code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 UpperCamelCase_ = get_tests_dir("fixtures") class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCAmelCase ( self : Any ): """simple docstring""" A : Union[str, Any] = mock.Mock() A : int = 500 A : Union[str, Any] = {} A : str = HTTPError A : str = {} # Download this model to make sure it's in the cache. A : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase_ ) as mock_head: A : Tuple = ViTImageProcessor.from_pretrained('''hf-internal-testing/tiny-random-vit''' ) # This check we did call the fake head request mock_head.assert_called() def _UpperCAmelCase ( self : str ): """simple docstring""" A : int = ViTImageProcessor.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json''' ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder A : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/stable-diffusion-all-variants''' ) A : Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/stable-diffusion-all-variants''' , subfolder='''feature_extractor''' ) self.assertIsNotNone(lowerCAmelCase_ ) @is_staging_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @classmethod def _UpperCAmelCase ( cls : Dict ): """simple docstring""" A : str = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def _UpperCAmelCase ( cls : List[str] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id='''test-image-processor''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-image-processor-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-image-processor''' ) except HTTPError: pass def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" A : List[Any] = ViTImageProcessor.from_pretrained(lowerCAmelCase_ ) image_processor.push_to_hub('''test-image-processor''' , use_auth_token=self._token ) A : List[Any] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowerCAmelCase_ , repo_id='''test-image-processor''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) A : List[str] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def _UpperCAmelCase ( self : int ): """simple docstring""" A : str = ViTImageProcessor.from_pretrained(lowerCAmelCase_ ) image_processor.push_to_hub('''valid_org/test-image-processor''' , use_auth_token=self._token ) A : Tuple = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-image-processor''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( lowerCAmelCase_ , repo_id='''valid_org/test-image-processor-org''' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) A : int = ViTImageProcessor.from_pretrained('''valid_org/test-image-processor-org''' ) for k, v in image_processor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def _UpperCAmelCase ( self : Any ): """simple docstring""" CustomImageProcessor.register_for_auto_class() A : List[Any] = CustomImageProcessor.from_pretrained(lowerCAmelCase_ ) image_processor.push_to_hub('''test-dynamic-image-processor''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {'''AutoImageProcessor''': '''custom_image_processing.CustomImageProcessor'''} , ) A : List[str] = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , '''CustomImageProcessor''' )
256
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _lowerCamelCase : Optional[Any] = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = ['MobileViTFeatureExtractor'] _lowerCamelCase : Union[str, Any] = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
121
0
"""simple docstring""" def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) snake_case : Optional[Any] = str(bin(lowercase ) ) binary_number += "0" * shift_amount return binary_number def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) snake_case : Any = str(bin(lowercase ) )[2:] if shift_amount >= len(lowercase ): return "0b0" snake_case : Optional[Any] = binary_number[: len(lowercase ) - shift_amount] return "0b" + shifted_binary_number def __lowerCAmelCase ( lowercase : int , lowercase : int ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number snake_case : Tuple = "0" + str(bin(lowercase ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number snake_case : List[str] = len(bin(lowercase )[3:] ) # Find 2's complement of number snake_case : Optional[Any] = bin(abs(lowercase ) - (1 << binary_number_length) )[3:] snake_case : str = ( "1" + "0" * (binary_number_length - len(lowercase )) + binary_number ) if shift_amount >= len(lowercase ): return "0b" + binary_number[0] * len(lowercase ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowercase ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
117
"""simple docstring""" from typing import Any def __lowerCAmelCase ( lowercase : list , lowercase : list , lowercase : dict , lowercase : dict , lowercase : dict , ) -> list: """simple docstring""" _validation( lowercase , lowercase , lowercase , lowercase , lowercase , ) # Creates data structures and fill initial step snake_case : dict = {} snake_case : dict = {} for state in states_space: snake_case : int = observations_space[0] snake_case : Any = ( initial_probabilities[state] * emission_probabilities[state][observation] ) snake_case : Union[str, Any] = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowercase ) ): snake_case : Optional[Any] = observations_space[o] snake_case : str = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function snake_case : str = "" snake_case : List[Any] = -1 for k_state in states_space: snake_case : Tuple = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: snake_case : Optional[Any] = probability snake_case : int = k_state # Update probabilities and pointers dicts snake_case : List[str] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) snake_case : List[Any] = arg_max # The final observation snake_case : Dict = observations_space[len(lowercase ) - 1] # argmax for given final observation snake_case : str = "" snake_case : Optional[int] = -1 for k_state in states_space: snake_case : int = probabilities[(k_state, final_observation)] if probability > max_probability: snake_case : Optional[int] = probability snake_case : List[Any] = k_state snake_case : str = arg_max # Process pointers backwards snake_case : List[str] = last_state snake_case : Optional[int] = [] for o in range(len(lowercase ) - 1 , -1 , -1 ): result.append(lowercase ) snake_case : List[str] = pointers[previous, observations_space[o]] result.reverse() return result def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" _validate_not_empty( lowercase , lowercase , lowercase , lowercase , lowercase , ) _validate_lists(lowercase , lowercase ) _validate_dicts( lowercase , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any ) -> None: """simple docstring""" _validate_list(lowercase , "observations_space" ) _validate_list(lowercase , "states_space" ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" if not isinstance(_object , lowercase ): snake_case : List[str] = F'{var_name} must be a list' raise ValueError(lowercase ) else: for x in _object: if not isinstance(lowercase , lowercase ): snake_case : Tuple = F'{var_name} must be a list of strings' raise ValueError(lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : Any , lowercase : Any , ) -> None: """simple docstring""" _validate_dict(lowercase , "initial_probabilities" , lowercase ) _validate_nested_dict(lowercase , "transition_probabilities" ) _validate_nested_dict(lowercase , "emission_probabilities" ) def __lowerCAmelCase ( lowercase : Any , lowercase : str ) -> None: """simple docstring""" _validate_dict(_object , lowercase , lowercase ) for x in _object.values(): _validate_dict(lowercase , lowercase , lowercase , lowercase ) def __lowerCAmelCase ( lowercase : Any , lowercase : str , lowercase : type , lowercase : bool = False ) -> None: """simple docstring""" if not isinstance(_object , lowercase ): snake_case : int = F'{var_name} must be a dict' raise ValueError(lowercase ) if not all(isinstance(lowercase , lowercase ) for x in _object ): snake_case : Optional[Any] = F'{var_name} all keys must be strings' raise ValueError(lowercase ) if not all(isinstance(lowercase , lowercase ) for x in _object.values() ): snake_case : Optional[int] = "nested dictionary " if nested else "" snake_case : int = F'{var_name} {nested_text}all values must be {value_type.__name__}' raise ValueError(lowercase ) if __name__ == "__main__": from doctest import testmod testmod()
117
1
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A : List[Any] = logging.get_logger(__name__) A : List[str] = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A : List[Any] = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A : Optional[int] = { 'abeja/gpt-neox-japanese-2.7b': 2_0_4_8, } def __lowerCAmelCase ( a__ , a__ ) -> Tuple: with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = json.loads(f.read() ) __a = collections.OrderedDict() __a = collections.OrderedDict() __a = collections.OrderedDict() with open(a__ , '''r''' , encoding='''utf-8''' ) as f: __a = f.readlines() __a = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(a__ ): __a = b __a = idx for wd in b: __a = idx return vocab, raw_vocab, ids_to_tokens, emoji class __A( lowerCAmelCase__ ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case , _snake_case="<|endoftext|>" , _snake_case="<|endoftext|>" , _snake_case="<|startoftext|>" , _snake_case="<|endoftext|>" , _snake_case=False , **_snake_case , ) -> Any: '''simple docstring''' super().__init__( unk_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , do_clean_text=lowerCAmelCase_ , **lowerCAmelCase_ , ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError( F"""Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(lowerCAmelCase_ ): raise ValueError( F"""Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) __a = do_clean_text __a , __a , __a , __a = load_vocab_and_emoji(lowerCAmelCase_ , lowerCAmelCase_ ) __a = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.raw_vocab ) def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' return self.subword_tokenizer.tokenize(lowerCAmelCase_ , clean=self.do_clean_text ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return self.vocab.get(lowerCAmelCase_ , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[Any]: '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(lowerCAmelCase_ ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Union[str, Any]: '''simple docstring''' __a = ''''''.join(lowerCAmelCase_ ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[int]: '''simple docstring''' __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) + [self.eos_token_id] ) if len(lowerCAmelCase_ ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' __a = 0 if os.path.isdir(lowerCAmelCase_ ): __a = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join( lowerCAmelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: __a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) __a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __a = token_index writer.write(''','''.join(lowerCAmelCase_ ) + '''\n''' ) index += 1 with open(lowerCAmelCase_ , '''w''' , encoding='''utf-8''' ) as writer: json.dump(self.emoji , lowerCAmelCase_ ) return vocab_file, emoji_file class __A( lowerCAmelCase__ ): def __init__( self , _snake_case , _snake_case , _snake_case ) -> Optional[int]: '''simple docstring''' __a = vocab # same as swe __a = ids_to_tokens # same as bpe __a = emoji __a = np.max([len(lowerCAmelCase_ ) for w in self.vocab.keys()] ) __a = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) __a = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) __a = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) __a = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __a = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) __a = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) __a = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' __a = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' __a = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self ) -> int: '''simple docstring''' return len(self.ids_to_tokens ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[Any]: '''simple docstring''' __a = self.content_repattera.sub('''<URL>''' , lowerCAmelCase_ ) __a = self.content_repattera.sub('''<EMAIL>''' , lowerCAmelCase_ ) __a = self.content_repattera.sub('''<TEL>''' , lowerCAmelCase_ ) __a = self.content_repattera.sub('''<DATE>''' , lowerCAmelCase_ ) __a = self.content_repattera.sub('''<DATE>''' , lowerCAmelCase_ ) __a = self.content_repattera.sub('''<PRICE>''' , lowerCAmelCase_ ) __a = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __a = content.replace('''<BLOCK><BLOCK>''' , '''<BLOCK>''' ) return content def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=False ) -> Optional[Any]: '''simple docstring''' __a = text.replace(''' ''' , '''<SP>''' ) __a = text.replace(''' ''' , '''<SP>''' ) __a = text.replace('''\r\n''' , '''<BR>''' ) __a = text.replace('''\n''' , '''<BR>''' ) __a = text.replace('''\r''' , '''<BR>''' ) __a = text.replace('''\t''' , '''<TAB>''' ) __a = text.replace('''—''' , '''ー''' ) __a = text.replace('''−''' , '''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: __a = text.replace(lowerCAmelCase_ , lowerCAmelCase_ ) if clean: __a = self.clean_text(lowerCAmelCase_ ) def check_simbol(_snake_case ): __a = x.encode() if len(lowerCAmelCase_ ) == 1 and len(lowerCAmelCase_ ) == 2: __a = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2_a_1 and c <= 0Xc_2_b_f) or (c >= 0Xc_7_8_0 and c <= 0Xc_7_8_3) or (c >= 0Xc_a_b_9 and c <= 0Xc_b_b_f) or (c >= 0Xc_c_8_0 and c <= 0Xc_d_a_2) ): return True return False def checkuae(_snake_case ): __a = x.encode() if len(lowerCAmelCase_ ) == 1 and len(lowerCAmelCase_ ) == 3: __a = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe_2_8_0_8_0 and c <= 0Xe_2_b_0_7_f: return True return False __a = 0 __a = [] while pos < len(lowerCAmelCase_ ): __a = min(len(lowerCAmelCase_ ) , pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 __a = [] # (token_id, token, pos) for e in range(lowerCAmelCase_ , lowerCAmelCase_ , -1 ): __a = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(lowerCAmelCase_ ) > 2: __a = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(lowerCAmelCase_ ) > 0: # the smallest token_id is adopted __a , __a , __a = sorted(lowerCAmelCase_ , key=lambda _snake_case : x[0] )[0] result.append(lowerCAmelCase_ ) __a = e else: __a = pos + 1 __a = text[pos:end] if check_simbol(lowerCAmelCase_ ): result.append('''<KIGOU>''' ) elif checkuae(lowerCAmelCase_ ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) __a = end return result def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case="\n" ) -> str: '''simple docstring''' __a = [] __a = [] __a = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(lowerCAmelCase_ ) > 0: words.append(bytearray(lowerCAmelCase_ ).decode('''utf-8''' , errors='''replace''' ) ) __a = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(lowerCAmelCase_ ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(lowerCAmelCase_ ) if len(lowerCAmelCase_ ) > 0: words.append(bytearray(lowerCAmelCase_ ).decode('''utf-8''' , errors='''replace''' ) ) __a = ''''''.join(lowerCAmelCase_ ) return text
219
def UpperCAmelCase ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase )-> list: '''simple docstring''' SCREAMING_SNAKE_CASE_ = len(UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = [[0] * n for i in range(UpperCAmelCase )] for i in range(UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = y_points[i] for i in range(2 ,UpperCAmelCase ): for j in range(UpperCAmelCase ,UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
393
0
'''simple docstring''' import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : List[Any] = logging.get_logger(__name__) def A__ ( A_ ) -> List[str]: _lowercase = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) _lowercase = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , A_ ) if matches: _lowercase = float(matches[1] ) _lowercase = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". _lowercase = 1_001 _lowercase = "imagenet-1k-id2label.json" _lowercase = "huggingface/label-files" _lowercase = json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) _lowercase = {int(A_ ) + 1: v for k, v in idalabel.items()} _lowercase = "background" _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} return config def A__ ( ) -> str: _lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase = Image.open(requests.get(A_ , stream=A_ ).raw ) return im @torch.no_grad() def A__ ( A_ , A_ , A_ , A_=False ) -> List[Any]: _lowercase = get_mobilenet_va_config(A_ ) # Load 🤗 model _lowercase = MobileNetVaForImageClassification(A_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A_ , A_ , A_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor _lowercase = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) _lowercase = image_processor(images=prepare_img() , return_tensors="pt" ) _lowercase = model(**A_ ) _lowercase = outputs.logits assert logits.shape == (1, 1_001) if model_name == "mobilenet_v1_1.0_224": _lowercase = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": _lowercase = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: _lowercase = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , A_ , atol=1e-4 ) Path(A_ ).mkdir(exist_ok=A_ ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A_ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(A_ ) if push_to_hub: print("Pushing to the hub..." ) _lowercase = "google/" + model_name image_processor.push_to_hub(A_ ) model.push_to_hub(A_ ) if __name__ == "__main__": __magic_name__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''mobilenet_v1_1.0_224''', type=str, help='''Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.''', ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original TensorFlow checkpoint (.ckpt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __magic_name__ : Union[str, Any] = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
720
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class UpperCamelCase__ : """simple docstring""" UpperCAmelCase__ = BlenderbotSmallConfig UpperCAmelCase__ = {} UpperCAmelCase__ = 'gelu' def __init__( self : Optional[Any] , __A : Optional[Any] , __A : Optional[Any]=1_3 , __A : List[str]=7 , __A : List[str]=True , __A : Tuple=False , __A : str=9_9 , __A : Union[str, Any]=3_2 , __A : str=2 , __A : Optional[Any]=4 , __A : Optional[int]=3_7 , __A : str=0.1 , __A : str=0.1 , __A : int=2_0 , __A : Any=2 , __A : str=1 , __A : Union[str, Any]=0 , ): """simple docstring""" _lowercase = parent _lowercase = batch_size _lowercase = seq_length _lowercase = is_training _lowercase = use_labels _lowercase = vocab_size _lowercase = hidden_size _lowercase = num_hidden_layers _lowercase = num_attention_heads _lowercase = intermediate_size _lowercase = hidden_dropout_prob _lowercase = attention_probs_dropout_prob _lowercase = max_position_embeddings _lowercase = eos_token_id _lowercase = pad_token_id _lowercase = bos_token_id def snake_case ( self : List[str] ): """simple docstring""" _lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) _lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _lowercase = prepare_blenderbot_small_inputs_dict(__A , __A , __A ) return config, inputs_dict def snake_case ( self : int , __A : Tuple , __A : List[str] ): """simple docstring""" _lowercase = TFBlenderbotSmallModel(config=__A ).get_decoder() _lowercase = inputs_dict["input_ids"] _lowercase = input_ids[:1, :] _lowercase = inputs_dict["attention_mask"][:1, :] _lowercase = inputs_dict["head_mask"] _lowercase = 1 # first forward pass _lowercase = model(__A , attention_mask=__A , head_mask=__A , use_cache=__A ) _lowercase , _lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) _lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _lowercase = model(__A , attention_mask=__A )[0] _lowercase = model(__A , attention_mask=__A , past_key_values=__A )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _lowercase = output_from_no_past[:, -3:, random_slice_idx] _lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__A , __A , rtol=1e-3 ) def A__ ( A_ , A_ , A_ , A_=None , A_=None , A_=None , A_=None , A_=None , ) -> Optional[Any]: if attention_mask is None: _lowercase = tf.cast(tf.math.not_equal(A_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class UpperCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) UpperCAmelCase__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase__ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False def snake_case ( self : Optional[Any] ): """simple docstring""" _lowercase = TFBlenderbotSmallModelTester(self ) _lowercase = ConfigTester(self , config_class=__A ) def snake_case ( self : Dict ): """simple docstring""" self.config_tester.run_common_tests() def snake_case ( self : Optional[int] ): """simple docstring""" _lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__A ) @require_tokenizers @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] UpperCAmelCase__ = 'facebook/blenderbot_small-90M' @cached_property def snake_case ( self : str ): """simple docstring""" # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def snake_case ( self : Optional[Any] ): """simple docstring""" _lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def snake_case ( self : str ): """simple docstring""" _lowercase = self.tokenizer(self.src_text , return_tensors="tf" ) _lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__A , ) _lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__A )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
602
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __UpperCamelCase : '''simple docstring''' def __init__( self , lowerCamelCase__ , ): UpperCAmelCase__: List[Any] = parent UpperCAmelCase__: Any = 1_3 UpperCAmelCase__: Optional[Any] = 7 UpperCAmelCase__: List[Any] = 3_0 UpperCAmelCase__: Tuple = self.seq_length + self.mem_len UpperCAmelCase__: List[str] = 1_5 UpperCAmelCase__: Dict = True UpperCAmelCase__: Dict = True UpperCAmelCase__: Optional[int] = 9_9 UpperCAmelCase__: Dict = [1_0, 5_0, 8_0] UpperCAmelCase__: List[str] = 3_2 UpperCAmelCase__: Optional[Any] = 3_2 UpperCAmelCase__: int = 4 UpperCAmelCase__: List[Any] = 8 UpperCAmelCase__: Tuple = 1_2_8 UpperCAmelCase__: List[Any] = 2 UpperCAmelCase__: Tuple = 2 UpperCAmelCase__: List[Any] = None UpperCAmelCase__: List[str] = 1 UpperCAmelCase__: Union[str, Any] = 0 UpperCAmelCase__: Any = 3 UpperCAmelCase__: List[str] = self.vocab_size - 1 UpperCAmelCase__: str = 0.01 def _UpperCAmelCase ( self ): UpperCAmelCase__: List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__: Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__: List[str] = None if self.use_labels: UpperCAmelCase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__: List[Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def _UpperCAmelCase ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Union[str, Any] = TFTransfoXLModel(lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__: Any = model(lowerCamelCase__ ).to_tuple() UpperCAmelCase__: int = {"input_ids": input_ids_a, "mems": mems_a} UpperCAmelCase__ , UpperCAmelCase__: Dict = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: int = TFTransfoXLLMHeadModel(lowerCamelCase__ ) UpperCAmelCase__ , UpperCAmelCase__: List[str] = model(lowerCamelCase__ ).to_tuple() UpperCAmelCase__: Dict = {"input_ids": input_ids_a, "labels": lm_labels} UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = model(lowerCamelCase__ ).to_tuple() UpperCAmelCase__ , UpperCAmelCase__: Union[str, Any] = model([input_ids_a, mems_a] ).to_tuple() UpperCAmelCase__: Any = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} UpperCAmelCase__ , UpperCAmelCase__: int = model(lowerCamelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Union[str, Any] = TFTransfoXLForSequenceClassification(lowerCamelCase__ ) UpperCAmelCase__: List[str] = model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self ): UpperCAmelCase__: Any = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)): Dict = config_and_inputs UpperCAmelCase__: Dict = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class __UpperCamelCase ( _a ,_a ,unittest.TestCase ): '''simple docstring''' __magic_name__ = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __magic_name__ = () if is_tf_available() else () __magic_name__ = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _UpperCAmelCase ( self ): UpperCAmelCase__: List[Any] = TFTransfoXLModelTester(self ) UpperCAmelCase__: Optional[int] = ConfigTester(self , config_class=lowerCamelCase__ , d_embed=3_7 ) def _UpperCAmelCase ( self ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): self.model_tester.set_seed() UpperCAmelCase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowerCamelCase__ ) def _UpperCAmelCase ( self ): self.model_tester.set_seed() UpperCAmelCase__: Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowerCamelCase__ ) def _UpperCAmelCase ( self ): UpperCAmelCase__: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowerCamelCase__ ) def _UpperCAmelCase ( self ): UpperCAmelCase__ , UpperCAmelCase__: str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__: List[str] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCAmelCase__: Optional[int] = model_class(lowerCamelCase__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: UpperCAmelCase__: Tuple = model.get_output_embeddings() assert isinstance(lowerCamelCase__ , tf.keras.layers.Layer ) UpperCAmelCase__: Any = model.get_bias() assert name is None else: UpperCAmelCase__: List[Any] = model.get_output_embeddings() assert x is None UpperCAmelCase__: List[Any] = model.get_bias() assert name is None def _UpperCAmelCase ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _UpperCAmelCase ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__: str = TFTransfoXLModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def _UpperCAmelCase ( self ): pass @require_tf class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @unittest.skip("Skip test until #12651 is resolved." ) @slow def _UpperCAmelCase ( self ): UpperCAmelCase__: Any = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off UpperCAmelCase__: Tuple = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCAmelCase__: str = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCAmelCase__: Optional[Any] = model.generate(lowerCamelCase__ , max_length=2_0_0 , do_sample=lowerCamelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ )
113
import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class __UpperCamelCase ( _a ,_a ): '''simple docstring''' @register_to_config def __init__( self , *, lowerCamelCase__ = 4 , lowerCamelCase__ = 7_6_8 , lowerCamelCase__ , lowerCamelCase__ , ): super().__init__() UpperCAmelCase__: int = nn.Parameter(torch.zeros(lowerCamelCase__ ) ) # parameters for additional clip time embeddings UpperCAmelCase__: Optional[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__: str = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) # parameters for encoder hidden states UpperCAmelCase__: Tuple = clip_extra_context_tokens UpperCAmelCase__: List[str] = nn.Linear( lowerCamelCase__ , self.clip_extra_context_tokens * cross_attention_dim ) UpperCAmelCase__: Union[str, Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__: str = nn.LayerNorm(lowerCamelCase__ ) def _UpperCAmelCase ( self , *, lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings UpperCAmelCase__: Any = image_embeddings.shape[0] UpperCAmelCase__: Optional[Any] = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) UpperCAmelCase__: Union[str, Any] = classifier_free_guidance_embeddings.expand( lowerCamelCase__ , -1 ) UpperCAmelCase__: Tuple = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] UpperCAmelCase__: str = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... UpperCAmelCase__: List[str] = self.embedding_proj(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = self.clip_image_embeddings_project_to_time_embeddings(lowerCamelCase__ ) UpperCAmelCase__: Any = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" UpperCAmelCase__: Dict = self.clip_extra_context_tokens_proj(lowerCamelCase__ ) UpperCAmelCase__: Optional[Any] = clip_extra_context_tokens.reshape(lowerCamelCase__ , -1 , self.clip_extra_context_tokens ) UpperCAmelCase__: Dict = clip_extra_context_tokens.permute(0 , 2 , 1 ) UpperCAmelCase__: Any = self.encoder_hidden_states_proj(lowerCamelCase__ ) UpperCAmelCase__: List[str] = self.text_encoder_hidden_states_norm(lowerCamelCase__ ) UpperCAmelCase__: Optional[int] = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
113
1
import socket def A_( ): UpperCAmelCase_ = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase_ = socket.gethostname() UpperCAmelCase_ = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: UpperCAmelCase_ = sock.recv(1024 ) if not data: break out_file.write(__A ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
715
from torch import nn class _UpperCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Dict , __lowercase : List[str] , __lowercase : Dict ): '''simple docstring''' super().__init__() UpperCAmelCase_ = class_size UpperCAmelCase_ = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase_ = nn.Linear(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE ( self : Any , __lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.mlp(__lowercase ) return logits
486
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = {"vocab_file": "spiece.model"} A_ = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), } } A_ = { "google/bigbird-roberta-base": 4_096, "google/bigbird-roberta-large": 4_096, "google/bigbird-base-trivia-itc": 4_096, } class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = [] def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="[SEP]" , SCREAMING_SNAKE_CASE_="[MASK]" , SCREAMING_SNAKE_CASE_="[CLS]" , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> None: '''simple docstring''' lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else bos_token lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else eos_token lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else unk_token lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else pad_token lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else cls_token lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowerCamelCase_ ) @property def UpperCamelCase( self ) -> int: '''simple docstring''' return self.sp_model.get_piece_size() def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' lowerCamelCase_ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> List[str]: '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: '''simple docstring''' return self.sp_model.piece_to_id(lowerCamelCase_ ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Tuple: '''simple docstring''' lowerCamelCase_ = self.sp_model.IdToPiece(lowerCamelCase_ ) return token def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ = '' lowerCamelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token lowerCamelCase_ = True lowerCamelCase_ = [] else: current_sub_tokens.append(lowerCamelCase_ ) lowerCamelCase_ = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , **SCREAMING_SNAKE_CASE_ , ) -> str: '''simple docstring''' lowerCamelCase_ = kwargs.pop('use_source_tokenizer' , lowerCamelCase_ ) lowerCamelCase_ = self.convert_ids_to_tokens(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase_ = [] lowerCamelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) ) lowerCamelCase_ = [] sub_texts.append(lowerCamelCase_ ) else: current_sub_text.append(lowerCamelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowerCamelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCamelCase_ = re.sub(r' (\[(MASK|SEP)\])' , r'\1' , ' '.join(lowerCamelCase_ ) ) else: lowerCamelCase_ = ''.join(lowerCamelCase_ ) lowerCamelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase_ = self.clean_up_tokenization(lowerCamelCase_ ) return clean_text else: return text def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase_ = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , 'wb' ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1] + ([0] * len(lowerCamelCase_ )) + [1] def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ) -> List[int]: '''simple docstring''' lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
42
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase_ : def __init__( self , lowerCamelCase_ , lowerCamelCase_=3 , lowerCamelCase_=32 , lowerCamelCase_=3 , lowerCamelCase_=10 , lowerCamelCase_=[10, 20, 30, 40] , lowerCamelCase_=[1, 1, 2, 1] , lowerCamelCase_=True , lowerCamelCase_=True , lowerCamelCase_="relu" , lowerCamelCase_=3 , lowerCamelCase_=None , ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = image_size _UpperCamelCase = num_channels _UpperCamelCase = embeddings_size _UpperCamelCase = hidden_sizes _UpperCamelCase = depths _UpperCamelCase = is_training _UpperCamelCase = use_labels _UpperCamelCase = hidden_act _UpperCamelCase = num_labels _UpperCamelCase = scope _UpperCamelCase = len(lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" _UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCamelCase = self.get_config() return config, pixel_values, labels def lowercase ( self ) -> List[str]: """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: """simple docstring""" _UpperCamelCase = TFResNetModel(config=lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: """simple docstring""" _UpperCamelCase = self.num_labels _UpperCamelCase = TFResNetForImageClassification(lowerCamelCase_ ) _UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase_ ( lowercase , lowercase , unittest.TestCase ): __lowercase : str = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __lowercase : Union[str, Any] = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) __lowercase : Tuple = False __lowercase : Dict = False __lowercase : Any = False __lowercase : int = False __lowercase : Optional[Any] = False def lowercase ( self ) -> List[Any]: """simple docstring""" _UpperCamelCase = TFResNetModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowercase ( self ) -> int: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase ( self ) -> List[str]: """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase ( self ) -> Optional[Any]: """simple docstring""" pass def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowercase ( self ) -> Any: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowercase ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): _UpperCamelCase = model_class(lowerCamelCase_ ) _UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) _UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCamelCase = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _UpperCamelCase = layer_type _UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowercase ( self ) -> List[str]: """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFResNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def _lowercase ( ) -> Optional[int]: """simple docstring""" _UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCamelCase_ ( unittest.TestCase ): @cached_property def lowercase ( self ) -> Optional[Any]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase ( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _UpperCamelCase = self.default_image_processor _UpperCamelCase = prepare_img() _UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="tf" ) # forward pass _UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits _UpperCamelCase = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) _UpperCamelCase = tf.constant([-11.10_69, -9.78_77, -8.37_77] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase_ , atol=1E-4 ) )
147
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( _snake_case, unittest.TestCase ): '''simple docstring''' _snake_case = KandinskyInpaintPipeline _snake_case = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] _snake_case = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] _snake_case = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] _snake_case = False @property def UpperCAmelCase ( self ): '''simple docstring''' return 3_2 @property def UpperCAmelCase ( self ): '''simple docstring''' return 3_2 @property def UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase ( self ): '''simple docstring''' return 1_0_0 @property def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained('''YiYiXu/tiny-random-mclip-base''' ) return tokenizer @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCamelCase = MultilingualCLIP(lowerCAmelCase__ ) UpperCamelCase = text_encoder.eval() return text_encoder @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''text_image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''text_image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCamelCase = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def UpperCAmelCase ( self ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.dummy_text_encoder UpperCamelCase = self.dummy_tokenizer UpperCamelCase = self.dummy_unet UpperCamelCase = self.dummy_movq UpperCamelCase = DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase__ , ) UpperCamelCase = { '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): '''simple docstring''' UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCamelCase = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(lowerCAmelCase__ ) # create init_image UpperCamelCase = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((2_5_6, 2_5_6) ) # create mask UpperCamelCase = np.ones((6_4, 6_4) , dtype=np.floataa ) UpperCamelCase = 0 if str(lowerCAmelCase__ ).startswith('''mps''' ): UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) else: UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCamelCase = { '''prompt''': '''horse''', '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 6_4, '''width''': 6_4, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = '''cpu''' UpperCamelCase = self.get_dummy_components() UpperCamelCase = self.pipeline_class(**lowerCAmelCase__ ) UpperCamelCase = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCamelCase = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) UpperCamelCase = output.images UpperCamelCase = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] UpperCamelCase = image[0, -3:, -3:, -1] UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 6_4, 6_4, 3) UpperCamelCase = np.array( [0.8326919, 0.73790467, 0.20918581, 0.9309612, 0.5511791, 0.43713328, 0.5513321, 0.49922934, 0.59497786] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def UpperCAmelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy''' ) UpperCamelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCamelCase = np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) UpperCamelCase = 0 UpperCamelCase = '''a hat''' UpperCamelCase = KandinskyPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) UpperCamelCase = KandinskyInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-1-inpaint''' , torch_dtype=torch.floataa ) UpperCamelCase = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCamelCase , UpperCamelCase = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCamelCase = pipeline( lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type='''np''' , ) UpperCamelCase = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
701
'''simple docstring''' import re from typing import Callable, List, Optional, Union import tensorflow as tf try: from tensorflow.keras.optimizers.legacy import Adam except ImportError: from tensorflow.keras.optimizers import Adam class lowercase__ ( tf.keras.optimizers.schedules.LearningRateSchedule ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1.0 , lowerCamelCase__ = None , ): '''simple docstring''' super().__init__() UpperCamelCase = initial_learning_rate UpperCamelCase = warmup_steps UpperCamelCase = power UpperCamelCase = decay_schedule_fn UpperCamelCase = name def __call__( self , lowerCamelCase__ ): '''simple docstring''' with tf.name_scope(self.name or '''WarmUp''' ) as name: # Implements polynomial warmup. i.e., if global_step < warmup_steps, the # learning rate will be `global_step/num_warmup_steps * init_lr`. UpperCamelCase = tf.cast(lowerCamelCase__ , tf.floataa ) UpperCamelCase = tf.cast(self.warmup_steps , tf.floataa ) UpperCamelCase = global_step_float / warmup_steps_float UpperCamelCase = self.initial_learning_rate * tf.math.pow(lowerCamelCase__ , self.power ) return tf.cond( global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=lowerCamelCase__ , ) def UpperCAmelCase ( self ): '''simple docstring''' return { "initial_learning_rate": self.initial_learning_rate, "decay_schedule_fn": self.decay_schedule_fn, "warmup_steps": self.warmup_steps, "power": self.power, "name": self.name, } def __snake_case ( _UpperCAmelCase : float, _UpperCAmelCase : int, _UpperCAmelCase : int, _UpperCAmelCase : float = 0.0, _UpperCAmelCase : float = 0.9, _UpperCAmelCase : float = 0.9_9_9, _UpperCAmelCase : float = 1E-8, _UpperCAmelCase : Optional[float] = None, _UpperCAmelCase : Optional[float] = None, _UpperCAmelCase : float = 0.0, _UpperCAmelCase : float = 1.0, _UpperCAmelCase : Optional[List[str]] = None, ): UpperCamelCase = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=_UpperCAmelCase, decay_steps=num_train_steps - num_warmup_steps, end_learning_rate=init_lr * min_lr_ratio, power=_UpperCAmelCase, ) if num_warmup_steps: UpperCamelCase = WarmUp( initial_learning_rate=_UpperCAmelCase, decay_schedule_fn=_UpperCAmelCase, warmup_steps=_UpperCAmelCase, ) if weight_decay_rate > 0.0: UpperCamelCase = AdamWeightDecay( learning_rate=_UpperCAmelCase, weight_decay_rate=_UpperCAmelCase, beta_a=_UpperCAmelCase, beta_a=_UpperCAmelCase, epsilon=_UpperCAmelCase, clipnorm=_UpperCAmelCase, global_clipnorm=_UpperCAmelCase, exclude_from_weight_decay=['''LayerNorm''', '''layer_norm''', '''bias'''], include_in_weight_decay=_UpperCAmelCase, ) else: UpperCamelCase = tf.keras.optimizers.Adam( learning_rate=_UpperCAmelCase, beta_a=_UpperCAmelCase, beta_a=_UpperCAmelCase, epsilon=_UpperCAmelCase, clipnorm=_UpperCAmelCase, global_clipnorm=_UpperCAmelCase, ) # We return the optimizer and the LR scheduler in order to better track the # evolution of the LR independently of the optimizer. return optimizer, lr_schedule class lowercase__ ( snake_case_ ): '''simple docstring''' def __init__( self , lowerCamelCase__ = 0.001 , lowerCamelCase__ = 0.9 , lowerCamelCase__ = 0.999 , lowerCamelCase__ = 1e-7 , lowerCamelCase__ = False , lowerCamelCase__ = 0.0 , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "AdamWeightDecay" , **lowerCamelCase__ , ): '''simple docstring''' super().__init__(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase = weight_decay_rate UpperCamelCase = include_in_weight_decay UpperCamelCase = exclude_from_weight_decay @classmethod def UpperCAmelCase ( cls , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = {'''WarmUp''': WarmUp} return super(lowerCamelCase__ , cls ).from_config(lowerCamelCase__ , custom_objects=lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' super(lowerCamelCase__ , self )._prepare_local(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = tf.constant( self.weight_decay_rate , name='''adam_weight_decay_rate''' ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = self._do_use_weight_decay(var.name ) if do_decay: return var.assign_sub( learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]['''weight_decay_rate'''] , use_locking=self._use_locking , ) return tf.no_op() def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): '''simple docstring''' UpperCamelCase , UpperCamelCase = list(zip(*lowerCamelCase__ ) ) return super(lowerCamelCase__ , self ).apply_gradients(zip(lowerCamelCase__ , lowerCamelCase__ ) , name=lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if apply_state is None: return self._decayed_lr_t[var_dtype], {} UpperCamelCase = apply_state or {} UpperCamelCase = apply_state.get((var_device, var_dtype) ) if coefficients is None: UpperCamelCase = self._fallback_apply_state(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = coefficients return coefficients["lr_t"], {"apply_state": apply_state} def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase , UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) UpperCamelCase = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_dense(lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase , UpperCamelCase = self._get_lr(var.device , var.dtype.base_dtype , lowerCamelCase__ ) UpperCamelCase = self._decay_weights_op(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) with tf.control_dependencies([decay] ): return super(lowerCamelCase__ , self )._resource_apply_sparse(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = super().get_config() config.update({'''weight_decay_rate''': self.weight_decay_rate} ) return config def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if self.weight_decay_rate == 0: return False if self._include_in_weight_decay: for r in self._include_in_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return True if self._exclude_from_weight_decay: for r in self._exclude_from_weight_decay: if re.search(lowerCamelCase__ , lowerCamelCase__ ) is not None: return False return True class lowercase__ ( snake_case_ ): '''simple docstring''' def __init__( self ): '''simple docstring''' UpperCamelCase = [] UpperCamelCase = None @property def UpperCAmelCase ( self ): '''simple docstring''' if self._accum_steps is None: UpperCamelCase = tf.Variable( tf.constant(0 , dtype=tf.intaa ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) return self._accum_steps.value() @property def UpperCAmelCase ( self ): '''simple docstring''' if not self._gradients: raise ValueError('''The accumulator should be called first to initialize the gradients''' ) return [gradient.value() if gradient is not None else gradient for gradient in self._gradients] def __call__( self , lowerCamelCase__ ): '''simple docstring''' if not self._gradients: UpperCamelCase = self.step # Create the step variable. self._gradients.extend( [ tf.Variable( tf.zeros_like(lowerCamelCase__ ) , trainable=lowerCamelCase__ , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , ) if gradient is not None else gradient for gradient in gradients ] ) if len(lowerCamelCase__ ) != len(self._gradients ): raise ValueError(f'Expected {len(self._gradients )} gradients, but got {len(lowerCamelCase__ )}' ) for accum_gradient, gradient in zip(self._gradients , lowerCamelCase__ ): if accum_gradient is not None and gradient is not None: accum_gradient.assign_add(lowerCamelCase__ ) self._accum_steps.assign_add(1 ) def UpperCAmelCase ( self ): '''simple docstring''' if not self._gradients: return self._accum_steps.assign(0 ) for gradient in self._gradients: if gradient is not None: gradient.assign(tf.zeros_like(lowerCamelCase__ ) )
350
0
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {"vocab_file": "spiece.model"} __UpperCamelCase = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 __UpperCamelCase = { "t5-small": 512, "t5-base": 512, "t5-large": 512, "t5-3b": 512, "t5-11b": 512, } __UpperCamelCase = "▁" class lowerCAmelCase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="</s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__=100 , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: SCREAMING_SNAKE_CASE = [F'<extra_id_{i}>' for i in range(_lowercase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens SCREAMING_SNAKE_CASE = len(set(filter(lambda lowerCAmelCase__ : bool('extra_id' in str(_lowercase ) ) , _lowercase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' ' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids' ' tokens' ) if legacy: logger.warning_once( F'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' ' read the related pull request available at https://github.com/huggingface/transformers/pull/24565' ) SCREAMING_SNAKE_CASE = legacy SCREAMING_SNAKE_CASE = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , extra_ids=_lowercase , additional_special_tokens=_lowercase , sp_model_kwargs=self.sp_model_kwargs , legacy=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE = vocab_file SCREAMING_SNAKE_CASE = extra_ids SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowercase ) @staticmethod def __A ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: SCREAMING_SNAKE_CASE = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( 'This tokenizer was incorrectly instantiated with a model max length of' F' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' ' behavior is kept to avoid breaking backwards compatibility when padding/encoding with' ' `truncation is True`.\n- Be aware that you SHOULD NOT rely on' F' {pretrained_model_name_or_path} automatically truncating your input to' F' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' F' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' ' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please' ' instantiate this tokenizer with `model_max_length` set to your preferred value.' , _lowercase , ) return max_model_length @property def __A ( self ) -> Dict: return self.sp_model.get_piece_size() + self._extra_ids def __A ( self ) -> Any: SCREAMING_SNAKE_CASE = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowercase )) + [1] return ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) + [1] def __A ( self ) -> str: return list( set(filter(lambda lowerCAmelCase__ : bool(re.search(r'<extra_id_\d+>' , _lowercase ) ) is not None , self.additional_special_tokens ) ) ) def __A ( self ) -> Union[str, Any]: return [self._convert_token_to_id(_lowercase ) for token in self.get_sentinel_tokens()] def __A ( self , lowerCAmelCase__ ) -> List[int]: if len(_lowercase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: SCREAMING_SNAKE_CASE = self._add_eos_if_not_present(_lowercase ) if token_ids_a is None: return token_ids_a else: SCREAMING_SNAKE_CASE = self._add_eos_if_not_present(_lowercase ) return token_ids_a + token_ids_a def __getstate__( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = self.__dict__.copy() SCREAMING_SNAKE_CASE = None return state def __setstate__( self , lowerCAmelCase__ ) -> Any: SCREAMING_SNAKE_CASE = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE = {} SCREAMING_SNAKE_CASE = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: SCREAMING_SNAKE_CASE = SPIECE_UNDERLINE + text.replace(_lowercase , ' ' ) return super().tokenize(_lowercase , **_lowercase ) def __A ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> int: if not self.legacy: SCREAMING_SNAKE_CASE = text.startswith(_lowercase ) if is_first: SCREAMING_SNAKE_CASE = text[1:] SCREAMING_SNAKE_CASE = self.sp_model.encode(_lowercase , out_type=_lowercase ) if not self.legacy and not is_first and not text.startswith(' ' ) and tokens[0].startswith(_lowercase ): SCREAMING_SNAKE_CASE = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def __A ( self , lowerCAmelCase__ ) -> int: if token.startswith('<extra_id_' ): SCREAMING_SNAKE_CASE = re.match(r'<extra_id_(\d+)>' , _lowercase ) SCREAMING_SNAKE_CASE = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_lowercase ) def __A ( self , lowerCAmelCase__ ) -> int: if index < self.sp_model.get_piece_size(): SCREAMING_SNAKE_CASE = self.sp_model.IdToPiece(_lowercase ) else: SCREAMING_SNAKE_CASE = F'<extra_id_{self.vocab_size - 1 - index}>' return token def __A ( self , lowerCAmelCase__ ) -> str: SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = '' SCREAMING_SNAKE_CASE = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowercase ) + token SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [] else: current_sub_tokens.append(_lowercase ) SCREAMING_SNAKE_CASE = False out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(_lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE = os.path.join( _lowercase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowercase ) elif not os.path.isfile(self.vocab_file ): with open(_lowercase , 'wb' ) as fi: SCREAMING_SNAKE_CASE = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (out_vocab_file,)
247
'''simple docstring''' def _UpperCamelCase ( lowerCAmelCase__: int ,lowerCAmelCase__: int ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) SCREAMING_SNAKE_CASE_ = str(bin(lowerCAmelCase__ ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_ = str(bin(lowerCAmelCase__ ) )[2:] SCREAMING_SNAKE_CASE_ = max(len(lowerCAmelCase__ ) ,len(lowerCAmelCase__ ) ) return "0b" + "".join( str(int('1' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase__ ) ,b_binary.zfill(lowerCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
294
0
"""simple docstring""" import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() _lowercase : List[Any] = logging.get_logger("transformers.models.encodec") _lowercase : Optional[Any] = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } _lowercase : Any = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } _lowercase : int = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } _lowercase : List[str] = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } _lowercase : Any = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } _lowercase : Optional[Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } _lowercase : str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } _lowercase : Optional[int] = [] _lowercase : str = [] def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" for attribute in key.split('''.''' ): lowerCamelCase__ : Tuple =getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: lowerCamelCase__ : str =getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: lowerCamelCase__ : List[Any] =hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : Dict =value elif weight_type == "weight_g": lowerCamelCase__ : str =value elif weight_type == "weight_v": lowerCamelCase__ : Any =value elif weight_type == "bias": lowerCamelCase__ : Union[str, Any] =value elif weight_type == "running_mean": lowerCamelCase__ : int =value elif weight_type == "running_var": lowerCamelCase__ : int =value elif weight_type == "num_batches_tracked": lowerCamelCase__ : List[Any] =value elif weight_type == "weight_ih_l0": lowerCamelCase__ : Tuple =value elif weight_type == "weight_hh_l0": lowerCamelCase__ : Optional[int] =value elif weight_type == "bias_ih_l0": lowerCamelCase__ : Any =value elif weight_type == "bias_hh_l0": lowerCamelCase__ : Tuple =value elif weight_type == "weight_ih_l1": lowerCamelCase__ : int =value elif weight_type == "weight_hh_l1": lowerCamelCase__ : Optional[int] =value elif weight_type == "bias_ih_l1": lowerCamelCase__ : Optional[int] =value elif weight_type == "bias_hh_l1": lowerCamelCase__ : List[Any] =value else: lowerCamelCase__ : Tuple =value logger.info(f'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): """simple docstring""" for key in ignore_keys: if key.endswith('''.*''' ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase__ : List[str] =key.split('''.*.''' ) if prefix in name and suffix in name: return True elif key in name: return True return False def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] ): """simple docstring""" lowerCamelCase__ : Dict =[] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase__ : int =MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase__ : Union[str, Any] =MAPPING_48K else: raise ValueError(f'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(UpperCamelCase__ , UpperCamelCase__ ): logger.info(f'''{name} was ignored''' ) continue lowerCamelCase__ : Union[str, Any] =False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase__ : str =key.split('''.*.''' ) if prefix in name and suffix in name: lowerCamelCase__ : List[str] =suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith('''embed''' ) and name.endswith('''embed_avg''' ): continue lowerCamelCase__ : List[str] =True if "*" in mapped_key: lowerCamelCase__ : str =name.split(UpperCamelCase__ )[0].split('''.''' )[-2] lowerCamelCase__ : Union[str, Any] =mapped_key.replace('''*''' , UpperCamelCase__ ) if "weight_g" in name: lowerCamelCase__ : Dict ="""weight_g""" elif "weight_v" in name: lowerCamelCase__ : Tuple ="""weight_v""" elif "weight_ih_l0" in name: lowerCamelCase__ : Union[str, Any] ="""weight_ih_l0""" elif "weight_hh_l0" in name: lowerCamelCase__ : Tuple ="""weight_hh_l0""" elif "bias_ih_l0" in name: lowerCamelCase__ : List[Any] ="""bias_ih_l0""" elif "bias_hh_l0" in name: lowerCamelCase__ : str ="""bias_hh_l0""" elif "weight_ih_l1" in name: lowerCamelCase__ : Any ="""weight_ih_l1""" elif "weight_hh_l1" in name: lowerCamelCase__ : List[str] ="""weight_hh_l1""" elif "bias_ih_l1" in name: lowerCamelCase__ : Dict ="""bias_ih_l1""" elif "bias_hh_l1" in name: lowerCamelCase__ : Dict ="""bias_hh_l1""" elif "bias" in name: lowerCamelCase__ : Optional[int] ="""bias""" elif "weight" in name: lowerCamelCase__ : str ="""weight""" elif "running_mean" in name: lowerCamelCase__ : List[str] ="""running_mean""" elif "running_var" in name: lowerCamelCase__ : Any ="""running_var""" elif "num_batches_tracked" in name: lowerCamelCase__ : Tuple ="""num_batches_tracked""" else: lowerCamelCase__ : List[str] =None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) @torch.no_grad() def snake_case__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , ): """simple docstring""" if config_path is not None: lowerCamelCase__ : Any =EncodecConfig.from_pretrained(UpperCamelCase__ ) else: lowerCamelCase__ : List[str] =EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase__ : Optional[int] =[8, 5, 4, 4] lowerCamelCase__ : List[Any] =[2.2] lowerCamelCase__ : List[str] =64 lowerCamelCase__ : Optional[Any] =32000 lowerCamelCase__ : List[str] =2048 lowerCamelCase__ : Dict =False lowerCamelCase__ : List[Any] =False lowerCamelCase__ : Any =False elif model_name == "encodec_48khz": lowerCamelCase__ : Dict =[8, 5, 4, 2] lowerCamelCase__ : Optional[Any] =[3.0, 6.0, 12.0, 24.0] lowerCamelCase__ : Optional[int] =48000 lowerCamelCase__ : str =2 lowerCamelCase__ : Tuple =False lowerCamelCase__ : Union[str, Any] ="""time_group_norm""" lowerCamelCase__ : Optional[Any] =True lowerCamelCase__ : Dict =1.0 lowerCamelCase__ : str =0.01 else: raise ValueError(f'''Unknown model name: {model_name}''' ) lowerCamelCase__ : Optional[Any] =EncodecModel(UpperCamelCase__ ) lowerCamelCase__ : Optional[int] =EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : Any =torch.load(UpperCamelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase__ : Optional[Any] =original_checkpoint["""best_state"""] recursively_load_weights(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if repo_id: print('''Pushing to the hub...''' ) feature_extractor.push_to_hub(UpperCamelCase__ ) model.push_to_hub(UpperCamelCase__ ) if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) _lowercase : Optional[int] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
720
"""simple docstring""" def snake_case__ ( __lowerCamelCase : str ): """simple docstring""" return " ".join( ''''''.join(word[::-1] ) if len(__lowerCamelCase ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
625
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : str ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def _lowercase ( self : Tuple ) -> Tuple: __lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/sd2-inpaint/init_image.png' ) __lowerCamelCase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png' ) __lowerCamelCase : int = 'xvjiarui/stable-diffusion-2-inpainting' __lowerCamelCase ,__lowerCamelCase : int = FlaxStableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) __lowerCamelCase : List[Any] = 'Face of a yellow cat, high resolution, sitting on a park bench' __lowerCamelCase : List[Any] = jax.random.PRNGKey(0 ) __lowerCamelCase : Dict = 50 __lowerCamelCase : Tuple = jax.device_count() __lowerCamelCase : Dict = num_samples * [prompt] __lowerCamelCase : List[Any] = num_samples * [init_image] __lowerCamelCase : Optional[int] = num_samples * [mask_image] __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase : Union[str, Any] = pipeline.prepare_inputs(_a , _a , _a ) # shard inputs and rng __lowerCamelCase : Any = replicate(_a ) __lowerCamelCase : Union[str, Any] = jax.random.split(_a , jax.device_count() ) __lowerCamelCase : Optional[Any] = shard(_a ) __lowerCamelCase : Any = shard(_a ) __lowerCamelCase : List[str] = shard(_a ) __lowerCamelCase : Dict = pipeline( _a , _a , _a , _a , _a , _a , jit=_a ) __lowerCamelCase : Union[str, Any] = output.images.reshape(_a , 512 , 512 , 3 ) __lowerCamelCase : Any = images[0, 253:256, 253:256, -1] __lowerCamelCase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __lowerCamelCase : str = jnp.array( [0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] ) print(f'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
459
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = { 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
459
1
