code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def lowerCAmelCase (): """simple docstring""" return [list(range(1_000 - i , -1_000 - i , -1)) for i in range(1_000)] lowercase_ = generate_large_matrix() lowercase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def lowerCAmelCase (__A): """simple docstring""" assert all(row == sorted(__lowercase , reverse=__lowercase) for row in grid) assert all(list(__lowercase) == sorted(__lowercase , reverse=__lowercase) for col in zip(*__lowercase)) def lowerCAmelCase (__A): """simple docstring""" _a = 0 _a = len(__lowercase) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _a = (left + right) // 2 _a = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _a = mid + 1 else: _a = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowercase) def lowerCAmelCase (__A): """simple docstring""" _a = 0 _a = len(grid[0]) for i in range(len(__lowercase)): _a = find_negative_index(grid[i][:bound]) total += bound return (len(__lowercase) * len(grid[0])) - total def lowerCAmelCase (__A): """simple docstring""" return len([number for row in grid for number in row if number < 0]) def lowerCAmelCase (__A): """simple docstring""" _a = 0 for row in grid: for i, number in enumerate(__lowercase): if number < 0: total += len(__lowercase) - i break return total def lowerCAmelCase (): """simple docstring""" from timeit import timeit print('''Running benchmarks''') _a = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _a = timeit(F'''{func}(grid=grid)''' , setup=__lowercase , number=500) print(F'''{func}() took {time:0.4f} seconds''') if __name__ == "__main__": import doctest doctest.testmod() benchmark()
211
'''simple docstring''' import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase_ ( __lowercase : int , __lowercase : Dict , __lowercase : str , __lowercase : Optional[Any] , __lowercase : str ) -> List[str]: '''simple docstring''' _UpperCAmelCase = TapasConfig.from_json_file(__lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_4694 _UpperCAmelCase = 0.20_7951 _UpperCAmelCase = 0.12_1194 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.035_2513 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.4519 _UpperCAmelCase = 0.90_3421 _UpperCAmelCase = 222.088 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_3141 _UpperCAmelCase = TapasForQuestionAnswering(config=__lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=__lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=__lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=__lowercase ) else: raise ValueError(f'Task {task} not supported.' ) print(f'Building PyTorch model from configuration: {config}' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(__lowercase , __lowercase , __lowercase ) # Save pytorch-model (weights and configuration) print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__lowercase ) # Save tokenizer files print(f'Save tokenizer files to {pytorch_dump_path}' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt" , model_max_length=512 ) tokenizer.save_pretrained(__lowercase ) print("Used relative position embeddings:" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __SCREAMING_SNAKE_CASE :List[str] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
22
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(a) , 'Tatoeba directory does not exist.') class UpperCAmelCase_ ( unittest.TestCase): @cached_property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = tempfile.mkdtemp() return TatoebaConverter(save_dir=__a) @slow def snake_case__ ( self): '''simple docstring''' self.resolver.convert_models(["heb-eng"]) @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.resolver.write_model_card("opus-mt-he-en", dry_run=__a) assert mmeta["long_pair"] == "heb-eng"
370
from abc import ABC, abstractmethod from argparse import ArgumentParser class UpperCAmelCase_ ( a): @staticmethod @abstractmethod def snake_case__ ( __a): '''simple docstring''' raise NotImplementedError() @abstractmethod def snake_case__ ( self): '''simple docstring''' raise NotImplementedError()
300
0
import os import string import sys lowercase : Tuple = 1 << 8 lowercase : Dict = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 2_7, """up""": 6_5 + ARROW_KEY_FLAG, """down""": 6_6 + ARROW_KEY_FLAG, """right""": 6_7 + ARROW_KEY_FLAG, """left""": 6_8 + ARROW_KEY_FLAG, """mod_int""": 9_1, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 5_0, """delete""": 5_1, """pg_up""": 5_3, """pg_down""": 5_4, } lowercase : Optional[int] = KEYMAP["""up"""] lowercase : List[str] = KEYMAP["""left"""] if sys.platform == "win32": lowercase : Dict = [] lowercase : Optional[int] = { b"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, b"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, b"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, b"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, b"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(1_0): lowercase : List[str] = ord(str(i)) def A_ ( ) -> int: if os.name == "nt": import msvcrt a__ : Optional[int] = 'mbcs' # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(A__ ) == 0: # Read the keystroke a__ : int = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): a__ : Dict = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: a__ : Optional[Any] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP['mod_int'] ) ) WIN_CH_BUFFER.append(A__ ) if ord(A__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) a__ : List[Any] = chr(KEYMAP['esc'] ) except KeyError: a__ : Tuple = cha[1] else: a__ : Union[str, Any] = ch.decode(A__ ) else: a__ : Any = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty a__ : List[Any] = sys.stdin.fileno() a__ : Any = termios.tcgetattr(A__ ) try: tty.setraw(A__ ) a__ : Optional[int] = sys.stdin.read(1 ) finally: termios.tcsetattr(A__ , termios.TCSADRAIN , A__ ) return ch def A_ ( ) -> List[Any]: a__ : Union[str, Any] = get_raw_chars() if ord(A__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(A__ ) == KEYMAP["esc"]: a__ : Any = get_raw_chars() if ord(A__ ) == KEYMAP["mod_int"]: a__ : Dict = get_raw_chars() if ord(A__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(A__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(A__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
99
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class A__ ( __UpperCAmelCase ): """simple docstring""" def __init__( self , lowercase , lowercase) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules(unet=lowercase , scheduler=lowercase) @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = 100 , lowercase = None , lowercase = None , lowercase = True , ) -> Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: a__ : Optional[int] = self.unet.config.sample_size / self.unet.config.sample_rate a__ : int = audio_length_in_s * self.unet.config.sample_rate a__ : Union[str, Any] = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' F' {3 * down_scale_factor / self.unet.config.sample_rate}.') a__ : str = int(lowercase) if sample_size % down_scale_factor != 0: a__ : List[str] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ' process.') a__ : List[Any] = int(lowercase) a__ : int = next(iter(self.unet.parameters())).dtype a__ : Tuple = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase , lowercase) and len(lowercase) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(lowercase)}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.') a__ : Optional[Any] = randn_tensor(lowercase , generator=lowercase , device=self.device , dtype=lowercase) # set step values self.scheduler.set_timesteps(lowercase , device=audio.device) a__ : Union[str, Any] = self.scheduler.timesteps.to(lowercase) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output a__ : Dict = self.unet(lowercase , lowercase).sample # 2. compute previous image: x_t -> t_t-1 a__ : Any = self.scheduler.step(lowercase , lowercase , lowercase).prev_sample a__ : str = audio.clamp(-1 , 1).float().cpu().numpy() a__ : List[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase)
99
1
import logging from transformers import PretrainedConfig __lowerCamelCase : Dict = logging.getLogger(__name__) __lowerCamelCase : Dict = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class A__ ( __snake_case ): _UpperCAmelCase :str = 'bertabs' def __init__( self , A_=3_0522 , A_=512 , A_=6 , A_=512 , A_=8 , A_=512 , A_=0.2 , A_=6 , A_=768 , A_=8 , A_=2048 , A_=0.2 , **A_ , ): '''simple docstring''' super().__init__(**A_ ) UpperCamelCase : Dict = vocab_size UpperCamelCase : Dict = max_pos UpperCamelCase : str = enc_layers UpperCamelCase : List[Any] = enc_hidden_size UpperCamelCase : Tuple = enc_heads UpperCamelCase : Dict = enc_ff_size UpperCamelCase : int = enc_dropout UpperCamelCase : Tuple = dec_layers UpperCamelCase : Any = dec_hidden_size UpperCamelCase : Optional[int] = dec_heads UpperCamelCase : List[str] = dec_ff_size UpperCamelCase : Optional[int] = dec_dropout
140
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" ) UpperCamelCase : Tuple = AutoTokenizer.from_pretrained("google/mt5-small" ) UpperCamelCase : Dict = tokenizer("Hello there" , return_tensors="tf" ).input_ids UpperCamelCase : int = tokenizer("Hi I am" , return_tensors="tf" ).input_ids UpperCamelCase : Union[str, Any] = model(A_ , labels=A_ ).loss UpperCamelCase : List[str] = -tf.math.reduce_mean(A_ ).numpy() UpperCamelCase : Union[str, Any] = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
140
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __A = logging.get_logger(__name__) # TODO: upload to AWS __A = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class lowerCamelCase__ ( lowerCamelCase_ ): a__ : int = """retribert""" def __init__( self , SCREAMING_SNAKE_CASE=30_522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=8 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3_072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=512 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1E-12 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=128 , SCREAMING_SNAKE_CASE=0 , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) snake_case : List[Any] = vocab_size snake_case : str = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Optional[Any] = hidden_act snake_case : List[Any] = intermediate_size snake_case : Dict = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Tuple = max_position_embeddings snake_case : str = type_vocab_size snake_case : int = initializer_range snake_case : Dict = layer_norm_eps snake_case : Optional[int] = share_encoders snake_case : Optional[Any] = projection_dim
148
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[Any] = """mask2former""" a__ : Union[str, Any] = ["""swin"""] a__ : Dict = {"""hidden_size""": """hidden_dim"""} def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 1_024 , SCREAMING_SNAKE_CASE = "relu" , SCREAMING_SNAKE_CASE = 6 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 2_048 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 255 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 2.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 12_544 , SCREAMING_SNAKE_CASE = 3.0 , SCREAMING_SNAKE_CASE = 0.75 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case : List[str] = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = backbone_config.pop("model_type" ) snake_case : Dict = CONFIG_MAPPING[backbone_model_type] snake_case : Optional[int] = config_class.from_dict(SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case : List[str] = backbone_config snake_case : Optional[int] = feature_size snake_case : Optional[int] = mask_feature_size snake_case : Optional[int] = hidden_dim snake_case : List[str] = encoder_feedforward_dim snake_case : Dict = activation_function snake_case : Optional[Any] = encoder_layers snake_case : Any = decoder_layers snake_case : Optional[int] = num_attention_heads snake_case : List[str] = dropout snake_case : List[Any] = dim_feedforward snake_case : Tuple = pre_norm snake_case : int = enforce_input_projection snake_case : str = common_stride snake_case : List[Any] = ignore_value snake_case : Optional[int] = num_queries snake_case : Optional[int] = no_object_weight snake_case : Dict = class_weight snake_case : Tuple = mask_weight snake_case : Tuple = dice_weight snake_case : Tuple = train_num_points snake_case : int = oversample_ratio snake_case : Dict = importance_sample_ratio snake_case : Tuple = init_std snake_case : Dict = init_xavier_std snake_case : List[Any] = use_auxiliary_loss snake_case : Dict = feature_strides snake_case : List[Any] = output_auxiliary_logits snake_case : Union[str, Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return cls( backbone_config=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = copy.deepcopy(self.__dict__ ) snake_case : str = self.backbone_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
148
1
from sklearn.metrics import mean_squared_error import datasets _UpperCAmelCase : Optional[Any] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" _UpperCAmelCase : Optional[Any] = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" _UpperCAmelCase : Tuple = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def __UpperCamelCase ( self ) -> int: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def __UpperCamelCase ( self , A_ , A_ , A_=None , A_="uniform_average" , A_=True ) -> str: """simple docstring""" UpperCamelCase = mean_squared_error( A_ , A_ , sample_weight=A_ , multioutput=A_ , squared=A_ ) return {"mse": mse}
110
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import UnCLIPImageVariationPipeline, UnCLIPPipeline else: from .pipeline_unclip import UnCLIPPipeline from .pipeline_unclip_image_variation import UnCLIPImageVariationPipeline from .text_proj import UnCLIPTextProjModel
110
1
"""simple docstring""" import torch from diffusers import StableDiffusionPipeline UpperCamelCase_ = 'path-to-your-trained-model' UpperCamelCase_ = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') UpperCamelCase_ = 'A photo of sks dog in a bucket' UpperCamelCase_ = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
243
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } UpperCamelCase_ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models a_ = "lm_head" a_ = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: a_ = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: a_ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": a_ = value elif weight_type == "weight_g": a_ = value elif weight_type == "weight_v": a_ = value elif weight_type == "bias": a_ = value else: a_ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = [] a_ = fairseq_model.state_dict() a_ = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): a_ = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) a_ = True else: for key, mapped_key in MAPPING.items(): a_ = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: a_ = True if "*" in mapped_key: a_ = name.split(UpperCAmelCase )[0].split("." )[-2] a_ = mapped_key.replace("*" , UpperCAmelCase ) if "weight_g" in name: a_ = "weight_g" elif "weight_v" in name: a_ = "weight_v" elif "bias" in name: a_ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj a_ = "weight" else: a_ = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" a_ = full_name.split("conv_layers." )[-1] a_ = name.split("." ) a_ = int(items[0] ) a_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) a_ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True ) ->Tuple: """simple docstring""" if config_path is not None: a_ = UniSpeechConfig.from_pretrained(UpperCAmelCase ) else: a_ = UniSpeechConfig() if is_finetuned: if dict_path: a_ = Dictionary.load_from_json(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a_ = target_dict.pad_index a_ = target_dict.bos_index a_ = target_dict.eos_index a_ = len(target_dict.symbols ) a_ = os.path.join(UpperCAmelCase , "vocab.json" ) if not os.path.isdir(UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) a_ = target_dict.indices # fairseq has the <pad> and <s> switched a_ = 42 a_ = 43 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) a_ = WavaVecaPhonemeCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase , ) a_ = True if config.feat_extract_norm == "layer" else False a_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) a_ = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) a_ = UniSpeechForCTC(UpperCAmelCase ) else: a_ = UniSpeechForPreTraining(UpperCAmelCase ) if is_finetuned: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: a_ , a_ , a_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) a_ = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) hf_unispeech.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase_ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
243
1
"""simple docstring""" import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def _lowercase ( __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Any = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple = emb.weight.shape SCREAMING_SNAKE_CASE__ : str = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = emb.weight.data return lin_layer def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) SCREAMING_SNAKE_CASE__ : str = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] SCREAMING_SNAKE_CASE__ : Dict = mam_aaa['''model'''] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = state_dict['''encoder.embed_tokens.weight'''].shape[0] SCREAMING_SNAKE_CASE__ : Optional[Any] = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE__ , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) SCREAMING_SNAKE_CASE__ : List[str] = state_dict['''decoder.embed_tokens.weight'''] SCREAMING_SNAKE_CASE__ : Optional[int] = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") a :List[Any] = parser.parse_args() a :int = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
366
"""simple docstring""" def _lowercase ( __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Dict = [] SCREAMING_SNAKE_CASE__ : Optional[Any] = [] SCREAMING_SNAKE_CASE__ : int = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator SCREAMING_SNAKE_CASE__ : List[Any] = len(__lowerCAmelCase ) if (len(__lowerCAmelCase ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(__lowerCAmelCase ) , """Postfix""".center(__lowerCAmelCase ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(__lowerCAmelCase ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(__lowerCAmelCase ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(__lowerCAmelCase ) == 0: stack.append(__lowerCAmelCase ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(__lowerCAmelCase ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(__lowerCAmelCase ) # push x to stack print( x.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format while len(__lowerCAmelCase ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , ("""""".join(__lowerCAmelCase )).ljust(__lowerCAmelCase ) , sep=""" | """ , ) # Output in tabular format return "".join(__lowerCAmelCase ) # return Postfix as str def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : List[str] = list(infix[::-1] ) # reverse the infix equation for i in range(len(__lowerCAmelCase ) ): if infix[i] == "(": SCREAMING_SNAKE_CASE__ : Optional[int] = """)""" # change "(" to ")" elif infix[i] == ")": SCREAMING_SNAKE_CASE__ : Optional[Any] = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(__lowerCAmelCase ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a :Optional[int] = input("\nEnter an Infix Equation = ") # Input an Infix equation a :Dict = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
56
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _snake_case ( UpperCAmelCase_ : int = 3 ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise TypeError("""number of qubits must be a integer.""" ) if number_of_qubits <= 0: raise ValueError("""number of qubits must be > 0.""" ) if math.floor(_lowerCAmelCase ) != number_of_qubits: raise ValueError("""number of qubits must be exact integer.""" ) if number_of_qubits > 10: raise ValueError("""number of qubits too large to simulate(>10).""" ) A__ = QuantumRegister(_lowerCAmelCase , """qr""" ) A__ = ClassicalRegister(_lowerCAmelCase , """cr""" ) A__ = QuantumCircuit(_lowerCAmelCase , _lowerCAmelCase ) A__ = number_of_qubits for i in range(_lowerCAmelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_lowerCAmelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _lowerCAmelCase , _lowerCAmelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_lowerCAmelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_lowerCAmelCase , _lowerCAmelCase ) # simulate with 10000 shots A__ = Aer.get_backend("""qasm_simulator""" ) A__ = execute(_lowerCAmelCase , _lowerCAmelCase , shots=1_0000 ) return job.result().get_counts(_lowerCAmelCase ) if __name__ == "__main__": print( f"""Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}""" )
335
import json import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from transformers import OneFormerImageProcessor from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput if is_vision_available(): from PIL import Image def __snake_case ( _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]="shi-labs/oneformer_demo" ) -> int: with open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) as f: A_ : Optional[int] = json.load(_lowerCAmelCase ) A_ : Union[str, Any] = {} A_ : Tuple = [] A_ : Optional[Any] = [] for key, info in class_info.items(): A_ : Tuple = info["name"] class_names.append(info["name"] ) if info["isthing"]: thing_ids.append(int(_lowerCAmelCase ) ) A_ : Optional[Any] = thing_ids A_ : int = class_names return metadata class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :List[Any] , snake_case :List[str] , snake_case :int=7 , snake_case :Optional[int]=3 , snake_case :Union[str, Any]=30 , snake_case :Tuple=400 , snake_case :List[Any]=None , snake_case :Optional[Any]=True , snake_case :Tuple=True , snake_case :Dict=[0.5, 0.5, 0.5] , snake_case :Any=[0.5, 0.5, 0.5] , snake_case :Optional[int]=10 , snake_case :Tuple=False , snake_case :Optional[int]=255 , snake_case :Optional[Any]="shi-labs/oneformer_demo" , snake_case :Optional[Any]="ade20k_panoptic.json" , snake_case :Optional[int]=10 , ): '''simple docstring''' A_ : Tuple = parent A_ : List[str] = batch_size A_ : Optional[int] = num_channels A_ : Tuple = min_resolution A_ : List[Any] = max_resolution A_ : Union[str, Any] = do_resize A_ : Any = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : List[Any] = image_std A_ : Union[str, Any] = class_info_file A_ : List[Any] = prepare_metadata(snake_case , snake_case ) A_ : Tuple = num_text A_ : str = repo_path # for the post_process_functions A_ : Any = 2 A_ : int = 10 A_ : Optional[int] = 10 A_ : Tuple = 3 A_ : Tuple = 4 A_ : str = num_labels A_ : int = do_reduce_labels A_ : List[Any] = ignore_index def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "num_labels": self.num_labels, "do_reduce_labels": self.do_reduce_labels, "ignore_index": self.ignore_index, "class_info_file": self.class_info_file, "metadata": self.metadata, "num_text": self.num_text, } def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Any , snake_case :Any=False ): '''simple docstring''' if not batched: A_ : List[str] = image_inputs[0] if isinstance(snake_case , Image.Image ): A_ , A_ : Dict = image.size else: A_ , A_ : Tuple = image.shape[1], image.shape[2] if w < h: A_ : str = int(self.size["shortest_edge"] * h / w ) A_ : Any = self.size["shortest_edge"] elif w > h: A_ : Optional[int] = self.size["shortest_edge"] A_ : List[str] = int(self.size["shortest_edge"] * w / h ) else: A_ : List[str] = self.size["shortest_edge"] A_ : Optional[Any] = self.size["shortest_edge"] else: A_ : Tuple = [] for image in image_inputs: A_ , A_ : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A_ : Tuple = max(snake_case , key=lambda snake_case : item[0] )[0] A_ : Union[str, Any] = max(snake_case , key=lambda snake_case : item[1] )[1] return expected_height, expected_width def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' return OneFormerForUniversalSegmentationOutput( # +1 for null class class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , ) @require_torch @require_vision class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None # only for test_image_processing_common.test_image_proc_to_json_string __UpperCamelCase = image_processing_class def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Union[str, Any] = OneFormerImageProcessorTester(self ) @property def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.image_processing_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case , "image_mean" ) ) self.assertTrue(hasattr(snake_case , "image_std" ) ) self.assertTrue(hasattr(snake_case , "do_normalize" ) ) self.assertTrue(hasattr(snake_case , "do_resize" ) ) self.assertTrue(hasattr(snake_case , "size" ) ) self.assertTrue(hasattr(snake_case , "ignore_index" ) ) self.assertTrue(hasattr(snake_case , "class_info_file" ) ) self.assertTrue(hasattr(snake_case , "num_text" ) ) self.assertTrue(hasattr(snake_case , "repo_path" ) ) self.assertTrue(hasattr(snake_case , "metadata" ) ) self.assertTrue(hasattr(snake_case , "do_reduce_labels" ) ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :int ): '''simple docstring''' A_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Optional[Any] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image ) # Test not batched input A_ : str = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : str = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Optional[Any] = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , numpify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray ) # Test not batched input A_ : List[str] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : List[str] = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : int = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Optional[Any] = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case , torchify=snake_case ) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor ) # Test not batched input A_ : Any = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case ) self.assertEqual( encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , ) # Test batched A_ , A_ : Tuple = self.image_processing_tester.get_expected_values(snake_case , batched=snake_case ) A_ : Any = image_processor( snake_case , ["semantic"] * len(snake_case ) , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processing_tester.batch_size, self.image_processing_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict=False , snake_case :str=False , snake_case :Dict="np" ): '''simple docstring''' A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # prepare image and target A_ : Tuple = self.image_processing_tester.num_labels A_ : str = None A_ : Tuple = None A_ : Tuple = prepare_image_inputs(self.image_processing_tester , equal_resolution=snake_case ) if with_segmentation_maps: A_ : List[str] = num_labels if is_instance_map: A_ : List[str] = list(range(snake_case ) ) * 2 A_ : int = dict(enumerate(snake_case ) ) A_ : List[str] = [ np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs ] if segmentation_type == "pil": A_ : int = [Image.fromarray(snake_case ) for annotation in annotations] A_ : List[str] = image_processor( snake_case , ["semantic"] * len(snake_case ) , snake_case , return_tensors="pt" , instance_id_to_semantic_id=snake_case , pad_and_return_pixel_mask=snake_case , ) return inputs def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' def common(snake_case :Dict=False , snake_case :Optional[int]=None ): A_ : Tuple = self.comm_get_image_processor_inputs( with_segmentation_maps=snake_case , is_instance_map=snake_case , segmentation_type=snake_case ) A_ : Optional[Any] = inputs["mask_labels"] A_ : List[Any] = inputs["class_labels"] A_ : Optional[Any] = inputs["pixel_values"] A_ : int = inputs["text_inputs"] # check the batch_size for mask_label, class_label, text_input in zip(snake_case , snake_case , snake_case ): self.assertEqual(mask_label.shape[0] , class_label.shape[0] ) # this ensure padding has happened self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] ) self.assertEqual(len(snake_case ) , self.image_processing_tester.num_text ) common() common(is_instance_map=snake_case ) common(is_instance_map=snake_case , segmentation_type="pil" ) common(is_instance_map=snake_case , segmentation_type="pil" ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = np.zeros((20, 50) ) A_ : List[str] = 1 A_ : int = 1 A_ : Optional[Any] = 1 A_ : Any = binary_mask_to_rle(snake_case ) self.assertEqual(len(snake_case ) , 4 ) self.assertEqual(rle[0] , 21 ) self.assertEqual(rle[1] , 45 ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Union[str, Any] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : Any = self.image_processing_tester.get_fake_oneformer_outputs() A_ : int = fature_extractor.post_process_semantic_segmentation(snake_case ) self.assertEqual(len(snake_case ) , self.image_processing_tester.batch_size ) self.assertEqual( segmentation[0].shape , ( self.image_processing_tester.height, self.image_processing_tester.width, ) , ) A_ : Optional[int] = [(1, 4) for i in range(self.image_processing_tester.batch_size )] A_ : List[Any] = fature_extractor.post_process_semantic_segmentation(snake_case , target_sizes=snake_case ) self.assertEqual(segmentation[0].shape , target_sizes[0] ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : str = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_instance_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Tuple = self.image_processing_class( num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , ) A_ : List[Any] = self.image_processing_tester.get_fake_oneformer_outputs() A_ : Optional[Any] = image_processor.post_process_panoptic_segmentation(snake_case , threshold=0 ) self.assertTrue(len(snake_case ) == self.image_processing_tester.batch_size ) for el in segmentation: self.assertTrue("segmentation" in el ) self.assertTrue("segments_info" in el ) self.assertEqual(type(el["segments_info"] ) , snake_case ) self.assertEqual( el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
300
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __lowercase = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase_ ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , *__lowercase , **__lowercase) -> Any: super().__init__(*__lowerCAmelCase , **__lowerCAmelCase) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def UpperCamelCase__ ( self , __lowercase=None) -> Any: __UpperCamelCase :Dict = {} if top_k is not None: __UpperCamelCase :List[str] = top_k return {}, {}, postprocess_params def __call__( self , __lowercase , **__lowercase) -> Any: return super().__call__(__lowerCAmelCase , **__lowerCAmelCase) def UpperCamelCase__ ( self , __lowercase) -> Any: __UpperCamelCase :str = load_image(__lowerCAmelCase) __UpperCamelCase :List[Any] = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework) return model_inputs def UpperCamelCase__ ( self , __lowercase) -> int: __UpperCamelCase :Union[str, Any] = self.model(**__lowerCAmelCase) return model_outputs def UpperCamelCase__ ( self , __lowercase , __lowercase=5) -> Optional[Any]: if top_k > self.model.config.num_labels: __UpperCamelCase :Dict = self.model.config.num_labels if self.framework == "pt": __UpperCamelCase :int = model_outputs.logits.softmax(-1)[0] __UpperCamelCase , __UpperCamelCase :List[str] = probs.topk(__lowerCAmelCase) elif self.framework == "tf": __UpperCamelCase :str = stable_softmax(model_outputs.logits , axis=-1)[0] __UpperCamelCase :Dict = tf.math.top_k(__lowerCAmelCase , k=__lowerCAmelCase) __UpperCamelCase , __UpperCamelCase :str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""") __UpperCamelCase :Optional[int] = scores.tolist() __UpperCamelCase :List[str] = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__lowerCAmelCase , __lowerCAmelCase)]
360
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''EleutherAI/gpt-j-6B''': '''https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json''', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = """gptj""" a__ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , __lowercase=50_400 , __lowercase=2_048 , __lowercase=4_096 , __lowercase=28 , __lowercase=16 , __lowercase=64 , __lowercase=None , __lowercase="gelu_new" , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=1E-5 , __lowercase=0.02 , __lowercase=True , __lowercase=50_256 , __lowercase=50_256 , __lowercase=False , **__lowercase , ) -> Tuple: __UpperCamelCase :Any = vocab_size __UpperCamelCase :Optional[int] = n_positions __UpperCamelCase :Tuple = n_embd __UpperCamelCase :int = n_layer __UpperCamelCase :Any = n_head __UpperCamelCase :Any = n_inner __UpperCamelCase :Dict = rotary_dim __UpperCamelCase :Tuple = activation_function __UpperCamelCase :Optional[Any] = resid_pdrop __UpperCamelCase :Any = embd_pdrop __UpperCamelCase :List[str] = attn_pdrop __UpperCamelCase :str = layer_norm_epsilon __UpperCamelCase :List[Any] = initializer_range __UpperCamelCase :Dict = use_cache __UpperCamelCase :List[Any] = bos_token_id __UpperCamelCase :Tuple = eos_token_id super().__init__( bos_token_id=__lowercase , eos_token_id=__lowercase , tie_word_embeddings=__lowercase , **__lowercase) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self , __lowercase , __lowercase = "default" , __lowercase = None , __lowercase = False , ) -> Any: super().__init__(__lowercase , task=__lowercase , patching_specs=__lowercase , use_past=__lowercase) if not getattr(self._config , '''pad_token_id''' , __lowercase): # TODO: how to do that better? __UpperCamelCase :Tuple = 0 @property def UpperCamelCase__ ( self) -> Mapping[str, Mapping[int, str]]: __UpperCamelCase :Tuple = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}}) if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''') __UpperCamelCase :str = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __UpperCamelCase :Any = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCamelCase__ ( self) -> int: return self._config.n_layer @property def UpperCamelCase__ ( self) -> int: return self._config.n_head def UpperCamelCase__ ( self , __lowercase , __lowercase = -1 , __lowercase = -1 , __lowercase = False , __lowercase = None , ) -> Mapping[str, Any]: __UpperCamelCase :Optional[int] = super(__lowercase , self).generate_dummy_inputs( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase) # We need to order the input in the way they appears in the forward() __UpperCamelCase :int = OrderedDict({'''input_ids''': common_inputs['''input_ids''']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''') else: import torch __UpperCamelCase , __UpperCamelCase :str = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __UpperCamelCase :List[str] = seqlen + 2 __UpperCamelCase :Union[str, Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __UpperCamelCase :Tuple = [ (torch.zeros(__lowercase), torch.zeros(__lowercase)) for _ in range(self.num_layers) ] __UpperCamelCase :Tuple = common_inputs['''attention_mask'''] if self.use_past: __UpperCamelCase :Tuple = ordered_inputs['''attention_mask'''].dtype __UpperCamelCase :Optional[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase)] , dim=1) return ordered_inputs @property def UpperCamelCase__ ( self) -> int: return 13
105
0
import math_equivalence # From: git+https://github.com/hendrycks/math.git import datasets _UpperCAmelCase = """\ @article{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={arXiv preprint arXiv:2103.03874}, year={2021} } """ _UpperCAmelCase = """\ This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset. It first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy. """ _UpperCAmelCase = r""" Calculates accuracy after canonicalizing inputs. Args: predictions: list of predictions to score. Each prediction is a string that contains natural language and LaTex. references: list of reference for each prediction. Each reference is a string that contains natural language and LaTex. Returns: accuracy: accuracy after canonicalizing inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") Examples: >>> metric = datasets.load_metric(\"competition_math\") >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"]) >>> print(results) {'accuracy': 1.0} """ @datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , ) def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" A_ : Union[str, Any] = 0.0 for i, j in zip(lowercase , lowercase ): n_correct += 1.0 if math_equivalence.is_equiv(lowercase , lowercase ) else 0.0 A_ : Optional[Any] = n_correct / len(lowercase ) return { "accuracy": accuracy, }
140
import logging from transformers import PretrainedConfig _UpperCAmelCase = logging.getLogger(__name__) _UpperCAmelCase = { """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''bertabs''' def __init__( self , lowercase=3_0_5_2_2 , lowercase=5_1_2 , lowercase=6 , lowercase=5_1_2 , lowercase=8 , lowercase=5_1_2 , lowercase=0.2 , lowercase=6 , lowercase=7_6_8 , lowercase=8 , lowercase=2_0_4_8 , lowercase=0.2 , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = vocab_size A_ : Union[str, Any] = max_pos A_ : List[str] = enc_layers A_ : Tuple = enc_hidden_size A_ : List[Any] = enc_heads A_ : str = enc_ff_size A_ : Optional[Any] = enc_dropout A_ : Dict = dec_layers A_ : Optional[Any] = dec_hidden_size A_ : int = dec_heads A_ : Any = dec_ff_size A_ : List[str] = dec_dropout
140
1
class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_ , A_ ) -> int: __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =graph self._normalize_graph(A_ , A_ ) __UpperCamelCase =len(A_ ) __UpperCamelCase =None def _a ( self , A_ , A_ ) -> Optional[int]: if sources is int: __UpperCamelCase =[sources] if sinks is int: __UpperCamelCase =[sinks] if len(A_ ) == 0 or len(A_ ) == 0: return __UpperCamelCase =sources[0] __UpperCamelCase =sinks[0] # make fake vertex if there are more # than one source or sink if len(A_ ) > 1 or len(A_ ) > 1: __UpperCamelCase =0 for i in sources: max_input_flow += sum(self.graph[i] ) __UpperCamelCase =len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __UpperCamelCase =max_input_flow __UpperCamelCase =0 __UpperCamelCase =len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __UpperCamelCase =max_input_flow __UpperCamelCase =size - 1 def _a ( self ) -> Optional[Any]: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _a ( self , A_ ) -> Optional[int]: __UpperCamelCase =algorithm(self ) class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> Any: __UpperCamelCase =flow_network __UpperCamelCase =flow_network.verticesCount __UpperCamelCase =flow_network.sourceIndex __UpperCamelCase =flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __UpperCamelCase =flow_network.graph __UpperCamelCase =False def _a ( self ) -> Optional[int]: if not self.executed: self._algorithm() __UpperCamelCase =True def _a ( self ) -> Tuple: pass class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> Optional[int]: super().__init__(A_ ) # use this to save your result __UpperCamelCase =-1 def _a ( self ) -> Optional[Any]: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ ) -> int: super().__init__(A_ ) __UpperCamelCase =[[0] * self.verticies_count for i in range(self.verticies_count )] __UpperCamelCase =[0] * self.verticies_count __UpperCamelCase =[0] * self.verticies_count def _a ( self ) -> Optional[int]: __UpperCamelCase =self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __UpperCamelCase =[ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __UpperCamelCase =0 while i < len(A_ ): __UpperCamelCase =vertices_list[i] __UpperCamelCase =self.heights[vertex_index] self.process_vertex(A_ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(A_ ) ) __UpperCamelCase =0 else: i += 1 __UpperCamelCase =sum(self.preflow[self.source_index] ) def _a ( self , A_ ) -> List[str]: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(A_ , A_ ) self.relabel(A_ ) def _a ( self , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _a ( self , A_ ) -> str: __UpperCamelCase =None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __UpperCamelCase =self.heights[to_index] if min_height is not None: __UpperCamelCase =min_height + 1 if __name__ == "__main__": _A = [0] _A = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] _A = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network _A = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate _A = flow_network.find_maximum_flow() print(f"""maximum flow is {maximum_flow}""")
117
import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor _A = logging.get_logger(__name__) class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , *A_ , **A_ ) -> None: warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
117
1
import os from math import logaa def _a ( SCREAMING_SNAKE_CASE = "base_exp.txt" ): """simple docstring""" lowercase__ = 0 lowercase__ = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) ): lowercase__ , lowercase__ = list(map(SCREAMING_SNAKE_CASE , line.split(''',''' ) ) ) if x * logaa(SCREAMING_SNAKE_CASE ) > largest: lowercase__ = x * logaa(SCREAMING_SNAKE_CASE ) lowercase__ = i + 1 return result if __name__ == "__main__": print(solution())
110
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _a ( unittest.TestCase ): def __init__( self: Dict , UpperCamelCase_: Any , UpperCamelCase_: Dict=7 , UpperCamelCase_: Optional[int]=3 , UpperCamelCase_: List[Any]=18 , UpperCamelCase_: Dict=30 , UpperCamelCase_: Optional[int]=400 , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: List[str]=True , UpperCamelCase_: Dict=None , UpperCamelCase_: Optional[int]=True , UpperCamelCase_: Tuple=[0.5, 0.5, 0.5] , UpperCamelCase_: List[str]=[0.5, 0.5, 0.5] , ) -> int: """simple docstring""" lowercase__ = size if size is not None else {'''shortest_edge''': 18} lowercase__ = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowercase__ = parent lowercase__ = batch_size lowercase__ = num_channels lowercase__ = image_size lowercase__ = min_resolution lowercase__ = max_resolution lowercase__ = do_resize lowercase__ = size lowercase__ = do_center_crop lowercase__ = crop_size lowercase__ = do_normalize lowercase__ = image_mean lowercase__ = image_std def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "do_center_crop": self.do_center_crop, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = LevitImageProcessor if is_vision_available() else None def lowerCamelCase_ ( self: Optional[Any] ) -> List[str]: """simple docstring""" lowercase__ = LevitImageProcessingTester(self ) @property def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowerCamelCase_ ( self: Union[str, Any] ) -> str: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowercase__ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCamelCase_ ( self: List[str] ) -> Dict: """simple docstring""" pass def lowerCamelCase_ ( self: List[str] ) -> int: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCamelCase_ ( self: Any ) -> Optional[Any]: """simple docstring""" lowercase__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input lowercase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowercase__ = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
110
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowerCAmelCase = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } _lowerCAmelCase = { "gpt-neox-20b": 2048, } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Any = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE :Any = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE :Union[str, Any] = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[Any] , a__ : int=None , a__ : Optional[int]=None , a__ : Optional[Any]=None , a__ : Tuple="<|endoftext|>" , a__ : Optional[Any]="<|endoftext|>" , a__ : Any="<|endoftext|>" , a__ : Optional[int]=False , **a__ : Any , ): super().__init__( a__ , a__ , tokenizer_file=a__ , unk_token=a__ , bos_token=a__ , eos_token=a__ , add_prefix_space=a__ , **a__ , ) __magic_name__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , a__ ) != add_prefix_space: __magic_name__ = getattr(a__ , pre_tok_state.pop('''type''' ) ) __magic_name__ = add_prefix_space __magic_name__ = pre_tok_class(**a__ ) __magic_name__ = add_prefix_space def snake_case__ ( self : str , a__ : str , a__ : Optional[str] = None ): __magic_name__ = self._tokenizer.model.save(a__ , name=a__ ) return tuple(a__ ) def snake_case__ ( self : int , a__ : "Conversation" ): __magic_name__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(a__ , add_special_tokens=a__ ) + [self.eos_token_id] ) if len(a__ ) > self.model_max_length: __magic_name__ = input_ids[-self.model_max_length :] return input_ids
352
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def UpperCamelCase ( a , a , a , a=1024 ) -> Union[str, Any]: '''simple docstring''' __magic_name__ , __magic_name__ = [], [] __magic_name__ = list(zip(a , a ) ) __magic_name__ , __magic_name__ = sorted_examples[0] def is_too_big(a ): return tok(a , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): __magic_name__ = new_src + ''' ''' + src __magic_name__ = new_tgt + ''' ''' + tgt if is_too_big(a ) or is_too_big(a ): # cant fit, finalize example finished_src.append(a ) finished_tgt.append(a ) __magic_name__ , __magic_name__ = src, tgt else: # can fit, keep adding __magic_name__ , __magic_name__ = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(a ) finished_tgt.append(a ) return finished_src, finished_tgt def UpperCamelCase ( a , a , a , a ) -> Any: '''simple docstring''' __magic_name__ = Path(a ) save_path.mkdir(exist_ok=a ) for split in ["train"]: __magic_name__ , __magic_name__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' __magic_name__ = [x.rstrip() for x in Path(a ).open().readlines()] __magic_name__ = [x.rstrip() for x in Path(a ).open().readlines()] __magic_name__ , __magic_name__ = pack_examples(a , a , a , a ) print(F'''packed {split} split from {len(a )} examples -> {len(a )}.''' ) Path(save_path / F'''{split}.source''' ).open('''w''' ).write('''\n'''.join(a ) ) Path(save_path / F'''{split}.target''' ).open('''w''' ).write('''\n'''.join(a ) ) for split in ["val", "test"]: __magic_name__ , __magic_name__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target''' shutil.copyfile(a , save_path / F'''{split}.source''' ) shutil.copyfile(a , save_path / F'''{split}.target''' ) def UpperCamelCase ( ) -> List[str]: '''simple docstring''' __magic_name__ = argparse.ArgumentParser() parser.add_argument('''--tok_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' ) parser.add_argument('''--max_seq_len''' , type=a , default=128 ) parser.add_argument('''--data_dir''' , type=a ) parser.add_argument('''--save_path''' , type=a ) __magic_name__ = parser.parse_args() __magic_name__ = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(a , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
98
0
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(lowercase , int(b / 2 ) ) * actual_power(lowercase , int(b / 2 ) ) else: return a * actual_power(lowercase , int(b / 2 ) ) * actual_power(lowercase , int(b / 2 ) ) def _A ( lowercase , lowercase ): """simple docstring""" if b < 0: return 1 / actual_power(lowercase , lowercase ) return actual_power(lowercase , lowercase ) if __name__ == "__main__": print(power(-2, -3))
81
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a : def __init__( self : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Any=13 , lowercase_ : Optional[Any]=7 , lowercase_ : Optional[Any]=True , lowercase_ : Dict=True , lowercase_ : Tuple=False , lowercase_ : Optional[Any]=True , lowercase_ : Any=99 , lowercase_ : Union[str, Any]=64 , lowercase_ : str=5 , lowercase_ : int=4 , lowercase_ : List[Any]=64 , lowercase_ : Dict="gelu" , lowercase_ : Optional[int]=0.1 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Tuple=512 , lowercase_ : List[Any]=16 , lowercase_ : str=2 , lowercase_ : List[str]=0.02 , lowercase_ : Optional[Any]=3 , lowercase_ : Optional[Any]=4 , lowercase_ : List[Any]=None , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope def A_ ( self : List[str] ): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def A_ ( self : str ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self : Tuple ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def A_ ( self : Any , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : Optional[int] ): snake_case_ = MPNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , lowercase_ ) snake_case_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A_ ( self : str , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = MPNetForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self : Tuple , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : str , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Any ): snake_case_ = self.num_labels snake_case_ = MPNetForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self : Any , lowercase_ : Any , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.num_choices snake_case_ = MPNetForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : int , lowercase_ : List[str] ): snake_case_ = self.num_labels snake_case_ = MPNetForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() snake_case_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self : Union[str, Any] ): snake_case_ = self.prepare_config_and_inputs() ((snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_) ,(snake_case_)) = config_and_inputs snake_case_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) snake_case_ = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) snake_case_ = False snake_case_ = True def A_ ( self : Tuple ): snake_case_ = MPNetModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def A_ ( self : Union[str, Any] ): self.config_tester.run_common_tests() def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase_ ) def A_ ( self : List[Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase_ ) def A_ ( self : Union[str, Any] ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase_ ) def A_ ( self : Tuple ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase_ ) @require_torch class a ( unittest.TestCase ): @slow def A_ ( self : List[Any] ): snake_case_ = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) snake_case_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) snake_case_ = model(lowercase_ )[0] snake_case_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase_ ) snake_case_ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
56
0
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Optional[Any]=0.01 , lowercase_ : List[str]=1000): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = p_stop SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length def __iter__( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = 0 SCREAMING_SNAKE_CASE_ : List[str] = False while not stop and count < self.max_length: yield count count += 1 SCREAMING_SNAKE_CASE_ : Any = random.random() < self.p_stop class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : List[str]=False , lowercase_ : Tuple=True): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ BatchSamplerShard(lowercase_ , 2 , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) for i in range(2) ] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [list(lowercase_) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(lowercase_) for shard in batch_sampler_shards] , [len(lowercase_) for e in expected]) self.assertListEqual(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[str] = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : str = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : int = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : str = BatchSampler(range(24) , batch_size=3 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is a round multiple of batch size but not total batch size. SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(21) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Any = BatchSampler(range(22) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : int = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(20) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(2) , batch_size=3 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , even_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = BatchSampler(range(24) , batch_size=4 , drop_last=lowercase_) # Expected shouldn't change self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size. SCREAMING_SNAKE_CASE_ : List[Any] = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(22) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is not a round multiple of batch size or num_processes. SCREAMING_SNAKE_CASE_ : int = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(21) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) # Check the shards when the dataset is very small. SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = [[[0, 1]], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = BatchSampler(range(2) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[], []] self.check_batch_sampler_shards(lowercase_ , lowercase_ , split_batches=lowercase_ , even_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] SCREAMING_SNAKE_CASE_ : Optional[Any] = [BatchSamplerShard(lowercase_ , 2 , lowercase_ , even_batches=lowercase_) for i in range(2)] self.assertEqual(len(batch_sampler_shards[0]) , 3) self.assertEqual(len(batch_sampler_shards[1]) , 2) self.assertListEqual(list(batch_sampler_shards[0]) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]]) self.assertListEqual(list(batch_sampler_shards[1]) , [[3, 4], [9, 10, 11]]) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Dict=False , lowercase_ : Dict=2 , lowercase_ : List[Any]=False): '''simple docstring''' random.seed(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = list(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = [ IterableDatasetShard( lowercase_ , batch_size=lowercase_ , drop_last=lowercase_ , num_processes=lowercase_ , process_index=lowercase_ , split_batches=lowercase_ , ) for i in range(lowercase_) ] SCREAMING_SNAKE_CASE_ : Any = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(lowercase_) iterable_dataset_lists.append(list(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size SCREAMING_SNAKE_CASE_ : int = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(lowercase_) , len(lowercase_)) self.assertTrue(len(lowercase_) % shard_batch_size == 0) SCREAMING_SNAKE_CASE_ : Dict = [] for idx in range(0 , len(lowercase_) , lowercase_): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(lowercase_) < len(lowercase_): reference += reference self.assertListEqual(lowercase_ , reference[: len(lowercase_)]) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = 42 SCREAMING_SNAKE_CASE_ : List[Any] = RandomIterableDataset() self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) # Edge case with a very small dataset SCREAMING_SNAKE_CASE_ : List[str] = RandomIterableDataset(max_length=2) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) self.check_iterable_dataset_shards(lowercase_ , lowercase_ , batch_size=4 , drop_last=lowercase_ , split_batches=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = BatchSampler(range(16) , batch_size=4 , drop_last=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = SkipBatchSampler(lowercase_ , 2) self.assertListEqual(list(lowercase_) , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = SkipDataLoader(list(range(16)) , batch_size=4 , skip_batches=2) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(list(range(16)) , batch_size=4) SCREAMING_SNAKE_CASE_ : str = skip_first_batches(lowercase_ , num_batches=2) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoaderShard(list(range(16)) , batch_size=4) for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' Accelerator() SCREAMING_SNAKE_CASE_ : Dict = DataLoaderDispatcher(range(16) , batch_size=4) for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3) # Test it also works on the second iteration for idx, _ in enumerate(lowercase_): self.assertEqual(dataloader.end_of_dataloader , idx == 3)
318
