code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class UpperCAmelCase ( A_ ): A__ : int = "distilbert" A__ : List[str] = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__(self : str , snake_case__ : Union[str, Any]=3_05_22 , snake_case__ : int=5_12 , snake_case__ : Optional[int]=False , snake_case__ : Optional[int]=6 , snake_case__ : Any=12 , snake_case__ : List[Any]=7_68 , snake_case__ : int=4 * 7_68 , snake_case__ : int=0.1 , snake_case__ : List[str]=0.1 , snake_case__ : str="gelu" , snake_case__ : Any=0.02 , snake_case__ : Optional[Any]=0.1 , snake_case__ : List[Any]=0.2 , snake_case__ : Dict=0 , **snake_case__ : List[str] , ) -> Optional[int]: '''simple docstring''' snake_case : Any = vocab_size snake_case : int = max_position_embeddings snake_case : Optional[Any] = sinusoidal_pos_embds snake_case : List[str] = n_layers snake_case : List[Any] = n_heads snake_case : str = dim snake_case : Tuple = hidden_dim snake_case : Union[str, Any] = dropout snake_case : List[str] = attention_dropout snake_case : Any = activation snake_case : int = initializer_range snake_case : List[Any] = qa_dropout snake_case : str = seq_classif_dropout super().__init__(**snake_case__ , pad_token_id=snake_case__ ) class UpperCAmelCase ( A_ ): @property def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case : str = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
59
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class A_ : def __init__( self : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : int=3 , UpperCAmelCase : int=4 , UpperCAmelCase : str=2 , UpperCAmelCase : Union[str, Any]=7 , UpperCAmelCase : List[str]=True , UpperCAmelCase : Dict=True , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : Optional[Any]=9_9 , UpperCAmelCase : Tuple=3_6 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[int]=4 , UpperCAmelCase : Union[str, Any]=3_7 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : Optional[int]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : List[str]=5_1_2 , UpperCAmelCase : int=1_6 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Optional[Any]=0.02 , UpperCAmelCase : Optional[Any]=6 , UpperCAmelCase : int=6 , UpperCAmelCase : str=3 , UpperCAmelCase : Any=4 , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : List[str]=1_0_0_0 , ) -> int: __lowerCAmelCase: List[str] = parent __lowerCAmelCase: List[str] = batch_size __lowerCAmelCase: Optional[Any] = num_channels __lowerCAmelCase: Tuple = image_size __lowerCAmelCase: str = patch_size __lowerCAmelCase: List[str] = is_training __lowerCAmelCase: Union[str, Any] = use_input_mask __lowerCAmelCase: Union[str, Any] = use_token_type_ids __lowerCAmelCase: Tuple = use_labels __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: Any = hidden_size __lowerCAmelCase: Tuple = num_hidden_layers __lowerCAmelCase: Optional[int] = num_attention_heads __lowerCAmelCase: Dict = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: str = hidden_dropout_prob __lowerCAmelCase: str = attention_probs_dropout_prob __lowerCAmelCase: str = max_position_embeddings __lowerCAmelCase: str = type_vocab_size __lowerCAmelCase: Optional[Any] = type_sequence_label_size __lowerCAmelCase: Union[str, Any] = initializer_range __lowerCAmelCase: List[str] = coordinate_size __lowerCAmelCase: Tuple = shape_size __lowerCAmelCase: List[Any] = num_labels __lowerCAmelCase: Any = num_choices __lowerCAmelCase: List[str] = scope __lowerCAmelCase: Dict = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __lowerCAmelCase: Optional[Any] = text_seq_length __lowerCAmelCase: List[Any] = (image_size // patch_size) ** 2 + 1 __lowerCAmelCase: int = self.text_seq_length + self.image_seq_length def UpperCAmelCase ( self : Any ) -> Any: __lowerCAmelCase: Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __lowerCAmelCase: Any = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) __lowerCAmelCase: str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __lowerCAmelCase: Optional[Any] = bbox[i, j, 3] __lowerCAmelCase: Tuple = bbox[i, j, 1] __lowerCAmelCase: Dict = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: __lowerCAmelCase: Any = bbox[i, j, 2] __lowerCAmelCase: int = bbox[i, j, 0] __lowerCAmelCase: int = tmp_coordinate __lowerCAmelCase: List[Any] = tf.constant(UpperCAmelCase ) __lowerCAmelCase: Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase: Union[str, Any] = None if self.use_input_mask: __lowerCAmelCase: List[Any] = random_attention_mask([self.batch_size, self.text_seq_length] ) __lowerCAmelCase: int = None if self.use_token_type_ids: __lowerCAmelCase: List[Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __lowerCAmelCase: str = None __lowerCAmelCase: Dict = None if self.use_labels: __lowerCAmelCase: Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase: List[str] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __lowerCAmelCase: Dict = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> int: __lowerCAmelCase: Tuple = TFLayoutLMvaModel(config=UpperCAmelCase ) # text + image __lowerCAmelCase: Dict = model(UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) __lowerCAmelCase: List[str] = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , training=UpperCAmelCase , ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __lowerCAmelCase: str = model(UpperCAmelCase , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __lowerCAmelCase: List[str] = model({'pixel_values': pixel_values} , training=UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] ) -> int: __lowerCAmelCase: List[str] = self.num_labels __lowerCAmelCase: Tuple = TFLayoutLMvaForSequenceClassification(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase ( self : Any , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Any: __lowerCAmelCase: Union[str, Any] = self.num_labels __lowerCAmelCase: List[str] = TFLayoutLMvaForTokenClassification(config=UpperCAmelCase ) __lowerCAmelCase: Any = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , labels=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase ( self : List[Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Any , UpperCAmelCase : str , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] ) -> Any: __lowerCAmelCase: str = 2 __lowerCAmelCase: Dict = TFLayoutLMvaForQuestionAnswering(config=UpperCAmelCase ) __lowerCAmelCase: int = model( UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , attention_mask=UpperCAmelCase , token_type_ids=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase , training=UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase: Union[str, Any] = self.prepare_config_and_inputs() ((__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase) , (__lowerCAmelCase)): List[str] = config_and_inputs __lowerCAmelCase: List[str] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class A_ ( snake_case__ , snake_case__ , unittest.TestCase ): _lowercase : List[Any] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) _lowercase : Tuple = ( {'document-question-answering': TFLayoutLMvaForQuestionAnswering, 'feature-extraction': TFLayoutLMvaModel} if is_tf_available() else {} ) _lowercase : Union[str, Any] = False _lowercase : Dict = False _lowercase : Tuple = False def UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]: return True def UpperCAmelCase ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Dict=False ) -> dict: __lowerCAmelCase: Optional[Any] = copy.deepcopy(UpperCAmelCase ) if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: int = { k: tf.tile(tf.expand_dims(UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(UpperCAmelCase , tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Tuple = tf.ones(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) elif model_class in get_values(UpperCAmelCase ): __lowerCAmelCase: str = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa ) return inputs_dict def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase: Tuple = TFLayoutLMvaModelTester(self ) __lowerCAmelCase: str = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=3_7 ) def UpperCAmelCase ( self : Tuple ) -> Dict: self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase: Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase: List[Any] = model_class(UpperCAmelCase ) if getattr(UpperCAmelCase , 'hf_compute_loss' , UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label __lowerCAmelCase: Optional[int] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: List[Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=UpperCAmelCase )[0] ] __lowerCAmelCase: Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs __lowerCAmelCase: Optional[Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Tuple = prepared_for_class.pop('input_ids' ) __lowerCAmelCase: Union[str, Any] = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions __lowerCAmelCase: Union[str, Any] = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[int] = prepared_for_class.pop('input_ids' ) if "labels" in prepared_for_class: __lowerCAmelCase: str = prepared_for_class['labels'].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: __lowerCAmelCase: Tuple = -1_0_0 __lowerCAmelCase: Union[str, Any] = tf.convert_to_tensor(UpperCAmelCase ) __lowerCAmelCase: Dict = model(UpperCAmelCase , **UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict __lowerCAmelCase: str = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) __lowerCAmelCase: Optional[Any] = model(UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple __lowerCAmelCase: Any = self._prepare_for_class(inputs_dict.copy() , UpperCAmelCase , return_labels=UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function __lowerCAmelCase: Tuple = prepared_for_class.keys() - inputs_dict.keys() __lowerCAmelCase: Dict = inspect.signature(model.call ).parameters __lowerCAmelCase: Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple __lowerCAmelCase: str = {0: 'input_ids'} for label_key in label_keys: __lowerCAmelCase: Optional[Any] = signature_names.index(UpperCAmelCase ) __lowerCAmelCase: Tuple = label_key __lowerCAmelCase: Tuple = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple __lowerCAmelCase: List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: __lowerCAmelCase: Optional[Any] = prepared_for_class[value] __lowerCAmelCase: Union[str, Any] = tuple(UpperCAmelCase ) # Send to model __lowerCAmelCase: Any = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def UpperCAmelCase ( self : Dict ) -> Tuple: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Dict ) -> int: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCAmelCase: Tuple = type self.model_tester.create_and_check_model(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : str ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : int ) -> List[str]: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( self : Tuple ) -> str: ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ): Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase: Optional[int] = TFLayoutLMvaModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def _a ( ) -> Any: """simple docstring""" __lowerCAmelCase: Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class A_ ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self : int ) -> Dict: return LayoutLMvaImageProcessor(apply_ocr=UpperCAmelCase ) if is_vision_available() else None @slow def UpperCAmelCase ( self : Any ) -> List[str]: __lowerCAmelCase: Any = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ) __lowerCAmelCase: Tuple = self.default_image_processor __lowerCAmelCase: str = prepare_img() __lowerCAmelCase: Optional[int] = image_processor(images=UpperCAmelCase , return_tensors='tf' ).pixel_values __lowerCAmelCase: Dict = tf.constant([[1, 2]] ) __lowerCAmelCase: str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 ) # forward pass __lowerCAmelCase: List[str] = model(input_ids=UpperCAmelCase , bbox=UpperCAmelCase , pixel_values=UpperCAmelCase , training=UpperCAmelCase ) # verify the logits __lowerCAmelCase: Tuple = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape , UpperCAmelCase ) __lowerCAmelCase: str = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
322
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ="T5Config" class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """mt5""" __lowercase = MTaConfig class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """mt5""" __lowercase = MTaConfig class UpperCAmelCase ( UpperCamelCase__ ): __lowercase = """mt5""" __lowercase = MTaConfig
123
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowerCAmelCase : Optional[Any] ="\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" __lowerCAmelCase : Union[str, Any] ="\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n" __lowerCAmelCase : str ="\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n" def UpperCamelCase ( _lowerCamelCase : List[Any] ): def remove_articles(_lowerCamelCase : Dict ): A__ = re.compile(r"\b(a|an|the)\b" , re.UNICODE ) return re.sub(_lowerCamelCase , " " , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : Tuple ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : int ): A__ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : Optional[int] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ): return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : List[Any] ): A__ = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )] return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 1_00 def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ): A__ = [rgram for rgrams in rgramslist for rgram in rgrams] A__ = Counter(_lowerCamelCase ) A__ = Counter(_lowerCamelCase ) A__ = Counter() for sgram, scount in sgramcounter.items(): A__ = scount * numref A__ = Counter(_lowerCamelCase ) A__ = Counter() for cgram, ccount in cgramcounter.items(): A__ = ccount * numref # KEEP A__ = sgramcounter_rep & cgramcounter_rep A__ = keepgramcounter_rep & rgramcounter A__ = sgramcounter_rep & rgramcounter A__ = 0 A__ = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = keeptmpscorea / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() ) A__ = 0 if keepscore_precision > 0 or keepscore_recall > 0: A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION A__ = sgramcounter_rep - cgramcounter_rep A__ = delgramcounter_rep - rgramcounter A__ = sgramcounter_rep - rgramcounter A__ = 0 A__ = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 if len(_lowerCamelCase ) > 0: A__ = deltmpscorea / len(_lowerCamelCase ) # ADDITION A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) & set(_lowerCamelCase ) A__ = set(_lowerCamelCase ) - set(_lowerCamelCase ) A__ = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. A__ = 1 A__ = 1 if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: A__ = addtmpscore / len(_lowerCamelCase ) A__ = 0 if addscore_precision > 0 or addscore_recall > 0: A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ): A__ = len(_lowerCamelCase ) A__ = ssent.split(" " ) A__ = csent.split(" " ) A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] A__ = [] for rsent in rsents: A__ = rsent.split(" " ) A__ = [] A__ = [] A__ = [] ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = ragrams[i] + " " + ragrams[i + 1] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] ragrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3] ragrams.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) ragramslist.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = sagrams[i] + " " + sagrams[i + 1] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] sagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3] sagrams.append(_lowerCamelCase ) for i in range(0 , len(_lowerCamelCase ) - 1 ): if i < len(_lowerCamelCase ) - 1: A__ = cagrams[i] + " " + cagrams[i + 1] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 2: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] cagrams.append(_lowerCamelCase ) if i < len(_lowerCamelCase ) - 3: A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3] cagrams.append(_lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 A__ = sum([delascore, delascore, delascore, delascore] ) / 4 A__ = sum([addascore, addascore, addascore, addascore] ) / 4 A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : bool = True , _lowerCamelCase : str = "13a" , _lowerCamelCase : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: A__ = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: A__ = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase ) else: A__ = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase ) elif tokenizer == "moses": A__ = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase ) elif tokenizer == "penn": A__ = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase ) else: A__ = sentence if not return_str: A__ = normalized_sent.split() return normalized_sent def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ): if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )): raise