"""simple docstring""" import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) _a : Optional[int]= logging.getLogger(__name__) def __UpperCAmelCase ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any ) -> str: '''simple docstring''' __snake_case : Dict = np.argmax(__UpperCamelCase , axis=1 ) return np.sum(outputs == labels ) def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' with open(__UpperCamelCase , encoding='utf_8' ) as f: __snake_case : List[Any] = csv.reader(__UpperCamelCase ) __snake_case : Any = [] next(__UpperCamelCase ) # skip the first line for line in tqdm(__UpperCamelCase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __UpperCAmelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Optional[int]: '''simple docstring''' __snake_case : List[Any] = [] for dataset in encoded_datasets: __snake_case : str = len(__UpperCamelCase ) __snake_case : str = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) __snake_case : Tuple = np.zeros((n_batch, 2) , dtype=np.intaa ) __snake_case : Optional[int] = np.full((n_batch, 2, input_len) , fill_value=-1_00 , dtype=np.intaa ) __snake_case : Union[str, Any] = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__UpperCamelCase ): __snake_case : Optional[int] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __snake_case : int = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] __snake_case : Dict = with_conta __snake_case : List[Any] = with_conta __snake_case : str = len(__UpperCamelCase ) - 1 __snake_case : Optional[Any] = len(__UpperCamelCase ) - 1 __snake_case : List[Any] = with_conta __snake_case : Any = with_conta __snake_case : Optional[int] = mc_label __snake_case : Optional[int] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__UpperCamelCase ) for t in all_inputs ) ) return tensor_datasets def __UpperCAmelCase ( ) -> List[Any]: '''simple docstring''' __snake_case : Dict = argparse.ArgumentParser() parser.add_argument('--model_name' , type=__UpperCamelCase , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=__UpperCamelCase , type=__UpperCamelCase , required=__UpperCamelCase , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=__UpperCamelCase , default='' ) parser.add_argument('--eval_dataset' , type=__UpperCamelCase , default='' ) parser.add_argument('--seed' , type=__UpperCamelCase , default=42 ) parser.add_argument('--num_train_epochs' , type=__UpperCamelCase , default=3 ) parser.add_argument('--train_batch_size' , type=__UpperCamelCase , default=8 ) parser.add_argument('--eval_batch_size' , type=__UpperCamelCase , default=16 ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCamelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=__UpperCamelCase , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=__UpperCamelCase , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=__UpperCamelCase , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=__UpperCamelCase , default=6.25E-5 ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCamelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=__UpperCamelCase , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=__UpperCamelCase , default=0.01 ) parser.add_argument('--lm_coef' , type=__UpperCamelCase , default=0.9 ) parser.add_argument('--n_valid' , type=__UpperCamelCase , default=3_74 ) parser.add_argument('--server_ip' , type=__UpperCamelCase , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=__UpperCamelCase , default='' , help='Can be used for distant debugging.' ) __snake_case : int = parser.parse_args() print(__UpperCamelCase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__UpperCamelCase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) __snake_case : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) __snake_case : int = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__UpperCamelCase , __UpperCamelCase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset __snake_case : List[Any] = ['_start_', '_delimiter_', '_classify_'] __snake_case : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__UpperCamelCase ) __snake_case : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCamelCase ) __snake_case : Union[str, Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__UpperCamelCase ) ) model.to(__UpperCamelCase ) # Load and encode the datasets def tokenize_and_encode(UpperCAmelCase_ : List[str] ): if isinstance(__UpperCamelCase , __UpperCamelCase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__UpperCamelCase ) ) elif isinstance(__UpperCamelCase , __UpperCamelCase ): return obj return [tokenize_and_encode(__UpperCamelCase ) for o in obj] logger.info('Encoding dataset...' ) __snake_case : int = load_rocstories_dataset(args.train_dataset ) __snake_case : List[str] = load_rocstories_dataset(args.eval_dataset ) __snake_case : str = (train_dataset, eval_dataset) __snake_case : int = tokenize_and_encode(__UpperCamelCase ) # Compute the max input length for the Transformer __snake_case : Dict = model.config.n_positions // 2 - 2 __snake_case : Tuple = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) __snake_case : List[Any] = min(__UpperCamelCase , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders __snake_case : Dict = pre_process_datasets(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , *__UpperCamelCase ) __snake_case , __snake_case : Dict = tensor_datasets[0], tensor_datasets[1] __snake_case : List[str] = TensorDataset(*__UpperCamelCase ) __snake_case : str = RandomSampler(__UpperCamelCase ) __snake_case : Optional[int] = DataLoader(__UpperCamelCase , sampler=__UpperCamelCase , batch_size=args.train_batch_size ) __snake_case : int = TensorDataset(*__UpperCamelCase ) __snake_case : int = SequentialSampler(__UpperCamelCase ) __snake_case : Optional[Any] = DataLoader(__UpperCamelCase , sampler=__UpperCamelCase , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: __snake_case : Optional[int] = args.max_steps __snake_case : Optional[int] = args.max_steps // (len(__UpperCamelCase ) // args.gradient_accumulation_steps) + 1 else: __snake_case : Union[str, Any] = len(__UpperCamelCase ) // args.gradient_accumulation_steps * args.num_train_epochs __snake_case : List[Any] = list(model.named_parameters() ) __snake_case : Optional[Any] = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] __snake_case : List[Any] = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] __snake_case : Dict = AdamW(__UpperCamelCase , lr=args.learning_rate , eps=args.adam_epsilon ) __snake_case : Any = get_linear_schedule_with_warmup( __UpperCamelCase , num_warmup_steps=args.warmup_steps , num_training_steps=__UpperCamelCase ) if args.do_train: __snake_case , __snake_case , __snake_case : str = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): __snake_case : Union[str, Any] = 0 __snake_case : List[Any] = 0 __snake_case : int = tqdm(__UpperCamelCase , desc='Training' ) for step, batch in enumerate(__UpperCamelCase ): __snake_case : List[str] = tuple(t.to(__UpperCamelCase ) for t in batch ) __snake_case , __snake_case , __snake_case , __snake_case : List[Any] = batch __snake_case : Any = model(__UpperCamelCase , mc_token_ids=__UpperCamelCase , lm_labels=__UpperCamelCase , mc_labels=__UpperCamelCase ) __snake_case : List[Any] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() __snake_case : int = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 __snake_case : Optional[Any] = 'Training loss: {:.2e} lr: {:.2e}'.format(__UpperCamelCase , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer __snake_case : str = model.module if hasattr(__UpperCamelCase , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` __snake_case : str = os.path.join(args.output_dir , __UpperCamelCase ) __snake_case : Optional[int] = os.path.join(args.output_dir , __UpperCamelCase ) torch.save(model_to_save.state_dict() , __UpperCamelCase ) model_to_save.config.to_json_file(__UpperCamelCase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned __snake_case : List[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) __snake_case : Tuple = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__UpperCamelCase ) if args.do_eval: model.eval() __snake_case , __snake_case : Any = 0, 0 __snake_case , __snake_case : Tuple = 0, 0 for batch in tqdm(__UpperCamelCase , desc='Evaluating' ): __snake_case : Tuple = tuple(t.to(__UpperCamelCase ) for t in batch ) __snake_case , __snake_case , __snake_case , __snake_case : Dict = batch with torch.no_grad(): __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = model( __UpperCamelCase , mc_token_ids=__UpperCamelCase , lm_labels=__UpperCamelCase , mc_labels=__UpperCamelCase ) __snake_case : Union[str, Any] = mc_logits.detach().cpu().numpy() __snake_case : Dict = mc_labels.to('cpu' ).numpy() __snake_case : Any = accuracy(__UpperCamelCase , __UpperCamelCase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 __snake_case : int = eval_loss / nb_eval_steps __snake_case : Optional[Any] = eval_accuracy / nb_eval_examples __snake_case : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None __snake_case : Optional[int] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} __snake_case : List[Any] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(__UpperCamelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , __UpperCamelCase , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
708
"""simple docstring""" import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class UpperCamelCase : def __init__(self : Tuple , _A : List[Any] , _A : int=sys.maxsize) -> int: __snake_case : Dict = 'bilinear' __snake_case : int = max_size __snake_case : Any = short_edge_length def __call__(self : Optional[Any] , _A : Any) -> Dict: __snake_case : Any = [] for img in imgs: __snake_case , __snake_case : int = img.shape[:2] # later: provide list and randomly choose index for resize __snake_case : Optional[Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1) if size == 0: return img __snake_case : int = size * 1.0 / min(_A , _A) if h < w: __snake_case , __snake_case : str = size, scale * w else: __snake_case , __snake_case : List[str] = scale * h, size if max(_A , _A) > self.max_size: __snake_case : str = self.max_size * 1.0 / max(_A , _A) __snake_case : Any = newh * scale __snake_case : Any = neww * scale __snake_case : Optional[int] = int(neww + 0.5) __snake_case : str = int(newh + 0.5) if img.dtype == np.uinta: __snake_case : str = Image.fromarray(_A) __snake_case : str = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR) __snake_case : Tuple = np.asarray(_A) else: __snake_case : str = img.permute(2 , 0 , 1).unsqueeze(0) # 3, 0, 1) # hw(c) -> nchw __snake_case : Dict = nn.functional.interpolate( _A , (newh, neww) , mode=self.interp_method , align_corners=_A).squeeze(0) img_augs.append(_A) return img_augs class UpperCamelCase : def __init__(self : List[str] , _A : List[str]) -> Optional[int]: __snake_case : Union[str, Any] = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST) __snake_case : Union[str, Any] = cfg.INPUT.FORMAT __snake_case : List[Any] = cfg.SIZE_DIVISIBILITY __snake_case : Tuple = cfg.PAD_VALUE __snake_case : int = cfg.INPUT.MAX_SIZE_TEST __snake_case : List[Any] = cfg.MODEL.DEVICE __snake_case : Tuple = torch.tensor(cfg.MODEL.PIXEL_STD).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Any = torch.tensor(cfg.MODEL.PIXEL_MEAN).to(self.device).view(len(cfg.MODEL.PIXEL_STD) , 1 , 1) __snake_case : Union[str, Any] = lambda _A: (x - self.pixel_mean) / self.pixel_std def _lowercase (self : Tuple , _A : str) -> int: __snake_case : str = tuple(max(_A) for s in zip(*[img.shape for img in images])) __snake_case : int = [im.shape[-2:] for im in images] __snake_case : int = [ nn.functional.pad( _A , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_A , _A) ] return torch.stack(_A), torch.tensor(_A) def __call__(self : Optional[Any] , _A : Dict , _A : Union[str, Any]=False) -> Optional[int]: with torch.no_grad(): if not isinstance(_A , _A): __snake_case : str = [images] if single_image: assert len(_A) == 1 for i in range(len(_A)): if isinstance(images[i] , torch.Tensor): images.insert(_A , images.pop(_A).to(self.device).float()) elif not isinstance(images[i] , torch.Tensor): images.insert( _A , torch.as_tensor(img_tensorize(images.pop(_A) , input_format=self.input_format)) .to(self.device) .float() , ) # resize smallest edge __snake_case : Any = torch.tensor([im.shape[:2] for im in images]) __snake_case : Tuple = self.aug(_A) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __snake_case : List[str] = [self.normalizer(_A) for x in images] # now pad them to do the following operations __snake_case , __snake_case : List[Any] = self.pad(_A) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __snake_case : int = torch.true_divide(_A , _A) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCAmelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Any ) -> int: '''simple docstring''' boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCAmelCase ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple[int, int] ) -> Union[str, Any]: '''simple docstring''' assert torch.isfinite(UpperCAmelCase_ ).all(), "Box tensor contains infinite or NaN!" __snake_case , __snake_case : Optional[int] = box_size tensor[:, 0].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 1].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 2].clamp_(min=0 , max=UpperCAmelCase_ ) tensor[:, 3].clamp_(min=0 , max=UpperCAmelCase_ )
192
0
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict=13 , lowerCAmelCase__ :List[str]=30 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :List[Any]=3 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Dict=32 , lowerCAmelCase__ :Dict=2 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Any=37 , lowerCAmelCase__ :Optional[int]="gelu" , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=10 , lowerCAmelCase__ :Tuple=0.02 , lowerCAmelCase__ :Tuple=3 , lowerCAmelCase__ :Optional[Any]=None , ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : int = use_labels __SCREAMING_SNAKE_CASE : str = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : int = hidden_act __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = type_sequence_label_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Any = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __SCREAMING_SNAKE_CASE : List[Any] = (image_size // patch_size) ** 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = num_patches + 1 def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, pixel_values, labels def __magic_name__( self :Optional[int] ) -> int: return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = TFViTModel(config=__a ) __SCREAMING_SNAKE_CASE : Optional[int] = model(__a , training=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. __SCREAMING_SNAKE_CASE : Optional[int] = self.image_size // 2 __SCREAMING_SNAKE_CASE : int = pixel_values[:, :, :image_size, :image_size] __SCREAMING_SNAKE_CASE : Tuple = model(__a , interpolate_pos_encoding=__a , training=__a ) __SCREAMING_SNAKE_CASE : List[Any] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.type_sequence_label_size __SCREAMING_SNAKE_CASE : Tuple = TFViTForImageClassification(__a ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(__a , labels=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. __SCREAMING_SNAKE_CASE : str = self.image_size // 2 __SCREAMING_SNAKE_CASE : Optional[int] = pixel_values[:, :, :image_size, :image_size] __SCREAMING_SNAKE_CASE : Any = model(__a , interpolate_pos_encoding=__a , training=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __SCREAMING_SNAKE_CASE : Optional[int] = 1 __SCREAMING_SNAKE_CASE : Optional[Any] = TFViTForImageClassification(__a ) __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Optional[Any] = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = config_and_inputs __SCREAMING_SNAKE_CASE : str = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class _lowercase ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = (TFViTModel, TFViTForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : int = ( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : str = False def __magic_name__( self :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : str = TFViTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 ) def __magic_name__( self :Dict ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__( self :List[Any] ) -> Tuple: pass @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def __magic_name__( self :Any ) -> Union[str, Any]: pass def __magic_name__( self :List[str] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Dict = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , tf.keras.layers.Layer ) ) def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__a ) __SCREAMING_SNAKE_CASE : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Any = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __a ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : int = TFViTModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__a ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :List[str] ) -> Optional[int]: return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : Optional[int] = TFViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ) __SCREAMING_SNAKE_CASE : List[Any] = self.default_image_processor __SCREAMING_SNAKE_CASE : Tuple = prepare_img() __SCREAMING_SNAKE_CASE : Dict = image_processor(images=__a , return_tensors='''tf''' ) # forward pass __SCREAMING_SNAKE_CASE : str = model(**__a ) # verify the logits __SCREAMING_SNAKE_CASE : Tuple = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , __a ) __SCREAMING_SNAKE_CASE : List[str] = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __a , atol=1E-4 )
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : Tuple = {'configuration_unispeech': ['UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP', 'UniSpeechConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = [ 'UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST', 'UniSpeechForCTC', 'UniSpeechForPreTraining', 'UniSpeechForSequenceClassification', 'UniSpeechModel', 'UniSpeechPreTrainedModel', ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys a_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
623
0
from random import shuffle import tensorflow as tf from numpy import array def UpperCAmelCase__ ( _A , _A ): """simple docstring""" a_ = int(_A ) assert noofclusters < len(_A ) # Find out the dimensionality a_ = len(vectors[0] ) # Will help select random centroids from among the available vectors a_ = list(range(len(_A ) ) ) shuffle(_A ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. a_ = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION a_ = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points a_ = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(_A ) ] ##These nodes will assign the centroid Variables the appropriate ##values a_ = tf.placeholder('''float64''' , [dim] ) a_ = [] for centroid in centroids: cent_assigns.append(tf.assign(_A , _A ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) a_ = [tf.Variable(0 ) for i in range(len(_A ) )] ##These nodes will assign an assignment Variable the appropriate ##value a_ = tf.placeholder('''int32''' ) a_ = [] for assignment in assignments: cluster_assigns.append(tf.assign(_A , _A ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input a_ = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors a_ = tf.reduce_mean(_A , 0 ) ##Node for computing Euclidean distances # Placeholders for input a_ = tf.placeholder('''float''' , [dim] ) a_ = tf.placeholder('''float''' , [dim] ) a_ = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(_A , _A ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input a_ = tf.placeholder('''float''' , [noofclusters] ) a_ = tf.argmin(_A , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. a_ = tf.initialize_all_variables() # Initialize all variables sess.run(_A ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. a_ = 100 for _ in range(_A ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(_A ) ): a_ = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. a_ = [ sess.run(_A , feed_dict={va: vect, va: sess.run(_A )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input a_ = sess.run( _A , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(_A ): # Collect all the vectors assigned to this cluster a_ = [ vectors[i] for i in range(len(_A ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location a_ = sess.run( _A , feed_dict={mean_input: array(_A )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments a_ = sess.run(_A ) a_ = sess.run(_A ) return centroids, assignments
721
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
0
"""simple docstring""" from __future__ import annotations def a__ ( SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : List[Any] = 0.00 lowerCAmelCase : List[Any] = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase : int = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(SCREAMING_SNAKE_CASE ) first_sum += 1 / float(SCREAMING_SNAKE_CASE ) index += 1 return 1 / first_sum def a__ ( SCREAMING_SNAKE_CASE : list[float] ): '''simple docstring''' lowerCAmelCase : Optional[Any] = 0.00 lowerCAmelCase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase : Tuple = f"""Resistor at index {index} has a negative value!""" raise ValueError(SCREAMING_SNAKE_CASE ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
645
"""simple docstring""" from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ # Base model mapping ('''albert''', '''FlaxAlbertModel'''), ('''bart''', '''FlaxBartModel'''), ('''beit''', '''FlaxBeitModel'''), ('''bert''', '''FlaxBertModel'''), ('''big_bird''', '''FlaxBigBirdModel'''), ('''blenderbot''', '''FlaxBlenderbotModel'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallModel'''), ('''clip''', '''FlaxCLIPModel'''), ('''distilbert''', '''FlaxDistilBertModel'''), ('''electra''', '''FlaxElectraModel'''), ('''gpt-sw3''', '''FlaxGPT2Model'''), ('''gpt2''', '''FlaxGPT2Model'''), ('''gpt_neo''', '''FlaxGPTNeoModel'''), ('''gptj''', '''FlaxGPTJModel'''), ('''longt5''', '''FlaxLongT5Model'''), ('''marian''', '''FlaxMarianModel'''), ('''mbart''', '''FlaxMBartModel'''), ('''mt5''', '''FlaxMT5Model'''), ('''opt''', '''FlaxOPTModel'''), ('''pegasus''', '''FlaxPegasusModel'''), ('''regnet''', '''FlaxRegNetModel'''), ('''resnet''', '''FlaxResNetModel'''), ('''roberta''', '''FlaxRobertaModel'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormModel'''), ('''roformer''', '''FlaxRoFormerModel'''), ('''t5''', '''FlaxT5Model'''), ('''vision-text-dual-encoder''', '''FlaxVisionTextDualEncoderModel'''), ('''vit''', '''FlaxViTModel'''), ('''wav2vec2''', '''FlaxWav2Vec2Model'''), ('''whisper''', '''FlaxWhisperModel'''), ('''xglm''', '''FlaxXGLMModel'''), ('''xlm-roberta''', '''FlaxXLMRobertaModel'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for pre-training mapping ('''albert''', '''FlaxAlbertForPreTraining'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForPreTraining'''), ('''big_bird''', '''FlaxBigBirdForPreTraining'''), ('''electra''', '''FlaxElectraForPreTraining'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ('''wav2vec2''', '''FlaxWav2Vec2ForPreTraining'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Masked LM mapping ('''albert''', '''FlaxAlbertForMaskedLM'''), ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''bert''', '''FlaxBertForMaskedLM'''), ('''big_bird''', '''FlaxBigBirdForMaskedLM'''), ('''distilbert''', '''FlaxDistilBertForMaskedLM'''), ('''electra''', '''FlaxElectraForMaskedLM'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''roberta''', '''FlaxRobertaForMaskedLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMaskedLM'''), ('''roformer''', '''FlaxRoFormerForMaskedLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMaskedLM'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('''bart''', '''FlaxBartForConditionalGeneration'''), ('''blenderbot''', '''FlaxBlenderbotForConditionalGeneration'''), ('''blenderbot-small''', '''FlaxBlenderbotSmallForConditionalGeneration'''), ('''encoder-decoder''', '''FlaxEncoderDecoderModel'''), ('''longt5''', '''FlaxLongT5ForConditionalGeneration'''), ('''marian''', '''FlaxMarianMTModel'''), ('''mbart''', '''FlaxMBartForConditionalGeneration'''), ('''mt5''', '''FlaxMT5ForConditionalGeneration'''), ('''pegasus''', '''FlaxPegasusForConditionalGeneration'''), ('''t5''', '''FlaxT5ForConditionalGeneration'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Image-classsification ('''beit''', '''FlaxBeitForImageClassification'''), ('''regnet''', '''FlaxRegNetForImageClassification'''), ('''resnet''', '''FlaxResNetForImageClassification'''), ('''vit''', '''FlaxViTForImageClassification'''), ] ) lowerCAmelCase__ = OrderedDict( [ ('''vision-encoder-decoder''', '''FlaxVisionEncoderDecoderModel'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Causal LM mapping ('''bart''', '''FlaxBartForCausalLM'''), ('''bert''', '''FlaxBertForCausalLM'''), ('''big_bird''', '''FlaxBigBirdForCausalLM'''), ('''electra''', '''FlaxElectraForCausalLM'''), ('''gpt-sw3''', '''FlaxGPT2LMHeadModel'''), ('''gpt2''', '''FlaxGPT2LMHeadModel'''), ('''gpt_neo''', '''FlaxGPTNeoForCausalLM'''), ('''gptj''', '''FlaxGPTJForCausalLM'''), ('''opt''', '''FlaxOPTForCausalLM'''), ('''roberta''', '''FlaxRobertaForCausalLM'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForCausalLM'''), ('''xglm''', '''FlaxXGLMForCausalLM'''), ('''xlm-roberta''', '''FlaxXLMRobertaForCausalLM'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ('''albert''', '''FlaxAlbertForSequenceClassification'''), ('''bart''', '''FlaxBartForSequenceClassification'''), ('''bert''', '''FlaxBertForSequenceClassification'''), ('''big_bird''', '''FlaxBigBirdForSequenceClassification'''), ('''distilbert''', '''FlaxDistilBertForSequenceClassification'''), ('''electra''', '''FlaxElectraForSequenceClassification'''), ('''mbart''', '''FlaxMBartForSequenceClassification'''), ('''roberta''', '''FlaxRobertaForSequenceClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForSequenceClassification'''), ('''roformer''', '''FlaxRoFormerForSequenceClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForSequenceClassification'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Question Answering mapping ('''albert''', '''FlaxAlbertForQuestionAnswering'''), ('''bart''', '''FlaxBartForQuestionAnswering'''), ('''bert''', '''FlaxBertForQuestionAnswering'''), ('''big_bird''', '''FlaxBigBirdForQuestionAnswering'''), ('''distilbert''', '''FlaxDistilBertForQuestionAnswering'''), ('''electra''', '''FlaxElectraForQuestionAnswering'''), ('''mbart''', '''FlaxMBartForQuestionAnswering'''), ('''roberta''', '''FlaxRobertaForQuestionAnswering'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForQuestionAnswering'''), ('''roformer''', '''FlaxRoFormerForQuestionAnswering'''), ('''xlm-roberta''', '''FlaxXLMRobertaForQuestionAnswering'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Token Classification mapping ('''albert''', '''FlaxAlbertForTokenClassification'''), ('''bert''', '''FlaxBertForTokenClassification'''), ('''big_bird''', '''FlaxBigBirdForTokenClassification'''), ('''distilbert''', '''FlaxDistilBertForTokenClassification'''), ('''electra''', '''FlaxElectraForTokenClassification'''), ('''roberta''', '''FlaxRobertaForTokenClassification'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForTokenClassification'''), ('''roformer''', '''FlaxRoFormerForTokenClassification'''), ('''xlm-roberta''', '''FlaxXLMRobertaForTokenClassification'''), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ('''albert''', '''FlaxAlbertForMultipleChoice'''), ('''bert''', '''FlaxBertForMultipleChoice'''), ('''big_bird''', '''FlaxBigBirdForMultipleChoice'''), ('''distilbert''', '''FlaxDistilBertForMultipleChoice'''), ('''electra''', '''FlaxElectraForMultipleChoice'''), ('''roberta''', '''FlaxRobertaForMultipleChoice'''), ('''roberta-prelayernorm''', '''FlaxRobertaPreLayerNormForMultipleChoice'''), ('''roformer''', '''FlaxRoFormerForMultipleChoice'''), ('''xlm-roberta''', '''FlaxXLMRobertaForMultipleChoice'''), ] ) lowerCAmelCase__ = OrderedDict( [ ('''bert''', '''FlaxBertForNextSentencePrediction'''), ] ) lowerCAmelCase__ = OrderedDict( [ ('''speech-encoder-decoder''', '''FlaxSpeechEncoderDecoderModel'''), ('''whisper''', '''FlaxWhisperForConditionalGeneration'''), ] ) lowerCAmelCase__ = OrderedDict( [ ('''whisper''', '''FlaxWhisperForAudioClassification'''), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Union[str, Any] =FLAX_MODEL_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModel) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Optional[int] =FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='''pretraining''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Any =FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='''causal language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Dict =FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='''masked language modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Any =FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='''sequence-to-sequence language modeling''', checkpoint_for_example='''t5-base''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Dict =FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='''sequence classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Dict =FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='''question answering''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Any =FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='''token classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : int =FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='''multiple choice''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Dict =FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='''next sentence prediction''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : int =FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='''image classification''' ) class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Any =FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='''vision-to-text modeling''') class SCREAMING_SNAKE_CASE__ ( _BaseAutoModelClass ): """simple docstring""" a : Optional[Any] =FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='''sequence-to-sequence speech-to-text modeling''' )
645
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } lowercase__ = { "google/pegasus-xsum": 512, } lowercase__ = logging.get_logger(__name__) class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : Any , lowercase_ : int , lowercase_ : Optional[Any]="<pad>" , lowercase_ : Dict="</s>" , lowercase_ : int="<unk>" , lowercase_ : Optional[int]="<mask_2>" , lowercase_ : str="<mask_1>" , lowercase_ : List[str]=None , lowercase_ : List[Any]=103 , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Union[str, Any] , ) -> None: UpperCAmelCase : Any = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) UpperCAmelCase : Optional[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase : Optional[Any] = additional_special_tokens_extended else: UpperCAmelCase : Dict = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , pad_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : Dict = mask_token_sent UpperCAmelCase : Any = vocab_file UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) # add special tokens to encoder dict UpperCAmelCase : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCAmelCase : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def UpperCAmelCase_ ( self : Any ) -> int: return len(self.sp_model ) + self.offset def UpperCAmelCase_ ( self : str ) -> Dict[str, int]: UpperCAmelCase : List[str] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Union[str, Any]: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Optional[int] = None return state def __setstate__( self : List[str] , lowercase_ : Union[str, Any] ) -> Optional[Any]: UpperCAmelCase : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : Any , lowercase_ : str ) -> int: if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCAmelCase : Union[str, Any] = self.sp_model.piece_to_id(lowercase_ ) return sp_id + self.offset def UpperCAmelCase_ ( self : List[str] , lowercase_ : int ) -> str: if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCAmelCase : int = self.sp_model.IdToPiece(index - self.offset ) return token def UpperCAmelCase_ ( self : int , lowercase_ : Optional[Any] ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = [] UpperCAmelCase : str = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Optional[int] = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : int , lowercase_ : List[str]=False ) -> int: return 1 def UpperCAmelCase_ ( self : Tuple , lowercase_ : List[Any] ) -> Any: UpperCAmelCase : List[Any] = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def UpperCAmelCase_ ( self : Dict , lowercase_ : List , lowercase_ : Optional[List] = None , lowercase_ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCAmelCase_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Any=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCAmelCase_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : Union[str, Any] = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : List[Any] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
712
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu lowercase__ = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: lowercase__ = json.load(f) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self : Dict , lowercase_ : Dict ) -> Tuple: return FSMTTokenizer.from_pretrained(lowercase_ ) def UpperCAmelCase_ ( self : Optional[int] , lowercase_ : Dict ) -> Tuple: UpperCAmelCase : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowercase_ ).to(lowercase_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def UpperCAmelCase_ ( self : List[str] , lowercase_ : int , lowercase_ : Any ) -> Optional[int]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality UpperCAmelCase : List[str] = f"""facebook/wmt19-{pair}""" UpperCAmelCase : Optional[int] = self.get_tokenizer(lowercase_ ) UpperCAmelCase : int = self.get_model(lowercase_ ) UpperCAmelCase : List[Any] = bleu_data[pair]['src'] UpperCAmelCase : Optional[int] = bleu_data[pair]['tgt'] UpperCAmelCase : Any = tokenizer(lowercase_ , return_tensors='pt' , truncation=lowercase_ , padding='longest' ).to(lowercase_ ) UpperCAmelCase : List[Any] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) UpperCAmelCase : List[Any] = tokenizer.batch_decode( lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_ ) UpperCAmelCase : Any = calculate_bleu(lowercase_ , lowercase_ ) print(lowercase_ ) self.assertGreaterEqual(scores['bleu'] , lowercase_ )
695
0
import qiskit def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> qiskit.result.counts.Counts: lowercase__ : Optional[int] = qiskit.Aer.get_backend("aer_simulator" ) # Create a Quantum Circuit acting on the q register lowercase__ : Optional[Any] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] ,[0, 1] ) # Execute the circuit on the qasm simulator lowercase__ : int = qiskit.execute(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,shots=10_00 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __a : str = single_qubit_measure(2, 2) print(f'Total count for various states are: {counts}')
397
from math import factorial def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) lowercase__ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase__ : Tuple = float(factorial(SCREAMING_SNAKE_CASE_ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
397
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _UpperCamelCase : '''simple docstring''' @staticmethod def __UpperCamelCase ( *a : Any , **a : Optional[int] ) -> Optional[Any]: """simple docstring""" pass def lowerCamelCase__ ( _a): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a_ = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def __UpperCamelCase ( self : Tuple , a : Union[str, Any] , a : Any , a : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = pipeline( "document-question-answering" , model=a , tokenizer=a , image_processor=a ) SCREAMING_SNAKE_CASE : Dict = INVOICE_URL SCREAMING_SNAKE_CASE : int = list(zip(*apply_tesseract(load_image(a ) , a , "" ) ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = "What is the placebo?" SCREAMING_SNAKE_CASE : List[str] = [ { "image": load_image(a ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def __UpperCamelCase ( self : List[str] , a : List[Any] , a : Any ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = dqa_pipeline(a , top_k=2 ) self.assertEqual( a , [ [ {"score": ANY(a ), "answer": ANY(a ), "start": ANY(a ), "end": ANY(a )}, {"score": ANY(a ), "answer": ANY(a ), "start": ANY(a ), "end": ANY(a )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def __UpperCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) SCREAMING_SNAKE_CASE : int = INVOICE_URL SCREAMING_SNAKE_CASE : int = "How many cats are there?" SCREAMING_SNAKE_CASE : Optional[int] = [ {"score": 0.0001, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0001, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual(nested_simplify(a , decimals=4 ) , a ) SCREAMING_SNAKE_CASE : Any = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(a , decimals=4 ) , a ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably SCREAMING_SNAKE_CASE : Tuple = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE : str = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual(a , [] ) # We can optionnally pass directly the words and bounding boxes SCREAMING_SNAKE_CASE : Optional[int] = "./tests/fixtures/tests_samples/COCO/000000039769.png" SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : str = dqa_pipeline(image=a , question=a , words=a , boxes=a , top_k=2 ) self.assertEqual(a , [] ) @slow @require_torch @require_detectrona @require_pytesseract def __UpperCamelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) SCREAMING_SNAKE_CASE : Any = INVOICE_URL SCREAMING_SNAKE_CASE : Any = "What is the invoice number?" SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9944, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0009, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def __UpperCamelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE : Optional[Any] = INVOICE_URL SCREAMING_SNAKE_CASE : int = "What is the invoice number?" SCREAMING_SNAKE_CASE : Any = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE : Tuple = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9974, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9948, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def __UpperCamelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a ) SCREAMING_SNAKE_CASE : List[str] = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a , revision="3dc6de3" , ) SCREAMING_SNAKE_CASE : List[str] = INVOICE_URL SCREAMING_SNAKE_CASE : int = "What is the invoice number?" SCREAMING_SNAKE_CASE : str = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) SCREAMING_SNAKE_CASE : Dict = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) SCREAMING_SNAKE_CASE : int = list(zip(*apply_tesseract(load_image(a ) , a , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE : List[Any] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.4251, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0819, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=a ) SCREAMING_SNAKE_CASE : Dict = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=a , revision="3dc6de3" , max_seq_len=50 , ) SCREAMING_SNAKE_CASE : Union[str, Any] = INVOICE_URL SCREAMING_SNAKE_CASE : List[Any] = "What is the invoice number?" SCREAMING_SNAKE_CASE : Dict = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) SCREAMING_SNAKE_CASE : int = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) SCREAMING_SNAKE_CASE : int = list(zip(*apply_tesseract(load_image(a ) , a , "" ) ) ) # This model should also work if `image` is set to None SCREAMING_SNAKE_CASE : Any = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(a , decimals=4 ) , [ {"score": 0.9999, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9998, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def __UpperCamelCase ( self : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) SCREAMING_SNAKE_CASE : int = INVOICE_URL SCREAMING_SNAKE_CASE : Union[str, Any] = "What is the invoice number?" SCREAMING_SNAKE_CASE : Union[str, Any] = dqa_pipeline(image=a , question=a , top_k=2 ) self.assertEqual(nested_simplify(a , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" pass
705
from __future__ import annotations import math import random from typing import Any class _UpperCamelCase : '''simple docstring''' def __init__( self : Union[str, Any] ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : list[Any] = [] SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : int = 0 def __UpperCamelCase ( self : List[Any] ) -> bool: """simple docstring""" return self.head == self.tail def __UpperCamelCase ( self : Optional[int] , a : Any ) -> None: """simple docstring""" self.data.append(a ) SCREAMING_SNAKE_CASE : List[str] = self.tail + 1 def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.data[self.head] SCREAMING_SNAKE_CASE : List[str] = self.head + 1 return ret def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" return self.tail - self.head def __UpperCamelCase ( self : Optional[Any] ) -> None: """simple docstring""" print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] , a : Any ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = data SCREAMING_SNAKE_CASE : MyNode | None = None SCREAMING_SNAKE_CASE : MyNode | None = None SCREAMING_SNAKE_CASE : int = 1 def __UpperCamelCase ( self : Tuple ) -> Any: """simple docstring""" return self.data def __UpperCamelCase ( self : Optional[int] ) -> MyNode | None: """simple docstring""" return self.left def __UpperCamelCase ( self : Union[str, Any] ) -> MyNode | None: """simple docstring""" return self.right def __UpperCamelCase ( self : Union[str, Any] ) -> int: """simple docstring""" return self.height def __UpperCamelCase ( self : Union[str, Any] , a : Any ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = data def __UpperCamelCase ( self : Any , a : MyNode | None ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = node def __UpperCamelCase ( self : List[str] , a : MyNode | None ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Any = node def __UpperCamelCase ( self : Optional[int] , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = height def lowerCamelCase__ ( _a): if node is None: return 0 return node.get_height() def lowerCamelCase__ ( _a , _a): if a > b: return a return b def lowerCamelCase__ ( _a): print("left rotation node:" , node.get_data()) SCREAMING_SNAKE_CASE : List[str] = node.get_left() assert ret is not None node.set_left(ret.get_right()) ret.set_right(_a) SCREAMING_SNAKE_CASE : List[Any] = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(_a) SCREAMING_SNAKE_CASE : Optional[int] = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(_a) return ret def lowerCamelCase__ ( _a): print("right rotation node:" , node.get_data()) SCREAMING_SNAKE_CASE : Dict = node.get_right() assert ret is not None node.set_right(ret.get_left()) ret.set_left(_a) SCREAMING_SNAKE_CASE : Union[str, Any] = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(_a) SCREAMING_SNAKE_CASE : Tuple = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(_a) return ret def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(_a)) return right_rotation(_a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : int = node.get_right() assert right_child is not None node.set_right(right_rotation(_a)) return left_rotation(_a) def lowerCamelCase__ ( _a , _a): if node is None: return MyNode(_a) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _a)) if ( get_height(node.get_left()) - get_height(node.get_right()) == 2 ): # an unbalance detected SCREAMING_SNAKE_CASE : List[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child SCREAMING_SNAKE_CASE : Tuple = right_rotation(_a) else: SCREAMING_SNAKE_CASE : int = lr_rotation(_a) else: node.set_right(insert_node(node.get_right() , _a)) if get_height(node.get_right()) - get_height(node.get_left()) == 2: SCREAMING_SNAKE_CASE : Any = node.get_right() assert right_child is not None if data < right_child.get_data(): SCREAMING_SNAKE_CASE : Union[str, Any] = rl_rotation(_a) else: SCREAMING_SNAKE_CASE : int = left_rotation(_a) SCREAMING_SNAKE_CASE : str = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(_a) return node def lowerCamelCase__ ( _a): while True: SCREAMING_SNAKE_CASE : List[Any] = root.get_right() if right_child is None: break SCREAMING_SNAKE_CASE : str = right_child return root.get_data() def lowerCamelCase__ ( _a): while True: SCREAMING_SNAKE_CASE : Optional[int] = root.get_left() if left_child is None: break SCREAMING_SNAKE_CASE : List[str] = left_child return root.get_data() def lowerCamelCase__ ( _a , _a): SCREAMING_SNAKE_CASE : Any = root.get_left() SCREAMING_SNAKE_CASE : List[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: SCREAMING_SNAKE_CASE : Any = get_left_most(_a) root.set_data(_a) root.set_right(del_node(_a , _a)) elif left_child is not None: SCREAMING_SNAKE_CASE : Dict = left_child elif right_child is not None: SCREAMING_SNAKE_CASE : str = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data") return root else: root.set_left(del_node(_a , _a)) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_a , _a)) if get_height(_a) - get_height(_a) == 2: assert right_child is not None if get_height(right_child.get_right()) > get_height(right_child.get_left()): SCREAMING_SNAKE_CASE : List[str] = left_rotation(_a) else: SCREAMING_SNAKE_CASE : int = rl_rotation(_a) elif get_height(_a) - get_height(_a) == -2: assert left_child is not None if get_height(left_child.get_left()) > get_height(left_child.get_right()): SCREAMING_SNAKE_CASE : str = right_rotation(_a) else: SCREAMING_SNAKE_CASE : Optional[Any] = lr_rotation(_a) SCREAMING_SNAKE_CASE : List[str] = my_max(get_height(root.get_right()) , get_height(root.get_left())) + 1 root.set_height(_a) return root class _UpperCamelCase : '''simple docstring''' def __init__( self : str ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : MyNode | None = None def __UpperCamelCase ( self : Any ) -> int: """simple docstring""" return get_height(self.root ) def __UpperCamelCase ( self : List[Any] , a : Any ) -> None: """simple docstring""" print("insert:" + str(a ) ) SCREAMING_SNAKE_CASE : Any = insert_node(self.root , a ) def __UpperCamelCase ( self : List[Any] , a : Any ) -> None: """simple docstring""" print("delete:" + str(a ) ) if self.root is None: print("Tree is empty!" ) return SCREAMING_SNAKE_CASE : Optional[int] = del_node(self.root , a ) def __str__( self : Optional[int] , ) -> str: # a level traversale, gives a more intuitive look on the tree """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = "" SCREAMING_SNAKE_CASE : Optional[int] = MyQueue() q.push(self.root ) SCREAMING_SNAKE_CASE : Any = self.get_height() if layer == 0: return output SCREAMING_SNAKE_CASE : Dict = 0 while not q.is_empty(): SCREAMING_SNAKE_CASE : Dict = q.pop() SCREAMING_SNAKE_CASE : List[Any] = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(a ) q.push(a ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space SCREAMING_SNAKE_CASE : List[str] = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , a ) - 1: SCREAMING_SNAKE_CASE : List[str] = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowerCamelCase__ ( ): import doctest doctest.testmod() if __name__ == "__main__": _test() a_ = AVLtree() a_ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
193
0
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( __snake_case : int ) -> bool: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" __A : Optional[int] = True # 0 and 1 are none primes. if number <= 1: __A : Tuple = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A : Union[str, Any] = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A : List[str] = list(range(2 , n + 1 ) ) __A : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A : Any = 0 # filters actual prime numbers. __A : Dict = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : str ) -> Union[str, Any]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" __A : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : List[Any] ) -> List[str]: assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" __A : Optional[int] = [] # this list will be returns of the function. # potential prime number factors. __A : int = 2 __A : Tuple = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A : Any = 0 # prime factorization of 'number' __A : Dict = prime_factorization(__snake_case ) __A : Union[str, Any] = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> str: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A : Tuple = 0 # prime factorization of 'number' __A : Any = prime_factorization(__snake_case ) __A : Any = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( __snake_case : List[str] ) -> str: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" __A : List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A : List[str] = get_prime_numbers(__snake_case ) __A : Tuple = len(__snake_case ) # run variable for while-loops. __A : Optional[int] = 0 __A : Union[str, Any] = None # exit variable. for break up the loops __A : str = True while i < len_pn and loop: __A : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : int ) -> Any: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A : List[str] = 0 while numbera != 0: __A : Optional[int] = numbera % numbera __A : Dict = numbera __A : List[Any] = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : List[Any] ) -> List[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A : Optional[Any] = prime_factorization(__snake_case ) __A : Union[str, Any] = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: __A : str = [] __A : Union[str, Any] = [] __A : Union[str, Any] = max(__snake_case , __snake_case ) __A : Union[str, Any] = 0 __A : Tuple = 0 __A : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A : Dict = prime_fac_a.count(__snake_case ) __A : List[str] = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: __A : int = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A : str = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[Any]: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" __A : List[Any] = 0 __A : str = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Dict: assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A : Any = p_number_a + 1 # jump to the next number __A : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( __snake_case : Dict ) -> str: assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" __A : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Dict: assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" __A : Optional[Any] = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( __snake_case : Any , __snake_case : int ) -> List[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A : Optional[int] = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( __snake_case : Tuple ) -> int: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" __A : Optional[int] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( __snake_case : str ) -> Dict: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" __A : Union[str, Any] = 0 __A : List[str] = 1 __A : Dict = 1 # this will be return for _ in range(n - 1 ): __A : str = ans ans += fiba __A : List[Any] = tmp return ans
8
'''simple docstring''' import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) lowercase__ : Any = '''hf-internal-testing/tiny-random-bert''' lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, '''models--hf-internal-testing--tiny-random-bert''') lowercase__ : List[Any] = '''9b8c223d42b2188cb49d29af482996f9d0f3e5a6''' class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_UpperCAmelCase)) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_UpperCAmelCase , _UpperCAmelCase))) with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Any = f.read() self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) self.assertTrue(os.path.isfile(_UpperCAmelCase)) # File is cached at the same place the second time. __A : Tuple = cached_file(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Using a specific revision to test the full commit hash. __A : List[Any] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='9b8c223') self.assertEqual(_UpperCAmelCase , os.path.join(_UpperCAmelCase , 'snapshots' , _UpperCAmelCase , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): __A : Dict = cached_file('tiny-random-bert' , _UpperCAmelCase) with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): __A : Optional[int] = cached_file(_UpperCAmelCase , _UpperCAmelCase , revision='aaaa') with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : int = cached_file(_UpperCAmelCase , 'conf') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with self.assertRaisesRegex(_UpperCAmelCase , 'does not appear to have a file named'): __A : Any = cached_file(_UpperCAmelCase , 'conf') with open(os.path.join(_UpperCAmelCase , 'refs' , 'main')) as f: __A : Dict = f.read() self.assertTrue(os.path.isfile(os.path.join(_UpperCAmelCase , '.no_exist' , _UpperCAmelCase , 'conf'))) __A : List[Any] = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : str = cached_file(_UpperCAmelCase , 'conf' , local_files_only=_UpperCAmelCase , _raise_exceptions_for_missing_entries=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) __A : List[str] = mock.Mock() __A : Dict = 500 __A : List[str] = {} __A : List[Any] = HTTPError __A : Optional[Any] = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=_UpperCAmelCase) as mock_head: __A : Dict = cached_file(_UpperCAmelCase , 'conf' , _raise_exceptions_for_connection_errors=_UpperCAmelCase) self.assertIsNone(_UpperCAmelCase) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertTrue(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) self.assertFalse(has_file('hf-internal-testing/tiny-bert-pt-only' , _UpperCAmelCase)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.assertIsNone(get_file_from_repo('bert-base-cased' , 'ahah.txt')) # The function raises if the repository does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid model identifier'): get_file_from_repo('bert-base-case' , _UpperCAmelCase) # The function raises if the revision does not exist. with self.assertRaisesRegex(_UpperCAmelCase , 'is not a valid git identifier'): get_file_from_repo('bert-base-cased' , _UpperCAmelCase , revision='ahaha') __A : List[str] = get_file_from_repo('bert-base-cased' , _UpperCAmelCase) # The name is the cached name which is not very easy to test, so instead we load the content. __A : List[str] = json.loads(open(_UpperCAmelCase , 'r').read()) self.assertEqual(config['hidden_size'] , 768) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __A : Tuple = Path(_UpperCAmelCase) / 'a.txt' filename.touch() self.assertEqual(get_file_from_repo(_UpperCAmelCase , 'a.txt') , str(_UpperCAmelCase)) self.assertIsNone(get_file_from_repo(_UpperCAmelCase , 'b.txt'))
8
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : str , *a : Tuple , **a : List[str] ) -> Dict: """simple docstring""" warnings.warn( "The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use CLIPImageProcessor instead." , a , ) super().__init__(*a , **a )
716
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__A ) , 'Tatoeba directory does not exist.' ) class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCamelCase ( self : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=a ) @slow def __UpperCamelCase ( self : List[Any] ) -> int: """simple docstring""" self.resolver.convert_models(["heb-eng"] ) @slow def __UpperCamelCase ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Optional[Any] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=a ) assert mmeta["long_pair"] == "heb-eng"
193
0
UpperCamelCase__ : List[Any] = '''Alexander Joslin''' import operator as op from .stack import Stack def __UpperCAmelCase ( lowerCamelCase_ : str ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} SCREAMING_SNAKE_CASE_ : Stack[int] = Stack() SCREAMING_SNAKE_CASE_ : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowerCamelCase_ ) ) elif i in operators: # RULE 2 operator_stack.push(lowerCamelCase_ ) elif i == ")": # RULE 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = operator_stack.peek() operator_stack.pop() SCREAMING_SNAKE_CASE_ : Union[str, Any] = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ : Tuple = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE_ : Any = operators[opr](lowerCamelCase_ , lowerCamelCase_ ) operand_stack.push(lowerCamelCase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCamelCase__ : Optional[int] = '''(5 + ((4 * 2) * (2 + 3)))''' # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
105
import os import numpy import onnx def __UpperCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : int = a.name SCREAMING_SNAKE_CASE_ : Dict = b.name SCREAMING_SNAKE_CASE_ : str = '' SCREAMING_SNAKE_CASE_ : Optional[Any] = '' SCREAMING_SNAKE_CASE_ : Optional[Any] = a == b SCREAMING_SNAKE_CASE_ : str = name_a SCREAMING_SNAKE_CASE_ : str = name_b return res def __UpperCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : str , lowerCamelCase_ : Dict ) -> Optional[int]: """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict ) -> List[Any]: """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Tuple , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i SCREAMING_SNAKE_CASE_ : List[str] = inits[i].name SCREAMING_SNAKE_CASE_ : str = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( lowerCamelCase_ : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = os.path.dirname(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Tuple = os.path.basename(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Any = list(model.graph.initializer ) SCREAMING_SNAKE_CASE_ : int = set() SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : int = 0 for i in range(len(lowerCamelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCamelCase_ ) dup_set.add(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : int = inits[j].data_type SCREAMING_SNAKE_CASE_ : str = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase_ ) total_reduced_size += mem_size SCREAMING_SNAKE_CASE_ : int = inits[i].name SCREAMING_SNAKE_CASE_ : List[Any] = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 10_24 / 10_24 / 10_24 , 'GB' ) SCREAMING_SNAKE_CASE_ : int = sorted(lowerCamelCase_ ) _remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'optimized_' + model_file_name SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) onnx.save(lowerCamelCase_ , lowerCamelCase_ ) return new_model
105
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py snake_case = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. snake_case = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. snake_case = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") snake_case = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. snake_case = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""") # Fill this with tuples (pipeline_tag, model_mapping, auto_model) snake_case = [ ("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""), ("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""), ("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""), ("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""), ("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""), ("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""), ("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""), ("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""), ("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""), ( """zero-shot-object-detection""", """MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForZeroShotObjectDetection""", ), ("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""), ("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""), ("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""), ("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""), ( """table-question-answering""", """MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForTableQuestionAnswering""", ), ("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""), ("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""), ( """next-sentence-prediction""", """MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""", """AutoModelForNextSentencePrediction""", ), ( """audio-frame-classification""", """MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioFrameClassification""", ), ("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""), ( """document-question-answering""", """MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForDocumentQuestionAnswering""", ), ( """visual-question-answering""", """MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForVisualQuestionAnswering""", ), ("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""), ( """zero-shot-image-classification""", """MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForZeroShotImageClassification""", ), ("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""), ("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""), ("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""), ] def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , lowercase ) return [m.group(0 ) for m in matches] def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES SCREAMING_SNAKE_CASE : Any = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. SCREAMING_SNAKE_CASE : Dict = collections.defaultdict(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = collections.defaultdict(lowercase ) SCREAMING_SNAKE_CASE : str = collections.defaultdict(lowercase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = None if _re_tf_models.match(lowercase ) is not None: SCREAMING_SNAKE_CASE : Optional[Any] = tf_models SCREAMING_SNAKE_CASE : Optional[int] = _re_tf_models.match(lowercase ).groups()[0] elif _re_flax_models.match(lowercase ) is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = flax_models SCREAMING_SNAKE_CASE : List[str] = _re_flax_models.match(lowercase ).groups()[0] elif _re_pt_models.match(lowercase ) is not None: SCREAMING_SNAKE_CASE : Dict = pt_models SCREAMING_SNAKE_CASE : Dict = _re_pt_models.match(lowercase ).groups()[0] if lookup_dict is not None: while len(lowercase ) > 0: if attr_name in model_prefix_to_model_type: SCREAMING_SNAKE_CASE : Optional[int] = True break # Try again after removing the last word in the name SCREAMING_SNAKE_CASE : str = "".join(camel_case_split(lowercase )[:-1] ) SCREAMING_SNAKE_CASE : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) SCREAMING_SNAKE_CASE : List[str] = list(lowercase ) all_models.sort() SCREAMING_SNAKE_CASE : str = {"model_type": all_models} SCREAMING_SNAKE_CASE : int = [pt_models[t] for t in all_models] SCREAMING_SNAKE_CASE : Tuple = [tf_models[t] for t in all_models] SCREAMING_SNAKE_CASE : Any = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure SCREAMING_SNAKE_CASE : str = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE : Dict = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: SCREAMING_SNAKE_CASE : Optional[int] = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: SCREAMING_SNAKE_CASE : Optional[Any] = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. SCREAMING_SNAKE_CASE : Optional[int] = "AutoTokenizer" SCREAMING_SNAKE_CASE : Dict = [processors[t] for t in all_models] return pd.DataFrame(lowercase ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: SCREAMING_SNAKE_CASE : List[str] = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}'''] SCREAMING_SNAKE_CASE : Union[str, Any] = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}'''] # Loop through all three frameworks for module, cls, mapping in zip(lowercase , lowercase , lowercase ): # The type of pipeline may not exist in this framework if not hasattr(lowercase , lowercase ): continue # First extract all model_names SCREAMING_SNAKE_CASE : Union[str, Any] = [] for name in getattr(lowercase , lowercase ).values(): if isinstance(lowercase , lowercase ): model_names.append(lowercase ) else: model_names.extend(list(lowercase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = get_frameworks_table() SCREAMING_SNAKE_CASE : Any = Dataset.from_pandas(lowercase ) SCREAMING_SNAKE_CASE : Dict = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = Dataset.from_json(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(lowercase ) ) } SCREAMING_SNAKE_CASE : Optional[Any] = update_pipeline_and_auto_class_table(lowercase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. SCREAMING_SNAKE_CASE : Any = sorted(table.keys() ) SCREAMING_SNAKE_CASE : Dict = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) SCREAMING_SNAKE_CASE : Optional[Any] = Dataset.from_pandas(lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(lowercase , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(lowercase , "pipeline_tags.json" ) ) if commit_sha is not None: SCREAMING_SNAKE_CASE : Any = ( F'''Update with commit {commit_sha}\n\nSee: ''' F'''https://github.com/huggingface/transformers/commit/{commit_sha}''' ) else: SCREAMING_SNAKE_CASE : str = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=lowercase , repo_type="dataset" , token=lowercase , commit_message=lowercase , ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} SCREAMING_SNAKE_CASE : Optional[Any] = transformers_module.pipelines.SUPPORTED_TASKS SCREAMING_SNAKE_CASE : List[Any] = [] for key in pipeline_tasks: if key not in in_table: SCREAMING_SNAKE_CASE : str = pipeline_tasks[key]["pt"] if isinstance(lowercase , (list, tuple) ): SCREAMING_SNAKE_CASE : Optional[Any] = model[0] SCREAMING_SNAKE_CASE : Union[str, Any] = model.__name__ if model not in in_table.values(): missing.append(lowercase ) if len(lowercase ) > 0: SCREAMING_SNAKE_CASE : str = ", ".join(lowercase ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " F'''`utils/update_metadata.py`: {msg}. Please add them!''' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""") parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""") parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""") snake_case = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
705
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = HfArgumentParser(lowercase ) SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses()[0] SCREAMING_SNAKE_CASE : Optional[Any] = TensorFlowBenchmark(args=lowercase ) try: SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: SCREAMING_SNAKE_CASE : int = "Arg --no_{0} is no longer used, please use --no-{0} instead." SCREAMING_SNAKE_CASE : Optional[int] = " ".join(str(lowercase ).split(" " )[:-1] ) SCREAMING_SNAKE_CASE : Union[str, Any] = "" SCREAMING_SNAKE_CASE : Any = eval(str(lowercase ).split(" " )[-1] ) SCREAMING_SNAKE_CASE : List[str] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowercase ) if len(lowercase ) > 0: SCREAMING_SNAKE_CASE : Optional[int] = full_error_msg + begin_error_msg + str(lowercase ) raise ValueError(lowercase ) benchmark.run() if __name__ == "__main__": main()
488
0