"""simple docstring""" import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase_ : Union[str, Any] = ["""\nclass""", """\ndef""", """\n#""", """\n@""", """\nprint""", """\nif"""] class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : int=None , lowercase_ : Dict=1): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer SCREAMING_SNAKE_CASE_ : Optional[int] = dataset SCREAMING_SNAKE_CASE_ : Optional[Any] = len(lowercase_) if n_tasks is None else n_tasks SCREAMING_SNAKE_CASE_ : Optional[int] = n_copies def __iter__( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for task in range(self.n_tasks): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip()) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.tokenizer(lowercase_ , padding=lowercase_ , return_tensors='''pt''') for task in range(self.n_tasks): for _ in range(self.n_copies): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = start_length SCREAMING_SNAKE_CASE_ : List[Any] = eof_strings SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer def __call__( self : Optional[int] , lowercase_ : Any , lowercase_ : int , **lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.tokenizer.batch_decode(input_ids[:, self.start_length :]) SCREAMING_SNAKE_CASE_ : Tuple = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings)) return all(lowercase_) def _A (__a ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = re.split('''(%s)''' % '''|'''.join(__a ) , __a ) # last string should be "" return "".join(string_list[:-2] ) def _A (__a , __a , __a , __a , __a , __a=20 , **__a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = defaultdict(__a ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__a ) ): with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Optional[int] = batch['''ids'''].shape[-1] SCREAMING_SNAKE_CASE_ : Tuple = accelerator.unwrap_model(__a ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__a , **__a ) # each task is generated batch_size times SCREAMING_SNAKE_CASE_ : List[Any] = batch['''task_id'''].repeat(__a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.pad_across_processes( __a , dim=1 , pad_index=tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) SCREAMING_SNAKE_CASE_ : int = generated_tokens.cpu().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = generated_tasks.cpu().numpy() for task, generated_tokens in zip(__a , __a ): gen_token_dict[task].append(__a ) SCREAMING_SNAKE_CASE_ : int = [[] for _ in range(__a )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.decode(__a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) code_gens[task].append(remove_last_block(__a ) ) return code_gens def _A () -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = HfArgumentParser(__a ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric SCREAMING_SNAKE_CASE_ : Any = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing SCREAMING_SNAKE_CASE_ : str = '''false''' if args.num_workers is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = multiprocessing.cpu_count() # Use dataset load to feed to accelerate SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() set_seed(args.seed , device_specific=__a ) # Load model and tokenizer SCREAMING_SNAKE_CASE_ : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) SCREAMING_SNAKE_CASE_ : Dict = tokenizer.eos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings SCREAMING_SNAKE_CASE_ : List[str] = { '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __a , __a )] ), } # Load evaluation dataset and metric SCREAMING_SNAKE_CASE_ : Optional[int] = load_dataset('''openai_humaneval''' ) SCREAMING_SNAKE_CASE_ : str = load_metric('''code_eval''' ) SCREAMING_SNAKE_CASE_ : int = args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) SCREAMING_SNAKE_CASE_ : List[str] = args.n_samples // args.batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = TokenizedDataset(__a , human_eval['''test'''] , n_copies=__a , n_tasks=__a ) # do not confuse args.batch_size, which is actually the num_return_sequences SCREAMING_SNAKE_CASE_ : Optional[int] = DataLoader(__a , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: SCREAMING_SNAKE_CASE_ : Any = code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = accelerator.prepare(__a , __a ) SCREAMING_SNAKE_CASE_ : List[Any] = complete_code( __a , __a , __a , __a , n_tasks=__a , batch_size=args.batch_size , **__a , ) if accelerator.is_main_process: SCREAMING_SNAKE_CASE_ : int = [] for task in tqdm(range(__a ) ): SCREAMING_SNAKE_CASE_ : Tuple = human_eval['''test'''][task]['''test'''] SCREAMING_SNAKE_CASE_ : Tuple = f'check({human_eval["test"][task]["entry_point"]})' references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = code_eval_metric.compute( references=__a , predictions=__a , num_workers=args.num_workers ) print(f'Results: {pass_at_k}' ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__a , __a ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
318
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( __snake_case : str ): '''simple docstring''' if "resnet-50" in model_name: UpperCAmelCase_ : Union[str, Any] = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: UpperCAmelCase_ : Dict = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) UpperCAmelCase_ : List[Any] = DetrConfig(use_timm_backbone=__snake_case , backbone_config=__snake_case ) # set label attributes UpperCAmelCase_ : int = 'panoptic' in model_name if is_panoptic: UpperCAmelCase_ : Tuple = 250 else: UpperCAmelCase_ : Tuple = 91 UpperCAmelCase_ : int = 'huggingface/label-files' UpperCAmelCase_ : Optional[int] = 'coco-detection-id2label.json' UpperCAmelCase_ : List[Any] = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) UpperCAmelCase_ : int = {int(__snake_case ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Tuple = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowercase__ ( __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean", ) ) rename_keys.append( ( F"backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var", F"backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"transformer.encoder.layers.{i}.self_attn.out_proj.weight", F"encoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.encoder.layers.{i}.self_attn.out_proj.bias", F"encoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.weight", F"encoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear1.bias", F"encoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.weight", F"encoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.linear2.bias", F"encoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.weight", F"encoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm1.bias", F"encoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.encoder.layers.{i}.norm2.weight", F"encoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.encoder.layers.{i}.norm2.bias", F"encoder.layers.{i}.final_layer_norm.bias") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"transformer.decoder.layers.{i}.self_attn.out_proj.weight", F"decoder.layers.{i}.self_attn.out_proj.weight", ) ) rename_keys.append( (F"transformer.decoder.layers.{i}.self_attn.out_proj.bias", F"decoder.layers.{i}.self_attn.out_proj.bias") ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.weight", F"decoder.layers.{i}.encoder_attn.out_proj.weight", ) ) rename_keys.append( ( F"transformer.decoder.layers.{i}.multihead_attn.out_proj.bias", F"decoder.layers.{i}.encoder_attn.out_proj.bias", ) ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.weight", F"decoder.layers.{i}.fc1.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear1.bias", F"decoder.layers.{i}.fc1.bias") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.weight", F"decoder.layers.{i}.fc2.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.linear2.bias", F"decoder.layers.{i}.fc2.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.weight", F"decoder.layers.{i}.self_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm1.bias", F"decoder.layers.{i}.self_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.weight", F"decoder.layers.{i}.encoder_attn_layer_norm.weight") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm2.bias", F"decoder.layers.{i}.encoder_attn_layer_norm.bias") ) rename_keys.append( (F"transformer.decoder.layers.{i}.norm3.weight", F"decoder.layers.{i}.final_layer_norm.weight") ) rename_keys.append((F"transformer.decoder.layers.{i}.norm3.bias", F"decoder.layers.{i}.final_layer_norm.bias") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def lowercase__ ( __snake_case : List[Any] , __snake_case : Tuple , __snake_case : List[Any] ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = state_dict.pop(__snake_case ) UpperCAmelCase_ : int = val def lowercase__ ( __snake_case : str , __snake_case : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = '' if is_panoptic: UpperCAmelCase_ : str = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCAmelCase_ : List[str] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase_ : Optional[int] = state_dict.pop(F"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[int] = in_proj_weight[:256, :] UpperCAmelCase_ : str = in_proj_bias[:256] UpperCAmelCase_ : Tuple = in_proj_weight[256:512, :] UpperCAmelCase_ : int = in_proj_bias[256:512] UpperCAmelCase_ : Optional[int] = in_proj_weight[-256:, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : List[str] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) UpperCAmelCase_ : Dict = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Any = in_proj_weight[:256, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[:256] UpperCAmelCase_ : List[Any] = in_proj_weight[256:512, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[256:512] UpperCAmelCase_ : List[str] = in_proj_weight[-256:, :] UpperCAmelCase_ : Optional[int] = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCAmelCase_ : Tuple = state_dict.pop( F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) UpperCAmelCase_ : Optional[Any] = state_dict.pop(F"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCAmelCase_ : Optional[Any] = in_proj_weight_cross_attn[:256, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[:256] UpperCAmelCase_ : Any = in_proj_weight_cross_attn[256:512, :] UpperCAmelCase_ : Dict = in_proj_bias_cross_attn[256:512] UpperCAmelCase_ : List[Any] = in_proj_weight_cross_attn[-256:, :] UpperCAmelCase_ : int = in_proj_bias_cross_attn[-256:] def lowercase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCAmelCase_ : str = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def lowercase__ ( __snake_case : str , __snake_case : List[Any]=None , __snake_case : Optional[Any]=False ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = get_detr_config(__snake_case ) # load original model from torch hub UpperCAmelCase_ : Optional[int] = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F"Converting model {model_name}..." ) UpperCAmelCase_ : Tuple = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=__snake_case ).eval() UpperCAmelCase_ : Any = detr.state_dict() # rename keys for src, dest in create_rename_keys(__snake_case ): if is_panoptic: UpperCAmelCase_ : int = 'detr.' + src rename_key(__snake_case , __snake_case , __snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case , is_panoptic=__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCAmelCase_ : str = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): UpperCAmelCase_ : List[Any] = state_dict.pop(__snake_case ) UpperCAmelCase_ : Dict = val elif "class_labels_classifier" in key or "bbox_predictor" in key: UpperCAmelCase_ : Optional[int] = state_dict.pop(__snake_case ) UpperCAmelCase_ : Union[str, Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: UpperCAmelCase_ : List[Any] = state_dict.pop(__snake_case ) UpperCAmelCase_ : Union[str, Any] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCAmelCase_ : Dict = state_dict.pop(__snake_case ) UpperCAmelCase_ : Union[str, Any] = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ : List[Any] = DetrForSegmentation(__snake_case ) if is_panoptic else DetrForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify our conversion on an image UpperCAmelCase_ : int = 'coco_panoptic' if is_panoptic else 'coco_detection' UpperCAmelCase_ : Dict = DetrImageProcessor(format=__snake_case ) UpperCAmelCase_ : Any = processor(images=prepare_img() , return_tensors='pt' ) UpperCAmelCase_ : Optional[int] = encoding['pixel_values'] UpperCAmelCase_ : int = detr(__snake_case ) UpperCAmelCase_ : Any = model(__snake_case ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F"nielsr/{model_name}" ) processor.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') __UpperCAmelCase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
29
"""simple docstring""" from decimal import Decimal, getcontext from math import ceil, factorial def _SCREAMING_SNAKE_CASE ( _lowercase : int ) ->str: '''simple docstring''' if not isinstance(_lowercase , _lowercase ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) a : Tuple = precision a : str = ceil(precision / 14 ) a : List[Any] = 42_6880 * Decimal(1_0005 ).sqrt() a : Union[str, Any] = 1 a : Dict = 1359_1409 a : Optional[int] = Decimal(_lowercase ) for k in range(1 , _lowercase ): a : int = factorial(6 * k ) // (factorial(3 * k ) * factorial(_lowercase ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a : Optional[Any] = 50 print(F'''The first {n} digits of pi is: {pi(n)}''')
105
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging _a : List[Any]= { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def __UpperCAmelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]=None ) -> str: '''simple docstring''' __snake_case : Optional[int] = XLNetConfig.from_json_file(UpperCAmelCase_ ) __snake_case : Dict = finetuning_task.lower() if finetuning_task is not None else '' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F"Building PyTorch XLNetForSequenceClassification model from configuration: {config}" ) __snake_case : Optional[int] = finetuning_task __snake_case : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] __snake_case : Tuple = XLNetForSequenceClassification(UpperCAmelCase_ ) elif "squad" in finetuning_task: __snake_case : List[str] = finetuning_task __snake_case : Any = XLNetForQuestionAnswering(UpperCAmelCase_ ) else: __snake_case : Optional[Any] = XLNetLMHeadModel(UpperCAmelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # Save pytorch-model __snake_case : List[Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) __snake_case : str = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) print(F"Save PyTorch model to {os.path.abspath(UpperCAmelCase_ )}" ) torch.save(model.state_dict() , UpperCAmelCase_ ) print(F"Save configuration file to {os.path.abspath(UpperCAmelCase_ )}" ) with open(UpperCAmelCase_ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _a : Any= argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) _a : Any= parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
350
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCamelCase ( lowercase ): def _lowercase (self : Any) -> List[Any]: __snake_case : Any = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(_A , 'hidden_sizes')) self.parent.assertTrue(hasattr(_A , 'num_attention_heads')) self.parent.assertTrue(hasattr(_A , 'num_encoder_blocks')) class UpperCamelCase : def __init__(self : Optional[int] , _A : Any , _A : str=13 , _A : List[str]=64 , _A : List[Any]=3 , _A : Any=4 , _A : List[str]=[2, 2, 2, 2] , _A : Tuple=[8, 4, 2, 1] , _A : List[str]=[16, 32, 64, 1_28] , _A : int=[1, 4, 8, 16] , _A : List[str]=[1, 2, 4, 8] , _A : Dict=True , _A : Any=True , _A : List[str]="gelu" , _A : Optional[int]=0.1 , _A : Union[str, Any]=0.1 , _A : List[Any]=0.02 , _A : str=3 , _A : int=None , ) -> List[Any]: __snake_case : int = parent __snake_case : List[Any] = batch_size __snake_case : Optional[int] = image_size __snake_case : List[str] = num_channels __snake_case : Any = num_encoder_blocks __snake_case : Dict = sr_ratios __snake_case : Any = depths __snake_case : Tuple = hidden_sizes __snake_case : Tuple = downsampling_rates __snake_case : Union[str, Any] = num_attention_heads __snake_case : Optional[int] = is_training __snake_case : Any = use_labels __snake_case : List[Any] = hidden_act __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Tuple = attention_probs_dropout_prob __snake_case : List[Any] = initializer_range __snake_case : Union[str, Any] = num_labels __snake_case : Dict = scope def _lowercase (self : List[Any]) -> Tuple: __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) __snake_case : str = None if self.use_labels: __snake_case : Optional[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) __snake_case : Dict = self.get_config() return config, pixel_values, labels def _lowercase (self : Any) -> Optional[int]: return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase (self : List[str] , _A : Union[str, Any] , _A : List[Any] , _A : Union[str, Any]) -> int: __snake_case : Union[str, Any] = SegformerModel(config=_A) model.to(_A) model.eval() __snake_case : str = model(_A) __snake_case : List[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _lowercase (self : Tuple , _A : Dict , _A : Any , _A : int) -> str: __snake_case : Any = self.num_labels __snake_case : List[str] = SegformerForSemanticSegmentation(_A) model.to(_A) model.eval() __snake_case : Dict = model(_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) __snake_case : Dict = model(_A , labels=_A) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _lowercase (self : Optional[Any] , _A : Dict , _A : Optional[int] , _A : str) -> List[Any]: __snake_case : List[Any] = 1 __snake_case : str = SegformerForSemanticSegmentation(config=_A) model.to(_A) model.eval() __snake_case : Any = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(_A) __snake_case : Any = model(_A , labels=_A) self.parent.assertGreater(result.loss , 0.0) def _lowercase (self : Any) -> Optional[int]: __snake_case : Optional[Any] = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : str = config_and_inputs __snake_case : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCamelCase ( lowercase , lowercase , unittest.TestCase ): UpperCAmelCase : List[str] = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) UpperCAmelCase : Dict = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : List[Any] = False def _lowercase (self : str) -> Union[str, Any]: __snake_case : Optional[int] = SegformerModelTester(self) __snake_case : Any = SegformerConfigTester(self , config_class=_A) def _lowercase (self : List[str]) -> Optional[int]: self.config_tester.run_common_tests() def _lowercase (self : List[Any]) -> List[str]: __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A) def _lowercase (self : Optional[int]) -> str: __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*_A) def _lowercase (self : int) -> Union[str, Any]: __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*_A) @unittest.skip('SegFormer does not use inputs_embeds') def _lowercase (self : Union[str, Any]) -> str: pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def _lowercase (self : int) -> str: pass def _lowercase (self : List[str]) -> Any: __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_A) __snake_case : str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : List[str] = [*signature.parameters.keys()] __snake_case : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A) def _lowercase (self : List[str]) -> List[Any]: __snake_case , __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[int] = True for model_class in self.all_model_classes: __snake_case : Union[str, Any] = True __snake_case : List[str] = False __snake_case : Tuple = True __snake_case : int = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : int = model(**self._prepare_for_class(_A , _A)) __snake_case : Union[str, Any] = outputs.attentions __snake_case : int = sum(self.model_tester.depths) self.assertEqual(len(_A) , _A) # check that output_attentions also work using config del inputs_dict["output_attentions"] __snake_case : int = True __snake_case : Union[str, Any] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : List[str] = model(**self._prepare_for_class(_A , _A)) __snake_case : Optional[int] = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) __snake_case : Optional[int] = (self.model_tester.image_size // 4) ** 2 __snake_case : Tuple = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) __snake_case : int = (self.model_tester.image_size // 32) ** 2 __snake_case : Any = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) __snake_case : int = len(_A) # Check attention is always last and order is fine __snake_case : Any = True __snake_case : Tuple = True __snake_case : Optional[Any] = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Any = model(**self._prepare_for_class(_A , _A)) self.assertEqual(out_len + 1 , len(_A)) __snake_case : List[Any] = outputs.attentions self.assertEqual(len(_A) , _A) # verify the first attentions (first block, first layer) __snake_case : Any = (self.model_tester.image_size // 4) ** 2 __snake_case : List[Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _lowercase (self : str) -> List[str]: def check_hidden_states_output(_A : Union[str, Any] , _A : List[str] , _A : Tuple): __snake_case : Tuple = model_class(_A) model.to(_A) model.eval() with torch.no_grad(): __snake_case : Optional[int] = model(**self._prepare_for_class(_A , _A)) __snake_case : List[str] = outputs.hidden_states __snake_case : Tuple = self.model_tester.num_encoder_blocks self.assertEqual(len(_A) , _A) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = True check_hidden_states_output(_A , _A , _A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : Any = True check_hidden_states_output(_A , _A , _A) def _lowercase (self : Optional[int]) -> int: if not self.model_tester.is_training: return __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : int = True for model_class in self.all_model_classes: if model_class in get_values(_A): continue __snake_case : Tuple = model_class(_A) model.to(_A) model.train() __snake_case : str = self._prepare_for_class(_A , _A , return_labels=_A) __snake_case : Dict = model(**_A).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def _lowercase (self : Tuple) -> Dict: pass @slow def _lowercase (self : Any) -> List[str]: for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = SegformerModel.from_pretrained(_A) self.assertIsNotNone(_A) def __UpperCAmelCase ( ) -> Union[str, Any]: '''simple docstring''' __snake_case : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCamelCase ( unittest.TestCase ): @slow def _lowercase (self : Union[str, Any]) -> Any: # only resize + normalize __snake_case : List[str] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : Tuple = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( _A) __snake_case : Optional[Any] = prepare_img() __snake_case : Tuple = image_processor(images=_A , return_tensors='pt') __snake_case : List[str] = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Any = model(_A) __snake_case : Optional[int] = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , _A) __snake_case : Tuple = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1E-4)) @slow def _lowercase (self : Any) -> Optional[int]: # only resize + normalize __snake_case : int = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : Tuple = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(_A) __snake_case : str = prepare_img() __snake_case : Union[str, Any] = image_processor(images=_A , return_tensors='pt') __snake_case : str = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Any = model(_A) __snake_case : Any = torch.Size((1, model.config.num_labels, 1_28, 1_28)) self.assertEqual(outputs.logits.shape , _A) __snake_case : List[Any] = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(_A) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , _A , atol=1E-1)) @slow def _lowercase (self : Optional[int]) -> Union[str, Any]: # only resize + normalize __snake_case : List[Any] = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_A , align=_A , do_random_crop=_A) __snake_case : Optional[Any] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( _A) __snake_case : Optional[Any] = prepare_img() __snake_case : Optional[Any] = image_processor(images=_A , return_tensors='pt') __snake_case : Union[str, Any] = encoded_inputs.pixel_values.to(_A) with torch.no_grad(): __snake_case : Any = model(_A) __snake_case : Optional[Any] = outputs.logits.detach().cpu() __snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=_A , target_sizes=[(5_00, 3_00)]) __snake_case : Any = torch.Size((5_00, 3_00)) self.assertEqual(segmentation[0].shape , _A) __snake_case : Any = image_processor.post_process_semantic_segmentation(outputs=_A) __snake_case : str = torch.Size((1_28, 1_28)) self.assertEqual(segmentation[0].shape , _A)
95
0
def _a ( lowerCamelCase: list ) -> list: '''simple docstring''' if any(not isinstance(lowerCamelCase , lowerCamelCase ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(lowerCamelCase ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCamelCase , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
117
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": snake_case__ : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') snake_case__ : Optional[int] = parser.parse_args() if args.model_type == "bert": snake_case__ : Dict = BertForMaskedLM.from_pretrained(args.model_name) snake_case__ : Union[str, Any] = 'bert' else: raise ValueError('args.model_type should be "bert".') snake_case__ : Optional[int] = model.state_dict() snake_case__ : List[Any] = {} for w in ["word_embeddings", "position_embeddings"]: snake_case__ : Tuple = state_dict[f'{prefix}.embeddings.{w}.weight'] for w in ["weight", "bias"]: snake_case__ : Optional[Any] = state_dict[f'{prefix}.embeddings.LayerNorm.{w}'] snake_case__ : int = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: snake_case__ : Union[str, Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}' ] snake_case__ : Dict = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}' ] snake_case__ : Optional[int] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}' ] snake_case__ : Optional[Any] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}' ] snake_case__ : List[str] = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}' ] snake_case__ : int = state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}' ] std_idx += 1 snake_case__ : Optional[int] = state_dict['cls.predictions.decoder.weight'] snake_case__ : str = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: snake_case__ : int = state_dict[f'cls.predictions.transform.dense.{w}'] snake_case__ : Optional[int] = state_dict[f'cls.predictions.transform.LayerNorm.{w}'] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
117
1
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 SCREAMING_SNAKE_CASE :str = sys.version_info >= (3, 10) def UpperCAmelCase ( a_=None , a_=None ) -> Union[str, Any]: """simple docstring""" return field(default_factory=lambda: default , metadata=__SCREAMING_SNAKE_CASE ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 snake_case_ = 42 @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = field(default="toto" , metadata={"help": "help message"} ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = False snake_case_ = True snake_case_ = None class UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case_ = "titi" snake_case_ = "toto" class UpperCAmelCase ( __UpperCamelCase ): '''simple docstring''' snake_case_ = "titi" snake_case_ = "toto" snake_case_ = 42 @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = "toto" def UpperCamelCase_ ( self : Any ): __A = BasicEnum(self.foo ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = "toto" def UpperCamelCase_ ( self : Optional[Any] ): __A = MixedTypeEnum(self.foo ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = None snake_case_ = field(default=__UpperCamelCase , metadata={"help": "help message"} ) snake_case_ = None snake_case_ = list_field(default=[] ) snake_case_ = list_field(default=[] ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = list_field(default=[] ) snake_case_ = list_field(default=[1, 2, 3] ) snake_case_ = list_field(default=["Hallo", "Bonjour", "Hello"] ) snake_case_ = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = field() snake_case_ = field() snake_case_ = field() def UpperCamelCase_ ( self : Optional[Any] ): __A = BasicEnum(self.required_enum ) @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = 42 snake_case_ = field() snake_case_ = None snake_case_ = field(default="toto" , metadata={"help": "help message"} ) snake_case_ = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = False snake_case_ = True snake_case_ = None @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = None snake_case_ = field(default=__UpperCamelCase , metadata={"help": "help message"} ) snake_case_ = None snake_case_ = list_field(default=[] ) snake_case_ = list_field(default=[] ) class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict ,A : argparse.ArgumentParser ,A : argparse.ArgumentParser ): self.assertEqual(len(a._actions ) ,len(b._actions ) ) for x, y in zip(a._actions ,b._actions ): __A = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""} __A = {k: v for k, v in vars(_lowerCAmelCase ).items() if k != """container"""} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get("choices" ,_lowerCAmelCase ) and yy.get("choices" ,_lowerCAmelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx["type"](_lowerCAmelCase ) ,yy["type"](_lowerCAmelCase ) ) del xx["type"], yy["type"] self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Dict ): __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument("--foo" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ) expected.add_argument("--bar" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ) expected.add_argument("--baz" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ) expected.add_argument("--flag" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ,const=_lowerCAmelCase ,nargs="?" ) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) __A = ["""--foo""", """1""", """--baz""", """quux""", """--bar""", """0.5"""] (__A ) = parser.parse_args_into_dataclasses(_lowerCAmelCase ,look_for_args_file=_lowerCAmelCase ) self.assertFalse(example.flag ) def UpperCamelCase_ ( self : List[str] ): __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument("--foo" ,default=42 ,type=_lowerCAmelCase ) expected.add_argument("--baz" ,default="toto" ,type=_lowerCAmelCase ,help="help message" ) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Optional[Any] ): __A = argparse.ArgumentParser() expected.add_argument("--foo" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ,const=_lowerCAmelCase ,nargs="?" ) expected.add_argument("--baz" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ,const=_lowerCAmelCase ,nargs="?" ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument("--no_baz" ,action="store_false" ,default=_lowerCAmelCase ,dest="baz" ) expected.add_argument("--opt" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ) __A = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCAmelCase ) for dataclass_type in dataclass_types: __A = HfArgumentParser(_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_args([] ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=_lowerCAmelCase ,baz=_lowerCAmelCase ,opt=_lowerCAmelCase ) ) __A = parser.parse_args(["--foo", "--no_baz"] ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=_lowerCAmelCase ,baz=_lowerCAmelCase ,opt=_lowerCAmelCase ) ) __A = parser.parse_args(["--foo", "--baz"] ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=_lowerCAmelCase ,baz=_lowerCAmelCase ,opt=_lowerCAmelCase ) ) __A = parser.parse_args(["--foo", "True", "--baz", "True", "--opt", "True"] ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=_lowerCAmelCase ,baz=_lowerCAmelCase ,opt=_lowerCAmelCase ) ) __A = parser.parse_args(["--foo", "False", "--baz", "False", "--opt", "False"] ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=_lowerCAmelCase ,baz=_lowerCAmelCase ,opt=_lowerCAmelCase ) ) def UpperCamelCase_ ( self : List[str] ): __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument( "--foo" ,default="toto" ,choices=["titi", "toto", 42] ,type=make_choice_type_function(["titi", "toto", 42] ) ,) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_args([] ) self.assertEqual(args.foo ,"toto" ) __A = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.toto ) __A = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo ,"titi" ) __A = parser.parse_args_into_dataclasses(["--foo", "titi"] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.titi ) __A = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo ,42 ) __A = parser.parse_args_into_dataclasses(["--foo", "42"] )[0] self.assertEqual(enum_ex.foo ,MixedTypeEnum.fourtytwo ) def UpperCamelCase_ ( self : Dict ): @dataclass class UpperCAmelCase : '''simple docstring''' snake_case_ = "toto" __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument( "--foo" ,default="toto" ,choices=("titi", "toto", 42) ,type=make_choice_type_function(["titi", "toto", 42] ) ,) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_args([] ) self.assertEqual(args.foo ,"toto" ) __A = parser.parse_args(["--foo", "titi"] ) self.assertEqual(args.foo ,"titi" ) __A = parser.parse_args(["--foo", "42"] ) self.assertEqual(args.foo ,42 ) def UpperCamelCase_ ( self : Dict ): __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument("--foo_int" ,nargs="+" ,default=[] ,type=_lowerCAmelCase ) expected.add_argument("--bar_int" ,nargs="+" ,default=[1, 2, 3] ,type=_lowerCAmelCase ) expected.add_argument("--foo_str" ,nargs="+" ,default=["Hallo", "Bonjour", "Hello"] ,type=_lowerCAmelCase ) expected.add_argument("--foo_float" ,nargs="+" ,default=[0.1, 0.2, 0.3] ,type=_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_args([] ) self.assertEqual( _lowerCAmelCase ,Namespace(foo_int=[] ,bar_int=[1, 2, 3] ,foo_str=["Hallo", "Bonjour", "Hello"] ,foo_float=[0.1, 0.2, 0.3] ) ,) __A = parser.parse_args("--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7".split() ) self.assertEqual(_lowerCAmelCase ,Namespace(foo_int=[1] ,bar_int=[2, 3] ,foo_str=["a", "b", "c"] ,foo_float=[0.1, 0.7] ) ) def UpperCamelCase_ ( self : str ): __A = argparse.ArgumentParser() expected.add_argument("--foo" ,default=_lowerCAmelCase ,type=_lowerCAmelCase ) expected.add_argument("--bar" ,default=_lowerCAmelCase ,type=_lowerCAmelCase ,help="help message" ) expected.add_argument("--baz" ,default=_lowerCAmelCase ,type=_lowerCAmelCase ) expected.add_argument("--ces" ,nargs="+" ,default=[] ,type=_lowerCAmelCase ) expected.add_argument("--des" ,nargs="+" ,default=[] ,type=_lowerCAmelCase ) __A = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_lowerCAmelCase ) for dataclass_type in dataclass_types: __A = HfArgumentParser(_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_args([] ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=_lowerCAmelCase ,bar=_lowerCAmelCase ,baz=_lowerCAmelCase ,ces=[] ,des=[] ) ) __A = parser.parse_args("--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3".split() ) self.assertEqual(_lowerCAmelCase ,Namespace(foo=12 ,bar=3.14 ,baz="42" ,ces=["a", "b", "c"] ,des=[1, 2, 3] ) ) def UpperCamelCase_ ( self : Union[str, Any] ): __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument("--required_list" ,nargs="+" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ) expected.add_argument("--required_str" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ) expected.add_argument( "--required_enum" ,type=make_choice_type_function(["titi", "toto"] ) ,choices=["titi", "toto"] ,required=_lowerCAmelCase ,) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : str ): __A = HfArgumentParser(_lowerCAmelCase ) __A = argparse.ArgumentParser() expected.add_argument("--foo" ,type=_lowerCAmelCase ,required=_lowerCAmelCase ) expected.add_argument( "--required_enum" ,type=make_choice_type_function(["titi", "toto"] ) ,choices=["titi", "toto"] ,required=_lowerCAmelCase ,) expected.add_argument("--opt" ,type=_lowerCAmelCase ,default=_lowerCAmelCase ) expected.add_argument("--baz" ,default="toto" ,type=_lowerCAmelCase ,help="help message" ) expected.add_argument("--foo_str" ,nargs="+" ,default=["Hallo", "Bonjour", "Hello"] ,type=_lowerCAmelCase ) self.argparsersEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Optional[int] ): __A = HfArgumentParser(_lowerCAmelCase ) __A = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } __A = parser.parse_dict(_lowerCAmelCase )[0] __A = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Optional[int] ): __A = HfArgumentParser(_lowerCAmelCase ) __A = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, """extra""": 42, } self.assertRaises(_lowerCAmelCase ,parser.parse_dict ,_lowerCAmelCase ,allow_extra_keys=_lowerCAmelCase ) def UpperCamelCase_ ( self : Any ): __A = HfArgumentParser(_lowerCAmelCase ) __A = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(_lowerCAmelCase ,"temp_json" ) os.mkdir(_lowerCAmelCase ) with open(temp_local_path + ".json" ,"w+" ) as f: json.dump(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_yaml_file(Path(temp_local_path + ".json" ) )[0] __A = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Tuple ): __A = HfArgumentParser(_lowerCAmelCase ) __A = { """foo""": 12, """bar""": 3.14, """baz""": """42""", """flag""": True, } with tempfile.TemporaryDirectory() as tmp_dir: __A = os.path.join(_lowerCAmelCase ,"temp_yaml" ) os.mkdir(_lowerCAmelCase ) with open(temp_local_path + ".yaml" ,"w+" ) as f: yaml.dump(_lowerCAmelCase ,_lowerCAmelCase ) __A = parser.parse_yaml_file(Path(temp_local_path + ".yaml" ) )[0] __A = BasicExample(**_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Tuple ): __A = HfArgumentParser(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase )
370
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split SCREAMING_SNAKE_CASE :Tuple = datasets.load_iris() SCREAMING_SNAKE_CASE :Dict = np.array(data['data']) SCREAMING_SNAKE_CASE :Optional[int] = np.array(data['target']) SCREAMING_SNAKE_CASE :List[str] = data['target_names'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE :List[Any] = train_test_split(X, y) def UpperCAmelCase ( a_ , a_ ) -> Tuple: """simple docstring""" return np.linalg.norm(np.array(a_ ) - np.array(a_ ) ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_=5 ) -> Dict: """simple docstring""" __A = zip(a_ , a_ ) # List of distances of all points from the point to be classified __A = [] for data_point in data: __A = euclidean_distance(data_point[0] , a_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __A = [i[1] for i in sorted(a_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __A = Counter(a_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
124
0
import functools def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Any: """simple docstring""" lowercase : List[str] = len(_UpperCamelCase ) lowercase : int = len(_UpperCamelCase ) @functools.cache def min_distance(_UpperCamelCase, _UpperCamelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowercase : int = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1, _UpperCamelCase ), 1 + min_distance(_UpperCamelCase, indexa + 1 ), diff + min_distance(indexa + 1, indexa + 1 ), ) return min_distance(0, 0 ) if __name__ == "__main__": import doctest doctest.testmod()
337
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ : str = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : List[str] = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
98
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) lowerCAmelCase__ : List[str] = str(bin(UpperCAmelCase__ ) )[2:] # remove the leading "0b" lowerCAmelCase__ : Union[str, Any] = str(bin(UpperCAmelCase__ ) )[2:] lowerCAmelCase__ : Tuple = max(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCAmelCase__ ) , b_binary.zfill(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
371
"""simple docstring""" def lowercase_ ( __UpperCAmelCase ) -> str: if not all(char in """01""" for char in bin_string ): raise ValueError("""Non-binary value was passed to the function""" ) if not bin_string: raise ValueError("""Empty string was passed to the function""" ) lowerCAmelCase__ : List[str] = """""" while len(__UpperCAmelCase ) % 3 != 0: lowerCAmelCase__ : Optional[Any] = """0""" + bin_string lowerCAmelCase__ : List[Any] = [ bin_string[index : index + 3] for index in range(len(__UpperCAmelCase ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: lowerCAmelCase__ : Optional[int] = 0 for index, val in enumerate(__UpperCAmelCase ): oct_val += int(2 ** (2 - index) * int(__UpperCAmelCase ) ) oct_string += str(__UpperCAmelCase ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
212
0
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase , ) -> list[float]: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : str = coefficient_matrix.shape lowerCamelCase_, lowerCamelCase_ : Dict = constant_matrix.shape if rowsa != colsa: lowerCamelCase_ : Optional[int] = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_lowercase ) if colsa != 1: lowerCamelCase_ : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_lowercase ) if rowsa != rowsa: lowerCamelCase_ : Union[str, Any] = ( '''Coefficient and constant matrices dimensions must be nxn and nx1 but ''' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_lowercase ) if len(_lowercase ) != rowsa: lowerCamelCase_ : List[str] = ( '''Number of initial values must be equal to number of rows in coefficient ''' F"""matrix but received {len(_lowercase )} and {rowsa}""" ) raise ValueError(_lowercase ) if iterations <= 0: raise ValueError('''Iterations must be at least 1''' ) lowerCamelCase_ : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) lowerCamelCase_, lowerCamelCase_ : str = table.shape strictly_diagonally_dominant(_lowercase ) # Iterates the whole matrix for given number of times for _ in range(_lowercase ): lowerCamelCase_ : Optional[Any] = [] for row in range(_lowercase ): lowerCamelCase_ : Tuple = 0 for col in range(_lowercase ): if col == row: lowerCamelCase_ : Optional[int] = table[row][col] elif col == cols - 1: lowerCamelCase_ : int = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] lowerCamelCase_ : Optional[Any] = (temp + val) / denom new_val.append(_lowercase ) lowerCamelCase_ : Tuple = new_val return [float(_lowercase ) for i in new_val] def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' lowerCamelCase_, lowerCamelCase_ : Dict = table.shape lowerCamelCase_ : Dict = True for i in range(0 , _lowercase ): lowerCamelCase_ : Optional[int] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('''Coefficient matrix is not strictly diagonally dominant''' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
318
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowercase : int = logging.get_logger(__name__) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Optional[int] = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowerCamelCase_ : Optional[Any] = [144, 192, 240] lowerCamelCase_ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: lowerCamelCase_ : List[str] = [96, 120, 144] lowerCamelCase_ : Union[str, Any] = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: lowerCamelCase_ : Any = [64, 80, 96] lowerCamelCase_ : List[str] = [16, 16, 24, 48, 64, 80, 320] lowerCamelCase_ : Union[str, Any] = 0.05 lowerCamelCase_ : Union[str, Any] = 2.0 if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : Optional[Any] = 512 lowerCamelCase_ : Dict = 16 lowerCamelCase_ : Dict = 21 lowerCamelCase_ : List[Any] = '''pascal-voc-id2label.json''' else: lowerCamelCase_ : Any = 1_000 lowerCamelCase_ : Dict = '''imagenet-1k-id2label.json''' lowerCamelCase_ : Optional[Any] = '''huggingface/label-files''' lowerCamelCase_ : int = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCamelCase_ : List[Any] = {int(_lowercase ): v for k, v in idalabel.items()} lowerCamelCase_ : List[str] = idalabel lowerCamelCase_ : str = {v: k for k, v in idalabel.items()} return config def lowercase_ ( _lowercase , _lowercase=False ) -> List[str]: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: lowerCamelCase_ : Union[str, Any] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: lowerCamelCase_ : Optional[Any] = name.replace('''conv_1.''' , '''conv_stem.''' ) if ".block." in name: lowerCamelCase_ : Optional[int] = name.replace('''.block.''' , '''.''' ) if "exp_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''exp_1x1''' , '''expand_1x1''' ) if "red_1x1" in name: lowerCamelCase_ : int = name.replace('''red_1x1''' , '''reduce_1x1''' ) if ".local_rep.conv_3x3." in name: lowerCamelCase_ : Dict = name.replace('''.local_rep.conv_3x3.''' , '''.conv_kxk.''' ) if ".local_rep.conv_1x1." in name: lowerCamelCase_ : Tuple = name.replace('''.local_rep.conv_1x1.''' , '''.conv_1x1.''' ) if ".norm." in name: lowerCamelCase_ : Dict = name.replace('''.norm.''' , '''.normalization.''' ) if ".conv." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.conv.''' , '''.convolution.''' ) if ".conv_proj." in name: lowerCamelCase_ : List[str] = name.replace('''.conv_proj.''' , '''.conv_projection.''' ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : Dict = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: lowerCamelCase_ : str = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: lowerCamelCase_ : str = name.replace('''expand_1x1''' , '''downsampling_layer.expand_1x1''' ) if "conv_3x3" in name: lowerCamelCase_ : List[str] = name.replace('''conv_3x3''' , '''downsampling_layer.conv_3x3''' ) if "reduce_1x1" in name: lowerCamelCase_ : Optional[int] = name.replace('''reduce_1x1''' , '''downsampling_layer.reduce_1x1''' ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: lowerCamelCase_ : Optional[Any] = name.replace(F""".global_rep.{i}.weight""" , '''.layernorm.weight''' ) if F""".global_rep.{i}.bias""" in name: lowerCamelCase_ : Any = name.replace(F""".global_rep.{i}.bias""" , '''.layernorm.bias''' ) if ".global_rep." in name: lowerCamelCase_ : List[str] = name.replace('''.global_rep.''' , '''.transformer.''' ) if ".pre_norm_mha.0." in name: lowerCamelCase_ : List[str] = name.replace('''.pre_norm_mha.0.''' , '''.layernorm_before.''' ) if ".pre_norm_mha.1.out_proj." in name: lowerCamelCase_ : int = name.replace('''.pre_norm_mha.1.out_proj.''' , '''.attention.output.dense.''' ) if ".pre_norm_ffn.0." in name: lowerCamelCase_ : Any = name.replace('''.pre_norm_ffn.0.''' , '''.layernorm_after.''' ) if ".pre_norm_ffn.1." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.1.''' , '''.intermediate.dense.''' ) if ".pre_norm_ffn.4." in name: lowerCamelCase_ : str = name.replace('''.pre_norm_ffn.4.''' , '''.output.dense.''' ) if ".transformer." in name: lowerCamelCase_ : Optional[int] = name.replace('''.transformer.''' , '''.transformer.layer.''' ) if ".aspp_layer." in name: lowerCamelCase_ : str = name.replace('''.aspp_layer.''' , '''.''' ) if ".aspp_pool." in name: lowerCamelCase_ : Union[str, Any] = name.replace('''.aspp_pool.''' , '''.''' ) if "seg_head." in name: lowerCamelCase_ : int = name.replace('''seg_head.''' , '''segmentation_head.''' ) if "segmentation_head.classifier.classifier." in name: lowerCamelCase_ : List[Any] = name.replace('''segmentation_head.classifier.classifier.''' , '''segmentation_head.classifier.''' ) if "classifier.fc." in name: lowerCamelCase_ : Tuple = name.replace('''classifier.fc.''' , '''classifier.''' ) elif (not base_model) and ("segmentation_head." not in name): lowerCamelCase_ : Tuple = '''mobilevit.''' + name return name def lowercase_ ( _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' if base_model: lowerCamelCase_ : List[str] = '''''' else: lowerCamelCase_ : Any = '''mobilevit.''' for key in orig_state_dict.copy().keys(): lowerCamelCase_ : Dict = orig_state_dict.pop(_lowercase ) if key[:8] == "encoder.": lowerCamelCase_ : int = key[8:] if "qkv" in key: lowerCamelCase_ : List[Any] = key.split('''.''' ) lowerCamelCase_ : Optional[Any] = int(key_split[0][6:] ) - 1 lowerCamelCase_ : Union[str, Any] = int(key_split[3] ) lowerCamelCase_ : Any = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) lowerCamelCase_ : Dict = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowerCamelCase_ : Optional[Any] = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: lowerCamelCase_ : List[str] = val[:dim, :] lowerCamelCase_ : Dict = val[dim : dim * 2, :] lowerCamelCase_ : Union[str, Any] = val[-dim:, :] else: lowerCamelCase_ : List[Any] = val[:dim] lowerCamelCase_ : Optional[int] = val[dim : dim * 2] lowerCamelCase_ : int = val[-dim:] else: lowerCamelCase_ : int = val return orig_state_dict def lowercase_ ( ) -> str: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase_ : Optional[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase=False ) -> Tuple: '''simple docstring''' lowerCamelCase_ : Tuple = get_mobilevit_config(_lowercase ) # load original state_dict lowerCamelCase_ : int = torch.load(_lowercase , map_location='''cpu''' ) # load 🤗 model if mobilevit_name.startswith('''deeplabv3_''' ): lowerCamelCase_ : int = MobileViTForSemanticSegmentation(_lowercase ).eval() else: lowerCamelCase_ : int = MobileViTForImageClassification(_lowercase ).eval() lowerCamelCase_ : Optional[Any] = convert_state_dict(_lowercase , _lowercase ) model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by MobileViTImageProcessor lowerCamelCase_ : str = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) lowerCamelCase_ : Tuple = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCamelCase_ : Optional[int] = model(**_lowercase ) lowerCamelCase_ : List[str] = outputs.logits if mobilevit_name.startswith('''deeplabv3_''' ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": lowerCamelCase_ : Union[str, Any] = torch.tensor( [ [[6.20_65, 6.12_92, 6.20_70], [6.10_79, 6.12_54, 6.17_47], [6.00_42, 6.10_71, 6.10_34]], [[-6.92_53, -6.86_53, -7.03_98], [-7.32_18, -7.39_83, -7.36_70], [-7.19_61, -7.24_82, -7.15_69]], [[-4.47_23, -4.43_48, -4.37_69], [-5.36_29, -5.46_32, -5.45_98], [-5.15_87, -5.34_02, -5.50_59]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowerCamelCase_ : Dict = torch.tensor( [ [[5.44_49, 5.57_33, 5.63_14], [5.18_15, 5.39_30, 5.59_63], [5.16_56, 5.43_33, 5.48_53]], [[-9.44_23, -9.77_66, -9.67_14], [-9.15_81, -9.57_20, -9.55_19], [-9.10_06, -9.64_58, -9.57_03]], [[-7.77_21, -7.37_16, -7.15_83], [-8.45_99, -8.06_24, -7.79_44], [-8.41_72, -7.83_66, -7.50_25]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowerCamelCase_ : List[str] = torch.tensor( [ [[6.98_11, 6.97_43, 7.31_23], [7.17_77, 7.19_31, 7.39_38], [7.56_33, 7.80_50, 7.89_01]], [[-10.55_36, -10.23_32, -10.29_24], [-10.23_36, -9.86_24, -9.59_64], [-10.88_40, -10.81_58, -10.66_59]], [[-3.49_38, -3.06_31, -2.86_20], [-3.42_05, -2.81_35, -2.68_75], [-3.41_79, -2.79_45, -2.87_50]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _lowercase , atol=1e-4 ) else: assert logits.shape == (1, 1_000) if mobilevit_name == "mobilevit_s": lowerCamelCase_ : Optional[Any] = torch.tensor([-0.98_66, 0.23_92, -1.12_41] ) elif mobilevit_name == "mobilevit_xs": lowerCamelCase_ : Tuple = torch.tensor([-2.47_61, -0.93_99, -1.95_87] ) elif mobilevit_name == "mobilevit_xxs": lowerCamelCase_ : List[Any] = torch.tensor([-1.93_64, -1.23_27, -0.46_53] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _lowercase , atol=1e-4 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if push_to_hub: lowerCamelCase_ : str = { '''mobilevit_s''': '''mobilevit-small''', '''mobilevit_xs''': '''mobilevit-x-small''', '''mobilevit_xxs''': '''mobilevit-xx-small''', '''deeplabv3_mobilevit_s''': '''deeplabv3-mobilevit-small''', '''deeplabv3_mobilevit_xs''': '''deeplabv3-mobilevit-x-small''', '''deeplabv3_mobilevit_xxs''': '''deeplabv3-mobilevit-xx-small''', } print('''Pushing to the hub...''' ) lowerCamelCase_ : int = model_mapping[mobilevit_name] image_processor.push_to_hub(_lowercase , organization='''apple''' ) model.push_to_hub(_lowercase , organization='''apple''' ) if __name__ == "__main__": __lowercase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) __lowercase : Optional[int] = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
318
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCamelCase = ["""image_processor""", """tokenizer"""] lowerCamelCase = """CLIPImageProcessor""" lowerCamelCase = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Optional[int] , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : str=None , **UpperCamelCase__ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) snake_case : Optional[Any] = kwargs.pop('''feature_extractor''' ) snake_case : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) def __call__( self : Dict , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[str]=None , **UpperCamelCase__ : Any ) -> Any: """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case : List[str] = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: snake_case : List[Any] = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: snake_case : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def lowerCAmelCase ( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def lowerCAmelCase ( self : Union[str, Any] , *UpperCamelCase__ : str , **UpperCamelCase__ : Any ) -> List[Any]: """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.tokenizer.model_input_names snake_case : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
354
'''simple docstring''' import requests lowercase__ = "" # <-- Put your OpenWeatherMap appid here! lowercase__ = "https://api.openweathermap.org/data/2.5/" def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "Chicago" , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''weather''' , params=locals() ).json() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = "Kolkata, India" , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''forecast''' , params=locals() ).json() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ = 55.68 , SCREAMING_SNAKE_CASE__ = 12.57 , SCREAMING_SNAKE_CASE__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + '''onecall''' , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: lowercase__ = input("Enter a location:").strip() if location: pprint(current_weather(location)) else: break
83
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """uclanlp/visualbert-vqa""": """https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json""", """uclanlp/visualbert-vqa-pre""": """https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json""", """uclanlp/visualbert-vqa-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-vcr""": """https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json""", """uclanlp/visualbert-vcr-pre""": """https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json""", """uclanlp/visualbert-vcr-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json""" ), """uclanlp/visualbert-nlvr2""": """https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-pre""": """https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json""", """uclanlp/visualbert-nlvr2-coco-pre""": ( """https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json""" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class UpperCamelCase_ ( UpperCamelCase__ ): '''simple docstring''' lowerCAmelCase = """visual_bert""" def __init__( self , a=3_05_22 , a=7_68 , a=5_12 , a=12 , a=12 , a=30_72 , a="gelu" , a=0.1 , a=0.1 , a=5_12 , a=2 , a=0.02 , a=1E-12 , a=False , a=True , a=1 , a=0 , a=2 , **a , ) -> Dict: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = visual_embedding_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = bypass_transformer snake_case_ = special_visual_initialize
178
import numpy as np def _A ( SCREAMING_SNAKE_CASE : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
95
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase ( self : Dict ) -> List[Any]: """simple docstring""" snake_case : Dict = TFAutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' ) snake_case : int = AutoTokenizer.from_pretrained('''google/mt5-small''' ) snake_case : List[str] = tokenizer('''Hello there''' , return_tensors='''tf''' ).input_ids snake_case : Tuple = tokenizer('''Hi I am''' , return_tensors='''tf''' ).input_ids snake_case : Tuple = model(UpperCamelCase__ , labels=UpperCamelCase__ ).loss snake_case : Dict = -tf.math.reduce_mean(UpperCamelCase__ ).numpy() snake_case : int = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2e-4 )
367
