase , __lowercase , __lowercase): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: UpperCamelCase_ = float('-inf') for i in range(1 , n + 1): UpperCamelCase_ = max( __lowercase , prices[i - 1] + _top_down_cut_rod_recursive(n - i , __lowercase , __lowercase) , ) UpperCamelCase_ = max_revenue return max_rev[n] def _snake_case (__lowercase , __lowercase): _enforce_args(__lowercase , __lowercase) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. UpperCamelCase_ = [float('-inf') for _ in range(n + 1)] UpperCamelCase_ = 0 for i in range(1 , n + 1): UpperCamelCase_ = max_rev[i] for j in range(1 , i + 1): UpperCamelCase_ = max(__lowercase , prices[j - 1] + max_rev[i - j]) UpperCamelCase_ = max_revenue_i return max_rev[n] def _snake_case (__lowercase , __lowercase): if n < 0: UpperCamelCase_ = f"""n must be greater than or equal to 0. Got n = {n}""" raise ValueError(__lowercase) if n > len(__lowercase): UpperCamelCase_ = ( 'Each integral piece of rod must have a corresponding price. ' f"""Got n = {n} but length of prices = {len(__lowercase)}""" ) raise ValueError(__lowercase) def _snake_case (): UpperCamelCase_ = [6, 10, 12, 15, 20, 23] UpperCamelCase_ = len(__lowercase) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. UpperCamelCase_ = 36 UpperCamelCase_ = top_down_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = bottom_up_cut_rod(__lowercase , __lowercase) UpperCamelCase_ = naive_cut_rod_recursive(__lowercase , __lowercase) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
618
1
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase__ : List[str] = logging.get_logger(__name__) def A ( UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' return [ int(10_00 * (box[0] / width) ), int(10_00 * (box[1] / height) ), int(10_00 * (box[2] / width) ), int(10_00 * (box[3] / height) ), ] def A ( UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] = None ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = tesseract_config if tesseract_config is not None else "" # apply OCR lowerCAmelCase__ = to_pil_image(UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ = pil_image.size lowerCAmelCase__ = pytesseract.image_to_data(UpperCamelCase_ , lang=UpperCamelCase_ , output_type="dict" , config=UpperCamelCase_ ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates lowerCAmelCase__ = [idx for idx, word in enumerate(UpperCamelCase_ ) if not word.strip()] lowerCAmelCase__ = [word for idx, word in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] lowerCAmelCase__ = [coord for idx, coord in enumerate(UpperCamelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format lowerCAmelCase__ = [] for x, y, w, h in zip(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(UpperCamelCase_ ) # finally, normalize the bounding boxes lowerCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) assert len(UpperCamelCase_ ) == len(UpperCamelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :int = ['pixel_values'] def __init__( self : List[str] , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = "" , **__magic_name__ : Optional[int] , ): """simple docstring""" super().__init__(**__magic_name__ ) lowerCAmelCase__ = size if size is not None else {"height": 224, "width": 224} lowerCAmelCase__ = get_size_dict(__magic_name__ ) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = apply_ocr lowerCAmelCase__ = ocr_lang lowerCAmelCase__ = tesseract_config def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = get_size_dict(__magic_name__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowerCAmelCase__ = (size["height"], size["width"]) return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : ImageInput , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[str] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : str , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(__magic_name__ ) lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr lowerCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang lowerCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] for image in images: lowerCAmelCase__ ,lowerCAmelCase__ = apply_tesseract(__magic_name__ , __magic_name__ , __magic_name__ ) words_batch.append(__magic_name__ ) boxes_batch.append(__magic_name__ ) if do_resize: lowerCAmelCase__ = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) lowerCAmelCase__ = [flip_channel_order(__magic_name__ ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = BatchFeature(data={"pixel_values": images} , tensor_type=__magic_name__ ) if apply_ocr: lowerCAmelCase__ = words_batch lowerCAmelCase__ = boxes_batch return data
48
def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> float: if density <= 0: raise ValueError("Impossible fluid density") if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus") return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