"""simple docstring""" import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets lowercase__ = "\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" lowercase__ = "\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" lowercase__ = "\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def __magic_name__ ( _lowerCamelCase : Any ): def remove_articles(_lowerCamelCase : Optional[int] ): __a : Any = re.compile(r"""\b(a|an|the)\b""" , re.UNICODE ) return re.sub(_lowerCamelCase , """ """ , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : Any ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : int ): __a : Any = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : int ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Dict ): return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def __magic_name__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ): __a : int = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 1_0_0 def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] ): __a : Union[str, Any] = [rgram for rgrams in rgramslist for rgram in rgrams] __a : Optional[int] = Counter(_lowerCamelCase ) __a : List[Any] = Counter(_lowerCamelCase ) __a : Union[str, Any] = Counter() for sgram, scount in sgramcounter.items(): __a : Any = scount * numref __a : Optional[Any] = Counter(_lowerCamelCase ) __a : str = Counter() for cgram, ccount in cgramcounter.items(): __a : int = ccount * numref # KEEP __a : Tuple = sgramcounter_rep & cgramcounter_rep __a : Dict = keepgramcounter_rep & rgramcounter __a : Any = sgramcounter_rep & rgramcounter __a : str = 0 __a : Any = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __a : Optional[Any] = 1 __a : str = 1 if len(_lowerCamelCase ) > 0: __a : Optional[Any] = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __a : Optional[int] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __a : Optional[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: __a : Union[str, Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __a : int = sgramcounter_rep - cgramcounter_rep __a : Dict = delgramcounter_rep - rgramcounter __a : Dict = sgramcounter_rep - rgramcounter __a : List[Any] = 0 __a : Any = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __a : Union[str, Any] = 1 if len(_lowerCamelCase ) > 0: __a : Union[str, Any] = deltmpscorea / len(_lowerCamelCase ) # ADDITION __a : List[Any] = set(_lowerCamelCase ) - set(_lowerCamelCase ) __a : List[Any] = set(_lowerCamelCase ) & set(_lowerCamelCase ) __a : Any = set(_lowerCamelCase ) - set(_lowerCamelCase ) __a : List[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __a : Optional[int] = 1 __a : Union[str, Any] = 1 if len(_lowerCamelCase ) > 0: __a : List[str] = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __a : Dict = addtmpscore / len(_lowerCamelCase ) __a : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: __a : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def __magic_name__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int] ): __a : List[Any] = len(_lowerCamelCase ) __a : Optional[Any] = ssent.split(""" """ ) __a : Optional[int] = csent.split(""" """ ) __a : List[Any] = [] __a : Tuple = [] __a : List[str] = [] __a : int = [] __a : List[Any] = [] __a : Optional[Any] = [] __a : List[Any] = [] __a : List[Any] = [] __a : Optional[int] = [] __a : Any = [] for rsent in rsents: __a : Dict = rsent.split(""" """ ) __a : Tuple = [] __a : Tuple = [] __a : Dict = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: __a : Tuple = ragrams[i] + """ """ + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: __a : str = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: __a : List[Any] = ragrams[i] + """ """ + ragrams[i + 1] + """ """ + ragrams[i + 2] + """ """ + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: __a : str = sagrams[i] + """ """ + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: __a : List[Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: __a : List[Any] = sagrams[i] + """ """ + sagrams[i + 1] + """ """ + sagrams[i + 2] + """ """ + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: __a : Optional[int] = cagrams[i] + """ """ + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: __a : str = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: __a : Union[str, Any] = cagrams[i] + """ """ + cagrams[i + 1] + """ """ + cagrams[i + 2] + """ """ + cagrams[i + 3] cagrams.append(_lowerCamelCase ) ((__a) , (__a) , (__a)) : List[Any] = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((__a) , (__a) , (__a)) : List[Any] = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((__a) , (__a) , (__a)) : Dict = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((__a) , (__a) , (__a)) : Dict = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) __a : Any = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __a : Union[str, Any] = sum([delascore, delascore, delascore, delascore] ) / 4 __a : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 __a : Optional[Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : bool = True , _lowerCamelCase : str = "13a" , _lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __a : str = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __a : int = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: __a : str = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": __a : int = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": __a : Dict = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: __a : str = sentence if not return_str: __a : str = normalized_sent.split() return normalized_sent def __magic_name__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : str , _lowerCamelCase : int ): if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("""Sources length must match predictions and references lengths.""" ) __a : Optional[int] = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) __a : List[str] = sari_score / len(_lowerCamelCase ) return 1_0_0 * sari_score def __magic_name__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Optional[int]="exp" , _lowerCamelCase : str=None , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Optional[int]=False , ): __a : str = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) __a : Optional[int] = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] __a : str = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def lowerCAmelCase__(self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=[ """https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py""", """https://github.com/cocoxu/simplification/blob/master/SARI.py""", """https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py""", """https://github.com/mjpost/sacreBLEU""", ] , reference_urls=[ """https://www.aclweb.org/anthology/Q16-1029.pdf""", """https://github.com/mjpost/sacreBLEU""", """https://en.wikipedia.org/wiki/BLEU""", """https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213""", ] , ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase ): '''simple docstring''' __a : str = {} result.update({"""sari""": compute_sari(sources=_lowercase , predictions=_lowercase , references=_lowercase )} ) result.update({"""sacrebleu""": compute_sacrebleu(predictions=_lowercase , references=_lowercase )} ) result.update({"""exact""": compute_em(predictions=_lowercase , references=_lowercase )} ) return result
581
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. lowercase__ = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. lowercase__ = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. lowercase__ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str ): __a : List[str] = len([g for position, g in enumerate(_lowerCamelCase ) if g == main_target[position]] ) return (item, float(_lowerCamelCase )) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str ): __a : Tuple = random.randint(0 , len(_lowerCamelCase ) - 1 ) __a : Any = parent_a[:random_slice] + parent_a[random_slice:] __a : Dict = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : list[str] ): __a : List[str] = list(_lowerCamelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: __a : Dict = random.choice(_lowerCamelCase ) return "".join(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : tuple[str, float] , _lowerCamelCase : list[tuple[str, float]] , _lowerCamelCase : list[str] , ): __a : Tuple = [] # Generate more children proportionally to the fitness score. __a : Union[str, Any] = int(parent_a[1] * 1_0_0 ) + 1 __a : Optional[Any] = 1_0 if child_n >= 1_0 else child_n for _ in range(_lowerCamelCase ): __a : Any = population_score[random.randint(0 , _lowerCamelCase )][0] __a , __a : Union[str, Any] = crossover(parent_a[0] , _lowerCamelCase ) # Append new string to the population list. pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) pop.append(mutate(_lowerCamelCase , _lowerCamelCase ) ) return pop def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : list[str] , _lowerCamelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: __a : Optional[Any] = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_lowerCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. __a : Optional[int] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: __a : List[Any] = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_lowerCamelCase ) # Generate random starting population. __a : Dict = [] for _ in range(_lowerCamelCase ): population.append("""""".join([random.choice(_lowerCamelCase ) for i in range(len(_lowerCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. __a , __a : Tuple = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_lowerCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. __a : Any = [evaluate(_lowerCamelCase , _lowerCamelCase ) for item in population] # Check if there is a matching evolution. __a : Union[str, Any] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] , reverse=_lowerCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 1_0 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. __a : Optional[Any] = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_lowerCamelCase ) # Normalize population score to be between 0 and 1. __a : Tuple = [ (item, score / len(_lowerCamelCase )) for item, score in population_score ] # This is selection for i in range(_lowerCamelCase ): population.extend(select(population_score[int(_lowerCamelCase )] , _lowerCamelCase , _lowerCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_lowerCamelCase ) > N_POPULATION: break if __name__ == "__main__": lowercase__ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) lowercase__ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) lowercase__ , lowercase__ , lowercase__ = basic(target_str, genes_list) print( f'\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}' )
581
1
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : str = AudioLDMPipeline snake_case_ : Any = TEXT_TO_AUDIO_PARAMS snake_case_ : Tuple = TEXT_TO_AUDIO_BATCH_PARAMS snake_case_ : Dict = frozenset( [ """num_inference_steps""", """num_waveforms_per_prompt""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" torch.manual_seed(0) _snake_case : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=(32, 64) , class_embed_type="""simple_projection""" , projection_class_embeddings_input_dim=32 , class_embeddings_concat=lowerCAmelCase , ) _snake_case : List[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0) _snake_case : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=1 , out_channels=1 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0) _snake_case : Any = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , projection_dim=32 , ) _snake_case : Any = ClapTextModelWithProjection(lowerCAmelCase) _snake_case : List[str] = RobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-roberta""" , model_max_length=77) _snake_case : List[Any] = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6000 , upsample_initial_channel=16 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=lowerCAmelCase , ) _snake_case : Tuple = SpeechTaHifiGan(lowerCAmelCase) _snake_case : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """vocoder""": vocoder, } return components def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=0) -> int: """simple docstring""" if str(lowerCAmelCase).startswith("""mps"""): _snake_case : List[str] = torch.manual_seed(lowerCAmelCase) else: _snake_case : Optional[Any] = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Tuple = { """prompt""": """A hammer hitting a wooden surface""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, } return inputs def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Dict = self.get_dummy_components() _snake_case : Optional[Any] = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Optional[int] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : str = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Tuple = audioldm_pipe(**lowerCAmelCase) _snake_case : int = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 256 _snake_case : Union[str, Any] = audio[:10] _snake_case : Union[str, Any] = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.get_dummy_components() _snake_case : Any = AudioLDMPipeline(**lowerCAmelCase) _snake_case : int = audioldm_pipe.to(lowerCAmelCase) _snake_case : str = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : str = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[Any] = 3 * [inputs["""prompt"""]] # forward _snake_case : str = audioldm_pipe(**lowerCAmelCase) _snake_case : Dict = output.audios[0] _snake_case : Dict = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[str] = 3 * [inputs.pop("""prompt""")] _snake_case : List[Any] = audioldm_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) _snake_case : List[Any] = text_inputs["""input_ids"""].to(lowerCAmelCase) _snake_case : str = audioldm_pipe.text_encoder( lowerCAmelCase , ) _snake_case : Optional[int] = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state _snake_case : Tuple = F.normalize(lowerCAmelCase , dim=-1) _snake_case : List[Any] = prompt_embeds # forward _snake_case : Union[str, Any] = audioldm_pipe(**lowerCAmelCase) _snake_case : str = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any]) -> Dict: """simple docstring""" _snake_case : List[Any] = self.get_dummy_components() _snake_case : Optional[Any] = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Tuple = audioldm_pipe.to(lowerCAmelCase) _snake_case : List[Any] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[int] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Optional[Any] = 3 * ["""this is a negative prompt"""] _snake_case : int = negative_prompt _snake_case : Dict = 3 * [inputs["""prompt"""]] # forward _snake_case : Dict = audioldm_pipe(**lowerCAmelCase) _snake_case : Union[str, Any] = output.audios[0] _snake_case : str = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Union[str, Any] = 3 * [inputs.pop("""prompt""")] _snake_case : Tuple = [] for p in [prompt, negative_prompt]: _snake_case : Optional[Any] = audioldm_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) _snake_case : Any = text_inputs["""input_ids"""].to(lowerCAmelCase) _snake_case : int = audioldm_pipe.text_encoder( lowerCAmelCase , ) _snake_case : Optional[Any] = text_embeds.text_embeds # additional L_2 normalization over each hidden-state _snake_case : str = F.normalize(lowerCAmelCase , dim=-1) embeds.append(lowerCAmelCase) _snake_case , _snake_case : int = embeds # forward _snake_case : List[str] = audioldm_pipe(**lowerCAmelCase) _snake_case : Optional[Any] = output.audios[0] assert np.abs(audio_a - audio_a).max() < 1E-2 def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : List[Any] = self.get_dummy_components() _snake_case : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase) _snake_case : Tuple = AudioLDMPipeline(**lowerCAmelCase) _snake_case : str = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[Any] = """egg cracking""" _snake_case : Optional[Any] = audioldm_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase) _snake_case : List[str] = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 256 _snake_case : int = audio[:10] _snake_case : Any = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032]) assert np.abs(audio_slice - expected_slice).max() < 1E-2 def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Any = self.get_dummy_components() _snake_case : int = PNDMScheduler(skip_prk_steps=lowerCAmelCase) _snake_case : Tuple = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Union[str, Any] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = """A hammer hitting a wooden surface""" # test num_waveforms_per_prompt=1 (default) _snake_case : List[Any] = audioldm_pipe(lowerCAmelCase , num_inference_steps=2).audios assert audios.shape == (1, 256) # test num_waveforms_per_prompt=1 (default) for batch of prompts _snake_case : Optional[Any] = 2 _snake_case : Optional[int] = audioldm_pipe([prompt] * batch_size , num_inference_steps=2).audios assert audios.shape == (batch_size, 256) # test num_waveforms_per_prompt for single prompt _snake_case : List[Any] = 2 _snake_case : Tuple = audioldm_pipe(lowerCAmelCase , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase).audios assert audios.shape == (num_waveforms_per_prompt, 256) # test num_waveforms_per_prompt for batch of prompts _snake_case : Dict = 2 _snake_case : int = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=lowerCAmelCase).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 256) def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" _snake_case : Dict = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : Optional[int] = self.get_dummy_components() _snake_case : Any = AudioLDMPipeline(**lowerCAmelCase) _snake_case : Any = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : str = audioldm_pipe.vocoder.config.sampling_rate _snake_case : List[str] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Optional[int] = audioldm_pipe(audio_length_in_s=0.016 , **lowerCAmelCase) _snake_case : str = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) / vocoder_sampling_rate == 0.016 _snake_case : int = audioldm_pipe(audio_length_in_s=0.032 , **lowerCAmelCase) _snake_case : List[Any] = output.audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) / vocoder_sampling_rate == 0.032 def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : str = self.get_dummy_components() _snake_case : List[str] = AudioLDMPipeline(**lowerCAmelCase) _snake_case : str = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = ["""hey"""] _snake_case : int = audioldm_pipe(lowerCAmelCase , num_inference_steps=1) _snake_case : Optional[int] = output.audios.shape assert audio_shape == (1, 256) _snake_case : Dict = audioldm_pipe.vocoder.config config.model_in_dim *= 2 _snake_case : str = SpeechTaHifiGan(lowerCAmelCase).to(lowerCAmelCase) _snake_case : List[str] = audioldm_pipe(lowerCAmelCase , num_inference_steps=1) _snake_case : Dict = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 256) def UpperCamelCase_ ( self : Dict) -> Dict: """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=lowerCAmelCase) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase) @slow class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]="cpu" , lowerCAmelCase : Any=torch.floataa , lowerCAmelCase : Optional[Any]=0) -> Tuple: """simple docstring""" _snake_case : Any = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Optional[Any] = np.random.RandomState(lowerCAmelCase).standard_normal((1, 8, 128, 16)) _snake_case : List[str] = torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase , dtype=lowerCAmelCase) _snake_case : Optional[int] = { """prompt""": """A hammer hitting a wooden surface""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 2.5, } return inputs def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" _snake_case : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""") _snake_case : Optional[int] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Tuple = self.get_inputs(lowerCAmelCase) _snake_case : int = 25 _snake_case : Optional[Any] = audioldm_pipe(**lowerCAmelCase).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 8_1920 _snake_case : Any = audio[7_7230:7_7240] _snake_case : str = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315]) _snake_case : List[str] = np.abs(expected_slice - audio_slice).max() assert max_diff < 1E-2 def UpperCamelCase_ ( self : Dict) -> List[Any]: """simple docstring""" _snake_case : Dict = AudioLDMPipeline.from_pretrained("""cvssp/audioldm""") _snake_case : Any = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config) _snake_case : Optional[int] = audioldm_pipe.to(lowerCAmelCase) audioldm_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Union[str, Any] = self.get_inputs(lowerCAmelCase) _snake_case : List[str] = audioldm_pipe(**lowerCAmelCase).audios[0] assert audio.ndim == 1 assert len(lowerCAmelCase) == 8_1920 _snake_case : Optional[Any] = audio[2_7780:2_7790] _snake_case : int = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212]) _snake_case : List[Any] = np.abs(expected_slice - audio_slice).max() assert max_diff < 3E-2
198
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class snake_case : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=13 , lowerCAmelCase : int=7 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[str]=True , lowerCAmelCase : str=True , lowerCAmelCase : Any=99 , lowerCAmelCase : Dict=32 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : str=4 , lowerCAmelCase : List[str]=37 , lowerCAmelCase : Dict="gelu" , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : List[Any]=512 , lowerCAmelCase : Optional[int]=16 , lowerCAmelCase : Dict=2 , lowerCAmelCase : str=0.02 , lowerCAmelCase : Optional[Any]=3 , lowerCAmelCase : Optional[Any]=4 , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[Any]=0 , ) -> int: """simple docstring""" _snake_case : Dict = parent _snake_case : int = batch_size _snake_case : str = seq_length _snake_case : List[str] = is_training _snake_case : Tuple = use_input_mask _snake_case : Optional[Any] = use_token_type_ids _snake_case : Any = use_labels _snake_case : str = vocab_size _snake_case : List[str] = hidden_size _snake_case : List[str] = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : int = intermediate_size _snake_case : Any = hidden_act _snake_case : List[Any] = hidden_dropout_prob _snake_case : Tuple = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : int = type_vocab_size _snake_case : Dict = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : Dict = num_labels _snake_case : Optional[Any] = num_choices _snake_case : Dict = scope _snake_case : List[Any] = projection_dim def UpperCamelCase_ ( self : Dict) -> List[str]: """simple docstring""" _snake_case : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : List[str] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _snake_case : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : str = None if self.use_token_type_ids: _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _snake_case : Tuple = None _snake_case : Any = None _snake_case : str = None if self.use_labels: _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _snake_case : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices) _snake_case : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) _snake_case : Optional[int] = DPRConfig(projection_dim=self.projection_dim , **config.to_dict()) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" _snake_case : Dict = TFDPRContextEncoder(config=lowerCAmelCase) _snake_case : Union[str, Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase) _snake_case : Optional[int] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase) _snake_case : List[str] = model(lowerCAmelCase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int]) -> int: """simple docstring""" _snake_case : Optional[int] = TFDPRQuestionEncoder(config=lowerCAmelCase) _snake_case : List[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase) _snake_case : List[Any] = model(lowerCAmelCase , token_type_ids=lowerCAmelCase) _snake_case : Tuple = model(lowerCAmelCase) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size)) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : str) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = TFDPRReader(config=lowerCAmelCase) _snake_case : Any = model(lowerCAmelCase , attention_mask=lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,)) def UpperCamelCase_ ( self : str) -> Any: """simple docstring""" _snake_case : List[Any] = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = config_and_inputs _snake_case : Union[str, Any] = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) snake_case_ : List[str] = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} snake_case_ : Tuple = False snake_case_ : str = False snake_case_ : Tuple = False snake_case_ : int = False snake_case_ : List[Any] = False def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" _snake_case : List[str] = TFDPRModelTester(self) _snake_case : Dict = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37) def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Tuple: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowerCAmelCase) @slow def UpperCamelCase_ ( self : List[str]) -> Any: """simple docstring""" for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = TFDPRContextEncoder.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[str] = TFDPRContextEncoder.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Any = TFDPRQuestionEncoder.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Union[str, Any] = TFDPRReader.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case : List[str] = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""") _snake_case : str = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]]) # [CLS] hello, is my dog cute? [SEP] _snake_case : Optional[int] = model(lowerCAmelCase)[0] # embedding shape = (1, 768) # compare the actual values for a slice. _snake_case : Union[str, Any] = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ]) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4))
198
1
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=224 , _SCREAMING_SNAKE_CASE=1000 , _SCREAMING_SNAKE_CASE=[3, 3, 6, 4] , _SCREAMING_SNAKE_CASE=[48, 56, 112, 220] , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = num_labels _UpperCAmelCase = image_size _UpperCAmelCase = layer_depths _UpperCAmelCase = embed_dims def UpperCAmelCase ( self ): _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _UpperCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_SCREAMING_SNAKE_CASE , layer_scale_init_value=1e-5 , ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = SwiftFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) _UpperCAmelCase = SwiftFormerForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self ): ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) = self.prepare_config_and_inputs() _UpperCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): __a = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () __a = ( {"""feature-extraction""": SwiftFormerModel, """image-classification""": SwiftFormerForImageClassification} if is_torch_available() else {} ) __a = False __a = False __a = False __a = False __a = False def UpperCAmelCase ( self ): _UpperCAmelCase = SwiftFormerModelTester(self ) _UpperCAmelCase = ConfigTester( self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def UpperCAmelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def UpperCAmelCase ( self ): pass def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCAmelCase ( self ): _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = SwiftFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def UpperCAmelCase ( self ): pass def UpperCAmelCase ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): _UpperCAmelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = outputs.hidden_states _UpperCAmelCase = 8 self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_SCREAMING_SNAKE_CASE ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _UpperCAmelCase = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): def _config_zero_init(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = copy.deepcopy(_SCREAMING_SNAKE_CASE ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 1e-10 ) if isinstance(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = _config_zero_init(getattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) setattr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return configs_no_init _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: _UpperCAmelCase = model_class(config=_SCREAMING_SNAKE_CASE ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def UpperCAmelCase ( self ): pass def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _UpperCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _A ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): _UpperCAmelCase = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.default_image_processor _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): _UpperCAmelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits _UpperCAmelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
518
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP a = False try: a = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _A : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = [] ): _UpperCAmelCase = 0 _UpperCAmelCase = choices _UpperCAmelCase = prompt if sys.platform == "win32": _UpperCAmelCase = """*""" else: _UpperCAmelCase = """➔ """ def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , _SCREAMING_SNAKE_CASE ) else: forceWrite(self.choices[index] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): if index == self.position: forceWrite(F" {self.arrow_char} " ) self.write_choice(_SCREAMING_SNAKE_CASE ) else: forceWrite(F" {self.choices[index]}" ) reset_cursor() def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 1 ): _UpperCAmelCase = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(_SCREAMING_SNAKE_CASE ) move_cursor(_SCREAMING_SNAKE_CASE , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["""up"""] ) def UpperCAmelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP["""down"""] ) def UpperCAmelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["""newline"""] ) def UpperCAmelCase ( self ): move_cursor(len(self.choices ) - self.position , """DOWN""" ) return self.position @input.mark(KEYMAP["""interrupt"""] ) def UpperCAmelCase ( self ): move_cursor(len(self.choices ) - self.position , """DOWN""" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(_SCREAMING_SNAKE_CASE )] for number in range(10 )] ) def UpperCAmelCase ( self ): _UpperCAmelCase = int(chr(self.current_selection ) ) _UpperCAmelCase = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , _SCREAMING_SNAKE_CASE ) else: return else: return def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , """\n""" ) if in_colab: forceWrite("""Please input a choice index (starting from 0), and press enter""" , """\n""" ) else: forceWrite("""Please select a choice using the arrow or number keys, and selecting with enter""" , """\n""" ) _UpperCAmelCase = default_choice for i in range(len(self.choices ) ): self.print_choice(_SCREAMING_SNAKE_CASE ) forceWrite("""\n""" ) move_cursor(len(self.choices ) - self.position , """UP""" ) with cursor.hide(): while True: if in_colab: try: _UpperCAmelCase = int(builtins.input() ) except ValueError: _UpperCAmelCase = default_choice else: _UpperCAmelCase = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , """UP""" ) clear_line() self.write_choice(_SCREAMING_SNAKE_CASE , """\n""" ) return choice
518
1
'''simple docstring''' from __future__ import annotations import bisect def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ): '''simple docstring''' if hi < 0: UpperCAmelCase : List[Any] = len(__magic_name__ ) while lo < hi: UpperCAmelCase : Any = lo + (hi - lo) // 2 if sorted_collection[mid] < item: UpperCAmelCase : int = mid + 1 else: UpperCAmelCase : str = mid return lo def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ): '''simple docstring''' if hi < 0: UpperCAmelCase : str = len(__magic_name__ ) while lo < hi: UpperCAmelCase : Optional[int] = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: UpperCAmelCase : Tuple = mid + 1 else: UpperCAmelCase : List[str] = mid return lo def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ = 0 , __magic_name__ = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) , __magic_name__ ) def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : List[str] = 0 UpperCAmelCase : Tuple = len(__magic_name__ ) - 1 while left <= right: UpperCAmelCase : Tuple = left + (right - left) // 2 UpperCAmelCase : Dict = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: UpperCAmelCase : Optional[int] = midpoint - 1 else: UpperCAmelCase : Any = midpoint + 1 return None def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = bisect.bisect_left(__magic_name__ , __magic_name__ ) if index != len(__magic_name__ ) and sorted_collection[index] == item: return index return None def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' if right < left: return None UpperCAmelCase : Union[str, Any] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__magic_name__ , __magic_name__ , __magic_name__ , midpoint - 1 ) else: return binary_search_by_recursion(__magic_name__ , __magic_name__ , midpoint + 1 , __magic_name__ ) if __name__ == "__main__": a : Tuple = input("Enter numbers separated by comma:\n").strip() a : str = sorted(int(item) for item in user_input.split(",")) a : int = int(input("Enter a single number to be found in the list:\n")) a : Union[str, Any] = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
609
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a : List[Any] = { "configuration_lxmert": ["LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LxmertConfig"], "tokenization_lxmert": ["LxmertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = ["LxmertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : str = [ "LxmertEncoder", "LxmertForPreTraining", "LxmertForQuestionAnswering", "LxmertModel", "LxmertPreTrainedModel", "LxmertVisualFeatureEncoder", "LxmertXLayer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ "TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLxmertForPreTraining", "TFLxmertMainLayer", "TFLxmertModel", "TFLxmertPreTrainedModel", "TFLxmertVisualFeatureEncoder", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
609
1
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets A__ : Dict ="\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" A__ : Optional[Any] ="\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" A__ : Any ="\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" return float((preds == labels).mean() ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = simple_accuracy(_A , _A ) _lowerCAmelCase = float(fa_score(y_true=_A , y_pred=_A ) ) return { "accuracy": acc, "f1": fa, } def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = float(pearsonr(_A , _A )[0] ) _lowerCAmelCase = float(spearmanr(_A , _A )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> Any: if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def lowercase__ ( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : List[str] ) -> Any: if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(__lowercase , __lowercase )} elif self.config_name == "stsb": return pearson_and_spearman(__lowercase , __lowercase ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(__lowercase , __lowercase ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(__lowercase , __lowercase )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
207
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = old_name if "patch_embed" in old_name: snake_case_ , snake_case_ , snake_case_ = old_name.split("." ) if layer == "0": snake_case_ = old_name.replace("0" , "convolution1" ) elif layer == "1": snake_case_ = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": snake_case_ = old_name.replace("3" , "convolution2" ) else: snake_case_ = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , _A ): snake_case_ = R"\b\d{2}\b" if bool(re.search(_A , _A ) ): snake_case_ = re.search(R"\d\.\d\d." , _A ).group() else: snake_case_ = re.search(R"\d\.\d." , _A ).group() if int(match[0] ) < 6: snake_case_ = old_name.replace(_A , "" ) snake_case_ = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) snake_case_ = "intermediate_stages." + trimmed_name else: snake_case_ = old_name.replace(_A , "" ) if int(match[2] ) < num_meta4D_last_stage: snake_case_ = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: snake_case_ = str(int(match[2] ) - num_meta4D_last_stage ) snake_case_ = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: snake_case_ = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: snake_case_ = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: snake_case_ = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: snake_case_ = trimmed_name.replace("fc2" , "linear_out" ) snake_case_ = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , _A ): snake_case_ = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: snake_case_ = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case_ = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case_ = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: snake_case_ = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: snake_case_ = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: snake_case_ = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: snake_case_ = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case_ = new_name.replace("norm" , "layernorm" ) snake_case_ = "efficientformer." + new_name else: snake_case_ = "efficientformer.encoder." + new_name return new_name def lowerCamelCase__ ( _A , _A ): '''simple docstring''' for key in checkpoint.copy().keys(): snake_case_ = checkpoint.pop(_A ) snake_case_ = val return checkpoint def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_A , stream=_A ).raw ) return image def lowerCamelCase__ ( _A , _A , _A , _A ): '''simple docstring''' snake_case_ = torch.load(_A , map_location="cpu" )["model"] snake_case_ = EfficientFormerConfig.from_json_file(_A ) snake_case_ = EfficientFormerForImageClassificationWithTeacher(_A ) snake_case_ = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) snake_case_ = config.depths[-1] - config.num_metaad_blocks + 1 snake_case_ = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() snake_case_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image snake_case_ = prepare_img() snake_case_ = 256 snake_case_ = 224 snake_case_ = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) snake_case_ = processor(images=_A , return_tensors="pt" ).pixel_values # original processing pipeline snake_case_ = Compose( [ Resize(_A , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) snake_case_ = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) snake_case_ = model(_A ) snake_case_ = outputs.logits snake_case_ = (1, 1000) if "l1" in model_name: snake_case_ = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case_ = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :10] , _A , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case_ = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( f"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(f"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(_A ) print(f"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="Add model" , use_temp_dir=_A , ) processor.push_to_hub( repo_id=f"Bearnardd/{pytorch_dump_path}" , commit_message="Add image processor" , use_temp_dir=_A , ) if __name__ == "__main__": lowercase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowercase__ : Optional[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
376
0
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] )->List[str]: _lowerCAmelCase = 1.5 _lowerCAmelCase = int(factor * num_class_images ) _lowerCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''' , exist_ok=_SCREAMING_SNAKE_CASE ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: _lowerCAmelCase = client.query(text=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) >= factor * num_class_images or num_images > 1e4: break else: _lowerCAmelCase = int(factor * num_images ) _lowerCAmelCase = ClipClient( url='''https://knn.laion.ai/knn-service''' , indice_name='''laion_400m''' , num_images=_SCREAMING_SNAKE_CASE , aesthetic_weight=0.1 , ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = tqdm(desc='''downloading real regularization images''' , total=_SCREAMING_SNAKE_CASE ) with open(f'''{class_data_dir}/caption.txt''' , '''w''' ) as fa, open(f'''{class_data_dir}/urls.txt''' , '''w''' ) as fa, open( f'''{class_data_dir}/images.txt''' , '''w''' ) as fa: while total < num_class_images: _lowerCAmelCase = class_images[count] count += 1 try: _lowerCAmelCase = requests.get(images['''url'''] ) if img.status_code == 2_0_0: _lowerCAmelCase = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''' , '''wb''' ) as f: f.write(img.content ) fa.write(images['''caption'''] + '''\n''' ) fa.write(images['''url'''] + '''\n''' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '''\n''' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCAmelCase__ ( )->List[str]: _lowerCAmelCase = argparse.ArgumentParser('''''' , add_help=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_prompt''' , help='''text prompt to retrieve images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--class_data_dir''' , help='''path to save images''' , required=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--num_class_images''' , help='''number of images to download''' , default=2_0_0 , type=_SCREAMING_SNAKE_CASE ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase_ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
664
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case_ ): SCREAMING_SNAKE_CASE__ = 42 SCREAMING_SNAKE_CASE__ = None def UpperCAmelCase__ ( _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int=0.999 , _SCREAMING_SNAKE_CASE : List[str]="cosine" , )->Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(_SCREAMING_SNAKE_CASE : List[str] ): return math.exp(t * -12.0 ) else: raise ValueError(f'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) _lowerCAmelCase = [] for i in range(_SCREAMING_SNAKE_CASE ): _lowerCAmelCase = i / num_diffusion_timesteps _lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(_SCREAMING_SNAKE_CASE ) / alpha_bar_fn(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) ) return torch.tensor(_SCREAMING_SNAKE_CASE , dtype=torch.floataa ) class UpperCAmelCase ( snake_case_ ,snake_case_ ): SCREAMING_SNAKE_CASE__ = 1 @register_to_config def __init__( self , _lowerCAmelCase = 1_000 , _lowerCAmelCase = 0.0_001 , _lowerCAmelCase = 0.02 , _lowerCAmelCase = "linear" , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = True , _lowerCAmelCase = 0 , _lowerCAmelCase = "epsilon" , _lowerCAmelCase = 1.0 , **_lowerCAmelCase , ): if kwargs.get('''set_alpha_to_one''' , _lowerCAmelCase ) is not None: _lowerCAmelCase = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , _lowerCAmelCase , standard_warn=_lowerCAmelCase ) _lowerCAmelCase = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _lowerCAmelCase = torch.tensor(_lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "linear": _lowerCAmelCase = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _lowerCAmelCase = betas_for_alpha_bar(_lowerCAmelCase ) else: raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' ) _lowerCAmelCase = 1.0 - self.betas _lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _lowerCAmelCase = 1.0 # setable values _lowerCAmelCase = None _lowerCAmelCase = torch.from_numpy(np.arange(0 , _lowerCAmelCase ).copy().astype(np.intaa ) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): return sample def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = None ): if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' F''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' F''' maximal {self.config.num_train_timesteps} timesteps.''' ) _lowerCAmelCase = num_inference_steps _lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _lowerCAmelCase = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round().copy().astype(np.intaa ) _lowerCAmelCase = torch.from_numpy(_lowerCAmelCase ).to(_lowerCAmelCase ) self.timesteps += self.config.steps_offset def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = 0.0 , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = True , ): # 1. get previous step value (=t+1) _lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _lowerCAmelCase = self.alphas_cumprod[timestep] _lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _lowerCAmelCase = model_output elif self.config.prediction_type == "sample": _lowerCAmelCase = model_output _lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=_lowerCAmelCase , pred_original_sample=_lowerCAmelCase ) def __len__( self ): return self.config.num_train_timesteps
664
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase ( lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPImageVariationPipeline __SCREAMING_SNAKE_CASE : Tuple = IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''guidance_scale'''} __SCREAMING_SNAKE_CASE : List[str] = IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[str] = [ '''generator''', '''return_dict''', '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] __SCREAMING_SNAKE_CASE : Optional[int] = False @property def a ( self ): return 32 @property def a ( self ): return 32 @property def a ( self ): return self.time_input_dim @property def a ( self ): return self.time_input_dim * 4 @property def a ( self ): return 100 @property def a ( self ): snake_case_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def a ( self ): torch.manual_seed(0 ) snake_case_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(snake_case ) @property def a ( self ): torch.manual_seed(0 ) snake_case_ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(snake_case ) @property def a ( self ): torch.manual_seed(0 ) snake_case_ = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } snake_case_ = UnCLIPTextProjModel(**snake_case ) return model @property def a ( self ): torch.manual_seed(0 ) snake_case_ = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } snake_case_ = UNetaDConditionModel(**snake_case ) return model @property def a ( self ): return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def a ( self ): torch.manual_seed(0 ) snake_case_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def a ( self ): # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) snake_case_ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def a ( self ): snake_case_ = self.dummy_decoder snake_case_ = self.dummy_text_proj snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_super_res_first snake_case_ = self.dummy_super_res_last snake_case_ = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1000 , ) snake_case_ = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1000 , ) snake_case_ = CLIPImageProcessor(crop_size=32 , size=32 ) snake_case_ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def a ( self , snake_case , snake_case=0 , snake_case=True ): snake_case_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case ) ).to(snake_case ) if str(snake_case ).startswith('mps' ): snake_case_ = torch.manual_seed(snake_case ) else: snake_case_ = torch.Generator(device=snake_case ).manual_seed(snake_case ) if pil_image: snake_case_ = input_image * 0.5 + 0.5 snake_case_ = input_image.clamp(0 , 1 ) snake_case_ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() snake_case_ = DiffusionPipeline.numpy_to_pil(snake_case )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def a ( self ): snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**snake_case ) snake_case_ = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = pipe(**snake_case ) snake_case_ = output.images snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = pipe( **snake_case , return_dict=snake_case , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self ): snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**snake_case ) snake_case_ = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = pipe(**snake_case ) snake_case_ = output.images snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = pipe( **snake_case , return_dict=snake_case , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self ): snake_case_ = 'cpu' snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**snake_case ) snake_case_ = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = [ pipeline_inputs['image'], pipeline_inputs['image'], ] snake_case_ = pipe(**snake_case ) snake_case_ = output.images snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] snake_case_ = pipe( **snake_case , return_dict=snake_case , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) snake_case_ = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a ( self ): snake_case_ = torch.device('cpu' ) class lowercase : __SCREAMING_SNAKE_CASE : Any = 1 snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**snake_case ) snake_case_ = pipe.to(snake_case ) pipe.set_progress_bar_config(disable=snake_case ) snake_case_ = torch.Generator(device=snake_case ).manual_seed(0 ) snake_case_ = pipe.decoder.dtype snake_case_ = 1 snake_case_ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) snake_case_ = pipe.prepare_latents( snake_case , dtype=snake_case , device=snake_case , generator=snake_case , latents=snake_case , scheduler=DummyScheduler() ) snake_case_ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) snake_case_ = pipe.prepare_latents( snake_case , dtype=snake_case , device=snake_case , generator=snake_case , latents=snake_case , scheduler=DummyScheduler() ) snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) snake_case_ = pipe( **snake_case , decoder_latents=snake_case , super_res_latents=snake_case ).images snake_case_ = self.get_dummy_inputs(snake_case , pil_image=snake_case ) # Don't pass image, instead pass embedding snake_case_ = pipeline_inputs.pop('image' ) snake_case_ = pipe.image_encoder(snake_case ).image_embeds snake_case_ = pipe( **snake_case , decoder_latents=snake_case , super_res_latents=snake_case , image_embeddings=snake_case , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def a ( self ): snake_case_ = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor snake_case_ = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=snake_case , expected_max_diff=snake_case ) @skip_mps def a ( self ): snake_case_ = torch_device == 'cpu' snake_case_ = True snake_case_ = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=snake_case , relax_max_difference=snake_case , additional_params_copy_to_batched_inputs=snake_case , ) def a ( self ): snake_case_ = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes snake_case_ = [2, 3] self._test_inference_batch_consistent( batch_sizes=snake_case , additional_params_copy_to_batched_inputs=snake_case , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=snake_case ) @skip_mps def a ( self ): return super().test_dict_tuple_outputs_equivalent() @skip_mps def a ( self ): return super().test_save_load_local() @skip_mps def a ( self ): return super().test_save_load_optional_components() @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a ( self ): snake_case_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) snake_case_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) snake_case_ = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(snake_case ) pipeline.set_progress_bar_config(disable=snake_case ) snake_case_ = torch.Generator(device='cpu' ).manual_seed(0 ) snake_case_ = pipeline( snake_case , generator=snake_case , output_type='np' , ) snake_case_ = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(snake_case , snake_case , 15 )
362
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = BertConfig.from_json_file(UpperCamelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
362
1
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py UpperCamelCase__ : Tuple = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase__ : Any = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. UpperCamelCase__ : Tuple = re.compile(R'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') UpperCamelCase__ : Dict = re.compile(R'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. UpperCamelCase__ : List[str] = re.compile(R'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) UpperCamelCase__ : List[Any] = [ ('''pretraining''', '''MODEL_FOR_PRETRAINING_MAPPING_NAMES''', '''AutoModelForPreTraining'''), ('''feature-extraction''', '''MODEL_MAPPING_NAMES''', '''AutoModel'''), ('''audio-classification''', '''MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioClassification'''), ('''text-generation''', '''MODEL_FOR_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForCausalLM'''), ('''automatic-speech-recognition''', '''MODEL_FOR_CTC_MAPPING_NAMES''', '''AutoModelForCTC'''), ('''image-classification''', '''MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForImageClassification'''), ('''image-segmentation''', '''MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES''', '''AutoModelForImageSegmentation'''), ('''fill-mask''', '''MODEL_FOR_MASKED_LM_MAPPING_NAMES''', '''AutoModelForMaskedLM'''), ('''object-detection''', '''MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForObjectDetection'''), ( '''zero-shot-object-detection''', '''MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES''', '''AutoModelForZeroShotObjectDetection''', ), ('''question-answering''', '''MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForQuestionAnswering'''), ('''text2text-generation''', '''MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES''', '''AutoModelForSeq2SeqLM'''), ('''text-classification''', '''MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForSequenceClassification'''), ('''automatic-speech-recognition''', '''MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES''', '''AutoModelForSpeechSeq2Seq'''), ( '''table-question-answering''', '''MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForTableQuestionAnswering''', ), ('''token-classification''', '''MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForTokenClassification'''), ('''multiple-choice''', '''MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES''', '''AutoModelForMultipleChoice'''), ( '''next-sentence-prediction''', '''MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES''', '''AutoModelForNextSentencePrediction''', ), ( '''audio-frame-classification''', '''MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForAudioFrameClassification''', ), ('''audio-xvector''', '''MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES''', '''AutoModelForAudioXVector'''), ( '''document-question-answering''', '''MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForDocumentQuestionAnswering''', ), ( '''visual-question-answering''', '''MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES''', '''AutoModelForVisualQuestionAnswering''', ), ('''image-to-text''', '''MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES''', '''AutoModelForVision2Seq'''), ( '''zero-shot-image-classification''', '''MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForZeroShotImageClassification''', ), ('''depth-estimation''', '''MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES''', '''AutoModelForDepthEstimation'''), ('''video-classification''', '''MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES''', '''AutoModelForVideoClassification'''), ('''mask-generation''', '''MODEL_FOR_MASK_GENERATION_MAPPING_NAMES''', '''AutoModelForMaskGeneration'''), ] def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): __SCREAMING_SNAKE_CASE : Any = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , _lowerCamelCase ) return [m.group(0 ) for m in matches] def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __SCREAMING_SNAKE_CASE : Dict = { config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __SCREAMING_SNAKE_CASE : List[str] = collections.defaultdict(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = collections.defaultdict(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = collections.defaultdict(_lowerCamelCase ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(_lowerCamelCase ): __SCREAMING_SNAKE_CASE : List[str] = None if _re_tf_models.match(_lowerCamelCase ) is not None: __SCREAMING_SNAKE_CASE : Dict = tf_models __SCREAMING_SNAKE_CASE : str = _re_tf_models.match(_lowerCamelCase ).groups()[0] elif _re_flax_models.match(_lowerCamelCase ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = flax_models __SCREAMING_SNAKE_CASE : List[Any] = _re_flax_models.match(_lowerCamelCase ).groups()[0] elif _re_pt_models.match(_lowerCamelCase ) is not None: __SCREAMING_SNAKE_CASE : Tuple = pt_models __SCREAMING_SNAKE_CASE : Union[str, Any] = _re_pt_models.match(_lowerCamelCase ).groups()[0] if lookup_dict is not None: while len(_lowerCamelCase ) > 0: if attr_name in model_prefix_to_model_type: __SCREAMING_SNAKE_CASE : List[str] = True break # Try again after removing the last word in the name __SCREAMING_SNAKE_CASE : Any = """""".join(camel_case_split(_lowerCamelCase )[:-1] ) __SCREAMING_SNAKE_CASE : List[Any] = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __SCREAMING_SNAKE_CASE : Optional[int] = list(_lowerCamelCase ) all_models.sort() __SCREAMING_SNAKE_CASE : int = {"""model_type""": all_models} __SCREAMING_SNAKE_CASE : Dict = [pt_models[t] for t in all_models] __SCREAMING_SNAKE_CASE : Union[str, Any] = [tf_models[t] for t in all_models] __SCREAMING_SNAKE_CASE : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __SCREAMING_SNAKE_CASE : Union[str, Any] = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __SCREAMING_SNAKE_CASE : Optional[int] = """AutoProcessor""" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __SCREAMING_SNAKE_CASE : Dict = """AutoTokenizer""" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __SCREAMING_SNAKE_CASE : str = """AutoFeatureExtractor""" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __SCREAMING_SNAKE_CASE : Optional[int] = """AutoTokenizer""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [processors[t] for t in all_models] return pd.DataFrame(_lowerCamelCase ) def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : Any = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __SCREAMING_SNAKE_CASE : Union[str, Any] = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] __SCREAMING_SNAKE_CASE : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): # The type of pipeline may not exist in this framework if not hasattr(_lowerCamelCase , _lowerCamelCase ): continue # First extract all model_names __SCREAMING_SNAKE_CASE : Tuple = [] for name in getattr(_lowerCamelCase , _lowerCamelCase ).values(): if isinstance(_lowerCamelCase , _lowerCamelCase ): model_names.append(_lowerCamelCase ) else: model_names.extend(list(_lowerCamelCase ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def lowerCAmelCase_ ( _lowerCamelCase: Any , _lowerCamelCase: Tuple ): __SCREAMING_SNAKE_CASE : Tuple = get_frameworks_table() __SCREAMING_SNAKE_CASE : List[str] = Dataset.from_pandas(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = hf_hub_download( """huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = Dataset.from_json(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = { tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""]) for i in range(len(_lowerCamelCase ) ) } __SCREAMING_SNAKE_CASE : Tuple = update_pipeline_and_auto_class_table(_lowerCamelCase ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __SCREAMING_SNAKE_CASE : Optional[Any] = sorted(table.keys() ) __SCREAMING_SNAKE_CASE : Any = pd.DataFrame( { """model_class""": model_classes, """pipeline_tag""": [table[m][0] for m in model_classes], """auto_class""": [table[m][1] for m in model_classes], } ) __SCREAMING_SNAKE_CASE : str = Dataset.from_pandas(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(_lowerCamelCase , """frameworks.json""" ) ) tags_dataset.to_json(os.path.join(_lowerCamelCase , """pipeline_tags.json""" ) ) if commit_sha is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: __SCREAMING_SNAKE_CASE : Any = """Update""" upload_folder( repo_id="""huggingface/transformers-metadata""" , folder_path=_lowerCamelCase , repo_type="""dataset""" , token=_lowerCamelCase , commit_message=_lowerCamelCase , ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Optional[Any] = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __SCREAMING_SNAKE_CASE : Any = transformers_module.pipelines.SUPPORTED_TASKS __SCREAMING_SNAKE_CASE : Optional[int] = [] for key in pipeline_tasks: if key not in in_table: __SCREAMING_SNAKE_CASE : List[Any] = pipeline_tasks[key]["""pt"""] if isinstance(_lowerCamelCase , (list, tuple) ): __SCREAMING_SNAKE_CASE : int = model[0] __SCREAMING_SNAKE_CASE : Any = model.__name__ if model not in in_table.values(): missing.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = """, """.join(_lowerCamelCase ) raise ValueError( """The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """ F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": UpperCamelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--token''', type=str, help='''The token to use to push to the transformers-metadata dataset.''') parser.add_argument('''--commit_sha''', type=str, help='''The sha of the commit going with this update.''') parser.add_argument('''--check-only''', action='''store_true''', help='''Activate to just check all pipelines are present.''') UpperCamelCase__ : List[Any] = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
178
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def lowerCAmelCase_ ( _lowerCamelCase: int ): if hor == 1_28: __SCREAMING_SNAKE_CASE : Any = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __SCREAMING_SNAKE_CASE : List[Any] = (32, 1_28, 2_56) __SCREAMING_SNAKE_CASE : str = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: __SCREAMING_SNAKE_CASE : Union[str, Any] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") __SCREAMING_SNAKE_CASE : str = (32, 64, 1_28, 2_56) __SCREAMING_SNAKE_CASE : Tuple = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(F"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch" ) __SCREAMING_SNAKE_CASE : Any = model.state_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 6_55_36, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } __SCREAMING_SNAKE_CASE : int = UNetaDModel(**_lowerCamelCase ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __SCREAMING_SNAKE_CASE : Union[str, Any] = state_dict.pop(_lowerCamelCase ) hf_value_function.load_state_dict(_lowerCamelCase ) torch.save(hf_value_function.state_dict() , F"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin" ) with open(F"hub/hopper-medium-v2/unet/hor{hor}/config.json" , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : Dict = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 1_28, 2_56), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 6_55_36, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } __SCREAMING_SNAKE_CASE : Optional[int] = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) __SCREAMING_SNAKE_CASE : Dict = model __SCREAMING_SNAKE_CASE : List[Any] = UNetaDModel(**_lowerCamelCase ) print(F"length of state dict: {len(state_dict.keys() )}" ) print(F"length of value function dict: {len(hf_value_function.state_dict().keys() )}" ) __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __SCREAMING_SNAKE_CASE : str = state_dict.pop(_lowerCamelCase ) hf_value_function.load_state_dict(_lowerCamelCase ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
178
1
def _snake_case (__lowercase): UpperCamelCase_ = [0] * len(__lowercase) UpperCamelCase_ = [] UpperCamelCase_ = [1] * len(__lowercase) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowercase)): if indegree[i] == 0: queue.append(__lowercase) while queue: UpperCamelCase_ = queue.pop(0) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: UpperCamelCase_ = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowercase) print(max(__lowercase)) # Adjacency list of Graph snake_case__ : Union[str, Any] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
23
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase__ ( self : Dict ): _a = 1 _a = 3 _a = (32, 32) _a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def UpperCamelCase__ ( self : Dict ): torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def UpperCamelCase__ ( self : Optional[int] ): torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def UpperCamelCase__ ( self : Optional[Any] ): torch.manual_seed(0 ) _a = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_06 , ) return RobertaSeriesModelWithTransformation(__a ) @property def UpperCamelCase__ ( self : str ): def extract(*__a : Tuple , **__a : str ): class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : Dict ): _a = torch.ones([0] ) def UpperCamelCase__ ( self : List[str] , __a : Dict ): self.pixel_values.to(__a ) return self return Out() return extract def UpperCamelCase__ ( self : Optional[int] ): _a = "cpu" # ensure determinism for the device-dependent torch.Generator _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) _a = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , ) _a = output.images _a = torch.Generator(device=__a ).manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=__a , return_dict=__a , )[0] _a = image[0, -3:, -3:, -1] _a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[int] ): _a = self.dummy_cond_unet _a = PNDMScheduler(skip_prk_steps=__a ) _a = self.dummy_vae _a = self.dummy_text_encoder _a = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) _a = 77 _a = self.dummy_image.to(__a ) # put models in fp16 _a = unet.half() _a = vae.half() _a = bert.half() # make sure here that pndm scheduler skips prk _a = AltDiffusionImgaImgPipeline( unet=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , safety_checker=__a , feature_extractor=self.dummy_extractor , ) _a = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__a ) _a = alt_pipe.to(__a ) alt_pipe.set_progress_bar_config(disable=__a ) _a = "A painting of a squirrel eating a burger" _a = torch.manual_seed(0 ) _a = alt_pipe( [prompt] , generator=__a , num_inference_steps=2 , output_type="np" , image=__a , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def UpperCamelCase__ ( self : Optional[Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 _a = init_image.resize((7_60, 5_04) ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] _a = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _a = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase__ ( self : Union[str, Any] ): _a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) _a = init_image.resize((7_68, 5_12) ) _a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) _a = "BAAI/AltDiffusion" _a = AltDiffusionImgaImgPipeline.from_pretrained( __a , safety_checker=__a , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() _a = "A fantasy landscape, trending on artstation" _a = torch.manual_seed(0 ) _a = pipe( prompt=__a , image=__a , strength=0.75 , guidance_scale=7.5 , generator=__a , output_type="np" , ) _a = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