'''simple docstring''' import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Tuple=10 , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : int=2 , UpperCamelCase__ : Union[str, Any]=2 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Tuple=32 , UpperCamelCase__ : str=5 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Any="gelu" , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : str=0.02 , UpperCamelCase__ : str=0.9 , UpperCamelCase__ : Any=None , ) -> Tuple: """simple docstring""" snake_case : List[Any] = parent snake_case : Tuple = batch_size snake_case : str = image_size snake_case : Tuple = num_channels snake_case : List[Any] = patch_size snake_case : Optional[Any] = tubelet_size snake_case : Tuple = num_frames snake_case : Optional[Any] = is_training snake_case : Tuple = use_labels snake_case : List[str] = hidden_size snake_case : Any = num_hidden_layers snake_case : int = num_attention_heads snake_case : List[Any] = intermediate_size snake_case : Tuple = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : Optional[Any] = type_sequence_label_size snake_case : Optional[int] = initializer_range snake_case : Any = mask_ratio snake_case : Optional[int] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame snake_case : Dict = (image_size // patch_size) ** 2 snake_case : Optional[int] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos snake_case : Optional[int] = int(mask_ratio * self.seq_length ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) snake_case : Tuple = None if self.use_labels: snake_case : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : Dict = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ) -> Optional[int]: """simple docstring""" snake_case : Any = VideoMAEModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] ) -> str: """simple docstring""" snake_case : Any = VideoMAEForPreTraining(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : int = torch.ones((self.num_masks,) ) snake_case : List[str] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) snake_case : Tuple = mask.expand(self.batch_size , -1 ).bool() snake_case : str = model(UpperCamelCase__ , UpperCamelCase__ ) # model only returns predictions for masked patches snake_case : Tuple = mask.sum().item() snake_case : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" snake_case : Tuple = self.prepare_config_and_inputs() snake_case ,snake_case ,snake_case : Optional[int] = config_and_inputs snake_case : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) lowerCamelCase = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def lowerCAmelCase ( self : Any ) -> str: """simple docstring""" snake_case : List[Any] = VideoMAEModelTester(self ) snake_case : Optional[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : int=False ) -> Optional[Any]: """simple docstring""" snake_case : Optional[Any] = copy.deepcopy(UpperCamelCase__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch snake_case : Optional[int] = torch.ones((self.model_tester.num_masks,) ) snake_case : int = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) snake_case : Dict = mask.expand(self.model_tester.batch_size , -1 ).bool() snake_case : Optional[int] = bool_masked_pos.to(UpperCamelCase__ ) if return_labels: if model_class in [ *get_values(UpperCamelCase__ ), ]: snake_case : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''VideoMAE does not use inputs_embeds''' ) def lowerCAmelCase ( self : int ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : str ) -> str: """simple docstring""" snake_case ,snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(UpperCamelCase__ ) snake_case : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Tuple = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> str: """simple docstring""" snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCamelCase__ ) @slow def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : int = VideoMAEModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCAmelCase ( self : int ) -> int: """simple docstring""" if not self.has_attentions: pass else: snake_case ,snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() snake_case : Optional[int] = True for model_class in self.all_model_classes: snake_case : Union[str, Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) snake_case : Dict = True snake_case : List[str] = False snake_case : Tuple = True snake_case : List[str] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : List[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : List[Any] = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] snake_case : Any = True snake_case : Any = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Dict = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : int = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) snake_case : Any = len(UpperCamelCase__ ) # Check attention is always last and order is fine snake_case : Union[str, Any] = True snake_case : Union[str, Any] = True snake_case : str = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Optional[Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) snake_case : Tuple = outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" def check_hidden_states_output(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] ): snake_case : Union[str, Any] = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): snake_case : Union[str, Any] = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) snake_case : Union[str, Any] = outputs.hidden_states snake_case : Optional[int] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) snake_case : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks snake_case : int = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) snake_case ,snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : List[str] = True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" pass def _UpperCamelCase ( ) -> str: '''simple docstring''' snake_case : int = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename='''eating_spaghetti.npy''' , repo_type='''dataset''' ) snake_case : str = np.load(SCREAMING_SNAKE_CASE__ ) return list(SCREAMING_SNAKE_CASE__ ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" snake_case : Tuple = VideoMAEForVideoClassification.from_pretrained('''MCG-NJU/videomae-base-finetuned-kinetics''' ).to( UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Dict = prepare_video() snake_case : int = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : int = model(**UpperCamelCase__ ) # verify the logits snake_case : Optional[int] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) snake_case : Optional[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" snake_case : List[str] = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' ).to(UpperCamelCase__ ) snake_case : str = self.default_image_processor snake_case : Tuple = prepare_video() snake_case : List[Any] = image_processor(UpperCamelCase__ , return_tensors='''pt''' ).to(UpperCamelCase__ ) # add boolean mask, indicating which patches to mask snake_case : str = hf_hub_download(repo_id='''hf-internal-testing/bool-masked-pos''' , filename='''bool_masked_pos.pt''' ) snake_case : Dict = torch.load(UpperCamelCase__ ) # forward pass with torch.no_grad(): snake_case : Tuple = model(**UpperCamelCase__ ) # verify the logits snake_case : str = torch.Size([1, 1408, 1536] ) snake_case : List[str] = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=UpperCamelCase__ ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) snake_case : Any = torch.tensor([0.5_142] , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) snake_case : str = VideoMAEForPreTraining.from_pretrained('''MCG-NJU/videomae-base-short''' , norm_pix_loss=UpperCamelCase__ ).to( UpperCamelCase__ ) with torch.no_grad(): snake_case : Optional[int] = model(**UpperCamelCase__ ) snake_case : str = torch.tensor(torch.tensor([0.6_469] ) , device=UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.loss , UpperCamelCase__ , atol=1e-4 ) )
83
0
"""simple docstring""" import sys from collections import defaultdict class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] ): __lowercase = [] def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any] ): return self.node_position[vertex] def _lowercase ( self : Dict, UpperCAmelCase__ : List[str], UpperCAmelCase__ : str ): __lowercase = pos def _lowercase ( self : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowercase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowercase = 2 * start + 1 else: __lowercase = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowercase ,__lowercase = heap[smallest_child], positions[smallest_child] __lowercase ,__lowercase = ( heap[start], positions[start], ) __lowercase ,__lowercase = temp, tempa __lowercase = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child], self.get_position(positions[start] ) ) self.set_position(positions[start], UpperCAmelCase__ ) self.top_to_bottom(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple ): __lowercase = position[index] while index != 0: __lowercase = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowercase = heap[parent] __lowercase = position[parent] self.set_position(position[parent], UpperCAmelCase__ ) else: __lowercase = val __lowercase = temp self.set_position(UpperCAmelCase__, UpperCAmelCase__ ) break __lowercase = parent else: __lowercase = val __lowercase = temp self.set_position(UpperCAmelCase__, 0 ) def _lowercase ( self : Optional[int], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any ): __lowercase = len(UpperCAmelCase__ ) // 2 - 1 for i in range(UpperCAmelCase__, -1, -1 ): self.top_to_bottom(UpperCAmelCase__, UpperCAmelCase__, len(UpperCAmelCase__ ), UpperCAmelCase__ ) def _lowercase ( self : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any] ): __lowercase = positions[0] __lowercase = sys.maxsize self.top_to_bottom(UpperCAmelCase__, 0, len(UpperCAmelCase__ ), UpperCAmelCase__ ) return temp def _A ( UpperCamelCase_ : Dict) -> Optional[Any]: '''simple docstring''' __lowercase = Heap() __lowercase = [0] * len(UpperCamelCase_) __lowercase = [-1] * len(UpperCamelCase_) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowercase = [] # Heap of Distance of vertices from their neighboring vertex __lowercase = [] for vertex in range(len(UpperCamelCase_)): distance_tv.append(sys.maxsize) positions.append(UpperCamelCase_) heap.node_position.append(UpperCamelCase_) __lowercase = [] __lowercase = 1 __lowercase = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowercase = 0 __lowercase = distance heap.heapify(UpperCamelCase_, UpperCamelCase_) for _ in range(1, len(UpperCamelCase_)): __lowercase = heap.delete_minimum(UpperCamelCase_, UpperCamelCase_) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex)) __lowercase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase_)] ): __lowercase = distance heap.bottom_to_top( UpperCamelCase_, heap.get_position(UpperCamelCase_), UpperCamelCase_, UpperCamelCase_) __lowercase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _a = int(input('Enter number of edges: ').strip()) _a = defaultdict(list) for _ in range(edges_number): _a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
17
def SCREAMING_SNAKE_CASE__ ( ) -> list[list[int]]: return [list(range(1000 - i ,-1000 - i ,-1 ) ) for i in range(1000 )] lowerCamelCase : List[Any] = generate_large_matrix() lowerCamelCase : Optional[int] = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> None: assert all(row == sorted(lowercase ,reverse=lowercase ) for row in grid ) assert all(list(lowercase ) == sorted(lowercase ,reverse=lowercase ) for col in zip(*lowercase ) ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Tuple = 0 snake_case : List[Any] = len(lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case : Tuple = (left + right) // 2 snake_case : Dict = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case : List[Any] = mid + 1 else: snake_case : str = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Union[str, Any] = 0 snake_case : Dict = len(grid[0] ) for i in range(len(lowercase ) ): snake_case : Tuple = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase ) * len(grid[0] )) - total def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: return len([number for row in grid for number in row if number < 0] ) def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: snake_case : Dict = 0 for row in grid: for i, number in enumerate(lowercase ): if number < 0: total += len(lowercase ) - i break return total def SCREAMING_SNAKE_CASE__ ( ) -> None: from timeit import timeit print("""Running benchmarks""" ) snake_case : List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case : int = timeit(f"""{func}(grid=grid)""" ,setup=lowercase ,number=500 ) print(f"""{func}() took {time:0.4f} seconds""" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
124
0
"""simple docstring""" from sklearn.metrics import fa_score import datasets __UpperCAmelCase = ''' The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) ''' __UpperCAmelCase = ''' Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`. - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives. - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {\'f1\': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results[\'f1\'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results[\'f1\'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results[\'f1\'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results[\'f1\'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {\'f1\': array([0.8, 0. , 0. ])} ''' __UpperCAmelCase = ''' @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def _lowerCamelCase ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def _lowerCamelCase ( self : List[Any] , _a : int , _a : Optional[int] , _a : Tuple=None , _a : int=1 , _a : Optional[int]="binary" , _a : Optional[int]=None ): a__: Union[str, Any] =fa_score( lowercase_ , lowercase_ , labels=lowercase_ , pos_label=lowercase_ , average=lowercase_ , sample_weight=lowercase_ ) return {"f1": float(lowercase_ ) if score.size == 1 else score}
364
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def __lowerCamelCase ( __magic_name__ : List[Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def __lowerCamelCase ( __magic_name__ : Optional[Any] ): class lowerCamelCase__ : def __init__( self : str , _a : Any ): a__: Any =metric_id class lowerCamelCase__ : _lowerCAmelCase = [MetricMock(_a ) for metric_id in ['''accuracy''', '''mse''', '''precision''', '''codeparrot/apps_metric''']] def _lowerCamelCase ( self : Optional[Any] ): return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def __lowerCamelCase ( __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Tuple , __magic_name__ : str , __magic_name__ : Optional[int] ): if "tmp_path" in args: a__: Tuple =tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(__magic_name__ , match="https://huggingface.co/docs/evaluate" ): func(*__magic_name__ )
42
0
"""simple docstring""" import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType lowerCAmelCase_ = get_logger(__name__) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> List[Any]: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ : Optional[int] = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ : Optional[Any] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowercase__ : Tuple = os.path.join(__lowerCamelCase , __lowerCamelCase ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ : Optional[int] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ : Union[str, Any] = os.path.join(__lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f"""Saving model to {ckpt_dir}""" ) lowercase__ : Any = {'''model''': state_dict} dist_cp.save_state_dict( state_dict=__lowerCamelCase , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> Tuple: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__lowerCamelCase ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( '''Set the `sync_module_states` flag to `True` so that model states are synced across processes when ''' '''initializing FSDP object''' ) return lowercase__ : Optional[Any] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) lowercase__ : List[Any] = torch.load(__lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: lowercase__ : List[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Loading model from {input_model_file}""" ) lowercase__ : List[str] = torch.load(__lowerCamelCase ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: lowercase__ : str = ( os.path.join(__lowerCamelCase , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) lowercase__ : Dict = {'''model''': model.state_dict()} dist_cp.load_state_dict( state_dict=__lowerCamelCase , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , planner=DefaultLoadPlanner() , ) lowercase__ : Optional[int] = state_dict['''model'''] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__lowerCamelCase ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> int: os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): lowercase__ : Tuple = FSDP.optim_state_dict(__lowerCamelCase , __lowerCamelCase ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: lowercase__ : List[Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase__ : Dict = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: lowercase__ : Any = os.path.join(__lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'''optimizer''': optim_state} , storage_writer=dist_cp.FileSystemWriter(__lowerCamelCase ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=0 ) -> Any: accelerator.wait_for_everyone() with FSDP.state_dict_type( __lowerCamelCase , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: lowercase__ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: lowercase__ : Optional[int] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) lowercase__ : Any = os.path.join(__lowerCamelCase , __lowerCamelCase ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) lowercase__ : Tuple = torch.load(__lowerCamelCase ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: lowercase__ : Any = ( os.path.join(__lowerCamelCase , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) lowercase__ : List[str] = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='''optimizer''' , storage_reader=dist_cp.FileSystemReader(__lowerCamelCase ) , ) lowercase__ : int = optim_state['''optimizer'''] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) lowercase__ : List[Any] = FSDP.optim_state_dict_to_load(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) optimizer.load_state_dict(__lowerCamelCase )
16
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: lowerCAmelCase__ : int = XCLIPTextConfig() # derive patch size from model name lowerCAmelCase__ : Any = model_name.find('patch' ) lowerCAmelCase__ : Any = int(model_name[start_idx + len('patch' ) : start_idx + len('patch' ) + 2] ) lowerCAmelCase__ : Any = XCLIPVisionConfig(patch_size=SCREAMING_SNAKE_CASE_ , num_frames=SCREAMING_SNAKE_CASE_ ) if "large" in model_name: lowerCAmelCase__ : List[str] = 768 lowerCAmelCase__ : Optional[int] = 3_072 lowerCAmelCase__ : Any = 12 lowerCAmelCase__ : Optional[int] = 1_024 lowerCAmelCase__ : List[Any] = 4_096 lowerCAmelCase__ : Optional[Any] = 16 lowerCAmelCase__ : Any = 24 lowerCAmelCase__ : Dict = 768 lowerCAmelCase__ : List[str] = 3_072 if model_name == "xclip-large-patch14-16-frames": lowerCAmelCase__ : str = 336 lowerCAmelCase__ : Any = XCLIPConfig.from_text_vision_configs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "large" in model_name: lowerCAmelCase__ : List[Any] = 768 return config def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: # text encoder if name == "token_embedding.weight": lowerCAmelCase__ : Optional[Any] = name.replace('token_embedding.weight' , 'text_model.embeddings.token_embedding.weight' ) if name == "positional_embedding": lowerCAmelCase__ : int = name.replace('positional_embedding' , 'text_model.embeddings.position_embedding.weight' ) if "ln_1" in name: lowerCAmelCase__ : Optional[Any] = name.replace('ln_1' , 'layer_norm1' ) if "ln_2" in name: lowerCAmelCase__ : List[str] = name.replace('ln_2' , 'layer_norm2' ) if "c_fc" in name: lowerCAmelCase__ : Tuple = name.replace('c_fc' , 'fc1' ) if "c_proj" in name: lowerCAmelCase__ : Optional[Any] = name.replace('c_proj' , 'fc2' ) if name.startswith('transformer.resblocks' ): lowerCAmelCase__ : List[str] = name.replace('transformer.resblocks' , 'text_model.encoder.layers' ) if "attn.out_proj" in name and "message" not in name: lowerCAmelCase__ : Optional[Any] = name.replace('attn.out_proj' , 'self_attn.out_proj' ) if "ln_final" in name: lowerCAmelCase__ : List[str] = name.replace('ln_final' , 'text_model.final_layer_norm' ) # visual encoder if name == "visual.class_embedding": lowerCAmelCase__ : Dict = name.replace('visual.class_embedding' , 'vision_model.embeddings.class_embedding' ) if name == "visual.positional_embedding": lowerCAmelCase__ : Any = name.replace('visual.positional_embedding' , 'vision_model.embeddings.position_embedding.weight' ) if name.startswith('visual.transformer.resblocks' ): lowerCAmelCase__ : Union[str, Any] = name.replace('visual.transformer.resblocks' , 'vision_model.encoder.layers' ) if "visual.conv1" in name: lowerCAmelCase__ : Dict = name.replace('visual.conv1' , 'vision_model.embeddings.patch_embedding' ) if "visual.ln_pre" in name: lowerCAmelCase__ : Union[str, Any] = name.replace('visual.ln_pre' , 'vision_model.pre_layernorm' ) if "visual.ln_post" in name: lowerCAmelCase__ : Tuple = name.replace('visual.ln_post' , 'vision_model.post_layernorm' ) if "visual.proj" in name: lowerCAmelCase__ : Optional[Any] = name.replace('visual.proj' , 'visual_projection.weight' ) if "text_projection" in name: lowerCAmelCase__ : Any = name.replace('text_projection' , 'text_projection.weight' ) # things on top if "prompts_visual_proj" in name: lowerCAmelCase__ : str = name.replace('prompts_visual_proj' , 'prompts_visual_projection' ) if "prompts_visual_ln" in name: lowerCAmelCase__ : Tuple = name.replace('prompts_visual_ln' , 'prompts_visual_layernorm' ) # mit if name == "mit.positional_embedding": lowerCAmelCase__ : Dict = name.replace('positional' , 'position' ) if name.startswith('mit.resblocks' ): lowerCAmelCase__ : List[str] = name.replace('mit.resblocks' , 'mit.encoder.layers' ) # prompts generator if name.startswith('prompts_generator.norm' ): lowerCAmelCase__ : List[Any] = name.replace('prompts_generator.norm' , 'prompts_generator.layernorm' ) return name def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowerCAmelCase__ : Any = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "attn.in_proj" in key: lowerCAmelCase__ : str = key.split('.' ) if key.startswith('visual' ): lowerCAmelCase__ : str = key_split[3] lowerCAmelCase__ : Optional[Any] = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: lowerCAmelCase__ : Any = val[ :dim, : ] lowerCAmelCase__ : Optional[Any] = val[ dim : dim * 2, : ] lowerCAmelCase__ : int = val[ -dim:, : ] else: lowerCAmelCase__ : str = val[ :dim ] lowerCAmelCase__ : Union[str, Any] = val[ dim : dim * 2 ] lowerCAmelCase__ : Any = val[ -dim: ] else: if "weight" in key: lowerCAmelCase__ : str = val[ :dim, : ] lowerCAmelCase__ : Tuple = val[ dim : dim * 2, : ] lowerCAmelCase__ : int = val[ -dim:, : ] else: lowerCAmelCase__ : List[Any] = val[:dim] lowerCAmelCase__ : Optional[Any] = val[ dim : dim * 2 ] lowerCAmelCase__ : int = val[-dim:] elif key.startswith('mit' ): lowerCAmelCase__ : Dict = key_split[2] lowerCAmelCase__ : str = config.vision_config.mit_hidden_size if "weight" in key: lowerCAmelCase__ : List[Any] = val[:dim, :] lowerCAmelCase__ : List[Any] = val[dim : dim * 2, :] lowerCAmelCase__ : Any = val[-dim:, :] else: lowerCAmelCase__ : int = val[:dim] lowerCAmelCase__ : Optional[Any] = val[dim : dim * 2] lowerCAmelCase__ : List[str] = val[-dim:] else: lowerCAmelCase__ : int = key_split[2] lowerCAmelCase__ : Optional[Any] = config.text_config.hidden_size if "weight" in key: lowerCAmelCase__ : int = val[:dim, :] lowerCAmelCase__ : List[str] = val[ dim : dim * 2, : ] lowerCAmelCase__ : Dict = val[-dim:, :] else: lowerCAmelCase__ : List[str] = val[:dim] lowerCAmelCase__ : int = val[ dim : dim * 2 ] lowerCAmelCase__ : Optional[int] = val[-dim:] else: lowerCAmelCase__ : Optional[int] = rename_key(SCREAMING_SNAKE_CASE_ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: lowerCAmelCase__ : List[str] = val.T lowerCAmelCase__ : List[str] = val return orig_state_dict def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Dict: if num_frames == 8: lowerCAmelCase__ : Tuple = 'eating_spaghetti_8_frames.npy' elif num_frames == 16: lowerCAmelCase__ : Dict = 'eating_spaghetti.npy' elif num_frames == 32: lowerCAmelCase__ : List[Any] = 'eating_spaghetti_32_frames.npy' lowerCAmelCase__ : Dict = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename=SCREAMING_SNAKE_CASE_ , repo_type='dataset' , ) lowerCAmelCase__ : Optional[int] = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=False ) -> str: lowerCAmelCase__ : Optional[int] = { # fully supervised kinetics-400 checkpoints 'xclip-base-patch32': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth', 'xclip-base-patch32-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth' ), 'xclip-base-patch16': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth', 'xclip-base-patch16-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth' ), 'xclip-large-patch14': 'https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb', 'xclip-large-patch14-16-frames': 'https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f', # fully supervised kinetics-600 checkpoints 'xclip-base-patch16-kinetics-600': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth' ), 'xclip-base-patch16-kinetics-600-16-frames': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth' ), 'xclip-large-patch14-kinetics-600': 'https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be', # few shot 'xclip-base-patch16-hmdb-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth' ), 'xclip-base-patch16-hmdb-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth' ), 'xclip-base-patch16-hmdb-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth' ), 'xclip-base-patch16-hmdb-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth' ), 'xclip-base-patch16-ucf-2-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth' ), 'xclip-base-patch16-ucf-4-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth' ), 'xclip-base-patch16-ucf-8-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth' ), 'xclip-base-patch16-ucf-16-shot': ( 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth' ), # zero shot 'xclip-base-patch16-zero-shot': 'https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth', } lowerCAmelCase__ : Dict = model_to_url[model_name] lowerCAmelCase__ : List[str] = 8 if "16-frames" in model_name: lowerCAmelCase__ : Any = 16 elif "shot" in model_name: lowerCAmelCase__ : str = 32 lowerCAmelCase__ : str = get_xclip_config(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = XCLIPModel(SCREAMING_SNAKE_CASE_ ) model.eval() if "drive" in checkpoint_url: lowerCAmelCase__ : Any = 'pytorch_model.bin' gdown.cached_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , quiet=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] else: lowerCAmelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ )['model'] lowerCAmelCase__ : Optional[Any] = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = XCLIPModel(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ , lowerCAmelCase__ : str = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() lowerCAmelCase__ : Optional[int] = 336 if model_name == 'xclip-large-patch14-16-frames' else 224 lowerCAmelCase__ : List[str] = VideoMAEImageProcessor(size=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = CLIPTokenizer.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase__ : List[Any] = CLIPTokenizerFast.from_pretrained('openai/clip-vit-base-patch32' ) lowerCAmelCase__ : Optional[Any] = XCLIPProcessor(image_processor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = prepare_video(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = processor( text=['playing sports', 'eating spaghetti', 'go shopping'] , videos=SCREAMING_SNAKE_CASE_ , return_tensors='pt' , padding=SCREAMING_SNAKE_CASE_ ) print('Shape of pixel values:' , inputs.pixel_values.shape ) with torch.no_grad(): lowerCAmelCase__ : Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs lowerCAmelCase__ : Optional[Any] = outputs.logits_per_video lowerCAmelCase__ : Tuple = logits_per_video.softmax(dim=1 ) print('Probs:' , SCREAMING_SNAKE_CASE_ ) # kinetics-400 if model_name == "xclip-base-patch32": lowerCAmelCase__ : str = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": lowerCAmelCase__ : Dict = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": lowerCAmelCase__ : int = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": lowerCAmelCase__ : Any = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": lowerCAmelCase__ : Any = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": lowerCAmelCase__ : Optional[int] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": lowerCAmelCase__ : int = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": lowerCAmelCase__ : Dict = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": lowerCAmelCase__ : Optional[Any] = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": lowerCAmelCase__ : Tuple = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": lowerCAmelCase__ : int = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": lowerCAmelCase__ : Optional[Any] = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": lowerCAmelCase__ : str = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": lowerCAmelCase__ : Optional[Any] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": lowerCAmelCase__ : int = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": lowerCAmelCase__ : Union[str, Any] = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": lowerCAmelCase__ : List[Any] = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('Pushing model, processor and slow tokenizer files to the hub...' ) model.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='nielsr' ) processor.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='nielsr' ) slow_tokenizer.push_to_hub(SCREAMING_SNAKE_CASE_ , organization='nielsr' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
212
0
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def __lowerCamelCase ( __a :Optional[Any] , __a :List[Any] ) -> List[str]: """simple docstring""" assert isinstance(__a , __a ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def __lowerCamelCase ( __a :Any , __a :Tuple , __a :Tuple , __a :Tuple ) -> Any: """simple docstring""" A__ = tmp_path / """cache""" A__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): A__ = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__a , keep_in_memory=__a ).read() _check_sql_dataset(__a , __a ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def __lowerCamelCase ( __a :Optional[int] , __a :Optional[Any] , __a :List[str] , __a :Union[str, Any] ) -> Optional[int]: """simple docstring""" A__ = tmp_path / """cache""" A__ = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} A__ = features.copy() if features else default_expected_features A__ = ( Features({feature: Value(__a ) for feature, dtype in features.items()} ) if features is not None else None ) A__ = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=__a , cache_dir=__a ).read() _check_sql_dataset(__a , __a ) def __lowerCamelCase ( __a :Tuple ) -> Any: """simple docstring""" with contextlib.closing(sqlitea.connect(__a ) ) as con: A__ = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def __lowerCamelCase ( __a :Tuple , __a :Tuple , __a :str ) -> List[Any]: """simple docstring""" A__ = tmp_path / """cache""" A__ = os.path.join(__a , """tmp.sql""" ) A__ = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__a ).read() SqlDatasetWriter(__a , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() A__ = iter_sql_file(__a ) A__ = iter_sql_file(__a ) for rowa, rowa in zip(__a , __a ): assert rowa == rowa @require_sqlalchemy def __lowerCamelCase ( __a :Union[str, Any] , __a :Optional[Any] , __a :int ) -> Any: """simple docstring""" A__ = tmp_path / """cache""" A__ = os.path.join(__a , """tmp.sql""" ) A__ = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__a ).read() SqlDatasetWriter(__a , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() A__ = iter_sql_file(__a ) A__ = iter_sql_file(__a ) for rowa, rowa in zip(__a , __a ): assert rowa == rowa @require_sqlalchemy def __lowerCamelCase ( __a :str , __a :Any , __a :List[str] ) -> Optional[Any]: """simple docstring""" A__ = tmp_path / """cache""" A__ = os.path.join(__a , """tmp.sql""" ) A__ = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=__a ).read() with pytest.raises(__a ): SqlDatasetWriter(__a , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
276
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
276
1
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = '''efficientnet''' def __init__( self , _snake_case = 3 , _snake_case = 600 , _snake_case = 2.0 , _snake_case = 3.1 , _snake_case = 8 , _snake_case = [3, 3, 5, 3, 5, 5, 3] , _snake_case = [32, 16, 24, 40, 80, 112, 192] , _snake_case = [16, 24, 40, 80, 112, 192, 320] , _snake_case = [] , _snake_case = [1, 2, 2, 2, 1, 2, 1] , _snake_case = [1, 2, 2, 3, 3, 4, 1] , _snake_case = [1, 6, 6, 6, 6, 6, 6] , _snake_case = 0.25 , _snake_case = "swish" , _snake_case = 2560 , _snake_case = "mean" , _snake_case = 0.02 , _snake_case = 0.001 , _snake_case = 0.99 , _snake_case = 0.5 , _snake_case = 0.2 , **_snake_case , ): """simple docstring""" super().__init__(**lowerCamelCase__ ) _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = width_coefficient _lowerCAmelCase = depth_coefficient _lowerCAmelCase = depth_divisor _lowerCAmelCase = kernel_sizes _lowerCAmelCase = in_channels _lowerCAmelCase = out_channels _lowerCAmelCase = depthwise_padding _lowerCAmelCase = strides _lowerCAmelCase = num_block_repeats _lowerCAmelCase = expand_ratios _lowerCAmelCase = squeeze_expansion_ratio _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dim _lowerCAmelCase = pooling_type _lowerCAmelCase = initializer_range _lowerCAmelCase = batch_norm_eps _lowerCAmelCase = batch_norm_momentum _lowerCAmelCase = dropout_rate _lowerCAmelCase = drop_connect_rate _lowerCAmelCase = sum(lowerCamelCase__ ) * 4 class __lowerCAmelCase ( lowerCamelCase__ ): __lowerCamelCase = version.parse('''1.11''' ) @property def snake_case ( self ): """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def snake_case ( self ): """simple docstring""" return 1e-5
82
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer snake_case_ : List[Any] = logging.get_logger(__name__) class lowercase__ ( lowercase ): lowercase__ = """AutoTokenizer""" lowercase__ = ["""tokenizer"""] lowercase__ = { """semantic_prompt""": 1, """coarse_prompt""": 2, """fine_prompt""": 2, } def __init__( self : List[str] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple=None ): '''simple docstring''' super().__init__(lowerCamelCase__ ) _UpperCamelCase : Dict = speaker_embeddings @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ,lowerCamelCase__ : int ,lowerCamelCase__ : str="speaker_embeddings_path.json" ,**lowerCamelCase__ : Optional[Any] ): '''simple docstring''' if speaker_embeddings_dict_path is not None: _UpperCamelCase : Optional[Any] = get_file_from_repo( lowerCamelCase__ ,lowerCamelCase__ ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCamelCase__ ,lowerCamelCase__ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _UpperCamelCase : Union[str, Any] = None else: with open(lowerCamelCase__ ) as speaker_embeddings_json: _UpperCamelCase : Optional[int] = json.load(lowerCamelCase__ ) else: _UpperCamelCase : Tuple = None _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) return cls(tokenizer=lowerCamelCase__ ,speaker_embeddings=lowerCamelCase__ ) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : int="speaker_embeddings_path.json" ,lowerCamelCase__ : Dict="speaker_embeddings" ,lowerCamelCase__ : bool = False ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ,'v2' ) ,exist_ok=lowerCamelCase__ ) _UpperCamelCase : Tuple = {} _UpperCamelCase : Optional[Any] = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _UpperCamelCase : Any = self._load_voice_preset(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] ,lowerCamelCase__ ,F'{prompt_key}_{key}' ) ,voice_preset[key] ,allow_pickle=lowerCamelCase__ ,) _UpperCamelCase : List[str] = os.path.join(lowerCamelCase__ ,F'{prompt_key}_{key}.npy' ) _UpperCamelCase : str = tmp_dict with open(os.path.join(lowerCamelCase__ ,lowerCamelCase__ ) ,'w' ) as fp: json.dump(lowerCamelCase__ ,lowerCamelCase__ ) super().save_pretrained(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str = None ,**lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Tuple = self.speaker_embeddings[voice_preset] _UpperCamelCase : Union[str, Any] = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _UpperCamelCase : Dict = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' ,'/' ) ,voice_preset_paths[key] ,subfolder=kwargs.pop('subfolder' ,lowerCamelCase__ ) ,cache_dir=kwargs.pop('cache_dir' ,lowerCamelCase__ ) ,force_download=kwargs.pop('force_download' ,lowerCamelCase__ ) ,proxies=kwargs.pop('proxies' ,lowerCamelCase__ ) ,resume_download=kwargs.pop('resume_download' ,lowerCamelCase__ ) ,local_files_only=kwargs.pop('local_files_only' ,lowerCamelCase__ ) ,use_auth_token=kwargs.pop('use_auth_token' ,lowerCamelCase__ ) ,revision=kwargs.pop('revision' ,lowerCamelCase__ ) ,) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" ,"/" ) ,voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _UpperCamelCase : List[str] = np.load(lowerCamelCase__ ) return voice_preset_dict def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[dict] = None ): '''simple docstring''' for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] ,np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Any ,lowerCamelCase__ : Optional[Any]=None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Any="pt" ,lowerCamelCase__ : Dict=256 ,lowerCamelCase__ : int=False ,lowerCamelCase__ : int=True ,lowerCamelCase__ : List[str]=False ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' if voice_preset is not None and not isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if ( isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _UpperCamelCase : Optional[int] = self._load_voice_preset(lowerCamelCase__ ) else: if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) and not voice_preset.endswith('.npz' ): _UpperCamelCase : Tuple = voice_preset + '.npz' _UpperCamelCase : str = np.load(lowerCamelCase__ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = BatchFeature(data=lowerCamelCase__ ,tensor_type=lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.tokenizer( lowerCamelCase__ ,return_tensors=lowerCamelCase__ ,padding='max_length' ,max_length=lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) if voice_preset is not None: _UpperCamelCase : Optional[Any] = voice_preset return encoded_text
83
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase__ = StableDiffusionLDMaDPipeline UpperCamelCase__ = TEXT_TO_IMAGE_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_BATCH_PARAMS UpperCamelCase__ = TEXT_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__magic_name__ , set_alpha_to_one=__magic_name__ , ) torch.manual_seed(0 ) a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) a = CLIPTextModel(__magic_name__ ) a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCamelCase__ ( self :List[str] , __magic_name__ :int , __magic_name__ :Dict=0 ): '''simple docstring''' if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """cpu""" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = StableDiffusionLDMaDPipeline(**__magic_name__ ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1] a = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) a = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1E-2 def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = self.get_dummy_components() a = StableDiffusionLDMaDPipeline(**__magic_name__ ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = 3 * [inputs["""prompt"""]] # forward a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb_slice_a[0, -3:, -3:, -1] a = depth_slice_a[0, -3:, -1] a = self.get_dummy_inputs(__magic_name__ ) a = 3 * [inputs.pop("""prompt""" )] a = ldmad_pipe.tokenizer( __magic_name__ , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=__magic_name__ , return_tensors="""pt""" , ) a = text_inputs["""input_ids"""].to(__magic_name__ ) a = ldmad_pipe.text_encoder(__magic_name__ )[0] a = prompt_embeds # forward a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb_slice_a[0, -3:, -3:, -1] a = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1E-4 def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = """cpu""" # ensure determinism for the device-dependent torch.Generator a = self.get_dummy_components() a = PNDMScheduler(skip_prk_steps=__magic_name__ ) a = StableDiffusionLDMaDPipeline(**__magic_name__ ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = """french fries""" a = ldmad_pipe(**__magic_name__ , negative_prompt=__magic_name__ ) a , a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1] a = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) a = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) a = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1E-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Union[str, Any] , __magic_name__ :List[str] , __magic_name__ :List[Any]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :int=0 ): '''simple docstring''' a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) ) a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ) a = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ) a = ldmad_pipe.to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = rgb[0, -3:, -3:, -1].flatten() a = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) a = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) a = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3E-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :str , __magic_name__ :List[str]="cpu" , __magic_name__ :Optional[int]=torch.floataa , __magic_name__ :List[str]=0 ): '''simple docstring''' a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = np.random.RandomState(__magic_name__ ).standard_normal((1, 4, 64, 64) ) a = torch.from_numpy(__magic_name__ ).to(device=__magic_name__ , dtype=__magic_name__ ) a = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""" ).to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = 0.495586 a = 0.33795515 a = 112.48518 a = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3 def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""" ).to(__magic_name__ ) ldmad_pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_inputs(__magic_name__ ) a = ldmad_pipe(**__magic_name__ ) a , a = output.rgb, output.depth a = 0.4194127 a = 0.35375586 a = 0.5638502 a = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1E-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1E-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1E-3 assert np.abs(expected_depth_std - depth.std() ) < 1E-3
347
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("""dataset_size""" , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize("""input_in_memory_max_size""" , ["""default""", 0, 100 * 2**20, 900 * 2**20] ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , """IN_MEMORY_MAX_SIZE""" , __lowerCamelCase ) a = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: a = dataset_size < in_memory_max_size else: a = False a = is_small_dataset(__lowerCamelCase ) assert result == expected
347
1
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" return "\n".join( f'''{number} * {i} = {number * i}''' for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=1_0))
81
'''simple docstring''' from typing import Callable, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Optional[Any] = logging.get_logger(__name__) snake_case_ : int = { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/config.json' ), } class lowercase__ ( lowercase ): lowercase__ = """xlm-prophetnet""" lowercase__ = ["""past_key_values"""] lowercase__ = { """num_attention_heads""": """num_encoder_attention_heads""", } def __init__( self : Optional[int] ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[Union[str, Callable]] = "gelu" ,lowerCamelCase__ : Optional[int] = 30522 ,lowerCamelCase__ : Optional[int] = 1024 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[int] = 4096 ,lowerCamelCase__ : Optional[int] = 12 ,lowerCamelCase__ : Optional[int] = 16 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[float] = 0.1 ,lowerCamelCase__ : Optional[int] = 512 ,lowerCamelCase__ : Optional[float] = 0.0_2 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 2 ,lowerCamelCase__ : Optional[int] = 32 ,lowerCamelCase__ : Optional[int] = 128 ,lowerCamelCase__ : Optional[bool] = False ,lowerCamelCase__ : Optional[float] = 0.0 ,lowerCamelCase__ : Optional[bool] = True ,lowerCamelCase__ : Optional[int] = 0 ,lowerCamelCase__ : Optional[int] = 1 ,lowerCamelCase__ : Optional[int] = 2 ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Union[str, Any] = hidden_size _UpperCamelCase : str = encoder_ffn_dim _UpperCamelCase : List[Any] = num_encoder_layers _UpperCamelCase : Tuple = num_encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : List[Any] = num_decoder_layers _UpperCamelCase : List[Any] = num_decoder_attention_heads _UpperCamelCase : Optional[Any] = max_position_embeddings _UpperCamelCase : str = init_std # Normal(0, this parameter) _UpperCamelCase : List[str] = activation_function # parameters for xlmprophetnet _UpperCamelCase : Tuple = ngram _UpperCamelCase : Optional[Any] = num_buckets _UpperCamelCase : Tuple = relative_max_distance _UpperCamelCase : str = disable_ngram_loss _UpperCamelCase : str = eps # 3 Types of Dropout _UpperCamelCase : Union[str, Any] = attention_dropout _UpperCamelCase : str = activation_dropout _UpperCamelCase : List[str] = dropout _UpperCamelCase : Tuple = use_cache super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,add_cross_attention=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self.num_encoder_layers + self.num_decoder_layers @num_hidden_layers.setter def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( 'This model does not support the setting of `num_hidden_layers`. Please set `num_encoder_layers` and' ' `num_decoder_layers`.' )
83
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = value UpperCAmelCase_ : Node | None = None UpperCAmelCase_ : Node | None = None class A_ : '''simple docstring''' def __init__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : str = tree def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _a = logging.getLogger() def __a ( ): UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCAmelCase_ : Dict = parser.parse_args() return args.f class A_ (lowercase__ ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Optional[int] = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , "run_glue_deebert.py" ) with patch.object(lowercase_ , "argv" , lowercase_ ): UpperCAmelCase_ : List[str] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowercase_ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Optional[Any] = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ ) UpperCAmelCase_ : Dict = "\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n ".split() self.run_and_check(lowercase_ )
23
0
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[int] = BertJapaneseTokenizer _UpperCAmelCase : Any = False _UpperCAmelCase : Dict = True def _SCREAMING_SNAKE_CASE ( self : Optional[int]): super().setUp() SCREAMING_SNAKE_CASE_: Dict = [ "[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは", "世界", "##世界", "、", "##、", "。", "##。", ] SCREAMING_SNAKE_CASE_: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Optional[int]): SCREAMING_SNAKE_CASE_: Optional[int] = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Dict = "こんにちは 、 世界 。 こんばんは 、 世界 。" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : List[str]): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = self.get_input_output_texts(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) return text, ids def _SCREAMING_SNAKE_CASE ( self : List[Any]): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Dict): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Optional[int]): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : int): SCREAMING_SNAKE_CASE_: int = self.tokenizer_class(self.vocab_file) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。") self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="mecab") self.assertIsNotNone(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) SCREAMING_SNAKE_CASE_: int = os.path.join(self.tmpdirname , "tokenizer.bin") with open(lowerCAmelCase__ , "wb") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , "rb") as handle: SCREAMING_SNAKE_CASE_: List[Any] = pickle.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Optional[Any] = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = MecabTokenizer(mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): try: SCREAMING_SNAKE_CASE_: List[str] = MecabTokenizer(mecab_dic="unidic_lite") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : str): try: SCREAMING_SNAKE_CASE_: Tuple = MecabTokenizer(mecab_dic="unidic") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Tuple = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : int): try: SCREAMING_SNAKE_CASE_: int = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option="-d /usr/local/lib/mecab/dic/jumandic") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Dict = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic="ipadic") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Any = self.tokenizer_class(self.vocab_file , word_tokenizer_type="sudachi") self.assertIsNotNone(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[str] = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Any = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) SCREAMING_SNAKE_CASE_: Tuple = os.path.join(self.tmpdirname , "tokenizer.bin") with open(lowerCAmelCase__ , "wb") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , "rb") as handle: SCREAMING_SNAKE_CASE_: str = pickle.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: str = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[int] = SudachiTokenizer(sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="A") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国", "人", "参政", "権"]) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="B") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人", "参政権"]) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Union[str, Any] = SudachiTokenizer(sudachi_dict_type="core" , sudachi_split_mode="C") self.assertListEqual(tokenizer.tokenize("外国人参政権") , ["外国人参政権"]) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: Optional[Any] = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: str = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , [" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "] , ) @require_sudachi def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type="core") self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="jumanpp") self.assertIsNotNone(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = "こんにちは、世界。\nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Dict = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 12, 10, 14, 4, 9, 12, 10, 14]) SCREAMING_SNAKE_CASE_: Optional[int] = os.path.join(self.tmpdirname , "tokenizer.bin") with open(lowerCAmelCase__ , "wb") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , "rb") as handle: SCREAMING_SNAKE_CASE_: Dict = pickle.load(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Any): SCREAMING_SNAKE_CASE_: Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = JumanppTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Tuple): SCREAMING_SNAKE_CASE_: Dict = JumanppTokenizer(normalize_text=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : Dict): SCREAMING_SNAKE_CASE_: str = JumanppTokenizer(trim_whitespace=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 ") , ["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"] , ) @require_jumanpp def _SCREAMING_SNAKE_CASE ( self : List[Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。") , ["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"] , ) def _SCREAMING_SNAKE_CASE ( self : List[str]): SCREAMING_SNAKE_CASE_: Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] SCREAMING_SNAKE_CASE_: Optional[int] = {} for i, token in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Optional[Any] = i SCREAMING_SNAKE_CASE_: Union[str, Any] = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こんにちは"]) self.assertListEqual(tokenizer.tokenize("こんばんは") , ["こん", "##ばんは"]) self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは") , ["こん", "##ばんは", "[UNK]", "こんにちは"]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: str = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp") SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.subword_tokenizer SCREAMING_SNAKE_CASE_: List[Any] = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。") self.assertListEqual(lowerCAmelCase__ , ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"]) SCREAMING_SNAKE_CASE_: str = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは") self.assertListEqual(lowerCAmelCase__ , ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"]) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Dict = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese") SCREAMING_SNAKE_CASE_: Tuple = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _UpperCAmelCase : Optional[Any] = BertJapaneseTokenizer _UpperCAmelCase : List[str] = False def _SCREAMING_SNAKE_CASE ( self : List[Any]): super().setUp() SCREAMING_SNAKE_CASE_: Any = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE_: int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) def _SCREAMING_SNAKE_CASE ( self : List[str] , **lowerCAmelCase__ : Union[str, Any]): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="character" , **lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Union[str, Any]): SCREAMING_SNAKE_CASE_: List[Any] = "こんにちは、世界。 \nこんばんは、世界。" SCREAMING_SNAKE_CASE_: Union[str, Any] = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。" return input_text, output_text def _SCREAMING_SNAKE_CASE ( self : Tuple): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : int): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Any): pass # TODO add if relevant def _SCREAMING_SNAKE_CASE ( self : Optional[int]): SCREAMING_SNAKE_CASE_: Dict = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="character") SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。") self.assertListEqual( lowerCAmelCase__ , ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: Optional[Any] = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"] SCREAMING_SNAKE_CASE_: List[Any] = {} for i, token in enumerate(lowerCAmelCase__): SCREAMING_SNAKE_CASE_: Dict = i SCREAMING_SNAKE_CASE_: Optional[int] = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("こんにちは") , ["こ", "ん", "に", "ち", "は"]) self.assertListEqual(tokenizer.tokenize("こんにちほ") , ["こ", "ん", "に", "ち", "[UNK]"]) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): SCREAMING_SNAKE_CASE_: str = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char") SCREAMING_SNAKE_CASE_: Optional[int] = tokenizer.encode("ありがとう。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.encode("どういたしまして。" , add_special_tokens=lowerCAmelCase__) SCREAMING_SNAKE_CASE_: int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) SCREAMING_SNAKE_CASE_: List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : str): SCREAMING_SNAKE_CASE_: List[str] = "cl-tohoku/bert-base-japanese" SCREAMING_SNAKE_CASE_: List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) class __lowercase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): SCREAMING_SNAKE_CASE_: Union[str, Any] = "cl-tohoku/bert-base-japanese" with self.assertLogs("transformers" , level="WARNING") as cm: BertTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from.")) SCREAMING_SNAKE_CASE_: Union[str, Any] = "bert-base-cased" with self.assertLogs("transformers" , level="WARNING") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( "The tokenizer class you load from this checkpoint is not the same type as the class this function" " is called from."))