515
0
"""simple docstring""" import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
715
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.dummy_uncond_unet SCREAMING_SNAKE_CASE_ : int = ScoreSdeVeScheduler() SCREAMING_SNAKE_CASE_ : List[str] = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_) sde_ve.to(lowercase_) sde_ve.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[int] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ , return_dict=lowercase_)[ 0 ] SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''google/ncsnpp-church-256''' SCREAMING_SNAKE_CASE_ : str = UNetaDModel.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = ScoreSdeVeScheduler.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_) sde_ve.to(lowercase_) sde_ve.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowercase_).images SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
176
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass _snake_case = (3, 9, -11, 0, 7, 5, 1, -1) _snake_case = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class _a : a_ : int a_ : Node | None class _a : def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Iterable[int] ): lowerCamelCase__ = None for i in sorted(SCREAMING_SNAKE_CASE__ , reverse=SCREAMING_SNAKE_CASE__ ): lowerCamelCase__ = Node(SCREAMING_SNAKE_CASE__ , self.head ) def __iter__( self : int ): lowerCamelCase__ = self.head while node: yield node.data lowerCamelCase__ = node.next_node def __len__( self : Any ): return sum(1 for _ in self ) def __str__( self : Optional[int] ): return " -> ".join([str(SCREAMING_SNAKE_CASE__ ) for node in self] ) def snake_case ( _a: Dict , _a: List[str] )-> SortedLinkedList: '''simple docstring''' return SortedLinkedList(list(_A ) + list(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() _snake_case = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
510
"""simple docstring""" from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowerCAmelCase = logging.get_logger(__name__) @dataclass class UpperCamelCase (__snake_case ): _SCREAMING_SNAKE_CASE : str = [ """no_inference""", """no_cuda""", """no_tpu""", """no_speed""", """no_memory""", """no_env_print""", """no_multi_process""", ] def __init__( self :Union[str, Any] , **__magic_name__ :int ) ->Any: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase : int = deprecated_arg[3:] setattr(self , __magic_name__ , not kwargs.pop(__magic_name__ ) ) logger.warning( f"""{deprecated_arg} is depreciated. Please use --no_{positive_arg} or""" f""" {positive_arg}={kwargs[positive_arg]}""" ) lowercase : List[str] = kwargs.pop("""torchscript""" , self.torchscript ) lowercase : Any = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase : Union[str, Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**__magic_name__ ) _SCREAMING_SNAKE_CASE : bool = field(default=__snake_case , metadata={"""help""": """Trace the models using torchscript"""} ) _SCREAMING_SNAKE_CASE : bool = field(default=__snake_case , metadata={"""help""": """Print Xla/PyTorch tpu metrics"""} ) _SCREAMING_SNAKE_CASE : str = field( default="""O1""" , metadata={ """help""": ( """For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. """ """See details at https://nvidia.github.io/apex/amp.html""" ) } , ) @cached_property def __snake_case ( self :Optional[int] ) ->Tuple["torch.device", int]: requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase : Optional[Any] = torch.device("""cpu""" ) lowercase : int = 0 elif is_torch_tpu_available(): lowercase : Any = xm.xla_device() lowercase : List[str] = 0 else: lowercase : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase : Any = torch.cuda.device_count() return device, n_gpu @property def __snake_case ( self :Optional[int] ) ->Union[str, Any]: return is_torch_tpu_available() and self.tpu @property def __snake_case ( self :Optional[int] ) ->int: requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __snake_case ( self :Optional[int] ) ->"torch.device": requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def __snake_case ( self :Optional[Any] ) ->str: requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def __snake_case ( self :int ) ->List[str]: return self.n_gpu > 0
264
0