692
0
"""simple docstring""" from jiwer import compute_measures import datasets lowerCAmelCase__ = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCAmelCase__ = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCAmelCase__ = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def lowercase__ ( self , snake_case__=None , snake_case__=None , snake_case__=False ): """simple docstring""" if concatenate_texts: return compute_measures(A_ , A_ )["wer"] else: lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Any = 0 for prediction, reference in zip(A_ , A_ ): lowerCAmelCase : Optional[Any] = compute_measures(A_ , A_ ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
700
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=3 , snake_case__=32 , snake_case__=3 , snake_case__=10 , snake_case__=[10, 20, 30, 40] , snake_case__=[1, 1, 2, 1] , snake_case__=True , snake_case__=True , snake_case__="relu" , snake_case__=3 , snake_case__=None , ): """simple docstring""" lowerCAmelCase : Optional[Any] = parent lowerCAmelCase : List[Any] = batch_size lowerCAmelCase : Union[str, Any] = image_size lowerCAmelCase : Dict = num_channels lowerCAmelCase : List[Any] = embeddings_size lowerCAmelCase : List[Any] = hidden_sizes lowerCAmelCase : Optional[int] = depths lowerCAmelCase : str = is_training lowerCAmelCase : List[str] = use_labels lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = num_labels lowerCAmelCase : Tuple = scope lowerCAmelCase : int = len(snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase : Optional[Any] = None if self.use_labels: lowerCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase : List[str] = self.get_config() return config, pixel_values, labels def lowercase__ ( self ): """simple docstring""" return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = TFResNetModel(config=snake_case__ ) lowerCAmelCase : Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = self.num_labels lowerCAmelCase : str = TFResNetForImageClassification(snake_case__ ) lowerCAmelCase : int = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Any = config_and_inputs lowerCAmelCase : Optional[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" a : Any =(TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () a : Tuple =( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) a : int =False a : List[str] =False a : Optional[int] =False a : Union[str, Any] =False a : Any =False def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = TFResNetModelTester(self ) lowerCAmelCase : str = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase__ ( self ): """simple docstring""" return @unittest.skip(reason="ResNet does not use inputs_embeds" ) def lowercase__ ( self ): """simple docstring""" pass @unittest.skip(reason="ResNet does not support input and output embeddings" ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase : List[str] = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase : Dict = [*signature.parameters.keys()] lowerCAmelCase : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def lowercase__ ( self ): """simple docstring""" def check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ): lowerCAmelCase : int = model_class(snake_case__ ) lowerCAmelCase : Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowerCAmelCase : List[str] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowerCAmelCase , lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase : Any = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCAmelCase : Optional[Any] = layer_type lowerCAmelCase : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase : List[Any] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def lowercase__ ( self ): """simple docstring""" for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase : int = TFResNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def a__ ( ): '''simple docstring''' lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase__ ( self ): """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase : Any = self.default_image_processor lowerCAmelCase : Optional[Any] = prepare_img() lowerCAmelCase : Dict = image_processor(images=snake_case__ , return_tensors="tf" ) # forward pass lowerCAmelCase : str = model(**snake_case__ ) # verify the logits lowerCAmelCase : str = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowerCAmelCase : str = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , snake_case__ , atol=1e-4 ) )
681
0
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("""ignore""", category=UserWarning, module="""torch.optim.lr_scheduler""") class __snake_case : """simple docstring""" def __init__( self :Tuple , UpperCamelCase__ :int , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Union[str, Any] = True , UpperCamelCase__ :int = False ): _a = scheduler _a = optimizers if isinstance(UpperCamelCase__ , (list, tuple) ) else [optimizers] _a = split_batches _a = step_with_optimizer _a = GradientState() def SCREAMING_SNAKE_CASE_ ( self :List[str] , *UpperCamelCase__ :Optional[int] , **UpperCamelCase__ :Any ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase__ , **UpperCamelCase__ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase__ , **UpperCamelCase__ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a = AcceleratorState().num_processes for _ in range(UpperCamelCase__ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , "total_steps" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase__ , **UpperCamelCase__ ) else: self.scheduler.step(*UpperCamelCase__ , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return self.scheduler.get_last_lr() def SCREAMING_SNAKE_CASE_ ( self :List[str] ): return self.scheduler.state_dict() def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :Tuple ): self.scheduler.load_state_dict(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): return self.scheduler.get_lr() def SCREAMING_SNAKE_CASE_ ( self :List[str] , *UpperCamelCase__ :int , **UpperCamelCase__ :Optional[int] ): return self.scheduler.print_lr(*UpperCamelCase__ , **UpperCamelCase__ )
388
def lowerCamelCase__ (_UpperCAmelCase = 10 , _UpperCAmelCase = 1000 , _UpperCAmelCase = True): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)') return min_val if option else max_val def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return int((number_a + number_a) / 2) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)') if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value') def answer(_UpperCAmelCase) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...') SCREAMING_SNAKE_CASE = lower SCREAMING_SNAKE_CASE = higher SCREAMING_SNAKE_CASE = [] while True: SCREAMING_SNAKE_CASE = get_avg(_UpperCAmelCase , _UpperCAmelCase) last_numbers.append(_UpperCAmelCase) if answer(_UpperCAmelCase) == "low": SCREAMING_SNAKE_CASE = number elif answer(_UpperCAmelCase) == "high": SCREAMING_SNAKE_CASE = number else: break print(F'''guess the number : {last_numbers[-1]}''') print(F'''details : {last_numbers!s}''') def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = int(input('Enter lower value : ').strip()) SCREAMING_SNAKE_CASE = int(input('Enter high value : ').strip()) SCREAMING_SNAKE_CASE = int(input('Enter value to guess : ').strip()) guess_the_number(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": main()
73
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __magic_name__ : Dict = """\ @inproceedings{popovic-2015-chrf, title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\", month = sep, year = \"2015\", address = \"Lisbon, Portugal\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W15-3049\", doi = \"10.18653/v1/W15-3049\", pages = \"392--395\", } @inproceedings{popovic-2017-chrf, title = \"chr{F}++: words helping character n-grams\", author = \"Popovi{\'c}, Maja\", booktitle = \"Proceedings of the Second Conference on Machine Translation\", month = sep, year = \"2017\", address = \"Copenhagen, Denmark\", publisher = \"Association for Computational Linguistics\", url = \"https://aclanthology.org/W17-4770\", doi = \"10.18653/v1/W17-4770\", pages = \"612--618\", } @inproceedings{post-2018-call, title = \"A Call for Clarity in Reporting {BLEU} Scores\", author = \"Post, Matt\", booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\", month = oct, year = \"2018\", address = \"Belgium, Brussels\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/W18-6319\", pages = \"186--191\", } """ __magic_name__ : Tuple = """\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. """ __magic_name__ : Optional[int] = """ Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"] >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]] >>> chrf = datasets.load_metric(\"chrf\") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def UpperCamelCase( self ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[ "https://github.com/m-popovic/chrF", ] , ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = CHRF.CHAR_ORDER , lowerCamelCase = CHRF.WORD_ORDER , lowerCamelCase = CHRF.BETA , lowerCamelCase = False , lowerCamelCase = False , lowerCamelCase = False , ): _snake_case = len(references[0] ) if any(len(__UpperCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) _snake_case = [[refs[i] for refs in references] for i in range(__UpperCamelCase )] _snake_case = CHRF(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) _snake_case = sb_chrf.corpus_score(__UpperCamelCase , __UpperCamelCase ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
715
'''simple docstring''' def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = [0 for i in range(len(SCREAMING_SNAKE_CASE__ ) )] # initialize interval's left pointer and right pointer _snake_case , _snake_case = 0, 0 for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # case when current index is inside the interval if i <= right_pointer: _snake_case = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _snake_case = min_edge while go_next(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _snake_case , _snake_case = i, i + z_result[i] - 1 return z_result def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' return i + z_result[i] < len(SCREAMING_SNAKE_CASE__ ) and s[z_result[i]] == s[i + z_result[i]] def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _snake_case = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(SCREAMING_SNAKE_CASE__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
368
0
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self ): '''simple docstring''' self.test() def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = 0 __a : Optional[int] = False while not completed: if counter == 1: self.reset() __a : Optional[Any] = self.advance() if not self.does_advance(_lowercase ): raise Exception( """Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.""" ) __a , __a , __a : Optional[Any] = self.update(_lowercase ) counter += 1 if counter > 10000: raise Exception("""update() does not fulfill the constraint.""" ) if self.remaining() != 0: raise Exception("""Custom Constraint is not defined correctly.""" ) @abstractmethod def lowerCAmelCase__(self ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCAmelCase__(self ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCAmelCase__(self ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def lowerCAmelCase__(self , _lowercase=False ): '''simple docstring''' raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase ): '''simple docstring''' super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) __a : List[Any] = token_ids __a : Tuple = len(self.token_ids ) __a : Optional[Any] = -1 # the index of the currently fulfilled step __a : int = False def lowerCAmelCase__(self ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(_lowercase )}''' ) __a : Dict = False __a : Optional[int] = False __a : Dict = False if self.does_advance(_lowercase ): self.fulfilled_idx += 1 __a : Optional[Any] = True if self.fulfilled_idx == (self.seqlen - 1): __a : Optional[Any] = True __a : Union[str, Any] = completed else: # failed to make progress. __a : Union[str, Any] = True self.reset() return stepped, completed, reset def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = False __a : str = 0 def lowerCAmelCase__(self ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def lowerCAmelCase__(self , _lowercase=False ): '''simple docstring''' __a : Any = PhrasalConstraint(self.token_ids ) if stateful: __a : int = self.seqlen __a : List[str] = self.fulfilled_idx __a : Optional[int] = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase , _lowercase=True ): '''simple docstring''' __a : Optional[Any] = max([len(_lowercase ) for one in nested_token_ids] ) __a : Optional[Any] = {} for token_ids in nested_token_ids: __a : Any = root for tidx, token_id in enumerate(_lowercase ): if token_id not in level: __a : Union[str, Any] = {} __a : Optional[Any] = level[token_id] if no_subsets and self.has_subsets(_lowercase , _lowercase ): raise ValueError( """Each list in `nested_token_ids` can't be a complete subset of another list, but is""" F''' {nested_token_ids}.''' ) __a : Union[str, Any] = root def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : str = self.trie for current_token in current_seq: __a : int = start[current_token] __a : Union[str, Any] = list(start.keys() ) return next_tokens def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Dict = self.next_tokens(_lowercase ) return len(_lowercase ) == 0 def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : int = list(root.values() ) if len(_lowercase ) == 0: return 1 else: return sum([self.count_leaves(_lowercase ) for nn in next_nodes] ) def lowerCAmelCase__(self , _lowercase , _lowercase ): '''simple docstring''' __a : Optional[int] = self.count_leaves(_lowercase ) return len(_lowercase ) != leaf_count class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase ): '''simple docstring''' super(_lowercase , self ).__init__() if not isinstance(_lowercase , _lowercase ) or len(_lowercase ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(_lowercase , _lowercase ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(_lowercase , _lowercase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) __a : List[str] = DisjunctiveTrie(_lowercase ) __a : Dict = nested_token_ids __a : List[Any] = self.trie.max_height __a : int = [] __a : Any = False def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = self.trie.next_tokens(self.current_seq ) if len(_lowercase ) == 0: return None else: return token_list def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}''' ) __a : Optional[Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(_lowercase )}''' ) __a : Union[str, Any] = False __a : List[Any] = False __a : Optional[int] = False if self.does_advance(_lowercase ): self.current_seq.append(_lowercase ) __a : List[Any] = True else: __a : List[str] = True self.reset() __a : str = self.trie.reached_leaf(self.current_seq ) __a : Any = completed return stepped, completed, reset def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[int] = False __a : Optional[Any] = [] def lowerCAmelCase__(self ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCAmelCase__(self , _lowercase=False ): '''simple docstring''' __a : Union[str, Any] = DisjunctiveConstraint(self.token_ids ) if stateful: __a : Optional[Any] = self.seqlen __a : Any = self.current_seq __a : List[str] = self.completed return new_constraint class SCREAMING_SNAKE_CASE__ : def __init__(self , _lowercase ): '''simple docstring''' __a : List[Any] = constraints # max # of steps required to fulfill a given constraint __a : List[str] = max([c.seqlen for c in constraints] ) __a : Optional[int] = len(_lowercase ) __a : int = False self.init_state() def lowerCAmelCase__(self ): '''simple docstring''' __a : str = [] __a : str = None __a : Any = [constraint.copy(stateful=_lowercase ) for constraint in self.constraints] def lowerCAmelCase__(self ): '''simple docstring''' __a : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCAmelCase__(self ): '''simple docstring''' __a : Optional[Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" __a : str = constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) else: __a : Optional[Any] = self.inprogress_constraint.advance() if isinstance(_lowercase , _lowercase ): token_list.append(_lowercase ) elif isinstance(_lowercase , _lowercase ): token_list.extend(_lowercase ) if len(_lowercase ) == 0: return None else: return token_list def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint __a , __a : Optional[Any] = self.add(_lowercase ) # the entire list of constraints are fulfilled if self.completed: break def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) __a , __a : Union[str, Any] = False, False if self.completed: __a : Optional[Any] = True __a : str = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state __a , __a , __a : Any = self.inprogress_constraint.update(_lowercase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=_lowercase ) ) __a : Optional[Any] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) __a : Dict = None if len(self.pending_constraints ) == 0: # we're done! __a : Optional[Any] = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(_lowercase ): __a , __a , __a : Optional[int] = pending_constraint.update(_lowercase ) if not stepped: raise Exception( """`constraint.update(token_id)` is not yielding incremental progress, """ """even though `constraint.does_advance(token_id)` is true.""" ) if complete: self.complete_constraints.append(_lowercase ) __a : Any = None if not complete and stepped: __a : List[Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". __a : Tuple = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. __a : Optional[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCAmelCase__(self , _lowercase=True ): '''simple docstring''' __a : int = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: __a : List[str] = [ constraint.copy(stateful=_lowercase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: __a : List[str] = self.inprogress_constraint.copy(stateful=_lowercase ) __a : Dict = [constraint.copy() for constraint in self.pending_constraints] return new_state
581
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", "tokenizer_config_file": "tokenizer_config.json", } lowercase__ = { "vocab_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json", }, "spm_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model", }, "tokenizer_config_file": { "facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json", "facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json", }, } lowercase__ = { "facebook/m2m100_418M": 1024, } # fmt: off lowercase__ = { "m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"], "wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"] } class SCREAMING_SNAKE_CASE__ ( __snake_case ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = ["input_ids", "attention_mask"] _lowerCAmelCase = [] _lowerCAmelCase = [] def __init__(self , _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase="<s>" , _lowercase="</s>" , _lowercase="</s>" , _lowercase="<pad>" , _lowercase="<unk>" , _lowercase="m2m100" , _lowercase = None , _lowercase=8 , **_lowercase , ): '''simple docstring''' __a : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs __a : List[str] = language_codes __a : str = FAIRSEQ_LANGUAGE_CODES[language_codes] __a : Optional[int] = {lang_code: F'''__{lang_code}__''' for lang_code in fairseq_language_code} __a : Optional[int] = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(_lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(_lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=_lowercase , tgt_lang=_lowercase , bos_token=_lowercase , eos_token=_lowercase , sep_token=_lowercase , unk_token=_lowercase , pad_token=_lowercase , language_codes=_lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=_lowercase , **_lowercase , ) __a : Optional[Any] = vocab_file __a : List[Any] = load_json(_lowercase ) __a : List[str] = {v: k for k, v in self.encoder.items()} __a : List[Any] = spm_file __a : int = load_spm(_lowercase , self.sp_model_kwargs ) __a : Dict = len(self.encoder ) __a : Optional[int] = { self.get_lang_token(_lowercase ): self.encoder_size + i for i, lang_code in enumerate(_lowercase ) } __a : Dict = {lang_code: self.encoder_size + i for i, lang_code in enumerate(_lowercase )} __a : Tuple = {v: k for k, v in self.lang_token_to_id.items()} __a : List[str] = src_lang if src_lang is not None else """en""" __a : List[Any] = tgt_lang __a : List[Any] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __a : Optional[Any] = num_madeup_words @property def lowerCAmelCase__(self ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def lowerCAmelCase__(self ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return self.sp_model.encode(_lowercase , out_type=_lowercase ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(_lowercase , self.encoder[self.unk_token] ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(_lowercase , self.unk_token ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Any = [] __a : Optional[int] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_lowercase ) + token __a : Optional[Any] = [] else: current_sub_tokens.append(_lowercase ) out_string += self.sp_model.decode(_lowercase ) return out_string.strip() def lowerCAmelCase__(self , _lowercase , _lowercase = None , _lowercase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) __a : str = [1] * len(self.prefix_tokens ) __a : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_lowercase )) + suffix_ones return prefix_ones + ([0] * len(_lowercase )) + ([0] * len(_lowercase )) + suffix_ones def lowerCAmelCase__(self , _lowercase , _lowercase = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = {self.convert_ids_to_tokens(_lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): '''simple docstring''' __a : Optional[Any] = self.__dict__.copy() __a : List[str] = None return state def __setstate__(self , _lowercase ): '''simple docstring''' __a : int = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __a : List[str] = {} __a : Any = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase__(self , _lowercase , _lowercase = None ): '''simple docstring''' __a : Tuple = Path(_lowercase ) if not save_dir.is_dir(): raise OSError(F'''{save_directory} should be a directory''' ) __a : Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) __a : List[Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _lowercase ) elif not os.path.isfile(self.spm_file ): with open(_lowercase , """wb""" ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(_lowercase ) return (str(_lowercase ), str(_lowercase )) def lowerCAmelCase__(self , _lowercase , _lowercase = "en" , _lowercase = None , _lowercase = "ro" , **_lowercase , ): '''simple docstring''' __a : Dict = src_lang __a : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(_lowercase , _lowercase , **_lowercase ) def lowerCAmelCase__(self , _lowercase , _lowercase , _lowercase , **_lowercase ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __a : Dict = src_lang __a : List[str] = self(_lowercase , add_special_tokens=_lowercase , **_lowercase ) __a : Union[str, Any] = self.get_lang_id(_lowercase ) __a : Tuple = tgt_lang_id return inputs def lowerCAmelCase__(self ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase__(self ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : str = self.get_lang_token(_lowercase ) __a : Union[str, Any] = self.lang_token_to_id[lang_token] __a : Optional[Any] = [self.cur_lang_id] __a : List[str] = [self.eos_token_id] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Dict = self.get_lang_token(_lowercase ) __a : Union[str, Any] = self.lang_token_to_id[lang_token] __a : Tuple = [self.cur_lang_id] __a : Dict = [self.eos_token_id] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' return self.lang_code_to_token[lang] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Union[str, Any] = self.get_lang_token(_lowercase ) return self.lang_token_to_id[lang_token] def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Dict[str, Any] ): __a : Optional[int] = sentencepiece.SentencePieceProcessor(**_lowerCamelCase ) spm.Load(str(_lowerCamelCase ) ) return spm def __magic_name__ ( _lowerCamelCase : str ): with open(_lowerCamelCase , """r""" ) as f: return json.load(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ): with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=2 )
581
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCAmelCase__ = logging.get_logger(__name__) def A ( _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = b.T _UpperCAmelCase = np.sum(np.square(lowerCamelCase_ ) , axis=1 ) _UpperCAmelCase = np.sum(np.square(lowerCamelCase_ ) , axis=0 ) _UpperCAmelCase = np.matmul(lowerCamelCase_ , lowerCamelCase_ ) _UpperCAmelCase = aa[:, None] - 2 * ab + ba[None, :] return d def A ( _UpperCAmelCase : int , _UpperCAmelCase : str ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = x.reshape(-1 , 3 ) _UpperCAmelCase = squared_euclidean_distance(lowerCamelCase_ , lowerCamelCase_ ) return np.argmin(lowerCamelCase_ , axis=1 ) class __lowerCAmelCase ( __lowerCamelCase ): UpperCamelCase = ['''pixel_values'''] def __init__( self : str , A : Optional[Union[List[List[int]], np.ndarray]] = None , A : bool = True , A : Dict[str, int] = None , A : PILImageResampling = PILImageResampling.BILINEAR , A : bool = True , A : bool = True , **A : List[Any] , ) -> str: """simple docstring""" super().__init__(**UpperCAmelCase_) _UpperCAmelCase = size if size is not None else {'height': 2_56, 'width': 2_56} _UpperCAmelCase = get_size_dict(UpperCAmelCase_) _UpperCAmelCase = np.array(UpperCAmelCase_) if clusters is not None else None _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_normalize _UpperCAmelCase = do_color_quantize def _lowerCamelCase ( self : str , A : np.ndarray , A : Dict[str, int] , A : PILImageResampling = PILImageResampling.BILINEAR , A : Optional[Union[str, ChannelDimension]] = None , **A : Tuple , ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F"Size dictionary must contain both height and width keys. Got {size.keys()}") return resize( UpperCAmelCase_ , size=(size['height'], size['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def _lowerCamelCase ( self : str , A : np.ndarray , A : Optional[Union[str, ChannelDimension]] = None , ) -> str: """simple docstring""" _UpperCAmelCase = rescale(image=UpperCAmelCase_ , scale=1 / 1_27.5 , data_format=UpperCAmelCase_) _UpperCAmelCase = image - 1 return image def _lowerCamelCase ( self : Dict , A : ImageInput , A : bool = None , A : Dict[str, int] = None , A : PILImageResampling = None , A : bool = None , A : Optional[bool] = None , A : Optional[Union[List[List[int]], np.ndarray]] = None , A : Optional[Union[str, TensorType]] = None , A : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **A : List[str] , ) -> List[str]: """simple docstring""" _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(UpperCAmelCase_) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _UpperCAmelCase = clusters if clusters is not None else self.clusters _UpperCAmelCase = np.array(UpperCAmelCase_) _UpperCAmelCase = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.') # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=UpperCAmelCase_) for image in images] if do_color_quantize: _UpperCAmelCase = [to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _UpperCAmelCase = np.array(UpperCAmelCase_) _UpperCAmelCase = color_quantize(UpperCAmelCase_ , UpperCAmelCase_).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) _UpperCAmelCase = images.shape[0] _UpperCAmelCase = images.reshape(UpperCAmelCase_ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. _UpperCAmelCase = list(UpperCAmelCase_) else: _UpperCAmelCase = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] _UpperCAmelCase = {'input_ids': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
706
import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def A ( _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' # Initialise PyTorch model _UpperCAmelCase = TaConfig.from_json_file(_UpperCAmelCase ) print(F"Building PyTorch model from configuration: {config}" ) _UpperCAmelCase = TaForConditionalGeneration(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_ta(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
639
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def lowerCAmelCase ( UpperCamelCase__ : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[int] = SwinConfig(image_size=192 ) if "base" in model_name: __SCREAMING_SNAKE_CASE: List[Any] = 6 __SCREAMING_SNAKE_CASE: Tuple = 128 __SCREAMING_SNAKE_CASE: List[str] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE: Union[str, Any] = (4, 8, 16, 32) elif "large" in model_name: __SCREAMING_SNAKE_CASE: List[str] = 12 __SCREAMING_SNAKE_CASE: Tuple = 192 __SCREAMING_SNAKE_CASE: Optional[int] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE: List[Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __SCREAMING_SNAKE_CASE: Optional[Any] = window_size __SCREAMING_SNAKE_CASE: int = embed_dim __SCREAMING_SNAKE_CASE: Optional[Any] = depths __SCREAMING_SNAKE_CASE: Union[str, Any] = num_heads return config def lowerCAmelCase ( UpperCamelCase__ : Dict ) -> List[Any]: """simple docstring""" if "encoder.mask_token" in name: __SCREAMING_SNAKE_CASE: Any = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __SCREAMING_SNAKE_CASE: Optional[Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __SCREAMING_SNAKE_CASE: int = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE: str = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __SCREAMING_SNAKE_CASE: str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __SCREAMING_SNAKE_CASE: str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __SCREAMING_SNAKE_CASE: Dict = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE: Tuple = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE: Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __SCREAMING_SNAKE_CASE: Optional[int] = '''layernorm.weight''' if name == "encoder.norm.bias": __SCREAMING_SNAKE_CASE: Optional[int] = '''layernorm.bias''' if "decoder" in name: pass else: __SCREAMING_SNAKE_CASE: int = '''swin.''' + name return name def lowerCAmelCase ( UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ) -> Any: """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE: Optional[Any] = orig_state_dict.pop(UpperCamelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: __SCREAMING_SNAKE_CASE: Optional[Any] = key.split('''.''' ) __SCREAMING_SNAKE_CASE: List[Any] = int(key_split[2] ) __SCREAMING_SNAKE_CASE: int = int(key_split[4] ) __SCREAMING_SNAKE_CASE: List[Any] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE: List[str] = val[:dim, :] __SCREAMING_SNAKE_CASE: Optional[Any] = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE: Tuple = val[-dim:, :] else: __SCREAMING_SNAKE_CASE: Any = val[ :dim ] __SCREAMING_SNAKE_CASE: Union[str, Any] = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE: int = val[ -dim: ] else: __SCREAMING_SNAKE_CASE: List[str] = val return orig_state_dict def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE: Optional[Any] = torch.load(UpperCamelCase__ , map_location='''cpu''' )['''model'''] __SCREAMING_SNAKE_CASE: Union[str, Any] = get_swin_config(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: int = SwinForMaskedImageModeling(UpperCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE: str = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) __SCREAMING_SNAKE_CASE: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE: int = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __SCREAMING_SNAKE_CASE: Union[str, Any] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ) __SCREAMING_SNAKE_CASE: Dict = image_processor(images=UpperCamelCase__ , return_tensors='''pt''' ) with torch.no_grad(): __SCREAMING_SNAKE_CASE: Optional[int] = model(**UpperCamelCase__ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(UpperCamelCase__ ) if push_to_hub: print(F"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(F"""microsoft/{model_name}""" ) image_processor.push_to_hub(F"""microsoft/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""swin-base-simmim-window6-192""", type=str, choices=["""swin-base-simmim-window6-192""", """swin-large-simmim-window12-192"""], help="""Name of the Swin SimMIM model you'd like to convert.""", ) parser.add_argument( """--checkpoint_path""", default="""/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth""", type=str, help="""Path to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
202
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class a ( __lowercase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): """simple docstring""" super().__init__( features=_lowerCAmelCase , cache_dir=_lowerCAmelCase , keep_in_memory=_lowerCAmelCase , streaming=_lowerCAmelCase , num_proc=_lowerCAmelCase , **_lowerCAmelCase , ) __SCREAMING_SNAKE_CASE: Any = Generator( cache_dir=_lowerCAmelCase , features=_lowerCAmelCase , generator=_lowerCAmelCase , gen_kwargs=_lowerCAmelCase , **_lowerCAmelCase , ) def snake_case_ ( self ): """simple docstring""" if self.streaming: __SCREAMING_SNAKE_CASE: List[str] = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: __SCREAMING_SNAKE_CASE: str = None __SCREAMING_SNAKE_CASE: List[Any] = None __SCREAMING_SNAKE_CASE: Tuple = None __SCREAMING_SNAKE_CASE: Optional[Any] = None self.builder.download_and_prepare( download_config=_lowerCAmelCase , download_mode=_lowerCAmelCase , verification_mode=_lowerCAmelCase , base_path=_lowerCAmelCase , num_proc=self.num_proc , ) __SCREAMING_SNAKE_CASE: List[str] = self.builder.as_dataset( split='''train''' , verification_mode=_lowerCAmelCase , in_memory=self.keep_in_memory ) return dataset
202
1
'''simple docstring''' import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging snake_case_ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] snake_case_ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() snake_case_ = logging.get_logger(__name__) snake_case_ = """ Hello world! cécé herlolip""" snake_case_ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def _lowerCamelCase( UpperCamelCase__ : List[Any] ) -> Union[str, Any]: A : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) def _lowerCamelCase( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> Any: A : List[str] = dct.pop(UpperCamelCase__ ) A : Optional[int] = val def _lowerCamelCase( UpperCamelCase__ : Optional[Any] ) -> Union[str, Any]: A : List[Any] = torch.load(UpperCamelCase__ , map_location='''cpu''' ) A : Dict = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def _lowerCamelCase( UpperCamelCase__ : int ) -> Any: A, A : Dict = emb.weight.shape A : Dict = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) A : str = emb.weight.data return lin_layer @torch.no_grad() def _lowerCamelCase( UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any]=None ) -> Any: if not os.path.exists(UpperCamelCase__ ): A : Tuple = torch.hub.load('''pytorch/fairseq''' , UpperCamelCase__ ).eval() else: A : Optional[Any] = load_xsum_checkpoint(UpperCamelCase__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: A : Union[str, Any] = checkpoint_path.replace('''.''' , '''-''' ) A : Optional[Any] = BartConfig.from_pretrained(UpperCamelCase__ ) A : Any = bart.encode(UpperCamelCase__ ).unsqueeze(0 ) A : Optional[Any] = BartTokenizer.from_pretrained(UpperCamelCase__ ).encode(UpperCamelCase__ , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(UpperCamelCase__ , UpperCamelCase__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": A : List[str] = bart.state_dict() remove_ignore_keys_(UpperCamelCase__ ) A : Tuple = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) A : Dict = BartForSequenceClassification(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) A : str = bart.predict('''mnli''' , UpperCamelCase__ , return_logits=UpperCamelCase__ ) A : Tuple = model(UpperCamelCase__ )[0] # logits else: # no classification heads to worry about A : Tuple = bart.model.state_dict() remove_ignore_keys_(UpperCamelCase__ ) A : int = state_dict['''decoder.embed_tokens.weight'''] A : Optional[int] = bart.extract_features(UpperCamelCase__ ) if hf_checkpoint_name == "facebook/bart-large": A : List[Any] = BartModel(UpperCamelCase__ ).eval() model.load_state_dict(UpperCamelCase__ ) A : str = model(UpperCamelCase__ ).model[0] else: A : Dict = BartForConditionalGeneration(UpperCamelCase__ ).eval() # an existing summarization ckpt model.model.load_state_dict(UpperCamelCase__ ) if hasattr(UpperCamelCase__ , '''lm_head''' ): A : List[Any] = make_linear_from_emb(model.model.shared ) A : Tuple = model.model(UpperCamelCase__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(UpperCamelCase__ ).mkdir(exist_ok=UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) snake_case_ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
537
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) snake_case_ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
537
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase = MobileBertConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(f"Building PyTorch model from configuration: {config}" ) UpperCAmelCase = MobileBertForPreTraining(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint UpperCAmelCase = load_tf_weights_in_mobilebert(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": a__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
51
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: snake_case__ = None snake_case__ = logging.get_logger(__name__) snake_case__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case__ = { """vocab_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/spiece.model""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/spiece.model""", }, """tokenizer_file""": { """google/fnet-base""": """https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json""", """google/fnet-large""": """https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json""", }, } snake_case__ = { """google/fnet-base""": 5_12, """google/fnet-large""": 5_12, } snake_case__ = """▁""" class UpperCAmelCase ( __lowerCamelCase ): a__: Dict = VOCAB_FILES_NAMES a__: List[Any] = PRETRAINED_VOCAB_FILES_MAP a__: Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__: Any = ["""input_ids""", """token_type_ids"""] a__: Tuple = FNetTokenizer def __init__( self : int , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[str]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : List[Any]="<unk>" , lowerCAmelCase : Tuple="[SEP]" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : List[str]="[CLS]" , lowerCAmelCase : Dict="[MASK]" , **lowerCAmelCase : Optional[int] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase : Tuple = ( AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase , normalized=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token ) super().__init__( lowerCAmelCase , tokenizer_file=lowerCAmelCase , do_lower_case=lowerCAmelCase , remove_space=lowerCAmelCase , keep_accents=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , pad_token=lowerCAmelCase , cls_token=lowerCAmelCase , mask_token=lowerCAmelCase , **lowerCAmelCase , ) lowercase : List[Any] = do_lower_case lowercase : Tuple = remove_space lowercase : Optional[Any] = keep_accents lowercase : Tuple = vocab_file lowercase : Any = False if not self.vocab_file else True def _lowerCAmelCase ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): lowercase : int = [self.sep_token_id] lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCAmelCase ( self : Dict , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None ): lowercase : List[str] = [self.sep_token_id] lowercase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): if not os.path.isdir(lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase : Union[str, Any] = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ): copyfile(self.vocab_file , lowerCAmelCase ) return (out_vocab_file,)
583
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _snake_case ( ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" lowerCAmelCase = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert("""RGB""" ) return image def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" lowerCAmelCase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'visual_encoder.blocks.{i}.norm1.weight', f'vision_model.encoder.layers.{i}.layer_norm1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm1.bias', f'vision_model.encoder.layers.{i}.layer_norm1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.weight', f'vision_model.encoder.layers.{i}.layer_norm2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.norm2.bias', f'vision_model.encoder.layers.{i}.layer_norm2.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.qkv.weight', f'vision_model.encoder.layers.{i}.self_attn.qkv.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.weight', f'vision_model.encoder.layers.{i}.self_attn.projection.weight',) ) rename_keys.append((f'visual_encoder.blocks.{i}.attn.proj.bias', f'vision_model.encoder.layers.{i}.self_attn.projection.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.weight', f'vision_model.encoder.layers.{i}.mlp.fc1.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc1.bias', f'vision_model.encoder.layers.{i}.mlp.fc1.bias') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.weight', f'vision_model.encoder.layers.{i}.mlp.fc2.weight') ) rename_keys.append((f'visual_encoder.blocks.{i}.mlp.fc2.bias', f'vision_model.encoder.layers.{i}.mlp.fc2.bias') ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = dct.pop(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = val def _snake_case ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Tuple ) -> str: """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.q_bias' ) lowerCAmelCase = state_dict.pop(f'visual_encoder.blocks.{i}.attn.v_bias' ) # next, set bias in the state dict lowerCAmelCase = torch.cat((q_bias, torch.zeros_like(_SCREAMING_SNAKE_CASE , requires_grad=_SCREAMING_SNAKE_CASE ), v_bias) ) lowerCAmelCase = qkv_bias def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = 364 if """coco""" in model_name else 224 lowerCAmelCase = BlipaVisionConfig(image_size=_SCREAMING_SNAKE_CASE ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=_SCREAMING_SNAKE_CASE ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=_SCREAMING_SNAKE_CASE ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() lowerCAmelCase = BlipaConfig(vision_config=_SCREAMING_SNAKE_CASE , text_config=_SCREAMING_SNAKE_CASE ) return config, image_size @torch.no_grad() def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Any=None , _SCREAMING_SNAKE_CASE : Any=False ) -> Tuple: """simple docstring""" lowerCAmelCase = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) lowerCAmelCase = tokenizer("""\n""" , add_special_tokens=_SCREAMING_SNAKE_CASE ).input_ids[0] lowerCAmelCase, lowerCAmelCase = get_blipa_config(_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = BlipaForConditionalGeneration(_SCREAMING_SNAKE_CASE ).eval() lowerCAmelCase = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } lowerCAmelCase, lowerCAmelCase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowerCAmelCase = """cuda""" if torch.cuda.is_available() else """cpu""" lowerCAmelCase, lowerCAmelCase, lowerCAmelCase = load_model_and_preprocess( name=_SCREAMING_SNAKE_CASE , model_type=_SCREAMING_SNAKE_CASE , is_eval=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) original_model.eval() print("""Done!""" ) # update state dict keys lowerCAmelCase = original_model.state_dict() lowerCAmelCase = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase = state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith("""Qformer.bert""" ): lowerCAmelCase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowerCAmelCase = key.replace("""self""" , """attention""" ) if "opt_proj" in key: lowerCAmelCase = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: lowerCAmelCase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): lowerCAmelCase = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): lowerCAmelCase = key.replace("""t5""" , """language""" ) lowerCAmelCase = val # read in qv biases read_in_q_v_bias(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase, lowerCAmelCase = hf_model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE ) assert len(_SCREAMING_SNAKE_CASE ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase = load_demo_image() lowerCAmelCase = vis_processors["""eval"""](_SCREAMING_SNAKE_CASE ).unsqueeze(0 ).to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(_SCREAMING_SNAKE_CASE ) # create processor lowerCAmelCase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = BlipaProcessor(image_processor=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values.to(_SCREAMING_SNAKE_CASE ) # make sure processor creates exact same pixel values assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) original_model.to(_SCREAMING_SNAKE_CASE ) hf_model.to(_SCREAMING_SNAKE_CASE ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits lowerCAmelCase = hf_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).logits else: lowerCAmelCase = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits lowerCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase = hf_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=_SCREAMING_SNAKE_CASE ) assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=_SCREAMING_SNAKE_CASE ) else: # cast to same type lowerCAmelCase = logits.dtype assert torch.allclose(original_logits.to(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , atol=1E-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) lowerCAmelCase = """""" lowerCAmelCase = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).input_ids.to(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = original_model.generate({"""image""": original_pixel_values} ) lowerCAmelCase = hf_model.generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , _SCREAMING_SNAKE_CASE ) lowerCAmelCase = input_ids.shape[1] lowerCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [text.strip() for text in output_text] print("""HF generation:""" , _SCREAMING_SNAKE_CASE ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_SCREAMING_SNAKE_CASE ) hf_model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: processor.push_to_hub(f'nielsr/{model_name}' ) hf_model.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() UpperCAmelCase = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) UpperCAmelCase = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
344
'''simple docstring''' def _snake_case ( _SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if density <= 0: raise ValueError("""Impossible fluid density""" ) if bulk_modulus <= 0: raise ValueError("""Impossible bulk modulus""" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
344
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings UpperCamelCase : List[str] = r'\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `" / "`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `" // "`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `"wiki_dpr"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `"train"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `"compressed"`)\n The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and\n `"compressed"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a "dummy" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n' @add_start_docstrings(a ) class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'rag' _UpperCamelCase = True def __init__( self ,_lowerCAmelCase=None ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=" / " ,_lowerCAmelCase=" // " ,_lowerCAmelCase=5 ,_lowerCAmelCase=3_00 ,_lowerCAmelCase=7_68 ,_lowerCAmelCase=8 ,_lowerCAmelCase="wiki_dpr" ,_lowerCAmelCase="train" ,_lowerCAmelCase="compressed" ,_lowerCAmelCase=None ,_lowerCAmelCase=None ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=False ,_lowerCAmelCase=True ,_lowerCAmelCase=None ,**_lowerCAmelCase ,): super().__init__( bos_token_id=_lowerCAmelCase ,pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,prefix=_lowerCAmelCase ,vocab_size=_lowerCAmelCase ,**_lowerCAmelCase ,) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" lowerCamelCase__ = kwargs.pop("""question_encoder""" ) lowerCamelCase__ = question_encoder_config.pop("""model_type""" ) lowerCamelCase__ = kwargs.pop("""generator""" ) lowerCamelCase__ = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig lowerCamelCase__ = AutoConfig.for_model(_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = AutoConfig.for_model(_lowerCAmelCase ,**_lowerCAmelCase ) lowerCamelCase__ = reduce_loss lowerCamelCase__ = label_smoothing lowerCamelCase__ = exclude_bos_score lowerCamelCase__ = do_marginalize lowerCamelCase__ = title_sep lowerCamelCase__ = doc_sep lowerCamelCase__ = n_docs lowerCamelCase__ = max_combined_length lowerCamelCase__ = dataset lowerCamelCase__ = dataset_split lowerCamelCase__ = index_name lowerCamelCase__ = retrieval_vector_size lowerCamelCase__ = retrieval_batch_size lowerCamelCase__ = passages_path lowerCamelCase__ = index_path lowerCamelCase__ = use_dummy_dataset lowerCamelCase__ = output_retrieved lowerCamelCase__ = do_deduplication lowerCamelCase__ = use_cache if self.forced_eos_token_id is None: lowerCamelCase__ = getattr(self.generator ,"""forced_eos_token_id""" ,_lowerCAmelCase ) @classmethod def UpperCamelCase_ ( cls ,_lowerCAmelCase ,_lowerCAmelCase ,**_lowerCAmelCase ): return cls(question_encoder=question_encoder_config.to_dict() ,generator=generator_config.to_dict() ,**_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = copy.deepcopy(self.__dict__ ) lowerCamelCase__ = self.question_encoder.to_dict() lowerCamelCase__ = self.generator.to_dict() lowerCamelCase__ = self.__class__.model_type return output
50
'''simple docstring''' import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def _lowercase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}." ) if tokenizer_name is None: __A : Tuple = TOKENIZER_CLASSES else: __A : Dict = {tokenizer_name: getattr(SCREAMING_SNAKE_CASE , tokenizer_name + "Fast" )} logger.info(f"Loading tokenizer classes: {tokenizer_names}" ) for tokenizer_name in tokenizer_names: __A : int = TOKENIZER_CLASSES[tokenizer_name] __A : Union[str, Any] = True if checkpoint_name is None: __A : Dict = list(tokenizer_class.max_model_input_sizes.keys() ) else: __A : str = [checkpoint_name] logger.info(f"For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}" ) for checkpoint in checkpoint_names: logger.info(f"Loading {tokenizer_class.__class__.__name__} {checkpoint}" ) # Load tokenizer __A : List[str] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE , force_download=SCREAMING_SNAKE_CASE ) # Save fast tokenizer logger.info(f"Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}" ) # For organization names we create sub-directories if "/" in checkpoint: __A ,__A : Optional[Any] = checkpoint.split("/" ) __A : str = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) elif add_prefix: __A : Optional[int] = checkpoint __A : Any = dump_path else: __A : int = None __A : Optional[int] = dump_path logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __A : Any = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __A : Optional[int] = file_path.split(SCREAMING_SNAKE_CASE )[-1][0] if next_char == "/": __A : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __A : Union[str, Any] = None logger.info(f"=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}" ) __A : Tuple = tokenizer.save_pretrained( SCREAMING_SNAKE_CASE , legacy_format=SCREAMING_SNAKE_CASE , filename_prefix=SCREAMING_SNAKE_CASE ) logger.info(f"=> File names {file_names}" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(SCREAMING_SNAKE_CASE ) logger.info(f"=> removing {file_name}" ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) _UpperCamelCase = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
111
0
import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = True ): print(F'''Converting {name}...''' ) with torch.no_grad(): if hidden_sizes == 1_2_8: if name[-1] == "S": SCREAMING_SNAKE_CASE_ = timm.create_model("levit_128s" , pretrained=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = timm.create_model("levit_128" , pretrained=__UpperCamelCase ) if hidden_sizes == 1_9_2: SCREAMING_SNAKE_CASE_ = timm.create_model("levit_192" , pretrained=__UpperCamelCase ) if hidden_sizes == 2_5_6: SCREAMING_SNAKE_CASE_ = timm.create_model("levit_256" , pretrained=__UpperCamelCase ) if hidden_sizes == 3_8_4: SCREAMING_SNAKE_CASE_ = timm.create_model("levit_384" , pretrained=__UpperCamelCase ) from_model.eval() SCREAMING_SNAKE_CASE_ = LevitForImageClassificationWithTeacher(__UpperCamelCase ).eval() SCREAMING_SNAKE_CASE_ = OrderedDict() SCREAMING_SNAKE_CASE_ = from_model.state_dict() SCREAMING_SNAKE_CASE_ = list(from_model.state_dict().keys() ) SCREAMING_SNAKE_CASE_ = list(our_model.state_dict().keys() ) print(len(__UpperCamelCase ) , len(__UpperCamelCase ) ) for i in range(len(__UpperCamelCase ) ): SCREAMING_SNAKE_CASE_ = weights[og_keys[i]] our_model.load_state_dict(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = torch.randn((2, 3, 2_2_4, 2_2_4) ) SCREAMING_SNAKE_CASE_ = from_model(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = our_model(__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase ), "The model logits don't match the original one." SCREAMING_SNAKE_CASE_ = name print(__UpperCamelCase ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) SCREAMING_SNAKE_CASE_ = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'''Pushed {checkpoint_name}''' ) def a__ ( __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = True ): SCREAMING_SNAKE_CASE_ = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = (1, num_labels) SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = num_labels SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = partial(__UpperCamelCase , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid=__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = { "levit-128S": 1_2_8, "levit-128": 1_2_8, "levit-192": 1_9_2, "levit-256": 2_5_6, "levit-384": 3_8_4, } SCREAMING_SNAKE_CASE_ = { "levit-128S": ImageNetPreTrainedConfig( hidden_sizes=[1_2_8, 2_5_6, 3_8_4] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[1_6, 1_6, 1_6] , drop_path_rate=0 , ), "levit-128": ImageNetPreTrainedConfig( hidden_sizes=[1_2_8, 2_5_6, 3_8_4] , num_attention_heads=[4, 8, 1_2] , depths=[4, 4, 4] , key_dim=[1_6, 1_6, 1_6] , drop_path_rate=0 , ), "levit-192": ImageNetPreTrainedConfig( hidden_sizes=[1_9_2, 2_8_8, 3_8_4] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0 , ), "levit-256": ImageNetPreTrainedConfig( hidden_sizes=[2_5_6, 3_8_4, 5_1_2] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0 , ), "levit-384": ImageNetPreTrainedConfig( hidden_sizes=[3_8_4, 5_1_2, 7_6_8] , num_attention_heads=[6, 9, 1_2] , depths=[4, 4, 4] , key_dim=[3_2, 3_2, 3_2] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , __UpperCamelCase , names_to_config[model_name] , __UpperCamelCase , __UpperCamelCase ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return config, expected_shape if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help="The name of the model you wish to convert, it must be one of the supported Levit* architecture,", ) parser.add_argument( "--pytorch_dump_folder_path", default="levit-dump-folder/", type=Path, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) A : List[str] = parser.parse_args() A : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
710
from __future__ import annotations def a__ ( __UpperCamelCase ): # preprocessing the first row for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(__UpperCamelCase ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(__UpperCamelCase ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
356
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ) -> Dict: _a = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) _a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house _a = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim _a = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _a = model(_lowerCamelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1E-3 ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) _a = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house _a = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim _a = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): _a = model(_lowerCamelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1E-3 ) )
131
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A_ ( __lowercase ): # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F) or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) # or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) # or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) # or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) # or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F) or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) # ): # return True return False def A_ ( __lowercase ): # word like '180' or '身高' or '神' for char in word: UpperCamelCase_ : Union[str, Any] =ord(__lowercase ) if not _is_chinese_char(__lowercase ): return 0 return 1 def A_ ( __lowercase ): UpperCamelCase_ : List[str] =set() for token in tokens: UpperCamelCase_ : Optional[int] =len(__lowercase ) > 1 and is_chinese(__lowercase ) if chinese_word: word_set.add(__lowercase ) UpperCamelCase_ : Tuple =list(__lowercase ) return word_list def A_ ( __lowercase , __lowercase ): if not chinese_word_set: return bert_tokens UpperCamelCase_ : List[str] =max([len(__lowercase ) for w in chinese_word_set] ) UpperCamelCase_ : Optional[Any] =bert_tokens UpperCamelCase_ , UpperCamelCase_ : Union[str, Any] =0, len(__lowercase ) while start < end: UpperCamelCase_ : str =True if is_chinese(bert_word[start] ): UpperCamelCase_ : Optional[int] =min(end - start , __lowercase ) for i in range(__lowercase , 1 , -1 ): UpperCamelCase_ : Tuple =''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): UpperCamelCase_ : Tuple ='##' + bert_word[j] UpperCamelCase_ : int =start + i UpperCamelCase_ : Dict =False break if single_word: start += 1 return bert_word def A_ ( __lowercase , __lowercase , __lowercase ): UpperCamelCase_ : Tuple =[] for i in range(0 , len(__lowercase ) , 1_00 ): UpperCamelCase_ : Union[str, Any] =ltp_tokenizer.seg(lines[i : i + 1_00] )[0] UpperCamelCase_ : int =[get_chinese_word(__lowercase ) for r in res] ltp_res.extend(__lowercase ) assert len(__lowercase ) == len(__lowercase ) UpperCamelCase_ : Dict =[] for i in range(0 , len(__lowercase ) , 1_00 ): UpperCamelCase_ : int =bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__lowercase , truncation=__lowercase , max_length=5_12 ) bert_res.extend(res['input_ids'] ) assert len(__lowercase ) == len(__lowercase ) UpperCamelCase_ : Dict =[] for input_ids, chinese_word in zip(__lowercase , __lowercase ): UpperCamelCase_ : List[str] =[] for id in input_ids: UpperCamelCase_ : Union[str, Any] =bert_tokenizer._convert_id_to_token(__lowercase ) input_tokens.append(__lowercase ) UpperCamelCase_ : Optional[int] =add_sub_symbol(__lowercase , __lowercase ) UpperCamelCase_ : Dict =[] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__lowercase ): if token[:2] == "##": UpperCamelCase_ : Optional[int] =token[2:] # save chinese tokens' pos if len(__lowercase ) == 1 and _is_chinese_char(ord(__lowercase ) ): ref_id.append(__lowercase ) ref_ids.append(__lowercase ) assert len(__lowercase ) == len(__lowercase ) return ref_ids def A_ ( __lowercase ): # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , 'r' , encoding='utf-8' ) as f: UpperCamelCase_ : Tuple =f.readlines() UpperCamelCase_ : Optional[int] =[line.strip() for line in data if len(__lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' UpperCamelCase_ : Optional[Any] =LTP(args.ltp ) # faster in GPU device UpperCamelCase_ : Dict =BertTokenizer.from_pretrained(args.bert ) UpperCamelCase_ : int =prepare_ref(__lowercase , __lowercase , __lowercase ) with open(args.save_path , 'w' , encoding='utf-8' ) as f: UpperCamelCase_ : Tuple =[json.dumps(__lowercase ) + '\n' for ref in ref_ids] f.writelines(__lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description='prepare_chinese_ref') parser.add_argument( '--file_name', type=str, default='./resources/chinese-demo.txt', help='file need process, same as training data in lm', ) parser.add_argument( '--ltp', type=str, default='./resources/ltp', help='resources for LTP tokenizer, usually a path' ) parser.add_argument('--bert', type=str, default='./resources/robert', help='resources for Bert tokenizer') parser.add_argument('--save_path', type=str, default='./resources/ref.txt', help='path to save res') __SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
357
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : Tuple ={ '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] =[ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] =[ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] =[ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
701
from numpy import exp, pi, sqrt def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = 0.0 ,lowerCAmelCase__ = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
72
0
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def _snake_case ( A , A=False ) -> Optional[Any]: try: lowerCAmelCase__ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase__ = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase__ = strtobool(A ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __UpperCAmelCase = parse_flag_from_env('''RUN_SLOW''', default=False) def _snake_case ( A ) -> List[Any]: return unittest.skip('''Test was skipped''' )(A ) def _snake_case ( A ) -> Tuple: return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(A ) def _snake_case ( A ) -> Any: return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(A ) def _snake_case ( A ) -> str: return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(A ) def _snake_case ( A ) -> str: return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(A ) def _snake_case ( A ) -> Dict: return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(A ) def _snake_case ( A ) -> Tuple: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(A ) def _snake_case ( A ) -> Dict: return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(A ) def _snake_case ( A ) -> Optional[Any]: return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(A ) def _snake_case ( A ) -> List[str]: return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(A ) def _snake_case ( A ) -> List[Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(A ) def _snake_case ( A ) -> str: return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(A ) def _snake_case ( A ) -> Any: return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(A ) def _snake_case ( A ) -> Union[str, Any]: return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(A ) def _snake_case ( A=None , A=None ) -> Union[str, Any]: if test_case is None: return partial(A , version=A ) return unittest.skipUnless(is_torch_version('''>=''' , A ) , F"""test requires torch version >= {version}""" )(A ) def _snake_case ( A ) -> List[str]: return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(A ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(A ) __UpperCAmelCase = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def _snake_case ( A ) -> Optional[int]: return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(A ) class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = True @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> str: lowerCAmelCase__ = tempfile.mkdtemp() @classmethod def __SCREAMING_SNAKE_CASE ( cls ) -> str: if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def __SCREAMING_SNAKE_CASE ( self ) -> str: if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(lowerCamelCase_ ) class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class a__ ( unittest.TestCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> List[Any]: lowerCAmelCase__ = mocks if isinstance(lowerCamelCase_ , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def _snake_case ( A ) -> int: lowerCAmelCase__ = AcceleratorState() lowerCAmelCase__ = tensor[None].clone().to(state.device ) lowerCAmelCase__ = gather(A ).cpu() lowerCAmelCase__ = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , A ): return False return True class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = returncode lowerCAmelCase__ = stdout lowerCAmelCase__ = stderr async def _snake_case ( A , A ) -> Union[str, Any]: while True: lowerCAmelCase__ = await stream.readline() if line: callback(A ) else: break async def _snake_case ( A , A=None , A=None , A=None , A=False , A=False ) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(A ) ) lowerCAmelCase__ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase__ = [] lowerCAmelCase__ = [] def tee(A , A , A , A="" ): lowerCAmelCase__ = line.decode('''utf-8''' ).rstrip() sink.append(A ) if not quiet: print(A , A , file=A ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda A : tee(A , A , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda A : tee(A , A , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=A , ) return _RunOutput(await p.wait() , A , A ) def _snake_case ( A , A=None , A=None , A=180 , A=False , A=True ) -> _RunOutput: lowerCAmelCase__ = asyncio.get_event_loop() lowerCAmelCase__ = loop.run_until_complete( _stream_subprocess(A , env=A , stdin=A , timeout=A , quiet=A , echo=A ) ) lowerCAmelCase__ = ''' '''.join(A ) if result.returncode > 0: lowerCAmelCase__ = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class a__ ( a__ ): '''simple docstring''' pass def _snake_case ( A , A=False ) -> Optional[int]: try: lowerCAmelCase__ = subprocess.check_output(A , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(A , '''decode''' ): lowerCAmelCase__ = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(A )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