13
'''simple docstring''' def SCREAMING_SNAKE_CASE__ ( __A ) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
42
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase_ = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING A__: Optional[int] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class A__ ( UpperCAmelCase__ ): def __init__( self :List[Any] , *SCREAMING_SNAKE_CASE :Optional[int] , **SCREAMING_SNAKE_CASE :Tuple ) -> str: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) requires_backends(self , """vision""" ) self.check_model_type(SCREAMING_SNAKE_CASE ) def __call__( self :int , SCREAMING_SNAKE_CASE :Union[str, List[str], "Image.Image", List["Image.Image"]] , **SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Any: '''simple docstring''' return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :List[Any] , **SCREAMING_SNAKE_CASE :Any ) -> str: '''simple docstring''' return {}, {}, {} def __UpperCAmelCase ( self :str , SCREAMING_SNAKE_CASE :Optional[Any] ) -> int: '''simple docstring''' _a : Dict =load_image(SCREAMING_SNAKE_CASE ) _a : str =image.size _a : Tuple =self.image_processor(images=SCREAMING_SNAKE_CASE , return_tensors=self.framework ) return model_inputs def __UpperCAmelCase ( self :Tuple , SCREAMING_SNAKE_CASE :int ) -> Union[str, Any]: '''simple docstring''' _a : int =self.model(**SCREAMING_SNAKE_CASE ) return model_outputs def __UpperCAmelCase ( self :Optional[int] , SCREAMING_SNAKE_CASE :Optional[Any] ) -> int: '''simple docstring''' _a : List[str] =model_outputs.predicted_depth _a : Optional[int] =torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode="""bicubic""" , align_corners=SCREAMING_SNAKE_CASE ) _a : Optional[Any] =prediction.squeeze().cpu().numpy() _a : Tuple =(output * 2_5_5 / np.max(SCREAMING_SNAKE_CASE )).astype("""uint8""" ) _a : List[str] =Image.fromarray(SCREAMING_SNAKE_CASE ) _a : List[Any] ={} _a : List[str] =predicted_depth _a : int =depth return output_dict
276
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class A__ ( UpperCAmelCase__ ): __UpperCamelCase : torch.FloatTensor class A__ ( UpperCAmelCase__ , UpperCAmelCase__ ): @register_to_config def __init__( self :Optional[Any] , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :Tuple[str] = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE :Tuple[str] = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE :Tuple[int] = (6_4,) , SCREAMING_SNAKE_CASE :int = 1 , SCREAMING_SNAKE_CASE :str = "silu" , SCREAMING_SNAKE_CASE :int = 3 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :int = 2_5_6 , SCREAMING_SNAKE_CASE :int = 3_2 , SCREAMING_SNAKE_CASE :Optional[int] = None , SCREAMING_SNAKE_CASE :float = 0.18_215 , SCREAMING_SNAKE_CASE :str = "group" , ) -> Optional[int]: '''simple docstring''' super().__init__() # pass init params to Encoder _a : Union[str, Any] =Encoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , down_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , double_z=SCREAMING_SNAKE_CASE , ) _a : Optional[int] =vq_embed_dim if vq_embed_dim is not None else latent_channels _a : Optional[int] =nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) _a : str =VectorQuantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=0.25 , remap=SCREAMING_SNAKE_CASE , sane_index_shape=SCREAMING_SNAKE_CASE ) _a : List[str] =nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1 ) # pass init params to Decoder _a : List[str] =Decoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , up_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , norm_type=SCREAMING_SNAKE_CASE , ) @apply_forward_hook def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = True ) -> VQEncoderOutput: '''simple docstring''' _a : Optional[int] =self.encoder(SCREAMING_SNAKE_CASE ) _a : int =self.quant_conv(SCREAMING_SNAKE_CASE ) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE ) @apply_forward_hook def __UpperCAmelCase ( self :List[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = False , SCREAMING_SNAKE_CASE :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' # also go through quantization layer if not force_not_quantize: _a , _a , _a : Tuple =self.quantize(SCREAMING_SNAKE_CASE ) else: _a : str =h _a : Dict =self.post_quant_conv(SCREAMING_SNAKE_CASE ) _a : Union[str, Any] =self.decoder(SCREAMING_SNAKE_CASE , quant if self.config.norm_type == """spatial""" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self :Optional[Any] , SCREAMING_SNAKE_CASE :torch.FloatTensor , SCREAMING_SNAKE_CASE :bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' _a : Tuple =sample _a : int =self.encode(SCREAMING_SNAKE_CASE ).latents _a : List[Any] =self.decode(SCREAMING_SNAKE_CASE ).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE )
276
1
from __future__ import annotations import math lowerCamelCase : Dict ='''2020.9.26''' lowerCamelCase : Optional[int] ='''xcodz-dot, cclaus, dhruvmanila''' def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> tuple[float, float]: if not all(isinstance(__lowerCAmelCase , (float, int) ) for val in locals().values() ): UpperCamelCase__ : Tuple = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = ((x * distance) / (z + distance)) * scale UpperCamelCase__ : Optional[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> tuple[float, float, float]: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError("Axis must be a str" ) UpperCamelCase__ : Union[str, Any] = locals() del input_variables["axis"] if not all(isinstance(__lowerCAmelCase , (float, int) ) for val in input_variables.values() ): UpperCamelCase__ : int = ( "Input values except axis must either be float or int: " f'{list(input_variables.values() )}' ) raise TypeError(__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": UpperCamelCase__ : int = x * math.cos(__lowerCAmelCase ) - y * math.sin(__lowerCAmelCase ) UpperCamelCase__ : Any = y * math.cos(__lowerCAmelCase ) + x * math.sin(__lowerCAmelCase ) UpperCamelCase__ : Optional[int] = z elif axis == "x": UpperCamelCase__ : Union[str, Any] = y * math.cos(__lowerCAmelCase ) - z * math.sin(__lowerCAmelCase ) UpperCamelCase__ : Optional[Any] = z * math.cos(__lowerCAmelCase ) + y * math.sin(__lowerCAmelCase ) UpperCamelCase__ : Tuple = x elif axis == "y": UpperCamelCase__ : List[Any] = x * math.cos(__lowerCAmelCase ) - z * math.sin(__lowerCAmelCase ) UpperCamelCase__ : Optional[int] = z * math.cos(__lowerCAmelCase ) + x * math.sin(__lowerCAmelCase ) UpperCamelCase__ : int = y else: raise ValueError("not a valid axis, choose one of 'x', 'y', 'z'" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 10.0, 10.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, "y", 90.0) = }""")
196
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class __a ( A__ ): _lowerCAmelCase : str = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCAmelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowerCAmelCase : ClassVar[Features] = Features({} ) _lowerCAmelCase : str = "text" @property def __lowercase ( self : str ): '''simple docstring''' return {self.text_column: "text"}
196
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def _a ( _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ = int(number**0.5 ) return number == sq * sq def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> tuple[int, int]: snake_case_ = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den snake_case_ = x_den * y_den * z_den snake_case_ = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def _a ( _SCREAMING_SNAKE_CASE = 35 ) -> int: snake_case_ = set() snake_case_ = 42 snake_case_ = Fraction(0 ) snake_case_ = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 snake_case_ = x_num * y_den + x_den * y_num snake_case_ = x_den * y_den snake_case_ = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case_ = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 snake_case_ = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) snake_case_ = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): snake_case_ = int(sqrt(_SCREAMING_SNAKE_CASE ) ) snake_case_ = int(sqrt(_SCREAMING_SNAKE_CASE ) ) snake_case_ = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case_ = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 snake_case_ = x_num * y_num snake_case_ = x_den * y_num + x_num * y_den snake_case_ = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case_ = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 snake_case_ = x_num * x_num * y_num * y_num snake_case_ = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): snake_case_ = int(sqrt(_SCREAMING_SNAKE_CASE ) ) snake_case_ = int(sqrt(_SCREAMING_SNAKE_CASE ) ) snake_case_ = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: snake_case_ = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f"""{solution() = }""")
347
"""simple docstring""" import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) class __A (snake_case__): '''simple docstring''' def __init__( self : str , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->None: """simple docstring""" warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_ )
347
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _A ( self : Optional[Any] ): UpperCamelCase :List[str] = tempfile.mkdtemp() # fmt: off UpperCamelCase :int = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on UpperCamelCase :Tuple = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCamelCase :Union[str, Any] = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] UpperCamelCase :Optional[int] = {"""unk_token""": """<unk>"""} UpperCamelCase :Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase :Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__lowerCamelCase ) ) UpperCamelCase :Dict = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } UpperCamelCase :Union[str, Any] = os.path.join(self.tmpdirname , __lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__lowerCamelCase , __lowerCamelCase ) def _A ( self : str , **__lowerCamelCase : Union[str, Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : str , **__lowerCamelCase : List[str] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : List[Any] , **__lowerCamelCase : Any ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : List[str] ): shutil.rmtree(self.tmpdirname ) def _A ( self : Any ): UpperCamelCase :Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase :Any = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def _A ( self : Optional[int] ): UpperCamelCase :List[str] = self.get_tokenizer() UpperCamelCase :List[Any] = self.get_rust_tokenizer() UpperCamelCase :Any = self.get_image_processor() UpperCamelCase :Optional[int] = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase :Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__lowerCamelCase ) UpperCamelCase :Dict = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase :Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , __lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase :Dict = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) UpperCamelCase :Union[str, Any] = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 ) UpperCamelCase :Union[str, Any] = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __lowerCamelCase ) def _A ( self : Tuple ): UpperCamelCase :Dict = self.get_image_processor() UpperCamelCase :Dict = self.get_tokenizer() UpperCamelCase :List[str] = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCamelCase :str = self.prepare_image_inputs() UpperCamelCase :List[Any] = image_processor(__lowerCamelCase , return_tensors="""np""" ) UpperCamelCase :Tuple = processor(images=__lowerCamelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _A ( self : Dict ): UpperCamelCase :Any = self.get_image_processor() UpperCamelCase :Tuple = self.get_tokenizer() UpperCamelCase :int = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCamelCase :Optional[int] = """lower newer""" UpperCamelCase :int = processor(text=__lowerCamelCase ) UpperCamelCase :Optional[Any] = tokenizer(__lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _A ( self : Union[str, Any] ): UpperCamelCase :List[str] = self.get_image_processor() UpperCamelCase :List[str] = self.get_tokenizer() UpperCamelCase :Optional[int] = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCamelCase :Optional[Any] = """lower newer""" UpperCamelCase :Union[str, Any] = self.prepare_image_inputs() UpperCamelCase :Optional[Any] = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__lowerCamelCase ): processor() def _A ( self : Optional[int] ): UpperCamelCase :Dict = self.get_image_processor() UpperCamelCase :List[str] = self.get_tokenizer() UpperCamelCase :List[Any] = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCamelCase :Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase :List[str] = processor.batch_decode(__lowerCamelCase ) UpperCamelCase :Dict = tokenizer.batch_decode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def _A ( self : int ): UpperCamelCase :List[Any] = self.get_image_processor() UpperCamelCase :str = self.get_tokenizer() UpperCamelCase :int = CLIPProcessor(tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase ) UpperCamelCase :Optional[int] = """lower newer""" UpperCamelCase :Optional[int] = self.prepare_image_inputs() UpperCamelCase :Union[str, Any] = processor(text=__lowerCamelCase , images=__lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
62
from __future__ import annotations from collections import deque class _SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] , __lowerCamelCase : list[str] ): UpperCamelCase :list[dict] = [] self.adlist.append( {"""value""": """""", """next_states""": [], """fail_state""": 0, """output""": []} ) for keyword in keywords: self.add_keyword(__lowerCamelCase ) self.set_fail_transitions() def _A ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _A ( self : int , __lowerCamelCase : str ): UpperCamelCase :List[str] = 0 for character in keyword: UpperCamelCase :List[Any] = self.find_next_state(__lowerCamelCase , __lowerCamelCase ) if next_state is None: self.adlist.append( { """value""": character, """next_states""": [], """fail_state""": 0, """output""": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCamelCase :Optional[int] = len(self.adlist ) - 1 else: UpperCamelCase :Union[str, Any] = next_state self.adlist[current_state]["output"].append(__lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :deque = deque() for node in self.adlist[0]["next_states"]: q.append(__lowerCamelCase ) UpperCamelCase :Tuple = 0 while q: UpperCamelCase :Union[str, Any] = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__lowerCamelCase ) UpperCamelCase :Optional[int] = self.adlist[r]["""fail_state"""] while ( self.find_next_state(__lowerCamelCase , self.adlist[child]["""value"""] ) is None and state != 0 ): UpperCamelCase :List[Any] = self.adlist[state]["""fail_state"""] UpperCamelCase :List[str] = self.find_next_state( __lowerCamelCase , self.adlist[child]["""value"""] ) if self.adlist[child]["fail_state"] is None: UpperCamelCase :Any = 0 UpperCamelCase :Tuple = ( self.adlist[child]["""output"""] + self.adlist[self.adlist[child]["""fail_state"""]]["""output"""] ) def _A ( self : Union[str, Any] , __lowerCamelCase : str ): UpperCamelCase :dict = {} # returns a dict with keywords and list of its occurrences UpperCamelCase :Union[str, Any] = 0 for i in range(len(__lowerCamelCase ) ): while ( self.find_next_state(__lowerCamelCase , string[i] ) is None and current_state != 0 ): UpperCamelCase :List[Any] = self.adlist[current_state]["""fail_state"""] UpperCamelCase :Optional[Any] = self.find_next_state(__lowerCamelCase , string[i] ) if next_state is None: UpperCamelCase :Dict = 0 else: UpperCamelCase :List[str] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCamelCase :Optional[int] = [] result[key].append(i - len(__lowerCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
62
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _A = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class lowercase_ ( A__ , unittest.TestCase ): A__ : Any = XLMProphetNetTokenizer A__ : Any = False A__ : List[Any] = True def lowerCamelCase_ ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase_ = XLMProphetNetTokenizer(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = '''[PAD]''' UpperCamelCase_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(__snake_case ) , 1_0_1_2 ) def lowerCamelCase_ ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_1_2 ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = XLMProphetNetTokenizer(__snake_case , keep_accents=__snake_case ) UpperCamelCase_ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__snake_case , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) UpperCamelCase_ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCamelCase_ = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, -9, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, -9, 4] ] , ) UpperCamelCase_ = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def lowerCamelCase_ ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = '''Hello World!''' UpperCamelCase_ = [3_5_3_8_9, 6_6_7_2, 4_9, 2] self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = {'''input_ids''': [[1_1_0_7_3, 8_2_7_8_3, 1_8, 2_6, 8_2_7_8_3, 5_4_9, 5_1_5_4_0, 2_4_8, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 2_1_5_1_8_6, 1_3_2_5, 1_4_7, 1_7_2_0_9, 1_3_0_1, 2_1_7, 2_0, 5_6_3_7_0, 5_3, 1_2_2_0_2_0, 2_0, 1_6_4_7_7, 2_7, 8_7_3_5_5, 4_5_4_8, 2_0, 4_7_2_8, 7_8_3_9_2, 1_7, 1_5_9_9_6_9, 1_8, 2_6, 2_4_4_9_1, 6_2_9, 1_5, 5_3_8, 2_2_7_0_4, 5_4_3_9, 1_5, 2_7_8_8, 2_4_4_9_1, 9_8_8_5, 1_5, 4_3_5_3_4, 6_0_5, 1_5, 8_1_4, 1_8_4_0_3, 3_3_2_0_0, 2_9, 1_5, 4_3_5_3_4, 2_4_4_5_8, 1_2_4_1_0, 1_1_1, 2_4_9_6_6, 8_3_6_6_9, 9_6_3_7, 1_4_4_0_6_8, 2_6, 8_5_0, 2_2_3_4_6, 2_7, 1_4_7, 2_4_9_6_6, 8_3_6_6_9, 8_3_4_9_0, 2_6, 3_9_1_1_3, 7_3_5, 2_7, 6_8_9, 6_5_6, 2_8_0_0, 1_3_3_9, 4_6_0_0, 5_3, 1_2_2_0_2_0, 1_1_5_7_8_5, 3_4, 8_1_6, 1_3_3_9, 4_6_8_8_7, 1_8, 1_4_7, 5_3_9_0_5, 1_9_5_1, 4_2_2_3_8, 4_1_1_7_0, 1_7_7_3_2, 8_3_4, 4_3_6, 1_5, 2_7_5_2_3, 9_8_7_3_3, 2_1_7, 1_4_7, 5_5_4_2, 4_9_8_1, 9_3_0, 1_7_3_4_7, 1_6, 2], [2_0_0_9_1, 6_2_9, 9_4, 8_2_7_8_6, 5_8, 4_9_0, 2_0, 1_5_2_8, 8_4, 5_3_9_0_5, 3_4_4, 8_0_5_9_2, 1_1_0_1_2_8, 1_8_8_2_2, 5_2_6_7, 1_3_0_6, 6_2, 1_5_2_5_3_7, 3_0_8, 7_9_9_7, 4_0_1, 1_2_4_4_2_7, 5_4_9, 3_5_4_4_2, 2_2_5, 1_0_9, 1_5_0_5_5, 2_5_7_4_8, 1_4_7, 7_1_1_9, 4_3_7_1_2, 3_4, 7_6_7, 1_3_5_3_6_6, 1_8, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_9_2, 6_3_7_8_4, 1_1_9_4_6_6, 1_7, 1_4_7_8_0_8, 8_8_2_1_4, 1_8, 6_5_6, 8_1, 3_2, 3_2_9_6, 1_0_2_8_0, 1_6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
122
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self : Union[str, Any] , __snake_case : UNetaDModel , __snake_case : ScoreSdeVeScheduler ) -> int: super().__init__() self.register_modules(unet=__snake_case , scheduler=__snake_case ) @torch.no_grad() def __call__( self : Optional[int] , __snake_case : int = 1 , __snake_case : int = 2000 , __snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case : Optional[str] = "pil" , __snake_case : bool = True , **__snake_case : Optional[int] , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase : str = self.unet.config.sample_size UpperCAmelCase : Union[str, Any] = (batch_size, 3, img_size, img_size) UpperCAmelCase : int = self.unet UpperCAmelCase : Any = randn_tensor(__snake_case , generator=__snake_case ) * self.scheduler.init_noise_sigma UpperCAmelCase : List[Any] = sample.to(self.device ) self.scheduler.set_timesteps(__snake_case ) self.scheduler.set_sigmas(__snake_case ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): UpperCAmelCase : Any = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): UpperCAmelCase : Union[str, Any] = self.unet(__snake_case , __snake_case ).sample UpperCAmelCase : Optional[Any] = self.scheduler.step_correct(__snake_case , __snake_case , generator=__snake_case ).prev_sample # prediction step UpperCAmelCase : Optional[Any] = model(__snake_case , __snake_case ).sample UpperCAmelCase : List[str] = self.scheduler.step_pred(__snake_case , __snake_case , __snake_case , generator=__snake_case ) UpperCAmelCase , UpperCAmelCase : Optional[Any] = output.prev_sample, output.prev_sample_mean UpperCAmelCase : int = sample_mean.clamp(0 , 1 ) UpperCAmelCase : Union[str, Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCAmelCase : Optional[Any] = self.numpy_to_pil(__snake_case ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__snake_case )
23
0
'''simple docstring''' import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print('Googling.....') __A ="""https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) __A =requests.get(url, headers={'UserAgent': UserAgent().random}) # res.raise_for_status() with open('project1a.html', 'wb') as out_file: # only for knowing the class for data in res.iter_content(1_00_00): out_file.write(data) __A =BeautifulSoup(res.text, 'html.parser') __A =list(soup.select('.eZt8xd'))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get('href')) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
364
'''simple docstring''' import os from datetime import datetime as dt from github import Github __A =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): UpperCAmelCase__ : Union[str, Any] = Github(os.environ["""GITHUB_TOKEN"""] ) UpperCAmelCase__ : Any = g.get_repo("""huggingface/diffusers""" ) UpperCAmelCase__ : Optional[int] = repo.get_issues(state="""open""" ) for issue in open_issues: UpperCAmelCase__ : Any = sorted(issue.get_comments() , key=lambda UpperCamelCase__ : i.created_at , reverse=UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="""closed""" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="""open""" ) issue.remove_from_labels("""stale""" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( """This issue has been automatically marked as stale because it has not had """ """recent activity. If you think this still needs to be addressed """ """please comment on this thread.\n\nPlease note that issues that do not follow the """ """[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) """ """are likely to be ignored.""" ) issue.add_to_labels("""stale""" ) if __name__ == "__main__": main()
283
0
'''simple docstring''' import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=7 , _lowerCamelCase=3 , _lowerCamelCase=18 , _lowerCamelCase=30 , _lowerCamelCase=400 , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=[0.5, 0.5, 0.5] , _lowerCamelCase=False , ) -> Optional[int]: A_ : Union[str, Any] = size if size is not None else {"""height""": 20, """width""": 20} A_ : Tuple = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} A_ : Optional[Any] = parent A_ : Optional[int] = batch_size A_ : Union[str, Any] = num_channels A_ : str = image_size A_ : Tuple = min_resolution A_ : Dict = max_resolution A_ : str = do_resize A_ : Tuple = size A_ : int = do_center_crop A_ : Dict = crop_size A_ : Tuple = do_normalize A_ : List[str] = image_mean A_ : Optional[Any] = image_std A_ : Any = do_reduce_labels def UpperCAmelCase_ ( self ) -> Any: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_reduce_labels": self.do_reduce_labels, } def UpperCAmelCase ( ) -> List[str]: """simple docstring""" A_ : Any = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(dataset[0]["""file"""] ) A_ : Dict = Image.open(dataset[1]["""file"""] ) return image, map def UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" A_ : Tuple = load_dataset("""hf-internal-testing/fixtures_ade20k""" , split="""test""" ) A_ : Tuple = Image.open(ds[0]["""file"""] ) A_ : List[Any] = Image.open(ds[1]["""file"""] ) A_ : Any = Image.open(ds[2]["""file"""] ) A_ : str = Image.open(ds[3]["""file"""] ) return [imagea, imagea], [mapa, mapa] @require_torch @require_vision class _lowerCAmelCase ( __A, unittest.TestCase ): """simple docstring""" lowerCamelCase = BeitImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ) -> Dict: A_ : List[Any] = BeitImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ) -> Optional[int]: A_ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """size""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """center_crop""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(_lowerCamelCase , """image_std""" ) ) def UpperCAmelCase_ ( self ) -> Optional[Any]: A_ : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 20, """width""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) A_ : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=_lowerCamelCase ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) self.assertEqual(image_processor.do_reduce_labels , _lowerCamelCase ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self ) -> Dict: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A_ : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : int = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> List[str]: # Initialize image_processing A_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : List[Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> str: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input A_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A_ : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCAmelCase_ ( self ) -> Optional[int]: # Initialize image_processing A_ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) A_ : Optional[int] = [] for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) maps.append(torch.zeros(image.shape[-2:] ).long() ) # Test not batched input A_ : Union[str, Any] = image_processing(image_inputs[0] , maps[0] , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched A_ : Optional[Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test not batched input (PIL images) A_ , A_ : List[Any] = prepare_semantic_single_inputs() A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 1, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) # Test batched input (PIL images) A_ , A_ : str = prepare_semantic_batch_inputs() A_ : Any = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertEqual( encoding["""pixel_values"""].shape , ( 2, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual( encoding["""labels"""].shape , ( 2, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) self.assertEqual(encoding["""labels"""].dtype , torch.long ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 ) def UpperCAmelCase_ ( self ) -> Tuple: # Initialize image_processing A_ : Any = self.image_processing_class(**self.image_processor_dict ) # ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150 A_ , A_ : Tuple = prepare_semantic_single_inputs() A_ : str = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 150 ) A_ : str = True A_ : Union[str, Any] = image_processing(_lowerCamelCase , _lowerCamelCase , return_tensors="""pt""" ) self.assertTrue(encoding["""labels"""].min().item() >= 0 ) self.assertTrue(encoding["""labels"""].max().item() <= 255 )
344
'''simple docstring''' from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def UpperCAmelCase ( a_ ) -> Dict[str, torch.Tensor]: """simple docstring""" A_ : List[str] = [] A_ : Dict = [] A_ : List[Any] = [] for rt in rc.restypes: A_ : Tuple = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) A_ : Union[str, Any] = {name: i for i, name in enumerate(a_ )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 1_4 ) restype_atomaa_to_atomaa_list.append([0] * 3_7 ) restype_atomaa_mask_list.append([0.0] * 1_4 ) A_ : Tuple = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : Optional[int] = torch.tensor( a_ , dtype=torch.intaa , device=protein["""aatype"""].device , ) A_ : List[Any] = torch.tensor( a_ , dtype=torch.floataa , device=protein["""aatype"""].device , ) A_ : Optional[int] = protein["""aatype"""].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein A_ : Dict = restype_atomaa_to_atomaa[protein_aatype] A_ : Optional[Any] = restype_atomaa_mask[protein_aatype] A_ : Any = residx_atomaa_mask A_ : List[str] = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back A_ : Tuple = restype_atomaa_to_atomaa[protein_aatype] A_ : Tuple = residx_atomaa_to_atomaa.long() # create the corresponding mask A_ : Optional[Any] = torch.zeros([2_1, 3_7] , dtype=torch.floataa , device=protein["""aatype"""].device ) for restype, restype_letter in enumerate(rc.restypes ): A_ : Optional[Any] = rc.restype_atoa[restype_letter] A_ : Any = rc.residue_atoms[restype_name] for atom_name in atom_names: A_ : Any = rc.atom_order[atom_name] A_ : Optional[int] = 1 A_ : Optional[int] = restype_atomaa_mask[protein_aatype] A_ : Dict = residx_atomaa_mask return protein def UpperCAmelCase ( a_ ) -> Dict[str, np.ndarray]: """simple docstring""" A_ : Union[str, Any] = tree_map(lambda a_ : torch.tensor(a_ , device=batch["""aatype"""].device ) , a_ , np.ndarray ) A_ : Optional[int] = tensor_tree_map(lambda a_ : np.array(a_ ) , make_atomaa_masks(a_ ) ) return out
344
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCamelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCamelCase : Optional[Any] = '\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n' def A ( _lowercase , _lowercase , _lowercase=8 ): SCREAMING_SNAKE_CASE : Dict = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 SCREAMING_SNAKE_CASE : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase__ ( lowercase__): def __init__( self : Tuple , UpperCamelCase__ : UNetaDConditionModel , UpperCamelCase__ : DDPMScheduler , UpperCamelCase__ : VQModel , ): '''simple docstring''' super().__init__() self.register_modules( unet=_a , scheduler=_a , movq=_a , ) SCREAMING_SNAKE_CASE : Optional[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __A ( self : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' if latents is None: SCREAMING_SNAKE_CASE : List[str] = randn_tensor(_a , generator=_a , device=_a , dtype=_a ) else: if latents.shape != shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) SCREAMING_SNAKE_CASE : Optional[int] = latents.to(_a ) SCREAMING_SNAKE_CASE : List[str] = latents * scheduler.init_noise_sigma return latents def __A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any]=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) SCREAMING_SNAKE_CASE : Optional[int] = torch.device(f"""cuda:{gpu_id}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a , _a ) def __A ( self : List[Any] , UpperCamelCase__ : int=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.device(f"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE : int = None for cpu_offloaded_model in [self.unet, self.movq]: SCREAMING_SNAKE_CASE : Union[str, Any] = cpu_offload_with_hook(_a , _a , prev_module_hook=_a ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE : Any = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __A ( self : Dict ): '''simple docstring''' if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_a , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_a ) def __call__( self : List[Any] , UpperCamelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCamelCase__ : int = 512 , UpperCamelCase__ : int = 512 , UpperCamelCase__ : int = 100 , UpperCamelCase__ : float = 4.0 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase__ : Optional[torch.FloatTensor] = None , UpperCamelCase__ : Optional[str] = "pil" , UpperCamelCase__ : bool = True , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self._execution_device SCREAMING_SNAKE_CASE : Tuple = guidance_scale > 1.0 if isinstance(_a , _a ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat(_a , dim=0 ) SCREAMING_SNAKE_CASE : Optional[int] = image_embeds.shape[0] * num_images_per_prompt if isinstance(_a , _a ): SCREAMING_SNAKE_CASE : Tuple = torch.cat(_a , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : List[str] = image_embeds.repeat_interleave(_a , dim=0 ) SCREAMING_SNAKE_CASE : List[str] = negative_image_embeds.repeat_interleave(_a , dim=0 ) SCREAMING_SNAKE_CASE : Optional[int] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_a ) self.scheduler.set_timesteps(_a , device=_a ) SCREAMING_SNAKE_CASE : int = self.scheduler.timesteps SCREAMING_SNAKE_CASE : List[Any] = self.unet.config.in_channels SCREAMING_SNAKE_CASE : Optional[int] = downscale_height_and_width(_a , _a , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _a , _a , _a , self.scheduler , ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE : Union[str, Any] = {'image_embeds': image_embeds} SCREAMING_SNAKE_CASE : Any = self.unet( sample=_a , timestep=_a , encoder_hidden_states=_a , added_cond_kwargs=_a , return_dict=_a , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE : Optional[Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE : str = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE : str = self.scheduler.step( _a , _a , _a , generator=_a , )[0] # post-processing SCREAMING_SNAKE_CASE : Tuple = self.movq.decode(_a , force_not_quantize=_a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE : str = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : Union[str, Any] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE : str = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
355
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( _lowercase , _lowercase ): # Load checkpoint SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' ) SCREAMING_SNAKE_CASE : List[str] = chkpt['''model'''] # We have the base model one level deeper than the original XLM repository SCREAMING_SNAKE_CASE : int = {} for k, v in state_dict.items(): if "pred_layer" in k: SCREAMING_SNAKE_CASE : Optional[Any] = v else: SCREAMING_SNAKE_CASE : List[Any] = v SCREAMING_SNAKE_CASE : Dict = chkpt['''params'''] SCREAMING_SNAKE_CASE : Optional[Any] = {n: v for n, v in config.items() if not isinstance(_lowercase , (torch.FloatTensor, numpy.ndarray) )} SCREAMING_SNAKE_CASE : Any = chkpt['''dico_word2id'''] SCREAMING_SNAKE_CASE : str = {s + '''</w>''' if s.find('''@@''' ) == -1 and i > 13 else s.replace('''@@''' , '''''' ): i for s, i in vocab.items()} # Save pytorch-model SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME SCREAMING_SNAKE_CASE : List[str] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME SCREAMING_SNAKE_CASE : Dict = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''vocab_file'''] print(f"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(_lowercase , _lowercase ) print(f"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) print(f"""Save vocab file to {pytorch_config_dump_path}""" ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(_lowercase , indent=2 ) + '''\n''' ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCamelCase : List[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
258
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class __a ( __UpperCamelCase ): def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> None: '''simple docstring''' warnings.warn( 'The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use BeitImageProcessor instead.' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
196
def snake_case_ ( snake_case ) -> int: if n == 1 or not isinstance(snake_case , snake_case ): return 0 elif n == 2: return 1 else: lowercase__: Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def snake_case_ ( snake_case ) -> int: lowercase__: int = 0 lowercase__: int = 2 while digits < n: index += 1 lowercase__: Tuple = len(str(fibonacci(snake_case ) ) ) return index def snake_case_ ( snake_case = 10_00 ) -> int: return fibonacci_digits_index(snake_case ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
196
1
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def UpperCAmelCase_ ( _A , _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = multiprocessing.Manager() SCREAMING_SNAKE_CASE__ = manager.list() SCREAMING_SNAKE_CASE__ = multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil SCREAMING_SNAKE_CASE__ = shutil.rmtree SCREAMING_SNAKE_CASE__ = os.rmdir SCREAMING_SNAKE_CASE__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: SCREAMING_SNAKE_CASE__ = {} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. SCREAMING_SNAKE_CASE__ = rmtree SCREAMING_SNAKE_CASE__ = rmdir SCREAMING_SNAKE_CASE__ = chdir @contextlib.contextmanager def UpperCAmelCase_ ( _A ): '''simple docstring''' def signal_handler(_A , _A ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def UpperCAmelCase_ ( ): '''simple docstring''' with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class UpperCAmelCase__ ( __lowerCAmelCase ): """simple docstring""" pass class UpperCAmelCase__ ( io.StringIO ): """simple docstring""" def lowercase_ ( self : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : Dict ) -> List[str]: raise OSError def lowercase_ ( self : Any , *__lowerCamelCase : int , **__lowerCamelCase : Tuple ) -> Tuple: raise OSError def lowercase_ ( self : str , *__lowerCamelCase : int , **__lowerCamelCase : Any ) -> str: raise OSError def lowercase_ ( self : Optional[Any] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Any ) -> str: return False class UpperCAmelCase__ ( contextlib._RedirectStream ): # type: ignore """simple docstring""" a = '''stdin''' @contextlib.contextmanager def UpperCAmelCase_ ( _A ): '''simple docstring''' if root == ".": yield return SCREAMING_SNAKE_CASE__ = os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def UpperCAmelCase_ ( _A=None ): '''simple docstring''' if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None import os SCREAMING_SNAKE_CASE__ = '''1''' SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None import shutil SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None import subprocess SCREAMING_SNAKE_CASE__ = None # type: ignore SCREAMING_SNAKE_CASE__ = None import sys SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None
365
from functools import reduce _SCREAMING_SNAKE_CASE : Any = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase_ ( _A = N ): '''simple docstring''' return max( # mypy cannot properly interpret reduce int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) ) for i in range(len(_A ) - 12 ) ) if __name__ == "__main__": print(F"{solution() = }")
218
0
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=False , A_=True , A_="None" , A_=3 , A_=4 , A_=None , ) -> Optional[int]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =relative_attention __UpperCamelCase =position_biased_input __UpperCamelCase =pos_att_type __UpperCamelCase =scope def _a ( self ) -> List[Any]: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self ) -> str: return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def _a ( self , A_ ) -> Tuple: self.parent.assertListEqual(list(result.loss.size() ) , [] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: __UpperCamelCase =DebertaVaModel(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ )[0] __UpperCamelCase =model(A_ , token_type_ids=A_ )[0] __UpperCamelCase =model(A_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: __UpperCamelCase =DebertaVaForMaskedLM(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Dict: __UpperCamelCase =self.num_labels __UpperCamelCase =DebertaVaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(A_ ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =DebertaVaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model(A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: __UpperCamelCase =DebertaVaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =DebertaVaForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase =model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self ) -> Optional[Any]: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase__ : Union[str, Any] = ( { "feature-extraction": DebertaVaModel, "fill-mask": DebertaVaForMaskedLM, "question-answering": DebertaVaForQuestionAnswering, "text-classification": DebertaVaForSequenceClassification, "token-classification": DebertaVaForTokenClassification, "zero-shot": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : List[Any] = False UpperCAmelCase__ : int = False UpperCAmelCase__ : Tuple = False UpperCAmelCase__ : List[str] = False def _a ( self ) -> Optional[int]: __UpperCamelCase =DebertaVaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self ) -> Dict: self.config_tester.run_common_tests() def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*A_ ) def _a ( self ) -> Optional[int]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*A_ ) def _a ( self ) -> List[str]: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*A_ ) @slow def _a ( self ) -> Tuple: for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =DebertaVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='Model not available yet' ) def _a ( self ) -> int: pass @slow def _a ( self ) -> Tuple: __UpperCamelCase =DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) __UpperCamelCase =torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]] ) __UpperCamelCase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __UpperCamelCase =model(A_ , attention_mask=A_ )[0] # compare the actual values for a slice. __UpperCamelCase =torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , A_ , atol=1E-4 ) , f'{output[:, 1:4, 1:4]}' )
62
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated _A = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ _A = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int ): __UpperCamelCase =numpy.dtype(numpy.uintaa ).newbyteorder('>' ) return numpy.frombuffer(bytestream.read(4 ) , dtype=SCREAMING_SNAKE_CASE__ )[0] @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_51: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name) ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bytestream.read(rows * cols * num_images ) __UpperCamelCase =numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) __UpperCamelCase =data.reshape(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 1 ) return data @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.one_hot on tensors.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ): __UpperCamelCase =labels_dense.shape[0] __UpperCamelCase =numpy.arange(SCREAMING_SNAKE_CASE__ ) * num_classes __UpperCamelCase =numpy.zeros((num_labels, num_classes) ) __UpperCamelCase =1 return labels_one_hot @deprecated(SCREAMING_SNAKE_CASE__ , 'Please use tf.data to implement this functionality.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : str=10 ): print('Extracting' , f.name ) with gzip.GzipFile(fileobj=SCREAMING_SNAKE_CASE__ ) as bytestream: __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) if magic != 20_49: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name) ) __UpperCamelCase =_readaa(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =bytestream.read(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =numpy.frombuffer(SCREAMING_SNAKE_CASE__ , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return labels class UpperCAmelCase__ : """simple docstring""" @deprecated( A_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self , A_ , A_ , A_=False , A_=False , A_=dtypes.floataa , A_=True , A_=None , ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase =random_seed.get_seed(A_ ) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda ) __UpperCamelCase =dtypes.as_dtype(A_ ).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype ) if fake_data: __UpperCamelCase =10000 __UpperCamelCase =one_hot else: assert ( images.shape[0] == labels.shape[0] ), f'images.shape: {images.shape} labels.shape: {labels.shape}' __UpperCamelCase =images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 __UpperCamelCase =images.reshape( images.shape[0] , images.shape[1] * images.shape[2] ) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. __UpperCamelCase =images.astype(numpy.floataa ) __UpperCamelCase =numpy.multiply(A_ , 1.0 / 255.0 ) __UpperCamelCase =images __UpperCamelCase =labels __UpperCamelCase =0 __UpperCamelCase =0 @property def _a ( self ) -> Tuple: return self._images @property def _a ( self ) -> Union[str, Any]: return self._labels @property def _a ( self ) -> Optional[Any]: return self._num_examples @property def _a ( self ) -> List[str]: return self._epochs_completed def _a ( self , A_ , A_=False , A_=True ) -> Optional[Any]: if fake_data: __UpperCamelCase =[1] * 784 __UpperCamelCase =[1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(A_ )], [fake_label for _ in range(A_ )], ) __UpperCamelCase =self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: __UpperCamelCase =numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __UpperCamelCase =self.images[perma] __UpperCamelCase =self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch __UpperCamelCase =self._num_examples - start __UpperCamelCase =self._images[start : self._num_examples] __UpperCamelCase =self._labels[start : self._num_examples] # Shuffle the data if shuffle: __UpperCamelCase =numpy.arange(self._num_examples ) numpy.random.shuffle(A_ ) __UpperCamelCase =self.images[perm] __UpperCamelCase =self.labels[perm] # Start next epoch __UpperCamelCase =0 __UpperCamelCase =batch_size - rest_num_examples __UpperCamelCase =self._index_in_epoch __UpperCamelCase =self._images[start:end] __UpperCamelCase =self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0 ), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ), ) else: self._index_in_epoch += batch_size __UpperCamelCase =self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(SCREAMING_SNAKE_CASE__ , 'Please write your own downloading logic.' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ): if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): gfile.MakeDirs(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not gfile.Exists(SCREAMING_SNAKE_CASE__ ): urllib.request.urlretrieve(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # noqa: S310 with gfile.GFile(SCREAMING_SNAKE_CASE__ ) as f: __UpperCamelCase =f.size() print('Successfully downloaded' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'bytes.' ) return filepath @deprecated( SCREAMING_SNAKE_CASE__ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')' ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int=False , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Union[str, Any]=dtypes.floataa , SCREAMING_SNAKE_CASE__ : Optional[int]=True , SCREAMING_SNAKE_CASE__ : str=50_00 , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : str=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ , seed=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =fake() __UpperCamelCase =fake() __UpperCamelCase =fake() return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ ) if not source_url: # empty string check __UpperCamelCase =DEFAULT_SOURCE_URL __UpperCamelCase ='train-images-idx3-ubyte.gz' __UpperCamelCase ='train-labels-idx1-ubyte.gz' __UpperCamelCase ='t10k-images-idx3-ubyte.gz' __UpperCamelCase ='t10k-labels-idx1-ubyte.gz' __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_images(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + train_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_images_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_images(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_maybe_download( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , source_url + test_labels_file ) with gfile.Open(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: __UpperCamelCase =_extract_labels(SCREAMING_SNAKE_CASE__ , one_hot=SCREAMING_SNAKE_CASE__ ) if not 0 <= validation_size <= len(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =( 'Validation size should be between 0 and ' F'{len(SCREAMING_SNAKE_CASE__ )}. Received: {validation_size}.' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =train_images[:validation_size] __UpperCamelCase =train_labels[:validation_size] __UpperCamelCase =train_images[validation_size:] __UpperCamelCase =train_labels[validation_size:] __UpperCamelCase ={'dtype': dtype, 'reshape': reshape, 'seed': seed} __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =_DataSet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) return _Datasets(train=SCREAMING_SNAKE_CASE__ , validation=SCREAMING_SNAKE_CASE__ , test=SCREAMING_SNAKE_CASE__ )
62
1
"""simple docstring""" import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='''%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s''', datefmt='''%Y-%m-%d %H:%M:%S''', level=os.environ.get('''LOGLEVEL''', '''INFO''').upper(), stream=sys.stdout, ) __UpperCamelCase = logging.getLogger(__name__) __UpperCamelCase = {"facebook/bart-base": BartForConditionalGeneration} __UpperCamelCase = {"facebook/bart-base": BartTokenizer} def UpperCAmelCase ( ) -> Optional[Any]: snake_case_ = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.' ) parser.add_argument( '--validation_file' , type=UpperCAmelCase , default=UpperCAmelCase , help='A csv or a json file containing the validation data.' ) parser.add_argument( '--max_length' , type=UpperCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=UpperCAmelCase , default=UpperCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=UpperCAmelCase , ) parser.add_argument( '--config_name' , type=UpperCAmelCase , default=UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=UpperCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=UpperCAmelCase , default=UpperCAmelCase , help='Where to store the final ONNX file.' ) snake_case_ = parser.parse_args() return args def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase="cpu" ) -> Optional[int]: snake_case_ = model_dict[model_name].from_pretrained(UpperCAmelCase ).to(UpperCAmelCase ) snake_case_ = tokenizer_dict[model_name].from_pretrained(UpperCAmelCase ) if model_name in ["facebook/bart-base"]: snake_case_ = 0 snake_case_ = None snake_case_ = 0 return huggingface_model, tokenizer def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str: model.eval() snake_case_ = None snake_case_ = torch.jit.script(BARTBeamSearchGenerator(UpperCAmelCase ) ) with torch.no_grad(): snake_case_ = """My friends are cool but they eat too many carbs.""" snake_case_ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors='pt' ).to(model.device ) snake_case_ = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=UpperCAmelCase , max_length=UpperCAmelCase , early_stopping=UpperCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( UpperCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , UpperCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=UpperCAmelCase , ) logger.info('Model exported to {}'.format(UpperCAmelCase ) ) snake_case_ = remove_dup_initializers(os.path.abspath(UpperCAmelCase ) ) logger.info('Deduplicated and optimized model written to {}'.format(UpperCAmelCase ) ) snake_case_ = onnxruntime.InferenceSession(UpperCAmelCase ) snake_case_ = ort_sess.run( UpperCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(UpperCAmelCase ), 'max_length': np.array(UpperCAmelCase ), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3 ) logger.info('Model outputs from torch and ONNX Runtime are similar.' ) logger.info('Success.' ) def UpperCAmelCase ( ) -> Optional[int]: snake_case_ = parse_args() snake_case_ = 5 snake_case_ = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() snake_case_ = torch.device(args.device ) snake_case_ = load_model_tokenizer(args.model_name_or_path , UpperCAmelCase ) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined' ) model.to(UpperCAmelCase ) if args.max_length: snake_case_ = args.max_length if args.num_beams: snake_case_ = args.num_beams if args.output_file_path: snake_case_ = args.output_file_path else: snake_case_ = """BART.onnx""" logger.info('Exporting model to ONNX' ) export_and_validate_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
360
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase = logging.getLogger(__name__) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Any: return (preds == labels).mean() @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class UpperCamelCase : SCREAMING_SNAKE_CASE_ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys() )} ) SCREAMING_SNAKE_CASE_ = field(metadata={"help": "Should contain the data files for the task."} ) SCREAMING_SNAKE_CASE_ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) SCREAMING_SNAKE_CASE_ = field( default=lowerCAmelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def UpperCAmelCase ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. snake_case_ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) snake_case_ , snake_case_ , snake_case_ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ' --overwrite_output_dir to overcome.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , UpperCAmelCase ) # Set seed set_seed(training_args.seed ) try: snake_case_ = processors[data_args.task_name]() snake_case_ = processor.get_labels() snake_case_ = len(UpperCAmelCase ) except KeyError: raise ValueError('Task not found: %s' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. snake_case_ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=UpperCAmelCase , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) snake_case_ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) snake_case_ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=UpperCAmelCase , cache_dir=model_args.cache_dir , ) # Get datasets snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) snake_case_ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=UpperCAmelCase , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(UpperCAmelCase ) -> Dict: snake_case_ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(UpperCAmelCase , p.label_ids )} # Data collator snake_case_ = DataCollatorWithPadding(UpperCAmelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer snake_case_ = Trainer( model=UpperCAmelCase , args=UpperCAmelCase , train_dataset=UpperCAmelCase , eval_dataset=UpperCAmelCase , compute_metrics=UpperCAmelCase , data_collator=UpperCAmelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation snake_case_ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) snake_case_ = trainer.evaluate() snake_case_ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_master(): with open(UpperCAmelCase , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , UpperCAmelCase , UpperCAmelCase ) writer.write('%s = %s\n' % (key, value) ) results.update(UpperCAmelCase ) return results def UpperCAmelCase ( UpperCAmelCase ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
312
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a =logging.get_logger(__name__) a =[ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] a =[ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> List[str]: __lowerCamelCase : int = torch.load(lowerCamelCase__ , map_location='cpu' ) return sd def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=rename_keys_prefix ) -> List[Any]: __lowerCamelCase : Tuple = OrderedDict() __lowerCamelCase : int = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowerCamelCase : List[Any] = key for name_pair in rename_keys_prefix: __lowerCamelCase : Optional[Any] = new_key.replace(name_pair[0] , name_pair[1] ) __lowerCamelCase : Dict = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowerCamelCase : str = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowerCamelCase : Optional[Any] = 'pretraining' if "vcr" in checkpoint_path: __lowerCamelCase : Any = {'visual_embedding_dim': 5_1_2} elif "vqa_advanced" in checkpoint_path: __lowerCamelCase : List[str] = {'visual_embedding_dim': 2_0_4_8} elif "vqa" in checkpoint_path: __lowerCamelCase : Tuple = {'visual_embedding_dim': 2_0_4_8} elif "nlvr" in checkpoint_path: __lowerCamelCase : List[Any] = {'visual_embedding_dim': 1_0_2_4} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowerCamelCase : Tuple = {'visual_embedding_dim': 5_1_2} __lowerCamelCase : Any = 'multichoice' elif "vqa_advanced" in checkpoint_path: __lowerCamelCase : Tuple = {'visual_embedding_dim': 2_0_4_8} __lowerCamelCase : List[Any] = 'vqa_advanced' elif "vqa" in checkpoint_path: __lowerCamelCase : List[Any] = {'visual_embedding_dim': 2_0_4_8, 'num_labels': 3_1_2_9} __lowerCamelCase : Optional[int] = 'vqa' elif "nlvr" in checkpoint_path: __lowerCamelCase : Optional[Any] = { 'visual_embedding_dim': 1_0_2_4, 'num_labels': 2, } __lowerCamelCase : Any = 'nlvr' __lowerCamelCase : Any = VisualBertConfig(**lowerCamelCase__ ) # Load State Dict __lowerCamelCase : Dict = load_state_dict(lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = get_new_dict(lowerCamelCase__ , lowerCamelCase__ ) if model_type == "pretraining": __lowerCamelCase : Union[str, Any] = VisualBertForPreTraining(lowerCamelCase__ ) elif model_type == "vqa": __lowerCamelCase : str = VisualBertForQuestionAnswering(lowerCamelCase__ ) elif model_type == "nlvr": __lowerCamelCase : Dict = VisualBertForVisualReasoning(lowerCamelCase__ ) elif model_type == "multichoice": __lowerCamelCase : Union[str, Any] = VisualBertForMultipleChoice(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # Save Checkpoints Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": a =argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") a =parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
73
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = "mobilenet_v2" def __init__( self , __A=3 , __A=224 , __A=1.0 , __A=8 , __A=8 , __A=6 , __A=32 , __A=True , __A=True , __A="relu6" , __A=True , __A=0.8 , __A=0.02 , __A=0.001 , __A=255 , **__A , ): """simple docstring""" super().__init__(**__A ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) lowerCamelCase : str = num_channels lowerCamelCase : Any = image_size lowerCamelCase : Union[str, Any] = depth_multiplier lowerCamelCase : Tuple = depth_divisible_by lowerCamelCase : Dict = min_depth lowerCamelCase : Dict = expand_ratio lowerCamelCase : Optional[Any] = output_stride lowerCamelCase : int = first_layer_is_expansion lowerCamelCase : Union[str, Any] = finegrained_output lowerCamelCase : Optional[Any] = hidden_act lowerCamelCase : Optional[Any] = tf_padding lowerCamelCase : Optional[Any] = classifier_dropout_prob lowerCamelCase : Dict = initializer_range lowerCamelCase : str = layer_norm_eps lowerCamelCase : Optional[Any] = semantic_loss_ignore_index class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Union[str, Any] = version.parse("1.11" ) @property def _snake_case ( self ): """simple docstring""" return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _snake_case ( self ): """simple docstring""" if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _snake_case ( self ): """simple docstring""" return 1e-4
283
0
import socket def __lowercase ( ): UpperCamelCase_ : Optional[int] = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCamelCase_ : Optional[int] = socket.gethostname() UpperCamelCase_ : Dict = 12312 sock.connect((host, port) ) sock.send(B'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: UpperCamelCase_ : List[str] = sock.recv(1024 ) if not data: break out_file.write(lowerCamelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
50
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _lowercase : def __init__( self : List[Any] , snake_case : int , snake_case : Any=9_9 , snake_case : Tuple=1_3 , snake_case : str=7 , snake_case : List[str]=9 , snake_case : Optional[Any]=True , snake_case : Any=True , snake_case : Optional[Any]=False , snake_case : List[str]=3_2 , snake_case : str=5 , snake_case : Any=4 , snake_case : List[str]=3_7 , snake_case : Optional[Any]=8 , snake_case : Optional[Any]=0.1 , snake_case : Dict=0.002 , snake_case : Any=1 , snake_case : Optional[int]=0 , snake_case : List[str]=0 , snake_case : List[str]=None , snake_case : List[str]=None , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : int = parent UpperCamelCase_ : List[Any] = batch_size UpperCamelCase_ : int = encoder_seq_length UpperCamelCase_ : int = decoder_seq_length # For common tests UpperCamelCase_ : List[Any] = self.decoder_seq_length UpperCamelCase_ : Optional[Any] = is_training UpperCamelCase_ : Tuple = use_attention_mask UpperCamelCase_ : int = use_labels UpperCamelCase_ : List[str] = vocab_size UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : Any = num_hidden_layers UpperCamelCase_ : Any = num_attention_heads UpperCamelCase_ : Dict = d_ff UpperCamelCase_ : List[Any] = relative_attention_num_buckets UpperCamelCase_ : List[Any] = dropout_rate UpperCamelCase_ : Dict = initializer_factor UpperCamelCase_ : Union[str, Any] = eos_token_id UpperCamelCase_ : Optional[int] = pad_token_id UpperCamelCase_ : List[str] = decoder_start_token_id UpperCamelCase_ : str = None UpperCamelCase_ : int = decoder_layers def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> List[str]: """simple docstring""" return TaConfig.from_pretrained('google/umt5-base' ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[int]=None , snake_case : List[Any]=None , snake_case : int=None , snake_case : Optional[int]=None , snake_case : Tuple=None , ) -> List[str]: """simple docstring""" if attention_mask is None: UpperCamelCase_ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: UpperCamelCase_ : Optional[int] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: UpperCamelCase_ : Optional[int] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=snake_case ) if decoder_head_mask is None: UpperCamelCase_ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=snake_case ) if cross_attn_head_mask is None: UpperCamelCase_ : Optional[Any] = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) UpperCamelCase_ : Any = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input UpperCamelCase_ : Union[str, Any] = input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Any = decoder_input_ids.clamp(self.pad_token_id + 1 ) UpperCamelCase_ : Dict = self.get_config() UpperCamelCase_ : Dict = config.num_attention_heads UpperCamelCase_ : Optional[int] = self.prepare_inputs_dict(snake_case , snake_case , snake_case ) return config, input_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_, UpperCamelCase_ : Any = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Dict: """simple docstring""" return TaConfig( vocab_size=1_6_6 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: """simple docstring""" return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : int , snake_case : List[str] , snake_case : Optional[Any] , ) -> Tuple: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase_ : Any = model( input_ids=snake_case , decoder_input_ids=snake_case , attention_mask=snake_case , decoder_attention_mask=snake_case , ) UpperCamelCase_ : List[str] = model(input_ids=snake_case , decoder_input_ids=snake_case ) UpperCamelCase_ : Optional[Any] = result.last_hidden_state UpperCamelCase_ : Optional[Any] = result.past_key_values UpperCamelCase_ : Optional[int] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(snake_case ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Tuple , snake_case : str , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : int = UMTaModel(config=snake_case ).get_decoder().to(snake_case ).eval() # first forward pass UpperCamelCase_ : str = model(snake_case , use_cache=snake_case ) UpperCamelCase_ : List[Any] = model(snake_case ) UpperCamelCase_ : Dict = model(snake_case , use_cache=snake_case ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) ) self.parent.assertTrue(len(snake_case ) == len(snake_case ) + 1 ) UpperCamelCase_, UpperCamelCase_ : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and UpperCamelCase_ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase_ : List[Any] = model(snake_case )['last_hidden_state'] UpperCamelCase_ : List[str] = model(snake_case , past_key_values=snake_case )['last_hidden_state'] # select random slice UpperCamelCase_ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase_ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase_ : Any = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case , snake_case , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : int , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = UMTaModel(config=snake_case ).to(snake_case ).half().eval() UpperCamelCase_ : Union[str, Any] = model(**snake_case )['last_hidden_state'] self.parent.assertFalse(torch.isnan(snake_case ).any().item() ) @require_torch class _lowercase ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowercase = (UMTaForConditionalGeneration,) if is_torch_available() else () lowercase = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowercase = True lowercase = False lowercase = False lowercase = True lowercase = True # The small UMT5 model needs higher percentages for CPU/MP tests lowercase = [0.8, 0.9] def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> List[Any]: """simple docstring""" UpperCamelCase_ : Optional[Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[str]: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : List[str] = UMTaModel(config_and_inputs[0] ).to(snake_case ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( snake_case , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=snake_case , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Tuple = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] UpperCamelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() UpperCamelCase_ : Union[str, Any] = config_and_inputs[0] UpperCamelCase_ : Tuple = UMTaForConditionalGeneration(snake_case ).eval() model.to(snake_case ) UpperCamelCase_ : str = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=snake_case ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=snake_case ), } for attn_name, (name, mask) in zip(snake_case , head_masking.items() ): UpperCamelCase_ : Optional[int] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": UpperCamelCase_ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=snake_case ) UpperCamelCase_ : Any = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=snake_case , return_dict_in_generate=snake_case , **snake_case , ) # We check the state of decoder_attentions and cross_attentions just from the last step UpperCamelCase_ : int = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ : str = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=snake_case ).to(snake_case ) UpperCamelCase_ : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=snake_case , legacy=snake_case ) UpperCamelCase_ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] UpperCamelCase_ : Dict = tokenizer(snake_case , return_tensors='pt' , padding=snake_case ).input_ids # fmt: off UpperCamelCase_ : List[str] = torch.tensor( [ [ 3_8_5_3_0, 2_1_0_7_0_3, 2_5_6_2_9_9, 1_4_1_0, 2_5_6_2_9_8, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_2_6, 3_2_1, 6_7_1, 2_5_9_2_2, 2_5_6_2_9_9, 2_7_4, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1_4_6_0, 3_3_9, 3_1_2, 1_9_0_1_4, 1_0_6_2_0, 7_5_8, 2_5_6_2_9_9, 2_3_5_5,2_7_4, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_1_7, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 3_0_1, 2_5_6_2_9_8, 2_7_5, 1_1_9_9_8_3,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_2_0, 2_5_6_2_9_9, 1_4_8_6_9, 2_8_1, 2_2_3_4, 2_8_9, 2_2_7_5, 3_3_3,6_1_3_9_1, 2_8_9, 2_5_6_2_9_8, 5_4_3, 2_5_6_2_9_7, 1_6_8_7_1_4, 3_2_9, 2_5_6_2_9_6,2_7_4, 1], ] ) # fmt: on torch.testing.assert_allclose(snake_case , snake_case ) UpperCamelCase_ : int = model.generate(input_ids.to(snake_case ) ) UpperCamelCase_ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] UpperCamelCase_ : Dict = tokenizer.batch_decode(snake_case ) self.assertEqual(snake_case , snake_case )