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _lowerCAmelCase = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = '''ernie_m''' __lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self ,__UpperCAmelCase = 25_0002 ,__UpperCAmelCase = 768 ,__UpperCAmelCase = 12 ,__UpperCAmelCase = 12 ,__UpperCAmelCase = 3072 ,__UpperCAmelCase = "gelu" ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 0.1 ,__UpperCAmelCase = 514 ,__UpperCAmelCase = 0.0_2 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = 1E-05 ,__UpperCAmelCase=None ,__UpperCAmelCase=False ,__UpperCAmelCase=0.0 ,**__UpperCAmelCase ,) -> Optional[Any]: super().__init__(pad_token_id=__UpperCAmelCase ,**__UpperCAmelCase ) lowerCAmelCase__ : str = vocab_size lowerCAmelCase__ : List[Any] = hidden_size lowerCAmelCase__ : List[str] = num_hidden_layers lowerCAmelCase__ : List[str] = num_attention_heads lowerCAmelCase__ : Dict = intermediate_size lowerCAmelCase__ : List[str] = hidden_act lowerCAmelCase__ : List[str] = hidden_dropout_prob lowerCAmelCase__ : Dict = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Any = initializer_range lowerCAmelCase__ : List[Any] = layer_norm_eps lowerCAmelCase__ : int = classifier_dropout lowerCAmelCase__ : int = is_decoder lowerCAmelCase__ : str = act_dropout
160
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor _lowerCAmelCase = logging.get_logger(__name__) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> None: warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" ,__UpperCAmelCase ,) super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase )
160
1
import unittest import torch from torch import nn from diffusers.models.activations import get_activation class _snake_case ( unittest.TestCase ): def _lowerCamelCase ( self: List[str] ) -> List[str]: __UpperCAmelCase : Any = get_activation("swish" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _lowerCamelCase ( self: str ) -> Tuple: __UpperCAmelCase : Union[str, Any] = get_activation("silu" ) self.assertIsInstance(lowerCAmelCase_ , nn.SiLU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: __UpperCAmelCase : str = get_activation("mish" ) self.assertIsInstance(lowerCAmelCase_ , nn.Mish ) self.assertEqual(act(torch.tensor(-2_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 ) def _lowerCamelCase ( self: Dict ) -> Optional[int]: __UpperCAmelCase : Any = get_activation("gelu" ) self.assertIsInstance(lowerCAmelCase_ , nn.GELU ) self.assertEqual(act(torch.tensor(-1_00 , dtype=torch.floataa ) ).item() , 0 ) self.assertNotEqual(act(torch.tensor(-1 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(0 , dtype=torch.floataa ) ).item() , 0 ) self.assertEqual(act(torch.tensor(20 , dtype=torch.floataa ) ).item() , 20 )
382
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A_ = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys A_ = _LazyModule(__name__, globals()["__file__"], _import_structure)
393
0
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch _A = random.Random() def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase=1.0 , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> List[str]: if rng is None: lowerCAmelCase__ : str = global_rng lowerCAmelCase__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCamelCase ( unittest.TestCase ): def __init__( self : Any , UpperCamelCase : List[str] , UpperCamelCase : Optional[int]=7 , UpperCamelCase : Dict=4_00 , UpperCamelCase : Dict=20_00 , UpperCamelCase : List[Any]=10 , UpperCamelCase : Optional[int]=1_60 , UpperCamelCase : Tuple=8 , UpperCamelCase : Tuple=0.0 , UpperCamelCase : Optional[Any]=40_00 , UpperCamelCase : str=False , UpperCamelCase : Dict=True , ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Any = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : Optional[int] = min_seq_length lowerCAmelCase__ : List[Any] = max_seq_length lowerCAmelCase__ : Optional[int] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : str = padding_value lowerCAmelCase__ : int = sampling_rate lowerCAmelCase__ : Optional[Any] = return_attention_mask lowerCAmelCase__ : List[str] = do_normalize lowerCAmelCase__ : Tuple = feature_size lowerCAmelCase__ : List[str] = chunk_length lowerCAmelCase__ : Union[str, Any] = hop_length def _lowerCAmelCase ( self : Optional[int] ) -> Any: """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCAmelCase ( self : Optional[int] , UpperCamelCase : Optional[int]=False , UpperCamelCase : Union[str, Any]=False ) -> List[str]: """simple docstring""" def _flatten(UpperCamelCase : Any ): return list(itertools.chain(*__lowercase ) ) if equal_length: lowerCAmelCase__ : Dict = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : Optional[int] = [np.asarray(__lowercase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCamelCase ( lowercase__ , unittest.TestCase ): _lowerCamelCase :str = WhisperFeatureExtractor if is_speech_available() else None def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" lowerCAmelCase__ : List[Any] = WhisperFeatureExtractionTester(self ) def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : str = feat_extract_first.save_pretrained(__lowercase )[0] check_json_file_has_correct_format(__lowercase ) lowerCAmelCase__ : int = self.feature_extraction_class.from_pretrained(__lowercase ) lowerCAmelCase__ : Dict = feat_extract_first.to_dict() lowerCAmelCase__ : List[Any] = feat_extract_second.to_dict() lowerCAmelCase__ : int = feat_extract_first.mel_filters lowerCAmelCase__ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def _lowerCAmelCase ( self : Any ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Any = os.path.join(__lowercase , """feat_extract.json""" ) feat_extract_first.to_json_file(__lowercase ) lowerCAmelCase__ : Any = self.feature_extraction_class.from_json_file(__lowercase ) lowerCAmelCase__ : Any = feat_extract_first.to_dict() lowerCAmelCase__ : Tuple = feat_extract_second.to_dict() lowerCAmelCase__ : Optional[Any] = feat_extract_first.mel_filters lowerCAmelCase__ : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(__lowercase , __lowercase ) ) self.assertEqual(__lowercase , __lowercase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : Any = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCAmelCase__ : Tuple = [np.asarray(__lowercase ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ : Tuple = feature_extractor(__lowercase , padding="""max_length""" , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ : Dict = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCAmelCase__ : List[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) # Test batched lowerCAmelCase__ : List[str] = feature_extractor(__lowercase , return_tensors="""np""" ).input_features lowerCAmelCase__ : str = feature_extractor(__lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : str = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCAmelCase__ : Optional[Any] = np.asarray(__lowercase ) lowerCAmelCase__ : Any = feature_extractor(__lowercase , return_tensors="""np""" ).input_features lowerCAmelCase__ : Optional[int] = feature_extractor(__lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) # Test truncation required lowerCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )] lowerCAmelCase__ : List[str] = [np.asarray(__lowercase ) for speech_input in speech_inputs] lowerCAmelCase__ : int = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase__ : int = [np.asarray(__lowercase ) for speech_input in speech_inputs_truncated] lowerCAmelCase__ : List[str] = feature_extractor(__lowercase , return_tensors="""np""" ).input_features lowerCAmelCase__ : List[Any] = feature_extractor(__lowercase , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase ): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3 ) ) def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" import torch lowerCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Any = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowerCAmelCase__ : Any = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ : Tuple = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCAmelCase ( self : Any , UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCAmelCase__ : Dict = ds.sort("""id""" ).select(range(__lowercase ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowerCAmelCase ( self : Optional[int] ) -> Dict: """simple docstring""" # fmt: off lowerCAmelCase__ : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on lowerCAmelCase__ : int = self._load_datasamples(1 ) lowerCAmelCase__ : int = WhisperFeatureExtractor() lowerCAmelCase__ : int = feature_extractor(__lowercase , return_tensors="""pt""" ).input_features self.assertEqual(input_features.shape , (1, 80, 30_00) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , __lowercase , atol=1E-4 ) ) def _lowerCAmelCase ( self : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Optional[int] = self._load_datasamples(1 )[0] lowerCAmelCase__ : Optional[int] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue lowerCAmelCase__ : Tuple = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=__lowercase )[0] self.assertTrue(np.all(np.mean(__lowercase ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(__lowercase ) - 1 ) < 1E-3 ) )
715
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Optional[Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps""", """test_metrics.py"""] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 lowerCAmelCase__ : List[str] = test_metrics @require_cpu def _lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" debug_launcher(self.test_metrics.main ) @require_single_gpu def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" self.test_metrics.main() @require_multi_gpu def _lowerCAmelCase ( self : Tuple ) -> int: """simple docstring""" print(f"""Found {torch.cuda.device_count()} devices.""" ) lowerCAmelCase__ : str = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase , env=os.environ.copy() )
507