ValueError("Sources length must match predictions and references lengths." ) A__ = 0 for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] ) A__ = sari_score / len(_lowerCamelCase ) return 1_00 * sari_score def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]="exp" , _lowerCamelCase : int=None , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=False , ): A__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) A__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] A__ = sacrebleu.corpus_bleu( _lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=[ "https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py", "https://github.com/cocoxu/simplification/blob/master/SARI.py", "https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py", "https://github.com/mjpost/sacreBLEU", ] , reference_urls=[ "https://www.aclweb.org/anthology/Q16-1029.pdf", "https://github.com/mjpost/sacreBLEU", "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def UpperCAmelCase_ ( self :str , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :int )-> int: A__ = {} result.update({"sari": compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} ) result.update({"sacrebleu": compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} ) result.update({"exact": compute_em(predictions=lowercase_ , references=lowercase_ )} ) return result
123
1
'''simple docstring''' import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy UpperCamelCase__: int = logging.getLogger(__name__) UpperCamelCase__: Tuple = "pytorch_model.bin" @dataclasses.dataclass class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = dataclasses.field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models."""} ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co."""} , ) @dataclasses.dataclass class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the training data."""} ) lowerCamelCase__ = dataclasses.field(metadata={"""help""": """A csv or a json file containing the data to predict on."""} ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """A csv or a json file containing the validation data."""} ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """The name of the task to train on."""} , ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """The list of labels for the task."""} ) @dataclasses.dataclass class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = dataclasses.field( metadata={"""help""": """The output directory where the model predictions and checkpoints will be written."""} ) lowerCamelCase__ = dataclasses.field( default="""accuracy""" , metadata={"""help""": """The evaluation metric used for the task."""} ) lowerCamelCase__ = dataclasses.field( default="""no""" , metadata={ """help""": """The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]""" } , ) lowerCamelCase__ = dataclasses.field( default=10 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={ """help""": """How much the specified evaluation metric must improve to satisfy early stopping conditions.""" } , ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the confidence score."""} , ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """Whether to filter the pseudo-labeled data based on the validation performance."""} , ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """Whether to fine-tune on labeled data after pseudo training."""} , ) lowerCamelCase__ = dataclasses.field( default=0.0 , metadata={"""help""": """Confidence threshold for pseudo-labeled data filtering."""} , ) lowerCamelCase__ = dataclasses.field( default=100 , metadata={"""help""": """Number of evaluation calls with no improvement after which training will be stopped."""} , ) lowerCamelCase__ = dataclasses.field( default=UpperCamelCase__ , metadata={"""help""": """Random seed for initialization."""} , ) def snake_case_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : str ) -> str: UpperCAmelCase : List[str] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCAmelCase : List[Any] = dataset.filter(lambda _lowerCAmelCase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCAmelCase : Union[str, Any] = int(eval_result * len(_lowerCAmelCase ) ) print(_lowerCAmelCase ) UpperCAmelCase : Dict = dataset.sort('''probability''' , reverse=_lowerCAmelCase ) UpperCAmelCase : Tuple = dataset.select(range(_lowerCAmelCase ) ) UpperCAmelCase : int = dataset.remove_columns(['''label''', '''probability'''] ) UpperCAmelCase : Optional[Any] = dataset.rename_column('''prediction''' , '''label''' ) UpperCAmelCase : int = dataset.map(lambda _lowerCAmelCase : {"label": idalabel[example["label"]]} ) UpperCAmelCase : List[str] = dataset.shuffle(seed=args.seed ) UpperCAmelCase : List[str] = os.path.join(_lowerCAmelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(_lowerCAmelCase , index=_lowerCAmelCase ) else: dataset.to_json(_lowerCAmelCase ) def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int , **_lowerCAmelCase : Tuple ) -> Tuple: UpperCAmelCase : Union[str, Any] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCAmelCase : Union[str, Any] = STModelArguments(model_name_or_path=_lowerCAmelCase ) UpperCAmelCase : Dict = STDataArguments(train_file=_lowerCAmelCase , infer_file=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = STTrainingArguments(output_dir=_lowerCAmelCase ) UpperCAmelCase : Optional[int] = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(_lowerCAmelCase ).items(): setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for key, value in kwargs.items(): if hasattr(_lowerCAmelCase , _lowerCAmelCase ): setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Sanity checks UpperCAmelCase : Optional[Any] = {} UpperCAmelCase : List[str] = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCAmelCase : List[Any] = args.train_file UpperCAmelCase : Optional[Any] = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCAmelCase : List[str] = args.eval_file for key in data_files: UpperCAmelCase : Optional[int] = data_files[key].split('''.''' )[-1] assert extension in ["csv", "json"], f"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: UpperCAmelCase : Optional[int] = extension else: assert extension == args.data_file_extension, f"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), f"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('''Creating the initial data directory for self-training...''' ) UpperCAmelCase : Dict = f"""{args.output_dir}/self-train_iter-{{}}""".format UpperCAmelCase : Union[str, Any] = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=_lowerCAmelCase ) os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) accelerator.wait_for_everyone() UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : Union[str, Any] = None UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = False # Show the progress bar UpperCAmelCase : Dict = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCAmelCase : Optional[int] = data_dir_format(_lowerCAmelCase ) assert os.path.exists(_lowerCAmelCase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCAmelCase : Any = os.path.join(_lowerCAmelCase , '''stage-1''' ) UpperCAmelCase : Dict = { '''accelerator''': accelerator, '''model_name_or_path''': args.model_name_or_path, '''cache_dir''': args.cache_dir, '''do_train''': True, '''train_file''': data_files['''train'''] if iteration == 0 else data_files['''train_pseudo'''], '''do_eval''': True if args.eval_file is not None else False, '''eval_file''': data_files['''eval'''], '''do_predict''': True, '''infer_file''': data_files['''infer'''], '''task_name''': args.task_name, '''label_list''': args.label_list, '''output_dir''': current_output_dir, '''eval_metric''': args.eval_metric, '''evaluation_strategy''': args.evaluation_strategy, '''early_stopping_patience''': args.early_stopping_patience, '''early_stopping_threshold''': args.early_stopping_threshold, '''seed''': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(_lowerCAmelCase , _lowerCAmelCase ): arguments_dict.update({key: value} ) UpperCAmelCase : str = os.path.join(_lowerCAmelCase , '''best-checkpoint''' , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.''' , _lowerCAmelCase , _lowerCAmelCase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 1 *****''' , _lowerCAmelCase ) finetune(**_lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCAmelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 1.''' , _lowerCAmelCase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCAmelCase : Optional[int] = os.path.join(_lowerCAmelCase , '''best-checkpoint''' ) UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''stage-2''' ) # Update arguments_dict UpperCAmelCase : int = model_path UpperCAmelCase : Optional[int] = data_files['''train'''] UpperCAmelCase : str = current_output_dir UpperCAmelCase : int = os.path.join(_lowerCAmelCase , '''best-checkpoint''' , _lowerCAmelCase ) if os.path.exists(_lowerCAmelCase ): logger.info( '''Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.''' , _lowerCAmelCase , _lowerCAmelCase , ) else: logger.info('''***** Running self-training: iteration: %d, stage: 2 *****''' , _lowerCAmelCase ) finetune(**_lowerCAmelCase ) accelerator.wait_for_everyone() assert os.path.exists(_lowerCAmelCase ) logger.info('''Self-training job completed: iteration: %d, stage: 2.''' , _lowerCAmelCase ) UpperCAmelCase : Union[str, Any] = iteration UpperCAmelCase : Any = data_dir_format(iteration + 1 ) UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(os.path.join(_lowerCAmelCase , '''best-checkpoint''' ) ) UpperCAmelCase : int = config.idalabel UpperCAmelCase : Optional[Any] = os.path.join(_lowerCAmelCase , '''eval_results_best-checkpoint.json''' ) UpperCAmelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , '''test_results_best-checkpoint.json''' ) assert os.path.exists(_lowerCAmelCase ) with open(_lowerCAmelCase , '''r''' ) as f: UpperCAmelCase : Union[str, Any] = float(json.load(_lowerCAmelCase )[args.eval_metric] ) UpperCAmelCase : str = os.path.join(_lowerCAmelCase , '''infer_output_best-checkpoint.csv''' ) assert os.path.exists(_lowerCAmelCase ) # Loading the dataset from local csv or json files. UpperCAmelCase : Optional[Any] = load_dataset(args.data_file_extension , data_files={'''data''': data_files['''infer''']} )['''data'''] UpperCAmelCase : Tuple = load_dataset('''csv''' , data_files={'''data''': infer_output_file} )['''data'''] if accelerator.is_main_process: os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) shutil.copy(_lowerCAmelCase , os.path.join(_lowerCAmelCase , f"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(_lowerCAmelCase ): shutil.copy(_lowerCAmelCase , os.path.join(_lowerCAmelCase , f"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) accelerator.wait_for_everyone() UpperCAmelCase : int = os.path.join(_lowerCAmelCase , f"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCAmelCase : Any = eval_result if best_iteration is None: UpperCAmelCase : int = new_iteration UpperCAmelCase : List[str] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCAmelCase : Any = new_iteration UpperCAmelCase : int = new_eval_result UpperCAmelCase : Union[str, Any] = 0 else: if new_eval_result == best_eval_result: UpperCAmelCase : Any = new_iteration UpperCAmelCase : int = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCAmelCase : str = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('''Best iteration: %d''' , _lowerCAmelCase ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCAmelCase , f"""eval_results_iter-{iteration}.json""" ) , os.path.join(_lowerCAmelCase , '''eval_results_best-iteration.json''' ) , ) else: # Assume that the last iteration is the best logger.info('''Best iteration: %d''' , args.max_selftrain_iterations - 1 ) logger.info('''Best evaluation result: %s = %f''' , args.eval_metric , _lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(_lowerCAmelCase , f"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(_lowerCAmelCase , '''eval_results_best-iteration.json''' ) , )