50
1
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : Union[str, Any] , *_lowerCAmelCase : int , **_lowerCAmelCase : Any ): super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) A = {} def A (self : Union[str, Any] , _lowerCAmelCase : List[Any] , *_lowerCAmelCase : Union[str, Any] , **_lowerCAmelCase : int ): A = super().add_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) if num_added_tokens == 0: raise ValueError( F"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" """ `placeholder_token` that is not already in the tokenizer.""" ) def A (self : Tuple , _lowerCAmelCase : Dict , *_lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int]=1 , **_lowerCAmelCase : List[str] ): A = [] if num_vec_per_token == 1: self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) output.append(_lowerCAmelCase ) else: A = [] for i in range(_lowerCAmelCase ): A = placeholder_token + F"""_{i}""" self.try_adding_tokens(_lowerCAmelCase , *_lowerCAmelCase , **_lowerCAmelCase ) output.append(_lowerCAmelCase ) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( F"""The tokenizer already has placeholder token {token} that can get confused with""" F""" {placeholder_token}keep placeholder tokens independent""" ) A = output def A (self : Tuple , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int]=False , _lowerCAmelCase : Any=1.0 ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ): A = [] for i in range(len(_lowerCAmelCase ) ): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=_lowerCAmelCase ) ) return output for placeholder_token in self.token_map: if placeholder_token in text: A = self.token_map[placeholder_token] A = tokens[: 1 + int(len(_lowerCAmelCase ) * prop_tokens_to_load )] if vector_shuffle: A = copy.copy(_lowerCAmelCase ) random.shuffle(_lowerCAmelCase ) A = text.replace(_lowerCAmelCase , """ """.join(_lowerCAmelCase ) ) return text def __call__(self : Tuple , _lowerCAmelCase : Optional[Any] , *_lowerCAmelCase : List[Any] , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Any=1.0 , **_lowerCAmelCase : Dict ): return super().__call__( self.replace_placeholder_tokens_in_text( _lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , ) def A (self : Optional[int] , _lowerCAmelCase : Optional[Any] , *_lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any]=False , _lowerCAmelCase : Any=1.0 , **_lowerCAmelCase : Optional[int] ): return super().encode( self.replace_placeholder_tokens_in_text( _lowerCAmelCase , vector_shuffle=_lowerCAmelCase , prop_tokens_to_load=_lowerCAmelCase ) , *_lowerCAmelCase , **_lowerCAmelCase , )
258
'''simple docstring''' from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCamelCase : str = '\n Examples:\n ```py\n >>> from PIL import Image\n >>> import torch\n >>> from diffusers import DiffusionPipeline\n >>> from diffusers.utils import export_to_gif, load_image\n\n >>> device = torch.device("cuda" if torch.cuda.is_available() else "cpu")\n\n >>> repo = "openai/shap-e-img2img"\n >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)\n >>> pipe = pipe.to(device)\n\n >>> guidance_scale = 3.0\n >>> image_url = "https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png"\n >>> image = load_image(image_url).convert("RGB")\n\n >>> images = pipe(\n ... image,\n ... guidance_scale=guidance_scale,\n ... num_inference_steps=64,\n ... frame_size=256,\n ... ).images\n\n >>> gif_path = export_to_gif(images[0], "corgi_3d.gif")\n ```\n' @dataclass class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = 42 class __UpperCAmelCase ( A__ ): '''simple docstring''' def __init__(self : str , _lowerCAmelCase : PriorTransformer , _lowerCAmelCase : CLIPVisionModel , _lowerCAmelCase : CLIPImageProcessor , _lowerCAmelCase : HeunDiscreteScheduler , _lowerCAmelCase : ShapERenderer , ): super().__init__() self.register_modules( prior=_lowerCAmelCase , image_encoder=_lowerCAmelCase , image_processor=_lowerCAmelCase , scheduler=_lowerCAmelCase , renderer=_lowerCAmelCase , ) def A (self : Dict , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ): if latents is None: A = randn_tensor(_lowerCAmelCase , generator=_lowerCAmelCase , device=_lowerCAmelCase , dtype=_lowerCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) A = latents.to(_lowerCAmelCase ) A = latents * scheduler.init_noise_sigma return latents def A (self : Union[str, Any] , _lowerCAmelCase : List[Any]=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) A = torch.device(F"""cuda:{gpu_id}""" ) A = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCAmelCase , _lowerCAmelCase ) @property def A (self : Optional[Any] ): if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(_lowerCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def A (self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[int] , ): if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , torch.Tensor ): A = torch.cat(_lowerCAmelCase , axis=0 ) if image[0].ndim == 4 else torch.stack(_lowerCAmelCase , axis=0 ) if not isinstance(_lowerCAmelCase , torch.Tensor ): A = self.image_processor(_lowerCAmelCase , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) A = image.to(dtype=self.image_encoder.dtype , device=_lowerCAmelCase ) A = self.image_encoder(_lowerCAmelCase )["""last_hidden_state"""] A = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 A = image_embeds.repeat_interleave(_lowerCAmelCase , dim=0 ) if do_classifier_free_guidance: A = torch.zeros_like(_lowerCAmelCase ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes A = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(_lowerCAmelCase ) def __call__(self : List[Any] , _lowerCAmelCase : Union[PIL.Image.Image, List[PIL.Image.Image]] , _lowerCAmelCase : int = 1 , _lowerCAmelCase : int = 25 , _lowerCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCAmelCase : Optional[torch.FloatTensor] = None , _lowerCAmelCase : float = 4.0 , _lowerCAmelCase : int = 64 , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , ): if isinstance(_lowerCAmelCase , PIL.Image.Image ): A = 1 elif isinstance(_lowerCAmelCase , torch.Tensor ): A = image.shape[0] elif isinstance(_lowerCAmelCase , _lowerCAmelCase ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): A = len(_lowerCAmelCase ) else: raise ValueError( F"""`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(_lowerCAmelCase )}""" ) A = self._execution_device A = batch_size * num_images_per_prompt A = guidance_scale > 1.0 A = self._encode_image(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # prior self.scheduler.set_timesteps(_lowerCAmelCase , device=_lowerCAmelCase ) A = self.scheduler.timesteps A = self.prior.config.num_embeddings A = self.prior.config.embedding_dim A = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim A = latents.reshape(latents.shape[0] , _lowerCAmelCase , _lowerCAmelCase ) for i, t in enumerate(self.progress_bar(_lowerCAmelCase ) ): # expand the latents if we are doing classifier free guidance A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents A = self.scheduler.scale_model_input(_lowerCAmelCase , _lowerCAmelCase ) A = self.prior( _lowerCAmelCase , timestep=_lowerCAmelCase , proj_embedding=_lowerCAmelCase , ).predicted_image_embedding # remove the variance A , A = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: A , A = noise_pred.chunk(2 ) A = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) A = self.scheduler.step( _lowerCAmelCase , timestep=_lowerCAmelCase , sample=_lowerCAmelCase , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=_lowerCAmelCase ) A = [] for i, latent in enumerate(_lowerCAmelCase ): print() A = self.renderer.decode( latent[None, :] , _lowerCAmelCase , size=_lowerCAmelCase , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(_lowerCAmelCase ) A = torch.stack(_lowerCAmelCase ) if output_type not in ["np", "pil"]: raise ValueError(F"""Only the output types `pil` and `np` are supported not output_type={output_type}""" ) A = images.cpu().numpy() if output_type == "pil": A = [self.numpy_to_pil(_lowerCAmelCase ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=_lowerCAmelCase )
258
1
"""simple docstring""" import numpy as np from PIL import Image def UpperCamelCase_ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 # compute the shape of the output matrix __SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __SCREAMING_SNAKE_CASE = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __SCREAMING_SNAKE_CASE = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 return updated_arr def UpperCamelCase_ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 # compute the shape of the output matrix __SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __SCREAMING_SNAKE_CASE = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __SCREAMING_SNAKE_CASE = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image a__ : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
358
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a__ : Optional[int] = {'''tokenization_byt5''': ['''ByT5Tokenizer''']} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys a__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
195
0
from functools import lru_cache def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : Optional[Any] = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(_a) if n > 1: factors.add(_a) return factors @lru_cache def lowerCamelCase__ ( _a): return len(unique_prime_factors(_a)) def lowerCamelCase__ ( _a): return len(set(_a)) in (0, 1) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Any = 2 while True: # Increment each value of a generated range SCREAMING_SNAKE_CASE : Union[str, Any] = [base + i for i in range(_a)] # Run elements through out unique_prime_factors function # Append our target number to the end. SCREAMING_SNAKE_CASE : List[str] = [upf_len(_a) for x in group] checker.append(_a) # If all numbers in the list are equal, return the group variable. if equality(_a): return group # Increment our base variable by 1 base += 1 def lowerCamelCase__ ( _a = 4): SCREAMING_SNAKE_CASE : Tuple = run(_a) return results[0] if len(_a) else None if __name__ == "__main__": print(solution())
76
from __future__ import annotations def UpperCamelCase_( _snake_case : int ): """simple docstring""" __a =str(_snake_case ) return len(_snake_case ) == 9 and set(_snake_case ) == set('123456789' ) def UpperCamelCase_( ): """simple docstring""" for base_num in range(9999 , 4999 , -1 ): __a =100002 * base_num if is_9_pandigital(_snake_case ): return candidate for base_num in range(333 , 99 , -1 ): __a =1002003 * base_num if is_9_pandigital(_snake_case ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
218
0
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def A ( snake_case :int = 8 ) -> str: __UpperCamelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(snake_case ) for _ in range(snake_case ) ) def A ( snake_case :str , snake_case :int ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(snake_case ) __UpperCamelCase = i // 3 __UpperCamelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) __UpperCamelCase = ( chars_incl + random(snake_case , quotient + remainder ) + random(snake_case , snake_case ) + random(snake_case , snake_case ) ) __UpperCamelCase = list(snake_case ) shuffle(snake_case ) return "".join(snake_case ) # random is a generalised function for letters, characters and numbers def A ( snake_case :str , snake_case :int ) -> str: return "".join(secrets.choice(snake_case ) for _ in range(snake_case ) ) def A ( snake_case :Tuple , snake_case :Optional[Any] ) -> Any: pass # Put your code here... def A ( snake_case :Any , snake_case :Any ) -> Any: pass # Put your code here... def A ( snake_case :str , snake_case :Optional[int] ) -> Optional[int]: pass # Put your code here... def A ( snake_case :str , snake_case :int = 8 ) -> bool: if len(snake_case ) < min_length: # Your Password must be at least 8 characters long return False __UpperCamelCase = any(char in ascii_uppercase for char in password ) __UpperCamelCase = any(char in ascii_lowercase for char in password ) __UpperCamelCase = any(char in digits for char in password ) __UpperCamelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def A ( ) -> Any: __UpperCamelCase = int(input('Please indicate the max length of your password: ' ).strip() ) __UpperCamelCase = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(snake_case ) ) print( 'Alternative Password generated:' , alternative_password_generator(snake_case , snake_case ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
263
"""simple docstring""" def A ( snake_case :list[list[int]] , snake_case :int , snake_case :int , snake_case :list[int] ) -> bool: # 1. Validate that path exists between current and next vertices if graph[path[curr_ind - 1]][next_ver] == 0: return False # 2. Validate that next vertex is not already in path return not any(vertex == next_ver for vertex in path ) def A ( snake_case :list[list[int]] , snake_case :list[int] , snake_case :int ) -> bool: # Base Case if curr_ind == len(snake_case ): # return whether path exists between current and starting vertices return graph[path[curr_ind - 1]][path[0]] == 1 # Recursive Step for next_ver in range(0 , len(snake_case ) ): if valid_connection(snake_case , snake_case , snake_case , snake_case ): # Insert current vertex into path as next transition __UpperCamelCase = next_ver # Validate created path if util_hamilton_cycle(snake_case , snake_case , curr_ind + 1 ): return True # Backtrack __UpperCamelCase = -1 return False def A ( snake_case :list[list[int]] , snake_case :int = 0 ) -> list[int]: __UpperCamelCase = [-1] * (len(snake_case ) + 1) # initialize start and end of path with starting index __UpperCamelCase = __UpperCamelCase = start_index # evaluate and if we find answer return path either return empty array return path if util_hamilton_cycle(snake_case , snake_case , 1 ) else []
263
1
from collections import deque from math import floor from random import random from time import time class a__ : """simple docstring""" def __init__( self ) -> Dict: '''simple docstring''' A__ = {} def UpperCamelCase ( self , lowercase , lowercase , lowercase=1 ) -> Tuple: '''simple docstring''' if self.graph.get(lowercase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A__ = [[w, v]] if not self.graph.get(lowercase ): A__ = [] def UpperCamelCase ( self ) -> Optional[Any]: '''simple docstring''' return list(self.graph ) def UpperCamelCase ( self , lowercase , lowercase ) -> int: '''simple docstring''' if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> Any: '''simple docstring''' if s == d: return [] A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def UpperCamelCase ( self , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: A__ = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A__ = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def UpperCamelCase ( self , lowercase=-2 ) -> Any: '''simple docstring''' A__ = deque() A__ = [] if s == -2: A__ = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' A__ = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return len(self.graph[u] ) def UpperCamelCase ( self , lowercase=-2 ) -> str: '''simple docstring''' A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = s A__ = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return sorted_nodes def UpperCamelCase ( self ) -> List[Any]: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> Any: '''simple docstring''' A__ = time() self.dfs(lowercase , lowercase ) A__ = time() return end - begin def UpperCamelCase ( self , lowercase=-2 ) -> int: '''simple docstring''' A__ = time() self.bfs(lowercase ) A__ = time() return end - begin class a__ : """simple docstring""" def __init__( self ) -> int: '''simple docstring''' A__ = {} def UpperCamelCase ( self , lowercase , lowercase , lowercase=1 ) -> Union[str, Any]: '''simple docstring''' if self.graph.get(lowercase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A__ = [[w, v]] # add the other way if self.graph.get(lowercase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A__ = [[w, u]] def UpperCamelCase ( self , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) # the other way round if self.graph.get(lowercase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase ) def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] A__ = [] A__ = [] if s == -2: A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def UpperCamelCase ( self , lowercase=-1 ) -> str: '''simple docstring''' if c == -1: A__ = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A__ = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def UpperCamelCase ( self , lowercase=-2 ) -> Dict: '''simple docstring''' A__ = deque() A__ = [] if s == -2: A__ = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A__ = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def UpperCamelCase ( self , lowercase ) -> Tuple: '''simple docstring''' return len(self.graph[u] ) def UpperCamelCase ( self ) -> Dict: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def UpperCamelCase ( self ) -> int: '''simple docstring''' A__ = [] A__ = [] A__ = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A__ = -2 A__ = [] A__ = s A__ = False A__ = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A__ = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A__ = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A__ = node[1] break # check if all the children are visited if s == ss: stack.pop() A__ = True if len(lowercase ) != 0: A__ = stack[len(lowercase ) - 1] else: A__ = False indirect_parents.append(lowercase ) A__ = s A__ = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def UpperCamelCase ( self ) -> List[str]: '''simple docstring''' return list(self.graph ) def UpperCamelCase ( self , lowercase=-2 , lowercase=-1 ) -> Optional[Any]: '''simple docstring''' A__ = time() self.dfs(lowercase , lowercase ) A__ = time() return end - begin def UpperCamelCase ( self , lowercase=-2 ) -> List[Any]: '''simple docstring''' A__ = time() self.bfs(lowercase ) A__ = time() return end - begin
68
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __a :int = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , UpperCAmelCase : int = 101 ): A_ = length def __len__( self : int ): return self.length def __getitem__( self : Optional[int] , UpperCAmelCase : Optional[int] ): return i class _a : """simple docstring""" def __call__( self : Any , UpperCAmelCase : Optional[Any] ): return {"input_ids": torch.tensor(UpperCAmelCase ), "labels": torch.tensor(UpperCAmelCase )} class _a ( nn.Module ): """simple docstring""" def __init__( self : int ): super().__init__() # Add some (unused) params otherwise DDP will complain. A_ = nn.Linear(120 , 80 ) def __A ( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Tuple=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class _a ( snake_case_ ): """simple docstring""" @require_torch_neuroncore def __A ( self : List[str] ): A_ = f'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class _a ( snake_case_ ): """simple docstring""" @require_torch_multi_gpu def __A ( self : List[str] ): A_ = f'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() A_ = self.get_auto_remove_tmp_dir() A_ = f'''--output_dir {output_dir}'''.split() A_ = ["torchrun"] + distributed_args + args execute_subprocess_async(UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __a :Union[str, Any] = HfArgumentParser((TrainingArguments,)) __a :Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __a :int = DummyDataset(dataset_length) def __snake_case ( __UpperCamelCase : EvalPrediction ): """simple docstring""" A_ = list(range(len(__UpperCamelCase ) ) ) A_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} __a :str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __a :str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Optional[int] = 2 __a :List[Any] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __a :str = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __a :Union[str, Any] = None
312
0
import numpy as np from transformers import Pipeline def SCREAMING_SNAKE_CASE__ ( __a ): snake_case_ : str = np.max(lowerCAmelCase__ , axis=-1 , keepdims=lowerCAmelCase__ ) snake_case_ : str = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=lowerCAmelCase__ ) class SCREAMING_SNAKE_CASE_ ( __lowercase ): def UpperCAmelCase_ ( self : Union[str, Any] , **_A : List[str] ) -> Optional[Any]: """simple docstring""" snake_case_ : Any = {} if "second_text" in kwargs: snake_case_ : Optional[int] = kwargs['''second_text'''] return preprocess_kwargs, {}, {} def UpperCAmelCase_ ( self : Optional[int] , _A : List[Any] , _A : Dict=None ) -> Union[str, Any]: """simple docstring""" return self.tokenizer(snake_case_ , text_pair=snake_case_ , return_tensors=self.framework ) def UpperCAmelCase_ ( self : List[str] , _A : int ) -> int: """simple docstring""" return self.model(**snake_case_ ) def UpperCAmelCase_ ( self : int , _A : Dict ) -> int: """simple docstring""" snake_case_ : Dict = model_outputs.logits[0].numpy() snake_case_ : Tuple = softmax(snake_case_ ) snake_case_ : int = np.argmax(snake_case_ ) snake_case_ : int = self.model.config.idalabel[best_class] snake_case_ : Optional[int] = probabilities[best_class].item() snake_case_ : str = logits.tolist() return {"label": label, "score": score, "logits": logits}
351
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys _SCREAMING_SNAKE_CASE = subprocess.check_output("""git merge-base main HEAD""".split()).decode("""utf-8""") _SCREAMING_SNAKE_CASE = ( subprocess.check_output(F'''git diff --diff-filter=d --name-only {fork_point_sha}'''.split()).decode("""utf-8""").split() ) _SCREAMING_SNAKE_CASE = """|""".join(sys.argv[1:]) _SCREAMING_SNAKE_CASE = re.compile(RF'''^({joined_dirs}).*?\.py$''') _SCREAMING_SNAKE_CASE = [x for x in modified_files if regex.match(x)] print(""" """.join(relevant_modified_files), end="""""")
88
0
from datetime import datetime as dt import os from github import Github _UpperCAmelCase : Dict = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def SCREAMING_SNAKE_CASE ( ) -> int: lowerCamelCase__ : Optional[Any] = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ : Union[str, Any] = g.get_repo('huggingface/transformers' ) lowerCamelCase__ : int = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ : str = sorted([comment for comment in issue.get_comments()] , key=lambda _UpperCAmelCase : i.created_at , reverse=_UpperCAmelCase ) lowerCamelCase__ : int = comments[0] if len(_UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
50
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[str] = emb.weight.shape lowerCamelCase__ : Tuple = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) lowerCamelCase__ : Dict = emb.weight.data return lin_layer def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : Tuple = torch.load(_UpperCAmelCase , map_location='cpu' ) lowerCamelCase__ : List[str] = mam_aaa['args'] or mam_aaa['cfg']['model'] lowerCamelCase__ : Optional[int] = mam_aaa['model'] remove_ignore_keys_(_UpperCAmelCase ) lowerCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] lowerCamelCase__ : Union[str, Any] = MaMaaaConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) lowerCamelCase__ : Optional[Any] = state_dict['decoder.embed_tokens.weight'] lowerCamelCase__ : Union[str, Any] = MaMaaaForConditionalGeneration(_UpperCAmelCase ) model.model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument("""fairseq_path""", type=str, help="""path to a model.pt on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") _UpperCAmelCase : str = parser.parse_args() _UpperCAmelCase : Optional[Any] = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
50
1
import math def UpperCamelCase ( __lowercase : float ,__lowercase : float ): '''simple docstring''' if initial_intensity < 0: raise ValueError('The value of intensity cannot be negative' ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError('In Malus Law, the angle is in the range 0-360 degrees' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__lowercase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="""malus_law""")
192
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _UpperCAmelCase = logging.get_logger(__name__) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = '''mask2former''' lowerCamelCase_ = ['''swin'''] lowerCamelCase_ = {'''hidden_size''': '''hidden_dim'''} def __init__( self , lowercase = None , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 2_5_6 , lowercase = 1_0_2_4 , lowercase = "relu" , lowercase = 6 , lowercase = 1_0 , lowercase = 8 , lowercase = 0.0 , lowercase = 2_0_4_8 , lowercase = False , lowercase = False , lowercase = 4 , lowercase = 2_5_5 , lowercase = 1_0_0 , lowercase = 0.1 , lowercase = 2.0 , lowercase = 5.0 , lowercase = 5.0 , lowercase = 1_2_5_4_4 , lowercase = 3.0 , lowercase = 0.75 , lowercase = 0.02 , lowercase = 1.0 , lowercase = True , lowercase = [4, 8, 1_6, 3_2] , lowercase = None , **lowercase , ): """simple docstring""" if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.' ) A_ : List[str] = CONFIG_MAPPING['swin']( image_size=2_2_4 , in_channels=3 , patch_size=4 , embed_dim=9_6 , depths=[2, 2, 1_8, 2] , num_heads=[3, 6, 1_2, 2_4] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=lowercase , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(lowercase , lowercase ): A_ : str = backbone_config.pop('model_type' ) A_ : List[str] = CONFIG_MAPPING[backbone_model_type] A_ : Tuple = config_class.from_dict(lowercase ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) A_ : List[Any] = backbone_config A_ : Optional[Any] = feature_size A_ : int = mask_feature_size A_ : Tuple = hidden_dim A_ : Dict = encoder_feedforward_dim A_ : int = activation_function A_ : str = encoder_layers A_ : Tuple = decoder_layers A_ : Tuple = num_attention_heads A_ : str = dropout A_ : List[str] = dim_feedforward A_ : List[str] = pre_norm A_ : Tuple = enforce_input_projection A_ : Dict = common_stride A_ : Union[str, Any] = ignore_value A_ : List[Any] = num_queries A_ : List[Any] = no_object_weight A_ : int = class_weight A_ : int = mask_weight A_ : Optional[Any] = dice_weight A_ : int = train_num_points A_ : Optional[int] = oversample_ratio A_ : Tuple = importance_sample_ratio A_ : Union[str, Any] = init_std A_ : List[Any] = init_xavier_std A_ : Optional[Any] = use_auxiliary_loss A_ : Dict = feature_strides A_ : List[Any] = output_auxiliary_logits A_ : Optional[int] = decoder_layers super().__init__(**lowercase ) @classmethod def lowerCAmelCase_ ( cls , lowercase , **lowercase ): """simple docstring""" return cls( backbone_config=lowercase , **lowercase , ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.backbone_config.to_dict() A_ : Dict = self.__class__.model_type return output
192
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __lowerCamelCase ): __a : int = """encodec""" def __init__( self : Any , lowercase : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : List[Any]=24_000 , lowercase : Optional[int]=1 , lowercase : int=False , lowercase : Any=None , lowercase : Any=None , lowercase : Optional[Any]=128 , lowercase : Union[str, Any]=32 , lowercase : List[str]=1 , lowercase : Tuple=[8, 5, 4, 2] , lowercase : List[str]="weight_norm" , lowercase : Tuple=7 , lowercase : Optional[Any]=7 , lowercase : List[Any]=3 , lowercase : List[Any]=2 , lowercase : Optional[Any]=True , lowercase : Optional[int]="reflect" , lowercase : Union[str, Any]=2 , lowercase : Optional[Any]=2 , lowercase : Optional[Any]=1.0 , lowercase : Optional[int]=1_024 , lowercase : Optional[int]=None , lowercase : Optional[int]=True , **lowercase : Any , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : List[Any] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : List[Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : List[Any] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter UpperCAmelCase = '''Create a default config file for Accelerate with only a few flags set.''' def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE="no" , __SCREAMING_SNAKE_CASE = default_json_config_file , __SCREAMING_SNAKE_CASE = False ): lowercase = Path(__SCREAMING_SNAKE_CASE ) path.parent.mkdir(parents=__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False lowercase = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) lowercase = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): lowercase = torch.cuda.device_count() lowercase = num_gpus lowercase = False if num_gpus > 1: lowercase = 'MULTI_GPU' else: lowercase = 'NO' elif is_xpu_available() and use_xpu: lowercase = torch.xpu.device_count() lowercase = num_xpus lowercase = False if num_xpus > 1: lowercase = 'MULTI_XPU' else: lowercase = 'NO' elif is_npu_available(): lowercase = torch.npu.device_count() lowercase = num_npus lowercase = False if num_npus > 1: lowercase = 'MULTI_NPU' else: lowercase = 'NO' else: lowercase = 0 lowercase = True lowercase = 1 lowercase = 'NO' lowercase = ClusterConfig(**__SCREAMING_SNAKE_CASE ) config.to_json_file(__SCREAMING_SNAKE_CASE ) return path def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = parser.add_parser('default' , parents=__SCREAMING_SNAKE_CASE , help=__SCREAMING_SNAKE_CASE , formatter_class=__SCREAMING_SNAKE_CASE ) parser.add_argument( '--config_file' , default=__SCREAMING_SNAKE_CASE , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , dest='save_location' , ) parser.add_argument( '--mixed_precision' , choices=['no', 'fp16', 'bf16'] , type=__SCREAMING_SNAKE_CASE , help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' , default='no' , ) parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) return parser def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
195
0
"""simple docstring""" import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType __A : Optional[List[str]] = None __A : Optional[int] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image __A : Tuple = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __UpperCamelCase : SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = None # Automatically constructed SCREAMING_SNAKE_CASE = "PIL.Image.Image" SCREAMING_SNAKE_CASE = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) SCREAMING_SNAKE_CASE = field(default="Image" , init=_A , repr=_A ) def __call__(self : str): return self.pa_type def SCREAMING_SNAKE_CASE__ (self : Tuple , __SCREAMING_SNAKE_CASE : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'.") if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): A = np.array(__SCREAMING_SNAKE_CASE) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): return {"path": value, "bytes": None} elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): return {"path": None, "bytes": value} elif isinstance(__SCREAMING_SNAKE_CASE , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(__SCREAMING_SNAKE_CASE) elif isinstance(__SCREAMING_SNAKE_CASE , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(__SCREAMING_SNAKE_CASE) elif value.get("path") is not None and os.path.isfile(value["path"]): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get("path")} elif value.get("bytes") is not None or value.get("path") is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get("bytes"), "path": value.get("path")} else: raise ValueError( F"""An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""") def SCREAMING_SNAKE_CASE__ (self : int , __SCREAMING_SNAKE_CASE : dict , __SCREAMING_SNAKE_CASE : Union[str, Any]=None): if not self.decode: raise RuntimeError("Decoding is disabled for this feature. Please use Image(decode=True) instead.") if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support decoding images, please install 'Pillow'.") if token_per_repo_id is None: A = {} A , A = value["path"], value["bytes"] if bytes_ is None: if path is None: raise ValueError(F"""An image should have one of 'path' or 'bytes' but both are None in {value}.""") else: if is_local_path(__SCREAMING_SNAKE_CASE): A = PIL.Image.open(__SCREAMING_SNAKE_CASE) else: A = path.split("::")[-1] try: A = string_to_dict(__SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL)["repo_id"] A = token_per_repo_id.get(__SCREAMING_SNAKE_CASE) except ValueError: A = None with xopen(__SCREAMING_SNAKE_CASE , "rb" , use_auth_token=__SCREAMING_SNAKE_CASE) as f: A = BytesIO(f.read()) A = PIL.Image.open(bytes_) else: A = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def SCREAMING_SNAKE_CASE__ (self : Optional[Any]): from .features import Value return ( self if self.decode else { "bytes": Value("binary"), "path": Value("string"), } ) def SCREAMING_SNAKE_CASE__ (self : Optional[int] , __SCREAMING_SNAKE_CASE : Union[pa.StringArray, pa.StructArray, pa.ListArray]): if pa.types.is_string(storage.type): A = pa.array([None] * len(__SCREAMING_SNAKE_CASE) , type=pa.binary()) A = pa.StructArray.from_arrays([bytes_array, storage] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): A = pa.array([None] * len(__SCREAMING_SNAKE_CASE) , type=pa.string()) A = pa.StructArray.from_arrays([storage, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("bytes") >= 0: A = storage.field("bytes") else: A = pa.array([None] * len(__SCREAMING_SNAKE_CASE) , type=pa.binary()) if storage.type.get_field_index("path") >= 0: A = storage.field("path") else: A = pa.array([None] * len(__SCREAMING_SNAKE_CASE) , type=pa.string()) A = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=storage.is_null()) elif pa.types.is_list(storage.type): A = pa.array( [encode_np_array(np.array(__SCREAMING_SNAKE_CASE))["bytes"] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) A = pa.array([None] * len(__SCREAMING_SNAKE_CASE) , type=pa.string()) A = pa.StructArray.from_arrays( [bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(__SCREAMING_SNAKE_CASE , self.pa_type) def SCREAMING_SNAKE_CASE__ (self : Any , __SCREAMING_SNAKE_CASE : pa.StructArray): @no_op_if_value_is_null def path_to_bytes(__SCREAMING_SNAKE_CASE : str): with xopen(__SCREAMING_SNAKE_CASE , "rb") as f: A = f.read() return bytes_ A = pa.array( [ (path_to_bytes(x["path"]) if x["bytes"] is None else x["bytes"]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) A = pa.array( [os.path.basename(__SCREAMING_SNAKE_CASE) if path is not None else None for path in storage.field("path").to_pylist()] , type=pa.string() , ) A = pa.StructArray.from_arrays([bytes_array, path_array] , ["bytes", "path"] , mask=bytes_array.is_null()) return array_cast(__SCREAMING_SNAKE_CASE , self.pa_type) def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() A = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = BytesIO() if image.format in list_image_compression_formats(): A = image.format else: A = "PNG" if image.mode in ["1", "L", "LA", "RGB", "RGBA"] else "TIFF" image.save(lowercase__ , format=lowercase__ ) return buffer.getvalue() def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if hasattr(lowercase__ , "filename" ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowercase__ )} def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) A = array.dtype A = dtype.byteorder if dtype.byteorder != "=" else _NATIVE_BYTEORDER A = dtype.kind A = dtype.itemsize A = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: A = np.dtype("|u1" ) if dtype_kind not in ["u", "i"]: raise TypeError( F"""Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.""" ) if dtype is not dest_dtype: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: A = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: A = dtype_byteorder + dtype_kind + str(lowercase__ ) A = np.dtype(lowercase__ ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F"""Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'""" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F"""Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}""" ) A = PIL.Image.fromarray(array.astype(lowercase__ ) ) return {"path": None, "bytes": image_to_bytes(lowercase__ )} def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError("To support encoding images, please install 'Pillow'." ) if objs: A , A = first_non_null_value(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowercase__ , np.ndarray ): A = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] elif isinstance(lowercase__ , PIL.Image.Image ): A = no_op_if_value_is_null(lowercase__ ) return [obj_to_image_dict_func(lowercase__ ) for obj in objs] else: return objs else: return objs
57
"""simple docstring""" import argparse import json import os import torch from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" # Load configuration defined in the metadata file with open(lowercase__ ) as metadata_file: A = json.load(lowercase__ ) A = LukeConfig(use_entity_aware_attention=lowercase__ , **metadata["model_config"] ) # Load in the weights from the checkpoint_path A = torch.load(lowercase__ , map_location="cpu" ) # Load the entity vocab file A = load_entity_vocab(lowercase__ ) A = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] ) # Add special tokens to the token vocabulary for downstream tasks A = AddedToken("<ent>" , lstrip=lowercase__ , rstrip=lowercase__ ) A = AddedToken("<ent2>" , lstrip=lowercase__ , rstrip=lowercase__ ) tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(lowercase__ ) with open(os.path.join(lowercase__ , LukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) A = LukeTokenizer.from_pretrained(lowercase__ ) # Initialize the embeddings of the special tokens A = state_dict["embeddings.word_embeddings.weight"] A = word_emb[tokenizer.convert_tokens_to_ids(["@"] )[0]].unsqueeze(0 ) A = word_emb[tokenizer.convert_tokens_to_ids(["#"] )[0]].unsqueeze(0 ) A = torch.cat([word_emb, ent_emb, enta_emb] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A = F"""encoder.layer.{layer_index}.attention.self.""" A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] A = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A = state_dict["entity_embeddings.entity_embeddings.weight"] A = entity_emb[entity_vocab["[MASK]"]] A = LukeModel(config=lowercase__ ).eval() A , A = model.load_state_dict(lowercase__ , strict=lowercase__ ) if not (len(lowercase__ ) == 1 and missing_keys[0] == "embeddings.position_ids"): raise ValueError(F"""Missing keys {", ".join(lowercase__ )}. Expected only missing embeddings.position_ids""" ) if not (all(key.startswith("entity_predictions" ) or key.startswith("lm_head" ) for key in unexpected_keys )): raise ValueError( "Unexpected keys" F""" {", ".join([key for key in unexpected_keys if not (key.startswith("entity_predictions" ) or key.startswith("lm_head" ))] )}""" ) # Check outputs A = LukeTokenizer.from_pretrained(lowercase__ , task="entity_classification" ) A = ( "Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the" " new world number one avoid a humiliating second- round exit at Wimbledon ." ) A = (39, 42) A = tokenizer(lowercase__ , entity_spans=[span] , add_prefix_space=lowercase__ , return_tensors="pt" ) A = model(**lowercase__ ) # Verify word hidden states if model_size == "large": A = torch.Size((1, 42, 1_024) ) A = torch.tensor( [[0.01_33, 0.08_65, 0.00_95], [0.30_93, -0.25_76, -0.74_18], [-0.17_20, -0.21_17, -0.28_69]] ) else: # base A = torch.Size((1, 42, 768) ) A = torch.tensor([[0.00_37, 0.13_68, -0.00_91], [0.10_99, 0.33_29, -0.10_95], [0.07_65, 0.53_35, 0.11_79]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": A = torch.Size((1, 1, 1_024) ) A = torch.tensor([[0.04_66, -0.01_06, -0.01_79]] ) else: # base A = torch.Size((1, 1, 768) ) A = torch.tensor([[0.14_57, 0.10_44, 0.01_74]] ) if not (outputs.entity_last_hidden_state.shape != expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , lowercase__ , atol=1e-4 ): raise ValueError # Finally, save our PyTorch model and tokenizer print("Saving PyTorch model to {}".format(lowercase__ ) ) model.save_pretrained(lowercase__ ) def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" A = {} with open(lowercase__ , "r" , encoding="utf-8" ) as f: for index, line in enumerate(lowercase__ ): A , A = line.rstrip().split("\t" ) A = index return entity_vocab if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Path to a pytorch_model.bin file.') parser.add_argument( '--metadata_path', default=None, type=str, help='Path to a metadata.json file, defining the configuration.' ) parser.add_argument( '--entity_vocab_path', default=None, type=str, help='Path to an entity_vocab.tsv file, containing the entity vocabulary.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to where to dump the output PyTorch model.' ) parser.add_argument( '--model_size', default='base', type=str, choices=['base', 'large'], help='Size of the model to be converted.' ) __A : int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
57
1
"""simple docstring""" from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration _lowerCAmelCase :Tuple = HfArgumentParser(InitializationArguments) _lowerCAmelCase :List[str] = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization _lowerCAmelCase :int = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks _lowerCAmelCase :str = { 'vocab_size': len(tokenizer), 'scale_attn_by_inverse_layer_idx': True, 'reorder_and_upcast_attn': True, } # Load model config (GPT-2 large in this case) _lowerCAmelCase :int = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config _lowerCAmelCase :Optional[Any] = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
263
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : str = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) _UpperCAmelCase : List[Any] = load_dataset('''ashraq/esc50''' ) _UpperCAmelCase : Optional[int] = dataset['''train''']['''audio'''][-1]['''array'''] _UpperCAmelCase : str = audio_classifier(A , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(A ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def __lowerCAmelCase ( self ) -> Union[str, Any]: pass @slow @require_torch def __lowerCAmelCase ( self ) -> str: _UpperCAmelCase : Union[str, Any] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog _UpperCAmelCase : List[Any] = load_dataset('''ashraq/esc50''' ) _UpperCAmelCase : Optional[int] = dataset['''train''']['''audio'''][-1]['''array'''] _UpperCAmelCase : Any = audio_classifier(A , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(A ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) _UpperCAmelCase : List[Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(A ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) _UpperCAmelCase : Tuple = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(A ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def __lowerCAmelCase ( self ) -> int: pass
263
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=13 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=24 , lowerCAmelCase_=2 , lowerCAmelCase_=6 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=5_12 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=None , lowerCAmelCase_=10_00 , ) -> Any: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = scope _A = range_bbox def UpperCAmelCase ( self ) -> Optional[Any]: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A = bbox[i, j, 3] _A = bbox[i, j, 1] _A = t if bbox[i, j, 2] < bbox[i, j, 0]: _A = bbox[i, j, 2] _A = bbox[i, j, 0] _A = t _A = None if self.use_input_mask: _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self ) -> Any: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> Optional[int]: _A = LiltModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _A = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ ) _A = model(lowerCAmelCase_ , bbox=lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> List[Any]: _A = self.num_labels _A = LiltForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> int: _A = LiltForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _A = model( lowerCAmelCase_ , bbox=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self ) -> List[Any]: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = { """input_ids""": input_ids, """bbox""": bbox, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase :Union[str, Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase :Dict = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase :Tuple = False lowerCamelCase :Optional[Any] = False def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: return True def UpperCAmelCase ( self ) -> List[str]: _A = LiltModelTester(self ) _A = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase ( self ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase_ ) def UpperCAmelCase ( self ) -> List[str]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase_ ) @slow def UpperCAmelCase ( self ) -> Optional[int]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = LiltModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @slow class a ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Any: _A = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(lowerCAmelCase_ ) _A = torch.tensor([[1, 2]] , device=lowerCAmelCase_ ) _A = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=lowerCAmelCase_ ) # forward pass with torch.no_grad(): _A = model(input_ids=lowerCAmelCase_ , bbox=lowerCAmelCase_ ) _A = torch.Size([1, 2, 7_68] ) _A = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=lowerCAmelCase_ , ) self.assertTrue(outputs.last_hidden_state.shape , lowerCAmelCase_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , lowerCAmelCase_ , atol=1E-3 ) )
369
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class a ( __lowerCAmelCase ): """simple docstring""" lowerCamelCase :torch.FloatTensor lowerCamelCase :torch.FloatTensor class a ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowerCamelCase :int = 1 @register_to_config def __init__( self , lowerCAmelCase_ = 20_00 , lowerCAmelCase_ = 0.15 , lowerCAmelCase_ = 0.01 , lowerCAmelCase_ = 1348.0 , lowerCAmelCase_ = 1E-5 , lowerCAmelCase_ = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _A = sigma_max # setable values _A = None self.set_sigmas(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Tuple: _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps _A = torch.linspace(1 , lowerCAmelCase_ , lowerCAmelCase_ , device=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None ) -> Any: _A = sigma_min if sigma_min is not None else self.config.sigma_min _A = sigma_max if sigma_max is not None else self.config.sigma_max _A = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ ) _A = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _A = torch.exp(torch.linspace(math.log(lowerCAmelCase_ ) , math.log(lowerCAmelCase_ ) , lowerCAmelCase_ ) ) _A = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) _A = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _A = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _A = timesteps.to(self.discrete_sigmas.device ) _A = self.discrete_sigmas[timesteps].to(sample.device ) _A = self.get_adjacent_sigma(lowerCAmelCase_ , lowerCAmelCase_ ).to(sample.device ) _A = torch.zeros_like(lowerCAmelCase_ ) _A = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _A = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _A = diffusion.unsqueeze(-1 ) _A = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _A = randn_tensor( sample.shape , layout=sample.layout , generator=lowerCAmelCase_ , device=sample.device , dtype=sample.dtype ) _A = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _A = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=lowerCAmelCase_ , prev_sample_mean=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _A = randn_tensor(sample.shape , layout=sample.layout , generator=lowerCAmelCase_ ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _A = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _A = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _A = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _A = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _A = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _A = step_size.unsqueeze(-1 ) _A = sample + step_size * model_output _A = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _A = timesteps.to(original_samples.device ) _A = self.discrete_sigmas.to(original_samples.device )[timesteps] _A = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(lowerCAmelCase_ ) * sigmas[:, None, None, None] ) _A = noise + original_samples return noisy_samples def __len__( self ) -> List[str]: return self.config.num_train_timesteps
81
0
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class snake_case_ : __A : CommonSchedulerState # setable values __A : jnp.ndarray __A : jnp.ndarray __A : Optional[int] = None @classmethod def __UpperCamelCase ( cls : str , lowercase_ : CommonSchedulerState , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray ) -> Optional[int]: return cls(common=lowercase_ , init_noise_sigma=lowercase_ , timesteps=lowercase_ ) @dataclass class snake_case_ ( __A ): __A : DDPMSchedulerState class snake_case_ ( __A ,__A ): __A : List[Any] = [e.name for e in FlaxKarrasDiffusionSchedulers] __A : jnp.dtype @property def __UpperCamelCase ( self : Union[str, Any] ) -> List[Any]: return True @register_to_config def __init__( self : Optional[Any] , lowercase_ : int = 10_00 , lowercase_ : float = 0.00_01 , lowercase_ : float = 0.02 , lowercase_ : str = "linear" , lowercase_ : Optional[jnp.ndarray] = None , lowercase_ : str = "fixed_small" , lowercase_ : bool = True , lowercase_ : str = "epsilon" , lowercase_ : jnp.dtype = jnp.floataa , ) -> List[str]: lowercase__ : Any = dtype def __UpperCamelCase ( self : int , lowercase_ : Optional[CommonSchedulerState] = None ) -> DDPMSchedulerState: if common is None: lowercase__ : str = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution lowercase__ : Any = jnp.array(1.0 , dtype=self.dtype ) lowercase__ : Union[str, Any] = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=lowercase_ , init_noise_sigma=lowercase_ , timesteps=lowercase_ , ) def __UpperCamelCase ( self : Optional[int] , lowercase_ : DDPMSchedulerState , lowercase_ : jnp.ndarray , lowercase_ : Optional[int] = None ) -> jnp.ndarray: return sample def __UpperCamelCase ( self : int , lowercase_ : DDPMSchedulerState , lowercase_ : int , lowercase_ : Tuple = () ) -> DDPMSchedulerState: lowercase__ : int = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 lowercase__ : List[str] = (jnp.arange(0 , lowercase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=lowercase_ , timesteps=lowercase_ , ) def __UpperCamelCase ( self : Optional[Any] , lowercase_ : DDPMSchedulerState , lowercase_ : Optional[Any] , lowercase_ : Any=None , lowercase_ : Tuple=None ) -> Optional[int]: lowercase__ : Dict = state.common.alphas_cumprod[t] lowercase__ : List[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : List[str] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: lowercase__ : Dict = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": lowercase__ : List[Any] = jnp.clip(lowercase_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": lowercase__ : Union[str, Any] = jnp.log(jnp.clip(lowercase_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": lowercase__ : Optional[int] = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log lowercase__ : List[str] = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": lowercase__ : Tuple = variance lowercase__ : Union[str, Any] = state.common.betas[t] lowercase__ : int = (predicted_variance + 1) / 2 lowercase__ : List[str] = frac * max_log + (1 - frac) * min_log return variance def __UpperCamelCase ( self : Any , lowercase_ : DDPMSchedulerState , lowercase_ : jnp.ndarray , lowercase_ : int , lowercase_ : jnp.ndarray , lowercase_ : Optional[jax.random.KeyArray] = None , lowercase_ : bool = True , ) -> Union[FlaxDDPMSchedulerOutput, Tuple]: lowercase__ : str = timestep if key is None: lowercase__ : Any = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ : Union[str, Any] = jnp.split(lowercase_ , sample.shape[1] , axis=1 ) else: lowercase__ : Any = None # 1. compute alphas, betas lowercase__ : str = state.common.alphas_cumprod[t] lowercase__ : Optional[Any] = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : List[str] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Any = model_output elif self.config.prediction_type == "v_prediction": lowercase__ : List[str] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' " for the FlaxDDPMScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : str = jnp.clip(lowercase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[str] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t lowercase__ : List[Any] = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): lowercase__ : Optional[int] = jax.random.split(lowercase_ , num=1 ) lowercase__ : List[str] = jax.random.normal(lowercase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(lowercase_ , lowercase_ , predicted_variance=lowercase_ ) ** 0.5) * noise lowercase__ : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) lowercase__ : Any = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=lowercase_ , state=lowercase_ ) def __UpperCamelCase ( self : List[Any] , lowercase_ : DDPMSchedulerState , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , ) -> jnp.ndarray: return add_noise_common(state.common , lowercase_ , lowercase_ , lowercase_ ) def __UpperCamelCase ( self : str , lowercase_ : DDPMSchedulerState , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , lowercase_ : jnp.ndarray , ) -> jnp.ndarray: return get_velocity_common(state.common , lowercase_ , lowercase_ , lowercase_ ) def __len__( self : Any ) -> Optional[Any]: return self.config.num_train_timesteps
87
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase : Any = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __lowerCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
88
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Optional[Any] ) -> Tuple: return params[f"{prefix}/{prefix}/relpos_bias/rel_embedding"][:, i, :] def __snake_case ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Any="attention" ) -> List[str]: A_ : Optional[Any] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/key/kernel"][:, i, :, :] ) A_ : int = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) A_ : Union[str, Any] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/out/kernel"][:, i, :, :] ) A_ : Any = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) A_ : List[str] = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/query/kernel"][:, i, :, :] ) A_ : Any = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) A_ : str = np.ascontiguousarray(params[f"{prefix}/{prefix}/{layer_name}/value/kernel"][:, i, :, :] ) A_ : Union[str, Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def __snake_case ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict=False ) -> str: if split_mlp_wi: A_ : Optional[Any] = params[f"{prefix}/{prefix}/mlp/wi_0/kernel"][:, i, :] A_ : List[str] = params[f"{prefix}/{prefix}/mlp/wi_1/kernel"][:, i, :] A_ : int = (wi_a, wi_a) else: A_ : List[str] = params[f"{prefix}/{prefix}/mlp/wi/kernel"][:, i, :] A_ : Optional[Any] = params[f"{prefix}/{prefix}/mlp/wo/kernel"][:, i, :] return wi, wo def __snake_case ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ) -> Optional[int]: return params[f"{prefix}/{prefix}/{layer_name}/scale"][:, i] def __snake_case ( _lowerCAmelCase : dict , *, _lowerCAmelCase : int , _lowerCAmelCase : bool , _lowerCAmelCase : bool = False ) -> Dict: A_ : Optional[Any] = traverse_util.flatten_dict(variables["target"] ) A_ : str = {"/".join(_lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A_ : List[Any] = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , _lowerCAmelCase ) A_ : Dict = collections.OrderedDict() # Shared embeddings. A_ : Union[str, Any] = old["token_embedder/embedding"] # Encoder. for i in range(_lowerCAmelCase ): # Block i, layer 0 (Self Attention). A_ : Optional[Any] = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "pre_attention_layer_norm" ) A_ , A_ , A_ , A_ : int = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "attention" ) A_ : int = layer_norm A_ : Optional[int] = k.T A_ : Tuple = o.T A_ : List[str] = q.T A_ : Any = v.T # Block i, layer 1 (MLP). A_ : int = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , "pre_mlp_layer_norm" ) A_ , A_ : Tuple = tax_mlp_lookup(_lowerCAmelCase , _lowerCAmelCase , "encoder" , _lowerCAmelCase ) A_ : Optional[Any] = layer_norm if split_mlp_wi: A_ : Union[str, Any] = wi[0].T A_ : Optional[Any] = wi[1].T else: A_ : Tuple = wi.T A_ : str = wo.T if scalable_attention: # convert the rel_embedding of each layer A_ : Any = tax_relpos_bias_lookup( _lowerCAmelCase , _lowerCAmelCase , "encoder" ).T A_ : Any = old["encoder/encoder_norm/scale"] if not scalable_attention: A_ : Optional[Any] = tax_relpos_bias_lookup( _lowerCAmelCase , 0 , "encoder" ).T A_ : List[Any] = tax_relpos_bias_lookup( _lowerCAmelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(_lowerCAmelCase ): # Block i, layer 0 (Self Attention). A_ : List[str] = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) A_ , A_ , A_ , A_ : Union[str, Any] = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "self_attention" ) A_ : Any = layer_norm A_ : Optional[Any] = k.T A_ : Any = o.T A_ : Union[str, Any] = q.T A_ : str = v.T # Block i, layer 1 (Cross Attention). A_ : str = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) A_ , A_ , A_ , A_ : Union[str, Any] = tax_attention_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "encoder_decoder_attention" ) A_ : Dict = layer_norm A_ : List[Any] = k.T A_ : int = o.T A_ : int = q.T A_ : Optional[int] = v.T # Block i, layer 2 (MLP). A_ : Dict = tax_layer_norm_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , "pre_mlp_layer_norm" ) A_ , A_ : Union[str, Any] = tax_mlp_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" , _lowerCAmelCase ) A_ : str = layer_norm if split_mlp_wi: A_ : List[str] = wi[0].T A_ : int = wi[1].T else: A_ : str = wi.T A_ : int = wo.T if scalable_attention: # convert the rel_embedding of each layer A_ : Optional[int] = tax_relpos_bias_lookup(_lowerCAmelCase , _lowerCAmelCase , "decoder" ).T A_ : Optional[Any] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A_ : List[Any] = old["decoder/logits_dense/kernel"].T return new def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : bool ) -> Any: A_ : Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A_ : Optional[int] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A_ : Optional[int] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) A_ : List[Any] = state_dict["shared.weight"] return state_dict def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] ) -> Tuple: A_ : int = checkpoints.load_tax_checkpoint(_lowerCAmelCase ) A_ : Dict = convert_tax_to_pytorch( _lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=_lowerCAmelCase , scalable_attention=_lowerCAmelCase ) A_ : int = make_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase , strict=_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : bool = False , _lowerCAmelCase : bool = False , ) -> int: A_ : int = MTaConfig.from_json_file(_lowerCAmelCase ) print(f"Building PyTorch model from configuration: {config}" ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A_ : str = UMTaEncoderModel(_lowerCAmelCase ) else: A_ : int = UMTaForConditionalGeneration(_lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(_lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(_lowerCAmelCase ) print("Done" ) if __name__ == "__main__": _lowerCAmelCase : Optional[Any] = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) _lowerCAmelCase : str = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
70
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path _lowerCAmelCase : Optional[Any] = Path(__file__).resolve().parents[3] / '''src''' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) _lowerCAmelCase : Tuple = {'''base''': '''patrickvonplaten/wav2vec2_tiny_random''', '''robust''': '''patrickvonplaten/wav2vec2_tiny_random_robust'''} _lowerCAmelCase : List[str] = '''zero2''' _lowerCAmelCase : Dict = '''zero3''' _lowerCAmelCase : Tuple = [ZEROa, ZEROa] def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : List[Any] ) -> Any: # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param A_ : Dict = parameterized.to_safe_name("_".join(str(_lowerCAmelCase ) for x in param.args ) ) return f"{func.__name__}_{param_based_name}" # Cartesian-product of zero stages with models to test _lowerCAmelCase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Tuple , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Tuple , snake_case :Optional[Any] ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] , snake_case :Dict , snake_case :Any ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) @require_torch_multi_gpu @parameterized.expand(snake_case , name_func=snake_case ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :str , snake_case :Tuple ): '''simple docstring''' self.run_and_check( stage=snake_case , model=snake_case , distributed=snake_case , fpaa=snake_case , ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :int ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Dict , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :bool = True , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : Any = models[model] A_ : List[Any] = self.run_trainer( stage=snake_case , model_name=snake_case , eval_steps=snake_case , num_train_epochs=1 , distributed=snake_case , fpaa=snake_case , ) self.do_checks(snake_case ) return output_dir def SCREAMING_SNAKE_CASE ( self :str , snake_case :str , snake_case :str , snake_case :int = 10 , snake_case :int = 1 , snake_case :bool = True , snake_case :bool = True , ): '''simple docstring''' A_ : List[Any] = self.get_auto_remove_tmp_dir("./xxx" , after=snake_case ) A_ : Tuple = f"\n --model_name_or_path {model_name}\n --dataset_name hf-internal-testing/librispeech_asr_dummy\n --dataset_config_name clean\n --train_split_name validation\n --validation_split_name validation\n --output_dir {output_dir}\n --num_train_epochs {str(snake_case )}\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 2\n --evaluation_strategy steps\n --learning_rate 5e-4\n --warmup_steps 8\n --orthography timit\n --preprocessing_num_workers 1\n --group_by_length\n --freeze_feature_extractor\n --report_to none\n --save_steps 0\n --eval_steps {eval_steps}\n --report_to none\n ".split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files A_ : List[str] = f"--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json".split() A_ : List[str] = [f"{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"] A_ : str = self.get_launcher(snake_case ) A_ : Dict = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case , env=self.get_env() ) return output_dir def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Optional[Any]=False ): '''simple docstring''' A_ : int = min(2 , get_gpu_count() ) if distributed else 1 return f"deepspeed --num_nodes 1 --num_gpus {num_gpus}".split()