90
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'''vocab_file''': '''vocab.txt'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } __UpperCAmelCase = { '''facebook/esm2_t6_8M_UR50D''': 1_024, '''facebook/esm2_t12_35M_UR50D''': 1_024, } def _snake_case ( A ) -> Optional[Any]: with open(A , '''r''' ) as f: lowerCAmelCase__ = f.read().splitlines() return [l.strip() for l in lines] class a__ ( a__ ): '''simple docstring''' lowercase__ : Optional[Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , lowerCamelCase_ , lowerCamelCase_="<unk>" , lowerCamelCase_="<cls>" , lowerCamelCase_="<pad>" , lowerCamelCase_="<mask>" , lowerCamelCase_="<eos>" , **lowerCamelCase_ , ) -> Tuple: super().__init__(**lowerCamelCase_ ) lowerCAmelCase__ = load_vocab_file(lowerCamelCase_ ) lowerCAmelCase__ = dict(enumerate(self.all_tokens ) ) lowerCAmelCase__ = {tok: ind for ind, tok in enumerate(self.all_tokens )} lowerCAmelCase__ = unk_token lowerCAmelCase__ = cls_token lowerCAmelCase__ = pad_token lowerCAmelCase__ = mask_token lowerCAmelCase__ = eos_token lowerCAmelCase__ = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , **lowerCamelCase_ ) -> Union[str, Any]: return text.split() def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=False ) -> Dict: return len(self._id_to_token ) def __SCREAMING_SNAKE_CASE ( self ) -> int: return {token: i for i, token in enumerate(self.all_tokens )} def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> int: return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> str: return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None ) -> List[int]: lowerCAmelCase__ = [self.cls_token_id] lowerCAmelCase__ = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] lowerCAmelCase__ = [1] + ([0] * len(lowerCamelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase_ ) + [1] return mask def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: lowerCAmelCase__ = os.path.join(lowerCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(lowerCamelCase_ , '''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def __SCREAMING_SNAKE_CASE ( self ) -> int: return self.get_vocab_size(with_added_tokens=lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ = False ) -> int: return super()._add_tokens(lowerCamelCase_ , special_tokens=lowerCamelCase_ )
90
1
def __lowerCamelCase ( _lowercase ) -> set: UpperCamelCase = set() # edges = list of graph's edges UpperCamelCase = get_edges(_lowercase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCamelCase , UpperCamelCase = edges.pop() chosen_vertices.add(_lowercase ) chosen_vertices.add(_lowercase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowercase ) return chosen_vertices def __lowerCamelCase ( _lowercase ) -> set: UpperCamelCase = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
716
from __future__ import annotations def __lowerCamelCase ( _lowercase , _lowercase , _lowercase ) -> int | float: if len(_lowercase ) == 0: raise ValueError('find_max() arg is an empty sequence' ) if ( left >= len(_lowercase ) or left < -len(_lowercase ) or right >= len(_lowercase ) or right < -len(_lowercase ) ): raise IndexError('list index out of range' ) if left == right: return nums[left] UpperCamelCase = (left + right) >> 1 # the middle UpperCamelCase = find_max(_lowercase , _lowercase , _lowercase ) # find max in range[left, mid] UpperCamelCase = find_max(_lowercase , mid + 1 , _lowercase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
170
0
'''simple docstring''' import argparse import os import re a__ : Tuple ='''src/transformers''' # Pattern that looks at the indentation in a line. a__ : List[Any] =re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. a__ : Union[str, Any] =re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a__ : List[str] =re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. a__ : List[Any] =re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a__ : Dict =re.compile(r'''\[([^\]]+)\]''') def lowercase__ ( __lowercase : int ) -> Any: """simple docstring""" __UpperCamelCase = _re_indent.search(__lowercase ) return "" if search is None else search.groups()[0] def lowercase__ ( __lowercase : Optional[Any] , __lowercase : List[Any]="" , __lowercase : Dict=None , __lowercase : Optional[int]=None ) -> str: """simple docstring""" __UpperCamelCase = 0 __UpperCamelCase = code.split('\n' ) if start_prompt is not None: while not lines[index].startswith(__lowercase ): index += 1 __UpperCamelCase = ['\n'.join(lines[:index] )] else: __UpperCamelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __UpperCamelCase = [lines[index]] index += 1 while index < len(__lowercase ) and (end_prompt is None or not lines[index].startswith(__lowercase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ' ' ): current_block.append(lines[index] ) blocks.append('\n'.join(__lowercase ) ) if index < len(__lowercase ) - 1: __UpperCamelCase = [lines[index + 1]] index += 1 else: __UpperCamelCase = [] else: blocks.append('\n'.join(__lowercase ) ) __UpperCamelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__lowercase ) > 0: blocks.append('\n'.join(__lowercase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__lowercase ): blocks.append('\n'.join(lines[index:] ) ) return blocks def lowercase__ ( __lowercase : Any ) -> int: """simple docstring""" def _inner(__lowercase : Tuple ): return key(__lowercase ).lower().replace('_' , '' ) return _inner def lowercase__ ( __lowercase : int , __lowercase : str=None ) -> str: """simple docstring""" def noop(__lowercase : Optional[Any] ): return x if key is None: __UpperCamelCase = noop # Constants are all uppercase, they go first. __UpperCamelCase = [obj for obj in objects if key(__lowercase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __UpperCamelCase = [obj for obj in objects if key(__lowercase )[0].isupper() and not key(__lowercase ).isupper()] # Functions begin with a lowercase, they go last. __UpperCamelCase = [obj for obj in objects if not key(__lowercase )[0].isupper()] __UpperCamelCase = ignore_underscore(__lowercase ) return sorted(__lowercase , key=__lowercase ) + sorted(__lowercase , key=__lowercase ) + sorted(__lowercase , key=__lowercase ) def lowercase__ ( __lowercase : Tuple ) -> Tuple: """simple docstring""" def _replace(__lowercase : Union[str, Any] ): __UpperCamelCase = match.groups()[0] if "," not in imports: return F'''[{imports}]''' __UpperCamelCase = [part.strip().replace('"' , '' ) for part in imports.split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __UpperCamelCase = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(__lowercase )] ) + "]" __UpperCamelCase = import_statement.split('\n' ) if len(__lowercase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __UpperCamelCase = 2 if lines[1].strip() == '[' else 1 __UpperCamelCase = [(i, _re_strip_line.search(__lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __UpperCamelCase = sort_objects(__lowercase , key=lambda __lowercase : x[1] ) __UpperCamelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__lowercase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __UpperCamelCase = _re_bracket_content.sub(_replace , lines[1] ) else: __UpperCamelCase = [part.strip().replace('"' , '' ) for part in lines[1].split(',' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __UpperCamelCase = keys[:-1] __UpperCamelCase = get_indent(lines[1] ) + ', '.join([F'''"{k}"''' for k in sort_objects(__lowercase )] ) return "\n".join(__lowercase ) else: # Finally we have to deal with imports fitting on one line __UpperCamelCase = _re_bracket_content.sub(_replace , __lowercase ) return import_statement def lowercase__ ( __lowercase : Optional[int] , __lowercase : int=True ) -> List[Any]: """simple docstring""" with open(__lowercase , encoding='utf-8' ) as f: __UpperCamelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __UpperCamelCase = split_code_in_indented_blocks( __lowercase , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:' ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(__lowercase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __UpperCamelCase = main_blocks[block_idx] __UpperCamelCase = block.split('\n' ) # Get to the start of the imports. __UpperCamelCase = 0 while line_idx < len(__lowercase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __UpperCamelCase = len(__lowercase ) else: line_idx += 1 if line_idx >= len(__lowercase ): continue # Ignore beginning and last line: they don't contain anything. __UpperCamelCase = '\n'.join(block_lines[line_idx:-1] ) __UpperCamelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __UpperCamelCase = split_code_in_indented_blocks(__lowercase , indent_level=__lowercase ) # We have two categories of import key: list or _import_structure[key].append/extend __UpperCamelCase = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __UpperCamelCase = [(pattern.search(__lowercase ).groups()[0] if pattern.search(__lowercase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __UpperCamelCase = [(i, key) for i, key in enumerate(__lowercase ) if key is not None] __UpperCamelCase = [x[0] for x in sorted(__lowercase , key=lambda __lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __UpperCamelCase = 0 __UpperCamelCase = [] for i in range(len(__lowercase ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __UpperCamelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(__lowercase ) count += 1 # And we put our main block back together with its first and last line. __UpperCamelCase = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(__lowercase ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(__lowercase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(__lowercase ) ) def lowercase__ ( __lowercase : List[Any]=True ) -> str: """simple docstring""" __UpperCamelCase = [] for root, _, files in os.walk(__lowercase ): if "__init__.py" in files: __UpperCamelCase = sort_imports(os.path.join(__lowercase , '__init__.py' ) , check_only=__lowercase ) if result: __UpperCamelCase = [os.path.join(__lowercase , '__init__.py' )] if len(__lowercase ) > 0: raise ValueError(F'''Would overwrite {len(__lowercase )} files, run `make style`.''' ) if __name__ == "__main__": a__ : Union[str, Any] =argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') a__ : Dict =parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
399
'''simple docstring''' from math import pi, sqrt, tan def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __UpperCamelCase = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(__lowercase , 2 ) * torus_radius * tube_radius def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __UpperCamelCase = (sidea + sidea + sidea) / 2 __UpperCamelCase = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def lowercase__ ( __lowercase : float , __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def lowercase__ ( __lowercase : float ) -> float: """simple docstring""" if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def lowercase__ ( __lowercase : float , __lowercase : float ) -> float: """simple docstring""" if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def lowercase__ ( __lowercase : int , __lowercase : float ) -> float: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f'Rectangle: {area_rectangle(10, 20) = }') print(f'Square: {area_square(10) = }') print(f'Triangle: {area_triangle(10, 10) = }') print(f'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(f'Parallelogram: {area_parallelogram(10, 20) = }') print(f'Rhombus: {area_rhombus(10, 20) = }') print(f'Trapezium: {area_trapezium(10, 20, 30) = }') print(f'Circle: {area_circle(20) = }') print(f'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(f'Cube: {surface_area_cube(20) = }') print(f'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(f'Sphere: {surface_area_sphere(20) = }') print(f'Hemisphere: {surface_area_hemisphere(20) = }') print(f'Cone: {surface_area_cone(10, 20) = }') print(f'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(f'Cylinder: {surface_area_cylinder(10, 20) = }') print(f'Torus: {surface_area_torus(20, 10) = }') print(f'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(f'Square: {area_reg_polygon(4, 10) = }') print(f'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
399
1
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def snake_case__ ( _snake_case : float , _snake_case : float , _snake_case : bool = False ): """simple docstring""" if radian_mode: return [magnitude * cos(_snake_case ), magnitude * sin(_snake_case )] return [magnitude * cos(radians(_snake_case ) ), magnitude * sin(radians(_snake_case ) )] def snake_case__ ( _snake_case : NDArray[floataa] , _snake_case : NDArray[floataa] , _snake_case : float = 10**-1 ): """simple docstring""" UpperCamelCase__ = cross(_snake_case , _snake_case ) UpperCamelCase__ = sum(_snake_case ) return abs(_snake_case ) < eps if __name__ == "__main__": # Test to check if it works A : List[str] = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) A : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg A : Tuple = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) A : int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg A : int = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) A : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
708
"""simple docstring""" from __future__ import annotations from typing import Any class lowerCAmelCase ( snake_case__ ): '''simple docstring''' pass class lowerCAmelCase : '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :Any ) -> None: """simple docstring""" UpperCamelCase__ = data UpperCamelCase__ = None def __iter__( self :List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase__ = self UpperCamelCase__ = [] while node: if node in visited: raise ContainsLoopError visited.append(lowerCamelCase_ ) yield node.data UpperCamelCase__ = node.next_node @property def lowerCamelCase__ ( self :str ) -> bool: """simple docstring""" try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": A : List[Any] = Node(1) A : Optional[int] = Node(2) A : List[Any] = Node(3) A : str = Node(4) print(root_node.has_loop) # False A : Union[str, Any] = root_node.next_node print(root_node.has_loop) # True A : int = Node(5) A : List[Any] = Node(6) A : str = Node(5) A : int = Node(6) print(root_node.has_loop) # False A : Union[str, Any] = Node(1) print(root_node.has_loop) # False
304
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : Dict = {'vocab_file': 'sentencepiece.model'} lowerCAmelCase : Optional[int] = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } lowerCAmelCase : Union[str, Any] = { 'google/rembert': 2_56, } class _A ( __magic_name__): SCREAMING_SNAKE_CASE : List[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , **_SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( do_lower_case=_SCREAMING_SNAKE_CASE , remove_space=_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE , bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : List[str] = do_lower_case SCREAMING_SNAKE_CASE_ : Dict = remove_space SCREAMING_SNAKE_CASE_ : Tuple = keep_accents SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_file SCREAMING_SNAKE_CASE_ : Optional[Any] = spm.SentencePieceProcessor() self.sp_model.Load(_SCREAMING_SNAKE_CASE ) @property def UpperCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = {self.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : List[str] = None return state def __setstate__( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = d SCREAMING_SNAKE_CASE_ : Optional[int] = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sp_model.EncodeAsPieces(_SCREAMING_SNAKE_CASE ) return pieces def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.PieceToId(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.IdToPiece(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.sp_model.decode_pieces(_SCREAMING_SNAKE_CASE ) return out_string def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error('Vocabulary path ({}) should be a directory'.format(_SCREAMING_SNAKE_CASE ) ) return SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
511
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class _A ( __magic_name__): SCREAMING_SNAKE_CASE : List[Any] = (UniPCMultistepScheduler,) SCREAMING_SNAKE_CASE : Union[str, Any] = (('''num_inference_steps''', 25),) def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = { 'num_train_timesteps': 1000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, 'solver_type': 'bh2', } config.update(**_SCREAMING_SNAKE_CASE ) return config def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : str = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = sample, sample for t in range(_SCREAMING_SNAKE_CASE , time_step + scheduler.config.solver_order + 1 ): SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Any = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] SCREAMING_SNAKE_CASE_ : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : List[str] = new_scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): """simple docstring""" if scheduler is None: SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : int = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : Dict = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : Dict = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample return sample def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('num_inference_steps' , _SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE , 'set_timesteps' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE , 'set_timesteps' ): SCREAMING_SNAKE_CASE_ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] SCREAMING_SNAKE_CASE_ : str = dummy_past_residuals[: scheduler.config.solver_order] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.timesteps[5] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.timesteps[6] SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = UniPCMultistepScheduler(**self.get_scheduler_config() ) SCREAMING_SNAKE_CASE_ : List[str] = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 SCREAMING_SNAKE_CASE_ : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_ : Any = DEISMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = DPMSolverMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_ : Dict = UniPCMultistepScheduler.from_config(scheduler.config ) SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(scheduler=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" self.check_over_configs(thresholding=_SCREAMING_SNAKE_CASE ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , sample_max_value=_SCREAMING_SNAKE_CASE , solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , ) def UpperCAmelCase ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.full_loop( solver_order=_SCREAMING_SNAKE_CASE , solver_type=_SCREAMING_SNAKE_CASE , prediction_type=_SCREAMING_SNAKE_CASE , ) assert not torch.isnan(_SCREAMING_SNAKE_CASE ).any(), "Samples have nan numbers" def UpperCAmelCase ( self ): """simple docstring""" self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) self.check_over_configs(lower_order_final=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]: self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE , time_step=0 ) def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = self.full_loop() SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.2464 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = self.full_loop(prediction_type='v_prediction' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 0.1014 ) < 1e-3 def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : int = self.get_scheduler_config(thresholding=_SCREAMING_SNAKE_CASE , dynamic_thresholding_ratio=0 ) SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = 10 SCREAMING_SNAKE_CASE_ : int = self.dummy_model() SCREAMING_SNAKE_CASE_ : int = self.dummy_sample_deter.half() scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE_ : Optional[int] = model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = scheduler.step(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase ( self , **_SCREAMING_SNAKE_CASE ): """simple docstring""" for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
511
1
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] ,model_result['ss'] ): A__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(__UpperCAmelCase ) def snake_case__ ( self ) -> Dict: A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self ) -> str: A__ = 'sgugger/tiny-distilbert-classification' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,only_pretrain_model=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self ) -> List[str]: A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,torchscript=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' ,'Cant do half precision' ) def snake_case__ ( self ) -> int: A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,fpaa=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self ) -> Any: A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(__UpperCAmelCase ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self ) -> Tuple: A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' ,'Can\'t do half precision' ) def snake_case__ ( self ) -> int: A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,fpaa=__UpperCAmelCase ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self ) -> int: A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(__UpperCAmelCase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self ) -> int: A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(__UpperCAmelCase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self ) -> List[str]: A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(__UpperCAmelCase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self ) -> Optional[int]: A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(__UpperCAmelCase ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self ) -> Optional[Any]: A__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,save_to_csv=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,inference_time_csv_file=os.path.join(__UpperCAmelCase ,'inf_time.csv' ) ,train_memory_csv_file=os.path.join(__UpperCAmelCase ,'train_mem.csv' ) ,inference_memory_csv_file=os.path.join(__UpperCAmelCase ,'inf_mem.csv' ) ,train_time_csv_file=os.path.join(__UpperCAmelCase ,'train_time.csv' ) ,env_info_csv_file=os.path.join(__UpperCAmelCase ,'env.csv' ) ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__UpperCAmelCase ,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase ,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase ,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase ,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(__UpperCAmelCase ,'env.csv' ) ).exists() ) def snake_case__ ( self ) -> str: A__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(__UpperCAmelCase ): self.assertTrue(hasattr(__UpperCAmelCase ,'sequential' ) ) self.assertTrue(hasattr(__UpperCAmelCase ,'cumulative' ) ) self.assertTrue(hasattr(__UpperCAmelCase ,'current' ) ) self.assertTrue(hasattr(__UpperCAmelCase ,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID] ,training=__UpperCAmelCase ,inference=__UpperCAmelCase ,sequence_lengths=[8] ,batch_sizes=[1] ,log_filename=os.path.join(__UpperCAmelCase ,'log.txt' ) ,log_print=__UpperCAmelCase ,trace_memory_line_by_line=__UpperCAmelCase ,multi_process=__UpperCAmelCase ,) A__ = PyTorchBenchmark(__UpperCAmelCase ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__UpperCAmelCase ,'log.txt' ) ).exists() )
705
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class UpperCamelCase__( enum.Enum ): lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Optional[int] = 1 lowerCAmelCase__ : List[Any] = 2 @add_end_docstrings(__A ) class UpperCamelCase__( __A ): lowerCAmelCase__ : Optional[Any] = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: super().__init__(*__UpperCAmelCase ,**__UpperCAmelCase ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. A__ = None if self.model.config.prefix is not None: A__ = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. A__ = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. A__ , A__ , A__ = self._sanitize_parameters(prefix=__UpperCAmelCase ,**self._forward_params ) A__ = {**self._preprocess_params, **preprocess_params} A__ = {**self._forward_params, **forward_params} def snake_case__ ( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Dict: A__ = {} if prefix is not None: A__ = prefix if prefix: A__ = self.tokenizer( __UpperCAmelCase ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) A__ = handle_long_generation preprocess_params.update(__UpperCAmelCase ) A__ = generate_kwargs A__ = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) A__ = ReturnType.TENSORS if return_type is not None: A__ = return_type if clean_up_tokenization_spaces is not None: A__ = clean_up_tokenization_spaces if stop_sequence is not None: A__ = self.tokenizer.encode(__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ) if len(__UpperCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) A__ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def snake_case__ ( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*__UpperCAmelCase ,**__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return super().__call__(__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase=None ,**__UpperCAmelCase ) -> Dict: A__ = self.tokenizer( prefix + prompt_text ,padding=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors=self.framework ) A__ = prompt_text if handle_long_generation == "hole": A__ = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: A__ = generate_kwargs['max_new_tokens'] else: A__ = generate_kwargs.get('max_length' ,self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: A__ = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) A__ = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: A__ = inputs['attention_mask'][:, -keep_length:] return inputs def snake_case__ ( self ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: A__ = model_inputs['input_ids'] A__ = model_inputs.get('attention_mask' ,__UpperCAmelCase ) # Allow empty prompts if input_ids.shape[1] == 0: A__ = None A__ = None A__ = 1 else: A__ = input_ids.shape[0] A__ = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. A__ = generate_kwargs.pop('prefix_length' ,0 ) if prefix_length > 0: A__ = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: A__ = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length A__ = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL A__ = self.model.generate(input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,**__UpperCAmelCase ) A__ = generated_sequence.shape[0] if self.framework == "pt": A__ = generated_sequence.reshape(__UpperCAmelCase ,out_b // in_b ,*generated_sequence.shape[1:] ) elif self.framework == "tf": A__ = tf.reshape(__UpperCAmelCase ,(in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=ReturnType.FULL_TEXT ,__UpperCAmelCase=True ) -> str: A__ = model_outputs['generated_sequence'][0] A__ = model_outputs['input_ids'] A__ = model_outputs['prompt_text'] A__ = generated_sequence.numpy().tolist() A__ = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: A__ = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text A__ = self.tokenizer.decode( __UpperCAmelCase ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: A__ = 0 else: A__ = len( self.tokenizer.decode( input_ids[0] ,skip_special_tokens=__UpperCAmelCase ,clean_up_tokenization_spaces=__UpperCAmelCase ,) ) if return_type == ReturnType.FULL_TEXT: A__ = prompt_text + text[prompt_length:] else: A__ = text[prompt_length:] A__ = {'generated_text': all_text} records.append(__UpperCAmelCase ) return records
536
0
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { 'vocab_file': 'vocab.txt', 'merges_file': 'bpe.codes', } UpperCamelCase = { 'vocab_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt', }, 'merges_file': { 'vinai/phobert-base': 'https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes', 'vinai/phobert-large': 'https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes', }, } UpperCamelCase = { 'vinai/phobert-base': 2_56, 'vinai/phobert-large': 2_56, } def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Union[str, Any]: a_ : Union[str, Any] = set() a_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Union[str, Any] = char a_ : List[Any] = set(_SCREAMING_SNAKE_CASE ) return pairs class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" lowerCAmelCase__ : int = VOCAB_FILES_NAMES lowerCAmelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , **_SCREAMING_SNAKE_CASE , ) -> List[Any]: super().__init__( bos_token=_SCREAMING_SNAKE_CASE , eos_token=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) a_ : str = vocab_file a_ : Tuple = merges_file a_ : str = {} a_ : Any = 0 a_ : str = 1 a_ : Tuple = 2 a_ : Any = 3 self.add_from_file(_SCREAMING_SNAKE_CASE ) a_ : List[str] = {v: k for k, v in self.encoder.items()} with open(_SCREAMING_SNAKE_CASE , encoding="utf-8" ) as merges_handle: a_ : Optional[int] = merges_handle.read().split("\n" )[:-1] a_ : Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] a_ : Optional[Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) a_ : Optional[Any] = {} def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] a_ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_SCREAMING_SNAKE_CASE , token_ids_a=_SCREAMING_SNAKE_CASE , already_has_special_tokens=_SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: a_ : List[Any] = [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A ( self ) -> Any: return len(self.encoder ) def A ( self ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: if token in self.cache: return self.cache[token] a_ : str = tuple(_SCREAMING_SNAKE_CASE ) a_ : Optional[int] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) a_ : Dict = get_pairs(_SCREAMING_SNAKE_CASE ) if not pairs: return token while True: a_ : Union[str, Any] = min(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(_SCREAMING_SNAKE_CASE , float("inf" ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ : List[Any] = bigram a_ : List[str] = [] a_ : str = 0 while i < len(_SCREAMING_SNAKE_CASE ): try: a_ : List[str] = word.index(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a_ : Dict = j if word[i] == first and i < len(_SCREAMING_SNAKE_CASE ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : Optional[Any] = tuple(_SCREAMING_SNAKE_CASE ) a_ : List[str] = new_word if len(_SCREAMING_SNAKE_CASE ) == 1: break else: a_ : str = get_pairs(_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = "@@ ".join(_SCREAMING_SNAKE_CASE ) a_ : Tuple = word[:-4] a_ : List[Any] = word return word def A ( self , _SCREAMING_SNAKE_CASE ) -> str: a_ : Any = [] a_ : str = re.findall(R"\S+\n?" , _SCREAMING_SNAKE_CASE ) for token in words: split_tokens.extend(list(self.bpe(_SCREAMING_SNAKE_CASE ).split(" " ) ) ) return split_tokens def A ( self , _SCREAMING_SNAKE_CASE ) -> Any: return self.encoder.get(_SCREAMING_SNAKE_CASE , self.encoder.get(self.unk_token ) ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.decoder.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def A ( self , _SCREAMING_SNAKE_CASE ) -> Any: a_ : Optional[Any] = " ".join(_SCREAMING_SNAKE_CASE ).replace("@@ " , "" ).strip() return out_string def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return a_ : Dict = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) a_ : List[Any] = os.path.join( _SCREAMING_SNAKE_CASE , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file , _SCREAMING_SNAKE_CASE ) if os.path.abspath(self.merges_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.merges_file , _SCREAMING_SNAKE_CASE ) return out_vocab_file, out_merge_file def A ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): try: with open(_SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" ) as fd: self.add_from_file(_SCREAMING_SNAKE_CASE ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'''Incorrect encoding detected in {f}, please rebuild the dataset''' ) return a_ : Any = f.readlines() for lineTmp in lines: a_ : Tuple = lineTmp.strip() a_ : int = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) a_ : Optional[Any] = line[:idx] a_ : Tuple = len(self.encoder )
473
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowerCAmelCase_ () -> List[str]: a_ : List[Any] = argparse.ArgumentParser() parser.add_argument("--model_ckpt" , type=_SCREAMING_SNAKE_CASE , default="microsoft/unixcoder-base-nine" ) parser.add_argument("--num_epochs" , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument("--batch_size" , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument("--gradient_accumulation_steps" , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument("--freeze" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument("--learning_rate" , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument("--seed" , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument("--lr_scheduler_type" , type=_SCREAMING_SNAKE_CASE , default="cosine" ) parser.add_argument("--num_warmup_steps" , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument("--weight_decay" , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument("--output_dir" , type=_SCREAMING_SNAKE_CASE , default="./results" ) return parser.parse_args() UpperCamelCase = load('accuracy') def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> Optional[int]: a_ , a_ : Tuple = eval_pred a_ : int = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase__ ( __lowerCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: super().__init__() a_ : Optional[Any] = trainer def A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: if control.should_evaluate: a_ : int = deepcopy(_SCREAMING_SNAKE_CASE ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix="train" ) return control_copy def lowerCAmelCase_ () -> List[str]: a_ : int = get_args() set_seed(args.seed ) a_ : List[Any] = load_dataset("codeparrot/codecomplex" , split="train" ) a_ : str = dataset.train_test_split(test_size=0.2 ) a_ : Any = train_test["test"].train_test_split(test_size=0.5 ) a_ : List[str] = DatasetDict( { "train": train_test["train"], "test": test_validation["train"], "valid": test_validation["test"], } ) print("Loading tokenizer and model" ) a_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) a_ : Optional[Any] = tokenizer.eos_token a_ : List[Any] = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) a_ : Optional[int] = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): a_ : Optional[Any] = False a_ : Optional[int] = ClassLabel(num_classes=7 , names=list(set(train_test_validation["train"]["complexity"] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE :str ): a_ : List[Any] = tokenizer(example["src"] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) a_ : List[Any] = labels.straint(example["complexity"] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } a_ : Any = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation["train"].column_names , ) a_ : Tuple = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) a_ : Union[str, Any] = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy="epoch" , save_strategy="epoch" , logging_strategy="epoch" , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model="accuracy" , run_name="complexity-java" , report_to="wandb" , ) a_ : Optional[Any] = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets["train"] , eval_dataset=tokenized_datasets["valid"] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print("Training..." ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
473
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def __lowerCamelCase ( A__ : List[str] ) -> Optional[int]: if is_torch_version("""<""" , """2.0.0""" ) or not hasattr(A__ , """_dynamo""" ): return False return isinstance(A__ , torch._dynamo.eval_frame.OptimizedModule ) def __lowerCamelCase ( A__ : Union[str, Any] , A__ : bool = True ) -> Tuple: lowerCamelCase_ : Union[str, Any] = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCamelCase_ : Dict = is_compiled_module(A__ ) if is_compiled: lowerCamelCase_ : List[Any] = model lowerCamelCase_ : int = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(A__ , A__ ): lowerCamelCase_ : Dict = model.module if not keep_fpaa_wrapper: lowerCamelCase_ : int = getattr(A__ , """forward""" ) lowerCamelCase_ : Tuple = model.__dict__.pop("""_original_forward""" , A__ ) if original_forward is not None: while hasattr(A__ , """__wrapped__""" ): lowerCamelCase_ : Union[str, Any] = forward.__wrapped__ if forward == original_forward: break lowerCamelCase_ : Optional[Any] = forward if getattr(A__ , """_converted_to_transformer_engine""" , A__ ): convert_model(A__ , to_transformer_engine=A__ ) if is_compiled: lowerCamelCase_ : int = model lowerCamelCase_ : List[str] = compiled_model return model def __lowerCamelCase ( ) -> Union[str, Any]: PartialState().wait_for_everyone() def __lowerCamelCase ( A__ : List[str] , A__ : str ) -> Union[str, Any]: if PartialState().distributed_type == DistributedType.TPU: xm.save(A__ , A__ ) elif PartialState().local_process_index == 0: torch.save(A__ , A__ ) @contextmanager def __lowerCamelCase ( **A__ : str ) -> Dict: for key, value in kwargs.items(): lowerCamelCase_ : List[str] = str(A__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def __lowerCamelCase ( A__ : Optional[Any] ) -> Union[str, Any]: if not hasattr(A__ , """__qualname__""" ) and not hasattr(A__ , """__name__""" ): lowerCamelCase_ : Tuple = getattr(A__ , """__class__""" , A__ ) if hasattr(A__ , """__qualname__""" ): return obj.__qualname__ if hasattr(A__ , """__name__""" ): return obj.__name__ return str(A__ ) def __lowerCamelCase ( A__ : Tuple , A__ : Optional[int] ) -> Union[str, Any]: for key, value in source.items(): if isinstance(A__ , A__ ): lowerCamelCase_ : List[Any] = destination.setdefault(A__ , {} ) merge_dicts(A__ , A__ ) else: lowerCamelCase_ : str = value return destination def __lowerCamelCase ( A__ : int = None ) -> bool: if port is None: lowerCamelCase_ : Dict = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("""localhost""", port) ) == 0
171
from math import asin, atan, cos, radians, sin, sqrt, tan snake_case__ : List[Any] = 6_3_7_8_1_3_7.0 snake_case__ : List[str] = 6_3_5_6_7_5_2.3_1_4_2_4_5 snake_case__ : int = 637_8137 def __lowerCamelCase ( A__ : float , A__ : float , A__ : float , A__ : float ) -> float: lowerCamelCase_ : Optional[Any] = (AXIS_A - AXIS_B) / AXIS_A lowerCamelCase_ : int = atan((1 - flattening) * tan(radians(A__ ) ) ) lowerCamelCase_ : List[Any] = atan((1 - flattening) * tan(radians(A__ ) ) ) lowerCamelCase_ : Union[str, Any] = radians(A__ ) lowerCamelCase_ : Tuple = radians(A__ ) # Equation lowerCamelCase_ : str = sin((phi_a - phi_a) / 2 ) lowerCamelCase_ : str = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda lowerCamelCase_ : List[str] = sqrt(sin_sq_phi + (cos(A__ ) * cos(A__ ) * sin_sq_lambda) ) return 2 * RADIUS * asin(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
171
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class UpperCAmelCase__ : def __init__( self : Any,__A : int=2,__A : Any=3,__A : Optional[int]=6_4,__A : Tuple=None ): _lowerCamelCase : int = np.random.default_rng(__A ) _lowerCamelCase : List[str] = length _lowerCamelCase : Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) _lowerCamelCase : Optional[int] = a * self.x + b + rng.normal(scale=0.1,size=(length,) ).astype(np.floataa ) def __len__( self : Dict ): return self.length def __getitem__( self : str,__A : List[str] ): return {"x": self.x[i], "y": self.y[i]} class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : Optional[Any]=0,__A : Optional[int]=0,__A : Dict=False ): super().__init__() _lowerCamelCase : Tuple = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) _lowerCamelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str],__A : Tuple=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a[0] + self.b[0] class UpperCAmelCase__ ( torch.nn.Module ): def __init__( self : Union[str, Any],__A : List[str]=0,__A : List[str]=0,__A : int=False ): super().__init__() _lowerCamelCase : Optional[int] = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Dict = torch.nn.Parameter(torch.tensor(__A ).float() ) _lowerCamelCase : Tuple = True def lowerCamelCase_ ( self : str,__A : List[Any]=None ): if self.first_batch: print(f'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' ) _lowerCamelCase : Optional[Any] = False return x * self.a + self.b def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer _lowerCamelCase : Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCamelCase : List[Any] = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} _lowerCamelCase : int = load_dataset("csv" , data_files=_lowerCAmelCase ) _lowerCamelCase : Dict = datasets["train"].unique("label" ) _lowerCamelCase : Optional[Any] = {v: i for i, v in enumerate(_lowerCAmelCase )} def tokenize_function(_lowerCAmelCase : int ): # max_length=None => use the model max length (it's actually the default) _lowerCamelCase : Optional[int] = tokenizer( examples["sentence1"] , examples["sentence2"] , truncation=_lowerCAmelCase , max_length=_lowerCAmelCase , padding="max_length" ) if "label" in examples: _lowerCamelCase : str = [label_to_id[l] for l in examples["label"]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowerCamelCase : Optional[Any] = datasets.map( _lowerCAmelCase , batched=_lowerCAmelCase , remove_columns=["sentence1", "sentence2", "label"] , ) def collate_fn(_lowerCAmelCase : str ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowerCAmelCase , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_lowerCAmelCase , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. _lowerCamelCase : str = DataLoader(tokenized_datasets["train"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=2 ) _lowerCamelCase : Optional[int] = DataLoader(tokenized_datasets["validation"] , shuffle=_lowerCAmelCase , collate_fn=_lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
44
'''simple docstring''' import logging import torch from accelerate import Accelerator from arguments import EvaluationArguments from datasets import load_dataset from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed class UpperCAmelCase__ ( A ): def __init__( self : List[Any],__A : Tuple,__A : Optional[int],__A : Optional[int]=1_0_2_4,__A : int=1_0_2_4,__A : Any=3.6 ): _lowerCamelCase : List[str] = tokenizer _lowerCamelCase : Dict = tokenizer.bos_token_id _lowerCamelCase : Tuple = dataset _lowerCamelCase : Any = seq_length _lowerCamelCase : List[Any] = seq_length * chars_per_token * num_of_sequences def __iter__( self : Tuple ): _lowerCamelCase : Union[str, Any] = iter(self.dataset ) _lowerCamelCase : str = True while more_examples: _lowerCamelCase , _lowerCamelCase : Optional[int] = [], 0 while True: if buffer_len >= self.input_characters: break try: buffer.append(next(__A )["content"] ) buffer_len += len(buffer[-1] ) except StopIteration: _lowerCamelCase : Tuple = False break _lowerCamelCase : int = tokenizer(__A,truncation=__A )["input_ids"] _lowerCamelCase : int = [] for tokenized_input in tokenized_inputs: all_token_ids.extend(tokenized_input + [self.concat_token_id] ) for i in range(0,len(__A ),self.seq_length ): _lowerCamelCase : List[str] = all_token_ids[i : i + self.seq_length] if len(__A ) == self.seq_length: yield torch.tensor(__A ) def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Optional[Any] = {"streaming": True} _lowerCamelCase : Optional[Any] = load_dataset(args.dataset_name , split="train" , **_lowerCAmelCase ) _lowerCamelCase : int = ConstantLengthDataset(_lowerCAmelCase , _lowerCAmelCase , seq_length=args.seq_length ) _lowerCamelCase : Dict = DataLoader(_lowerCAmelCase , batch_size=args.batch_size ) return eval_dataloader def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" model.eval() _lowerCamelCase : Optional[int] = [] for step, batch in enumerate(_lowerCAmelCase ): with torch.no_grad(): _lowerCamelCase : List[str] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) _lowerCamelCase : List[Any] = outputs.loss.repeat(args.batch_size ) losses.append(accelerator.gather(_lowerCAmelCase ) ) if args.max_eval_steps > 0 and step >= args.max_eval_steps: break _lowerCamelCase : Dict = torch.mean(torch.cat(_lowerCAmelCase ) ) try: _lowerCamelCase : List[Any] = torch.exp(_lowerCAmelCase ) except OverflowError: _lowerCamelCase : Optional[int] = float("inf" ) return loss.item(), perplexity.item() # Setup Accelerator UpperCAmelCase_ : List[str] = Accelerator() # Parse configuration UpperCAmelCase_ : Tuple = HfArgumentParser(EvaluationArguments) UpperCAmelCase_ : Dict = parser.parse_args() set_seed(args.seed) # Logging UpperCAmelCase_ : Optional[int] = logging.getLogger(__name__) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) # Load model and tokenizer UpperCAmelCase_ : Tuple = AutoModelForCausalLM.from_pretrained(args.model_ckpt) UpperCAmelCase_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt) # Load dataset and dataloader UpperCAmelCase_ : int = create_dataloader(args) # Prepare everything with our `accelerator`. UpperCAmelCase_, UpperCAmelCase_ : Dict = accelerator.prepare(model, eval_dataloader) # Evaluate and save the last checkpoint logger.info('Evaluating and saving model after training') UpperCAmelCase_, UpperCAmelCase_ : str = evaluate(args) logger.info(f'''loss/eval: {eval_loss}, perplexity: {perplexity}''')
44
1
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class lowerCAmelCase ( __UpperCAmelCase ): a : torch.FloatTensor class lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): @register_to_config def __init__( self , UpperCamelCase = 32 , UpperCamelCase = 64 , UpperCamelCase = 20 , UpperCamelCase = 768 , UpperCamelCase=77 , UpperCamelCase=4 , UpperCamelCase = 0.0 , UpperCamelCase = "silu" , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = "linear" , UpperCamelCase = "prd" , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = None , ): super().__init__() _SCREAMING_SNAKE_CASE = num_attention_heads _SCREAMING_SNAKE_CASE = attention_head_dim _SCREAMING_SNAKE_CASE = num_attention_heads * attention_head_dim _SCREAMING_SNAKE_CASE = additional_embeddings _SCREAMING_SNAKE_CASE = time_embed_dim or inner_dim _SCREAMING_SNAKE_CASE = embedding_proj_dim or embedding_dim _SCREAMING_SNAKE_CASE = clip_embed_dim or embedding_dim _SCREAMING_SNAKE_CASE = Timesteps(UpperCamelCase , UpperCamelCase , 0 ) _SCREAMING_SNAKE_CASE = TimestepEmbedding(UpperCamelCase , UpperCamelCase , out_dim=UpperCamelCase , act_fn=UpperCamelCase ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCamelCase , UpperCamelCase ) if embedding_proj_norm_type is None: _SCREAMING_SNAKE_CASE = None elif embedding_proj_norm_type == "layer": _SCREAMING_SNAKE_CASE = nn.LayerNorm(UpperCamelCase ) else: raise ValueError(F'unsupported embedding_proj_norm_type: {embedding_proj_norm_type}' ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCamelCase , UpperCamelCase ) if encoder_hid_proj_type is None: _SCREAMING_SNAKE_CASE = None elif encoder_hid_proj_type == "linear": _SCREAMING_SNAKE_CASE = nn.Linear(UpperCamelCase , UpperCamelCase ) else: raise ValueError(F'unsupported encoder_hid_proj_type: {encoder_hid_proj_type}' ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , UpperCamelCase ) ) if added_emb_type == "prd": _SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , 1 , UpperCamelCase ) ) elif added_emb_type is None: _SCREAMING_SNAKE_CASE = None else: raise ValueError( F'`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.' ) _SCREAMING_SNAKE_CASE = nn.ModuleList( [ BasicTransformerBlock( UpperCamelCase , UpperCamelCase , UpperCamelCase , dropout=UpperCamelCase , activation_fn="gelu" , attention_bias=UpperCamelCase , ) for d in range(UpperCamelCase ) ] ) if norm_in_type == "layer": _SCREAMING_SNAKE_CASE = nn.LayerNorm(UpperCamelCase ) elif norm_in_type is None: _SCREAMING_SNAKE_CASE = None else: raise ValueError(F'Unsupported norm_in_type: {norm_in_type}.' ) _SCREAMING_SNAKE_CASE = nn.LayerNorm(UpperCamelCase ) _SCREAMING_SNAKE_CASE = nn.Linear(UpperCamelCase , UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) _SCREAMING_SNAKE_CASE = causal_attention_mask[None, ...] self.register_buffer("causal_attention_mask" , UpperCamelCase , persistent=UpperCamelCase ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) _SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , UpperCamelCase ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase ( self ): _SCREAMING_SNAKE_CASE = {} def fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ): if hasattr(UpperCamelCase , "set_processor" ): _SCREAMING_SNAKE_CASE = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , UpperCamelCase , UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return processors def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase , UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ): if hasattr(UpperCamelCase , "set_processor" ): if not isinstance(UpperCamelCase , UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , UpperCamelCase , UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def lowercase ( self ): self.set_attn_processor(AttnProcessor() ) def lowercase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = None , UpperCamelCase = True , ): _SCREAMING_SNAKE_CASE = hidden_states.shape[0] _SCREAMING_SNAKE_CASE = timestep if not torch.is_tensor(UpperCamelCase ): _SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(UpperCamelCase ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _SCREAMING_SNAKE_CASE = timesteps * torch.ones(UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device ) _SCREAMING_SNAKE_CASE = self.time_proj(UpperCamelCase ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. _SCREAMING_SNAKE_CASE = timesteps_projected.to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE = self.time_embedding(UpperCamelCase ) if self.embedding_proj_norm is not None: _SCREAMING_SNAKE_CASE = self.embedding_proj_norm(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.embedding_proj(UpperCamelCase ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE = self.encoder_hidden_states_proj(UpperCamelCase ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" ) _SCREAMING_SNAKE_CASE = self.proj_in(UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.positional_embedding.to(hidden_states.dtype ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = 0 if encoder_hidden_states is not None: additional_embeds.append(UpperCamelCase ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: _SCREAMING_SNAKE_CASE = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: _SCREAMING_SNAKE_CASE = hidden_states[:, None, :] _SCREAMING_SNAKE_CASE = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: _SCREAMING_SNAKE_CASE = self.prd_embedding.to(hidden_states.dtype ).expand(UpperCamelCase , -1 , -1 ) additional_embeds.append(UpperCamelCase ) _SCREAMING_SNAKE_CASE = torch.cat( UpperCamelCase , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens _SCREAMING_SNAKE_CASE = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: _SCREAMING_SNAKE_CASE = F.pad( UpperCamelCase , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) _SCREAMING_SNAKE_CASE = hidden_states + positional_embeddings if attention_mask is not None: _SCREAMING_SNAKE_CASE = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 _SCREAMING_SNAKE_CASE = F.pad(UpperCamelCase , (0, self.additional_embeddings) , value=0.0 ) _SCREAMING_SNAKE_CASE = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) _SCREAMING_SNAKE_CASE = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: _SCREAMING_SNAKE_CASE = self.norm_in(UpperCamelCase ) for block in self.transformer_blocks: _SCREAMING_SNAKE_CASE = block(UpperCamelCase , attention_mask=UpperCamelCase ) _SCREAMING_SNAKE_CASE = self.norm_out(UpperCamelCase ) if self.prd_embedding is not None: _SCREAMING_SNAKE_CASE = hidden_states[:, -1] else: _SCREAMING_SNAKE_CASE = hidden_states[:, additional_embeddings_len:] _SCREAMING_SNAKE_CASE = self.proj_to_clip_embeddings(UpperCamelCase ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=UpperCamelCase ) def lowercase ( self , UpperCamelCase ): _SCREAMING_SNAKE_CASE = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
493
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _snake_case : Optional[Any] = abspath(join(dirname(dirname(dirname(__file__))), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _a ( _SCREAMING_SNAKE_CASE : Tuple ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): from transformers.testing_utils import pytest_terminal_summary_main _SCREAMING_SNAKE_CASE = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_SCREAMING_SNAKE_CASE , id=_SCREAMING_SNAKE_CASE )
493
1
'''simple docstring''' def a_ ( __UpperCAmelCase ) -> bool: """simple docstring""" if num < 0: return False snake_case: int =num snake_case: int =0 while num > 0: snake_case: int =rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
350
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder a = 'base_with_context' def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: """simple docstring""" snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) snake_case: Tuple =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case: Dict =weights[f'''layers_{lyr_num}'''] snake_case: str =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case: Any =ly_weight['attention'] snake_case: Dict =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case: str =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case: Dict =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case: List[Any] =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case: Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case: Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case: Any =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case: Union[str, Any] =nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) snake_case: Dict =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): snake_case: List[Any] =weights[f'''layers_{lyr_num}'''] snake_case: Tuple =ly_weight['attention'] snake_case: str =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case: Optional[int] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case: int =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case: Union[str, Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case: Optional[Any] =nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case: Tuple =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case: Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case: Any =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case: List[str] =nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def a_ ( __UpperCAmelCase , __UpperCAmelCase ) -> int: """simple docstring""" snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) snake_case: Dict =nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) snake_case: Tuple =nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__UpperCAmelCase ) snake_case: Any =nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): snake_case: List[str] =weights[f'''layers_{lyr_num}'''] snake_case: Any =nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) snake_case: int =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) snake_case: str =ly_weight['self_attention'] snake_case: str =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case: Dict =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case: Dict =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case: List[str] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case: Optional[Any] =ly_weight['MultiHeadDotProductAttention_0'] snake_case: int =nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) snake_case: List[str] =nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) snake_case: Dict =nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) snake_case: Any =nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) snake_case: int =nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) snake_case: Union[str, Any] =nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) snake_case: int =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) snake_case: Optional[int] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) snake_case: Union[str, Any] =nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) snake_case: Optional[Any] =nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) snake_case: int =nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def a_ ( __UpperCAmelCase ) -> Dict: """simple docstring""" snake_case: Union[str, Any] =checkpoints.load_tax_checkpoint(args.checkpoint_path ) snake_case: Tuple =jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) snake_case: str =[ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] snake_case: List[Any] =os.path.join(args.checkpoint_path , '..' , 'config.gin' ) snake_case: Optional[Any] =inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) snake_case: List[str] =inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) snake_case: List[Any] =DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) snake_case: Optional[Any] =SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case: Optional[Any] =SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) snake_case: List[Any] =TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) snake_case: Optional[Any] =load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __UpperCAmelCase ) snake_case: Optional[Any] =load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __UpperCAmelCase ) snake_case: Union[str, Any] =load_decoder(ta_checkpoint['target']['decoder'] , __UpperCAmelCase ) snake_case: int =OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) snake_case: Optional[Any] =SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F"""{MODEL}/checkpoint_500000""", type=str, required=False, help='Path to the original jax model checkpoint.', ) a = parser.parse_args() main(args)
350
1
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __UpperCamelCase = 'platform' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase__ : """simple docstring""" _UpperCamelCase : Any = PegasusConfig _UpperCamelCase : Optional[int] = {} _UpperCamelCase : List[str] = 'gelu' def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=False , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case=0.1 , snake_case=0.1 , snake_case=20 , snake_case=2 , snake_case=1 , snake_case=0 , ): '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) UpperCamelCase__ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = np.concatenate([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_pegasus_inputs_dict(snake_case , snake_case , snake_case ) return config, inputs_dict def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(snake_case ) UpperCamelCase__ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase__, UpperCamelCase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase__ = model.init_cache(decoder_input_ids.shape[0] , snake_case , snake_case ) UpperCamelCase__ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase__ = model.decode( decoder_input_ids[:, :-1] , snake_case , decoder_attention_mask=snake_case , past_key_values=snake_case , decoder_position_ids=snake_case , ) UpperCamelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase__ = model.decode( decoder_input_ids[:, -1:] , snake_case , decoder_attention_mask=snake_case , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case , ) UpperCamelCase__ = model.decode(snake_case , snake_case ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = 20 UpperCamelCase__ = model_class_name(snake_case ) UpperCamelCase__ = model.encode(inputs_dict["input_ids"] ) UpperCamelCase__, UpperCamelCase__ = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) UpperCamelCase__ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCamelCase__ = model.init_cache(decoder_input_ids.shape[0] , snake_case , snake_case ) UpperCamelCase__ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCamelCase__ = model.decode( decoder_input_ids[:, :-1] , snake_case , decoder_attention_mask=snake_case , past_key_values=snake_case , decoder_position_ids=snake_case , ) UpperCamelCase__ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) UpperCamelCase__ = model.decode( decoder_input_ids[:, -1:] , snake_case , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case , decoder_position_ids=snake_case , ) UpperCamelCase__ = model.decode(snake_case , snake_case , decoder_attention_mask=snake_case ) UpperCamelCase__ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def UpperCamelCase_( _A :Any , _A :Union[str, Any] , _A :Tuple , _A :Optional[Any]=None , _A :List[Any]=None , )-> int: if attention_mask is None: UpperCamelCase__ = np.not_equal(_A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: UpperCamelCase__ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : Any = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _UpperCamelCase : str = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _UpperCamelCase : Optional[int] = True _UpperCamelCase : int = False _UpperCamelCase : Any = False _UpperCamelCase : List[Any] = False def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = FlaxPegasusModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case , snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case , snake_case , snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = self._prepare_for_class(snake_case , snake_case ) UpperCamelCase__ = model_class(snake_case ) @jax.jit def encode_jitted(snake_case , snake_case=None , **snake_case ): return model.encode(input_ids=snake_case , attention_mask=snake_case ) with self.subTest("JIT Enabled" ): UpperCamelCase__ = encode_jitted(**snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase__ = encode_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__, UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase__ = model_class(snake_case ) UpperCamelCase__ = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) UpperCamelCase__ = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case , snake_case , snake_case ): return model.decode( decoder_input_ids=snake_case , decoder_attention_mask=snake_case , encoder_outputs=snake_case , ) with self.subTest("JIT Enabled" ): UpperCamelCase__ = decode_jitted(**snake_case ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): UpperCamelCase__ = decode_jitted(**snake_case ).to_tuple() self.assertEqual(len(snake_case ) , len(snake_case ) ) for jitted_output, output in zip(snake_case , snake_case ): self.assertEqual(jitted_output.shape , output.shape ) @slow def snake_case__ ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: UpperCamelCase__ = model_class_name.from_pretrained("google/pegasus-large" , from_pt=snake_case ) UpperCamelCase__ = np.ones((1, 1) ) UpperCamelCase__ = model(snake_case ) self.assertIsNotNone(snake_case ) @slow def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) UpperCamelCase__ = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) UpperCamelCase__ = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] UpperCamelCase__ = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] UpperCamelCase__ = tokenizer(snake_case , return_tensors="np" , truncation=snake_case , max_length=512 , padding=snake_case ) UpperCamelCase__ = model.generate(**snake_case , num_beams=2 ).sequences UpperCamelCase__ = tokenizer.batch_decode(snake_case , skip_special_tokens=snake_case ) assert tgt_text == decoded
721
def UpperCamelCase_( _A :int , _A :int )-> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ = str(bin(_A ) ) binary_number += "0" * shift_amount return binary_number def UpperCamelCase_( _A :int , _A :int )-> str: if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) UpperCamelCase__ = str(bin(_A ) )[2:] if shift_amount >= len(_A ): return "0b0" UpperCamelCase__ = binary_number[: len(_A ) - shift_amount] return "0b" + shifted_binary_number def UpperCamelCase_( _A :int , _A :int )-> str: if number >= 0: # Get binary representation of positive number UpperCamelCase__ = "0" + str(bin(_A ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number UpperCamelCase__ = len(bin(_A )[3:] ) # Find 2's complement of number UpperCamelCase__ = bin(abs(_A ) - (1 << binary_number_length) )[3:] UpperCamelCase__ = ( "1" + "0" * (binary_number_length - len(_A )) + binary_number ) if shift_amount >= len(_A ): return "0b" + binary_number[0] * len(_A ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(_A ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