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase = 16 UpperCAmelCase = 32 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 16 ): lowercase = AutoTokenizer.from_pretrained('bert-base-cased' ) lowercase = load_dataset('glue' , 'mrpc' ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) lowercase = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowercase = datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. lowercase = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowercase = 16 elif accelerator.mixed_precision != "no": lowercase = 8 else: lowercase = None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='longest' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='pt' , ) # Instantiate dataloaders. lowercase = DataLoader( tokenized_datasets['train'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) lowercase = DataLoader( tokenized_datasets['validation'] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase = mocked_dataloaders # noqa: F811 def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , __SCREAMING_SNAKE_CASE ) == "1": lowercase = 2 # New Code # lowercase = int(args.gradient_accumulation_steps ) lowercase = int(args.local_sgd_steps ) # Initialize accelerator lowercase = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__SCREAMING_SNAKE_CASE ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase = config['lr'] lowercase = int(config['num_epochs'] ) lowercase = int(config['seed'] ) lowercase = int(config['batch_size'] ) lowercase = evaluate.load('glue' , 'mrpc' ) set_seed(__SCREAMING_SNAKE_CASE ) lowercase , lowercase = get_dataloaders(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase = model.to(accelerator.device ) # Instantiate optimizer lowercase = AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler lowercase = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=100 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase , lowercase , lowercase , lowercase , lowercase = accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() with LocalSGD( accelerator=__SCREAMING_SNAKE_CASE , model=__SCREAMING_SNAKE_CASE , local_sgd_steps=__SCREAMING_SNAKE_CASE , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__SCREAMING_SNAKE_CASE ): lowercase = model(**__SCREAMING_SNAKE_CASE ) lowercase = output.loss accelerator.backward(__SCREAMING_SNAKE_CASE ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase = model(**__SCREAMING_SNAKE_CASE ) lowercase = outputs.logits.argmax(dim=-1 ) lowercase , lowercase = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) lowercase = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase_ ( ): lowercase = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=__SCREAMING_SNAKE_CASE , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=__SCREAMING_SNAKE_CASE , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) lowercase = parser.parse_args() lowercase = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
84
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : jnp.ndarray _UpperCamelCase : jnp.ndarray class A_ ( nn.Module ): '''simple docstring''' _UpperCamelCase : int _UpperCamelCase : Tuple[int] = (16, 32, 96, 256) _UpperCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self ): lowercase = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowercase = [] for i in range(len(self.block_out_channels ) - 1 ): lowercase = self.block_out_channels[i] lowercase = self.block_out_channels[i + 1] lowercase = nn.Conv( snake_case , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case ) lowercase = nn.Conv( snake_case , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case ) lowercase = blocks lowercase = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case ): lowercase = self.conv_in(snake_case ) lowercase = nn.silu(snake_case ) for block in self.blocks: lowercase = block(snake_case ) lowercase = nn.silu(snake_case ) lowercase = self.conv_out(snake_case ) return embedding @flax_register_to_config class A_ ( nn.Module , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : int = 32 _UpperCamelCase : int = 4 _UpperCamelCase : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _UpperCamelCase : Union[bool, Tuple[bool]] = False _UpperCamelCase : Tuple[int] = (320, 640, 1280, 1280) _UpperCamelCase : int = 2 _UpperCamelCase : Union[int, Tuple[int]] = 8 _UpperCamelCase : Optional[Union[int, Tuple[int]]] = None _UpperCamelCase : int = 1280 _UpperCamelCase : float = 0.0 _UpperCamelCase : bool = False _UpperCamelCase : jnp.dtype = jnp.floataa _UpperCamelCase : bool = True _UpperCamelCase : int = 0 _UpperCamelCase : str = "rgb" _UpperCamelCase : Tuple[int] = (16, 32, 96, 256) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): # init input tensors lowercase = (1, self.in_channels, self.sample_size, self.sample_size) lowercase = jnp.zeros(snake_case , dtype=jnp.floataa ) lowercase = jnp.ones((1,) , dtype=jnp.intaa ) lowercase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowercase = (1, 3, self.sample_size * 8, self.sample_size * 8) lowercase = jnp.zeros(snake_case , dtype=jnp.floataa ) lowercase , lowercase = jax.random.split(snake_case ) lowercase = {'params': params_rng, 'dropout': dropout_rng} return self.init(snake_case , snake_case , snake_case , snake_case , snake_case )["params"] def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.block_out_channels lowercase = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowercase = self.num_attention_heads or self.attention_head_dim # input lowercase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowercase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowercase = FlaxTimestepEmbedding(snake_case , dtype=self.dtype ) lowercase = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowercase = self.only_cross_attention if isinstance(snake_case , snake_case ): lowercase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case , snake_case ): lowercase = (num_attention_heads,) * len(self.down_block_types ) # down lowercase = [] lowercase = [] lowercase = block_out_channels[0] lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) for i, down_block_type in enumerate(self.down_block_types ): lowercase = output_channel lowercase = block_out_channels[i] lowercase = i == len(snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowercase = FlaxCrossAttnDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowercase = FlaxDownBlockaD( in_channels=snake_case , out_channels=snake_case , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case ) for _ in range(self.layers_per_block ): lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) if not is_final_block: lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case ) lowercase = down_blocks lowercase = controlnet_down_blocks # mid lowercase = block_out_channels[-1] lowercase = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowercase = nn.Conv( snake_case , kernel_size=(1, 1) , padding='VALID' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case , snake_case , snake_case , snake_case , snake_case = 1.0 , snake_case = True , snake_case = False , ): lowercase = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowercase = jnp.flip(snake_case , axis=1 ) # 1. time if not isinstance(snake_case , jnp.ndarray ): lowercase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case , jnp.ndarray ) and len(timesteps.shape ) == 0: lowercase = timesteps.astype(dtype=jnp.floataa ) lowercase = jnp.expand_dims(snake_case , 0 ) lowercase = self.time_proj(snake_case ) lowercase = self.time_embedding(snake_case ) # 2. pre-process lowercase = jnp.transpose(snake_case , (0, 2, 3, 1) ) lowercase = self.conv_in(snake_case ) lowercase = jnp.transpose(snake_case , (0, 2, 3, 1) ) lowercase = self.controlnet_cond_embedding(snake_case ) sample += controlnet_cond # 3. down lowercase = (sample,) for down_block in self.down_blocks: if isinstance(snake_case , snake_case ): lowercase , lowercase = down_block(snake_case , snake_case , snake_case , deterministic=not train ) else: lowercase , lowercase = down_block(snake_case , snake_case , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowercase = self.mid_block(snake_case , snake_case , snake_case , deterministic=not train ) # 5. contronet blocks lowercase = () for down_block_res_sample, controlnet_block in zip(snake_case , self.controlnet_down_blocks ): lowercase = controlnet_block(snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) lowercase = controlnet_down_block_res_samples lowercase = self.controlnet_mid_block(snake_case ) # 6. scaling lowercase = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case , mid_block_res_sample=snake_case )
84
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Tuple = { "configuration_blip_2": [ "BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Blip2Config", "Blip2QFormerConfig", "Blip2VisionConfig", ], "processing_blip_2": ["Blip2Processor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[Any] = [ "BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Blip2Model", "Blip2QFormerModel", "Blip2PreTrainedModel", "Blip2ForConditionalGeneration", "Blip2VisionModel", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __lowerCAmelCase : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
284
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED __lowerCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } __lowerCAmelCase : List[Any] = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase_ ( ) -> List[Any]: __lowercase : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowercase : Any = bs[:] __lowercase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 __lowercase : List[str] = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[str]: __lowercase : Optional[int] = set() __lowercase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase : List[Any] = char return pairs class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : str = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , _snake_case : List[Any] , _snake_case : Dict , _snake_case : int="replace" , _snake_case : Optional[int]="<s>" , _snake_case : List[Any]="</s>" , _snake_case : str="</s>" , _snake_case : Optional[int]="<s>" , _snake_case : List[Any]="<unk>" , _snake_case : Optional[Any]="<pad>" , _snake_case : List[Any]="<mask>" , _snake_case : Optional[Any]=False , **_snake_case : Dict , ): __lowercase : str = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else bos_token __lowercase : List[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else eos_token __lowercase : Union[str, Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else sep_token __lowercase : List[str] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else cls_token __lowercase : Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token __lowercase : Optional[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase : Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , **_snake_case , ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : List[str] = json.load(_snake_case ) __lowercase : Optional[Any] = {v: k for k, v in self.encoder.items()} __lowercase : Dict = errors # how to handle errors in decoding __lowercase : str = bytes_to_unicode() __lowercase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_snake_case , encoding='''utf-8''' ) as merges_handle: __lowercase : Any = merges_handle.read().split('''\n''' )[1:-1] __lowercase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __lowercase : Dict = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __lowercase : Dict = {} __lowercase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase : str = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case_ ( self : Dict ): return len(self.encoder ) def snake_case_ ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Tuple , _snake_case : str ): if token in self.cache: return self.cache[token] __lowercase : Optional[Any] = tuple(_snake_case ) __lowercase : str = get_pairs(_snake_case ) if not pairs: return token while True: __lowercase : Dict = min(_snake_case , key=lambda _snake_case : self.bpe_ranks.get(_snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase : Tuple = bigram __lowercase : Dict = [] __lowercase : int = 0 while i < len(_snake_case ): try: __lowercase : List[Any] = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase : Optional[int] = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase : str = tuple(_snake_case ) __lowercase : Tuple = new_word if len(_snake_case ) == 1: break else: __lowercase : Any = get_pairs(_snake_case ) __lowercase : Union[str, Any] = ''' '''.join(_snake_case ) __lowercase : Union[str, Any] = word return word def snake_case_ ( self : Tuple , _snake_case : List[Any] ): __lowercase : Optional[int] = [] for token in re.findall(self.pat , _snake_case ): __lowercase : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_snake_case ).split(''' ''' ) ) return bpe_tokens def snake_case_ ( self : Union[str, Any] , _snake_case : List[Any] ): return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : Dict , _snake_case : List[Any] ): return self.decoder.get(_snake_case ) def snake_case_ ( self : int , _snake_case : Dict ): __lowercase : List[Any] = ''''''.join(_snake_case ) __lowercase : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def snake_case_ ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[str] = None ): if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase : str = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '''\n''' ) __lowercase : List[str] = 0 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __lowercase : List[str] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def snake_case_ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase : int = [self.cls_token_id] __lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def snake_case_ ( self : Union[str, Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): __lowercase : Dict = [self.sep_token_id] __lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[int]=False , **_snake_case : List[Any] ): __lowercase : int = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_snake_case ) > 0 and not text[0].isspace()): __lowercase : Optional[Any] = ''' ''' + text return (text, kwargs) def snake_case_ ( self : Tuple , _snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , _snake_case : Optional[int] = None , _snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , ): __lowercase : Optional[Any] = super()._pad( encoded_inputs=_snake_case , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , ) # Load from model defaults if return_attention_mask is None: __lowercase : List[str] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_snake_case ) if needs_to_be_padded: __lowercase : List[Any] = len(_snake_case ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase : Union[str, Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __lowercase : Union[str, Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
284
1