70
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch A_ : List[Any] = logging.get_logger(__name__) class _a : '''simple docstring''' def __init__( self , A__ = None , A__ = None , A__=None , A__=None ): if not conversation_id: A__ : List[Any] = uuid.uuida() if past_user_inputs is None: A__ : Dict = [] if generated_responses is None: A__ : int = [] A__ : uuid.UUID = conversation_id A__ : List[str] = past_user_inputs A__ : List[str] = generated_responses A__ : Optional[str] = text def __eq__( self , A__ ): if not isinstance(A__ , A__ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __A ( self , A__ , A__ = False ): if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) A__ : str = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: A__ : Tuple = text def __A ( self ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) A__ : Tuple = None def __A ( self , A__ ): self.generated_responses.append(A__ ) def __A ( self ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): A__ : Optional[Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): A__ : str = """user""" if is_user else """bot""" output += F"""{name} >> {text} \n""" return output @add_end_docstrings( __magic_name__ , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _a (__magic_name__ ): '''simple docstring''' def __init__( self , *A__ , **A__ ): super().__init__(*A__ , **A__ ) if self.tokenizer.pad_token_id is None: A__ : Tuple = self.tokenizer.eos_token def __A ( self , A__=None , A__=None , A__=None , **A__ ): A__ : Tuple = {} A__ : List[str] = {} A__ : Union[str, Any] = {} if min_length_for_response is not None: A__ : str = min_length_for_response if minimum_tokens is not None: A__ : List[str] = minimum_tokens if "max_length" in generate_kwargs: A__ : List[Any] = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: A__ : Optional[int] = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(A__ ) return preprocess_params, forward_params, postprocess_params def __call__( self , A__ , A__=0 , **A__ ): A__ : Optional[Any] = super().__call__(A__ , num_workers=A__ , **A__ ) if isinstance(A__ , A__ ) and len(A__ ) == 1: return outputs[0] return outputs def __A ( self , A__ , A__=32 ): if not isinstance(A__ , A__ ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): A__ : List[str] = self.tokenizer._build_conversation_input_ids(A__ ) else: # If the tokenizer cannot handle conversations, we default to only the old version A__ : Tuple = self._legacy_parse_and_tokenize(A__ ) if self.framework == "pt": A__ : List[str] = torch.LongTensor([input_ids] ) elif self.framework == "tf": A__ : Optional[Any] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __A ( self , A__ , A__=10 , **A__ ): A__ : List[Any] = generate_kwargs.get("""max_length""" , self.model.config.max_length ) A__ : Optional[int] = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) A__ : Dict = max_length - minimum_tokens A__ : Optional[int] = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: A__ : str = model_inputs["""attention_mask"""][:, -trim:] A__ : List[str] = model_inputs.pop("""conversation""" ) A__ : Dict = max_length A__ : str = self.model.generate(**A__ , **A__ ) if self.model.config.is_encoder_decoder: A__ : Union[str, Any] = 1 else: A__ : Optional[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __A ( self , A__ , A__=True ): A__ : Dict = model_outputs["""output_ids"""] A__ : str = self.tokenizer.decode( output_ids[0] , skip_special_tokens=A__ , clean_up_tokenization_spaces=A__ , ) A__ : Optional[int] = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(A__ ) return conversation def __A ( self , A__ ): A__ : str = self.tokenizer.eos_token_id A__ : Tuple = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(A__ , add_special_tokens=A__ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(A__ , add_special_tokens=A__ ) ) if len(A__ ) > self.tokenizer.model_max_length: A__ : str = input_ids[-self.tokenizer.model_max_length :] return input_ids
192
from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : Optional[Any] = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: List[Any] = '''mgp-str''' def __init__( self , A__=[32, 128] , A__=4 , A__=3 , A__=27 , A__=38 , A__=5_0257 , A__=3_0522 , A__=768 , A__=12 , A__=12 , A__=4.0 , A__=True , A__=False , A__=1e-5 , A__=0.0 , A__=0.0 , A__=0.0 , A__=False , A__=0.0_2 , **A__ , ): super().__init__(**A__ ) A__ : Dict = image_size A__ : int = patch_size A__ : Dict = num_channels A__ : List[Any] = max_token_length A__ : str = num_character_labels A__ : Tuple = num_bpe_labels A__ : Optional[Any] = num_wordpiece_labels A__ : Optional[int] = hidden_size A__ : Tuple = num_hidden_layers A__ : Any = num_attention_heads A__ : List[Any] = mlp_ratio A__ : Tuple = distilled A__ : Union[str, Any] = layer_norm_eps A__ : Tuple = drop_rate A__ : List[str] = qkv_bias A__ : Optional[Any] = attn_drop_rate A__ : Union[str, Any] = drop_path_rate A__ : Optional[Any] = output_aa_attentions A__ : Optional[int] = initializer_range
192
1
import logging import os import sys from dataclasses import dataclass, field from itertools import chain from typing import Optional, Union import datasets import numpy as np import torch from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.tokenization_utils_base import PreTrainedTokenizerBase from transformers.trainer_utils import get_last_checkpoint from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') UpperCAmelCase_ = logging.getLogger(__name__) @dataclass class lowercase__ : '''simple docstring''' a : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) a : bool = field( default=__lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) @dataclass class lowercase__ : '''simple docstring''' a : Optional[str] = field(default=__lowerCamelCase , metadata={"help": "The input training data file (a text file)."} ) a : Optional[str] = field( default=__lowerCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) a : bool = field( default=__lowerCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) a : Optional[int] = field( default=__lowerCamelCase , metadata={"help": "The number of processes to use for the preprocessing."} , ) a : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "The maximum total input sequence length after tokenization. If passed, sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) a : bool = field( default=__lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to the maximum sentence length. " "If False, will pad the samples dynamically when batching to the maximum length in the batch. More " "efficient on GPU but very bad for TPU." ) } , ) a : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) a : Optional[int] = field( default=__lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def UpperCamelCase__ ( self ) -> Dict: """simple docstring""" if self.train_file is not None: UpperCamelCase__ : Optional[Any] = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: UpperCamelCase__ : Tuple = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." @dataclass class lowercase__ : '''simple docstring''' a : PreTrainedTokenizerBase a : Union[bool, str, PaddingStrategy] = True a : Optional[int] = None a : Optional[int] = None def __call__( self, __magic_name__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[int] = '''label''' if '''label''' in features[0].keys() else '''labels''' UpperCamelCase__ : List[Any] = [feature.pop(__magic_name__ ) for feature in features] UpperCamelCase__ : Union[str, Any] = len(__magic_name__ ) UpperCamelCase__ : List[Any] = len(features[0]['''input_ids'''] ) UpperCamelCase__ : Any = [ [{k: v[i] for k, v in feature.items()} for i in range(__magic_name__ )] for feature in features ] UpperCamelCase__ : List[str] = list(chain(*__magic_name__ ) ) UpperCamelCase__ : Any = self.tokenizer.pad( __magic_name__, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors='''pt''', ) # Un-flatten UpperCamelCase__ : Union[str, Any] = {k: v.view(__magic_name__, __magic_name__, -1 ) for k, v in batch.items()} # Add back labels UpperCamelCase__ : Union[str, Any] = torch.tensor(__magic_name__, dtype=torch.intaa ) return batch def lowerCAmelCase_ ( ) -> Union[str, Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase__ : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_swag''' , __UpperCAmelCase , __UpperCAmelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase__ : Optional[int] = training_args.get_process_log_level() logger.setLevel(__UpperCAmelCase ) datasets.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.set_verbosity(__UpperCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(f"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. UpperCamelCase__ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase__ : List[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.train_file is not None or data_args.validation_file is not None: UpperCamelCase__ : Optional[int] = {} if data_args.train_file is not None: UpperCamelCase__ : Union[str, Any] = data_args.train_file if data_args.validation_file is not None: UpperCamelCase__ : List[str] = data_args.validation_file UpperCamelCase__ : Union[str, Any] = data_args.train_file.split('''.''' )[-1] UpperCamelCase__ : List[Any] = load_dataset( __UpperCAmelCase , data_files=__UpperCAmelCase , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: # Downloading and loading the swag dataset from the hub. UpperCamelCase__ : str = load_dataset( '''swag''' , '''regular''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCamelCase__ : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase__ : Union[str, Any] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__UpperCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # When using your own dataset or a different dataset from swag, you will probably need to change this. UpperCamelCase__ : Union[str, Any] = [f"ending{i}" for i in range(4 )] UpperCamelCase__ : List[Any] = '''sent1''' UpperCamelCase__ : str = '''sent2''' if data_args.max_seq_length is None: UpperCamelCase__ : Optional[Any] = tokenizer.model_max_length if max_seq_length > 1024: logger.warning( '''The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value''' ''' of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can''' ''' override this default with `--block_size xxx`.''' ) UpperCamelCase__ : Dict = 1024 else: if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) UpperCamelCase__ : List[Any] = min(data_args.max_seq_length , tokenizer.model_max_length ) # Preprocessing the datasets. def preprocess_function(__UpperCAmelCase: Optional[int] ): UpperCamelCase__ : Any = [[context] * 4 for context in examples[context_name]] UpperCamelCase__ : Optional[Any] = examples[question_header_name] UpperCamelCase__ : List[str] = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(__UpperCAmelCase ) ] # Flatten out UpperCamelCase__ : Dict = list(chain(*__UpperCAmelCase ) ) UpperCamelCase__ : Optional[Any] = list(chain(*__UpperCAmelCase ) ) # Tokenize UpperCamelCase__ : int = tokenizer( __UpperCAmelCase , __UpperCAmelCase , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase , padding='''max_length''' if data_args.pad_to_max_length else False , ) # Un-flatten return {k: [v[i : i + 4] for i in range(0 , len(__UpperCAmelCase ) , 4 )] for k, v in tokenized_examples.items()} if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCamelCase__ : str = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCamelCase__ : Any = min(len(__UpperCAmelCase ) , data_args.max_train_samples ) UpperCamelCase__ : Dict = train_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='''train dataset map pre-processing''' ): UpperCamelCase__ : List[Any] = train_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) if training_args.do_eval: if "validation" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCamelCase__ : Dict = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCamelCase__ : Optional[Any] = min(len(__UpperCAmelCase ) , data_args.max_eval_samples ) UpperCamelCase__ : Union[str, Any] = eval_dataset.select(range(__UpperCAmelCase ) ) with training_args.main_process_first(desc='''validation dataset map pre-processing''' ): UpperCamelCase__ : str = eval_dataset.map( __UpperCAmelCase , batched=__UpperCAmelCase , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , ) # Data collator UpperCamelCase__ : str = ( default_data_collator if data_args.pad_to_max_length else DataCollatorForMultipleChoice(tokenizer=__UpperCAmelCase , pad_to_multiple_of=8 if training_args.fpaa else None ) ) # Metric def compute_metrics(__UpperCAmelCase: Optional[Any] ): UpperCamelCase__ ,UpperCamelCase__ : str = eval_predictions UpperCamelCase__ : List[str] = np.argmax(__UpperCAmelCase , axis=1 ) return {"accuracy": (preds == label_ids).astype(np.floataa ).mean().item()} # Initialize our Trainer UpperCamelCase__ : int = Trainer( model=__UpperCAmelCase , args=__UpperCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=__UpperCAmelCase , data_collator=__UpperCAmelCase , compute_metrics=__UpperCAmelCase , ) # Training if training_args.do_train: UpperCamelCase__ : List[str] = None if training_args.resume_from_checkpoint is not None: UpperCamelCase__ : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase__ : List[str] = last_checkpoint UpperCamelCase__ : Optional[Any] = trainer.train(resume_from_checkpoint=__UpperCAmelCase ) trainer.save_model() # Saves the tokenizer too for easy upload UpperCamelCase__ : Dict = train_result.metrics UpperCamelCase__ : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCAmelCase ) ) UpperCamelCase__ : Dict = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('''train''' , __UpperCAmelCase ) trainer.save_metrics('''train''' , __UpperCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCamelCase__ : str = trainer.evaluate() UpperCamelCase__ : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCAmelCase ) UpperCamelCase__ : Optional[int] = min(__UpperCAmelCase , len(__UpperCAmelCase ) ) trainer.log_metrics('''eval''' , __UpperCAmelCase ) trainer.save_metrics('''eval''' , __UpperCAmelCase ) UpperCamelCase__ : int = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''multiple-choice''', '''dataset_tags''': '''swag''', '''dataset_args''': '''regular''', '''dataset''': '''SWAG''', '''language''': '''en''', } if training_args.push_to_hub: trainer.push_to_hub(**__UpperCAmelCase ) else: trainer.create_model_card(**__UpperCAmelCase ) def lowerCAmelCase_ ( __UpperCAmelCase: List[Any] ) -> List[str]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
247
import random def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: Optional[Any] ) -> tuple: UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : int = [], [], [] for element in data: if element < pivot: less.append(__UpperCAmelCase ) elif element > pivot: greater.append(__UpperCAmelCase ) else: equal.append(__UpperCAmelCase ) return less, equal, greater def lowerCAmelCase_ ( __UpperCAmelCase: list , __UpperCAmelCase: int ) -> List[str]: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(__UpperCAmelCase ) or index < 0: return None UpperCamelCase__ : Tuple = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )] UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Dict = _partition(__UpperCAmelCase , __UpperCAmelCase ) UpperCamelCase__ : Union[str, Any] = len(__UpperCAmelCase ) UpperCamelCase__ : List[str] = len(__UpperCAmelCase ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(__UpperCAmelCase , __UpperCAmelCase ) # must be in larger else: return quick_select(__UpperCAmelCase , index - (m + count) )
247
1
"""simple docstring""" import numpy as np from PIL import Image def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 # compute the shape of the output matrix __lowerCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowerCAmelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowerCAmelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 return updated_arr def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = np.array(_UpperCamelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 # compute the shape of the output matrix __lowerCAmelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowerCAmelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowerCAmelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowerCAmelCase = 0 __lowerCAmelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image A : str = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
57
"""simple docstring""" from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _UpperCamelCase : '''simple docstring''' pass
57
1
from __future__ import annotations import pandas as pd def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = [0] * no_of_processes UpperCAmelCase_ : Optional[int] = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__lowerCAmelCase ): UpperCAmelCase_ : Tuple = burst_time[i] UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Any = 999999999 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Optional[Any] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__lowerCAmelCase ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCAmelCase_ : Dict = remaining_time[j] UpperCAmelCase_ : int = j UpperCAmelCase_ : Tuple = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCAmelCase_ : int = remaining_time[short] if minm == 0: UpperCAmelCase_ : int = 999999999 if remaining_time[short] == 0: complete += 1 UpperCAmelCase_ : Dict = False # Find finish time of current process UpperCAmelCase_ : List[Any] = increment_time + 1 # Calculate waiting time UpperCAmelCase_ : Any = finish_time - arrival_time[short] UpperCAmelCase_ : Dict = finar - burst_time[short] if waiting_time[short] < 0: UpperCAmelCase_ : List[str] = 0 # Increment time increment_time += 1 return waiting_time def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = [0] * no_of_processes for i in range(__lowerCAmelCase ): UpperCAmelCase_ : str = burst_time[i] + waiting_time[i] return turn_around_time def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : Optional[Any] = 0 for i in range(__lowerCAmelCase ): UpperCAmelCase_ : str = total_waiting_time + waiting_time[i] UpperCAmelCase_ : Union[str, Any] = total_turn_around_time + turn_around_time[i] print(f'''Average waiting time = {total_waiting_time / no_of_processes:.5f}''' ) print('''Average turn around time =''' , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') __a = int(input()) __a = [0] * no_of_processes __a = [0] * no_of_processes __a = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) __a ,__a = map(int, input().split()) __a = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __a = burst_time __a = no_of_processes __a = waiting_time __a = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) __a = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
362
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __a( _a ): """simple docstring""" lowerCAmelCase = (IPNDMScheduler,) lowerCAmelCase = (('''num_inference_steps''', 50),) def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Tuple = {'''num_train_timesteps''': 1_000} config.update(**_SCREAMING_SNAKE_CASE ) return config def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : int = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = self.dummy_sample UpperCAmelCase_ : Optional[Any] = 0.1 * sample UpperCAmelCase_ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : Tuple = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCAmelCase_ : Optional[Any] = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : Tuple = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals UpperCAmelCase_ : Optional[int] = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : str = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase_ : Union[str, Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ) -> List[Any]: pass def a__ ( self ,_SCREAMING_SNAKE_CASE=0 ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : List[str] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Tuple = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : int = self.dummy_sample UpperCAmelCase_ : Tuple = 0.1 * sample UpperCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : str = self.get_scheduler_config() UpperCAmelCase_ : str = scheduler_class(**_SCREAMING_SNAKE_CASE ) scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals (must be after setting timesteps) UpperCAmelCase_ : Tuple = dummy_past_residuals[:] if time_step is None: UpperCAmelCase_ : Dict = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = scheduler_class.from_pretrained(_SCREAMING_SNAKE_CASE ) # copy over dummy past residuals new_scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) # copy over dummy past residual (must be after setting timesteps) UpperCAmelCase_ : str = dummy_past_residuals[:] UpperCAmelCase_ : Tuple = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Optional[int] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" UpperCAmelCase_ : str = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : List[str] = new_scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a__ ( self ,**_SCREAMING_SNAKE_CASE ) -> List[Any]: UpperCAmelCase_ : Tuple = self.scheduler_classes[0] UpperCAmelCase_ : List[Any] = self.get_scheduler_config(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = 10 UpperCAmelCase_ : Tuple = self.dummy_model() UpperCAmelCase_ : List[str] = self.dummy_sample_deter scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : int = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample for i, t in enumerate(scheduler.timesteps ): UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ).prev_sample return sample def a__ ( self ) -> str: UpperCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) UpperCAmelCase_ : Any = kwargs.pop('''num_inference_steps''' ,_SCREAMING_SNAKE_CASE ) for scheduler_class in self.scheduler_classes: UpperCAmelCase_ : int = self.get_scheduler_config() UpperCAmelCase_ : List[Any] = scheduler_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self.dummy_sample UpperCAmelCase_ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ): scheduler.set_timesteps(_SCREAMING_SNAKE_CASE ) elif num_inference_steps is not None and not hasattr(_SCREAMING_SNAKE_CASE ,'''set_timesteps''' ): UpperCAmelCase_ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCAmelCase_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCAmelCase_ : int = dummy_past_residuals[:] UpperCAmelCase_ : List[Any] = scheduler.timesteps[5] UpperCAmelCase_ : Dict = scheduler.timesteps[6] UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) UpperCAmelCase_ : List[Any] = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample UpperCAmelCase_ : Dict = scheduler.step(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def a__ ( self ) -> Any: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] ,[10, 50, 100] ): self.check_over_forward(num_inference_steps=_SCREAMING_SNAKE_CASE ,time_step=_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> Union[str, Any]: UpperCAmelCase_ : Optional[int] = self.full_loop() UpperCAmelCase_ : str = torch.mean(torch.abs(_SCREAMING_SNAKE_CASE ) ) assert abs(result_mean.item() - 2_540_529 ) < 10
235
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __snake_case = logging.get_logger(__name__) __snake_case = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) __snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[str]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCAmelCase : Union[str, Any] =model_type_to_module_name(__lowerCAmelCase ) UpperCAmelCase : List[Any] =importlib.import_module(f'''.{module_name}''' , '''transformers.models''' ) try: return getattr(__lowerCAmelCase , __lowerCAmelCase ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__lowerCAmelCase , '''__name__''' , __lowerCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCAmelCase : Dict =importlib.import_module('''transformers''' ) if hasattr(__lowerCAmelCase , __lowerCAmelCase ): return getattr(__lowerCAmelCase , __lowerCAmelCase ) return None def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , )-> Tuple: '''simple docstring''' UpperCAmelCase : List[str] =get_file_from_repo( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(__lowerCAmelCase , encoding='''utf-8''' ) as reader: return json.load(__lowerCAmelCase ) class __snake_case : def __init__( self ) -> Optional[Any]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__A ) def UpperCAmelCase__ ( cls , snake_case__ , **snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : str =kwargs.pop('''config''' , __A ) UpperCAmelCase : Optional[int] =kwargs.pop('''trust_remote_code''' , __A ) UpperCAmelCase : str =True UpperCAmelCase , UpperCAmelCase : str =ImageProcessingMixin.get_image_processor_dict(__A , **__A ) UpperCAmelCase : Union[str, Any] =config_dict.get('''image_processor_type''' , __A ) UpperCAmelCase : Tuple =None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase : Tuple =config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCAmelCase : List[str] =config_dict.pop('''feature_extractor_type''' , __A ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) UpperCAmelCase : List[str] =feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): UpperCAmelCase : List[str] =config_dict['''auto_map''']['''AutoFeatureExtractor'''] UpperCAmelCase : List[str] =feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__A , __A ): UpperCAmelCase : Optional[Any] =AutoConfig.from_pretrained(__A , **__A ) # It could be in `config.image_processor_type`` UpperCAmelCase : List[str] =getattr(__A , '''image_processor_type''' , __A ) if hasattr(__A , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: UpperCAmelCase : Union[str, Any] =config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: UpperCAmelCase : str =image_processor_class_from_name(__A ) UpperCAmelCase : Optional[int] =image_processor_auto_map is not None UpperCAmelCase : Union[str, Any] =image_processor_class is not None or type(__A ) in IMAGE_PROCESSOR_MAPPING UpperCAmelCase : Union[str, Any] =resolve_trust_remote_code( __A , __A , __A , __A ) if has_remote_code and trust_remote_code: UpperCAmelCase : str =get_class_from_dynamic_module( __A , __A , **__A ) UpperCAmelCase : Union[str, Any] =kwargs.pop('''code_revision''' , __A ) if os.path.isdir(__A ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__A , **__A ) elif image_processor_class is not None: return image_processor_class.from_dict(__A , **__A ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__A ) in IMAGE_PROCESSOR_MAPPING: UpperCAmelCase : Optional[Any] =IMAGE_PROCESSOR_MAPPING[type(__A )] return image_processor_class.from_dict(__A , **__A ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCAmelCase__ ( snake_case__ , snake_case__ ) -> Any: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(__A , __A )
348
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase_ : Optional[Any] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : str = ["""NllbTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Dict = ["""NllbTokenizerFast"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys lowerCamelCase_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
81
0
from __future__ import annotations def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = set(_lowercase ), [start] while stack: UpperCAmelCase_ : int = stack.pop() explored.add(_lowercase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(_lowercase ) return explored __a = { 'A': ['B', 'C', 'D'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F'], 'D': ['B', 'D'], 'E': ['B', 'F'], 'F': ['C', 'E', 'G'], 'G': ['F'], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, 'A'))
235
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __a = None __a = logging.get_logger(__name__) __a = '▁' __a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __a = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __a = { 'google/pegasus-xsum': 512, } class __a( _a ): """simple docstring""" lowerCAmelCase = VOCAB_FILES_NAMES lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase = PegasusTokenizer lowerCAmelCase = ['''input_ids''', '''attention_mask'''] def __init__( self ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE="<pad>" ,_SCREAMING_SNAKE_CASE="</s>" ,_SCREAMING_SNAKE_CASE="<unk>" ,_SCREAMING_SNAKE_CASE="<mask_2>" ,_SCREAMING_SNAKE_CASE="<mask_1>" ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=103 ,**_SCREAMING_SNAKE_CASE ,) -> Optional[Any]: UpperCAmelCase_ : Dict = offset if additional_special_tokens is not None: if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise TypeError( f'''additional_special_tokens should be of type {type(_SCREAMING_SNAKE_CASE )}, but is''' f''' {type(_SCREAMING_SNAKE_CASE )}''' ) UpperCAmelCase_ : str = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'''<unk_{i}>''' for i in range(len(_SCREAMING_SNAKE_CASE ) ,self.offset - 1 ) ] if len(set(_SCREAMING_SNAKE_CASE ) ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' f''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase_ : int = additional_special_tokens_extended else: UpperCAmelCase_ : Any = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( _SCREAMING_SNAKE_CASE ,tokenizer_file=_SCREAMING_SNAKE_CASE ,pad_token=_SCREAMING_SNAKE_CASE ,eos_token=_SCREAMING_SNAKE_CASE ,unk_token=_SCREAMING_SNAKE_CASE ,mask_token=_SCREAMING_SNAKE_CASE ,mask_token_sent=_SCREAMING_SNAKE_CASE ,offset=_SCREAMING_SNAKE_CASE ,additional_special_tokens=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ,) UpperCAmelCase_ : str = vocab_file UpperCAmelCase_ : Dict = False if not self.vocab_file else True def a__ ( self ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : Dict = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( '''There should be 3 special tokens: mask_token, pad_token, and eos_token +''' f''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ,_SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) elif token_ids_a is None: return self._special_token_mask(_SCREAMING_SNAKE_CASE ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase_ : Optional[int] = os.path.join( _SCREAMING_SNAKE_CASE ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_SCREAMING_SNAKE_CASE ): copyfile(self.vocab_file ,_SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
235
1
'''simple docstring''' from scipy.stats import pearsonr import datasets A__ : int =''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' A__ : List[str] =''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' A__ : List[str] =''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def lowercase__ ( self : Optional[int] ) -> List[str]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html"""] , ) def lowercase__ ( self : List[str] , __snake_case : str , __snake_case : List[Any] , __snake_case : Any=False ) -> Optional[int]: if return_pvalue: _lowerCAmelCase = pearsonr(__snake_case , __snake_case ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__snake_case , __snake_case )[0] )}
70
'''simple docstring''' def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [0 for i in range(r + 1 )] # nc0 = 1 _lowerCAmelCase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _lowerCAmelCase = min(lowerCAmelCase , lowerCAmelCase ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
70
1
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = BertJapaneseTokenizer __lowerCAmelCase : Any = False __lowerCAmelCase : Optional[int] = True def __lowerCamelCase ( self :List[Any] ): super().setUp() snake_case__ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは''', '''世界''', '''##世界''', '''、''', '''##、''', '''。''', '''##。''', ] snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :List[str] ): snake_case__ : Any = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case__ : Optional[int] = '''こんにちは 、 世界 。 こんばんは 、 世界 。''' return input_text, output_text def __lowerCamelCase ( self :List[str] ,__lowercase :Optional[Any] ): snake_case__ , snake_case__ : Union[str, Any] = self.get_input_output_texts(__lowercase ) snake_case__ : List[Any] = tokenizer.encode(__lowercase ,add_special_tokens=__lowercase ) snake_case__ : List[str] = tokenizer.decode(__lowercase ,clean_up_tokenization_spaces=__lowercase ) return text, ids def __lowerCamelCase ( self :Tuple ): pass # TODO add if relevant def __lowerCamelCase ( self :Dict ): pass # TODO add if relevant def __lowerCamelCase ( self :Union[str, Any] ): pass # TODO add if relevant def __lowerCamelCase ( self :int ): snake_case__ : List[Any] = self.tokenizer_class(self.vocab_file ) snake_case__ : Any = tokenizer.tokenize('''こんにちは、世界。\nこんばんは、世界。''' ) self.assertListEqual(__lowercase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def __lowerCamelCase ( self :List[str] ): snake_case__ : str = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''mecab''' ) self.assertIsNotNone(__lowercase ) snake_case__ : Union[str, Any] = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ : Optional[int] = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) snake_case__ : int = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(__lowercase ,'''wb''' ) as handle: pickle.dump(__lowercase ,__lowercase ) with open(__lowercase ,'''rb''' ) as handle: snake_case__ : Union[str, Any] = pickle.load(__lowercase ) snake_case__ : Dict = tokenizer_new.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) def __lowerCamelCase ( self :Any ): snake_case__ : str = MecabTokenizer(mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def __lowerCamelCase ( self :Any ): try: snake_case__ : List[Any] = MecabTokenizer(mecab_dic='''unidic_lite''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def __lowerCamelCase ( self :Optional[Any] ): try: snake_case__ : Any = MecabTokenizer(mecab_dic='''unidic''' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def __lowerCamelCase ( self :Any ): snake_case__ : Dict = MecabTokenizer(do_lower_case=__lowercase ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iphone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) def __lowerCamelCase ( self :List[str] ): try: snake_case__ : Union[str, Any] = MecabTokenizer( do_lower_case=__lowercase ,normalize_text=__lowercase ,mecab_option='''-d /usr/local/lib/mecab/dic/jumandic''' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) def __lowerCamelCase ( self :str ): snake_case__ : List[str] = MecabTokenizer(normalize_text=__lowercase ,mecab_dic='''ipadic''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップルストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。'''] ,) @require_sudachi def __lowerCamelCase ( self :Any ): snake_case__ : Union[str, Any] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''sudachi''' ) self.assertIsNotNone(__lowercase ) snake_case__ : Optional[int] = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ : Dict = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) snake_case__ : Optional[int] = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(__lowercase ,'''wb''' ) as handle: pickle.dump(__lowercase ,__lowercase ) with open(__lowercase ,'''rb''' ) as handle: snake_case__ : Optional[int] = pickle.load(__lowercase ) snake_case__ : Dict = tokenizer_new.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) @require_sudachi def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[str] = SudachiTokenizer(sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Any = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''A''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国''', '''人''', '''参政''', '''権'''] ) @require_sudachi def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Any = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''B''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人''', '''参政権'''] ) @require_sudachi def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : int = SudachiTokenizer(sudachi_dict_type='''core''' ,sudachi_split_mode='''C''' ) self.assertListEqual(tokenizer.tokenize('''外国人参政権''' ) ,['''外国人参政権'''] ) @require_sudachi def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[Any] = SudachiTokenizer(do_lower_case=__lowercase ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', ''' ''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def __lowerCamelCase ( self :str ): snake_case__ : str = SudachiTokenizer(normalize_text=__lowercase ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,[''' ''', '''\t''', '''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', ''' ''', '''が''', ''' ''', ''' ''', '''\n ''', '''発売''', '''さ''', '''れ''', '''た''', '''\u3000''', '''。''', ''' ''', ''' '''] ,) @require_sudachi def __lowerCamelCase ( self :int ): snake_case__ : List[str] = SudachiTokenizer(trim_whitespace=__lowercase ,sudachi_dict_type='''core''' ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れ''', '''た''', '''。'''] ,) @require_jumanpp def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Optional[int] = self.tokenizer_class(self.vocab_file ,word_tokenizer_type='''jumanpp''' ) self.assertIsNotNone(__lowercase ) snake_case__ : Optional[int] = '''こんにちは、世界。\nこんばんは、世界。''' snake_case__ : Tuple = tokenizer.tokenize(__lowercase ) self.assertListEqual(__lowercase ,['''こんにちは''', '''、''', '''世界''', '''。''', '''こん''', '''##ばんは''', '''、''', '''世界''', '''。'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowercase ) ,[3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) snake_case__ : List[Any] = os.path.join(self.tmpdirname ,'''tokenizer.bin''' ) with open(__lowercase ,'''wb''' ) as handle: pickle.dump(__lowercase ,__lowercase ) with open(__lowercase ,'''rb''' ) as handle: snake_case__ : Any = pickle.load(__lowercase ) snake_case__ : Any = tokenizer_new.tokenize(__lowercase ) self.assertListEqual(__lowercase ,__lowercase ) @require_jumanpp def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def __lowerCamelCase ( self :Tuple ): snake_case__ : List[str] = JumanppTokenizer(do_lower_case=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iphone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def __lowerCamelCase ( self :List[str] ): snake_case__ : Union[str, Any] = JumanppTokenizer(normalize_text=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''ア''', '''ッ''', '''フ''', '''゚''', '''ル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''\u3000''', '''が''', '''\u3000''', '''\u3000''', '''\u3000''', '''発売''', '''さ''', '''れた''', '''\u3000''', '''。'''] ,) @require_jumanpp def __lowerCamelCase ( self :Optional[int] ): snake_case__ : Union[str, Any] = JumanppTokenizer(trim_whitespace=__lowercase ) self.assertListEqual( tokenizer.tokenize(''' \tアップルストアでiPhone8 が \n 発売された 。 ''' ) ,['''アップル''', '''ストア''', '''で''', '''iPhone''', '''8''', '''が''', '''発売''', '''さ''', '''れた''', '''。'''] ,) @require_jumanpp def __lowerCamelCase ( self :int ): snake_case__ : Tuple = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('''ありがとうございますm(_ _)m見つけるのが大変です。''' ) ,['''ありがとう''', '''ございます''', '''m(_ _)m''', '''見つける''', '''の''', '''が''', '''大変です''', '''。'''] ,) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こんにちは''', '''こん''', '''にちは''', '''ばんは''', '''##こん''', '''##にちは''', '''##ばんは'''] snake_case__ : Tuple = {} for i, token in enumerate(__lowercase ): snake_case__ : List[Any] = i snake_case__ : Any = WordpieceTokenizer(vocab=__lowercase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こんにちは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは''' ) ,['''こん''', '''##ばんは'''] ) self.assertListEqual(tokenizer.tokenize('''こんばんは こんばんにちは こんにちは''' ) ,['''こん''', '''##ばんは''', '''[UNK]''', '''こんにちは'''] ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = BertJapaneseTokenizer.from_pretrained('''nlp-waseda/roberta-base-japanese-with-auto-jumanpp''' ) snake_case__ : Union[str, Any] = tokenizer.subword_tokenizer snake_case__ : Optional[int] = subword_tokenizer.tokenize('''国境 の 長い トンネル を 抜ける と 雪国 であった 。''' ) self.assertListEqual(__lowercase ,['''▁国境''', '''▁の''', '''▁長い''', '''▁トンネル''', '''▁を''', '''▁抜ける''', '''▁と''', '''▁雪''', '''国''', '''▁であった''', '''▁。'''] ) snake_case__ : List[Any] = subword_tokenizer.tokenize('''こんばんは こんばん にち は こんにちは''' ) self.assertListEqual(__lowercase ,['''▁こん''', '''ばん''', '''は''', '''▁こん''', '''ばん''', '''▁に''', '''ち''', '''▁は''', '''▁こんにちは'''] ) def __lowerCamelCase ( self :Any ): snake_case__ : Dict = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese''' ) snake_case__ : str = tokenizer.encode('''ありがとう。''' ,add_special_tokens=__lowercase ) snake_case__ : List[Any] = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=__lowercase ) snake_case__ : Any = tokenizer.build_inputs_with_special_tokens(__lowercase ) snake_case__ : List[Any] = tokenizer.build_inputs_with_special_tokens(__lowercase ,__lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a ( __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Optional[int] = BertJapaneseTokenizer __lowerCAmelCase : Dict = False def __lowerCamelCase ( self :Union[str, Any] ): super().setUp() snake_case__ : List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case__ : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __lowerCamelCase ( self :str ,**__lowercase :int ): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname ,subword_tokenizer_type='''character''' ,**__lowercase ) def __lowerCamelCase ( self :List[str] ,__lowercase :Any ): snake_case__ : Optional[int] = '''こんにちは、世界。 \nこんばんは、世界。''' snake_case__ : List[Any] = '''こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。''' return input_text, output_text def __lowerCamelCase ( self :Tuple ): pass # TODO add if relevant def __lowerCamelCase ( self :Optional[Any] ): pass # TODO add if relevant def __lowerCamelCase ( self :Union[str, Any] ): pass # TODO add if relevant def __lowerCamelCase ( self :List[str] ): snake_case__ : int = self.tokenizer_class(self.vocab_file ,subword_tokenizer_type='''character''' ) snake_case__ : List[Any] = tokenizer.tokenize('''こんにちは、世界。 \nこんばんは、世界。''' ) self.assertListEqual( __lowercase ,['''こ''', '''ん''', '''に''', '''ち''', '''は''', '''、''', '''世''', '''界''', '''。''', '''こ''', '''ん''', '''ば''', '''ん''', '''は''', '''、''', '''世''', '''界''', '''。'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowercase ) ,[3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : int = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''こ''', '''ん''', '''に''', '''ち''', '''は''', '''ば''', '''世''', '''界''', '''、''', '''。'''] snake_case__ : List[str] = {} for i, token in enumerate(__lowercase ): snake_case__ : Dict = i snake_case__ : Union[str, Any] = CharacterTokenizer(vocab=__lowercase ,unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) ,[] ) self.assertListEqual(tokenizer.tokenize('''こんにちは''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''は'''] ) self.assertListEqual(tokenizer.tokenize('''こんにちほ''' ) ,['''こ''', '''ん''', '''に''', '''ち''', '''[UNK]'''] ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Dict = self.tokenizer_class.from_pretrained('''cl-tohoku/bert-base-japanese-char''' ) snake_case__ : Any = tokenizer.encode('''ありがとう。''' ,add_special_tokens=__lowercase ) snake_case__ : Optional[Any] = tokenizer.encode('''どういたしまして。''' ,add_special_tokens=__lowercase ) snake_case__ : Any = tokenizer.build_inputs_with_special_tokens(__lowercase ) snake_case__ : List[str] = tokenizer.build_inputs_with_special_tokens(__lowercase ,__lowercase ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class a ( unittest.TestCase ): def __lowerCamelCase ( self :int ): snake_case__ : Any = '''cl-tohoku/bert-base-japanese''' snake_case__ : Dict = AutoTokenizer.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase ,__lowercase ) class a ( unittest.TestCase ): def __lowerCamelCase ( self :List[Any] ): snake_case__ : List[str] = '''cl-tohoku/bert-base-japanese''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertTokenizer.from_pretrained(__lowercase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) ) snake_case__ : Union[str, Any] = '''bert-base-cased''' with self.assertLogs('''transformers''' ,level='''WARNING''' ) as cm: BertJapaneseTokenizer.from_pretrained(__lowercase ) self.assertTrue( cm.records[0].message.startswith( '''The tokenizer class you load from this checkpoint is not the same type as the class this function''' ''' is called from.''' ) )
44
A__ = 0 # The first color of the flag. A__ = 1 # The second color of the flag. A__ = 2 # The third color of the flag. A__ = (red, white, blue) def _lowerCAmelCase ( __lowerCAmelCase ) -> list: """simple docstring""" if not sequence: return [] if len(__lowerCAmelCase ) == 1: return list(__lowerCAmelCase ) snake_case__ : List[Any] = 0 snake_case__ : str = len(__lowerCAmelCase ) - 1 snake_case__ : List[Any] = 0 while mid <= high: if sequence[mid] == colors[0]: snake_case__ , snake_case__ : List[Any] = sequence[mid], sequence[low] low += 1 mid += 1 elif sequence[mid] == colors[1]: mid += 1 elif sequence[mid] == colors[2]: snake_case__ , snake_case__ : int = sequence[high], sequence[mid] high -= 1 else: snake_case__ : List[Any] = f"""The elements inside the sequence must contains only {colors} values""" raise ValueError(__lowerCAmelCase ) return sequence if __name__ == "__main__": import doctest doctest.testmod() A__ = input('''Enter numbers separated by commas:\n''').strip() A__ = [int(item.strip()) for item in user_input.split(''',''')] print(f"""{dutch_national_flag_sort(unsorted)}""")
44
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=7 ) -> List[Any]: A__ = None if token is not None: A__ = {"Accept": "application/vnd.github+json", "Authorization": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) A__ = "636036" A__ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" A__ = requests.get(lowercase_ , headers=lowercase_ ).json() return result["workflow_runs"] def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: A__ = get_daily_ci_runs(lowercase_ ) A__ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": A__ = workflow_run["id"] break return workflow_run_id def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: A__ = get_last_daily_ci_runs(lowercase_ ) if workflow_run_id is not None: A__ = get_artifacts_links(worflow_run_id=lowercase_ , token=lowercase_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: A__ = artifacts_links[artifact_name] download_artifact( artifact_name=lowercase_ , artifact_url=lowercase_ , output_dir=lowercase_ , token=lowercase_ ) def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: get_last_daily_ci_artifacts(lowercase_ , lowercase_ , lowercase_ ) A__ = {} for artifact_name in artifact_names: A__ = os.path.join(lowercase_ , f"""{artifact_name}.zip""" ) if os.path.isfile(lowercase_ ): A__ = {} with zipfile.ZipFile(lowercase_ ) as z: for filename in z.namelist(): if not os.path.isdir(lowercase_ ): # read the file with z.open(lowercase_ ) as f: A__ = f.read().decode("UTF-8" ) return results
247
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) SCREAMING_SNAKE_CASE = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE = LinearRegression() pol_reg.fit(X_poly, y) def _SCREAMING_SNAKE_CASE ( ) -> int: plt.scatter(lowercase_ , lowercase_ , color="red" ) plt.plot(lowercase_ , pol_reg.predict(poly_reg.fit_transform(lowercase_ ) ) , color="blue" ) plt.title("Truth or Bluff (Linear Regression)" ) plt.xlabel("Position level" ) plt.ylabel("Salary" ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
247
1
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) __UpperCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name __UpperCAmelCase = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __UpperCamelCase ( lowercase__ : Optional[int] , lowercase__ : str , lowercase__ : List[Any]=8 ) -> List[str]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCAmelCase_ : Optional[Any] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __a ( __UpperCamelCase ): def __init__( self : List[str] , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : DDPMScheduler , UpperCAmelCase : VQModel , ): super().__init__() self.register_modules( unet=UpperCAmelCase , scheduler=UpperCAmelCase , movq=UpperCAmelCase , ) lowerCAmelCase_ : Dict = 2 ** (len(self.movq.config.block_out_channels ) - 1) def A ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): if latents is None: lowerCAmelCase_ : Union[str, Any] = randn_tensor(UpperCAmelCase , generator=UpperCAmelCase , device=UpperCAmelCase , dtype=UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {shape}' ) lowerCAmelCase_ : Any = latents.to(UpperCAmelCase ) lowerCAmelCase_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def A ( self : List[str] , UpperCAmelCase : int=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase_ : Optional[int] = torch.device(F'cuda:{gpu_id}' ) lowerCAmelCase_ : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase , UpperCAmelCase ) def A ( self : List[str] , UpperCAmelCase : Optional[Any]=0 ): if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase_ : str = torch.device(F'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("""cpu""" , silence_dtype_warnings=UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: lowerCAmelCase_ : Tuple = cpu_offload_with_hook(UpperCAmelCase , UpperCAmelCase , prev_module_hook=UpperCAmelCase ) # We'll offload the last model manually. lowerCAmelCase_ : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A ( self : str ): if not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(UpperCAmelCase ) def __call__( self : str , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 5_12 , UpperCAmelCase : int = 1_00 , UpperCAmelCase : float = 4.0 , UpperCAmelCase : int = 1 , UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , ): lowerCAmelCase_ : Union[str, Any] = self._execution_device lowerCAmelCase_ : Union[str, Any] = guidance_scale > 1.0 if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : List[Any] = torch.cat(UpperCAmelCase , dim=0 ) lowerCAmelCase_ : Dict = image_embeds.shape[0] * num_images_per_prompt if isinstance(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase_ : Any = torch.cat(UpperCAmelCase , dim=0 ) if do_classifier_free_guidance: lowerCAmelCase_ : List[Any] = image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowerCAmelCase_ : Optional[int] = negative_image_embeds.repeat_interleave(UpperCAmelCase , dim=0 ) lowerCAmelCase_ : Dict = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=UpperCAmelCase ) self.scheduler.set_timesteps(UpperCAmelCase , device=UpperCAmelCase ) lowerCAmelCase_ : int = self.scheduler.timesteps lowerCAmelCase_ : str = self.unet.config.in_channels lowerCAmelCase_ : Dict = downscale_height_and_width(UpperCAmelCase , UpperCAmelCase , self.movq_scale_factor ) # create initial latent lowerCAmelCase_ : List[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ : Any = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ : List[str] = {'image_embeds': image_embeds} lowerCAmelCase_ : Union[str, Any] = self.unet( sample=UpperCAmelCase , timestep=UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , added_cond_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] if do_classifier_free_guidance: lowerCAmelCase_ : int = noise_pred.split(latents.shape[1] , dim=1 ) lowerCAmelCase_ : int = noise_pred.chunk(2 ) lowerCAmelCase_ : int = variance_pred.chunk(2 ) lowerCAmelCase_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase_ : Optional[int] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , """variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase_ : Dict = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ : Optional[Any] = self.scheduler.step( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , generator=UpperCAmelCase , )[0] # post-processing lowerCAmelCase_ : List[str] = self.movq.decode(UpperCAmelCase , force_not_quantize=UpperCAmelCase )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: lowerCAmelCase_ : Dict = image * 0.5 + 0.5 lowerCAmelCase_ : List[Any] = image.clamp(0 , 1 ) lowerCAmelCase_ : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCAmelCase_ : Any = self.numpy_to_pil(UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase )
350
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = """gptj""" __snake_case : int = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : List[str] , UpperCAmelCase : Optional[int]=5_04_00 , UpperCAmelCase : Optional[int]=20_48 , UpperCAmelCase : str=40_96 , UpperCAmelCase : Any=28 , UpperCAmelCase : Dict=16 , UpperCAmelCase : List[str]=64 , UpperCAmelCase : int=None , UpperCAmelCase : Union[str, Any]="gelu_new" , UpperCAmelCase : Tuple=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=0.0 , UpperCAmelCase : Optional[Any]=1e-5 , UpperCAmelCase : List[Any]=0.02 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : Dict=5_02_56 , UpperCAmelCase : int=5_02_56 , UpperCAmelCase : Tuple=False , **UpperCAmelCase : Any , ): lowerCAmelCase_ : Tuple = vocab_size lowerCAmelCase_ : Union[str, Any] = n_positions lowerCAmelCase_ : Union[str, Any] = n_embd lowerCAmelCase_ : List[Any] = n_layer lowerCAmelCase_ : List[Any] = n_head lowerCAmelCase_ : Tuple = n_inner lowerCAmelCase_ : Optional[Any] = rotary_dim lowerCAmelCase_ : str = activation_function lowerCAmelCase_ : str = resid_pdrop lowerCAmelCase_ : List[Any] = embd_pdrop lowerCAmelCase_ : Dict = attn_pdrop lowerCAmelCase_ : Any = layer_norm_epsilon lowerCAmelCase_ : Optional[int] = initializer_range lowerCAmelCase_ : Optional[int] = use_cache lowerCAmelCase_ : Optional[int] = bos_token_id lowerCAmelCase_ : Any = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class __a ( __UpperCamelCase ): def __init__( self : Any , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ): super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , """pad_token_id""" , UpperCAmelCase ): # TODO: how to do that better? lowerCAmelCase_ : List[Any] = 0 @property def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction="""inputs""" ) lowerCAmelCase_ : Any = {0: """batch""", 1: """past_sequence + sequence"""} else: lowerCAmelCase_ : List[Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def A ( self : Union[str, Any] ): return self._config.n_layer @property def A ( self : Optional[Any] ): return self._config.n_head def A ( self : Optional[Any] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() lowerCAmelCase_ : List[Any] = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : int = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCAmelCase_ : Optional[Any] = seqlen + 2 lowerCAmelCase_ : Optional[int] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase_ : Optional[int] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] lowerCAmelCase_ : Dict = common_inputs["""attention_mask"""] if self.use_past: lowerCAmelCase_ : Union[str, Any] = ordered_inputs["""attention_mask"""].dtype lowerCAmelCase_ : str = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def A ( self : Optional[int] ): return 13
28
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __snake_case ( _lowercase): snake_case__ : List[str] = "unispeech" def __init__( self : List[str] , __lowerCAmelCase : List[Any]=3_2 , __lowerCAmelCase : str=7_6_8 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=1_2 , __lowerCAmelCase : int=3_0_7_2 , __lowerCAmelCase : Tuple="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : Tuple=0.0 , __lowerCAmelCase : Optional[int]=0.0 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Dict=1E-5 , __lowerCAmelCase : Optional[int]="group" , __lowerCAmelCase : Dict="gelu" , __lowerCAmelCase : int=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , __lowerCAmelCase : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __lowerCAmelCase : Union[str, Any]=(1_0, 3, 3, 3, 3, 2, 2) , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : List[str]=1_2_8 , __lowerCAmelCase : Any=1_6 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Union[str, Any]=0.05 , __lowerCAmelCase : Union[str, Any]=1_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.0 , __lowerCAmelCase : Optional[int]=1_0 , __lowerCAmelCase : Dict=0 , __lowerCAmelCase : List[str]=3_2_0 , __lowerCAmelCase : List[Any]=2 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Tuple=1_0_0 , __lowerCAmelCase : Dict=2_5_6 , __lowerCAmelCase : str=2_5_6 , __lowerCAmelCase : List[Any]=0.1 , __lowerCAmelCase : Dict="mean" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Optional[Any]=2_5_6 , __lowerCAmelCase : Dict=8_0 , __lowerCAmelCase : int=0 , __lowerCAmelCase : Optional[int]=1 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : Any=0.5 , **__lowerCAmelCase : Optional[Any] , ): """simple docstring""" super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase ) _lowerCamelCase : Dict = hidden_size _lowerCamelCase : Any = feat_extract_norm _lowerCamelCase : List[Any] = feat_extract_activation _lowerCamelCase : Any = list(__lowerCAmelCase ) _lowerCamelCase : Tuple = list(__lowerCAmelCase ) _lowerCamelCase : int = list(__lowerCAmelCase ) _lowerCamelCase : List[str] = conv_bias _lowerCamelCase : List[str] = num_conv_pos_embeddings _lowerCamelCase : Tuple = num_conv_pos_embedding_groups _lowerCamelCase : List[str] = len(self.conv_dim ) _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Dict = hidden_act _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = hidden_dropout _lowerCamelCase : List[Any] = attention_dropout _lowerCamelCase : Optional[int] = activation_dropout _lowerCamelCase : Optional[Any] = feat_proj_dropout _lowerCamelCase : Optional[int] = final_dropout _lowerCamelCase : Any = layerdrop _lowerCamelCase : Any = layer_norm_eps _lowerCamelCase : List[Any] = initializer_range _lowerCamelCase : List[str] = num_ctc_classes _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = do_stable_layer_norm _lowerCamelCase : Tuple = use_weighted_layer_sum _lowerCamelCase : List[Any] = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowerCamelCase : Any = apply_spec_augment _lowerCamelCase : Dict = mask_time_prob _lowerCamelCase : List[str] = mask_time_length _lowerCamelCase : Optional[Any] = mask_time_min_masks _lowerCamelCase : List[str] = mask_feature_prob _lowerCamelCase : int = mask_feature_length _lowerCamelCase : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _lowerCamelCase : Optional[Any] = num_codevectors_per_group _lowerCamelCase : int = num_codevector_groups _lowerCamelCase : List[Any] = contrastive_logits_temperature _lowerCamelCase : List[str] = feat_quantizer_dropout _lowerCamelCase : Dict = num_negatives _lowerCamelCase : Optional[int] = codevector_dim _lowerCamelCase : List[Any] = proj_codevector_dim _lowerCamelCase : List[Any] = diversity_loss_weight # ctc loss _lowerCamelCase : Union[str, Any] = ctc_loss_reduction _lowerCamelCase : Any = ctc_zero_infinity # pretraining loss _lowerCamelCase : str = replace_prob @property def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
72
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ = logging.get_logger(__name__) def __UpperCAmelCase ( __a : Dict ) -> Tuple: """simple docstring""" _a : Any = R'''\w+[.]\d+''' _a : Union[str, Any] = re.findall(__a ,__a ) for pat in pats: _a : int = key.replace(__a ,'''_'''.join(pat.split('''.''' ) ) ) return key def __UpperCAmelCase ( __a : List[str] ,__a : Union[str, Any] ,__a : Optional[int] ) -> Tuple: """simple docstring""" _a : Dict = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): _a : Dict = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: _a : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: _a : Union[str, Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer _a : Tuple = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: _a : List[str] = pt_tensor.transpose(2 ,3 ,1 ,0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _a : Dict = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": _a : Union[str, Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _a : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _a : Union[str, Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __UpperCAmelCase ( __a : Dict ,__a : str ,__a : str=42 ) -> Optional[int]: """simple docstring""" _a : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params _a : List[Any] = flax_model.init_weights(PRNGKey(__a ) ) _a : Optional[int] = flatten_dict(__a ) _a : Tuple = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _a : List[str] = rename_key(__a ) _a : Optional[Any] = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters _a , _a : List[str] = rename_key_and_reshape_tensor(__a ,__a ,__a ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown _a : Dict = jnp.asarray(__a ) return unflatten_dict(__a )
235
0
'''simple docstring''' import logging from transformers import PretrainedConfig SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) SCREAMING_SNAKE_CASE__ = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class a_ ( lowerCamelCase ): lowercase = """bertabs""" def __init__( self , _SCREAMING_SNAKE_CASE=30522 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=0.2 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=0.2 , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_pos UpperCamelCase = enc_layers UpperCamelCase = enc_hidden_size UpperCamelCase = enc_heads UpperCamelCase = enc_ff_size UpperCamelCase = enc_dropout UpperCamelCase = dec_layers UpperCamelCase = dec_hidden_size UpperCamelCase = dec_heads UpperCamelCase = dec_ff_size UpperCamelCase = dec_dropout
183
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'vocab_file': 'vocab.txt'} SCREAMING_SNAKE_CASE__ = { 'vocab_file': { 'facebook/esm2_t6_8M_UR50D': 'https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt', 'facebook/esm2_t12_35M_UR50D': 'https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt', }, } SCREAMING_SNAKE_CASE__ = { 'facebook/esm2_t6_8M_UR50D': 1_0_2_4, 'facebook/esm2_t12_35M_UR50D': 1_0_2_4, } def lowercase__ ( __UpperCamelCase )-> Any: with open(__UpperCamelCase , """r""" ) as f: UpperCamelCase = f.read().splitlines() return [l.strip() for l in lines] class a_ ( lowerCamelCase ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<cls>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE="<eos>" , **_SCREAMING_SNAKE_CASE , ) -> Any: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = load_vocab_file(_SCREAMING_SNAKE_CASE ) UpperCamelCase = dict(enumerate(self.all_tokens ) ) UpperCamelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} UpperCamelCase = unk_token UpperCamelCase = cls_token UpperCamelCase = pad_token UpperCamelCase = mask_token UpperCamelCase = eos_token UpperCamelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def A__ ( self , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" return text.split() def A__ ( self , _SCREAMING_SNAKE_CASE=False ) -> Dict: """simple docstring""" return len(self._id_to_token ) def A__ ( self ) -> Tuple: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self._token_to_id.get(_SCREAMING_SNAKE_CASE , self._token_to_id.get(self.unk_token ) ) def A__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" return self._id_to_token.get(_SCREAMING_SNAKE_CASE , self.unk_token ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] UpperCamelCase = [1] + ([0] * len(_SCREAMING_SNAKE_CASE )) + [1] if token_ids_a is not None: mask += [0] * len(_SCREAMING_SNAKE_CASE ) + [1] return mask def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" UpperCamelCase = os.path.join(_SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def A__ ( self ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) -> int: """simple docstring""" return super()._add_tokens(_SCREAMING_SNAKE_CASE , special_tokens=_SCREAMING_SNAKE_CASE )
183
1
from collections import defaultdict def __UpperCAmelCase ( __a : str ,__a : str ) -> bool: """simple docstring""" _a : int = first_str.lower().strip() _a : int = second_str.lower().strip() # Remove whitespace _a : Any = first_str.replace(''' ''' ,'''''' ) _a : Union[str, Any] = second_str.replace(''' ''' ,'''''' ) # Strings of different lengths are not anagrams if len(__a ) != len(__a ): return False # Default values for count should be 0 _a : defaultdict[str, int] = defaultdict(__a ) # For each character in input strings, # increment count in the corresponding for i in range(len(__a ) ): count[first_str[i]] += 1 count[second_str[i]] -= 1 return all(_count == 0 for _count in count.values() ) if __name__ == "__main__": from doctest import testmod testmod() a__ = input('''Enter the first string ''').strip() a__ = input('''Enter the second string ''').strip() a__ = check_anagrams(input_a, input_b) print(f'''{input_a} and {input_b} are {"" if status else "not "}anagrams.''')