185
0
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCAmelCase( unittest.TestCase ): """simple docstring""" def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : str = ["a", "b", "c"] # Defaults to last layer if both are None lowercase__ , lowercase__ : Tuple = get_aligned_output_features_output_indices(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["c"] ) self.assertEqual(lowerCAmelCase_ , [2] ) # Out indices set to match out features lowercase__ , lowercase__ : Optional[Any] = get_aligned_output_features_output_indices(["a", "c"] , lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["a", "c"] ) self.assertEqual(lowerCAmelCase_ , [0, 2] ) # Out features set to match out indices lowercase__ , lowercase__ : Dict = get_aligned_output_features_output_indices(lowerCAmelCase_ , [0, 2] , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["a", "c"] ) self.assertEqual(lowerCAmelCase_ , [0, 2] ) # Out features selected from negative indices lowercase__ , lowercase__ : int = get_aligned_output_features_output_indices(lowerCAmelCase_ , [-3, -1] , lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , ["a", "c"] ) self.assertEqual(lowerCAmelCase_ , [-3, -1] ) def __a ( self ) -> Dict: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , lowerCAmelCase_ ) # Out features must be a list with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(lowerCAmelCase_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(lowerCAmelCase_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def __a ( self ) -> List[str]: """simple docstring""" lowercase__ : str = BackboneMixin() lowercase__ : Optional[int] = ["a", "b", "c"] lowercase__ : Optional[Any] = ["a", "c"] lowercase__ : Any = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowercase__ : str = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowercase__ : Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
397
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _snake_case : Any = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str ): __lowerCAmelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224', out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) __lowerCAmelCase = MaskFormerConfig(backbone_config=lowerCAmelCase_ ) __lowerCAmelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok __lowerCAmelCase = 847 __lowerCAmelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok __lowerCAmelCase = 150 __lowerCAmelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok __lowerCAmelCase = 171 __lowerCAmelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO __lowerCAmelCase = 133 __lowerCAmelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok __lowerCAmelCase = 19 __lowerCAmelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok __lowerCAmelCase = 65 __lowerCAmelCase = 'mapillary-vistas-id2label.json' __lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) ) __lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} return config def a_ ( lowerCAmelCase_ : Tuple ): __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3, 0, -1 ), range(0, 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : List[str], lowerCAmelCase_ : Tuple ): __lowerCAmelCase = dct.pop(lowerCAmelCase_ ) __lowerCAmelCase = val def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : int ): __lowerCAmelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __lowerCAmelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) __lowerCAmelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:dim, :] __lowerCAmelCase = in_proj_bias[: dim] __lowerCAmelCase = in_proj_weight[ dim : dim * 2, : ] __lowerCAmelCase = in_proj_bias[ dim : dim * 2 ] __lowerCAmelCase = in_proj_weight[ -dim :, : ] __lowerCAmelCase = in_proj_bias[-dim :] # fmt: on def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : Dict ): # fmt: off __lowerCAmelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[: hidden_size, :] __lowerCAmelCase = in_proj_bias[:config.hidden_size] __lowerCAmelCase = in_proj_weight[hidden_size : hidden_size * 2, :] __lowerCAmelCase = in_proj_bias[hidden_size : hidden_size * 2] __lowerCAmelCase = in_proj_weight[-hidden_size :, :] __lowerCAmelCase = in_proj_bias[-hidden_size :] # fmt: on def a_ ( ): __lowerCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __lowerCAmelCase = Image.open(requests.get(lowerCAmelCase_, stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : str, lowerCAmelCase_ : bool = False ): __lowerCAmelCase = get_maskformer_config(lowerCAmelCase_ ) # load original state_dict with open(lowerCAmelCase_, 'rb' ) as f: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys __lowerCAmelCase = create_rename_keys(lowerCAmelCase_ ) for src, dest in rename_keys: rename_key(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) read_in_swin_q_k_v(lowerCAmelCase_, config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase_, lowerCAmelCase_ ) # update to torch tensors for key, value in state_dict.items(): __lowerCAmelCase = torch.from_numpy(lowerCAmelCase_ ) # load 🤗 model __lowerCAmelCase = MaskFormerForInstanceSegmentation(lowerCAmelCase_ ) model.eval() for name, param in model.named_parameters(): print(lowerCAmelCase_, param.shape ) __lowerCAmelCase , __lowerCAmelCase = model.load_state_dict(lowerCAmelCase_, strict=lowerCAmelCase_ ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCAmelCase_ ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results __lowerCAmelCase = prepare_img() if "vistas" in model_name: __lowerCAmelCase = 65 elif "cityscapes" in model_name: __lowerCAmelCase = 6_5535 else: __lowerCAmelCase = 255 __lowerCAmelCase = True if 'ade' in model_name else False __lowerCAmelCase = MaskFormerImageProcessor(ignore_index=lowerCAmelCase_, reduce_labels=lowerCAmelCase_ ) __lowerCAmelCase = image_processor(lowerCAmelCase_, return_tensors='pt' ) __lowerCAmelCase = model(**lowerCAmelCase_ ) print('Logits:', outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": __lowerCAmelCase = torch.tensor( [[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3], lowerCAmelCase_, atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) _snake_case : List[str] = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
53
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCAmelCase ( _a , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any =CpmAntTokenizer _SCREAMING_SNAKE_CASE : Optional[int] =False def a__ ( self ): super().setUp() _A= [ '<d>', '</d>', '<s>', '</s>', '</_>', '<unk>', '<pad>', '</n>', '我', '是', 'C', 'P', 'M', 'A', 'n', 't', ] _A= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) @tooslow def a__ ( self ): _A= CpmAntTokenizer.from_pretrained('openbmb/cpm-ant-10b' ) _A= '今天天气真好!' _A= ['今天', '天气', '真', '好', '!'] _A= tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) _A= '今天天气真好!' _A= [tokenizer.bos_token] + tokens _A= [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) _A= tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
476
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class lowerCAmelCase ( unittest.TestCase ): @slow def a__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowerCAmelCase__ ): _A= AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _A= FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def a__ ( self ): for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowerCAmelCase__ ): _A= AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _A= FlaxAutoModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow def a__ ( self ): for model_name in ["bert-base-cased", "bert-large-uncased"]: _A= AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _A= FlaxBertModel.from_pretrained(lowerCAmelCase__ ) _A= tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() @slow def a__ ( self ): for model_name in ["roberta-base", "roberta-large"]: _A= AutoTokenizer.from_pretrained(lowerCAmelCase__ ) _A= FlaxRobertaModel.from_pretrained(lowerCAmelCase__ ) _A= tokenizer('Do you support jax jitted function?' , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowerCAmelCase__ ): return model(**lowerCAmelCase__ ) eval(**lowerCAmelCase__ ).block_until_ready() def a__ ( self ): with self.assertRaisesRegex( lowerCAmelCase__ , 'bert-base is not a local folder and is not a valid model identifier' ): _A= FlaxAutoModel.from_pretrained('bert-base' ) def a__ ( self ): with self.assertRaisesRegex( lowerCAmelCase__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): _A= FlaxAutoModel.from_pretrained(lowerCAmelCase__ , revision='aaaaaa' ) def a__ ( self ): with self.assertRaisesRegex( lowerCAmelCase__ , 'hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack' , ): _A= FlaxAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def a__ ( self ): with self.assertRaisesRegex(lowerCAmelCase__ , 'Use `from_pt=True` to load this model' ): _A= FlaxAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' )
476
1
'''simple docstring''' import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __snake_case : Any = 5_0000 __snake_case : str = 5000 __snake_case : List[str] = os.path.split(__file__) __snake_case : List[str] = os.path.join(RESULTS_BASEPATH, "results", RESULTS_FILENAME.replace(".py", ".json")) @get_duration def _lowercase ( lowerCamelCase__ : datasets.Dataset, lowerCamelCase__ : Optional[Any] ): for i in range(UpperCamelCase__ ): _a = dataset[i] @get_duration def _lowercase ( lowerCamelCase__ : datasets.Dataset, lowerCamelCase__ : Dict, lowerCamelCase__ : str ): for i in range(0, len(UpperCamelCase__ ), UpperCamelCase__ ): _a = dataset[i : i + batch_size] @get_duration def _lowercase ( lowerCamelCase__ : datasets.Dataset, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any] ): with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(UpperCamelCase__ ): _a = dataset[i] @get_duration def _lowercase ( lowerCamelCase__ : datasets.Dataset, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any] ): with dataset.formatted_as(type=UpperCamelCase__ ): for i in range(0, UpperCamelCase__, UpperCamelCase__ ): _a = dataset[i : i + batch_size] def _lowercase ( ): _a = {'''num examples''': SPEED_TEST_N_EXAMPLES} _a = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''pandas''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''torch''', '''length''': SMALL_TEST}), (read_formatted, {'''type''': '''tensorflow''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] _a = [ (read, {'''length''': SMALL_TEST}), (read, {'''length''': SPEED_TEST_N_EXAMPLES}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 10}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 100}), (read_batch, {'''length''': SPEED_TEST_N_EXAMPLES, '''batch_size''': 1_000}), (read_formatted, {'''type''': '''numpy''', '''length''': SMALL_TEST}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 10}), (read_formatted_batch, {'''type''': '''numpy''', '''length''': SMALL_TEST, '''batch_size''': 1_000}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) _a = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) _a = generate_example_dataset( os.path.join(UpperCamelCase__, "dataset.arrow" ), UpperCamelCase__, num_examples=UpperCamelCase__, seq_shapes={"list": (100,)}, ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__, str(UpperCamelCase__ ) ) _a = func(UpperCamelCase__, **UpperCamelCase__ ) print("shuffling dataset" ) _a = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled ", func.__name__, str(UpperCamelCase__ ) ) _a = func( UpperCamelCase__, **UpperCamelCase__ ) with open(UpperCamelCase__, "wb" ) as f: f.write(json.dumps(UpperCamelCase__ ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
131
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase :Optional[int] = logging.get_logger(__name__) _lowerCAmelCase :Union[str, Any] = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class _UpperCAmelCase ( a ): '''simple docstring''' a__ ='''speech_to_text_2''' a__ =['''past_key_values'''] a__ ={'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self , A=1_0_0_0_0 , A=6 , A=2_0_4_8 , A=4 , A=0.0 , A=True , A="relu" , A=2_5_6 , A=0.1 , A=0.0 , A=0.0 , A=0.02 , A=2 , A=True , A=1 , A=0 , A=2 , A=1_0_2_4 , **A , ) -> Optional[Any]: _UpperCAmelCase : List[str] = vocab_size _UpperCAmelCase : Union[str, Any] = d_model _UpperCAmelCase : Dict = decoder_ffn_dim _UpperCAmelCase : Dict = decoder_layers _UpperCAmelCase : Optional[Any] = decoder_attention_heads _UpperCAmelCase : int = dropout _UpperCAmelCase : Any = attention_dropout _UpperCAmelCase : Any = activation_dropout _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : List[str] = init_std _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Tuple = use_cache _UpperCAmelCase : List[Any] = decoder_layers _UpperCAmelCase : Dict = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Dict = max_target_positions super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , decoder_start_token_id=A , **A , )
506
0
UpperCAmelCase_ = 'Alexander Joslin' import operator as op from .stack import Stack def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub} __lowerCamelCase = Stack() __lowerCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(A__ ) ) elif i in operators: # RULE 2 operator_stack.push(A__ ) elif i == ")": # RULE 4 __lowerCamelCase = operator_stack.peek() operator_stack.pop() __lowerCamelCase = operand_stack.peek() operand_stack.pop() __lowerCamelCase = operand_stack.peek() operand_stack.pop() __lowerCamelCase = operators[opr](A__ , A__ ) operand_stack.push(A__ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": UpperCAmelCase_ = '(5 + ((4 * 2) * (2 + 3)))' # answer = 45 print(f"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
80
class lowerCamelCase__: # Public class to implement a graph def __init__( self: Dict , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): __lowerCamelCase = row __lowerCamelCase = col __lowerCamelCase = graph def lowerCAmelCase__ ( self: Union[str, Any] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: list[list[bool]] ): # Checking all 8 elements surrounding nth element __lowerCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order __lowerCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] __lowerCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , UpperCamelCase_ ) def lowerCAmelCase__ ( self: List[Any] ): # And finally, count all islands. __lowerCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] __lowerCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += 1 return count
80
1
import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class snake_case_ : '''simple docstring''' def __init__( self : List[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Optional[int]=30 , __lowerCamelCase : Any=2 , __lowerCamelCase : str=3 , __lowerCamelCase : Tuple=True , __lowerCamelCase : int=True , __lowerCamelCase : str=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=10 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=2 , ) -> Dict: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = scope __lowercase = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = num_patches + 1 def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ) -> List[Any]: '''simple docstring''' __lowercase = ViTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] ) -> str: '''simple docstring''' __lowercase = ViTForMaskedImageModeling(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowercase = 1 __lowercase = ViTForMaskedImageModeling(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(__lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any ) -> str: '''simple docstring''' __lowercase = self.type_sequence_label_size __lowercase = ViTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowercase = 1 __lowercase = ViTForImageClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCamelCase = ( {'''feature-extraction''': ViTModel, '''image-classification''': ViTForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' __lowercase = ViTModelTester(self ) __lowercase = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass def UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(__lowerCamelCase ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase ) def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> Any: __lowercase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' __lowercase = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ).to(__lowerCamelCase ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=__lowerCamelCase , return_tensors='pt' ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(**__lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) __lowercase = torch.tensor([-0.2744, 0.8215, -0.0836] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' __lowercase = ViTModel.from_pretrained('facebook/dino-vits8' ).to(__lowerCamelCase ) __lowercase = ViTImageProcessor.from_pretrained('facebook/dino-vits8' , size=480 ) __lowercase = prepare_img() __lowercase = image_processor(images=__lowerCamelCase , return_tensors='pt' ) __lowercase = inputs.pixel_values.to(__lowerCamelCase ) # forward pass with torch.no_grad(): __lowercase = model(__lowerCamelCase , interpolate_pos_encoding=__lowerCamelCase ) # verify the logits __lowercase = torch.Size((1, 3_601, 384) ) self.assertEqual(outputs.last_hidden_state.shape , __lowerCamelCase ) __lowercase = torch.tensor( [[4.2340, 4.3906, -6.6692], [4.5463, 1.8928, -6.7257], [4.4429, 0.8496, -5.8585]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCamelCase , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' __lowercase = ViTModel.from_pretrained('facebook/dino-vits8' , torch_dtype=torch.floataa , device_map='auto' ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=__lowerCamelCase , return_tensors='pt' ) __lowercase = inputs.pixel_values.to(__lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowercase = model(__lowerCamelCase )
375
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''http://www.mocksite.com/file1.txt''' SCREAMING_SNAKE_CASE_ : str = '''"text": ["foo", "foo"]''' SCREAMING_SNAKE_CASE_ : Optional[int] = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class snake_case_ : '''simple docstring''' __UpperCamelCase = 2_00 __UpperCamelCase = {'''Content-Length''': '''100'''} __UpperCamelCase = {} def UpperCAmelCase ( self : str , **__lowerCamelCase : Optional[int] ) -> str: '''simple docstring''' return [bytes(__lowerCamelCase , 'utf-8' )] def SCREAMING_SNAKE_CASE ( *snake_case , **snake_case ) -> int: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict] ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Optional[Any]: import requests monkeypatch.setattr(snake_case , 'request' , snake_case ) __lowercase = URL if issubclass(snake_case , snake_case ): __lowercase = url elif issubclass(snake_case , snake_case ): __lowercase = [url] elif issubclass(snake_case , snake_case ): __lowercase = {'train': url} __lowercase = 'dummy' __lowercase = 'downloads' __lowercase = tmp_path __lowercase = DownloadConfig( cache_dir=os.path.join(snake_case , snake_case ) , use_etag=snake_case , ) __lowercase = DownloadManager(dataset_name=snake_case , download_config=snake_case ) __lowercase = dl_manager.download(snake_case ) __lowercase = urls for downloaded_paths in [downloaded_paths]: if isinstance(snake_case , snake_case ): __lowercase = [downloaded_paths] __lowercase = [urls] elif isinstance(snake_case , snake_case ): assert "train" in downloaded_paths.keys() __lowercase = downloaded_paths.values() __lowercase = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(snake_case , snake_case ): assert downloaded_path == dl_manager.downloaded_paths[input_url] __lowercase = Path(snake_case ) __lowercase = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() __lowercase = downloaded_path.read_text() assert content == CONTENT __lowercase = downloaded_path.with_suffix('.json' ) assert metadata_downloaded_path.exists() __lowercase = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict] ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case ) -> Union[str, Any]: __lowercase = str(snake_case ) if issubclass(snake_case , snake_case ): __lowercase = filename elif issubclass(snake_case , snake_case ): __lowercase = [filename] elif issubclass(snake_case , snake_case ): __lowercase = {'train': filename} __lowercase = 'dummy' __lowercase = xz_file.parent __lowercase = 'extracted' __lowercase = DownloadConfig( cache_dir=snake_case , use_etag=snake_case , ) __lowercase = DownloadManager(dataset_name=snake_case , download_config=snake_case ) __lowercase = dl_manager.extract(snake_case ) __lowercase = paths for extracted_paths in [extracted_paths]: if isinstance(snake_case , snake_case ): __lowercase = [extracted_paths] __lowercase = [paths] elif isinstance(snake_case , snake_case ): assert "train" in extracted_paths.keys() __lowercase = extracted_paths.values() __lowercase = paths.values() assert extracted_paths for extracted_path, input_path in zip(snake_case , snake_case ): assert extracted_path == dl_manager.extracted_paths[input_path] __lowercase = Path(snake_case ) __lowercase = extracted_path.parts assert parts[-1] == hash_url_to_filename(snake_case , etag=snake_case ) assert parts[-2] == extracted_subdir assert extracted_path.exists() __lowercase = extracted_path.read_text() __lowercase = text_file.read_text() assert extracted_file_content == expected_file_content def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: assert path.endswith('.jsonl' ) for num_items, line in enumerate(snake_case , start=1 ): __lowercase = json.loads(line.decode('utf-8' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path'] ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: __lowercase = request.getfixturevalue(snake_case ) __lowercase = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(snake_case ) , start=1 ): _test_jsonl(snake_case , snake_case ) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path'] ) def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Any: __lowercase = request.getfixturevalue(snake_case ) __lowercase = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(snake_case ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(snake_case ) , start=1 ): _test_jsonl(snake_case , snake_case ) assert num_tar == 1 assert num_jsonl == 2 def SCREAMING_SNAKE_CASE ( snake_case ) -> Dict: __lowercase = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(snake_case ) , start=1 ): assert os.path.basename(snake_case ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
375
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Optional[int] = 'levit' def __init__( self , UpperCAmelCase=2_24 , UpperCAmelCase=3 , UpperCAmelCase=3 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=16 , UpperCAmelCase=[1_28, 2_56, 3_84] , UpperCAmelCase=[4, 8, 12] , UpperCAmelCase=[4, 4, 4] , UpperCAmelCase=[16, 16, 16] , UpperCAmelCase=0 , UpperCAmelCase=[2, 2, 2] , UpperCAmelCase=[2, 2, 2] , UpperCAmelCase=0.02 , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) a_ = image_size a_ = num_channels a_ = kernel_size a_ = stride a_ = padding a_ = hidden_sizes a_ = num_attention_heads a_ = depths a_ = key_dim a_ = drop_path_rate a_ = patch_size a_ = attention_ratio a_ = mlp_ratio a_ = initializer_range a_ = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a_ ( UpperCamelCase__ ): lowerCamelCase__ : Optional[int] = version.parse('1.11' ) @property def lowerCAmelCase__ ( self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCAmelCase__ ( self ): return 1e-4
511
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ ='pt' elif is_tf_available(): lowercase__ ='tf' else: lowercase__ ='jax' class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : int = PerceiverTokenizer lowerCamelCase__ : Optional[int] = False def lowerCAmelCase__ ( self ): super().setUp() a_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=20 , UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. a_ = [] for i in range(len(UpperCAmelCase ) ): try: a_ = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) a_ = list(filter(lambda UpperCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCAmelCase ) ) a_ = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: a_ = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: a_ = toks + toks # toks_str = [t[1] for t in toks] a_ = [t[0] for t in toks] # Ensure consistency a_ = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: a_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: a_ = """ """ + output_txt a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = """Unicode €.""" a_ = tokenizer(UpperCAmelCase ) a_ = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , UpperCAmelCase ) # decoding a_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """[CLS]Unicode €.[SEP]""" ) a_ = tokenizer("""e è é ê ë""" ) a_ = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , UpperCAmelCase ) # decoding a_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off a_ = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": a_ = list(batch.input_ids.numpy()[0] ) else: a_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCAmelCase ) self.assertIn("""attention_mask""" , UpperCAmelCase ) self.assertNotIn("""decoder_input_ids""" , UpperCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = [ """Summary of the text.""", """Another summary.""", ] a_ = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="""max_length""" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCAmelCase__ ( self ): # safety check on max_len default value so we are sure the test works a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = """ He is very happy, UNwant\u00E9d,running""" a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) a_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) a_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) a_ = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) a_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: a_ = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: a_ = json.load(UpperCAmelCase ) a_ = [f'''<extra_id_{i}>''' for i in range(1_25 )] a_ = added_tokens_extra_ids + [ """an_additional_special_token""" ] a_ = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a_ = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a_ = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCAmelCase )] a_ = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens a_ = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a_ = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] a_ = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
511
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
458
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ = 10**-10 ): A_ : Tuple = a while True: A_ : List[str] = Decimal(snake_case__ ) - ( Decimal(eval(snake_case__ ) ) / Decimal(eval(str(diff(snake_case__ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case__ ) ) < precision: # noqa: S307 return float(snake_case__ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
180
0
from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __lowerCAmelCase : Dict = [ 'openmmlab/upernet-convnext-tiny', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __lowerCAmelCase : int = 'UperNetConfig' class snake_case__ (nn.Module ): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int = 0 , __lowerCamelCase : Tuple = False , __lowerCamelCase : Optional[int] = 1 , ) -> None: super().__init__() a = nn.Convad( in_channels=_SCREAMING_SNAKE_CASE , out_channels=_SCREAMING_SNAKE_CASE , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE , ) a = nn.BatchNormad(_SCREAMING_SNAKE_CASE ) a = nn.ReLU() def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> torch.Tensor: a = self.conv(_SCREAMING_SNAKE_CASE ) a = self.batch_norm(_SCREAMING_SNAKE_CASE ) a = self.activation(_SCREAMING_SNAKE_CASE ) return output class snake_case__ (nn.Module ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[Any] ) -> None: super().__init__() a = [ nn.AdaptiveAvgPoolad(_SCREAMING_SNAKE_CASE ), UperNetConvModule(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Optional[int] ) -> torch.Tensor: a = input for layer in self.layers: a = layer(_SCREAMING_SNAKE_CASE ) return hidden_state class snake_case__ (nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] ) -> None: super().__init__() a = pool_scales a = align_corners a = in_channels a = channels a = [] for i, pool_scale in enumerate(_SCREAMING_SNAKE_CASE ): a = UperNetPyramidPoolingBlock(pool_scale=_SCREAMING_SNAKE_CASE , in_channels=_SCREAMING_SNAKE_CASE , channels=_SCREAMING_SNAKE_CASE ) self.blocks.append(_SCREAMING_SNAKE_CASE ) self.add_module(str(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> List[torch.Tensor]: a = [] for ppm in self.blocks: a = ppm(_SCREAMING_SNAKE_CASE ) a = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=x.size()[2:] , mode="bilinear" , align_corners=self.align_corners ) ppm_outs.append(_SCREAMING_SNAKE_CASE ) return ppm_outs class snake_case__ (nn.Module ): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] ) -> Dict: super().__init__() a = config a = config.pool_scales # e.g. (1, 2, 3, 6) a = in_channels a = config.hidden_size a = False a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module a = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) a = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module a = nn.ModuleList() a = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer a = UperNetConvModule(_SCREAMING_SNAKE_CASE , self.channels , kernel_size=1 ) a = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_SCREAMING_SNAKE_CASE ) self.fpn_convs.append(_SCREAMING_SNAKE_CASE ) a = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __UpperCAmelCase ( self : str ) -> List[str]: self.apply(self._init_weights ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Dict ) -> Dict: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Optional[int] ) -> List[str]: a = inputs[-1] a = [x] psp_outs.extend(self.psp_modules(_SCREAMING_SNAKE_CASE ) ) a = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) a = self.bottleneck(_SCREAMING_SNAKE_CASE ) return output def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : str ) -> torch.Tensor: # build laterals a = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_SCREAMING_SNAKE_CASE ) ) # build top-down path a = len(_SCREAMING_SNAKE_CASE ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a = laterals[i - 1].shape[2:] a = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_SCREAMING_SNAKE_CASE , mode="bilinear" , align_corners=self.align_corners ) # build outputs a = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): a = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="bilinear" , align_corners=self.align_corners ) a = torch.cat(_SCREAMING_SNAKE_CASE , dim=1 ) a = self.fpn_bottleneck(_SCREAMING_SNAKE_CASE ) a = self.classifier(_SCREAMING_SNAKE_CASE ) return output class snake_case__ (nn.Module ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : str = 2 , __lowerCamelCase : Dict = 3 , __lowerCamelCase : Union[str, Any] = 1 ) -> None: super().__init__() a = config a = config.auxiliary_in_channels a = config.auxiliary_channels a = config.auxiliary_num_convs a = config.auxiliary_concat_input a = in_index a = (kernel_size // 2) * dilation a = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , dilation=_SCREAMING_SNAKE_CASE ) ) if self.num_convs == 0: a = nn.Identity() else: a = nn.Sequential(*_SCREAMING_SNAKE_CASE ) if self.concat_input: a = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_SCREAMING_SNAKE_CASE , padding=kernel_size // 2 ) a = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __UpperCAmelCase ( self : Tuple ) -> str: self.apply(self._init_weights ) def __UpperCAmelCase ( self : int , __lowerCamelCase : str ) -> Optional[Any]: if isinstance(_SCREAMING_SNAKE_CASE , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ) -> torch.Tensor: # just take the relevant feature maps a = encoder_hidden_states[self.in_index] a = self.convs(_SCREAMING_SNAKE_CASE ) if self.concat_input: a = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) a = self.classifier(_SCREAMING_SNAKE_CASE ) return output class snake_case__ (lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = UperNetConfig SCREAMING_SNAKE_CASE_ : Tuple = "pixel_values" SCREAMING_SNAKE_CASE_ : Tuple = True def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ) -> Tuple: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __UpperCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : str=False ) -> Optional[int]: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a = value __lowerCAmelCase : List[str] = R'\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' __lowerCAmelCase : List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""" , lowerCAmelCase__ , ) class snake_case__ (lowerCAmelCase__ ): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : List[Any] ) -> Dict: super().__init__(_SCREAMING_SNAKE_CASE ) a = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) a = UperNetHead(_SCREAMING_SNAKE_CASE , in_channels=self.backbone.channels ) a = UperNetFCNHead(_SCREAMING_SNAKE_CASE ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("batch_size, sequence_length" ) ) @replace_return_docstrings(output_type=_SCREAMING_SNAKE_CASE , config_class=_CONFIG_FOR_DOC ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[str] = None , __lowerCamelCase : str = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : Any = None , __lowerCamelCase : Tuple = None , ) -> Union[tuple, SemanticSegmenterOutput]: a = return_dict if return_dict is not None else self.config.use_return_dict a = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) a = output_attentions if output_attentions is not None else self.config.output_attentions a = self.backbone.forward_with_filtered_kwargs( _SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) a = outputs.feature_maps a = self.decode_head(_SCREAMING_SNAKE_CASE ) a = nn.functional.interpolate(_SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE ) a = None if self.auxiliary_head is not None: a = self.auxiliary_head(_SCREAMING_SNAKE_CASE ) a = nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=pixel_values.shape[2:] , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE ) a = None if labels is not None: if self.config.num_labels == 1: raise ValueError("The number of labels should be greater than one" ) else: # compute weighted loss a = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) a = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = loss_fct(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) a = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: a = (logits,) + outputs[1:] else: a = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_SCREAMING_SNAKE_CASE , logits=_SCREAMING_SNAKE_CASE , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
709
from __future__ import annotations import time import numpy as np __lowerCAmelCase : List[str] = [8, 5, 9, 7] __lowerCAmelCase : str = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __lowerCAmelCase : Optional[Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class snake_case__ : """simple docstring""" def __init__( self : Any , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ) -> None: a = claim_vector a = allocated_resources_table a = maximum_claim_table def __UpperCAmelCase ( self : List[str] ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __UpperCAmelCase ( self : str ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __UpperCAmelCase ( self : Dict ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __UpperCAmelCase ( self : Dict ) -> dict[int, list[int]]: return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def __UpperCAmelCase ( self : Optional[Any] , **__lowerCamelCase : Any ) -> None: a = self.__need() a = self.__allocated_resources_table a = self.__available_resources() a = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: a = False for each_need in need_list: a = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: a = False break if execution: a = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: a = original_need_index print(f"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack a = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def __UpperCAmelCase ( self : Any ) -> str: print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"""P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}""" + " ".join(f"""{it:>8}""" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"""P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}""" + " ".join(f"""{it:>8}""" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
662
0
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple ): # Initialise PyTorch model lowerCamelCase__ = BigBirdConfig.from_json_file(__lowerCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: lowerCamelCase__ = BigBirdForQuestionAnswering(__lowerCAmelCase ) else: lowerCamelCase__ = BigBirdForPreTraining(__lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__lowerCAmelCase , __lowerCAmelCase , is_trivia_qa=__lowerCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) UpperCamelCase : Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
50
'''simple docstring''' import argparse import os import re import packaging.version UpperCamelCase : List[Any] = 'examples/' UpperCamelCase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } UpperCamelCase : Any = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } UpperCamelCase : Any = 'README.md' def A__ ( __lowerCAmelCase : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] ): with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ , lowerCamelCase__ = REPLACE_PATTERNS[pattern] lowerCamelCase__ = replace.replace("""VERSION""" , __lowerCAmelCase ) lowerCamelCase__ = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.write(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : str ): for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("""research_projects""" ) if "legacy" in directories: directories.remove("""legacy""" ) for fname in fnames: if fname.endswith(""".py""" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="""examples""" ) def A__ ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def A__ ( ): lowerCamelCase__ = """🤗 Transformers currently provides the following architectures""" lowerCamelCase__ = """1. Want to contribute a new model?""" with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase__ = f.readlines() # Find the start of the list. lowerCamelCase__ = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("""1.""" ): lowerCamelCase__ = lines[index].replace( """https://huggingface.co/docs/transformers/main/model_doc""" , """https://huggingface.co/docs/transformers/model_doc""" , ) index += 1 with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(__lowerCAmelCase ) def A__ ( ): with open(REPLACE_FILES["""init"""] , """r""" ) as f: lowerCamelCase__ = f.read() lowerCamelCase__ = REPLACE_PATTERNS["""init"""][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def A__ ( __lowerCAmelCase : Union[str, Any]=False ): lowerCamelCase__ = get_version() if patch and default_version.is_devrelease: raise ValueError("""Can't create a patch version from the dev branch, checkout a released version!""" ) if default_version.is_devrelease: lowerCamelCase__ = default_version.base_version elif patch: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: lowerCamelCase__ = F'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. lowerCamelCase__ = input(F'''Which version are you releasing? [{default_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = default_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() def A__ ( ): lowerCamelCase__ = get_version() lowerCamelCase__ = F'''{current_version.major}.{current_version.minor + 1}.0.dev0''' lowerCamelCase__ = current_version.base_version # Check with the user we got that right. lowerCamelCase__ = input(F'''Which version are we developing now? [{dev_version}]''' ) if len(__lowerCAmelCase ) == 0: lowerCamelCase__ = dev_version print(F'''Updating version to {version}.''' ) global_version_update(__lowerCAmelCase ) print("""Cleaning main README, don't forget to run `make fix-copies`.""" ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') UpperCamelCase : Any = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
50
1
'''simple docstring''' from PIL import Image def UpperCamelCase_ ( A__ : Image ): '''simple docstring''' lowerCAmelCase_, lowerCAmelCase_ : Tuple = image.size lowerCAmelCase_ : List[str] = 0 lowerCAmelCase_ : int = image.load() for i in range(A__ ): for j in range(A__ ): lowerCAmelCase_ : Tuple = pixels[j, i] mean += pixel mean //= width * height for j in range(A__ ): for i in range(A__ ): lowerCAmelCase_ : Any = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __A : List[Any] = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
398
'''simple docstring''' import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename __A : Dict = "http://www.mocksite.com/file1.txt" __A : List[str] = "\"text\": [\"foo\", \"foo\"]" __A : int = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __snake_case : """simple docstring""" lowercase = 2_00 lowercase = {'Content-Length': '100'} lowercase = {} def __lowercase ( self : Union[str, Any] , **lowerCamelCase : Optional[int] ) -> str: return [bytes(lowerCamelCase , """utf-8""" )] def UpperCamelCase_ ( *A__ : List[str] , **A__ : Union[str, Any] ): '''simple docstring''' return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : List[Any] , A__ : List[Any] , A__ : str ): '''simple docstring''' import requests monkeypatch.setattr(A__ , """request""" , A__ ) lowerCAmelCase_ : Tuple = URL if issubclass(A__ , A__ ): lowerCAmelCase_ : Optional[Any] = url elif issubclass(A__ , A__ ): lowerCAmelCase_ : Dict = [url] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Tuple = {"""train""": url} lowerCAmelCase_ : List[Any] = """dummy""" lowerCAmelCase_ : str = """downloads""" lowerCAmelCase_ : Dict = tmp_path lowerCAmelCase_ : Any = DownloadConfig( cache_dir=os.path.join(A__ , A__ ) , use_etag=A__ , ) lowerCAmelCase_ : List[Any] = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : int = dl_manager.download(A__ ) lowerCAmelCase_ : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : str = [downloaded_paths] lowerCAmelCase_ : Any = [urls] elif isinstance(A__ , A__ ): assert "train" in downloaded_paths.keys() lowerCAmelCase_ : Union[str, Any] = downloaded_paths.values() lowerCAmelCase_ : Optional[Any] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(A__ , A__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowerCAmelCase_ : Tuple = Path(A__ ) lowerCAmelCase_ : List[Any] = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowerCAmelCase_ : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowerCAmelCase_ : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowerCAmelCase_ : Tuple = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def UpperCamelCase_ ( A__ : Union[str, Any] , A__ : List[Any] , A__ : List[str] ): '''simple docstring''' lowerCAmelCase_ : int = str(A__ ) if issubclass(A__ , A__ ): lowerCAmelCase_ : int = filename elif issubclass(A__ , A__ ): lowerCAmelCase_ : List[str] = [filename] elif issubclass(A__ , A__ ): lowerCAmelCase_ : Union[str, Any] = {"""train""": filename} lowerCAmelCase_ : Optional[int] = """dummy""" lowerCAmelCase_ : str = xz_file.parent lowerCAmelCase_ : List[str] = """extracted""" lowerCAmelCase_ : Union[str, Any] = DownloadConfig( cache_dir=A__ , use_etag=A__ , ) lowerCAmelCase_ : str = DownloadManager(dataset_name=A__ , download_config=A__ ) lowerCAmelCase_ : Union[str, Any] = dl_manager.extract(A__ ) lowerCAmelCase_ : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(A__ , A__ ): lowerCAmelCase_ : List[str] = [extracted_paths] lowerCAmelCase_ : Union[str, Any] = [paths] elif isinstance(A__ , A__ ): assert "train" in extracted_paths.keys() lowerCAmelCase_ : Union[str, Any] = extracted_paths.values() lowerCAmelCase_ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(A__ , A__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowerCAmelCase_ : int = Path(A__ ) lowerCAmelCase_ : Optional[Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(A__ , etag=A__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowerCAmelCase_ : Any = extracted_path.read_text() lowerCAmelCase_ : Optional[Any] = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase_ ( A__ : Dict , A__ : Any ): '''simple docstring''' assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(A__ , start=1 ): lowerCAmelCase_ : int = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def UpperCamelCase_ ( A__ : Optional[Any] , A__ : List[Any] ): '''simple docstring''' lowerCAmelCase_ : List[str] = request.getfixturevalue(A__ ) lowerCAmelCase_ : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def UpperCamelCase_ ( A__ : str , A__ : int ): '''simple docstring''' lowerCAmelCase_ : Tuple = request.getfixturevalue(A__ ) lowerCAmelCase_ : str = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(A__ ) , start=1 ): _test_jsonl(A__ , A__ ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase_ ( A__ : Tuple ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(A__ ) , start=1 ): assert os.path.basename(A__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
398
1
'''simple docstring''' def lowercase_ ( _lowercase , _lowercase ) -> str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(_lowercase , _lowercase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) lowerCamelCase_ : List[str] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
422
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase ) -> list[int]: '''simple docstring''' lowerCamelCase_ : str = [True] * limit lowerCamelCase_ : List[str] = False lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Union[str, Any] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowerCamelCase_ : List[Any] = i * 2 while index < limit: lowerCamelCase_ : List[Any] = False lowerCamelCase_ : str = index + i lowerCamelCase_ : str = [2] for i in range(3 , _lowercase , 2 ): if is_prime[i]: primes.append(_lowercase ) return primes def lowercase_ ( _lowercase = 1_000_000 ) -> int: '''simple docstring''' lowerCamelCase_ : int = prime_sieve(_lowercase ) lowerCamelCase_ : int = 0 lowerCamelCase_ : Union[str, Any] = 0 for i in range(len(_lowercase ) ): for j in range(i + length , len(_lowercase ) ): lowerCamelCase_ : Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowerCamelCase_ : int = j - i lowerCamelCase_ : Any = sol return largest if __name__ == "__main__": print(f'{solution() = }')
422
1
'''simple docstring''' from math import factorial class SCREAMING_SNAKE_CASE: def __init__( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = real if isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowercase = [1] * rank else: __lowercase = rank def __repr__( self ) -> Optional[int]: """simple docstring""" return ( F'{self.real}+' F'{"+".join(str(lowerCamelCase__ )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" __lowercase = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , lowerCamelCase__ ) def __add__( self , lowerCamelCase__ ) -> List[str]: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): return Dual(self.real + other , self.duals ) __lowercase = self.duals.copy() __lowercase = other.duals.copy() if len(lowerCamelCase__ ) > len(lowerCamelCase__ ): o_dual.extend([1] * (len(lowerCamelCase__ ) - len(lowerCamelCase__ )) ) elif len(lowerCamelCase__ ) < len(lowerCamelCase__ ): s_dual.extend([1] * (len(lowerCamelCase__ ) - len(lowerCamelCase__ )) ) __lowercase = [] for i in range(len(lowerCamelCase__ ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , lowerCamelCase__ ) snake_case_ : Any = __add__ def __sub__( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" return self + other * -1 def __mul__( self , lowerCamelCase__ ) -> List[Any]: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowercase = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , lowerCamelCase__ ) __lowercase = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , lowerCamelCase__ ) snake_case_ : int = __mul__ def __truediv__( self , lowerCamelCase__ ) -> Optional[Any]: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowercase = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , lowerCamelCase__ ) raise ValueError def __floordiv__( self , lowerCamelCase__ ) -> Tuple: """simple docstring""" if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowercase = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , lowerCamelCase__ ) raise ValueError def __pow__( self , lowerCamelCase__ ) -> List[Any]: """simple docstring""" if n < 0 or isinstance(lowerCamelCase__ , lowerCamelCase__ ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self __lowercase = self for _ in range(n - 1 ): x *= self return x def snake_case_ ( a__ : Optional[Any] ,a__ : Any ,a__ : List[Any] ): """simple docstring""" if not callable(a__ ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(a__ ,(float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(a__ ,a__ ): raise ValueError("""differentiate() requires an int as input for order""" ) __lowercase = Dual(a__ ,1 ) __lowercase = func(a__ ) if order == 0: return result.real return result.duals[order - 1] * factorial(a__ ) if __name__ == "__main__": import doctest doctest.testmod() def snake_case_ ( a__ : Optional[int] ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
719
'''simple docstring''' from statistics import mean, stdev def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = min(a__ ) __lowercase = max(a__ ) # normalize data return [round((x - x_min) / (x_max - x_min) ,a__ ) for x in data] def snake_case_ ( a__ : list ,a__ : int = 3 ): """simple docstring""" __lowercase = mean(a__ ) __lowercase = stdev(a__ ) # standardize data return [round((x - mu) / (sigma) ,a__ ) for x in data]
163
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _snake_case = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') _snake_case = parser.parse_args() if args.model_type == "roberta": _snake_case = RobertaForMaskedLM.from_pretrained(args.model_name) _snake_case = '''roberta''' elif args.model_type == "gpt2": _snake_case = GPTaLMHeadModel.from_pretrained(args.model_name) _snake_case = '''transformer''' _snake_case = model.state_dict() _snake_case = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _snake_case = state_dict[F'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _snake_case = F'{prefix}.embeddings.{w}.weight' _snake_case = state_dict[param_name] for w in ["weight", "bias"]: _snake_case = F'{prefix}.embeddings.LayerNorm.{w}' _snake_case = state_dict[param_name] # Transformer Blocks # _snake_case = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _snake_case = state_dict[ F'{prefix}.h.{teacher_idx}.{layer}.{w}' ] _snake_case = state_dict[F'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _snake_case = state_dict[ F'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _snake_case = state_dict[F'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: _snake_case = state_dict[F'lm_head.dense.{w}'] _snake_case = state_dict[F'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _snake_case = state_dict[F'{prefix}.ln_f.{w}'] _snake_case = state_dict['''lm_head.weight'''] print(F'N layers selected for distillation: {std_idx}') print(F'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(F'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
382
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _snake_case = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' _snake_case = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' _snake_case = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def _lowerCamelCase ( self: Union[str, Any] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: List[str]=True , __lowerCamelCase: Tuple=False ) -> str: if rouge_types is None: __UpperCAmelCase : Optional[Any] = ["rouge1", "rouge2", "rougeL", "rougeLsum"] __UpperCAmelCase : Tuple = rouge_scorer.RougeScorer(rouge_types=__lowerCamelCase , use_stemmer=__lowerCamelCase ) if use_aggregator: __UpperCAmelCase : Union[str, Any] = scoring.BootstrapAggregator() else: __UpperCAmelCase : str = [] for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : Dict = scorer.score(__lowerCamelCase , __lowerCamelCase ) if use_aggregator: aggregator.add_scores(__lowerCamelCase ) else: scores.append(__lowerCamelCase ) if use_aggregator: __UpperCAmelCase : Tuple = aggregator.aggregate() else: __UpperCAmelCase : Union[str, Any] = {} for key in scores[0]: __UpperCAmelCase : Dict = [score[key] for score in scores] return result
382
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : int = "" SCREAMING_SNAKE_CASE : str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) SCREAMING_SNAKE_CASE : str = None # compression type in fsspec. ex: "gzip" SCREAMING_SNAKE_CASE : str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Union[str, Any] , snake_case : str = "" , snake_case : Optional[str] = None , snake_case : Optional[dict] = None , **snake_case : Any ) -> Dict: super().__init__(self , **snake_case ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode __UpperCAmelCase : Dict = fsspec.open( snake_case , mode='''rb''' , protocol=snake_case , compression=self.compression , client_kwargs={ '''requote_redirect_url''': False, # see https://github.com/huggingface/datasets/pull/5459 '''trust_env''': True, # Enable reading proxy env variables. **(target_options or {}).pop('''client_kwargs''' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) __UpperCAmelCase : Dict = os.path.basename(self.file.path.split('''::''' )[0] ) __UpperCAmelCase : Tuple = ( self.compressed_name[: self.compressed_name.rindex('''.''' )] if '''.''' in self.compressed_name else self.compressed_name ) __UpperCAmelCase : str = None @classmethod def lowerCamelCase__ ( cls : Tuple , snake_case : int ) -> Optional[int]: # compressed file paths are always relative to the archive root return super()._strip_protocol(snake_case ).lstrip('''/''' ) def lowerCamelCase__ ( self : Optional[int] ) -> Dict: if self.dir_cache is None: __UpperCAmelCase : List[str] = {**self.file.fs.info(self.file.path ), '''name''': self.uncompressed_name} __UpperCAmelCase : int = {f['''name''']: f} def lowerCamelCase__ ( self : Optional[Any] , snake_case : str ) -> Union[str, Any]: return self.file.open().read() def lowerCamelCase__ ( self : Union[str, Any] , snake_case : str , snake_case : str = "rb" , snake_case : Any=None , snake_case : Optional[int]=True , snake_case : int=None , **snake_case : str , ) -> List[Any]: __UpperCAmelCase : Optional[int] = self._strip_protocol(snake_case ) if mode != "rb": raise ValueError(f'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' ) return self.file.open() class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = "bz2" SCREAMING_SNAKE_CASE : Optional[Any] = "bz2" SCREAMING_SNAKE_CASE : Any = ".bz2" class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = "gzip" SCREAMING_SNAKE_CASE : Union[str, Any] = "gzip" SCREAMING_SNAKE_CASE : Union[str, Any] = ".gz" class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = "lz4" SCREAMING_SNAKE_CASE : List[str] = "lz4" SCREAMING_SNAKE_CASE : Union[str, Any] = ".lz4" class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = "xz" SCREAMING_SNAKE_CASE : Union[str, Any] = "xz" SCREAMING_SNAKE_CASE : Union[str, Any] = ".xz" class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = "zstd" SCREAMING_SNAKE_CASE : Union[str, Any] = "zstd" SCREAMING_SNAKE_CASE : Any = ".zst" def __init__( self : Union[str, Any] , snake_case : str , snake_case : str = "rb" , snake_case : Optional[str] = None , snake_case : Optional[dict] = None , snake_case : int = DEFAULT_BLOCK_SIZE , **snake_case : str , ) -> int: super().__init__( fo=snake_case , mode=snake_case , target_protocol=snake_case , target_options=snake_case , block_size=snake_case , **snake_case , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 __UpperCAmelCase : Tuple = self.file.__enter__ class a : """simple docstring""" def __init__( self : Tuple , snake_case : List[str] ) -> Optional[Any]: __UpperCAmelCase : List[Any] = file_ def __enter__( self : List[Any] ) -> List[Any]: self._file.__enter__() return self def __exit__( self : Dict , *snake_case : Optional[Any] , **snake_case : List[str] ) -> Dict: self._file.__exit__(*snake_case , **snake_case ) def __iter__( self : List[Any] ) -> Optional[Any]: return iter(self._file ) def lowerCamelCase__ ( self : Any ) -> Dict: return next(self._file ) def __getattr__( self : Dict , snake_case : List[Any] ) -> Tuple: return getattr(self._file , snake_case ) def fixed_enter(*snake_case : List[str] , **snake_case : Tuple ): return WrappedFile(_enter(*snake_case , **snake_case ) ) __UpperCAmelCase : Dict = fixed_enter
266
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase :Optional[Any] = logging.get_logger(__name__) # General docstring __UpperCAmelCase :List[Any] = "RegNetConfig" # Base docstring __UpperCAmelCase :List[Any] = "facebook/regnet-y-040" __UpperCAmelCase :Union[str, Any] = [1, 1_0_8_8, 7, 7] # Image classification docstring __UpperCAmelCase :int = "facebook/regnet-y-040" __UpperCAmelCase :Optional[Any] = "tabby, tabby cat" __UpperCAmelCase :Dict = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , snake_case : int , snake_case : int = 3 , snake_case : int = 1 , snake_case : int = 1 , snake_case : Optional[str] = "relu" , **snake_case : Any , ) -> Union[str, Any]: super().__init__(**snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCAmelCase : Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCAmelCase : List[Any] = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=snake_case , strides=snake_case , padding='''VALID''' , groups=snake_case , use_bias=snake_case , name='''convolution''' , ) __UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __UpperCAmelCase : Any = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase__ ( self : Any , snake_case : List[str] ) -> int: __UpperCAmelCase : Tuple = self.convolution(self.padding(snake_case ) ) __UpperCAmelCase : List[Any] = self.normalization(snake_case ) __UpperCAmelCase : Optional[Any] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , snake_case : RegNetConfig , **snake_case : Tuple ) -> int: super().__init__(**snake_case ) __UpperCAmelCase : List[str] = config.num_channels __UpperCAmelCase : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def lowerCamelCase__ ( self : Optional[int] , snake_case : Dict ) -> int: __UpperCAmelCase : int = shape_list(snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCAmelCase : Dict = tf.transpose(snake_case , perm=(0, 2, 3, 1) ) __UpperCAmelCase : List[str] = self.embedder(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : int , snake_case : int = 2 , **snake_case : Tuple ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : str = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=1 , strides=snake_case , use_bias=snake_case , name='''convolution''' ) __UpperCAmelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def lowerCamelCase__ ( self : str , snake_case : tf.Tensor , snake_case : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(snake_case ) , training=snake_case ) class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , snake_case : int , snake_case : int , **snake_case : Tuple ) -> List[Any]: super().__init__(**snake_case ) __UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='''pooler''' ) __UpperCAmelCase : Dict = [ tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def lowerCamelCase__ ( self : Optional[int] , snake_case : Tuple ) -> Union[str, Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCAmelCase : str = self.pooler(snake_case ) for layer_module in self.attention: __UpperCAmelCase : int = layer_module(snake_case ) __UpperCAmelCase : List[Any] = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : int ) -> int: super().__init__(**snake_case ) __UpperCAmelCase : Any = in_channels != out_channels or stride != 1 __UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Optional[int] = ( TFRegNetShortCut(snake_case , stride=snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='''layer.2''' ), ] __UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Union[str, Any] , snake_case : Optional[Any] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = hidden_state for layer_module in self.layers: __UpperCAmelCase : Any = layer_module(snake_case ) __UpperCAmelCase : Tuple = self.shortcut(snake_case ) hidden_state += residual __UpperCAmelCase : Optional[int] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : List[str] ) -> Optional[int]: super().__init__(**snake_case ) __UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 __UpperCAmelCase : Optional[Any] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Any = ( TFRegNetShortCut(snake_case , stride=snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __UpperCAmelCase : List[str] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='''layer.3''' ), ] __UpperCAmelCase : Dict = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Optional[Any] , snake_case : Tuple ) -> Any: __UpperCAmelCase : Optional[int] = hidden_state for layer_module in self.layers: __UpperCAmelCase : Any = layer_module(snake_case ) __UpperCAmelCase : int = self.shortcut(snake_case ) hidden_state += residual __UpperCAmelCase : Optional[int] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 2 , snake_case : int = 2 , **snake_case : str ) -> Optional[Any]: super().__init__(**snake_case ) __UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __UpperCAmelCase : str = [ # downsampling is done in the first layer with stride of 2 layer(snake_case , snake_case , snake_case , stride=snake_case , name='''layers.0''' ), *[layer(snake_case , snake_case , snake_case , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCamelCase__ ( self : List[str] , snake_case : Any ) -> List[Any]: for layer_module in self.layers: __UpperCAmelCase : Optional[Any] = layer_module(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : RegNetConfig , **snake_case : int ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __UpperCAmelCase : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case , snake_case , snake_case , depth=snake_case , name=f'stages.{i+1}' ) ) def lowerCamelCase__ ( self : int , snake_case : tf.Tensor , snake_case : bool = False , snake_case : bool = True ) -> TFBaseModelOutputWithNoAttention: __UpperCAmelCase : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase : Any = hidden_states + (hidden_state,) __UpperCAmelCase : List[Any] = stage_module(snake_case ) if output_hidden_states: __UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case , hidden_states=snake_case ) @keras_serializable class a ( tf.keras.layers.Layer ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RegNetConfig def __init__( self : Dict , snake_case : str , **snake_case : Optional[int] ) -> Any: super().__init__(**snake_case ) __UpperCAmelCase : List[Any] = config __UpperCAmelCase : List[str] = TFRegNetEmbeddings(snake_case , name='''embedder''' ) __UpperCAmelCase : List[str] = TFRegNetEncoder(snake_case , name='''encoder''' ) __UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='''pooler''' ) @unpack_inputs def lowerCamelCase__ ( self : Dict , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[Any] = self.embedder(snake_case , training=snake_case ) __UpperCAmelCase : Optional[int] = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) __UpperCAmelCase : List[str] = encoder_outputs[0] __UpperCAmelCase : str = self.pooler(snake_case ) # Change to NCHW output format have uniformity in the modules __UpperCAmelCase : Optional[Any] = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) __UpperCAmelCase : str = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCAmelCase : Dict = tuple([tf.transpose(snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case , pooler_output=snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = RegNetConfig SCREAMING_SNAKE_CASE : Tuple = "regnet" SCREAMING_SNAKE_CASE : List[Any] = "pixel_values" @property def lowerCamelCase__ ( self : int ) -> List[str]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCAmelCase :Optional[int] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase :List[Any] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _a , ) class a ( _a ): """simple docstring""" def __init__( self : List[Any] , snake_case : RegNetConfig , *snake_case : Optional[int] , **snake_case : List[str] ) -> Tuple: super().__init__(snake_case , *snake_case , **snake_case ) __UpperCAmelCase : Dict = TFRegNetMainLayer(snake_case , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase__ ( self : Tuple , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : str=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCAmelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Dict = self.regnet( pixel_values=snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class a ( _a , _a ): """simple docstring""" def __init__( self : Tuple , snake_case : RegNetConfig , *snake_case : Optional[Any] , **snake_case : List[Any] ) -> List[Any]: super().__init__(snake_case , *snake_case , **snake_case ) __UpperCAmelCase : List[Any] = config.num_labels __UpperCAmelCase : Optional[int] = TFRegNetMainLayer(snake_case , name='''regnet''' ) # classification head __UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase__ ( self : Tuple , snake_case : tf.Tensor = None , snake_case : tf.Tensor = None , snake_case : bool = None , snake_case : bool = None , snake_case : Tuple=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) __UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Tuple = self.classifier[0](snake_case ) __UpperCAmelCase : Tuple = self.classifier[1](snake_case ) __UpperCAmelCase : Any = None if labels is None else self.hf_compute_loss(labels=snake_case , logits=snake_case ) if not return_dict: __UpperCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states )