235
def __UpperCAmelCase ( __a : float ) -> float: """simple docstring""" return 10 - x * x def __UpperCAmelCase ( __a : float ,__a : float ) -> float: """simple docstring""" if equation(__a ) * equation(__a ) >= 0: raise ValueError('''Wrong space!''' ) _a : Dict = a while (b - a) >= 0.01: # Find middle point _a : Any = (a + b) / 2 # Check if middle point is root if equation(__a ) == 0.0: break # Decide the side to repeat the steps if equation(__a ) * equation(__a ) < 0: _a : str = c else: _a : Union[str, Any] = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
235
1
"""simple docstring""" def lowerCamelCase ( _UpperCamelCase : int = 1_0_0_0 ) -> int: '''simple docstring''' return sum(e for e in range(3 , _UpperCamelCase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F"{solution() = }")
368
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor UpperCAmelCase : str = logging.get_logger(__name__) class lowerCamelCase__ ( A ): """simple docstring""" def __init__( self : Optional[Any] , *UpperCamelCase : str , **UpperCamelCase : List[str] ): '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
320
0
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Dict = {'vocab_file': 'vocab.txt'} _a : str = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } _a : List[str] = { 'openbmb/cpm-ant-10b': 1_024, } def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Union[str, Any] ) -> Tuple: _lowerCAmelCase : List[str] = collections.OrderedDict() with open(_lowerCamelCase ,"""r""" ,encoding="""utf-8""" ) as reader: _lowerCAmelCase : Tuple = reader.readlines() for index, token in enumerate(_lowerCamelCase ): _lowerCAmelCase : str = token.rstrip("""\n""" ) _lowerCAmelCase : str = index return vocab class __A ( SCREAMING_SNAKE_CASE_ ): def __init__( self , a__ , a__="<unk>" , a__=200 ): _lowerCAmelCase : Optional[Any] = vocab _lowerCAmelCase : Any = unk_token _lowerCAmelCase : int = max_input_chars_per_word def __A ( self , a__ ): _lowerCAmelCase : Any = list(a__ ) if len(a__ ) > self.max_input_chars_per_word: return [self.unk_token] _lowerCAmelCase : Union[str, Any] = 0 _lowerCAmelCase : Dict = [] while start < len(a__ ): _lowerCAmelCase : Tuple = len(a__ ) _lowerCAmelCase : int = None while start < end: _lowerCAmelCase : str = """""".join(chars[start:end] ) if substr in self.vocab: _lowerCAmelCase : int = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a__ ) _lowerCAmelCase : Union[str, Any] = end return sub_tokens class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ["input_ids", "attention_mask"] _UpperCamelCase : str = False def __init__( self , a__ , a__="<d>" , a__="</d>" , a__="<s>" , a__="</s>" , a__="<pad>" , a__="<unk>" , a__="</n>" , a__="</_>" , a__="left" , **a__ , ): requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=a__ , eod_token=a__ , bos_token=a__ , eos_token=a__ , pad_token=a__ , unk_token=a__ , line_token=a__ , space_token=a__ , padding_side=a__ , **a__ , ) _lowerCAmelCase : Union[str, Any] = bod_token _lowerCAmelCase : List[Any] = eod_token _lowerCAmelCase : List[str] = load_vocab(a__ ) _lowerCAmelCase : Tuple = self.encoder[space_token] _lowerCAmelCase : Optional[Any] = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] _lowerCAmelCase : Any = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a__ : x[1] ) ) _lowerCAmelCase : int = {v: k for k, v in self.encoder.items()} _lowerCAmelCase : Optional[int] = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __A ( self ): return self.encoder[self.bod_token] @property def __A ( self ): return self.encoder[self.eod_token] @property def __A ( self ): return self.encoder["\n"] @property def __A ( self ): return len(self.encoder ) def __A ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def __A ( self , a__ ): _lowerCAmelCase : Dict = [] for x in jieba.cut(a__ , cut_all=a__ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a__ ) ) return output_tokens def __A ( self , a__ , **a__ ): _lowerCAmelCase : Any = [i for i in token_ids if i >= 0] _lowerCAmelCase : str = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a__ , **a__ ) def __A ( self , a__ ): return token in self.encoder def __A ( self , a__ ): return "".join(a__ ) def __A ( self , a__ ): return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __A ( self , a__ ): return self.decoder.get(a__ , self.unk_token ) def __A ( self , a__ , a__ = None ): if os.path.isdir(a__ ): _lowerCAmelCase : int = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: _lowerCAmelCase : List[Any] = (filename_prefix + """-""" if filename_prefix else """""") + save_directory _lowerCAmelCase : Any = 0 if " " in self.encoder: _lowerCAmelCase : int = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: _lowerCAmelCase : int = self.encoder["""\n"""] del self.encoder["\n"] _lowerCAmelCase : List[Any] = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a__ : x[1] ) ) with open(a__ , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) _lowerCAmelCase : List[str] = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __A ( self , a__ , a__ = None , a__ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is not None: return [1] + ([0] * len(a__ )) + [1] + ([0] * len(a__ )) return [1] + ([0] * len(a__ ))
44
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _a : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[Any] = XGLMTokenizer _UpperCamelCase : List[Any] = XGLMTokenizerFast _UpperCamelCase : Dict = True _UpperCamelCase : Tuple = True def __A ( self ): super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ): _lowerCAmelCase : List[str] = """<pad>""" _lowerCAmelCase : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(len(a__ ) , 1008 ) def __A ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def __A ( self ): _lowerCAmelCase : List[Any] = XGLMTokenizer(a__ , keep_accents=a__ ) _lowerCAmelCase : Dict = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(a__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(a__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase : Any = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual( a__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) _lowerCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def __A ( self ): return XGLMTokenizer.from_pretrained("""facebook/xglm-564M""" ) def __A ( self ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(a__ , f.name ) _lowerCAmelCase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=a__ ) _lowerCAmelCase : List[str] = pickle.dumps(a__ ) pickle.loads(a__ ) def __A ( self ): if not self.test_rust_tokenizer: return _lowerCAmelCase : List[str] = self.get_tokenizer() _lowerCAmelCase : Optional[Any] = self.get_rust_tokenizer() _lowerCAmelCase : Tuple = """I was born in 92000, and this is falsé.""" _lowerCAmelCase : List[Any] = tokenizer.tokenize(a__ ) _lowerCAmelCase : Tuple = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : Union[str, Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) _lowerCAmelCase : str = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) _lowerCAmelCase : int = self.get_rust_tokenizer() _lowerCAmelCase : Dict = tokenizer.encode(a__ ) _lowerCAmelCase : List[Any] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) @slow def __A ( self ): _lowerCAmelCase : int = """Hello World!""" _lowerCAmelCase : Optional[int] = [2, 31227, 4447, 35] self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): _lowerCAmelCase : Any = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth""" ) # fmt: off _lowerCAmelCase : List[str] = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 71630, 28085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 13675, 377, 652, 7580, 10341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 202277, 17892, 33, 60, 87, 4, 3234, 157, 61, 2667, 52376, 19, 88, 23, 735] # fmt: on self.assertListEqual(a__ , self.big_tokenizer.encode(a__ ) ) @slow def __A ( self ): # fmt: off _lowerCAmelCase : List[str] = { """input_ids""": [[2, 108825, 1163, 15, 88010, 473, 15898, 157, 13672, 1857, 312, 8, 238021, 1163, 53, 13672, 1857, 312, 8, 53283, 182396, 8, 18566, 16, 36733, 4101, 8, 230, 244017, 122553, 7, 15, 132597, 4, 293, 12511, 7610, 4, 3414, 132597, 9, 4, 32361, 362, 4, 734, 28512, 32569, 18, 4, 32361, 26096, 14982, 73, 18715, 21433, 235261, 15, 492, 12427, 16, 53, 18715, 21433, 65454, 15, 23659, 563, 16, 278, 597, 2843, 595, 7931, 182396, 64186, 22, 886, 595, 132981, 53, 25540, 3449, 43982, 39901, 5951, 878, 330, 4, 27694, 80269, 312, 53, 6517, 11780, 611, 20408, 5], [2, 6, 132597, 67, 42897, 33, 592, 8, 163729, 25540, 361, 136997, 109514, 173230, 7, 501, 60, 102913, 196, 5631, 235, 63243, 473, 6, 231757, 74, 5277, 7905, 53, 3095, 37317, 22, 454, 183874, 5], [2, 268, 31298, 46530, 6, 132935, 43831, 7, 597, 32, 24, 3688, 9865, 5]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="""facebook/xglm-564M""" , padding=a__ , )
44
1
"""simple docstring""" import argparse from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta from transformers.utils import logging logging.set_verbosity_info() def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : List[str] = TaConfig.from_json_file(SCREAMING_SNAKE_CASE ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase : List[str] = TaForConditionalGeneration(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_ta(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
368
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = '''src/diffusers''' lowerCAmelCase__ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase__ = spec.loader.load_module() def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(r"^\s*\)(\s*->.*:|:)\s*$" , SCREAMING_SNAKE_CASE ) is not None def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' lowerCAmelCase : Dict = object_name.split("." ) lowerCAmelCase : Optional[int] = 0 # First let's find the module where our object lives. lowerCAmelCase : Any = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f"""`object_name` should begin with the name of a module of diffusers but got {object_name}.""" ) with open(os.path.join(SCREAMING_SNAKE_CASE , f"""{module}.py""" ) , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : List[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase : List[str] = "" lowerCAmelCase : int = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(rf"""^{indent}(class|def)\s+{name}(\(|\:)""" , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f""" {object_name} does not match any function or class in {module}.""" ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase : List[str] = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : List[Any] = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) lowerCAmelCase__ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase__ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase__ = re.compile(r'''<FILL\s+[^>]*>''') def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : int = code.split("\n" ) lowerCAmelCase : List[str] = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(r"^(\s*)\S" , lines[idx] ).groups()[0] return "" def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : List[Any] = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: lowerCAmelCase : Tuple = f"""class Bla:\n{code}""" lowerCAmelCase : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 , preview=SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) lowerCAmelCase , lowerCAmelCase : List[Any] = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len("class Bla:\n" ) :] if has_indent else result def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int=False ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : int = f.readlines() lowerCAmelCase : List[str] = [] lowerCAmelCase : str = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): lowerCAmelCase : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = search.groups() lowerCAmelCase : List[str] = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[Any] = get_indent(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase : Optional[int] = theoretical_indent lowerCAmelCase : List[str] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase : str = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : str = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f"""^{indent}# End copy""" , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCAmelCase : Tuple = lines[start_index:line_index] lowerCAmelCase : List[str] = "".join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase : List[str] = [line for line in theoretical_code.split("\n" ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] lowerCAmelCase : Union[str, Any] = "\n".join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : str = replace_pattern.replace("with" , "" ).split("," ) lowerCAmelCase : List[str] = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = pattern.groups() lowerCAmelCase : List[Any] = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": lowerCAmelCase : Optional[Any] = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase : Union[str, Any] = blackify(lines[start_index - 1] + theoretical_code ) lowerCAmelCase : List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCAmelCase : Tuple = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase : int = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f"""Detected changes, rewriting {filename}.""" ) with open(SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def a__ ( SCREAMING_SNAKE_CASE : bool = False ): '''simple docstring''' lowerCAmelCase : List[Any] = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , "**/*.py" ) , recursive=SCREAMING_SNAKE_CASE ) lowerCAmelCase : str = [] for filename in all_files: lowerCAmelCase : List[Any] = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f"""- {filename}: copy does not match {d[0]} at line {d[1]}""" for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : List[Any] = "\n".join(SCREAMING_SNAKE_CASE ) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them." ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
133
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a : Optional[int] = logging.get_logger(__name__) _a : List[Any] = { 'kssteven/ibert-roberta-base': 'https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json', 'kssteven/ibert-roberta-large': 'https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json', 'kssteven/ibert-roberta-large-mnli': ( 'https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = "ibert" def __init__( self , a__=30522 , a__=768 , a__=12 , a__=12 , a__=3072 , a__="gelu" , a__=0.1 , a__=0.1 , a__=512 , a__=2 , a__=0.0_2 , a__=1e-12 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=False , a__="none" , **a__ , ): super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : int = num_hidden_layers _lowerCAmelCase : Union[str, Any] = num_attention_heads _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = intermediate_size _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Dict = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : Dict = type_vocab_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Union[str, Any] = layer_norm_eps _lowerCAmelCase : Optional[int] = position_embedding_type _lowerCAmelCase : Any = quant_mode _lowerCAmelCase : Union[str, Any] = force_dequant class __A ( SCREAMING_SNAKE_CASE_ ): @property def __A ( self ): if self.task == "multiple-choice": _lowerCAmelCase : Any = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _lowerCAmelCase : Union[str, Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
44
'''simple docstring''' import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging _lowerCamelCase : Union[str, Any] = "\\n\n" _lowerCamelCase : List[str] = "\nPerplexity (PPL) is one of the most common metrics for evaluating language models.\nIt is defined as the exponentiated average negative log-likelihood of a sequence.\n\nFor more information, see https://huggingface.co/docs/transformers/perplexity\n" _lowerCamelCase : Dict = "\nArgs:\n model_id (str): model used for calculating Perplexity\n NOTE: Perplexity can only be calculated for causal language models.\n This includes models such as gpt2, causal variations of bert,\n causal versions of t5, and more (the full list can be found\n in the AutoModelForCausalLM documentation here:\n https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM )\n\n input_texts (list of str): input text, each separate text snippet\n is one list entry.\n batch_size (int): the batch size to run texts through the model. Defaults to 16.\n add_start_token (bool): whether to add the start token to the texts,\n so the perplexity can include the probability of the first word. Defaults to True.\n device (str): device to run on, defaults to 'cuda' when available\nReturns:\n perplexity: dictionary containing the perplexity scores for the texts\n in the input list, as well as the mean perplexity. If one of the input texts is\n longer than the max input length of the model, then it is truncated to the\n max length for the perplexity computation.\nExamples:\n Example 1:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"]\n >>> results = perplexity.compute(model_id='gpt2',\n ... add_start_token=False,\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 78.22\n >>> print(round(results[\"perplexities\"][0], 2))\n 11.11\n\n Example 2:\n >>> perplexity = datasets.load_metric(\"perplexity\")\n >>> input_texts = datasets.load_dataset(\"wikitext\",\n ... \"wikitext-2-raw-v1\",\n ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS\n [...]\n >>> input_texts = [s for s in input_texts if s!='']\n >>> results = perplexity.compute(model_id='gpt2',\n ... input_texts=input_texts) # doctest:+ELLIPSIS\n >>> print(list(results.keys()))\n ['perplexities', 'mean_perplexity']\n >>> print(round(results[\"mean_perplexity\"], 2))\n 60.35\n >>> print(round(results[\"perplexities\"][0], 2))\n 81.12\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'input_texts': datasets.Value('string' ), } ) , reference_urls=['https://huggingface.co/docs/transformers/perplexity'] , ) def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int = 1_6 , UpperCamelCase__ : bool = True , UpperCamelCase__ : List[Any]=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": UpperCamelCase = 'cuda' else: UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' UpperCamelCase = AutoModelForCausalLM.from_pretrained(UpperCamelCase__ ) UpperCamelCase = model.to(UpperCamelCase__ ) UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase__ ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: UpperCamelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(UpperCamelCase__ ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({'pad_token': existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" UpperCamelCase = model.config.max_length - 1 else: UpperCamelCase = model.config.max_length UpperCamelCase = tokenizer( UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors='pt' , return_attention_mask=UpperCamelCase__ , ).to(UpperCamelCase__ ) UpperCamelCase = encodings['input_ids'] UpperCamelCase = encodings['attention_mask'] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." UpperCamelCase = [] UpperCamelCase = CrossEntropyLoss(reduction='none' ) for start_index in logging.tqdm(range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) ): UpperCamelCase = min(start_index + batch_size , len(UpperCamelCase__ ) ) UpperCamelCase = encoded_texts[start_index:end_index] UpperCamelCase = attn_masks[start_index:end_index] if add_start_token: UpperCamelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(UpperCamelCase__ ) UpperCamelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) UpperCamelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(UpperCamelCase__ ), attn_mask] , dim=1 ) UpperCamelCase = encoded_batch with torch.no_grad(): UpperCamelCase = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ ).logits UpperCamelCase = out_logits[..., :-1, :].contiguous() UpperCamelCase = labels[..., 1:].contiguous() UpperCamelCase = attn_mask[..., 1:].contiguous() UpperCamelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , UpperCamelCase__ ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(UpperCamelCase__ )}
28
0
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Any ) -> str: if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowerCAmelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE ) )[2:] # remove the leading "0b" __lowerCAmelCase : Optional[int] = str(bin(SCREAMING_SNAKE_CASE ) )[2:] __lowerCAmelCase : Optional[Any] = max(len(SCREAMING_SNAKE_CASE ) , len(SCREAMING_SNAKE_CASE ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE ) , b_binary.zfill(SCREAMING_SNAKE_CASE ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
352
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case_ ( __lowercase ): A_ = ['image_processor', 'tokenizer'] A_ = 'ChineseCLIPImageProcessor' A_ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Optional[Any] , _snake_case : List[Any]=None , _snake_case : str=None , **_snake_case : int )->List[str]: '''simple docstring''' __lowerCAmelCase : str = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , _snake_case , ) __lowerCAmelCase : List[str] = kwargs.pop("""feature_extractor""" ) __lowerCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(_snake_case , _snake_case ) __lowerCAmelCase : Any = self.image_processor def __call__( self : Optional[Any] , _snake_case : Tuple=None , _snake_case : Tuple=None , _snake_case : List[str]=None , **_snake_case : Any )->Union[str, Any]: '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __lowerCAmelCase : List[Any] = self.tokenizer(_snake_case , return_tensors=_snake_case , **_snake_case ) if images is not None: __lowerCAmelCase : Tuple = self.image_processor(_snake_case , return_tensors=_snake_case , **_snake_case ) if text is not None and images is not None: __lowerCAmelCase : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_snake_case ) , tensor_type=_snake_case ) def UpperCAmelCase__ ( self : Optional[int] , *_snake_case : Union[str, Any] , **_snake_case : int )->Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*_snake_case , **_snake_case ) def UpperCAmelCase__ ( self : Dict , *_snake_case : Dict , **_snake_case : Any )->Dict: '''simple docstring''' return self.tokenizer.decode(*_snake_case , **_snake_case ) @property def UpperCAmelCase__ ( self : Optional[int] )->str: '''simple docstring''' __lowerCAmelCase : Tuple = self.tokenizer.model_input_names __lowerCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def UpperCAmelCase__ ( self : Dict )->Union[str, Any]: '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , _snake_case , ) return self.image_processor_class
232
0
"""simple docstring""" from math import pow, sqrt def lowerCamelCase__ ( *_lowerCamelCase : float ) -> bool: lowerCamelCase_ = len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values ) return result def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase ) else ValueError('Input Error: Molar mass values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) ) def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) else ValueError( 'Input Error: Molar mass and effusion rate values must greater than 0.' ) )
183
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class a ( unittest.TestCase ): def __init__( self : Any , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : List[str]=7 , __SCREAMING_SNAKE_CASE : Dict=3 , __SCREAMING_SNAKE_CASE : Dict=18 , __SCREAMING_SNAKE_CASE : Union[str, Any]=30 , __SCREAMING_SNAKE_CASE : Optional[Any]=400 , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Any=True , ) -> str: lowerCamelCase_ = size if size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = apply_ocr def UpperCamelCase ( self : int ) -> Tuple: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class a ( __snake_case , unittest.TestCase ): SCREAMING_SNAKE_CASE : str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCamelCase ( self : List[str] ) -> int: lowerCamelCase_ = LayoutLMvaImageProcessingTester(self ) @property def UpperCamelCase ( self : Optional[Any] ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : Tuple ) -> Optional[Any]: lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'do_resize' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'size' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , 'apply_ocr' ) ) def UpperCamelCase ( self : Any ) -> Any: lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def UpperCamelCase ( self : Dict ) -> Any: pass def UpperCamelCase ( self : int ) -> Dict: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(encoding.boxes , __SCREAMING_SNAKE_CASE ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase ( self : Optional[int] ) -> Optional[Any]: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase ( self : Dict ) -> int: # Initialize image_processing lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def UpperCamelCase ( self : Dict ) -> Any: # with apply_OCR = True lowerCamelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset lowerCamelCase_ = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) lowerCamelCase_ = Image.open(ds[0]['file'] ).convert('RGB' ) lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 lowerCamelCase_ = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 lowerCamelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __SCREAMING_SNAKE_CASE ) self.assertListEqual(encoding.boxes , __SCREAMING_SNAKE_CASE ) # with apply_OCR = False lowerCamelCase_ = LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
183
1
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowercase_ ( __lowercase ): UpperCamelCase_ : str = 4_2 UpperCamelCase_ : Any = 4_2 class lowercase_ ( __lowercase , __lowercase ): UpperCamelCase_ : Tuple = 1 @register_to_config def __init__( self : Tuple , A__ : int = 2000 , A__ : str = 0.15 , A__ : str = 0.01 , A__ : Optional[Any] = 1348.0 , A__ : int = 1e-5 , A__ : Optional[Any] = 1 , ) -> Tuple: # standard deviation of the initial noise distribution _snake_case = sigma_max # setable values _snake_case = None self.set_sigmas(_a , _a , _a , _a ) def UpperCamelCase_ ( self : str , A__ : Optional[Any] , A__ : Dict = None ) -> torch.FloatTensor: return sample def UpperCamelCase_ ( self : int , A__ : str , A__ : List[str] = None , A__ : Union[str, Any] = None ) -> Any: _snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps _snake_case = torch.linspace(1 , _a , _a , device=_a ) def UpperCamelCase_ ( self : List[Any] , A__ : Optional[int] , A__ : int = None , A__ : str = None , A__ : Optional[int] = None ) -> Optional[int]: _snake_case = sigma_min if sigma_min is not None else self.config.sigma_min _snake_case = sigma_max if sigma_max is not None else self.config.sigma_max _snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(_a , _a ) _snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) _snake_case = torch.exp(torch.linspace(math.log(_a ) , math.log(_a ) , _a ) ) _snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def UpperCamelCase_ ( self : List[Any] , A__ : Tuple , A__ : Union[str, Any] ) -> int: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def UpperCamelCase_ ( self : str , A__ : int , A__ : Union[str, Any] , A__ : Dict , A__ : Dict = None , A__ : Union[str, Any] = True , ) -> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) _snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) _snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda _snake_case = timesteps.to(self.discrete_sigmas.device ) _snake_case = self.discrete_sigmas[timesteps].to(sample.device ) _snake_case = self.get_adjacent_sigma(_a , _a ).to(sample.device ) _snake_case = torch.zeros_like(_a ) _snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods _snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): _snake_case = diffusion.unsqueeze(-1 ) _snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of _snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=_a , device=sample.device , dtype=sample.dtype ) _snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? _snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=_a , prev_sample_mean=_a ) def UpperCamelCase_ ( self : List[Any] , A__ : List[str] , A__ : int , A__ : str = None , A__ : Optional[Any] = True , ) -> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction _snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=_a ).to(sample.device ) # compute step size from the model_output, the noise, and the snr _snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() _snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() _snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 _snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term _snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): _snake_case = step_size.unsqueeze(-1 ) _snake_case = sample + step_size * model_output _snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_a ) def UpperCamelCase_ ( self : Any , A__ : Optional[int] , A__ : Optional[int] , A__ : Optional[Any] , ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples _snake_case = timesteps.to(original_samples.device ) _snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] _snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(_a ) * sigmas[:, None, None, None] ) _snake_case = noise + original_samples return noisy_samples def __len__( self : Optional[Any] ) -> Union[str, Any]: return self.config.num_train_timesteps
350
__A = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def snake_case_(_UpperCamelCase ) -> bytes: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = F"""a bytes-like object is required, not '{data.__class__.__name__}'""" raise TypeError(_UpperCamelCase ) _snake_case = ''''''.join(bin(_UpperCamelCase )[2:].zfill(8 ) for byte in data ) _snake_case = len(_UpperCamelCase ) % 6 != 0 if padding_needed: # The padding that will be added later _snake_case = b'''=''' * ((6 - len(_UpperCamelCase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_UpperCamelCase ) % 6) else: _snake_case = b'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_UpperCamelCase ) , 6 ) ).encode() + padding ) def snake_case_(_UpperCamelCase ) -> bytes: """simple docstring""" if not isinstance(_UpperCamelCase , _UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): _snake_case = ( '''argument should be a bytes-like object or ASCII string, ''' F"""not '{encoded_data.__class__.__name__}'""" ) raise TypeError(_UpperCamelCase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_UpperCamelCase , _UpperCamelCase ): try: _snake_case = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) _snake_case = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_UpperCamelCase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _snake_case = encoded_data[:-padding] _snake_case = ''''''.join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _snake_case = ''''''.join( bin(B64_CHARSET.index(_UpperCamelCase ) )[2:].zfill(6 ) for char in encoded_data ) _snake_case = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_UpperCamelCase ) , 8 ) ] return bytes(_UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
278
0
"""simple docstring""" import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin a__ : Optional[int] = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') class UpperCamelCase_ ( UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : Optional[int] = BartphoTokenizer snake_case__ : Union[str, Any] = False snake_case__ : Optional[int] = True def UpperCAmelCase_ ( self : List[str] ) -> int: super().setUp() __SCREAMING_SNAKE_CASE = ["▁This", "▁is", "▁a", "▁t", "est"] __SCREAMING_SNAKE_CASE = dict(zip(UpperCAmelCase__ , range(len(UpperCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE = {"unk_token": "<unk>"} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["monolingual_vocab_file"] ) with open(self.monolingual_vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(F"""{token} {vocab_tokens[token]}\n""" ) __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase_ ( self : str , **UpperCAmelCase__ : int ) -> int: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def UpperCAmelCase_ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "This is a<unk><unk> test" return input_text, output_text def UpperCAmelCase_ ( self : List[str] ) -> str: __SCREAMING_SNAKE_CASE = BartphoTokenizer(UpperCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE = "This is a là test" __SCREAMING_SNAKE_CASE = "▁This ▁is ▁a ▁l à ▁t est".split() __SCREAMING_SNAKE_CASE = tokenizer.tokenize(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase__ ) , UpperCAmelCase__ )
54
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case = { '''configuration_bloom''': ['''BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BloomConfig''', '''BloomOnnxConfig'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''BloomTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BloomForCausalLM''', '''BloomModel''', '''BloomPreTrainedModel''', '''BloomForSequenceClassification''', '''BloomForTokenClassification''', '''BloomForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
0
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) # TODO Update this __lowerCamelCase : Any = { """facebook/esm-1b""": """https://huggingface.co/facebook/esm-1b/resolve/main/config.json""", # See all ESM models at https://huggingface.co/models?filter=esm } class SCREAMING_SNAKE_CASE__ ( UpperCamelCase_ ): """simple docstring""" a_ = "esm" def __init__( self : Dict , __A : Optional[Any]=None , __A : str=None , __A : Optional[Any]=None , __A : List[Any]=7_6_8 , __A : Optional[int]=1_2 , __A : Optional[int]=1_2 , __A : List[Any]=3_0_7_2 , __A : Any=0.1 , __A : Union[str, Any]=0.1 , __A : Optional[int]=1_0_2_6 , __A : Any=0.0_2 , __A : List[str]=1e-1_2 , __A : Tuple="absolute" , __A : List[str]=True , __A : Optional[int]=None , __A : Dict=False , __A : List[str]=False , __A : Any=None , __A : Dict=None , **__A : Tuple , ): super().__init__(pad_token_id=__A , mask_token_id=__A , **__A ) snake_case__ : Any = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : Dict = intermediate_size snake_case__ : Any = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : List[str] = initializer_range snake_case__ : List[str] = layer_norm_eps snake_case__ : Optional[Any] = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : Optional[Any] = emb_layer_norm_before snake_case__ : Optional[Any] = token_dropout snake_case__ : int = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("No esmfold_config supplied for folding model, using default values." ) snake_case__ : Any = EsmFoldConfig() elif isinstance(__A , __A ): snake_case__ : int = EsmFoldConfig(**__A ) snake_case__ : List[str] = esmfold_config if vocab_list is None: logger.warning("No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!" ) snake_case__ : List[Any] = get_default_vocab_list() else: snake_case__ : Dict = vocab_list else: snake_case__ : Any = None snake_case__ : Dict = None if self.esmfold_config is not None and getattr(self.esmfold_config , "use_esm_attn_map" , __A ): raise ValueError("The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!" ) def _lowercase ( self : Union[str, Any] ): snake_case__ : List[str] = super().to_dict() if isinstance(self.esmfold_config , __A ): snake_case__ : Optional[int] = self.esmfold_config.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = None a_ = True a_ = False a_ = False a_ = False a_ = 0 a_ = True a_ = False a_ = 1_2_8 a_ = None def _lowercase ( self : Tuple ): if self.trunk is None: snake_case__ : Tuple = TrunkConfig() elif isinstance(self.trunk , __A ): snake_case__ : str = TrunkConfig(**self.trunk ) def _lowercase ( self : Dict ): snake_case__ : int = asdict(self ) snake_case__ : Union[str, Any] = self.trunk.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 4_8 a_ = 1_0_2_4 a_ = 1_2_8 a_ = 3_2 a_ = 3_2 a_ = 3_2 a_ = 0 a_ = 0 a_ = False a_ = 4 a_ = 1_2_8 a_ = None def _lowercase ( self : str ): if self.structure_module is None: snake_case__ : Dict = StructureModuleConfig() elif isinstance(self.structure_module , __A ): snake_case__ : int = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( "`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got" f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( "`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got" f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) snake_case__ : Optional[Any] = self.sequence_state_dim // self.sequence_head_width snake_case__ : Tuple = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( "`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got" f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( "`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got" f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowercase ( self : int ): snake_case__ : Optional[int] = asdict(self ) snake_case__ : Tuple = self.structure_module.to_dict() return output @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = 3_8_4 a_ = 1_2_8 a_ = 1_6 a_ = 1_2_8 a_ = 1_2 a_ = 4 a_ = 8 a_ = 0.1 a_ = 8 a_ = 1 a_ = 2 a_ = 7 a_ = 1_0 a_ = 1E-8 a_ = 1E5 def _lowercase ( self : List[Any] ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ): return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
369
import sys __lowerCamelCase : List[str] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def SCREAMING_SNAKE_CASE ( snake_case_ : str = N ): snake_case__ : Any = -sys.maxsize - 1 for i in range(len(snake_case_ ) - 12 ): snake_case__ : Tuple = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: snake_case__ : Dict = product return largest_product if __name__ == "__main__": print(f"{solution() = }")
286
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) __snake_case = {'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['BeitFeatureExtractor'] __snake_case = ['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
320
from typing import Any import numpy as np def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return np.array_equal(snake_case_ , matrix.conjugate().T ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = v.conjugate().T _UpperCAmelCase = v_star.dot(snake_case_ ) assert isinstance(snake_case_ , np.ndarray ) return (v_star_dot.dot(snake_case_ )) / (v_star.dot(snake_case_ )) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) _UpperCAmelCase = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case_ ), f"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case_ , snake_case_ ) ) _UpperCAmelCase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case_ ), f"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case_ , snake_case_ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
133
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging lowercase : List[str] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple , _lowerCamelCase : List[Any]) -> Any: '''simple docstring''' __UpperCamelCase : str = set() __UpperCamelCase : Optional[Any] = [] def parse_line(_lowerCamelCase : Tuple): for line in fp: if isinstance(_lowerCamelCase , _lowerCamelCase): __UpperCamelCase : Tuple = line.decode("UTF-8") if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" "): # process a single warning and move it to `selected_warnings`. if len(_lowerCamelCase) > 0: __UpperCamelCase : Optional[Any] = "\n".join(_lowerCamelCase) # Only keep the warnings specified in `targets` if any(F': {x}: ' in warning for x in targets): selected_warnings.add(_lowerCamelCase) buffer.clear() continue else: __UpperCamelCase : Optional[Any] = line.strip() buffer.append(_lowerCamelCase) if from_gh: for filename in os.listdir(_lowerCamelCase): __UpperCamelCase : Any = os.path.join(_lowerCamelCase , _lowerCamelCase) if not os.path.isdir(_lowerCamelCase): # read the file if filename != "warnings.txt": continue with open(_lowerCamelCase) as fp: parse_line(_lowerCamelCase) else: try: with zipfile.ZipFile(_lowerCamelCase) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCamelCase): # read the file if filename != "warnings.txt": continue with z.open(_lowerCamelCase) as fp: parse_line(_lowerCamelCase) except Exception: logger.warning( F'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.') return selected_warnings def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : Optional[int]) -> Dict: '''simple docstring''' __UpperCamelCase : Union[str, Any] = set() __UpperCamelCase : str = [os.path.join(_lowerCamelCase , _lowerCamelCase) for p in os.listdir(_lowerCamelCase) if (p.endswith(".zip") or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowerCamelCase , _lowerCamelCase)) return selected_warnings if __name__ == "__main__": def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> str: '''simple docstring''' return values.split(",") lowercase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') # optional parameters parser.add_argument( '--targets', default='DeprecationWarning,UserWarning,FutureWarning', type=list_str, help='Comma-separated list of target warning(s) which we want to extract.', ) parser.add_argument( '--from_gh', action='store_true', help='If running from a GitHub action workflow and collecting warnings from its artifacts.', ) lowercase : Union[str, Any] = parser.parse_args() lowercase : Tuple = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links lowercase : int = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('=' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts lowercase : Any = extract_warnings(args.output_dir, args.targets) lowercase : int = sorted(selected_warnings) with open(os.path.join(args.output_dir, 'selected_warnings.json'), 'w', encoding='UTF-8') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
356
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self :Optional[Any] , a :Optional[Any] , a :Dict=1_3 , a :Tuple=7 , a :List[Any]=True , a :List[str]=True , a :List[Any]=True , a :Optional[Any]=True , a :Union[str, Any]=9_9 , a :int=3_2 , a :Optional[Any]=2 , a :List[str]=4 , a :Optional[Any]=3_7 , a :Union[str, Any]="gelu" , a :Optional[int]=0.1 , a :Dict=0.1 , a :Tuple=5_1_2 , a :Union[str, Any]=1_6 , a :int=2 , a :Any=0.02 , a :Union[str, Any]=False , a :int=True , a :str="None" , a :Union[str, Any]=3 , a :str=4 , a :List[Any]=None , ) -> Tuple: __UpperCamelCase : Tuple = parent __UpperCamelCase : List[str] = batch_size __UpperCamelCase : Optional[Any] = seq_length __UpperCamelCase : Any = is_training __UpperCamelCase : Dict = use_input_mask __UpperCamelCase : List[str] = use_token_type_ids __UpperCamelCase : Optional[int] = use_labels __UpperCamelCase : Optional[Any] = vocab_size __UpperCamelCase : Optional[Any] = hidden_size __UpperCamelCase : Dict = num_hidden_layers __UpperCamelCase : Any = num_attention_heads __UpperCamelCase : str = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_act __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Optional[Any] = attention_probs_dropout_prob __UpperCamelCase : Tuple = max_position_embeddings __UpperCamelCase : Tuple = type_vocab_size __UpperCamelCase : Any = type_sequence_label_size __UpperCamelCase : int = initializer_range __UpperCamelCase : Dict = num_labels __UpperCamelCase : Dict = num_choices __UpperCamelCase : List[str] = relative_attention __UpperCamelCase : Union[str, Any] = position_biased_input __UpperCamelCase : Any = pos_att_type __UpperCamelCase : Optional[Any] = scope def _lowerCamelCase ( self :List[Any] ) -> List[Any]: __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : Tuple = None if self.use_input_mask: __UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[Any] = None if self.use_token_type_ids: __UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[int] = None __UpperCamelCase : List[Any] = None if self.use_labels: __UpperCamelCase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : List[str] = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self :Optional[int] , a :int , a :List[Any] , a :Optional[int] , a :Union[str, Any] , a :Union[str, Any] , a :str , a :int ) -> Optional[int]: __UpperCamelCase : List[str] = TFDebertaVaModel(config=a ) __UpperCamelCase : int = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : Optional[int] = model(a ) __UpperCamelCase : Any = model(a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self :str , a :List[Any] , a :Dict , a :Tuple , a :Union[str, Any] , a :str , a :Optional[int] , a :Optional[int] ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaForMaskedLM(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self :List[Any] , a :Optional[int] , a :Optional[Any] , a :int , a :Optional[int] , a :Any , a :Dict , a :List[Any] ) -> Optional[int]: __UpperCamelCase : Optional[int] = self.num_labels __UpperCamelCase : int = TFDebertaVaForSequenceClassification(config=a ) __UpperCamelCase : Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[int] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self :Optional[Any] , a :int , a :Dict , a :Union[str, Any] , a :Tuple , a :Tuple , a :Union[str, Any] , a :str ) -> int: __UpperCamelCase : Tuple = self.num_labels __UpperCamelCase : str = TFDebertaVaForTokenClassification(config=a ) __UpperCamelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self :List[str] , a :List[Any] , a :Union[str, Any] , a :List[str] , a :Union[str, Any] , a :Optional[Any] , a :Union[str, Any] , a :Tuple ) -> int: __UpperCamelCase : List[Any] = TFDebertaVaForQuestionAnswering(config=a ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Tuple = model(a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self :List[str] ) -> List[Any]: __UpperCamelCase : Optional[int] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : List[Any] = config_and_inputs __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class lowerCamelCase__ ( __lowercase , __lowercase , unittest.TestCase): '''simple docstring''' _A = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) _A = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) _A = False _A = False def _lowerCamelCase ( self :Dict ) -> str: __UpperCamelCase : Dict = TFDebertaVaModelTester(self ) __UpperCamelCase : int = ConfigTester(self , config_class=a , hidden_size=3_7 ) def _lowerCamelCase ( self :Tuple ) -> Optional[int]: self.config_tester.run_common_tests() def _lowerCamelCase ( self :List[Any] ) -> List[str]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a ) def _lowerCamelCase ( self :Optional[int] ) -> List[Any]: __UpperCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> str: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a ) def _lowerCamelCase ( self :Optional[Any] ) -> Dict: __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a ) def _lowerCamelCase ( self :Any ) -> Optional[Any]: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a ) @slow def _lowerCamelCase ( self :int ) -> int: __UpperCamelCase : Tuple = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(a ) @require_tf class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @unittest.skip(reason="Model not available yet" ) def _lowerCamelCase ( self :Optional[Any] ) -> Any: pass @slow def _lowerCamelCase ( self :Any ) -> Optional[int]: __UpperCamelCase : List[Any] = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) __UpperCamelCase : List[Any] = tf.constant([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) __UpperCamelCase : Optional[Any] = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCamelCase : str = model(a , attention_mask=a )[0] __UpperCamelCase : Optional[int] = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , a , atol=1E-4 )
151
0
"""simple docstring""" from __future__ import annotations def lowercase ( A_ )-> None: '''simple docstring''' create_state_space_tree(A_ , [] , 0 , [0 for i in range(len(A_ ) )] ) def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' if index == len(A_ ): print(A_ ) return for i in range(len(A_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) a : Dict = True create_state_space_tree(A_ , A_ , index + 1 , A_ ) current_sequence.pop() a : int = False __lowercase = [3, 1, 2, 4] generate_all_permutations(sequence) __lowercase = ["A", "B", "C"] generate_all_permutations(sequence_a)
40
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): lowercase : int = { 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: lowercase : Any = { 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> Any: '''simple docstring''' __UpperCamelCase : Union[str, Any] = (images / 2 + 0.5).clamp(0 , 1) __UpperCamelCase : int = images.cpu().permute(0 , 2 , 3 , 1).float().numpy() __UpperCamelCase : Dict = numpy_to_pil(_lowerCamelCase) return images def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any]) -> Optional[Any]: '''simple docstring''' if images.ndim == 3: __UpperCamelCase : Optional[int] = images[None, ...] __UpperCamelCase : Dict = (images * 255).round().astype("uint8") if images.shape[-1] == 1: # special case for grayscale (single channel) images __UpperCamelCase : int = [Image.fromarray(image.squeeze() , mode="L") for image in images] else: __UpperCamelCase : Union[str, Any] = [Image.fromarray(_lowerCamelCase) for image in images] return pil_images
232
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('''fixtures/spiece.model''') @require_sentencepiece @require_tokenizers class _snake_case ( lowerCamelCase__ , unittest.TestCase ): lowerCamelCase__: Any = AlbertTokenizer lowerCamelCase__: Dict = AlbertTokenizerFast lowerCamelCase__: Optional[int] = True lowerCamelCase__: Dict = True lowerCamelCase__: Union[str, Any] = True def _lowerCamelCase ( self: Tuple ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __UpperCAmelCase : Union[str, Any] = AlbertTokenizer(__A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: Any ) -> List[str]: __UpperCAmelCase : Tuple = '''this is a test''' __UpperCAmelCase : Optional[int] = '''this is a test''' return input_text, output_text def _lowerCamelCase ( self: List[str] ) -> Dict: __UpperCAmelCase : Optional[Any] = '''<pad>''' __UpperCAmelCase : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def _lowerCamelCase ( self: Any ) -> Any: __UpperCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(__A ) , 3_00_00 ) def _lowerCamelCase ( self: Dict ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 3_00_00 ) def _lowerCamelCase ( self: Dict ) -> List[str]: if not self.test_rust_tokenizer: return __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() __UpperCAmelCase : int = '''I was born in 92000, and this is falsé.''' __UpperCAmelCase : int = tokenizer.tokenize(__A ) __UpperCAmelCase : Dict = rust_tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) __UpperCAmelCase : List[str] = tokenizer.encode(__A , add_special_tokens=__A ) __UpperCAmelCase : List[str] = rust_tokenizer.encode(__A , add_special_tokens=__A ) self.assertListEqual(__A , __A ) __UpperCAmelCase : str = self.get_rust_tokenizer() __UpperCAmelCase : List[Any] = tokenizer.encode(__A ) __UpperCAmelCase : Dict = rust_tokenizer.encode(__A ) self.assertListEqual(__A , __A ) def _lowerCamelCase ( self: Tuple ) -> Tuple: __UpperCAmelCase : Dict = AlbertTokenizer(__A , keep_accents=__A ) __UpperCAmelCase : List[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(__A , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , [48, 25, 21, 12_89] ) __UpperCAmelCase : Union[str, Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __UpperCAmelCase : List[Any] = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _lowerCamelCase ( self: int ) -> Optional[int]: __UpperCAmelCase : Optional[Any] = AlbertTokenizer(__A ) __UpperCAmelCase : Union[str, Any] = tokenizer.encode("sequence builders" ) __UpperCAmelCase : Tuple = tokenizer.encode("multi-sequence build" ) __UpperCAmelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__A ) __UpperCAmelCase : Dict = tokenizer.build_inputs_with_special_tokens(__A , __A ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _lowerCamelCase ( self: Dict ) -> Any: # fmt: off __UpperCAmelCase : List[Any] = {'''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''input_ids''': [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
361
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _snake_case = logging.get_logger(__name__) _snake_case = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _snake_case = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _snake_case = {'''facebook/blenderbot-3B''': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _UpperCamelCase ( ) -> Dict: __UpperCAmelCase : Tuple = ( list(range(ord("!" ), ord("~" ) + 1 ) ) + list(range(ord("¡" ), ord("¬" ) + 1 ) ) + list(range(ord("®" ), ord("ÿ" ) + 1 ) ) ) __UpperCAmelCase : str = bs[:] __UpperCAmelCase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(snake_case__ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Optional[Any] = [chr(snake_case__ ) for n in cs] return dict(zip(snake_case__, snake_case__ ) ) def _UpperCamelCase ( snake_case__ ) -> Any: __UpperCAmelCase : List[Any] = set() __UpperCAmelCase : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Union[str, Any] = char return pairs class _snake_case ( _lowercase ): lowerCamelCase__: str = VOCAB_FILES_NAMES lowerCamelCase__: List[Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__: Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__: Dict = ["input_ids", "attention_mask"] def __init__( self: Tuple , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]="replace" , __lowerCamelCase: List[str]="<s>" , __lowerCamelCase: List[str]="</s>" , __lowerCamelCase: str="</s>" , __lowerCamelCase: Tuple="<s>" , __lowerCamelCase: Optional[int]="<unk>" , __lowerCamelCase: Any="<pad>" , __lowerCamelCase: List[str]="<mask>" , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int , ) -> List[str]: __UpperCAmelCase : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token __UpperCAmelCase : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token __UpperCAmelCase : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token __UpperCAmelCase : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token __UpperCAmelCase : List[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Dict = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : List[Any] = json.load(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Dict = errors # how to handle errors in decoding __UpperCAmelCase : Optional[int] = bytes_to_unicode() __UpperCAmelCase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] __UpperCAmelCase : int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) __UpperCAmelCase : List[Any] = {} __UpperCAmelCase : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : int = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCamelCase ( self: Dict ) -> Any: return len(self.encoder ) def _lowerCamelCase ( self: Optional[Any] ) -> List[str]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCamelCase ( self: int , __lowerCamelCase: List[Any] ) -> Union[str, Any]: if token in self.cache: return self.cache[token] __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : Dict = get_pairs(__lowerCamelCase ) if not pairs: return token while True: __UpperCAmelCase : Optional[int] = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = bigram __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : str = 0 while i < len(__lowerCamelCase ): try: __UpperCAmelCase : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : Union[str, Any] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(__lowerCamelCase ) __UpperCAmelCase : str = new_word if len(__lowerCamelCase ) == 1: break else: __UpperCAmelCase : Optional[Any] = get_pairs(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Union[str, Any] = word return word def _lowerCamelCase ( self: Dict , __lowerCamelCase: Optional[Any] ) -> Dict: __UpperCAmelCase : Any = [] for token in re.findall(self.pat , __lowerCamelCase ): __UpperCAmelCase : int = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def _lowerCamelCase ( self: int , __lowerCamelCase: str ) -> Dict: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[Any] ) -> List[str]: return self.decoder.get(__lowerCamelCase ) def _lowerCamelCase ( self: Any , __lowerCamelCase: Any ) -> int: __UpperCAmelCase : Dict = "".join(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCamelCase ( self: List[Any] , __lowerCamelCase: str , __lowerCamelCase: Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Dict = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) __UpperCAmelCase : Optional[Any] = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : Optional[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCamelCase ( self: Dict , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None , __lowerCamelCase: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _lowerCamelCase ( self: Tuple , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[int]: __UpperCAmelCase : int = [self.sep_token_id] __UpperCAmelCase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str]=False , **__lowerCamelCase: int ) -> List[Any]: __UpperCAmelCase : Optional[Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): __UpperCAmelCase : Optional[Any] = " " + text return (text, kwargs) def _lowerCamelCase ( self: List[str] , __lowerCamelCase: List[int] , __lowerCamelCase: Optional[List[int]] = None ) -> List[str]: return token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self: List[str] , __lowerCamelCase: "Conversation" ) -> List[int]: __UpperCAmelCase : Tuple = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(__lowerCamelCase ) __UpperCAmelCase : Optional[int] = " ".join(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = self.encode(__lowerCamelCase ) if len(__lowerCamelCase ) > self.model_max_length: __UpperCAmelCase : List[Any] = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