266
1
_a: List[str] = frozenset( [ """prompt""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _a: int = frozenset(["""prompt""", """negative_prompt"""]) _a: Tuple = frozenset([]) _a: Optional[int] = frozenset(["""image"""]) _a: Optional[Any] = frozenset( [ """image""", """height""", """width""", """guidance_scale""", ] ) _a: List[Any] = frozenset(["""image"""]) _a: Optional[int] = frozenset( [ """prompt""", """image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _a: int = frozenset(["""prompt""", """image""", """negative_prompt"""]) _a: int = frozenset( [ # Text guided image variation with an image mask """prompt""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", ] ) _a: List[Any] = frozenset(["""prompt""", """image""", """mask_image""", """negative_prompt"""]) _a: Union[str, Any] = frozenset( [ # image variation with an image mask """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _a: int = frozenset(["""image""", """mask_image"""]) _a: Tuple = frozenset( [ """example_image""", """image""", """mask_image""", """height""", """width""", """guidance_scale""", ] ) _a: Dict = frozenset(["""example_image""", """image""", """mask_image"""]) _a: List[Any] = frozenset(["""class_labels"""]) _a: List[Any] = frozenset(["""class_labels"""]) _a: List[Any] = frozenset(["""batch_size"""]) _a: Dict = frozenset([]) _a: Dict = frozenset(["""batch_size"""]) _a: List[Any] = frozenset([]) _a: Union[str, Any] = frozenset( [ """prompt""", """audio_length_in_s""", """guidance_scale""", """negative_prompt""", """prompt_embeds""", """negative_prompt_embeds""", """cross_attention_kwargs""", ] ) _a: Optional[Any] = frozenset(["""prompt""", """negative_prompt"""]) _a: Dict = frozenset(["""input_tokens"""]) _a: Dict = frozenset(["""input_tokens"""])
162
import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCamelCase ( lowercase , unittest.TestCase ): SCREAMING_SNAKE_CASE__ = GPTaTokenizer SCREAMING_SNAKE_CASE__ = GPTaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {'add_prefix_space': True} SCREAMING_SNAKE_CASE__ = False def __A ( self : Dict ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] UpperCAmelCase_ = dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) ) UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCAmelCase_ = {"unk_token": "<unk>"} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCAmelCase ) ) def __A ( self : Optional[int] , **lowerCAmelCase : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __A ( self : Union[str, Any] , **lowerCAmelCase : Tuple ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase ) def __A ( self : Optional[Any] , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = "lower newer" return input_text, output_text def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase_ = "lower newer" UpperCAmelCase_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase , add_prefix_space=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : str ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = "lower newer" # Testing tokenization UpperCAmelCase_ = tokenizer.tokenize(lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.tokenize(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing conversion to ids without special tokens UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing conversion to ids with special tokens UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_prefix_space=lowerCAmelCase ) UpperCAmelCase_ = rust_tokenizer.encode(lowerCAmelCase ) self.assertListEqual(lowerCAmelCase , lowerCAmelCase ) # Testing the unknown token UpperCAmelCase_ = tokens + [rust_tokenizer.unk_token] UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase ) def __A ( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : int ): '''simple docstring''' pass def __A ( self : str , lowerCAmelCase : List[str]=15 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCAmelCase , tokenizer_r.encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCAmelCase , tokenizer_r.batch_encode_plus , lowerCAmelCase , max_length=lowerCAmelCase , padding="max_length" , ) def __A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input looooooooong", "This is a simple input"] UpperCAmelCase_ = ("This is a simple input", "This is a pair") UpperCAmelCase_ = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] UpperCAmelCase_ = tokenizer.pad_token_id UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding="max_length" , max_length=30 , return_tensors="np" ) UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncate=lowerCAmelCase , return_tensors="np" ) UpperCAmelCase_ = tokenizer(*lowerCAmelCase , padding="max_length" , max_length=60 , return_tensors="np" ) UpperCAmelCase_ = tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncate=lowerCAmelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = "$$$" UpperCAmelCase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCAmelCase , add_bos_token=lowerCAmelCase ) UpperCAmelCase_ = "This is a simple input" UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"] UpperCAmelCase_ = tokenizer.bos_token_id UpperCAmelCase_ = tokenizer(lowerCAmelCase ) UpperCAmelCase_ = tokenizer(lowerCAmelCase ) self.assertEqual(out_s.input_ids[0] , lowerCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase_ = tokenizer.decode(out_s.input_ids ) UpperCAmelCase_ = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def __A ( self : int ): '''simple docstring''' pass def __A ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = [self.get_tokenizer(do_lower_case=lowerCAmelCase , add_bos_token=lowerCAmelCase )] for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): UpperCAmelCase_ = "Encode this." UpperCAmelCase_ = "This one too please." UpperCAmelCase_ = tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) encoded_sequence += tokenizer.encode(lowerCAmelCase , add_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = tokenizer.encode_plus( lowerCAmelCase , lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , ) UpperCAmelCase_ = encoded_sequence_dict["input_ids"] UpperCAmelCase_ = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) UpperCAmelCase_ = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(lowerCAmelCase ) ] UpperCAmelCase_ = [x for x in filtered_sequence if x is not None] self.assertEqual(lowerCAmelCase , lowerCAmelCase ) @require_tokenizers class __UpperCamelCase ( unittest.TestCase ): def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase ) UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("test_opt" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("./test_opt" ) UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] ) def __A ( self : int ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=lowerCAmelCase ) UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) # Same as above self.assertEqual(lowerCAmelCase , [2, 250, 1_345, 9, 10, 4_758] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def __A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase_ = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=lowerCAmelCase ) UpperCAmelCase_ = "bos" UpperCAmelCase_ = tokenizer.get_vocab()["bos"] UpperCAmelCase_ = "A photo of a cat" UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) # We changed the bos token self.assertEqual(lowerCAmelCase , [31_957, 250, 1_345, 9, 10, 4_758] ) tokenizer.save_pretrained("./tok" ) UpperCAmelCase_ = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) UpperCAmelCase_ = tokenizer.encode( lowerCAmelCase , ) self.assertEqual(lowerCAmelCase , [31_957, 250, 1_345, 9, 10, 4_758] )
162
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class _A ( __snake_case , __snake_case ): @register_to_config def __init__( self : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any = None , lowerCamelCase__ : Tuple = None ): """simple docstring""" super().__init__() __UpperCamelCase : List[str] = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __UpperCamelCase : Tuple = torch.zeros(__UpperCamelCase , __UpperCamelCase ) else: __UpperCamelCase : Any = None __UpperCamelCase : int = torch.nn.Parameter(__UpperCamelCase ) class _A ( __snake_case ): lowercase_ : Optional[Any] = 42 lowercase_ : Optional[Any] = 42 lowercase_ : Optional[int] = 42 lowercase_ : Optional[int] = 42 lowercase_ : Dict = 42 lowercase_ : Tuple = 42 def __init__( self : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : int , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , ): """simple docstring""" super().__init__() self.register_modules( vqvae=__UpperCamelCase , transformer=__UpperCamelCase , text_encoder=__UpperCamelCase , tokenizer=__UpperCamelCase , scheduler=__UpperCamelCase , learned_classifier_free_sampling_embeddings=__UpperCamelCase , ) def a ( self : Any , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] ): """simple docstring""" __UpperCamelCase : Dict = len(__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else 1 # get prompt text embeddings __UpperCamelCase : Any = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __UpperCamelCase : Optional[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __UpperCamelCase : Optional[int] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) __UpperCamelCase : Any = text_input_ids[:, : self.tokenizer.model_max_length] __UpperCamelCase : Optional[Any] = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __UpperCamelCase : Union[str, Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate text embeddings for each generation per prompt __UpperCamelCase : Union[str, Any] = prompt_embeds.repeat_interleave(__UpperCamelCase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __UpperCamelCase : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings __UpperCamelCase : List[str] = negative_prompt_embeds.unsqueeze(0 ).repeat(__UpperCamelCase , 1 , 1 ) else: __UpperCamelCase : List[str] = [""""""] * batch_size __UpperCamelCase : List[Any] = text_input_ids.shape[-1] __UpperCamelCase : Optional[int] = self.tokenizer( __UpperCamelCase , padding="""max_length""" , max_length=__UpperCamelCase , truncation=__UpperCamelCase , return_tensors="""pt""" , ) __UpperCamelCase : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __UpperCamelCase : str = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__UpperCamelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __UpperCamelCase : Union[str, Any] = negative_prompt_embeds.shape[1] __UpperCamelCase : Any = negative_prompt_embeds.repeat(1 , __UpperCamelCase , 1 ) __UpperCamelCase : Any = negative_prompt_embeds.view(batch_size * num_images_per_prompt , __UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __UpperCamelCase : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[int] = 1_00 , lowerCamelCase__ : Dict = 5.0 , lowerCamelCase__ : List[Any] = 1.0 , lowerCamelCase__ : Tuple = 1 , lowerCamelCase__ : Union[str, Any] = None , lowerCamelCase__ : str = None , lowerCamelCase__ : Tuple = "pil" , lowerCamelCase__ : int = True , lowerCamelCase__ : str = None , lowerCamelCase__ : List[str] = 1 , ): """simple docstring""" if isinstance(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : Tuple = 1 elif isinstance(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : Dict = len(__UpperCamelCase ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(__UpperCamelCase )}' ) __UpperCamelCase : List[str] = batch_size * num_images_per_prompt __UpperCamelCase : Tuple = guidance_scale > 1.0 __UpperCamelCase : str = self._encode_prompt(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__UpperCamelCase , __UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(__UpperCamelCase )}.' ) # get the initial completely masked latents unless the user supplied it __UpperCamelCase : List[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: __UpperCamelCase : Dict = self.transformer.num_vector_embeds - 1 __UpperCamelCase : Tuple = torch.full(__UpperCamelCase , __UpperCamelCase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f' {self.transformer.num_vector_embeds - 1} (inclusive).' ) __UpperCamelCase : int = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__UpperCamelCase , device=self.device ) __UpperCamelCase : Dict = self.scheduler.timesteps.to(self.device ) __UpperCamelCase : Optional[int] = latents for i, t in enumerate(self.progress_bar(__UpperCamelCase ) ): # expand the sample if we are doing classifier free guidance __UpperCamelCase : Optional[Any] = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __UpperCamelCase : int = self.transformer(__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , timestep=__UpperCamelCase ).sample if do_classifier_free_guidance: __UpperCamelCase , __UpperCamelCase : str = model_output.chunk(2 ) __UpperCamelCase : Union[str, Any] = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__UpperCamelCase , dim=1 , keepdim=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.truncate(__UpperCamelCase , __UpperCamelCase ) # remove `log(0)`'s (`-inf`s) __UpperCamelCase : str = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __UpperCamelCase : Tuple = self.scheduler.step(__UpperCamelCase , timestep=__UpperCamelCase , sample=__UpperCamelCase , generator=__UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = self.vqvae.config.vq_embed_dim __UpperCamelCase : Dict = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) __UpperCamelCase : Union[str, Any] = self.vqvae.quantize.get_codebook_entry(__UpperCamelCase , shape=__UpperCamelCase ) __UpperCamelCase : Optional[Any] = self.vqvae.decode(__UpperCamelCase , force_not_quantize=__UpperCamelCase ).sample __UpperCamelCase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase : List[str] = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase ) def a ( self : List[str] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Any ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Any = torch.sort(__UpperCamelCase , 1 , descending=__UpperCamelCase ) __UpperCamelCase : int = torch.exp(__UpperCamelCase ) __UpperCamelCase : Optional[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __UpperCamelCase : List[Any] = torch.full_like(keep_mask[:, 0:1, :] , __UpperCamelCase ) __UpperCamelCase : Union[str, Any] = torch.cat((all_true, keep_mask) , dim=1 ) __UpperCamelCase : List[Any] = keep_mask[:, :-1, :] __UpperCamelCase : str = keep_mask.gather(1 , indices.argsort(1 ) ) __UpperCamelCase : Optional[Any] = log_p_x_0.clone() __UpperCamelCase : Tuple = -torch.inf # -inf = log(0) return rv
702
from typing import TYPE_CHECKING from ....utils import _LazyModule UpperCamelCase = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure)
515
0
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = 42 class UpperCAmelCase : '''simple docstring''' def __init__( self : Any ,A : int ): __A = [[] for _ in range(A )] __A = size def __getitem__( self : str ,A : int ): return iter(self._graph[vertex] ) @property def UpperCamelCase_ ( self : List[Any] ): return self._size def UpperCamelCase_ ( self : Union[str, Any] ,A : int ,A : int ,A : int ): if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(A ,A ) ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : int ): __A = deque([start_vertex] ) __A = [None] * self.size __A = 0 while queue: __A = queue.popleft() __A = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: __A = current_distance + edge.weight __A = distances[edge.destination_vertex] if ( isinstance(A ,A ) and new_distance >= dest_vertex_distance ): continue __A = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
55
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
208
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase = F'''Input value of [number={number}] must be an integer''' raise TypeError(_snake_case ) if number < 1: _lowerCAmelCase = F'''Input value of [number={number}] must be > 0''' raise ValueError(_snake_case ) _lowerCAmelCase = 1 for i in range(1 , _snake_case ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["XGLMTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["XGLMTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XGLMForCausalLM", "XGLMModel", "XGLMPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "FlaxXGLMForCausalLM", "FlaxXGLMModel", "FlaxXGLMPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXGLMForCausalLM", "TFXGLMModel", "TFXGLMPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure)
489
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def a_ ( self : str ): """simple docstring""" __lowerCamelCase : List[Any] = 1 __lowerCamelCase : Any = 3 __lowerCamelCase : Tuple = (32, 32) __lowerCamelCase : Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A__ ) return image @property def a_ ( self : str ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def a_ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def a_ ( self : Tuple ): """simple docstring""" torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(A__ ) @property def a_ ( self : Optional[Any] ): """simple docstring""" def extract(*A__ : int , **A__ : str ): class SCREAMING_SNAKE_CASE : def __init__( self : str ): """simple docstring""" __lowerCamelCase : int = torch.ones([0] ) def a_ ( self : int , A__ : Any ): """simple docstring""" self.pixel_values.to(A__ ) return self return Out() return extract def a_ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase : Tuple = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : int = self.dummy_cond_unet __lowerCamelCase : Dict = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=A__ , set_alpha_to_one=A__ , ) __lowerCamelCase : str = self.dummy_vae __lowerCamelCase : Optional[Any] = self.dummy_text_encoder __lowerCamelCase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __lowerCamelCase : int = StableDiffusionPipeline( unet=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , safety_checker=A__ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase : Dict = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __lowerCamelCase : Any = """A painting of a squirrel eating a burger""" __lowerCamelCase : str = torch.Generator(device=A__ ).manual_seed(0 ) __lowerCamelCase : Optional[int] = sd_pipe([prompt] , generator=A__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : str = torch.Generator(device=A__ ).manual_seed(0 ) __lowerCamelCase : int = sd_pipe( [prompt] , generator=A__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A__ , )[0] __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] __lowerCamelCase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Dict = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : Optional[int] = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowerCamelCase : Any = self.dummy_cond_unet __lowerCamelCase : Tuple = PNDMScheduler(skip_prk_steps=A__ ) __lowerCamelCase : Dict = self.dummy_vae __lowerCamelCase : Union[str, Any] = self.dummy_text_encoder __lowerCamelCase : List[str] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __lowerCamelCase : Dict = StableDiffusionPipeline( unet=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , safety_checker=A__ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase : Optional[Any] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __lowerCamelCase : str = """A painting of a squirrel eating a burger""" __lowerCamelCase : Dict = torch.Generator(device=A__ ).manual_seed(0 ) __lowerCamelCase : List[Any] = sd_pipe([prompt] , generator=A__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __lowerCamelCase : List[Any] = output.images __lowerCamelCase : str = torch.Generator(device=A__ ).manual_seed(0 ) __lowerCamelCase : List[Any] = sd_pipe( [prompt] , generator=A__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=A__ , )[0] __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCamelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def a_ ( self : Dict ): """simple docstring""" __lowerCamelCase : Tuple = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=A__ ) assert isinstance(A__ , A__ ) assert isinstance(pipe.scheduler , A__ ) assert pipe.safety_checker is None __lowerCamelCase : int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(A__ ) __lowerCamelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained(A__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None __lowerCamelCase : Union[str, Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : Optional[int] = self.dummy_cond_unet __lowerCamelCase : List[Any] = PNDMScheduler(skip_prk_steps=A__ ) __lowerCamelCase : Any = self.dummy_vae __lowerCamelCase : Optional[int] = self.dummy_text_encoder __lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __lowerCamelCase : List[str] = unet.half() __lowerCamelCase : Optional[Any] = vae.half() __lowerCamelCase : Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk __lowerCamelCase : int = StableDiffusionPipeline( unet=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , safety_checker=A__ , feature_extractor=self.dummy_extractor , ) __lowerCamelCase : List[Any] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __lowerCamelCase : List[str] = """A painting of a squirrel eating a burger""" __lowerCamelCase : Optional[Any] = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def a_ ( self : Union[str, Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a_ ( self : Union[str, Any] ): """simple docstring""" __lowerCamelCase : str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A__ ) __lowerCamelCase : int = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCamelCase : Dict = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __lowerCamelCase : Dict = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __lowerCamelCase : Tuple = 4003660346 __lowerCamelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) __lowerCamelCase : Union[str, Any] = torch.manual_seed(A__ ) __lowerCamelCase : str = sd_pipe( [prompt] , generator=A__ , guidance_scale=A__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __lowerCamelCase : Union[str, Any] = output.images __lowerCamelCase : Tuple = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) __lowerCamelCase : Dict = torch.manual_seed(A__ ) __lowerCamelCase : str = sd_pipe( [prompt] , generator=A__ , guidance_scale=A__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : Tuple = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=A__ ) __lowerCamelCase : List[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __lowerCamelCase : Any = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __lowerCamelCase : str = """padme amidala taking a bath artwork, safe for work, no nudity""" __lowerCamelCase : int = 2734971755 __lowerCamelCase : List[str] = 7 __lowerCamelCase : Dict = torch.manual_seed(A__ ) __lowerCamelCase : Optional[int] = sd_pipe( [prompt] , generator=A__ , guidance_scale=A__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __lowerCamelCase : Optional[int] = output.images __lowerCamelCase : str = image[0, -3:, -3:, -1] __lowerCamelCase : Union[str, Any] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 __lowerCamelCase : Union[str, Any] = torch.manual_seed(A__ ) __lowerCamelCase : str = sd_pipe( [prompt] , generator=A__ , guidance_scale=A__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase : Dict = output.images __lowerCamelCase : str = image[0, -3:, -3:, -1] __lowerCamelCase : Union[str, Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a_ ( self : Tuple ): """simple docstring""" __lowerCamelCase : Optional[Any] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __lowerCamelCase : str = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) __lowerCamelCase : str = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __lowerCamelCase : List[Any] = 1044355234 __lowerCamelCase : Any = 12 __lowerCamelCase : int = torch.manual_seed(A__ ) __lowerCamelCase : Tuple = sd_pipe( [prompt] , generator=A__ , guidance_scale=A__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=0 , ) __lowerCamelCase : str = output.images __lowerCamelCase : Any = image[0, -3:, -3:, -1] __lowerCamelCase : Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 __lowerCamelCase : Tuple = torch.manual_seed(A__ ) __lowerCamelCase : int = sd_pipe( [prompt] , generator=A__ , guidance_scale=A__ , num_inference_steps=50 , output_type="""np""" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] __lowerCamelCase : List[str] = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
150
'''simple docstring''' from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def __lowercase (_lowercase ) -> Optional[Any]: """simple docstring""" if not is_accelerate_available(): return method __lowerCamelCase : Optional[int] = version.parse(accelerate.__version__ ).base_version if version.parse(_lowercase ) < version.parse("""0.17.0""" ): return method def wrapper(self, *_lowercase, **_lowercase ): if hasattr(self, """_hf_hook""" ) and hasattr(self._hf_hook, """pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self, *_lowercase, **_lowercase ) return wrapper
150
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __lowercase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _lowercase ( unittest.TestCase ): """simple docstring""" lowercase__ = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowercase__ = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: lowercase__ = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: lowercase__ = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def UpperCAmelCase_ ( self : Any ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) __UpperCamelCase =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_04}] ) __UpperCamelCase =text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_1''', '''score''': 0.4_96}] ) __UpperCamelCase =text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_1''', '''score''': 0.4_96}], [{'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_1''', '''score''': 0.4_96}], ] , ) __UpperCamelCase =text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_04}] ) # Legacy behavior __UpperCamelCase =text_classifier('''This is great !''' , return_all_scores=__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_04}] ) __UpperCamelCase =text_classifier('''This is great !''' , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [[{'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_1''', '''score''': 0.4_96}]] ) __UpperCamelCase =text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_1''', '''score''': 0.4_96}], [{'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_1''', '''score''': 0.4_96}], ] , ) __UpperCamelCase =text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {'''label''': '''LABEL_0''', '''score''': 0.5_04}, {'''label''': '''LABEL_0''', '''score''': 0.5_04}, ] , ) @require_torch def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: '''simple docstring''' import torch __UpperCamelCase =pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) __UpperCamelCase =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_04}] ) @require_tf def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) __UpperCamelCase =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''LABEL_0''', '''score''': 0.5_04}] ) @slow @require_torch def UpperCAmelCase_ ( self : Any ) -> List[str]: '''simple docstring''' __UpperCamelCase =pipeline('''text-classification''' ) __UpperCamelCase =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __UpperCamelCase =text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __UpperCamelCase =text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_88}] ) @slow @require_tf def UpperCAmelCase_ ( self : int ) -> List[str]: '''simple docstring''' __UpperCamelCase =pipeline('''text-classification''' , framework='''tf''' ) __UpperCamelCase =text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __UpperCamelCase =text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __UpperCamelCase =text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': '''POSITIVE''', '''score''': 0.9_88}] ) def UpperCAmelCase_ ( self : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ) -> List[Any]: '''simple docstring''' __UpperCamelCase =TextClassificationPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : int , UpperCamelCase__ : str ) -> Optional[int]: '''simple docstring''' __UpperCamelCase =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCamelCase ='''HuggingFace is in''' __UpperCamelCase =text_classifier(__lowerCAmelCase ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) __UpperCamelCase =['''HuggingFace is in ''', '''Paris is in France'''] __UpperCamelCase =text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}, {'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCamelCase =text_classifier(__lowerCAmelCase , top_k=__lowerCAmelCase ) __UpperCamelCase =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [[{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] * N, [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] * N] , ) __UpperCamelCase ={'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} __UpperCamelCase =text_classifier(__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , {'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCamelCase =[['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(__lowerCAmelCase ): text_classifier(__lowerCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCamelCase =text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [{'''label''': ANY(__lowerCAmelCase ), '''score''': ANY(__lowerCAmelCase )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
707
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowercase ( __a ): """simple docstring""" lowercase__ = ['''image_processor''', '''tokenizer'''] lowercase__ = '''ChineseCLIPImageProcessor''' lowercase__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None , **UpperCamelCase__ : int ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) __UpperCamelCase =kwargs.pop('''feature_extractor''' ) __UpperCamelCase =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =self.image_processor def __call__( self : List[str] , UpperCamelCase__ : str=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : int=None , **UpperCamelCase__ : Dict ) -> Dict: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __UpperCamelCase =self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: __UpperCamelCase =self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: __UpperCamelCase =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Any , *UpperCamelCase__ : Dict , **UpperCamelCase__ : str ) -> int: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : int , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : List[str] ) -> str: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def UpperCAmelCase_ ( self : Any ) -> str: '''simple docstring''' __UpperCamelCase =self.tokenizer.model_input_names __UpperCamelCase =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase_ ( self : Any ) -> int: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
296
0
UpperCAmelCase : Dict = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase : Any = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] UpperCAmelCase : Tuple = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def __lowerCamelCase ( lowerCamelCase__ : Dict , lowerCamelCase__ : Dict , lowerCamelCase__ : Any ): '''simple docstring''' assert len(str(lowerCamelCase__ ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: lowerCamelCase = year // 100 lowerCamelCase = (5 * (century % 4) + 2) % 7 lowerCamelCase = year % 100 lowerCamelCase = centurian % 12 lowerCamelCase = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 lowerCamelCase = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) lowerCamelCase = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
457
import math def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> int: if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(lowerCamelCase__ ) if number < 1: __lowerCamelCase : int = F"Input value of [number={number}] must be > 0" raise ValueError(lowerCamelCase__ ) elif number == 1: return 3 elif number == 2: return 5 else: __lowerCamelCase : Any = int(math.log(number // 3 , 2 ) ) + 2 __lowerCamelCase : List[Any] = [3, 5] __lowerCamelCase : Union[str, Any] = 2 __lowerCamelCase : List[str] = 3 for block in range(1 , lowerCamelCase__ ): for _ in range(lowerCamelCase__ ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): a =0 try: a =proth(number) except ValueError: print(F"""ValueError: there is no {number}th Proth number""") continue print(F"""The {number}th Proth number: {value}""")
652
0
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def snake_case ( a_ : List[Any] ) -> Any: """simple docstring""" for param in module.parameters(): UpperCamelCase_ : Dict = False def snake_case ( ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCamelCase_ : int = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def snake_case ( a_ : str ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[int] = plt.imshow(a_ ) fig.axes.get_xaxis().set_visible(a_ ) fig.axes.get_yaxis().set_visible(a_ ) plt.show() def snake_case ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = datetime.now() UpperCamelCase_ : int = current_time.strftime("""%H:%M:%S""" ) return timestamp
704
'''simple docstring''' import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def snake_case ( a_ : int ) -> Union[str, Any]: """simple docstring""" random.seed(a_ ) np.random.seed(a_ ) torch.manual_seed(a_ ) torch.cuda.manual_seed_all(a_ ) # ^^ safe to call this function even if cuda is not available class A : """simple docstring""" def __init__( self , __lowerCAmelCase , __lowerCAmelCase = 0.99_99 , __lowerCAmelCase = 0.0 , __lowerCAmelCase = 0 , __lowerCAmelCase = False , __lowerCAmelCase = 1.0 , __lowerCAmelCase = 2 / 3 , __lowerCAmelCase = None , __lowerCAmelCase = None , **__lowerCAmelCase , ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : Dict = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : str = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility UpperCamelCase_ : Optional[int] = True if kwargs.get("""max_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Tuple = """The `max_value` argument is deprecated. Please use `decay` instead.""" deprecate("""max_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : str = kwargs["""max_value"""] if kwargs.get("""min_value""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : Dict = """The `min_value` argument is deprecated. Please use `min_decay` instead.""" deprecate("""min_value""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) UpperCamelCase_ : Optional[Any] = kwargs["""min_value"""] UpperCamelCase_ : Optional[Any] = list(__lowerCAmelCase ) UpperCamelCase_ : Any = [p.clone().detach() for p in parameters] if kwargs.get("""device""" , __lowerCAmelCase ) is not None: UpperCamelCase_ : str = """The `device` argument is deprecated. Please use `to` instead.""" deprecate("""device""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase ) self.to(device=kwargs["""device"""] ) UpperCamelCase_ : List[Any] = None UpperCamelCase_ : Optional[Any] = decay UpperCamelCase_ : List[str] = min_decay UpperCamelCase_ : int = update_after_step UpperCamelCase_ : Optional[int] = use_ema_warmup UpperCamelCase_ : Optional[int] = inv_gamma UpperCamelCase_ : Any = power UpperCamelCase_ : str = 0 UpperCamelCase_ : List[str] = None # set in `step()` UpperCamelCase_ : Union[str, Any] = model_cls UpperCamelCase_ : Any = model_config @classmethod def _UpperCAmelCase ( cls , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase_ , UpperCamelCase_ : int = model_cls.load_config(__lowerCAmelCase , return_unused_kwargs=__lowerCAmelCase ) UpperCamelCase_ : str = model_cls.from_pretrained(__lowerCAmelCase ) UpperCamelCase_ : Union[str, Any] = cls(model.parameters() , model_cls=__lowerCAmelCase , model_config=model.config ) ema_model.load_state_dict(__lowerCAmelCase ) return ema_model def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.model_cls is None: raise ValueError("""`save_pretrained` can only be used if `model_cls` was defined at __init__.""" ) if self.model_config is None: raise ValueError("""`save_pretrained` can only be used if `model_config` was defined at __init__.""" ) UpperCamelCase_ : int = self.model_cls.from_config(self.model_config ) UpperCamelCase_ : List[Any] = self.state_dict() state_dict.pop("""shadow_params""" , __lowerCAmelCase ) model.register_to_config(**__lowerCAmelCase ) self.copy_to(model.parameters() ) model.save_pretrained(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : Any = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: UpperCamelCase_ : List[Any] = 1 - (1 + step / self.inv_gamma) ** -self.power else: UpperCamelCase_ : List[Any] = (1 + step) / (10 + step) UpperCamelCase_ : Optional[Any] = min(__lowerCAmelCase , self.decay ) # make sure decay is not smaller than min_decay UpperCamelCase_ : Optional[Any] = max(__lowerCAmelCase , self.min_decay ) return cur_decay_value @torch.no_grad() def _UpperCAmelCase ( self , __lowerCAmelCase ): if isinstance(__lowerCAmelCase , torch.nn.Module ): UpperCamelCase_ : str = ( """Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. """ """Please pass the parameters of the module instead.""" ) deprecate( """passing a `torch.nn.Module` to `ExponentialMovingAverage.step`""" , """1.0.0""" , __lowerCAmelCase , standard_warn=__lowerCAmelCase , ) UpperCamelCase_ : int = parameters.parameters() UpperCamelCase_ : Optional[int] = list(__lowerCAmelCase ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. UpperCamelCase_ : Any = self.get_decay(self.optimization_step ) UpperCamelCase_ : List[str] = decay UpperCamelCase_ : Any = 1 - decay UpperCamelCase_ : Optional[int] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): UpperCamelCase_ : Optional[Any] = deepspeed.zero.GatheredParameters(__lowerCAmelCase , modifier_rank=__lowerCAmelCase ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : str = list(__lowerCAmelCase ) for s_param, param in zip(self.shadow_params , __lowerCAmelCase ): param.data.copy_(s_param.to(param.device ).data ) def _UpperCAmelCase ( self , __lowerCAmelCase=None , __lowerCAmelCase=None ): UpperCamelCase_ : Union[str, Any] = [ p.to(device=__lowerCAmelCase , dtype=__lowerCAmelCase ) if p.is_floating_point() else p.to(device=__lowerCAmelCase ) for p in self.shadow_params ] def _UpperCAmelCase ( self ): return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[str] = [param.detach().cpu().clone() for param in parameters] def _UpperCAmelCase ( self , __lowerCAmelCase ): if self.temp_stored_params is None: raise RuntimeError("""This ExponentialMovingAverage has no `store()`ed weights """ """to `restore()`""" ) for c_param, param in zip(self.temp_stored_params , __lowerCAmelCase ): param.data.copy_(c_param.data ) # Better memory-wise. UpperCamelCase_ : List[Any] = None def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = copy.deepcopy(__lowerCAmelCase ) UpperCamelCase_ : int = state_dict.get("""decay""" , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError("""Decay must be between 0 and 1""" ) UpperCamelCase_ : Dict = state_dict.get("""min_decay""" , self.min_decay ) if not isinstance(self.min_decay , __lowerCAmelCase ): raise ValueError("""Invalid min_decay""" ) UpperCamelCase_ : str = state_dict.get("""optimization_step""" , self.optimization_step ) if not isinstance(self.optimization_step , __lowerCAmelCase ): raise ValueError("""Invalid optimization_step""" ) UpperCamelCase_ : Dict = state_dict.get("""update_after_step""" , self.update_after_step ) if not isinstance(self.update_after_step , __lowerCAmelCase ): raise ValueError("""Invalid update_after_step""" ) UpperCamelCase_ : List[str] = state_dict.get("""use_ema_warmup""" , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , __lowerCAmelCase ): raise ValueError("""Invalid use_ema_warmup""" ) UpperCamelCase_ : Any = state_dict.get("""inv_gamma""" , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError("""Invalid inv_gamma""" ) UpperCamelCase_ : str = state_dict.get("""power""" , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError("""Invalid power""" ) UpperCamelCase_ : Dict = state_dict.get("""shadow_params""" , __lowerCAmelCase ) if shadow_params is not None: UpperCamelCase_ : Any = shadow_params if not isinstance(self.shadow_params , __lowerCAmelCase ): raise ValueError("""shadow_params must be a list""" ) if not all(isinstance(__lowerCAmelCase , torch.Tensor ) for p in self.shadow_params ): raise ValueError("""shadow_params must all be Tensors""" )
543
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __a :Union[str, Any] = logging.get_logger(__name__) __a :Optional[int] = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class _a ( snake_case_ ): """simple docstring""" _lowerCamelCase : Tuple = 'vit_mae' def __init__( self : Union[str, Any] , UpperCAmelCase : Any=768 , UpperCAmelCase : Optional[Any]=12 , UpperCAmelCase : str=12 , UpperCAmelCase : Any=3072 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Union[str, Any]=0.0 , UpperCAmelCase : List[Any]=0.0 , UpperCAmelCase : int=0.02 , UpperCAmelCase : int=1E-12 , UpperCAmelCase : List[str]=224 , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Tuple=3 , UpperCAmelCase : str=True , UpperCAmelCase : Tuple=16 , UpperCAmelCase : Optional[int]=512 , UpperCAmelCase : Optional[Any]=8 , UpperCAmelCase : Any=2048 , UpperCAmelCase : Dict=0.75 , UpperCAmelCase : Dict=False , **UpperCAmelCase : Tuple , ): super().__init__(**UpperCAmelCase ) A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = layer_norm_eps A_ = image_size A_ = patch_size A_ = num_channels A_ = qkv_bias A_ = decoder_num_attention_heads A_ = decoder_hidden_size A_ = decoder_num_hidden_layers A_ = decoder_intermediate_size A_ = mask_ratio A_ = norm_pix_loss
86
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __UpperCAmelCase : def UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) a__ : List[str] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) a__ : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) a__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) a__ : str = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=a_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) a__ : Optional[int] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) a__ : List[Any] = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) a__ : List[str] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) a__ : Dict = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) a__ : Optional[int] = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=a_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) a__ : Tuple = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) a__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' a__ : Dict = self.get_dummy_components() a__ : Any = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs(a_ ) a__ : Optional[int] = inputs["prompt"] a__ : List[Any] = inputs["generator"] a__ : Optional[int] = inputs["num_inference_steps"] a__ : Any = inputs["output_type"] if "image" in inputs: a__ : Any = inputs["image"] else: a__ : Dict = None if "mask_image" in inputs: a__ : Optional[int] = inputs["mask_image"] else: a__ : Any = None if "original_image" in inputs: a__ : List[Any] = inputs["original_image"] else: a__ : str = None a__ , a__ : Optional[int] = pipe.encode_prompt(a_ ) # inputs with prompt converted to embeddings a__ : Union[str, Any] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: a__ : Dict = image if mask_image is not None: a__ : Any = mask_image if original_image is not None: a__ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a_ , a_ , a_ ) a__ : int = pipe(**a_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a_ ) a__ : List[str] = self.pipeline_class.from_pretrained(a_ ) pipe_loaded.to(a_ ) pipe_loaded.set_progress_bar_config(disable=a_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a_ , a_ ) is None , F"`{optional_component}` did not stay set to None after loading." , ) a__ : Union[str, Any] = self.get_dummy_inputs(a_ ) a__ : str = inputs["generator"] a__ : Dict = inputs["num_inference_steps"] a__ : Optional[int] = inputs["output_type"] # inputs with prompt converted to embeddings a__ : List[Any] = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: a__ : Dict = image if mask_image is not None: a__ : Any = mask_image if original_image is not None: a__ : Dict = original_image a__ : Optional[Any] = pipe_loaded(**a_ )[0] a__ : int = np.abs(to_np(a_ ) - to_np(a_ ) ).max() self.assertLess(a_ , 1E-4 ) def UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' a__ : Dict = self.get_dummy_components() a__ : Dict = self.pipeline_class(**a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[str] = self.get_dummy_inputs(a_ ) a__ : Dict = pipe(**a_ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a_ ) a__ : str = self.pipeline_class.from_pretrained(a_ ) pipe_loaded.to(a_ ) pipe_loaded.set_progress_bar_config(disable=a_ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests a__ : Optional[int] = self.get_dummy_inputs(a_ ) a__ : Optional[int] = pipe_loaded(**a_ )[0] a__ : List[Any] = np.abs(to_np(a_ ) - to_np(a_ ) ).max() self.assertLess(a_ , 1E-4 )
642
0
def snake_case ( lowerCamelCase ): '''simple docstring''' __lowercase = len(lowerCamelCase ) __lowercase = sum(lowerCamelCase ) __lowercase = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): __lowercase = True for i in range(1 , s + 1 ): __lowercase = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): __lowercase = dp[i][j - 1] if arr[i - 1] <= j: __lowercase = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: __lowercase = s - 2 * j break return diff
53
from __future__ import annotations def snake_case ( lowerCamelCase ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(lowerCamelCase , lowerCamelCase ), ) return max(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
53
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : List[str] = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : int = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
543
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase : Any = logging.get_logger(__name__) lowerCAmelCase : int = """▁""" lowerCAmelCase : str = {"""vocab_file""": """prophetnet.tokenizer"""} lowerCAmelCase : Union[str, Any] = { """vocab_file""": { """microsoft/xprophetnet-large-wiki100-cased""": ( """https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer""" ), } } lowerCAmelCase : Any = { """microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False}, } lowerCAmelCase : List[Any] = { """microsoft/xprophetnet-large-wiki100-cased""": 512, } def a__ ( snake_case__ ) -> int: lowerCamelCase = collections.OrderedDict() with open(snake_case__ , """r""" , encoding="""utf-8""" ) as reader: lowerCamelCase = reader.readlines() for index, token in enumerate(snake_case__ ): lowerCamelCase = token.rstrip("""\n""" ) lowerCamelCase = index return vocab class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] def __init__( self , _a , _a="[SEP]" , _a="[SEP]" , _a="[SEP]" , _a="[UNK]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ): """simple docstring""" lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) lowerCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowerCamelCase = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): lowerCamelCase = f'[unused{i}]' lowerCamelCase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowerCamelCase = 12 lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(_a ) def __getstate__( self ): """simple docstring""" lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__( self , _a ): """simple docstring""" lowerCamelCase = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , _a , _a = None , _a = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) if token_ids_a is None: return ([0] * len(_a )) + [1] return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _lowerCAmelCase ( self , _a ): """simple docstring""" return self.sp_model.encode(_a , out_type=_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _lowerCAmelCase ( self , _a ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = """""".join(_a ).replace(_a , """ """ ).strip() return out_string def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if not os.path.isdir(_a ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( _a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , """wb""" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowerCamelCase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
543
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } SCREAMING_SNAKE_CASE__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = {} with open(_snake_case , "r" ) as file: for line_number, line in enumerate(_snake_case ): SCREAMING_SNAKE_CASE_ :Optional[Any] = line.strip() if line: SCREAMING_SNAKE_CASE_ :Dict = line.split() SCREAMING_SNAKE_CASE_ :List[Any] = line_number SCREAMING_SNAKE_CASE_ :List[Any] = words[0] SCREAMING_SNAKE_CASE_ :Tuple = value return result def lowercase ( a , a , a , a , a ): '''simple docstring''' for attribute in key.split("." ): SCREAMING_SNAKE_CASE_ :Any = getattr(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE_ :Any = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): SCREAMING_SNAKE_CASE_ :Tuple = PARAM_MAPPING[full_name.split("." )[-1]] SCREAMING_SNAKE_CASE_ :int = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE_ :Any = getattr(_snake_case , _snake_case ).shape elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE_ :List[Any] = hf_pointer for attribute in hf_param_name.split("." ): SCREAMING_SNAKE_CASE_ :int = getattr(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE_ :str = shape_pointer.shape # let's reduce dimension SCREAMING_SNAKE_CASE_ :List[str] = value[0] else: SCREAMING_SNAKE_CASE_ :int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": SCREAMING_SNAKE_CASE_ :List[str] = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE_ :int = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE_ :Dict = value elif weight_type == "bias": SCREAMING_SNAKE_CASE_ :int = value elif weight_type == "param": for attribute in hf_param_name.split("." ): SCREAMING_SNAKE_CASE_ :str = getattr(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE_ :Dict = value else: SCREAMING_SNAKE_CASE_ :Dict = value logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def lowercase ( a , a , a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Optional[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_snake_case ): SCREAMING_SNAKE_CASE_ :Optional[int] = PARAM_MAPPING[full_name.split("." )[-1]] SCREAMING_SNAKE_CASE_ :Union[str, Any] = "param" if weight_type is not None and weight_type != "param": SCREAMING_SNAKE_CASE_ :List[str] = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": SCREAMING_SNAKE_CASE_ :Any = ".".join([key, hf_param_name] ) else: SCREAMING_SNAKE_CASE_ :Optional[Any] = key SCREAMING_SNAKE_CASE_ :Optional[int] = value if "lm_head" in full_key else value[0] SCREAMING_SNAKE_CASE__ = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def lowercase ( a , a , a=None , a=None ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[str] = False for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE_ :Tuple = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE_ :str = True if "*" in mapped_key: SCREAMING_SNAKE_CASE_ :Tuple = name.split(_snake_case )[0].split("." )[-2] SCREAMING_SNAKE_CASE_ :Optional[int] = mapped_key.replace("*" , _snake_case ) if "weight_g" in name: SCREAMING_SNAKE_CASE_ :int = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE_ :List[str] = "weight_v" elif "bias" in name: SCREAMING_SNAKE_CASE_ :Tuple = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj SCREAMING_SNAKE_CASE_ :List[str] = "weight" else: SCREAMING_SNAKE_CASE_ :Optional[int] = None if hf_dict is not None: rename_dict(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) else: set_recursively(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) return is_used return is_used def lowercase ( a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] SCREAMING_SNAKE_CASE_ :List[Any] = fairseq_model.state_dict() SCREAMING_SNAKE_CASE_ :Any = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE_ :str = False if "conv_layers" in name: load_conv_layer( _snake_case , _snake_case , _snake_case , _snake_case , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE_ :Any = True else: SCREAMING_SNAKE_CASE_ :List[Any] = load_wavaveca_layer(_snake_case , _snake_case , _snake_case ) if not is_used: unused_weights.append(_snake_case ) logger.warning(F"Unused weights: {unused_weights}" ) def lowercase ( a , a , a , a , a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[Any] = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE_ :List[str] = name.split("." ) SCREAMING_SNAKE_CASE_ :List[str] = int(items[0] ) SCREAMING_SNAKE_CASE_ :Tuple = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE_ :int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_ :int = value logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." ) SCREAMING_SNAKE_CASE_ :int = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"{full_name} has size {value.shape}, but" F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." ) SCREAMING_SNAKE_CASE_ :Optional[int] = value logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_snake_case ) @torch.no_grad() def lowercase ( a , a , a=None , a=None , a=True , a=False ): '''simple docstring''' if config_path is not None: SCREAMING_SNAKE_CASE_ :Optional[int] = WavaVecaConfig.from_pretrained(_snake_case ) else: SCREAMING_SNAKE_CASE_ :Dict = WavaVecaConfig() if is_seq_class: SCREAMING_SNAKE_CASE_ :Tuple = read_txt_into_dict(_snake_case ) SCREAMING_SNAKE_CASE_ :Tuple = idalabel SCREAMING_SNAKE_CASE_ :Tuple = WavaVecaForSequenceClassification(_snake_case ) SCREAMING_SNAKE_CASE_ :int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) feature_extractor.save_pretrained(_snake_case ) elif is_finetuned: if dict_path: SCREAMING_SNAKE_CASE_ :int = Dictionary.load(_snake_case ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE_ :str = target_dict.pad_index SCREAMING_SNAKE_CASE_ :List[Any] = target_dict.bos_index SCREAMING_SNAKE_CASE_ :Any = target_dict.eos_index SCREAMING_SNAKE_CASE_ :Union[str, Any] = len(target_dict.symbols ) SCREAMING_SNAKE_CASE_ :Any = os.path.join(_snake_case , "vocab.json" ) if not os.path.isdir(_snake_case ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_snake_case ) ) return os.makedirs(_snake_case , exist_ok=_snake_case ) SCREAMING_SNAKE_CASE_ :str = target_dict.indices # fairseq has the <pad> and <s> switched SCREAMING_SNAKE_CASE_ :Optional[Any] = 0 SCREAMING_SNAKE_CASE_ :Optional[Any] = 1 with open(_snake_case , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_snake_case , _snake_case ) SCREAMING_SNAKE_CASE_ :List[Any] = WavaVecaCTCTokenizer( _snake_case , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_snake_case , ) SCREAMING_SNAKE_CASE_ :List[Any] = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE_ :Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=_snake_case , return_attention_mask=_snake_case , ) SCREAMING_SNAKE_CASE_ :List[Any] = WavaVecaProcessor(feature_extractor=_snake_case , tokenizer=_snake_case ) processor.save_pretrained(_snake_case ) SCREAMING_SNAKE_CASE_ :List[str] = WavaVecaForCTC(_snake_case ) else: SCREAMING_SNAKE_CASE_ :Optional[int] = WavaVecaForPreTraining(_snake_case ) if is_finetuned or is_seq_class: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: SCREAMING_SNAKE_CASE_ :str = argparse.Namespace(task="audio_pretraining" ) SCREAMING_SNAKE_CASE_ :List[Any] = fairseq.tasks.setup_task(_snake_case ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ :List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_snake_case ) SCREAMING_SNAKE_CASE_ :Optional[Any] = model[0].eval() recursively_load_weights(_snake_case , _snake_case , not is_finetuned ) hf_wavavec.save_pretrained(_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
711
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( lowercase ): lowerCamelCase_ : Optional[int] = ["""image_processor""", """tokenizer"""] lowerCamelCase_ : Tuple = """LayoutLMv2ImageProcessor""" lowerCamelCase_ : Optional[int] = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self : Tuple , UpperCAmelCase : List[str]=None , UpperCAmelCase : Any=None , **UpperCAmelCase : Dict): if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ :Any = kwargs.pop("feature_extractor") SCREAMING_SNAKE_CASE_ :int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(UpperCAmelCase , UpperCAmelCase) def __call__( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase : bool = True , UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : int = 0 , UpperCAmelCase : Optional[int] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : Optional[bool] = None , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = False , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Union[str, TensorType]] = None , **UpperCAmelCase : Optional[Any] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes " "if you initialized the image processor with apply_ocr set to True.") if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True.") if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") # first, apply the image processor SCREAMING_SNAKE_CASE_ :str = self.image_processor(images=UpperCAmelCase , return_tensors=UpperCAmelCase) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase , UpperCAmelCase): SCREAMING_SNAKE_CASE_ :List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE_ :Tuple = features["words"] SCREAMING_SNAKE_CASE_ :List[Any] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=UpperCAmelCase , add_special_tokens=UpperCAmelCase , padding=UpperCAmelCase , truncation=UpperCAmelCase , max_length=UpperCAmelCase , stride=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_token_type_ids=UpperCAmelCase , return_attention_mask=UpperCAmelCase , return_overflowing_tokens=UpperCAmelCase , return_special_tokens_mask=UpperCAmelCase , return_offsets_mapping=UpperCAmelCase , return_length=UpperCAmelCase , verbose=UpperCAmelCase , return_tensors=UpperCAmelCase , **UpperCAmelCase , ) # add pixel values SCREAMING_SNAKE_CASE_ :Optional[Any] = features.pop("pixel_values") if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE_ :Dict = self.get_overflowing_images(UpperCAmelCase , encoded_inputs["overflow_to_sample_mapping"]) SCREAMING_SNAKE_CASE_ :List[str] = images return encoded_inputs def _snake_case ( self : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image SCREAMING_SNAKE_CASE_ :int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase) != len(UpperCAmelCase): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F" {len(UpperCAmelCase)} and {len(UpperCAmelCase)}") return images_with_overflow def _snake_case ( self : int , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[int]): return self.tokenizer.batch_decode(*UpperCAmelCase , **UpperCAmelCase) def _snake_case ( self : Tuple , *UpperCAmelCase : Optional[Any] , **UpperCAmelCase : List[Any]): return self.tokenizer.decode(*UpperCAmelCase , **UpperCAmelCase) @property def _snake_case ( self : Any): return ["input_ids", "bbox", "attention_mask", "image"] @property def _snake_case ( self : List[Any]): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCAmelCase , ) return self.image_processor_class @property def _snake_case ( self : Union[str, Any]): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCAmelCase , ) return self.image_processor
140
0
def A ( ) -> int: return [ a * b * (1_000 - a - b) for a in range(1 , 999 ) for b in range(__UpperCamelCase , 999 ) if (a * a + b * b == (1_000 - a - b) ** 2) ][0] if __name__ == "__main__": print(f'{solution() = }')
9
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( A__ ): lowercase__ = SwinConfig(image_size=192 ) if "base" in model_name: lowercase__ = 6 lowercase__ = 128 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) elif "large" in model_name: lowercase__ = 12 lowercase__ = 192 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) lowercase__ = window_size lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads return config def _lowerCAmelCase ( A__ ): if "encoder.mask_token" in name: lowercase__ = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: lowercase__ = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: lowercase__ = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: lowercase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowercase__ = 'layernorm.weight' if name == "encoder.norm.bias": lowercase__ = 'layernorm.bias' if "decoder" in name: pass else: lowercase__ = 'swin.' + name return name def _lowerCAmelCase ( A__ , A__ ): for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__ = key.split('.' ) lowercase__ = int(key_split[2] ) lowercase__ = int(key_split[4] ) lowercase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[ :dim ] lowercase__ = val[ dim : dim * 2 ] lowercase__ = val[ -dim: ] else: lowercase__ = val return orig_state_dict def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = torch.load(A__ , map_location='cpu' )['model'] lowercase__ = get_swin_config(A__ ) lowercase__ = SwinForMaskedImageModeling(A__ ) model.eval() lowercase__ = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = ViTImageProcessor(size={'height': 192, 'width': 192} ) lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ) lowercase__ = image_processor(images=A__ , return_tensors='pt' ) with torch.no_grad(): lowercase__ = model(**A__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a__ : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
622
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCamelCase = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
700
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class snake_case_ : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 class snake_case_ : """simple docstring""" def __init__( self ,lowercase): """simple docstring""" UpperCAmelCase_ : list[list[Edge]] = [[] for _ in range(lowercase)] UpperCAmelCase_ : str = size def __getitem__( self ,lowercase): """simple docstring""" return iter(self._graph[vertex]) @property def A_ ( self): """simple docstring""" return self._size def A_ ( self ,lowercase ,lowercase ,lowercase): """simple docstring""" if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1.") if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size).") self._graph[from_vertex].append(Edge(lowercase ,lowercase)) def A_ ( self ,lowercase ,lowercase): """simple docstring""" UpperCAmelCase_ : int = deque([start_vertex]) UpperCAmelCase_ : list[int | None] = [None] * self.size UpperCAmelCase_ : Dict = 0 while queue: UpperCAmelCase_ : List[Any] = queue.popleft() UpperCAmelCase_ : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: UpperCAmelCase_ : Tuple = current_distance + edge.weight UpperCAmelCase_ : Optional[Any] = distances[edge.destination_vertex] if ( isinstance(lowercase ,lowercase) and new_distance >= dest_vertex_distance ): continue UpperCAmelCase_ : Tuple = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex) else: queue.append(edge.destination_vertex) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex.") return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
455
0
'''simple docstring''' from collections import defaultdict def A (__lowerCamelCase :str , __lowerCamelCase :str ): _lowerCAmelCase = first_str.lower().strip() _lowerCAmelCase = second_str.lower().strip() # Remove whitespace _lowerCAmelCase = first_str.replace(""" """ , """""" ) _lowerCAmelCase = second_str.replace(""" """ , """""" ) # Strings of different lengths are not anagrams if len(__lowerCamelCase ) != len(__lowerCamelCase ): return False # Default values for count should be 0 _lowerCAmelCase = defaultdict(__lowerCamelCase ) # For each character in input strings, # increment count in the corresponding for i in range(len(__lowerCamelCase ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() _lowercase = input("""Enter the first string """).strip() _lowercase = input("""Enter the second string """).strip() _lowercase = check_anagrams(input_a, input_b) print(F"""{input_a} and {input_b} are {'' if status else 'not '}anagrams.""")