342
0
def UpperCAmelCase ( a_ = 1_0_0_0_0_0_0 ) -> int: """simple docstring""" __A = set(range(3 , a_ , 2 ) ) primes.add(2 ) for p in range(3 , a_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , a_ , a_ ) ) ) __A = [float(a_ ) for n in range(limit + 1 )] for p in primes: for n in range(a_ , limit + 1 , a_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
15
def __UpperCamelCase ( _A ): if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError('''numbers must be an iterable of integers''' ) lowerCAmelCase_ = lowerCAmelCase_ = lowerCAmelCase_ = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCAmelCase_ = numbers[i] if number < 0: lowerCAmelCase_ , lowerCAmelCase_ = min_till_now, max_till_now lowerCAmelCase_ = max(_A , max_till_now * number ) lowerCAmelCase_ = min(_A , min_till_now * number ) # update the maximum product found till now lowerCAmelCase_ = max(_A , _A ) return max_prod
278
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( *lowerCAmelCase : str , **lowerCAmelCase : str ) -> Optional[int]: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" lowerCamelCase : Any =MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : int = ObjectDetectionPipeline(model=__lowerCAmelCase , image_processor=__lowerCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : int , lowerCAmelCase : Tuple ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[str] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(__lowerCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __lowerCAmelCase , { """score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase ), """box""": {"""xmin""": ANY(__lowerCAmelCase ), """ymin""": ANY(__lowerCAmelCase ), """xmax""": ANY(__lowerCAmelCase ), """ymax""": ANY(__lowerCAmelCase )}, } , ) import datasets __lowerCAmelCase : Tuple = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __lowerCAmelCase : int = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __lowerCAmelCase : Dict = object_detector(__lowerCAmelCase , threshold=0.0 ) self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__lowerCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __lowerCAmelCase , { """score""": ANY(__lowerCAmelCase ), """label""": ANY(__lowerCAmelCase ), """box""": {"""xmin""": ANY(__lowerCAmelCase ), """ymin""": ANY(__lowerCAmelCase ), """xmax""": ANY(__lowerCAmelCase ), """ymax""": ANY(__lowerCAmelCase )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: """simple docstring""" pass @require_torch def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = """hf-internal-testing/tiny-detr-mobilenetsv3""" __lowerCAmelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__lowerCAmelCase ) __lowerCAmelCase : List[Any] = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = ObjectDetectionPipeline(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ] , ) __lowerCAmelCase : str = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 1_59, """ymin""": 1_20, """xmax""": 4_80, """ymax""": 3_59}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : str ) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = """facebook/detr-resnet-50""" __lowerCAmelCase : Union[str, Any] = AutoModelForObjectDetection.from_pretrained(__lowerCAmelCase ) __lowerCAmelCase : Any = AutoFeatureExtractor.from_pretrained(__lowerCAmelCase ) __lowerCAmelCase : Dict = ObjectDetectionPipeline(model=__lowerCAmelCase , feature_extractor=__lowerCAmelCase ) __lowerCAmelCase : Optional[int] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) __lowerCAmelCase : str = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : List[Any] = """facebook/detr-resnet-50""" __lowerCAmelCase : List[str] = pipeline("""object-detection""" , model=__lowerCAmelCase ) __lowerCAmelCase : Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) __lowerCAmelCase : Optional[int] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 1_75, """ymax""": 1_17}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 3_33, """ymin""": 72, """xmax""": 3_68, """ymax""": 1_87}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 6_39, """ymax""": 4_73}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : Optional[Any] = 0.9985 __lowerCAmelCase : Optional[int] = """facebook/detr-resnet-50""" __lowerCAmelCase : List[Any] = pipeline("""object-detection""" , model=__lowerCAmelCase ) __lowerCAmelCase : List[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=__lowerCAmelCase ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 3_14, """ymax""": 4_70}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 3_45, """ymin""": 23, """xmax""": 6_40, """ymax""": 3_68}}, ] , ) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = """Narsil/layoutlmv3-finetuned-funsd""" __lowerCAmelCase : str = 0.9993 __lowerCAmelCase : List[str] = pipeline("""object-detection""" , model=__lowerCAmelCase , threshold=__lowerCAmelCase ) __lowerCAmelCase : Any = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 2_94, """ymin""": 2_54, """xmax""": 3_43, """ymax""": 2_64}}, ] , )
371
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] ) -> None: """simple docstring""" warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
139
0
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class a ( UpperCAmelCase__, UpperCAmelCase__ ): """simple docstring""" @register_to_config def __init__( self: int , UpperCamelCase: int = 7_68 , ): """simple docstring""" super().__init__() A__ = nn.Parameter(torch.zeros(1 , snake_case_ ) ) A__ = nn.Parameter(torch.ones(1 , snake_case_ ) ) def UpperCamelCase ( self: List[Any] , UpperCamelCase: str = None , UpperCamelCase: List[str] = None , ): """simple docstring""" A__ = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) A__ = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: Dict ): """simple docstring""" A__ = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: List[str] ): """simple docstring""" A__ = (embeds * self.std) + self.mean return embeds
335
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Any = { 'facebook/xmod-base': 'https://huggingface.co/facebook/xmod-base/resolve/main/config.json', 'facebook/xmod-large-prenorm': 'https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json', 'facebook/xmod-base-13-125k': 'https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json', 'facebook/xmod-base-30-125k': 'https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json', 'facebook/xmod-base-30-195k': 'https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json', 'facebook/xmod-base-60-125k': 'https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json', 'facebook/xmod-base-60-265k': 'https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json', 'facebook/xmod-base-75-125k': 'https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json', 'facebook/xmod-base-75-269k': 'https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json', } class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' lowercase_ : Tuple = """xmod""" def __init__( self , snake_case_=3_0_5_2_2 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=2 , snake_case_=0.02 , snake_case_=1E-12 , snake_case_=1 , snake_case_=0 , snake_case_=2 , snake_case_="absolute" , snake_case_=True , snake_case_=None , snake_case_=False , snake_case_=2 , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_=("en_XX",) , snake_case_=None , **snake_case_ , ): """simple docstring""" super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) A_ : Union[str, Any] = vocab_size A_ : Any = hidden_size A_ : List[str] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : int = hidden_act A_ : Any = intermediate_size A_ : Any = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Union[str, Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : List[str] = initializer_range A_ : Any = layer_norm_eps A_ : Optional[Any] = position_embedding_type A_ : int = use_cache A_ : Dict = classifier_dropout A_ : int = pre_norm A_ : Optional[Any] = adapter_reduction_factor A_ : List[Any] = adapter_layer_norm A_ : int = adapter_reuse_layer_norm A_ : Dict = ln_before_adapter A_ : List[str] = list(snake_case_ ) A_ : Union[str, Any] = default_language class _UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' @property def lowerCamelCase_ ( self ): """simple docstring""" if self.task == "multiple-choice": A_ : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: A_ : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
286
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation A__ : Optional[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} A__ : Optional[int] = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } A__ : str = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def _snake_case ( lowerCamelCase__ : int , lowerCamelCase__ : Any ) -> List[Any]: with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as f: lowerCamelCase_ : List[str] =json.loads(f.read() ) lowerCamelCase_ : Union[str, Any] =collections.OrderedDict() lowerCamelCase_ : Union[str, Any] =collections.OrderedDict() lowerCamelCase_ : int =collections.OrderedDict() with open(lowerCamelCase__ , "r" , encoding="utf-8" ) as f: lowerCamelCase_ : Optional[Any] =f.readlines() lowerCamelCase_ : List[str] =[[t.rstrip("\n" )] if (t == "," or "," not in t) else t.rstrip("\n" ).split("," ) for t in token] for idx, b in enumerate(lowerCamelCase__ ): lowerCamelCase_ : Union[str, Any] =b lowerCamelCase_ : Optional[int] =idx for wd in b: lowerCamelCase_ : int =idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase__ ( snake_case__ ): _UpperCAmelCase :Any = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = ["input_ids", "attention_mask"] def __init__( self : List[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : List[Any]="<|endoftext|>" , snake_case__ : Tuple="<|endoftext|>" , snake_case__ : List[Any]="<|startoftext|>" , snake_case__ : List[str]="<|endoftext|>" , snake_case__ : Optional[Any]=False , **snake_case__ : int , ): super().__init__( unk_token=snake_case__ , pad_token=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , do_clean_text=snake_case__ , **snake_case__ , ) if not os.path.isfile(snake_case__ ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" " model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) if not os.path.isfile(snake_case__ ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" " pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" ) lowerCamelCase_ : str =do_clean_text lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] =load_vocab_and_emoji(snake_case__ , snake_case__ ) lowerCamelCase_ : int =SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase__ ( self : Any ): # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCAmelCase__ ( self : Optional[int] ): return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Optional[Any] ): return self.subword_tokenizer.tokenize(snake_case__ , clean=self.do_clean_text ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : int ): return self.vocab.get(snake_case__ , self.vocab.get(self.unk_token ) ) def UpperCAmelCase__ ( self : int , snake_case__ : Optional[int] ): return self.subword_tokenizer.convert_id_to_token(snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Dict ): lowerCamelCase_ : List[str] ="".join(snake_case__ ).strip() return out_string def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : "Conversation" ): lowerCamelCase_ : Dict =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(snake_case__ , add_special_tokens=snake_case__ ) + [self.eos_token_id] ) if len(snake_case__ ) > self.model_max_length: lowerCamelCase_ : Any =input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase__ ( self : Dict , snake_case__ : str , snake_case__ : Optional[str] = None ): lowerCamelCase_ : int =0 if os.path.isdir(snake_case__ ): lowerCamelCase_ : Optional[Any] =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : Any =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"] ) else: lowerCamelCase_ : Tuple =( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase_ : str =( (filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"] ) with open(snake_case__ , "w" , encoding="utf-8" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" " Please check that the vocabulary is not corrupted!" ) lowerCamelCase_ : Optional[int] =token_index writer.write(",".join(snake_case__ ) + "\n" ) index += 1 with open(snake_case__ , "w" , encoding="utf-8" ) as writer: json.dump(self.emoji , snake_case__ ) return vocab_file, emoji_file class lowercase__ ( snake_case__ ): def __init__( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[str] ): lowerCamelCase_ : str =vocab # same as swe lowerCamelCase_ : Dict =ids_to_tokens # same as bpe lowerCamelCase_ : List[Any] =emoji lowerCamelCase_ : List[str] =np.max([len(snake_case__ ) for w in self.vocab.keys()] ) lowerCamelCase_ : str =re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)" ) lowerCamelCase_ : Dict =re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*" ) lowerCamelCase_ : Optional[int] =re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}" ) lowerCamelCase_ : List[str] =re.compile( r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCamelCase_ : int =re.compile( r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*" ) lowerCamelCase_ : Optional[Any] =re.compile( r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*" ) lowerCamelCase_ : Union[str, Any] ="─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿" lowerCamelCase_ : Any ="▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟" lowerCamelCase_ : int =str.maketrans({k: "<BLOCK>" for k in keisen + blocks} ) def __len__( self : List[Any] ): return len(self.ids_to_tokens ) def UpperCAmelCase__ ( self : Dict , snake_case__ : List[str] ): lowerCamelCase_ : Union[str, Any] =self.content_repattera.sub("<URL>" , snake_case__ ) lowerCamelCase_ : int =self.content_repattera.sub("<EMAIL>" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.content_repattera.sub("<TEL>" , snake_case__ ) lowerCamelCase_ : Any =self.content_repattera.sub("<DATE>" , snake_case__ ) lowerCamelCase_ : str =self.content_repattera.sub("<DATE>" , snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.content_repattera.sub("<PRICE>" , snake_case__ ) lowerCamelCase_ : Optional[int] =content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: lowerCamelCase_ : List[str] =content.replace("<BLOCK><BLOCK>" , "<BLOCK>" ) return content def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : List[str]=False ): lowerCamelCase_ : Dict =text.replace(" " , "<SP>" ) lowerCamelCase_ : List[Any] =text.replace(" " , "<SP>" ) lowerCamelCase_ : Union[str, Any] =text.replace("\r\n" , "<BR>" ) lowerCamelCase_ : int =text.replace("\n" , "<BR>" ) lowerCamelCase_ : Tuple =text.replace("\r" , "<BR>" ) lowerCamelCase_ : str =text.replace("\t" , "<TAB>" ) lowerCamelCase_ : List[str] =text.replace("—" , "ー" ) lowerCamelCase_ : List[str] =text.replace("−" , "ー" ) for k, v in self.emoji["emoji"].items(): if k in text: lowerCamelCase_ : Any =text.replace(snake_case__ , snake_case__ ) if clean: lowerCamelCase_ : Optional[int] =self.clean_text(snake_case__ ) def check_simbol(snake_case__ : Any ): lowerCamelCase_ : str =x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 2: lowerCamelCase_ : str =(int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xc_2a1 and c <= 0xc_2bf) or (c >= 0xc_780 and c <= 0xc_783) or (c >= 0xc_ab9 and c <= 0xc_bbf) or (c >= 0xc_c80 and c <= 0xc_da2) ): return True return False def checkuae(snake_case__ : Optional[Any] ): lowerCamelCase_ : Optional[Any] =x.encode() if len(snake_case__ ) == 1 and len(snake_case__ ) == 3: lowerCamelCase_ : Union[str, Any] =(int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xe28_080 and c <= 0xe2b_07f: return True return False lowerCamelCase_ : Dict =0 lowerCamelCase_ : str =[] while pos < len(snake_case__ ): lowerCamelCase_ : Optional[Any] =min(len(snake_case__ ) , pos + self.maxlen + 1 ) if text[pos] == "<" else pos + 3 lowerCamelCase_ : Union[str, Any] =[] # (token_id, token, pos) for e in range(snake_case__ , snake_case__ , -1 ): lowerCamelCase_ : int =text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(snake_case__ ) > 2: lowerCamelCase_ : List[str] =[(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(snake_case__ ) > 0: # the smallest token_id is adopted lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str =sorted(snake_case__ , key=lambda snake_case__ : x[0] )[0] result.append(snake_case__ ) lowerCamelCase_ : Any =e else: lowerCamelCase_ : int =pos + 1 lowerCamelCase_ : Union[str, Any] =text[pos:end] if check_simbol(snake_case__ ): result.append("<KIGOU>" ) elif checkuae(snake_case__ ): result.append("<U2000U2BFF>" ) else: for i in wd.encode("utf-8" ): result.append("<|byte%d|>" % i ) lowerCamelCase_ : Any =end return result def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : int , snake_case__ : str="\n" ): lowerCamelCase_ : Any =[] lowerCamelCase_ : Any =[] lowerCamelCase_ : Optional[Any] =self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode("utf-8" , errors="replace" ) ) lowerCamelCase_ : int =[] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["emoji_inv"][word] ) elif word == "<SP>": words.append(" " ) elif word == "<BR>": words.append(snake_case__ ) elif word == "<TAB>": words.append("\t" ) elif word == "<BLOCK>": words.append("▀" ) elif word == "<KIGOU>": words.append("ǀ" ) elif word == "<U2000U2BFF>": words.append("‖" ) else: words.append(snake_case__ ) if len(snake_case__ ) > 0: words.append(bytearray(snake_case__ ).decode("utf-8" , errors="replace" ) ) lowerCamelCase_ : str ="".join(snake_case__ ) return text
209
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A__ : Optional[int] = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[Any] = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Optional[int] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
209
1
'''simple docstring''' import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class a__ : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=64 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.0_2 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): """simple docstring""" _lowercase : List[str] = parent _lowercase : Optional[int] = batch_size _lowercase : Optional[Any] = seq_length _lowercase : List[str] = is_training _lowercase : Union[str, Any] = use_input_mask _lowercase : Dict = use_token_type_ids _lowercase : Dict = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Dict = hidden_size _lowercase : Dict = embedding_size _lowercase : Any = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Any = hidden_act _lowercase : Dict = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : str = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_labels _lowercase : Dict = num_choices _lowercase : Optional[Any] = scope def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Optional[int] = None if self.use_input_mask: _lowercase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Any = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : List[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowerCamelCase ( self ): """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Tuple = MobileBertModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ ) _lowercase : Any = model(lowercase_ , token_type_ids=lowercase_ ) _lowercase : Tuple = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[Any] = MobileBertForMaskedLM(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : Optional[Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = MobileBertForNextSentencePrediction(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : str = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = MobileBertForPreTraining(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : Any = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , next_sentence_label=lowercase_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Any = MobileBertForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : List[Any] = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = self.num_labels _lowercase : Any = MobileBertForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : Optional[int] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = self.num_labels _lowercase : Union[str, Any] = MobileBertForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : Union[str, Any] = model(lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _lowercase : List[str] = self.num_choices _lowercase : Any = MobileBertForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() _lowercase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : str = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Tuple = model( lowercase_ , attention_mask=lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.prepare_config_and_inputs() ( _lowercase ) : Dict = config_and_inputs _lowercase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a__ ( _snake_case , _snake_case , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : List[str] = ( { """feature-extraction""": MobileBertModel, """fill-mask""": MobileBertForMaskedLM, """question-answering""": MobileBertForQuestionAnswering, """text-classification""": MobileBertForSequenceClassification, """token-classification""": MobileBertForTokenClassification, """zero-shot""": MobileBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Tuple = True def _lowerCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): """simple docstring""" _lowercase : str = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class in get_values(lowercase_ ): _lowercase : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ ) _lowercase : Dict = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase_ ) return inputs_dict def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = MobileBertModelTester(self ) _lowercase : List[str] = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def _lowerCamelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowercase_ ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowercase_ ) def _A ( snake_case ) -> List[str]: return torch.tensor( UpperCAmelCase_ , dtype=torch.long , device=UpperCAmelCase_ , ) _snake_case = 1e-3 @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(lowercase_ ) _lowercase : Dict = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): _lowercase : Optional[Any] = model(lowercase_ )[0] _lowercase : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowercase_ ) _lowercase : Optional[int] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=lowercase_ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE _lowercase : Union[str, Any] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) _lowercase : List[str] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
250
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = "▁" lowercase__ = {"vocab_file": "spiece.model"} lowercase__ = { "vocab_file": { "google/reformer-crime-and-punishment": ( "https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model" ) } } lowercase__ = { "google/reformer-crime-and-punishment": 524288, } class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Dict = VOCAB_FILES_NAMES UpperCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : str , lowercase_ : Dict , lowercase_ : Tuple="</s>" , lowercase_ : Dict="<unk>" , lowercase_ : Tuple=[] , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : List[str] , ) -> None: UpperCAmelCase : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=lowercase_ , unk_token=lowercase_ , additional_special_tokens=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase : List[Any] = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def UpperCAmelCase_ ( self : Optional[int] ) -> List[Any]: return self.sp_model.get_piece_size() def UpperCAmelCase_ ( self : List[str] ) -> Dict[str, int]: UpperCAmelCase : int = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) -> str: UpperCAmelCase : Tuple = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self : Optional[Any] , lowercase_ : Any ) -> List[str]: UpperCAmelCase : Dict = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase : Dict = {} UpperCAmelCase : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase_ ( self : int , lowercase_ : Tuple ) -> Optional[int]: return self.sp_model.piece_to_id(lowercase_ ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> List[str]: if index < self.sp_model.get_piece_size(): UpperCAmelCase : Tuple = self.sp_model.IdToPiece(lowercase_ ) return token def UpperCAmelCase_ ( self : List[str] , lowercase_ : Optional[int] ) -> Optional[int]: UpperCAmelCase : Dict = [] UpperCAmelCase : int = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token UpperCAmelCase : Any = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def UpperCAmelCase_ ( self : Union[str, Any] , lowercase_ : str , lowercase_ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase : int = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
151
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = r"\w+[.]\d+" lowerCAmelCase__ : List[Any] = re.findall(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for pat in pats: lowerCAmelCase__ : List[Any] = key.replace(_SCREAMING_SNAKE_CASE , """_""".join(pat.split(""".""" ) ) ) return key def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = pt_tuple_key[:-1] + ("scale",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowerCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowerCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowerCAmelCase__ : List[Any] = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer lowerCAmelCase__ : List[str] = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowerCAmelCase__ : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCAmelCase__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": lowerCAmelCase__ : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCAmelCase__ : int = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=42 ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowerCAmelCase__ : Tuple = flax_model.init_weights(PRNGKey(_SCREAMING_SNAKE_CASE ) ) lowerCAmelCase__ : Optional[int] = flatten_dict(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Optional[Any] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCAmelCase__ : str = rename_key(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : int = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters lowerCAmelCase__ : int = rename_key_and_reshape_tensor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown lowerCAmelCase__ : Optional[int] = jnp.asarray(_SCREAMING_SNAKE_CASE ) return unflatten_dict(_SCREAMING_SNAKE_CASE )
351
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''facebook/convnextv2-tiny-1k-224''': '''https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json''', } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''convnextv2''' def __init__( self ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=1E-12 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=224 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,**__UpperCAmelCase ,) -> Union[str, Any]: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : List[Any] = patch_size lowerCAmelCase__ : Union[str, Any] = num_stages lowerCAmelCase__ : Tuple = [96, 192, 384, 768] if hidden_sizes is None else hidden_sizes lowerCAmelCase__ : str = [3, 3, 9, 3] if depths is None else depths lowerCAmelCase__ : Optional[Any] = hidden_act lowerCAmelCase__ : str = initializer_range lowerCAmelCase__ : List[str] = layer_norm_eps lowerCAmelCase__ : Dict = drop_path_rate lowerCAmelCase__ : int = image_size lowerCAmelCase__ : int = ["""stem"""] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=__UpperCAmelCase ,out_indices=__UpperCAmelCase ,stage_names=self.stage_names )
184
0
"""simple docstring""" from math import factorial def _A (__a , __a , __a ) -> float: """simple docstring""" if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! SCREAMING_SNAKE_CASE_ : Optional[int] = float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("""Probability of 2 successes out of 4 trails""") print("""with probability of 0.75 is:""", end=""" """) print(binomial_distribution(2, 4, 0.7_5))
91
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __A : int , __A : Union[str, Any] , __A : List[str] ) -> int: _SCREAMING_SNAKE_CASE = UniSpeechSatForSequenceClassification.from_pretrained(__A , config=__A ) _SCREAMING_SNAKE_CASE = downstream_dict["projector.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["projector.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.post_net.linear.bias"] return model def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Optional[Any] , __A : Any ) -> str: _SCREAMING_SNAKE_CASE = UniSpeechSatForAudioFrameClassification.from_pretrained(__A , config=__A ) _SCREAMING_SNAKE_CASE = downstream_dict["model.linear.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.linear.bias"] return model def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : str , __A : str ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = UniSpeechSatForXVector.from_pretrained(__A , config=__A ) _SCREAMING_SNAKE_CASE = downstream_dict["connector.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): _SCREAMING_SNAKE_CASE = downstream_dict[ f"""model.framelevel_feature_extractor.module.{i}.kernel.weight""" ] _SCREAMING_SNAKE_CASE = downstream_dict[f"""model.framelevel_feature_extractor.module.{i}.kernel.bias"""] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] _SCREAMING_SNAKE_CASE = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] _SCREAMING_SNAKE_CASE = downstream_dict["objective.W"] return model @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Optional[int] , __A : Dict , __A : List[str] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = torch.load(__A , map_location="cpu" ) _SCREAMING_SNAKE_CASE = checkpoint["Downstream"] _SCREAMING_SNAKE_CASE = UniSpeechSatConfig.from_pretrained(__A ) _SCREAMING_SNAKE_CASE = WavaVecaFeatureExtractor.from_pretrained( __A , return_attention_mask=__A , do_normalize=__A ) _SCREAMING_SNAKE_CASE = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): _SCREAMING_SNAKE_CASE = convert_classification(__A , __A , __A ) elif arch.endswith("ForAudioFrameClassification" ): _SCREAMING_SNAKE_CASE = convert_diarization(__A , __A , __A ) elif arch.endswith("ForXVector" ): _SCREAMING_SNAKE_CASE = convert_xvector(__A , __A , __A ) else: raise NotImplementedError(f"""S3PRL weights conversion is not supported for {arch}""" ) if hf_config.use_weighted_layer_sum: _SCREAMING_SNAKE_CASE = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCamelCase_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
111
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowerCamelCase_ = { 'gwf-440k': { 'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-small-190k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 6_55_36, }, 'jmann-large-580k': { 'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt', 'sample_rate': 4_80_00, 'sample_size': 13_10_72, }, 'maestro-uncond-150k': { 'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'unlocked-uncond-250k': { 'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, 'honk-140k': { 'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt', 'sample_rate': 1_60_00, 'sample_size': 6_55_36, }, } def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[Any] ) -> Tuple: return torch.atana(__A , __A ) / math.pi * 2 def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Tuple: _SCREAMING_SNAKE_CASE = torch.sin(t * math.pi / 2 ) ** 2 _SCREAMING_SNAKE_CASE = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(__A , __A ) class lowercase_ ( A ): """simple docstring""" pass class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self : int , __lowerCamelCase : Dict ): """simple docstring""" super().__init__() _SCREAMING_SNAKE_CASE = DiffusionAttnUnetaD(__lowerCamelCase , n_attn_layers=4 ) _SCREAMING_SNAKE_CASE = deepcopy(self.diffusion ) _SCREAMING_SNAKE_CASE = torch.quasirandom.SobolEngine(1 , scramble=__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __A : Any ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["url"] os.system(f"""wget {url} ./""" ) return f"""./{model_name}.ckpt""" lowerCamelCase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', } lowerCamelCase_ = { '8': 'resnets.0', '9': 'attentions.0', '10': 'resnets.1', '11': 'attentions.1', '12': 'resnets.2', '13': 'attentions.2', } lowerCamelCase_ = { '1': 'resnets.0', '2': 'attentions.0', '3': 'resnets.1', '4': 'attentions.1', '5': 'resnets.2', '6': 'attentions.2', '8': 'resnets.3', '9': 'attentions.3', '10': 'resnets.4', '11': 'attentions.4', '12': 'resnets.5', '13': 'attentions.5', } lowerCamelCase_ = { '0': 'resnets.0', '1': 'resnets.1', '2': 'resnets.2', '4': 'resnets.0', '5': 'resnets.1', '6': 'resnets.2', } lowerCamelCase_ = { 'skip': 'conv_skip', 'main.0': 'conv_1', 'main.1': 'group_norm_1', 'main.3': 'conv_2', 'main.4': 'group_norm_2', } lowerCamelCase_ = { 'norm': 'group_norm', 'qkv_proj': ['query', 'key', 'value'], 'out_proj': ['proj_attn'], } def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] ) -> Dict: if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(f"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] ) -> Union[str, Any]: for key, value in ATTN_MAP.items(): if name.startswith(__A ) and not isinstance(__A , __A ): return name.replace(__A , __A ) elif name.startswith(__A ): return [name.replace(__A , __A ) for v in value] raise ValueError(f"""Attn error with {name}""" ) def SCREAMING_SNAKE_CASE_ ( __A : Dict , __A : List[Any]=13 ) -> List[Any]: _SCREAMING_SNAKE_CASE = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) _SCREAMING_SNAKE_CASE = 0 if string.startswith("net.3." ): depth += 1 _SCREAMING_SNAKE_CASE = string[6:] elif string.startswith("net." ): _SCREAMING_SNAKE_CASE = string[4:] while string.startswith("main.7." ): depth += 1 _SCREAMING_SNAKE_CASE = string[7:] if string.startswith("main." ): _SCREAMING_SNAKE_CASE = string[5:] # mid block if string[:2].isdigit(): _SCREAMING_SNAKE_CASE = string[:2] _SCREAMING_SNAKE_CASE = string[2:] else: _SCREAMING_SNAKE_CASE = string[0] _SCREAMING_SNAKE_CASE = string[1:] if depth == max_depth: _SCREAMING_SNAKE_CASE = MID_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = "mid_block" elif depth > 0 and int(__A ) < 7: _SCREAMING_SNAKE_CASE = DOWN_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = f"""down_blocks.{depth}""" elif depth > 0 and int(__A ) > 7: _SCREAMING_SNAKE_CASE = UP_NUM_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = f"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: _SCREAMING_SNAKE_CASE = DEPTH_0_TO_LAYER[layer_num] _SCREAMING_SNAKE_CASE = f"""up_blocks.{max_depth - 1}""" if int(__A ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(f"""Naming error with {input_string} and string_left: {string_left}.""" ) _SCREAMING_SNAKE_CASE = string_left[1:] if "resnets" in new_layer: _SCREAMING_SNAKE_CASE = convert_resconv_naming(__A ) elif "attentions" in new_layer: _SCREAMING_SNAKE_CASE = convert_attn_naming(__A ) _SCREAMING_SNAKE_CASE = new_string_left if not isinstance(__A , __A ): _SCREAMING_SNAKE_CASE = prefix + "." + new_layer + "." + string_left else: _SCREAMING_SNAKE_CASE = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def SCREAMING_SNAKE_CASE_ ( __A : List[Any] ) -> int: _SCREAMING_SNAKE_CASE = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue _SCREAMING_SNAKE_CASE = rename(__A ) # check if we need to transform from Conv => Linear for attention if isinstance(__A , __A ): _SCREAMING_SNAKE_CASE = transform_conv_attns(__A , __A , __A ) else: _SCREAMING_SNAKE_CASE = v return new_state_dict def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : Dict , __A : Tuple ) -> Optional[int]: if len(__A ) == 1: if len(v.shape ) == 3: # weight _SCREAMING_SNAKE_CASE = v[:, :, 0] else: # bias _SCREAMING_SNAKE_CASE = v else: # qkv matrices _SCREAMING_SNAKE_CASE = v.shape[0] _SCREAMING_SNAKE_CASE = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: _SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape, :, 0] else: _SCREAMING_SNAKE_CASE = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Optional[int]: _SCREAMING_SNAKE_CASE = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) _SCREAMING_SNAKE_CASE = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), f"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" _SCREAMING_SNAKE_CASE = download(__A ) _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["sample_rate"] _SCREAMING_SNAKE_CASE = MODELS_MAP[model_name]["sample_size"] _SCREAMING_SNAKE_CASE = Object() _SCREAMING_SNAKE_CASE = sample_size _SCREAMING_SNAKE_CASE = sample_rate _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = UNetaDModel(sample_size=__A , sample_rate=__A ) _SCREAMING_SNAKE_CASE = diffusers_model.state_dict() _SCREAMING_SNAKE_CASE = DiffusionUncond(__A ) orig_model.load_state_dict(torch.load(args.model_path , map_location=__A )["state_dict"] ) _SCREAMING_SNAKE_CASE = orig_model.diffusion_ema.eval() _SCREAMING_SNAKE_CASE = orig_model.state_dict() _SCREAMING_SNAKE_CASE = rename_orig_weights(__A ) _SCREAMING_SNAKE_CASE = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) _SCREAMING_SNAKE_CASE = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(__A ) == 0, f"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith("kernel" ) for k in list(__A ) ), f"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), f"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": _SCREAMING_SNAKE_CASE = value.squeeze() _SCREAMING_SNAKE_CASE = value diffusers_model.load_state_dict(__A ) _SCREAMING_SNAKE_CASE = 1_00 _SCREAMING_SNAKE_CASE = 33 _SCREAMING_SNAKE_CASE = IPNDMScheduler(num_train_timesteps=__A ) _SCREAMING_SNAKE_CASE = torch.manual_seed(__A ) _SCREAMING_SNAKE_CASE = torch.randn([1, 2, config.sample_size] , generator=__A ).to(__A ) _SCREAMING_SNAKE_CASE = torch.linspace(1 , 0 , steps + 1 , device=__A )[:-1] _SCREAMING_SNAKE_CASE = get_crash_schedule(__A ) _SCREAMING_SNAKE_CASE = DanceDiffusionPipeline(unet=__A , scheduler=__A ) _SCREAMING_SNAKE_CASE = torch.manual_seed(33 ) _SCREAMING_SNAKE_CASE = pipe(num_inference_steps=__A , generator=__A ).audios _SCREAMING_SNAKE_CASE = sampling.iplms_sample(__A , __A , __A , {} ) _SCREAMING_SNAKE_CASE = generated.clamp(-1 , 1 ) _SCREAMING_SNAKE_CASE = (generated - audio).abs().sum() _SCREAMING_SNAKE_CASE = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , __A ) print("Diff max" , __A ) assert diff_max < 1e-3, f"""Diff max: {diff_max} is too much :-/""" print(f"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.') lowerCamelCase_ = parser.parse_args() main(args)
111
1
"""simple docstring""" import argparse from collections import defaultdict import yaml __UpperCAmelCase = 'docs/source/en/_toctree.yml' def _snake_case ( lowercase__ : Any ) -> Any: '''simple docstring''' lowerCAmelCase_ :Any = defaultdict(lowercase__ ) lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :int = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(lowercase__ ) lowerCAmelCase_ :int = new_doc_list lowerCAmelCase_ :str = [key for key, value in counts.items() if value > 1] lowerCAmelCase_ :Tuple = [] for duplicate_key in duplicates: lowerCAmelCase_ :Any = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(lowercase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) lowerCAmelCase_ :int = sorted(lowercase__ , key=lambda lowercase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowercase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(lowercase__ ) # Sort return overview_doc def _snake_case ( lowercase__ : Optional[Any]=False ) -> str: '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ :List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ :List[str] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase_ :int = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowerCAmelCase_ :Dict = api_doc[scheduler_idx]["""sections"""] lowerCAmelCase_ :Optional[Any] = clean_doc_toc(lowercase__ ) lowerCAmelCase_ :str = False if new_scheduler_doc != scheduler_doc: lowerCAmelCase_ :Optional[int] = True if overwrite: lowerCAmelCase_ :Tuple = new_scheduler_doc if diff: if overwrite: lowerCAmelCase_ :str = api_doc with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase__ , allow_unicode=lowercase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def _snake_case ( lowercase__ : Any=False ) -> int: '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as f: lowerCAmelCase_ :int = yaml.safe_load(f.read() ) # Get to the API doc lowerCAmelCase_ :Optional[int] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCAmelCase_ :Optional[int] = content[api_idx]["""sections"""] # Then to the model doc lowerCAmelCase_ :List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowerCAmelCase_ :Optional[int] = False lowerCAmelCase_ :Any = api_doc[pipeline_idx]["""sections"""] lowerCAmelCase_ :str = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowerCAmelCase_ :int = pipeline_doc["""section"""] lowerCAmelCase_ :Tuple = clean_doc_toc(lowercase__ ) if overwrite: lowerCAmelCase_ :List[str] = new_sub_pipeline_doc new_pipeline_docs.append(lowercase__ ) # sort overall pipeline doc lowerCAmelCase_ :Union[str, Any] = clean_doc_toc(lowercase__ ) if new_pipeline_docs != pipeline_docs: lowerCAmelCase_ :Tuple = True if overwrite: lowerCAmelCase_ :Optional[Any] = new_pipeline_docs if diff: if overwrite: lowerCAmelCase_ :Tuple = api_doc with open(lowercase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(lowercase__ , allow_unicode=lowercase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __UpperCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
84
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A_ = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_80_00, "sample_size": 13_10_72, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, } def A_ ( snake_case , snake_case ): return torch.atana(snake_case , snake_case ) / math.pi * 2 def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE:Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class _snake_case ( _a ): pass class _snake_case ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : str ): super().__init__() SCREAMING_SNAKE_CASE:List[Any] = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE__ ,n_attn_layers=4 ) SCREAMING_SNAKE_CASE:List[str] = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE:Dict = torch.quasirandom.SobolEngine(1 ,scramble=SCREAMING_SNAKE_CASE__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } A_ = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } A_ = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } A_ = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } A_ = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def A_ ( snake_case ): if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A_ ( snake_case ): for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A_ ( snake_case , snake_case=13 ): SCREAMING_SNAKE_CASE:Optional[Any] = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) SCREAMING_SNAKE_CASE:List[str] = 0 if string.startswith("net.3." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[6:] elif string.startswith("net." ): SCREAMING_SNAKE_CASE:int = string[4:] while string.startswith("main.7." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[7:] if string.startswith("main." ): SCREAMING_SNAKE_CASE:str = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE:Tuple = string[:2] SCREAMING_SNAKE_CASE:Optional[Any] = string[2:] else: SCREAMING_SNAKE_CASE:Optional[Any] = string[0] SCREAMING_SNAKE_CASE:Optional[Any] = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE:Any = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:List[str] = "mid_block" elif depth > 0 and int(snake_case ) < 7: SCREAMING_SNAKE_CASE:Union[str, Any] = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Dict = F'''down_blocks.{depth}''' elif depth > 0 and int(snake_case ) > 7: SCREAMING_SNAKE_CASE:Any = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Union[str, Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: SCREAMING_SNAKE_CASE:Optional[int] = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Any = F'''up_blocks.{max_depth - 1}''' if int(snake_case ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) SCREAMING_SNAKE_CASE:List[Any] = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE:List[str] = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE:List[Any] = convert_attn_naming(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = new_string_left if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = prefix + "." + new_layer + "." + string_left else: SCREAMING_SNAKE_CASE:int = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE:str = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = transform_conv_attns(snake_case , snake_case , snake_case ) else: SCREAMING_SNAKE_CASE:Optional[int] = v return new_state_dict def A_ ( snake_case , snake_case , snake_case ): if len(snake_case ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE:List[str] = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE:Optional[Any] = v else: # qkv matrices SCREAMING_SNAKE_CASE:Optional[int] = v.shape[0] SCREAMING_SNAKE_CASE:Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE:Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE:List[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE:List[str] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' SCREAMING_SNAKE_CASE:List[str] = download(snake_case ) SCREAMING_SNAKE_CASE:List[str] = MODELS_MAP[model_name]["sample_rate"] SCREAMING_SNAKE_CASE:Tuple = MODELS_MAP[model_name]["sample_size"] SCREAMING_SNAKE_CASE:Union[str, Any] = Object() SCREAMING_SNAKE_CASE:int = sample_size SCREAMING_SNAKE_CASE:Any = sample_rate SCREAMING_SNAKE_CASE:List[str] = 0 SCREAMING_SNAKE_CASE:Optional[Any] = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = diffusers_model.state_dict() SCREAMING_SNAKE_CASE:Optional[Any] = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )["state_dict"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE:Dict = orig_model.state_dict() SCREAMING_SNAKE_CASE:Union[str, Any] = rename_orig_weights(snake_case ) SCREAMING_SNAKE_CASE:Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE:Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(snake_case ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": SCREAMING_SNAKE_CASE:Dict = value.squeeze() SCREAMING_SNAKE_CASE:Union[str, Any] = value diffusers_model.load_state_dict(snake_case ) SCREAMING_SNAKE_CASE:int = 100 SCREAMING_SNAKE_CASE:int = 33 SCREAMING_SNAKE_CASE:Any = IPNDMScheduler(num_train_timesteps=snake_case ) SCREAMING_SNAKE_CASE:str = torch.manual_seed(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) SCREAMING_SNAKE_CASE:int = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] SCREAMING_SNAKE_CASE:List[Any] = get_crash_schedule(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE:Union[str, Any] = pipe(num_inference_steps=snake_case , generator=snake_case ).audios SCREAMING_SNAKE_CASE:Tuple = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) SCREAMING_SNAKE_CASE:Union[str, Any] = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE:Union[str, Any] = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE:str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , snake_case ) print("Diff max" , snake_case ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") A_ = parser.parse_args() main(args)
139
0
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class __snake_case( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , A_ , A_ , A_ , A_ , A_=1 , A_=False , **A_ ) -> Optional[int]: super().__init__(**A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = d_embed lowerCAmelCase = d_proj lowerCAmelCase = cutoffs + [vocab_size] lowerCAmelCase = [0] + self.cutoffs lowerCAmelCase = div_val lowerCAmelCase = self.cutoffs[0] lowerCAmelCase = len(self.cutoffs ) - 1 lowerCAmelCase = self.shortlist_size + self.n_clusters lowerCAmelCase = keep_order lowerCAmelCase = [] lowerCAmelCase = [] def __snake_case ( self , A_ ) -> int: if self.n_clusters > 0: lowerCAmelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer="""zeros""" , trainable=A_ , name="""cluster_weight""" ) lowerCAmelCase = self.add_weight( shape=(self.n_clusters,) , initializer="""zeros""" , trainable=A_ , name="""cluster_bias""" ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: lowerCAmelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer="""zeros""" , trainable=A_ , name=f'out_projs_._{i}' , ) self.out_projs.append(A_ ) else: self.out_projs.append(A_ ) lowerCAmelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._weight' , ) lowerCAmelCase = self.add_weight( shape=(self.vocab_size,) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): lowerCAmelCase, lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] lowerCAmelCase = self.d_embed // (self.div_val**i) lowerCAmelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer="""zeros""" , trainable=A_ , name=f'out_projs_._{i}' ) self.out_projs.append(A_ ) lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._weight' , ) lowerCAmelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer="""zeros""" , trainable=A_ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(A_ ) @staticmethod def __snake_case ( A_ , A_ , A_ , A_=None ) -> List[Any]: lowerCAmelCase = x if proj is not None: lowerCAmelCase = tf.einsum("""ibd,ed->ibe""" , A_ , A_ ) return tf.einsum("""ibd,nd->ibn""" , A_ , A_ ) + b @staticmethod def __snake_case ( A_ , A_ ) -> Dict: lowerCAmelCase = shape_list(A_ ) lowerCAmelCase = tf.range(lp_size[0] , dtype=target.dtype ) lowerCAmelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(A_ , A_ ) def __snake_case ( self , A_ , A_ , A_=True , A_=False ) -> Tuple: lowerCAmelCase = 0 if self.n_clusters == 0: lowerCAmelCase = self._logit(A_ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: lowerCAmelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=A_ , logits=A_ ) lowerCAmelCase = tf.nn.log_softmax(A_ , axis=-1 ) else: lowerCAmelCase = shape_list(A_ ) lowerCAmelCase = [] lowerCAmelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): lowerCAmelCase, lowerCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: lowerCAmelCase = (target >= l_idx) & (target < r_idx) lowerCAmelCase = tf.where(A_ ) lowerCAmelCase = tf.boolean_mask(A_ , A_ ) - l_idx if self.div_val == 1: lowerCAmelCase = self.out_layers[0][0][l_idx:r_idx] lowerCAmelCase = self.out_layers[0][1][l_idx:r_idx] else: lowerCAmelCase = self.out_layers[i][0] lowerCAmelCase = self.out_layers[i][1] if i == 0: lowerCAmelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) lowerCAmelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) lowerCAmelCase = self._logit(A_ , A_ , A_ , self.out_projs[0] ) lowerCAmelCase = tf.nn.log_softmax(A_ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: lowerCAmelCase = tf.boolean_mask(A_ , A_ ) lowerCAmelCase = self._gather_logprob(A_ , A_ ) else: lowerCAmelCase = self._logit(A_ , A_ , A_ , self.out_projs[i] ) lowerCAmelCase = tf.nn.log_softmax(A_ ) lowerCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster lowerCAmelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(A_ ) if target is not None: lowerCAmelCase = tf.boolean_mask(A_ , A_ ) lowerCAmelCase = tf.boolean_mask(A_ , A_ ) lowerCAmelCase = self._gather_logprob(A_ , A_ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(A_ , -cur_logprob , shape_list(A_ ) ) lowerCAmelCase = tf.concat(A_ , axis=-1 ) if target is not None: if return_mean: lowerCAmelCase = tf.reduce_mean(A_ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(A_ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(A_ , name=self.name , aggregation="""mean""" if return_mean else """""" ) return out
187
'''simple docstring''' from __future__ import annotations import pandas as pd def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> list[int]: """simple docstring""" lowerCAmelCase = [0] * no_of_processes lowerCAmelCase = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = burst_time[i] lowerCAmelCase = 0 lowerCAmelCase = 0 lowerCAmelCase = 999_999_999 lowerCAmelCase = 0 lowerCAmelCase = False # Process until all processes are completed while complete != no_of_processes: for j in range(_SCREAMING_SNAKE_CASE ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: lowerCAmelCase = remaining_time[j] lowerCAmelCase = j lowerCAmelCase = True if not check: increment_time += 1 continue remaining_time[short] -= 1 lowerCAmelCase = remaining_time[short] if minm == 0: lowerCAmelCase = 999_999_999 if remaining_time[short] == 0: complete += 1 lowerCAmelCase = False # Find finish time of current process lowerCAmelCase = increment_time + 1 # Calculate waiting time lowerCAmelCase = finish_time - arrival_time[short] lowerCAmelCase = finar - burst_time[short] if waiting_time[short] < 0: lowerCAmelCase = 0 # Increment time increment_time += 1 return waiting_time def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[int] ) -> list[int]: """simple docstring""" lowerCAmelCase = [0] * no_of_processes for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time def _snake_case ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> None: """simple docstring""" lowerCAmelCase = 0 lowerCAmelCase = 0 for i in range(_SCREAMING_SNAKE_CASE ): lowerCAmelCase = total_waiting_time + waiting_time[i] lowerCAmelCase = total_turn_around_time + turn_around_time[i] print(f'Average waiting time = {total_waiting_time / no_of_processes:.5f}' ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('Enter how many process you want to analyze') UpperCAmelCase = int(input()) UpperCAmelCase = [0] * no_of_processes UpperCAmelCase = [0] * no_of_processes UpperCAmelCase = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('Enter the arrival time and burst time for process:--' + str(i + 1)) UpperCAmelCase , UpperCAmelCase = map(int, input().split()) UpperCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase = burst_time UpperCAmelCase = no_of_processes UpperCAmelCase = waiting_time UpperCAmelCase = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ 'Process', 'BurstTime', 'ArrivalTime', 'WaitingTime', 'TurnAroundTime', ], ) # Printing the dataFrame pd.set_option('display.max_rows', fcfs.shape[0] + 1) print(fcfs)
187
1