5
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) _snake_case = { '''facebook/detr-resnet-50''': '''https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json''', # See all DETR models at https://huggingface.co/models?filter=detr } class _snake_case ( _lowercase ): lowerCamelCase__: List[Any] = "detr" lowerCamelCase__: Tuple = ["past_key_values"] lowerCamelCase__: Optional[Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self: List[Any] , __lowerCamelCase: Tuple=True , __lowerCamelCase: Tuple=None , __lowerCamelCase: Optional[int]=3 , __lowerCamelCase: Dict=1_00 , __lowerCamelCase: Union[str, Any]=6 , __lowerCamelCase: Union[str, Any]=20_48 , __lowerCamelCase: Dict=8 , __lowerCamelCase: Optional[Any]=6 , __lowerCamelCase: Optional[int]=20_48 , __lowerCamelCase: Union[str, Any]=8 , __lowerCamelCase: Any=0.0 , __lowerCamelCase: List[str]=0.0 , __lowerCamelCase: Dict=True , __lowerCamelCase: int="relu" , __lowerCamelCase: Any=2_56 , __lowerCamelCase: List[str]=0.1 , __lowerCamelCase: Union[str, Any]=0.0 , __lowerCamelCase: int=0.0 , __lowerCamelCase: Any=0.02 , __lowerCamelCase: str=1.0 , __lowerCamelCase: Union[str, Any]=False , __lowerCamelCase: Any="sine" , __lowerCamelCase: str="resnet50" , __lowerCamelCase: str=True , __lowerCamelCase: List[Any]=False , __lowerCamelCase: Dict=1 , __lowerCamelCase: List[Any]=5 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Any=1 , __lowerCamelCase: Optional[Any]=1 , __lowerCamelCase: Dict=5 , __lowerCamelCase: Dict=2 , __lowerCamelCase: Optional[Any]=0.1 , **__lowerCamelCase: Tuple , ) -> int: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __UpperCAmelCase : List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): __UpperCAmelCase : List[str] = backbone_config.get("model_type" ) __UpperCAmelCase : Any = CONFIG_MAPPING[backbone_model_type] __UpperCAmelCase : Optional[Any] = config_class.from_dict(__lowerCamelCase ) # set timm attributes to None __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : str = None, None, None __UpperCAmelCase : Union[str, Any] = use_timm_backbone __UpperCAmelCase : Dict = backbone_config __UpperCAmelCase : Any = num_channels __UpperCAmelCase : List[str] = num_queries __UpperCAmelCase : Any = d_model __UpperCAmelCase : Union[str, Any] = encoder_ffn_dim __UpperCAmelCase : Dict = encoder_layers __UpperCAmelCase : List[str] = encoder_attention_heads __UpperCAmelCase : str = decoder_ffn_dim __UpperCAmelCase : Any = decoder_layers __UpperCAmelCase : Optional[Any] = decoder_attention_heads __UpperCAmelCase : int = dropout __UpperCAmelCase : int = attention_dropout __UpperCAmelCase : int = activation_dropout __UpperCAmelCase : int = activation_function __UpperCAmelCase : Dict = init_std __UpperCAmelCase : List[str] = init_xavier_std __UpperCAmelCase : Union[str, Any] = encoder_layerdrop __UpperCAmelCase : List[Any] = decoder_layerdrop __UpperCAmelCase : List[str] = encoder_layers __UpperCAmelCase : List[Any] = auxiliary_loss __UpperCAmelCase : Optional[Any] = position_embedding_type __UpperCAmelCase : Optional[int] = backbone __UpperCAmelCase : Dict = use_pretrained_backbone __UpperCAmelCase : str = dilation # Hungarian matcher __UpperCAmelCase : Tuple = class_cost __UpperCAmelCase : Union[str, Any] = bbox_cost __UpperCAmelCase : Optional[int] = giou_cost # Loss coefficients __UpperCAmelCase : Tuple = mask_loss_coefficient __UpperCAmelCase : List[Any] = dice_loss_coefficient __UpperCAmelCase : Optional[int] = bbox_loss_coefficient __UpperCAmelCase : List[Any] = giou_loss_coefficient __UpperCAmelCase : Dict = eos_coefficient super().__init__(is_encoder_decoder=__lowerCamelCase , **__lowerCamelCase ) @property def _lowerCamelCase ( self: int ) -> int: return self.encoder_attention_heads @property def _lowerCamelCase ( self: Union[str, Any] ) -> int: return self.d_model @classmethod def _lowerCamelCase ( cls: Optional[int] , __lowerCamelCase: PretrainedConfig , **__lowerCamelCase: Optional[Any] ) -> Dict: return cls(backbone_config=__lowerCamelCase , **__lowerCamelCase ) def _lowerCamelCase ( self: Optional[Any] ) -> Dict[str, any]: __UpperCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __UpperCAmelCase : Optional[Any] = self.backbone_config.to_dict() __UpperCAmelCase : Union[str, Any] = self.__class__.model_type return output class _snake_case ( _lowercase ): lowerCamelCase__: int = version.parse("1.11" ) @property def _lowerCamelCase ( self: Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _lowerCamelCase ( self: Optional[Any] ) -> float: return 1e-5 @property def _lowerCamelCase ( self: int ) -> int: return 12
382
0
'''simple docstring''' from datetime import datetime as dt import os from github import Github __UpperCamelCase : str = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _a ( ): """simple docstring""" UpperCamelCase__ : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCamelCase__ : Optional[int] = g.get_repo('''huggingface/transformers''' ) UpperCamelCase__ : Tuple = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCamelCase__ : Optional[int] = sorted([comment for comment in issue.get_comments()] , key=lambda SCREAMING_SNAKE_CASE : i.created_at , reverse=snake_case_ ) UpperCamelCase__ : Dict = comments[0] if len(snake_case_ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
718
import logging import os import threading import time try: import warnings except ImportError: __UpperCamelCase : Any = None try: import msvcrt except ImportError: __UpperCamelCase : Optional[Any] = None try: import fcntl except ImportError: __UpperCamelCase : Union[str, Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: __UpperCamelCase : Any = OSError # Data # ------------------------------------------------ __UpperCamelCase : Optional[int] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] __UpperCamelCase : Dict = "3.0.12" __UpperCamelCase : str = None def _a ( ): """simple docstring""" global _logger UpperCamelCase__ : Tuple = _logger or logging.getLogger(__name__ ) return _logger class __magic_name__ ( __lowerCAmelCase): def __init__( self : Any , lowerCamelCase__ : List[Any] ) -> int: '''simple docstring''' UpperCamelCase__ : List[str] = lock_file return None def __str__( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Tuple = F"The file lock '{self.lock_file}' could not be acquired." return temp class __magic_name__ : def __init__( self : List[str] , lowerCamelCase__ : Dict ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Optional[int] = lock return None def __enter__( self : Tuple ) -> str: '''simple docstring''' return self.lock def __exit__( self : Any , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : str ) -> Any: '''simple docstring''' self.lock.release() return None class __magic_name__ : def __init__( self : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str]=-1 , lowerCamelCase__ : Any=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : int = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCamelCase__ : List[Any] = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. UpperCamelCase__ : Tuple = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase__ : int = None # The default timeout value. UpperCamelCase__ : Optional[Any] = timeout # We use this lock primarily for the lock counter. UpperCamelCase__ : List[Any] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase__ : Any = 0 return None @property def UpperCAmelCase__ ( self : Any ) -> Optional[int]: '''simple docstring''' return self._lock_file @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self._timeout @timeout.setter def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = float(lowerCamelCase__ ) return None def UpperCAmelCase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' raise NotImplementedError() def UpperCAmelCase__ ( self : List[str] ) -> Dict: '''simple docstring''' raise NotImplementedError() @property def UpperCAmelCase__ ( self : Any ) -> Dict: '''simple docstring''' return self._lock_file_fd is not None def UpperCAmelCase__ ( self : Tuple , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : List[str]=0.05 ) -> int: '''simple docstring''' if timeout is None: UpperCamelCase__ : int = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase__ : int = id(self ) UpperCamelCase__ : List[Any] = self._lock_file UpperCamelCase__ : Dict = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase__ : List[Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[int]=False ) -> Any: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase__ : List[str] = id(self ) UpperCamelCase__ : Union[str, Any] = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() UpperCamelCase__ : Optional[Any] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self : Union[str, Any] ) -> Tuple: '''simple docstring''' self.acquire() return self def __exit__( self : Optional[int] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any , lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' self.release() return None def __del__( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.release(force=lowerCamelCase__ ) return None def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : int ) -> str: '''simple docstring''' UpperCamelCase__ : str = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: UpperCamelCase__ : Optional[int] = os.path.dirname(lowerCamelCase__ ) UpperCamelCase__ : List[str] = str(hash(lowerCamelCase__ ) ) UpperCamelCase__ : Optional[int] = filename[: max_length - len(lowerCamelCase__ ) - 8] + '''...''' + hashed_filename + '''.lock''' return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class __magic_name__ ( __lowerCAmelCase): def __init__( self : int , lowerCamelCase__ : Dict , lowerCamelCase__ : str=-1 , lowerCamelCase__ : int=None ) -> Optional[int]: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) UpperCamelCase__ : int = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase__ : Union[str, Any] = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: UpperCamelCase__ : Union[str, Any] = fd return None def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : str = self._lock_file_fd UpperCamelCase__ : List[str] = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __magic_name__ ( __lowerCAmelCase): def __init__( self : Any , lowerCamelCase__ : int , lowerCamelCase__ : str=-1 , lowerCamelCase__ : int=None ) -> Tuple: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def UpperCAmelCase__ ( self : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : List[str] = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase__ : int = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: UpperCamelCase__ : Any = fd return None def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' UpperCamelCase__ : Tuple = self._lock_file_fd UpperCamelCase__ : int = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase__ : Any = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: UpperCamelCase__ : Optional[Any] = fd return None def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' os.close(self._lock_file_fd ) UpperCamelCase__ : List[str] = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None __UpperCamelCase : Tuple = None if msvcrt: __UpperCamelCase : str = WindowsFileLock elif fcntl: __UpperCamelCase : Optional[Any] = UnixFileLock else: __UpperCamelCase : Optional[Any] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
106
0
"""simple docstring""" import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=5_12 , UpperCamelCase_=16 , UpperCamelCase_=2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=3 , UpperCamelCase_=4 , UpperCamelCase_=None , ) -> List[Any]: __lowercase : str = parent __lowercase : List[Any] = batch_size __lowercase : Optional[int] = seq_length __lowercase : Dict = is_training __lowercase : Optional[int] = use_input_mask __lowercase : List[Any] = use_token_type_ids __lowercase : List[Any] = use_labels __lowercase : List[Any] = vocab_size __lowercase : Optional[int] = hidden_size __lowercase : Dict = num_hidden_layers __lowercase : int = num_attention_heads __lowercase : Optional[Any] = intermediate_size __lowercase : Any = hidden_act __lowercase : Dict = hidden_dropout_prob __lowercase : str = attention_probs_dropout_prob __lowercase : Optional[int] = max_position_embeddings __lowercase : Optional[Any] = type_vocab_size __lowercase : Any = type_sequence_label_size __lowercase : Any = initializer_range __lowercase : Dict = num_labels __lowercase : List[str] = num_choices __lowercase : str = scope def _lowerCamelCase ( self ) -> List[str]: __lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase : str = None if self.use_input_mask: __lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase : str = None if self.use_token_type_ids: __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : Tuple = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) __lowercase : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ) -> List[Any]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: __lowercase : Dict = BioGptModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) __lowercase : Optional[int] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , ) -> Union[str, Any]: __lowercase : Union[str, Any] = BioGptForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ) -> Tuple: __lowercase : Any = BioGptModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # create attention mask __lowercase : str = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCamelCase_ ) __lowercase : Dict = self.seq_length // 2 __lowercase : str = 0 # first forward pass __lowercase ,__lowercase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ).to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __lowercase : int = ids_tensor((1,) , UpperCamelCase_ ).item() + 1 __lowercase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __lowercase : str = random_other_next_tokens # append to next input_ids and attn_mask __lowercase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=UpperCamelCase_ )] , dim=1 , ) # get two different outputs __lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )['''last_hidden_state'''] __lowercase : str = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )['''last_hidden_state'''] # select random slice __lowercase : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __lowercase : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ) -> Dict: __lowercase : str = BioGptModel(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval() __lowercase : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=UpperCamelCase_ ) # first forward pass __lowercase : int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __lowercase ,__lowercase : List[str] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowercase : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowercase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowercase : List[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowercase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )['''last_hidden_state'''] __lowercase : List[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[ '''last_hidden_state''' ] # select random slice __lowercase : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowercase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __lowercase : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , UpperCamelCase_=False ) -> Union[str, Any]: __lowercase : Any = BioGptForCausalLM(UpperCamelCase_ ) model.to(UpperCamelCase_ ) if gradient_checkpointing: model.gradient_checkpointing_enable() __lowercase : Dict = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _lowerCamelCase ( self , UpperCamelCase_ , *UpperCamelCase_ ) -> List[str]: __lowercase : List[str] = BioGptModel(UpperCamelCase_ ) __lowercase : List[str] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.0_0_1 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.0_1 ) def _lowerCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ ) -> Any: __lowercase : Optional[Any] = self.num_labels __lowercase : List[str] = BioGptForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self ) -> Dict: __lowercase : Tuple = self.prepare_config_and_inputs() ( ( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) ,( __lowercase ) , ) : Optional[Any] = config_and_inputs __lowercase : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( snake_case , snake_case , snake_case , unittest.TestCase ): UpperCamelCase =( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) UpperCamelCase =(BioGptForCausalLM,) if is_torch_available() else () UpperCamelCase =( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase =False def _lowerCamelCase ( self ) -> List[Any]: __lowercase : int = BioGptModelTester(self ) __lowercase : Any = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def _lowerCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Dict: __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowercase : List[Any] = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[int]: __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> str: __lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*UpperCamelCase_ , gradient_checkpointing=UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Dict: __lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*UpperCamelCase_ ) def _lowerCamelCase ( self ) -> List[str]: __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*UpperCamelCase_ ) @slow def _lowerCamelCase ( self ) -> str: __lowercase : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(UpperCamelCase_ ) __lowercase : List[Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __lowercase : int = '''left''' # Define PAD Token = EOS Token = 50256 __lowercase : Tuple = tokenizer.eos_token __lowercase : Optional[Any] = model.config.eos_token_id # use different length sentences to test batching __lowercase : Optional[int] = [ '''Hello, my dog is a little''', '''Today, I''', ] __lowercase : Tuple = tokenizer(UpperCamelCase_ , return_tensors='''pt''' , padding=UpperCamelCase_ ) __lowercase : Dict = inputs['''input_ids'''].to(UpperCamelCase_ ) __lowercase : str = model.generate( input_ids=UpperCamelCase_ , attention_mask=inputs['''attention_mask'''].to(UpperCamelCase_ ) , ) __lowercase : Union[str, Any] = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(UpperCamelCase_ ) __lowercase : Dict = model.generate(input_ids=UpperCamelCase_ ) __lowercase : int = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __lowercase : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(UpperCamelCase_ ) __lowercase : Any = model.generate(input_ids=UpperCamelCase_ , max_length=model.config.max_length - num_paddings ) __lowercase : Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase_ ) __lowercase : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase_ ) __lowercase : Dict = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , [non_padded_sentence, padded_sentence] ) @slow def _lowerCamelCase ( self ) -> int: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = BioGptModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase ,__lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Optional[int] = 3 __lowercase : Optional[Any] = input_dict['''input_ids'''] __lowercase : str = input_ids.ne(1 ).to(UpperCamelCase_ ) __lowercase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowercase : Optional[Any] = BioGptForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowerCamelCase ( self ) -> str: __lowercase ,__lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : str = 3 __lowercase : Optional[int] = '''multi_label_classification''' __lowercase : List[str] = input_dict['''input_ids'''] __lowercase : Dict = input_ids.ne(1 ).to(UpperCamelCase_ ) __lowercase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowercase : Optional[int] = BioGptForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) __lowercase : List[Any] = torch.tensor([[2, 48_05, 9, 6_56, 21]] ) __lowercase : int = model(UpperCamelCase_ )[0] __lowercase : Dict = 4_23_84 __lowercase : Tuple = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , UpperCamelCase_ ) __lowercase : Union[str, Any] = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ) -> List[str]: __lowercase : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __lowercase : List[str] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(UpperCamelCase_ ) torch.manual_seed(0 ) __lowercase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(UpperCamelCase_ ) __lowercase : Dict = model.generate( **UpperCamelCase_ , min_length=1_00 , max_length=10_24 , num_beams=5 , early_stopping=UpperCamelCase_ , ) __lowercase : str = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase_ ) __lowercase : Optional[int] = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
76
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class lowerCamelCase ( unittest.TestCase ): def snake_case__ ( self :List[Any] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-t5''' SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE = tokenizer('''This is me''' , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) SCREAMING_SNAKE_CASE = model.generate(**lowercase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowercase ) SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) SCREAMING_SNAKE_CASE = model_reloaded.generate(**lowercase ) self.assertTrue(torch.allclose(lowercase , lowercase ) ) def snake_case__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = '''hf-internal-testing/tiny-random-t5''' SCREAMING_SNAKE_CASE = AutoModelForSeqaSeqLM.from_pretrained(lowercase ) SCREAMING_SNAKE_CASE = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowercase ): model.save_pretrained(lowercase ) SCREAMING_SNAKE_CASE = model.reverse_bettertransformer() model.save_pretrained(lowercase )
201
0
'''simple docstring''' from collections.abc import Iterable from typing import Any class lowerCamelCase__ : '''simple docstring''' def __init__( self : Any , __A : List[Any] = None ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = value lowerCAmelCase__ = None # Added in order to delete a node easier lowerCAmelCase__ = None lowerCAmelCase__ = None def __repr__( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value ) return pformat({f'''{self.value}''': (self.left, self.right)} , indent=1 ) class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , __A : Union[str, Any] = None ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = root def __str__( self : int ) -> Optional[int]: '''simple docstring''' return str(self.root ) def lowercase__ ( self : Union[str, Any] , __A : Optional[int] , __A : Optional[Any] ) -> Optional[int]: '''simple docstring''' if new_children is not None: # reset its kids lowerCAmelCase__ = node.parent if node.parent is not None: # reset its parent if self.is_right(__A ): # If it is the right children lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children else: lowerCAmelCase__ = new_children def lowercase__ ( self : Dict , __A : Dict ) -> List[str]: '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def lowercase__ ( self : Tuple ) -> Any: '''simple docstring''' return self.root is None def lowercase__ ( self : str , __A : Tuple ) -> Any: '''simple docstring''' lowerCAmelCase__ = Node(__A ) # create a new Node if self.empty(): # if Tree is empty lowerCAmelCase__ = new_node # set its root else: # Tree is not empty lowerCAmelCase__ = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: lowerCAmelCase__ = new_node # We insert the new node in a leaf break else: lowerCAmelCase__ = parent_node.left else: if parent_node.right is None: lowerCAmelCase__ = new_node break else: lowerCAmelCase__ = parent_node.right lowerCAmelCase__ = parent_node def lowercase__ ( self : Dict , *__A : Dict ) -> Union[str, Any]: '''simple docstring''' for value in values: self.__insert(__A ) def lowercase__ ( self : List[str] , __A : Dict ) -> Any: '''simple docstring''' if self.empty(): raise IndexError("""Warning: Tree is empty! please use another.""" ) else: lowerCAmelCase__ = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: lowerCAmelCase__ = node.left if value < node.value else node.right return node def lowercase__ ( self : Optional[Any] , __A : List[Any] = None ) -> Optional[Any]: '''simple docstring''' if node is None: if self.root is None: return None lowerCAmelCase__ = self.root if not self.empty(): while node.right is not None: lowerCAmelCase__ = node.right return node def lowercase__ ( self : Dict , __A : Union[str, Any] = None ) -> Union[str, Any]: '''simple docstring''' if node is None: lowerCAmelCase__ = self.root if self.root is None: return None if not self.empty(): lowerCAmelCase__ = self.root while node.left is not None: lowerCAmelCase__ = node.left return node def lowercase__ ( self : Tuple , __A : Optional[Any] ) -> str: '''simple docstring''' lowerCAmelCase__ = self.search(__A ) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(__A , __A ) elif node.left is None: # Has only right children self.__reassign_nodes(__A , node.right ) elif node.right is None: # Has only left children self.__reassign_nodes(__A , node.left ) else: lowerCAmelCase__ = self.get_max( node.left ) # Gets the max value of the left branch self.remove(tmp_node.value ) # type: ignore lowerCAmelCase__ = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def lowercase__ ( self : int , __A : Dict ) -> str: '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left ) yield from self.preorder_traverse(node.right ) def lowercase__ ( self : int , __A : int=None ) -> List[str]: '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root ) else: return traversal_function(self.root ) def lowercase__ ( self : int , __A : Union[str, Any] , __A : int ) -> List[str]: '''simple docstring''' if node: self.inorder(__A , node.left ) arr.append(node.value ) self.inorder(__A , node.right ) def lowercase__ ( self : Union[str, Any] , __A : Any , __A : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = [] self.inorder(__A , __A ) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase( UpperCAmelCase_ : Optional[int] ) -> Tuple: lowerCAmelCase__ = [] if curr_node is not None: lowerCAmelCase__ = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase( ) -> Optional[int]: lowerCAmelCase__ = (8, 3, 6, 1, 10, 14, 13, 4, 7) lowerCAmelCase__ = BinarySearchTree() for i in testlist: t.insert(UpperCamelCase__ ) # Prints all the elements of the list in order traversal print(UpperCamelCase__ ) if t.search(6 ) is not None: print("""The value 6 exists""" ) else: print("""The value 6 doesn\'t exist""" ) if t.search(-1 ) is not None: print("""The value -1 exists""" ) else: print("""The value -1 doesn\'t exist""" ) if not t.empty(): print("""Max Value: """ , t.get_max().value ) # type: ignore print("""Min Value: """ , t.get_min().value ) # type: ignore for i in testlist: t.remove(UpperCamelCase__ ) print(UpperCamelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
720
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging _UpperCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( _A ): '''simple docstring''' def __init__( self : Optional[int] , __A : WhisperForConditionalGeneration , __A : WhisperProcessor , __A : AutoencoderKL , __A : CLIPTextModel , __A : CLIPTokenizer , __A : UNetaDConditionModel , __A : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __A : StableDiffusionSafetyChecker , __A : CLIPImageProcessor , ) -> List[Any]: '''simple docstring''' super().__init__() if safety_checker is None: logger.warning( f'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=__A , speech_processor=__A , vae=__A , text_encoder=__A , tokenizer=__A , unet=__A , scheduler=__A , feature_extractor=__A , ) def lowercase__ ( self : Optional[Any] , __A : Optional[Union[str, int]] = "auto" ) -> Any: '''simple docstring''' if slice_size == "auto": lowerCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__A ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' self.enable_attention_slicing(__A ) @torch.no_grad() def __call__( self : Optional[int] , __A : List[str] , __A : Tuple=1_6000 , __A : int = 512 , __A : int = 512 , __A : int = 50 , __A : float = 7.5 , __A : Optional[Union[str, List[str]]] = None , __A : Optional[int] = 1 , __A : float = 0.0 , __A : Optional[torch.Generator] = None , __A : Optional[torch.FloatTensor] = None , __A : Optional[str] = "pil" , __A : bool = True , __A : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __A : int = 1 , **__A : str , ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = self.speech_processor.feature_extractor( __A , return_tensors="""pt""" , sampling_rate=__A ).input_features.to(self.device ) lowerCAmelCase__ = self.speech_model.generate(__A , max_length=48_0000 ) lowerCAmelCase__ = self.speech_processor.tokenizer.batch_decode(__A , skip_special_tokens=__A , normalize=__A )[ 0 ] if isinstance(__A , __A ): lowerCAmelCase__ = 1 elif isinstance(__A , __A ): lowerCAmelCase__ = len(__A ) else: raise ValueError(f'''`prompt` has to be of type `str` or `list` but is {type(__A )}''' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'''`height` and `width` have to be divisible by 8 but are {height} and {width}.''' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__A , __A ) or callback_steps <= 0) ): raise ValueError( f'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' f''' {type(__A )}.''' ) # get prompt text embeddings lowerCAmelCase__ = self.tokenizer( __A , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCAmelCase__ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase__ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) lowerCAmelCase__ = text_input_ids[:, : self.tokenizer.model_max_length] lowerCAmelCase__ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ = text_embeddings.shape lowerCAmelCase__ = text_embeddings.repeat(1 , __A , 1 ) lowerCAmelCase__ = text_embeddings.view(bs_embed * num_images_per_prompt , __A , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase__ = 42 if negative_prompt is None: lowerCAmelCase__ = [""""""] * batch_size elif type(__A ) is not type(__A ): raise TypeError( f'''`negative_prompt` should be the same type to `prompt`, but got {type(__A )} !=''' f''' {type(__A )}.''' ) elif isinstance(__A , __A ): lowerCAmelCase__ = [negative_prompt] elif batch_size != len(__A ): raise ValueError( f'''`negative_prompt`: {negative_prompt} has batch size {len(__A )}, but `prompt`:''' f''' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches''' """ the batch size of `prompt`.""" ) else: lowerCAmelCase__ = negative_prompt lowerCAmelCase__ = text_input_ids.shape[-1] lowerCAmelCase__ = self.tokenizer( __A , padding="""max_length""" , max_length=__A , truncation=__A , return_tensors="""pt""" , ) lowerCAmelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ = uncond_embeddings.shape[1] lowerCAmelCase__ = uncond_embeddings.repeat(1 , __A , 1 ) lowerCAmelCase__ = uncond_embeddings.view(batch_size * num_images_per_prompt , __A , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase__ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase__ = torch.randn(__A , generator=__A , device="""cpu""" , dtype=__A ).to( self.device ) else: lowerCAmelCase__ = torch.randn(__A , generator=__A , device=self.device , dtype=__A ) else: if latents.shape != latents_shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) lowerCAmelCase__ = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__A ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase__ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase__ = {} if accepts_eta: lowerCAmelCase__ = eta for i, t in enumerate(self.progress_bar(__A ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ = self.scheduler.scale_model_input(__A , __A ) # predict the noise residual lowerCAmelCase__ = self.unet(__A , __A , encoder_hidden_states=__A ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase__ ,lowerCAmelCase__ = noise_pred.chunk(2 ) lowerCAmelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ = self.scheduler.step(__A , __A , __A , **__A ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__A , __A , __A ) lowerCAmelCase__ = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase__ = self.vae.decode(__A ).sample lowerCAmelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase__ = self.numpy_to_pil(__A ) if not return_dict: return image return StableDiffusionPipelineOutput(images=__A , nsfw_content_detected=__A )
211
0
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class lowercase_ ( UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase_ : torch.FloatTensor UpperCAmelCase_ : Optional[torch.FloatTensor] = None def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__=0.9_99 , snake_case__="cosine" , ) -> Any: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ ): return math.exp(t * -12.0 ) else: raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}" ) lowerCAmelCase = [] for i in range(snake_case__ ): lowerCAmelCase = i / num_diffusion_timesteps lowerCAmelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowercase_ ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" UpperCAmelCase_ : str = 1 @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 1000 , __SCREAMING_SNAKE_CASE = 0.0_0_0_1 , __SCREAMING_SNAKE_CASE = 0.0_2 , __SCREAMING_SNAKE_CASE = "linear" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 0 , __SCREAMING_SNAKE_CASE = "epsilon" , __SCREAMING_SNAKE_CASE = 1.0 , **__SCREAMING_SNAKE_CASE , ) ->Optional[Any]: if kwargs.get('''set_alpha_to_one''' , lowerCamelCase__ ) is not None: lowerCAmelCase = ( "The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead." ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCamelCase__ , standard_warn=lowerCamelCase__ ) lowerCAmelCase = kwargs["set_alpha_to_one"] if trained_betas is not None: lowerCAmelCase = torch.tensor(lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": lowerCAmelCase = torch.linspace(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. lowerCAmelCase = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCamelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule lowerCAmelCase = betas_for_alpha_bar(lowerCamelCase__ ) else: raise NotImplementedError(F"{beta_schedule} does is not implemented for {self.__class__}" ) lowerCAmelCase = 1.0 - self.betas lowerCAmelCase = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. lowerCAmelCase = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution lowerCAmelCase = 1.0 # setable values lowerCAmelCase = None lowerCAmelCase = torch.from_numpy(np.arange(0 , lowerCamelCase__ ).copy().astype(np.intaa ) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->Union[str, Any]: return sample def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ) ->str: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:" F" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle" F" maximal {self.config.num_train_timesteps} timesteps." ) lowerCAmelCase = num_inference_steps lowerCAmelCase = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 lowerCAmelCase = (np.arange(0 , lowerCamelCase__ ) * step_ratio).round().copy().astype(np.intaa ) lowerCAmelCase = torch.from_numpy(lowerCamelCase__ ).to(lowerCamelCase__ ) self.timesteps += self.config.steps_offset def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ) ->List[Any]: # 1. get previous step value (=t+1) lowerCAmelCase = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process lowerCAmelCase = self.alphas_cumprod[timestep] lowerCAmelCase = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) lowerCAmelCase = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": lowerCAmelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 lowerCAmelCase = model_output elif self.config.prediction_type == "sample": lowerCAmelCase = model_output lowerCAmelCase = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": lowerCAmelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output lowerCAmelCase = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: lowerCAmelCase = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCAmelCase = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCamelCase__ , pred_original_sample=lowerCamelCase__ ) def __len__( self ) ->Tuple: return self.config.num_train_timesteps
312
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a : Tuple = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def snake_case__ ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ): if attention_mask is None: lowerCAmelCase_: Optional[int] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase_: Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase_: Optional[int] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase_: str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase_: Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.0_2 , ): lowerCAmelCase_: Union[str, Any] = parent lowerCAmelCase_: Tuple = batch_size lowerCAmelCase_: Any = seq_length lowerCAmelCase_: Tuple = is_training lowerCAmelCase_: Optional[int] = use_labels lowerCAmelCase_: List[Any] = vocab_size lowerCAmelCase_: str = hidden_size lowerCAmelCase_: Union[str, Any] = num_hidden_layers lowerCAmelCase_: List[str] = num_attention_heads lowerCAmelCase_: Dict = intermediate_size lowerCAmelCase_: int = hidden_act lowerCAmelCase_: Any = hidden_dropout_prob lowerCAmelCase_: str = attention_probs_dropout_prob lowerCAmelCase_: Union[str, Any] = max_position_embeddings lowerCAmelCase_: Any = eos_token_id lowerCAmelCase_: Union[str, Any] = pad_token_id lowerCAmelCase_: Union[str, Any] = bos_token_id lowerCAmelCase_: Optional[int] = initializer_range def _a ( self ): lowerCAmelCase_: List[str] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase_: int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase_: Optional[Any] = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) lowerCAmelCase_: Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , ) lowerCAmelCase_: Optional[Any] = prepare_blenderbot_inputs_dict(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return config, inputs_dict def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Dict = self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: Optional[Any] = 20 lowerCAmelCase_: int = model_class_name(lowerCamelCase__ ) lowerCAmelCase_: Any = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase_ , lowerCAmelCase_: Optional[int] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase_: List[str] = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Any = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase_: Optional[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_: Optional[Any] = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase_: Optional[int] = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: Any = model.decode(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def _a ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): lowerCAmelCase_: str = 20 lowerCAmelCase_: Union[str, Any] = model_class_name(lowerCamelCase__ ) lowerCAmelCase_: Tuple = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase_ , lowerCAmelCase_: List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase_: int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase_: Any = model.init_cache(decoder_input_ids.shape[0] , lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: List[Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase_: Tuple = model.decode( decoder_input_ids[:, :-1] , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , past_key_values=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase_: Tuple = model.decode( decoder_input_ids[:, -1:] , lowerCamelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCamelCase__ , decoder_position_ids=lowerCamelCase__ , ) lowerCAmelCase_: Union[str, Any] = model.decode(lowerCamelCase__ , lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ ) lowerCAmelCase_: Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE: Optional[Any] = 99 def _a ( self ): lowerCAmelCase_: Optional[int] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase_: Optional[int] = input_ids.shape[0] lowerCAmelCase_: str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: List[Any] = self._get_config_and_data() lowerCAmelCase_: Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase__ ) lowerCAmelCase_: Any = lm_model(input_ids=lowerCamelCase__ ) lowerCAmelCase_: List[str] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase_: Union[str, Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCamelCase__ ) lowerCAmelCase_: str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase_: str = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase_: Any = lm_model(input_ids=lowerCamelCase__ , decoder_input_ids=lowerCamelCase__ ) lowerCAmelCase_: List[str] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_: Tuple = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase_: Optional[Any] = shift_tokens_right(lowerCamelCase__ , 1 , 2 ) lowerCAmelCase_: List[Any] = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() lowerCAmelCase_: Any = np.equal(lowerCamelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowerCamelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: List[Any] = True SCREAMING_SNAKE_CASE: Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) SCREAMING_SNAKE_CASE: Optional[Any] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _a ( self ): lowerCAmelCase_: Optional[int] = FlaxBlenderbotSmallModelTester(self ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_: Dict = self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) lowerCAmelCase_: Union[str, Any] = model_class(lowerCamelCase__ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowerCamelCase__ , attention_mask=lowerCamelCase__ ) with self.subTest("JIT Enabled" ): lowerCAmelCase_: Optional[int] = encode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_: int = encode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def _a ( self ): lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase_: Dict = model_class(lowerCamelCase__ ) lowerCAmelCase_: Optional[int] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCAmelCase_: Any = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowerCamelCase__ , decoder_attention_mask=lowerCamelCase__ , encoder_outputs=lowerCamelCase__ , ) with self.subTest("JIT Enabled" ): lowerCAmelCase_: Dict = decode_jitted(**lowerCamelCase__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase_: Union[str, Any] = decode_jitted(**lowerCamelCase__ ).to_tuple() self.assertEqual(len(lowerCamelCase__ ) , len(lowerCamelCase__ ) ) for jitted_output, output in zip(lowerCamelCase__ , lowerCamelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _a ( self ): for model_class_name in self.all_model_classes: lowerCAmelCase_: Any = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase_: str = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase_: Optional[Any] = model(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ )
613
0
'''simple docstring''' import html from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin from ...utils import is_bsa_available, logging, requires_backends if is_bsa_available(): import bsa from bsa import BeautifulSoup _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Any , **__A : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["""bs4"""] ) super().__init__(**_UpperCAmelCase ) def lowercase__ ( self : Optional[int] , __A : Union[str, Any] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = element if element.name else element.parent for parent in child.parents: # type: bs4.element.Tag lowerCAmelCase__ = parent.find_all(child.name , recursive=_UpperCAmelCase ) xpath_tags.append(child.name ) xpath_subscripts.append( 0 if 1 == len(_UpperCAmelCase ) else next(i for i, s in enumerate(_UpperCAmelCase , 1 ) if s is child ) ) lowerCAmelCase__ = parent xpath_tags.reverse() xpath_subscripts.reverse() return xpath_tags, xpath_subscripts def lowercase__ ( self : Optional[int] , __A : Dict ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = BeautifulSoup(_UpperCAmelCase , """html.parser""" ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = [] for element in html_code.descendants: if type(_UpperCAmelCase ) == bsa.element.NavigableString: if type(element.parent ) != bsa.element.Tag: continue lowerCAmelCase__ = html.unescape(_UpperCAmelCase ).strip() if not text_in_this_tag: continue all_doc_strings.append(_UpperCAmelCase ) lowerCAmelCase__ = self.xpath_soup(_UpperCAmelCase ) stringaxtag_seq.append(_UpperCAmelCase ) stringaxsubs_seq.append(_UpperCAmelCase ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Number of doc strings and xtags does not correspond""" ) if len(_UpperCAmelCase ) != len(_UpperCAmelCase ): raise ValueError("""Number of doc strings and xsubs does not correspond""" ) return all_doc_strings, stringaxtag_seq, stringaxsubs_seq def lowercase__ ( self : Tuple , __A : Union[str, Any] , __A : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = '''''' for tagname, subs in zip(_UpperCAmelCase , _UpperCAmelCase ): xpath += f'''/{tagname}''' if subs != 0: xpath += f'''[{subs}]''' return xpath def __call__( self : Optional[Any] , __A : Any ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = False # Check that strings has a valid type if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase__ = True elif isinstance(_UpperCAmelCase , (list, tuple) ): if len(_UpperCAmelCase ) == 0 or isinstance(html_strings[0] , _UpperCAmelCase ): lowerCAmelCase__ = True if not valid_strings: raise ValueError( """HTML strings must of type `str`, `List[str]` (batch of examples), """ f'''but is of type {type(_UpperCAmelCase )}.''' ) lowerCAmelCase__ = bool(isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(html_strings[0] , _UpperCAmelCase )) ) if not is_batched: lowerCAmelCase__ = [html_strings] # Get nodes + xpaths lowerCAmelCase__ = [] lowerCAmelCase__ = [] for html_string in html_strings: lowerCAmelCase__ = self.get_three_from_single(_UpperCAmelCase ) nodes.append(_UpperCAmelCase ) lowerCAmelCase__ = [] for node, tag_list, sub_list in zip(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase__ = self.construct_xpath(_UpperCAmelCase , _UpperCAmelCase ) xpath_strings.append(_UpperCAmelCase ) xpaths.append(_UpperCAmelCase ) # return as Dict lowerCAmelCase__ = {'''nodes''': nodes, '''xpaths''': xpaths} lowerCAmelCase__ = BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase ) return encoded_inputs
713
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def _lowerCAmelCase( ) -> Generator[int, None, None]: lowerCAmelCase__ = {} lowerCAmelCase__ = 2 while True: lowerCAmelCase__ = factor_map.pop(UpperCAmelCase_ , UpperCAmelCase_ ) if factor: lowerCAmelCase__ = factor + prime while x in factor_map: x += factor lowerCAmelCase__ = factor else: lowerCAmelCase__ = prime yield prime prime += 1 def _lowerCAmelCase( UpperCAmelCase_ : float = 1E10 ) -> int: lowerCAmelCase__ = sieve() lowerCAmelCase__ = 1 while True: lowerCAmelCase__ = next(UpperCAmelCase_ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCAmelCase_ ) n += 2 if __name__ == "__main__": print(solution())
211
0
import copy import random from transformers import CLIPTokenizer class A_ ( __a ): def __init__( self : Tuple , *snake_case__ : Any , **snake_case__ : Tuple ): super().__init__(*snake_case__ , **snake_case__ ) lowercase = {} def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : Any , *snake_case__ : Tuple , **snake_case__ : str ): lowercase = super().add_tokens(snake_case__ , *snake_case__ , **snake_case__ ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" """ `placeholder_token` that is not already in the tokenizer.""" ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Any , *snake_case__ : int , snake_case__ : List[str]=1 , **snake_case__ : str ): lowercase = [] if num_vec_per_token == 1: self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) else: lowercase = [] for i in range(snake_case__ ): lowercase = placeholder_token + F"""_{i}""" self.try_adding_tokens(snake_case__ , *snake_case__ , **snake_case__ ) output.append(snake_case__ ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) lowercase = output def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : int , snake_case__ : int=False , snake_case__ : str=1.0 ): if isinstance(snake_case__ , snake_case__ ): lowercase = [] for i in range(len(snake_case__ ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=snake_case__ ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: lowercase = self.token_map[placeholder_token] lowercase = tokens[: 1 + int(len(snake_case__ ) * prop_tokens_to_load )] if vector_shuffle: lowercase = copy.copy(snake_case__ ) random.shuffle(snake_case__ ) lowercase = text.replace(snake_case__ , """ """.join(snake_case__ ) ) return text def __call__( self : Optional[Any] , snake_case__ : str , *snake_case__ : Any , snake_case__ : Dict=False , snake_case__ : Any=1.0 , **snake_case__ : Any ): return super().__call__( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , snake_case__ : List[Any] , *snake_case__ : Tuple , snake_case__ : Dict=False , snake_case__ : Optional[Any]=1.0 , **snake_case__ : Tuple ): return super().encode( self.replace_placeholder_tokens_in_text( snake_case__ , vector_shuffle=snake_case__ , prop_tokens_to_load=snake_case__ ) , *snake_case__ , **snake_case__ , )
428
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : str =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
428
1
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor lowercase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''adaptor.''' )[-1] lowercase__ = name.split('''.''' ) if items[1].isdigit(): lowercase__ = int(items[1] ) else: lowercase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' lowercase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) lowercase__ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowercase__ = model[0].eval() # load feature extractor lowercase__ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights lowercase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowercase__ = False lowercase__ = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = '''mbart50''' lowercase__ = '''wav2vec2''' lowercase__ = tokenizer.eos_token_id lowercase__ = 25_00_04 lowercase__ = tokenizer.eos_token_id lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_0004, type=int, help='`decoder_start_token_id` of model config') lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
711
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = DownBlockaD # noqa F405 _lowercase : str = '''down''' def lowerCamelCase_ ( self: str ) -> Any: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = ResnetDownsampleBlockaD # noqa F405 _lowercase : Any = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = AttnDownBlockaD # noqa F405 _lowercase : Any = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: List[Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 _lowercase : Dict = '''down''' @property def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Tuple: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = AttnDownEncoderBlockaD # noqa F405 _lowercase : Union[str, Any] = '''down''' @property def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : Dict = '''mid''' def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: List[str] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : int = '''mid''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = UpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = CrossAttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> List[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> Tuple: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = AttnUpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Optional[int] ) -> List[Any]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = SkipUpBlockaD # noqa F405 _lowercase : int = '''up''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[Any] = AttnSkipUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Dict: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpDecoderBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Optional[int] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
429
0
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __a ( A__ , A__ , A__ , A__ ) -> Any: lowerCAmelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, nicht wahr?", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCAmelCase = { "wmt16-en-de-dist-12-1": [28.3, 27.52], "wmt16-en-de-dist-6-1": [27.4, 27.11], "wmt16-en-de-12-1": [26.9, 25.75], } lowerCAmelCase = f"{src_lang}-{tgt_lang}" lowerCAmelCase = f"\n---\nlanguage:\n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt16\n- allenai\nlicense: apache-2.0\ndatasets:\n- wmt16\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.\n\nFor more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).\n\nAll 3 models are available:\n\n* [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1)\n* [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1)\n* [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1)\n\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"allenai/{model_name}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n\n## Training data\n\nPretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).\n\n## Eval results\n\nHere are the BLEU scores:\n\nmodel | fairseq | transformers\n-------|---------|----------\n{model_name} | {scores[model_name][0]} | {scores[model_name][1]}\n\nThe score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs.\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=5\nmkdir -p $DATA_DIR\nsacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt16/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372)\n\n\n### BibTeX entry and citation info\n\n```\n@misc{{kasai2020deep,\n title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},\n author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},\n year={{2020}},\n eprint={{2006.10369}},\n archivePrefix={{arXiv}},\n primaryClass={{cs.CL}}\n}}\n```\n\n" model_card_dir.mkdir(parents=A__ , exist_ok=A__ ) lowerCAmelCase = os.path.join(A__ , "README.md" ) print(f"Generating {path}" ) with open(A__ , "w" , encoding="utf-8" ) as f: f.write(A__ ) # make sure we are under the root of the project lowercase : Optional[Any] = Path(__file__).resolve().parent.parent.parent lowercase : Optional[Any] = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: lowercase : Any = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
649
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowercase : List[Any] = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowerCAmelCase ( UpperCamelCase_ ): """simple docstring""" lowerCAmelCase = ['pixel_values'] def __init__( self : Tuple , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 2_5_5 , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = True , **SCREAMING_SNAKE_CASE : Tuple , ) -> None: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) lowerCAmelCase = size if size is not None else {"shortest_edge": 2_2_4} lowerCAmelCase = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) lowerCAmelCase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} lowerCAmelCase = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE , param_name="crop_size" ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = resample lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase = do_convert_rgb def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BICUBIC , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : Dict , ) -> np.ndarray: """simple docstring""" lowerCAmelCase = get_size_dict(SCREAMING_SNAKE_CASE , default_to_square=SCREAMING_SNAKE_CASE ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCAmelCase = get_resize_output_image_size(SCREAMING_SNAKE_CASE , size=size["shortest_edge"] , default_to_square=SCREAMING_SNAKE_CASE ) return resize(SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Dict[str, int] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : List[Any] , ) -> np.ndarray: """simple docstring""" lowerCAmelCase = get_size_dict(SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(SCREAMING_SNAKE_CASE , size=(size["height"], size["width"]) , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Union[int, float] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : List[Any] , ) -> Optional[int]: """simple docstring""" return rescale(SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE : np.ndarray , SCREAMING_SNAKE_CASE : Union[float, List[float]] , SCREAMING_SNAKE_CASE : Union[float, List[float]] , SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **SCREAMING_SNAKE_CASE : List[str] , ) -> np.ndarray: """simple docstring""" return normalize(SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE , data_format=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE : ImageInput , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Dict[str, int] = None , SCREAMING_SNAKE_CASE : PILImageResampling = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : int = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : float = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , SCREAMING_SNAKE_CASE : bool = None , SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE : Optional[int] , ) -> PIL.Image.Image: """simple docstring""" lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(SCREAMING_SNAKE_CASE , param_name="size" , default_to_square=SCREAMING_SNAKE_CASE ) lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(SCREAMING_SNAKE_CASE , param_name="crop_size" , default_to_square=SCREAMING_SNAKE_CASE ) lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase = make_list_of_images(SCREAMING_SNAKE_CASE ) if not valid_images(SCREAMING_SNAKE_CASE ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase = [convert_to_rgb(SCREAMING_SNAKE_CASE ) for image in images] # All transformations expect numpy arrays. lowerCAmelCase = [to_numpy_array(SCREAMING_SNAKE_CASE ) for image in images] if do_resize: lowerCAmelCase = [self.resize(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , resample=SCREAMING_SNAKE_CASE ) for image in images] if do_center_crop: lowerCAmelCase = [self.center_crop(image=SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: lowerCAmelCase = [self.rescale(image=SCREAMING_SNAKE_CASE , scale=SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: lowerCAmelCase = [self.normalize(image=SCREAMING_SNAKE_CASE , mean=SCREAMING_SNAKE_CASE , std=SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase = [to_channel_dimension_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for image in images] lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=SCREAMING_SNAKE_CASE , tensor_type=SCREAMING_SNAKE_CASE )
649
1
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser __lowercase :str = logging.getLogger(__name__) torch.set_grad_enabled(False) __lowercase :Optional[Any] = "cuda" if torch.cuda.is_available() else "cpu" def UpperCAmelCase ( _lowerCamelCase : str , _lowerCamelCase : str=100 , _lowerCamelCase : str=" " ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = text.split(_lowerCamelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase )] def UpperCAmelCase ( _lowerCamelCase : dict ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = [], [] for title, text in zip(documents["title"] , documents["text"] ): if text is not None: for passage in split_text(_lowerCamelCase ): titles.append(title if title is not None else "" ) texts.append(_lowerCamelCase ) return {"title": titles, "text": texts} def UpperCAmelCase ( _lowerCamelCase : dict , _lowerCamelCase : DPRContextEncoder , _lowerCamelCase : DPRContextEncoderTokenizerFast ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ctx_tokenizer( documents["title"] , documents["text"] , truncation=_lowerCamelCase , padding="longest" , return_tensors="pt" )["input_ids"] SCREAMING_SNAKE_CASE__ : Dict = ctx_encoder(input_ids.to(device=_lowerCamelCase ) , return_dict=_lowerCamelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def UpperCAmelCase ( _lowerCamelCase : "RagExampleArguments" , _lowerCamelCase : "ProcessingArguments" , _lowerCamelCase : "IndexHnswArguments" , ): '''simple docstring''' logger.info("Step 1 - Create the dataset" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way SCREAMING_SNAKE_CASE__ : Dict = load_dataset( "csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words SCREAMING_SNAKE_CASE__ : Tuple = dataset.map(_lowerCamelCase , batched=_lowerCamelCase , num_proc=processing_args.num_proc ) # And compute the embeddings SCREAMING_SNAKE_CASE__ : List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=_lowerCamelCase ) SCREAMING_SNAKE_CASE__ : Any = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) SCREAMING_SNAKE_CASE__ : str = Features( {"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space SCREAMING_SNAKE_CASE__ : List[str] = dataset.map( partial(_lowerCamelCase , ctx_encoder=_lowerCamelCase , ctx_tokenizer=_lowerCamelCase ) , batched=_lowerCamelCase , batch_size=processing_args.batch_size , features=_lowerCamelCase , ) # And finally save your dataset SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" ) dataset.save_to_disk(_lowerCamelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search SCREAMING_SNAKE_CASE__ : Tuple = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("embeddings" , custom_index=_lowerCamelCase ) # And save the index SCREAMING_SNAKE_CASE__ : Dict = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" ) dataset.get_index("embeddings" ).save(_lowerCamelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class _a : """simple docstring""" snake_case_ = field( default=str(Path(lowercase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , ) snake_case_ = field( default=lowercase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , ) snake_case_ = field( default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , ) snake_case_ = field( default="facebook/dpr-ctx_encoder-multiset-base" , metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) } , ) snake_case_ = field( default=str(Path(lowercase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , ) @dataclass class _a : """simple docstring""" snake_case_ = field( default=lowercase__ , metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." } , ) snake_case_ = field( default=16 , metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." } , ) @dataclass class _a : """simple docstring""" snake_case_ = field( default=7_68 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , ) snake_case_ = field( default=1_28 , metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) } , ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) __lowercase :str = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) __lowercase :List[Any] = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: __lowercase :str = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
717
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __lowercase :List[Any] = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def UpperCAmelCase ( _lowerCamelCase : int ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def UpperCAmelCase ( _lowerCamelCase : str ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main SCREAMING_SNAKE_CASE__ : List[str] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowerCamelCase , id=_lowerCamelCase ) def UpperCAmelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Dict ): '''simple docstring''' if exitstatus == 5: SCREAMING_SNAKE_CASE__ : List[str] = 0 # Doctest custom flag to ignore output. __lowercase :Optional[Any] = doctest.register_optionflag("IGNORE_RESULT") __lowercase :Dict = doctest.OutputChecker class _a ( lowercase__ ): """simple docstring""" def A_ ( self : Dict , a : List[str] , a : Dict , a : int ) ->Optional[Any]: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a , a , a ) __lowercase :Any = CustomOutputChecker __lowercase :Any = HfDoctestModule __lowercase :int = HfDocTestParser
26
0
from __future__ import annotations def a ( a ) ->list: '''simple docstring''' if len(a ) == 0: return [] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = min(a ), max(a ) SCREAMING_SNAKE_CASE = int(max_value - min_value ) + 1 SCREAMING_SNAKE_CASE = [[] for _ in range(a )] for i in my_list: buckets[int(i - min_value )].append(a ) return [v for bucket in buckets for v in sorted(a )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
201
from __future__ import annotations from decimal import Decimal from numpy import array def lowercase ( SCREAMING_SNAKE_CASE ) -> list[list[float]]: '''simple docstring''' SCREAMING_SNAKE_CASE_ = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(SCREAMING_SNAKE_CASE ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix SCREAMING_SNAKE_CASE_ = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creates a copy of the matrix with swapped positions of the elements SCREAMING_SNAKE_CASE_ = [[0.0, 0.0], [0.0, 0.0]] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = matrix[1][1], matrix[0][0] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(SCREAMING_SNAKE_CASE ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(SCREAMING_SNAKE_CASE ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule SCREAMING_SNAKE_CASE_ = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('This matrix has no inverse.' ) # Creating cofactor matrix SCREAMING_SNAKE_CASE_ = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] SCREAMING_SNAKE_CASE_ = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) SCREAMING_SNAKE_CASE_ = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) SCREAMING_SNAKE_CASE_ = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) SCREAMING_SNAKE_CASE_ = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): SCREAMING_SNAKE_CASE_ = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix SCREAMING_SNAKE_CASE_ = array(SCREAMING_SNAKE_CASE ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(SCREAMING_SNAKE_CASE ) # Calculate the inverse of the matrix return [[float(d(SCREAMING_SNAKE_CASE ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('Please provide a matrix of size 2x2 or 3x3.' )
205
0
'''simple docstring''' import doctest from collections import deque import numpy as np class UpperCAmelCase : '''simple docstring''' def __init__( self) -> None: """simple docstring""" a_ =[2, 1, 2, -1] a_ =[1, 2, 3, 4] def lowercase_ ( self) -> list[float]: """simple docstring""" a_ =len(self.first_signal) a_ =len(self.second_signal) a_ =max(lowerCAmelCase_ , lowerCAmelCase_) # create a zero matrix of max_length x max_length a_ =[[0] * max_length for i in range(lowerCAmelCase_)] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase_): a_ =deque(self.second_signal) rotated_signal.rotate(lowerCAmelCase_) for j, item in enumerate(lowerCAmelCase_): matrix[i][j] += item # multiply the matrix with the first signal a_ =np.matmul(np.transpose(lowerCAmelCase_) , np.transpose(self.first_signal)) # rounding-off to two decimal places return [round(lowerCAmelCase_ , 2) for i in final_signal] if __name__ == "__main__": doctest.testmod()
41
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
1
'''simple docstring''' import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class A ( __lowerCamelCase ): __UpperCAmelCase : Optional[Any] = (DPMSolverSDEScheduler,) __UpperCAmelCase : int = 10 def __lowerCAmelCase ( self , **snake_case_ ) -> Tuple: _a = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "noise_sampler_seed": 0, } config.update(**_UpperCAmelCase ) return config def __lowerCAmelCase ( self ) -> int: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=_UpperCAmelCase ) def __lowerCAmelCase ( self ) -> int: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=_UpperCAmelCase , beta_end=_UpperCAmelCase ) def __lowerCAmelCase ( self ) -> List[Any]: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_UpperCAmelCase ) def __lowerCAmelCase ( self ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_UpperCAmelCase ) def __lowerCAmelCase ( self ) -> Any: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _a = model(_UpperCAmelCase , _UpperCAmelCase ) _a = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _a = output.prev_sample _a = torch.sum(torch.abs(_UpperCAmelCase ) ) _a = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_821_044_921_875 ) < 1E-2 assert abs(result_mean.item() - 0.2_178_705_964_565_277 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_352_111_816_406 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_906_892_299_652 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __lowerCAmelCase ( self ) -> Tuple: _a = self.scheduler_classes[0] _a = self.get_scheduler_config(prediction_type="v_prediction" ) _a = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps ) _a = self.dummy_model() _a = self.dummy_sample_deter * scheduler.init_noise_sigma _a = sample.to(_UpperCAmelCase ) for i, t in enumerate(scheduler.timesteps ): _a = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _a = model(_UpperCAmelCase , _UpperCAmelCase ) _a = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _a = output.prev_sample _a = torch.sum(torch.abs(_UpperCAmelCase ) ) _a = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_149_200_439_453 ) < 1E-2 assert abs(result_mean.item() - 0.16_226_289_014_816_284 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_663_360_595_703 ) < 1E-2 assert abs(result_mean.item() - 0.16_688_326_001_167_297 ) < 1E-3 else: assert abs(result_sum.item() - 119.8_487_548_828_125 ) < 1E-2 assert abs(result_mean.item() - 0.1_560_530_662_536_621 ) < 1E-3 def __lowerCAmelCase ( self ) -> Dict: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _a = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _a = model(_UpperCAmelCase , _UpperCAmelCase ) _a = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _a = output.prev_sample _a = torch.sum(torch.abs(_UpperCAmelCase ) ) _a = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_957_397_460_938 ) < 1E-2 assert abs(result_mean.item() - 0.21_805_934_607_982_635 ) < 1E-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_353_637_695_312 ) < 1E-2 assert abs(result_mean.item() - 0.22_342_908_382_415_771 ) < 1E-3 else: assert abs(result_sum.item() - 162.52_383_422_851_562 ) < 1E-2 assert abs(result_mean.item() - 0.211_619_570_851_326 ) < 1E-3 def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**_UpperCAmelCase , use_karras_sigmas=_UpperCAmelCase ) scheduler.set_timesteps(self.num_inference_steps , device=_UpperCAmelCase ) _a = self.dummy_model() _a = self.dummy_sample_deter.to(_UpperCAmelCase ) * scheduler.init_noise_sigma _a = sample.to(_UpperCAmelCase ) for t in scheduler.timesteps: _a = scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) _a = model(_UpperCAmelCase , _UpperCAmelCase ) _a = scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _a = output.prev_sample _a = torch.sum(torch.abs(_UpperCAmelCase ) ) _a = torch.mean(torch.abs(_UpperCAmelCase ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_974_135_742_188 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_653_564_453_125 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2 else: assert abs(result_sum.item() - 170.3_135_223_388_672 ) < 1E-2 assert abs(result_mean.item() - 0.23_003_872_730_981_811 ) < 1E-2
131
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = BlenderbotSmallConfig UpperCAmelCase_ = {} UpperCAmelCase_ = "gelu" def __init__( self : Optional[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : Optional[int]=1_3, _UpperCAmelCase : int=7, _UpperCAmelCase : List[Any]=True, _UpperCAmelCase : Union[str, Any]=False, _UpperCAmelCase : str=9_9, _UpperCAmelCase : Union[str, Any]=3_2, _UpperCAmelCase : Any=2, _UpperCAmelCase : Any=4, _UpperCAmelCase : List[Any]=3_7, _UpperCAmelCase : Dict=0.1, _UpperCAmelCase : List[str]=0.1, _UpperCAmelCase : Dict=2_0, _UpperCAmelCase : int=2, _UpperCAmelCase : Union[str, Any]=1, _UpperCAmelCase : List[str]=0, ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = parent SCREAMING_SNAKE_CASE__ : Tuple = batch_size SCREAMING_SNAKE_CASE__ : List[Any] = seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : List[Any] = vocab_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_hidden_layers SCREAMING_SNAKE_CASE__ : Any = num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Tuple = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Tuple = max_position_embeddings SCREAMING_SNAKE_CASE__ : Any = eos_token_id SCREAMING_SNAKE_CASE__ : Optional[int] = pad_token_id SCREAMING_SNAKE_CASE__ : List[Any] = bos_token_id def A_ ( self : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE__ : Dict = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Any = self.config_cls( vocab_size=self.vocab_size, d_model=self.hidden_size, encoder_layers=self.num_hidden_layers, decoder_layers=self.num_hidden_layers, encoder_attention_heads=self.num_attention_heads, decoder_attention_heads=self.num_attention_heads, encoder_ffn_dim=self.intermediate_size, decoder_ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_ids=[2], bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, decoder_start_token_id=self.pad_token_id, **self.config_updates, ) SCREAMING_SNAKE_CASE__ : str = prepare_blenderbot_small_inputs_dict(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) return config, inputs_dict def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = TFBlenderbotSmallModel(config=_UpperCAmelCase ).get_decoder() SCREAMING_SNAKE_CASE__ : Union[str, Any] = inputs_dict["input_ids"] SCREAMING_SNAKE_CASE__ : Optional[Any] = input_ids[:1, :] SCREAMING_SNAKE_CASE__ : Optional[Any] = inputs_dict["attention_mask"][:1, :] SCREAMING_SNAKE_CASE__ : List[str] = inputs_dict["head_mask"] SCREAMING_SNAKE_CASE__ : Tuple = 1 # first forward pass SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, head_mask=_UpperCAmelCase, use_cache=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE__ : Dict = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE__ : int = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE__ : Any = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase )[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(_UpperCAmelCase, attention_mask=_UpperCAmelCase, past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE__ : Tuple = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE__ : Any = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase, _UpperCAmelCase, rtol=1E-3 ) def _a ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE__ : Tuple = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: SCREAMING_SNAKE_CASE__ : List[str] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: SCREAMING_SNAKE_CASE__ : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: SCREAMING_SNAKE_CASE__ : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) UpperCAmelCase_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () UpperCAmelCase_ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) UpperCAmelCase_ = True UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFBlenderbotSmallModelTester(self ) SCREAMING_SNAKE_CASE__ : Optional[int] = ConfigTester(self, config_class=_UpperCAmelCase ) def A_ ( self : Any ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_tokenizers @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] UpperCAmelCase_ = "facebook/blenderbot_small-90M" @cached_property def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def A_ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def A_ ( self : List[str] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer(self.src_text, return_tensors="tf" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.model.generate( model_inputs.input_ids, attention_mask=model_inputs.attention_mask, num_beams=2, use_cache=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_decode(generated_ids.numpy(), skip_special_tokens=_UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
663
0
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase__ = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } UpperCamelCase__ = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def a__ ( lowerCAmelCase__ ) -> str: UpperCAmelCase__ : Optional[int] = list(state_dict.keys() ) for name in state_dict_keys: UpperCAmelCase__ : Optional[int] = state_dict.pop(lowerCAmelCase__ ) # emb -> embedding if name.startswith('''emb.''' ): UpperCAmelCase__ : Any = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): UpperCAmelCase__ : Any = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention UpperCAmelCase__ : Optional[Any] = re.sub(R'''blocks\.(\d+)\.att''' , R'''blocks.\1.attention''' , lowerCAmelCase__ ) # ffn -> feed_forward UpperCAmelCase__ : Optional[Any] = re.sub(R'''blocks\.(\d+)\.ffn''' , R'''blocks.\1.feed_forward''' , lowerCAmelCase__ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): UpperCAmelCase__ : int = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): UpperCAmelCase__ : Any = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): UpperCAmelCase__ : Optional[int] = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": UpperCAmelCase__ : List[str] = '''rwkv.''' + name UpperCAmelCase__ : Dict = weight return state_dict def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , lowerCAmelCase__=None ) -> List[str]: # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) UpperCAmelCase__ : Tuple = 5_02_77 UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: UpperCAmelCase__ : List[Any] = PreTrainedTokenizerFast(tokenizer_file=lowerCAmelCase__ ) UpperCAmelCase__ : List[Any] = len(lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) # 2. Build the config UpperCAmelCase__ : str = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: UpperCAmelCase__ : Dict = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) UpperCAmelCase__ : int = RwkvConfig( vocab_size=lowerCAmelCase__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCAmelCase__ ) # 3. Download model file then convert state_dict UpperCAmelCase__ : str = hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[Any] = torch.load(lowerCAmelCase__ , map_location='''cpu''' ) UpperCAmelCase__ : Optional[int] = convert_state_dict(lowerCAmelCase__ ) # 4. Split in shards and save UpperCAmelCase__ , UpperCAmelCase__ : Dict = shard_checkpoint(lowerCAmelCase__ ) for shard_file, shard in shards.items(): torch.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) if index is not None: UpperCAmelCase__ : Optional[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) # Save the index as well with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase__ : Optional[Any] = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '''\n''' f.write(lowerCAmelCase__ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) UpperCAmelCase__ : Any = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: UpperCAmelCase__ : List[Any] = torch.load(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) UpperCAmelCase__ : int = AutoModelForCausalLM.from_pretrained(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCamelCase__ = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
312
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCamelCase_ ( __a ): lowerCAmelCase__ = 'fnet' def __init__( self : List[str] , _A : Dict=32_000 , _A : Optional[Any]=768 , _A : Tuple=12 , _A : int=3_072 , _A : Union[str, Any]="gelu_new" , _A : int=0.1 , _A : List[Any]=512 , _A : List[str]=4 , _A : Optional[int]=0.0_2 , _A : List[str]=1e-12 , _A : Union[str, Any]=False , _A : Any=512 , _A : int=3 , _A : str=1 , _A : List[str]=2 , **_A : Dict , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) UpperCAmelCase__ : Optional[Any] = vocab_size UpperCAmelCase__ : Union[str, Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : str = intermediate_size UpperCAmelCase__ : str = hidden_act UpperCAmelCase__ : Optional[int] = hidden_dropout_prob UpperCAmelCase__ : Tuple = initializer_range UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : List[str] = layer_norm_eps UpperCAmelCase__ : Tuple = use_tpu_fourier_optimizations UpperCAmelCase__ : Union[str, Any] = tpu_short_seq_length
312
1
"""simple docstring""" import argparse import datetime def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]: '''simple docstring''' lowercase_ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowercase_ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCamelCase__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowercase_ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowercase_ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowercase_ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowercase_ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowercase_ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 85_00: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowercase_ = datetime.date(int(UpperCamelCase__ ) , int(UpperCamelCase__ ) , int(UpperCamelCase__ ) ) # Start math if m <= 2: lowercase_ = y - 1 lowercase_ = m + 12 # maths var lowercase_ = int(str(UpperCamelCase__ )[:2] ) lowercase_ = int(str(UpperCamelCase__ )[2:] ) lowercase_ = int(2.6 * m - 5.39 ) lowercase_ = int(c / 4 ) lowercase_ = int(k / 4 ) lowercase_ = int(d + k ) lowercase_ = int(t + u + v + x ) lowercase_ = int(z - (2 * c) ) lowercase_ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowercase_ = F'''Your date {date_input}, is a {days[str(UpperCamelCase__ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : Optional[Any] = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) UpperCAmelCase : Any = parser.parse_args() zeller(args.date_input)
567
"""simple docstring""" import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _snake_case = get_logger(__name__) class UpperCamelCase ( enum.Enum ): UpperCamelCase : str = '''all_checks''' UpperCamelCase : Any = '''basic_checks''' UpperCamelCase : Union[str, Any] = '''no_checks''' class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ): '''simple docstring''' if expected_checksums is None: logger.info("""Unable to verify checksums.""" ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _a : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] _a : List[str] = """ for """ + verification_name if verification_name is not None else """""" if len(UpperCamelCase__ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" """Set `verification_mode='no_checks'` to skip checksums verification and ignore this error""" ) logger.info("""All the checksums matched successfully""" + for_verification_name ) class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass class UpperCamelCase ( snake_case_ ): pass def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if expected_splits is None: logger.info("""Unable to verify splits sizes.""" ) return if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise ExpectedMoreSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) if len(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) > 0: raise UnexpectedSplits(str(set(UpperCamelCase__ ) - set(UpperCamelCase__ ) ) ) _a : List[Any] = [ {"""expected""": expected_splits[name], """recorded""": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(UpperCamelCase__ ) > 0: raise NonMatchingSplitsSizesError(str(UpperCamelCase__ ) ) logger.info("""All the splits matched successfully.""" ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ = True ): '''simple docstring''' if record_checksum: _a : int = shaaaa() with open(UpperCamelCase__ , """rb""" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B"""""" ): m.update(UpperCamelCase__ ) _a : List[Any] = m.hexdigest() else: _a : Any = None return {"num_bytes": os.path.getsize(UpperCamelCase__ ), "checksum": checksum} def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
389
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class a_ ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = tempfile.mkdtemp() # fmt: off lowerCAmelCase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase__ = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } lowerCAmelCase__ = os.path.join(self.tmpdirname , snake_case__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Dict , **snake_case__ : str ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple , **snake_case__ : Dict ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase__ = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCAmelCase__ = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) lowerCAmelCase__ = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = image_processor(snake_case__ , return_tensors="""np""" ) lowerCAmelCase__ = processor(images=snake_case__ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase__ = """lower newer""" lowerCAmelCase__ = processor(text=snake_case__ ) lowerCAmelCase__ = tokenizer(snake_case__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase__ = """lower newer""" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(snake_case__ ): processor() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ = processor.batch_decode(snake_case__ ) lowerCAmelCase__ = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): lowerCAmelCase__ = self.get_image_processor() lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = VisionTextDualEncoderProcessor(tokenizer=snake_case__ , image_processor=snake_case__ ) lowerCAmelCase__ = """lower newer""" lowerCAmelCase__ = self.prepare_image_inputs() lowerCAmelCase__ = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
705
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = TapasConfig.from_json_file(lowerCamelCase__ ) # set absolute/relative position embeddings parameter lowerCAmelCase__ = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WTQ": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = True # hparam_utils.py hparams lowerCAmelCase__ = 0.66_46_94 lowerCAmelCase__ = 0.20_79_51 lowerCAmelCase__ = 0.12_11_94 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = 0.0_35_25_13 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCAmelCase__ = 4 lowerCAmelCase__ = False # hparam_utils.py hparams lowerCAmelCase__ = 36.45_19 lowerCAmelCase__ = 0.90_34_21 lowerCAmelCase__ = 2_22.0_88 lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = 0.76_31_41 lowerCAmelCase__ = TapasForQuestionAnswering(config=lowerCamelCase__ ) elif task == "TABFACT": lowerCAmelCase__ = TapasForSequenceClassification(config=lowerCamelCase__ ) elif task == "MLM": lowerCAmelCase__ = TapasForMaskedLM(config=lowerCamelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": lowerCAmelCase__ = TapasModel(config=lowerCamelCase__ ) else: raise ValueError(f"""Task {task} not supported.""" ) print(f"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Save pytorch-model (weights and configuration) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase__ ) # Save tokenizer files print(f"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCAmelCase__ = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=512 ) tokenizer.save_pretrained(lowerCamelCase__ ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." ) parser.add_argument( "--reset_position_index_per_cell", default=False, action="store_true", help="Whether to use relative position embeddings or not. Defaults to True.", ) parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--tapas_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained TAPAS model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
674
0