23
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if exponent == 1: return base if exponent % 2 == 0: lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , exponent // 2 , SCREAMING_SNAKE_CASE ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(SCREAMING_SNAKE_CASE , exponent - 1 , SCREAMING_SNAKE_CASE )) % modulo_value def _a ( SCREAMING_SNAKE_CASE = 17_77 , SCREAMING_SNAKE_CASE = 18_55 , SCREAMING_SNAKE_CASE = 8 ): """simple docstring""" lowercase__ = base for _ in range(1 , SCREAMING_SNAKE_CASE ): lowercase__ = _modexpt(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 10**digits ) return result if __name__ == "__main__": print(f"""{solution() = }""")
110
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 UpperCAmelCase = data_utils.TransfoXLTokenizer UpperCAmelCase = data_utils.TransfoXLCorpus UpperCAmelCase = data_utils UpperCAmelCase = data_utils def lowerCamelCase (a_ :Union[str, Any] , a_ :int , a_ :str , a_ :Any) -> Optional[int]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowercase__ , '''rb''') as fp: lowercase :Tuple = pickle.load(lowercase__ , encoding='''latin1''') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) lowercase :Optional[int] = pytorch_dump_folder_path + """/""" + VOCAB_FILES_NAMES["""pretrained_vocab_file"""] print(F"""Save vocabulary to {pytorch_vocab_dump_path}""") lowercase :Union[str, Any] = corpus.vocab.__dict__ torch.save(lowercase__ , lowercase__) lowercase :str = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , lowercase__) lowercase :str = pytorch_dump_folder_path + """/""" + CORPUS_NAME print(F"""Save dataset to {pytorch_dataset_dump_path}""") torch.save(lowercase__ , lowercase__) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model lowercase :int = os.path.abspath(lowercase__) lowercase :Any = os.path.abspath(lowercase__) print(F"""Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.""") # Initialise PyTorch model if transfo_xl_config_file == "": lowercase :Optional[int] = TransfoXLConfig() else: lowercase :Optional[Any] = TransfoXLConfig.from_json_file(lowercase__) print(F"""Building PyTorch model from configuration: {config}""") lowercase :List[str] = TransfoXLLMHeadModel(lowercase__) lowercase :Any = load_tf_weights_in_transfo_xl(lowercase__ , lowercase__ , lowercase__) # Save pytorch-model lowercase :Any = os.path.join(lowercase__ , lowercase__) lowercase :Optional[int] = os.path.join(lowercase__ , lowercase__) print(F"""Save PyTorch model to {os.path.abspath(lowercase__)}""") torch.save(model.state_dict() , lowercase__) print(F"""Save configuration file to {os.path.abspath(lowercase__)}""") with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) UpperCAmelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str) -> YolosConfig: lowercase :Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase :List[str] = 192 lowercase :List[str] = 768 lowercase :int = 12 lowercase :str = 3 lowercase :List[Any] = [800, 1333] lowercase :Any = False elif yolos_name == "yolos_s_dWr": lowercase :List[str] = 330 lowercase :List[Any] = 14 lowercase :int = 6 lowercase :List[Any] = 1320 elif "yolos_s" in yolos_name: lowercase :int = 384 lowercase :Union[str, Any] = 1536 lowercase :int = 12 lowercase :str = 6 elif "yolos_b" in yolos_name: lowercase :Dict = [800, 1344] lowercase :List[str] = 91 lowercase :List[Any] = '''huggingface/label-files''' lowercase :Union[str, Any] = '''coco-detection-id2label.json''' lowercase :int = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = idalabel lowercase :Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase (a_ :dict , a_ :YolosConfig , a_ :bool = False) -> Optional[int]: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""") lowercase :List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :int = in_proj_weight[: config.hidden_size, :] lowercase :List[str] = in_proj_bias[: config.hidden_size] lowercase :Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Any = in_proj_weight[-config.hidden_size :, :] lowercase :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase (a_ :str) -> str: if "backbone" in name: lowercase :Optional[int] = name.replace('''backbone''' , '''vit''') if "cls_token" in name: lowercase :List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''') if "det_token" in name: lowercase :int = name.replace('''det_token''' , '''embeddings.detection_tokens''') if "mid_pos_embed" in name: lowercase :List[Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''') if "pos_embed" in name: lowercase :List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''') if "patch_embed.proj" in name: lowercase :Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "blocks" in name: lowercase :Any = name.replace('''blocks''' , '''encoder.layer''') if "attn.proj" in name: lowercase :Dict = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: lowercase :Tuple = name.replace('''attn''' , '''attention.self''') if "norm1" in name: lowercase :List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: lowercase :List[Any] = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: lowercase :Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: lowercase :Dict = name.replace('''mlp.fc2''' , '''output.dense''') if "class_embed" in name: lowercase :Dict = name.replace('''class_embed''' , '''class_labels_classifier''') if "bbox_embed" in name: lowercase :Dict = name.replace('''bbox_embed''' , '''bbox_predictor''') if "vit.norm" in name: lowercase :Dict = name.replace('''vit.norm''' , '''vit.layernorm''') return name def lowerCamelCase (a_ :dict , a_ :YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): lowercase :List[Any] = orig_state_dict.pop(a_) if "qkv" in key: lowercase :str = key.split('''.''') lowercase :List[str] = int(key_split[2]) lowercase :List[str] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase :List[Any] = val[:dim, :] lowercase :Optional[int] = val[ dim : dim * 2, : ] lowercase :Any = val[-dim:, :] else: lowercase :List[str] = val[:dim] lowercase :Union[str, Any] = val[dim : dim * 2] lowercase :List[Any] = val[-dim:] else: lowercase :List[str] = val return orig_state_dict def lowerCamelCase () -> torch.Tensor: lowercase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase :Dict = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :str , a_ :bool = False) -> List[Any]: lowercase :Union[str, Any] = get_yolos_config(a_) # load original state_dict lowercase :List[str] = torch.load(a_ , map_location='''cpu''')['''model'''] # load 🤗 model lowercase :Tuple = YolosForObjectDetection(a_) model.eval() lowercase :Dict = convert_state_dict(a_ , a_) model.load_state_dict(a_) # Check outputs on an image, prepared by YolosImageProcessor lowercase :Tuple = 800 if yolos_name != '''yolos_ti''' else 512 lowercase :Dict = YolosImageProcessor(format='''coco_detection''' , size=a_) lowercase :Optional[int] = image_processor(images=prepare_img() , return_tensors='''pt''') lowercase :List[Any] = model(**a_) lowercase , lowercase :Dict = outputs.logits, outputs.pred_boxes lowercase , lowercase :int = None, None if yolos_name == "yolos_ti": lowercase :Dict = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]]) lowercase :Dict = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]]) elif yolos_name == "yolos_s_200_pre": lowercase :Union[str, Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]]) lowercase :List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]]) elif yolos_name == "yolos_s_300_pre": lowercase :int = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]]) lowercase :Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]]) elif yolos_name == "yolos_s_dWr": lowercase :int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]]) lowercase :Dict = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]]) elif yolos_name == "yolos_base": lowercase :Dict = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]]) lowercase :Tuple = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]]) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""") assert torch.allclose(logits[0, :3, :3] , a_ , atol=1E-4) assert torch.allclose(pred_boxes[0, :3, :3] , a_ , atol=1E-4) Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) if push_to_hub: lowercase :Optional[int] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''') lowercase :Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a_ , organization='''hustvl''') model.push_to_hub(a_ , organization='''hustvl''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
172
0
'''simple docstring''' from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __A : int = logging.get_logger(__name__) # TODO Update this __A : Optional[Any] = { "facebook/esm-1b": "https://huggingface.co/facebook/esm-1b/resolve/main/config.json", # See all ESM models at https://huggingface.co/models?filter=esm } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'esm' def __init__( self : Union[str, Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : int=None , lowerCamelCase : Any=None , lowerCamelCase : Union[str, Any]=7_68 , lowerCamelCase : int=12 , lowerCamelCase : Dict=12 , lowerCamelCase : Dict=30_72 , lowerCamelCase : int=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Dict=10_26 , lowerCamelCase : Dict=0.02 , lowerCamelCase : Dict=1E-12 , lowerCamelCase : Any="absolute" , lowerCamelCase : Any=True , lowerCamelCase : Tuple=None , lowerCamelCase : str=False , lowerCamelCase : Dict=False , lowerCamelCase : Tuple=None , lowerCamelCase : Optional[int]=None , **lowerCamelCase : Any , ) -> Tuple: super().__init__(pad_token_id=lowerCamelCase , mask_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : List[str] = hidden_size lowerCAmelCase_ : int = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : Optional[int] = intermediate_size lowerCAmelCase_ : str = hidden_dropout_prob lowerCAmelCase_ : int = attention_probs_dropout_prob lowerCAmelCase_ : List[str] = max_position_embeddings lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : str = position_embedding_type lowerCAmelCase_ : str = use_cache lowerCAmelCase_ : Union[str, Any] = emb_layer_norm_before lowerCAmelCase_ : Any = token_dropout lowerCAmelCase_ : List[Any] = is_folding_model if is_folding_model: if esmfold_config is None: logger.info("""No esmfold_config supplied for folding model, using default values.""" ) lowerCAmelCase_ : Tuple = EsmFoldConfig() elif isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : Tuple = EsmFoldConfig(**lowerCamelCase ) lowerCAmelCase_ : int = esmfold_config if vocab_list is None: logger.warning("""No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!""" ) lowerCAmelCase_ : List[Any] = get_default_vocab_list() else: lowerCAmelCase_ : List[Any] = vocab_list else: lowerCAmelCase_ : Dict = None lowerCAmelCase_ : Optional[int] = None if self.esmfold_config is not None and getattr(self.esmfold_config , """use_esm_attn_map""" , lowerCamelCase ): raise ValueError("""The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!""" ) def __lowercase ( self : Dict ) -> List[str]: lowerCAmelCase_ : Union[str, Any] = super().to_dict() if isinstance(self.esmfold_config , lowerCamelCase ): lowerCAmelCase_ : str = self.esmfold_config.to_dict() return output @dataclass class __snake_case : """simple docstring""" lowercase = None lowercase = True lowercase = False lowercase = False lowercase = False lowercase = 0 lowercase = True lowercase = False lowercase = 1_28 lowercase = None def __lowercase ( self : Any ) -> Union[str, Any]: if self.trunk is None: lowerCAmelCase_ : Union[str, Any] = TrunkConfig() elif isinstance(self.trunk , lowerCamelCase ): lowerCAmelCase_ : Tuple = TrunkConfig(**self.trunk ) def __lowercase ( self : List[str] ) -> Tuple: lowerCAmelCase_ : Optional[Any] = asdict(self ) lowerCAmelCase_ : Optional[int] = self.trunk.to_dict() return output @dataclass class __snake_case : """simple docstring""" lowercase = 48 lowercase = 10_24 lowercase = 1_28 lowercase = 32 lowercase = 32 lowercase = 32 lowercase = 0 lowercase = 0 lowercase = False lowercase = 4 lowercase = 1_28 lowercase = None def __lowercase ( self : Union[str, Any] ) -> List[str]: if self.structure_module is None: lowerCAmelCase_ : int = StructureModuleConfig() elif isinstance(self.structure_module , lowerCamelCase ): lowerCAmelCase_ : List[Any] = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'`max_recycles` should be positive, got {self.max_recycles}.' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( """`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got""" F' {self.sequence_state_dim} and {self.sequence_state_dim}.' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( """`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got""" F' {self.pairwise_state_dim} and {self.pairwise_state_dim}.' ) lowerCAmelCase_ : int = self.sequence_state_dim // self.sequence_head_width lowerCAmelCase_ : Dict = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( """`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got""" F' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( """`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got""" F' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.' ) if self.dropout >= 0.4: raise ValueError(F'`dropout` should not be greater than 0.4, got {self.dropout}.' ) def __lowercase ( self : Dict ) -> Dict: lowerCAmelCase_ : str = asdict(self ) lowerCAmelCase_ : int = self.structure_module.to_dict() return output @dataclass class __snake_case : """simple docstring""" lowercase = 3_84 lowercase = 1_28 lowercase = 16 lowercase = 1_28 lowercase = 12 lowercase = 4 lowercase = 8 lowercase = 0.1 lowercase = 8 lowercase = 1 lowercase = 2 lowercase = 7 lowercase = 10 lowercase = 1E-8 lowercase = 1E5 def __lowercase ( self : Dict ) -> List[Any]: return asdict(self ) def UpperCamelCase_ ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
120
import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList UpperCAmelCase__ = ['''\nclass''', '''\ndef''', '''\n#''', '''\n@''', '''\nprint''', '''\nif'''] class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=1 ) -> Dict: _lowercase =tokenizer _lowercase =dataset _lowercase =len(UpperCAmelCase ) if n_tasks is None else n_tasks _lowercase =n_copies def __iter__(self ) -> Optional[Any]: _lowercase =[] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['''prompt'''].strip() ) _lowercase =self.tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='''pt''' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: _lowercase =start_length _lowercase =eof_strings _lowercase =tokenizer def __call__(self , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Dict: _lowercase =self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) _lowercase =[] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(UpperCAmelCase ) def UpperCAmelCase_ ( __snake_case ) -> Optional[Any]: """simple docstring""" _lowercase =re.split('''(%s)''' % '''|'''.join(__snake_case ) , __snake_case ) # last string should be "" return "".join(string_list[:-2] ) def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case=20 , **__snake_case ) -> Tuple: """simple docstring""" _lowercase =defaultdict(__snake_case ) # dict of list of generated tokens for step, batch in tqdm(enumerate(__snake_case ) ): with torch.no_grad(): _lowercase =batch['''ids'''].shape[-1] _lowercase =accelerator.unwrap_model(__snake_case ).generate( input_ids=batch['''ids'''][:, : batch['''input_len''']] , num_return_sequences=__snake_case , **__snake_case ) # each task is generated batch_size times _lowercase =batch['''task_id'''].repeat(__snake_case ) _lowercase =accelerator.pad_across_processes( __snake_case , dim=1 , pad_index=tokenizer.pad_token_id ) _lowercase , _lowercase =accelerator.gather((generated_tokens, generated_tasks) ) _lowercase =generated_tokens.cpu().numpy() _lowercase =generated_tasks.cpu().numpy() for task, generated_tokens in zip(__snake_case , __snake_case ): gen_token_dict[task].append(__snake_case ) _lowercase =[[] for _ in range(__snake_case )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: _lowercase =tokenizer.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case ) code_gens[task].append(remove_last_block(__snake_case ) ) return code_gens def UpperCAmelCase_ ( ) -> str: """simple docstring""" _lowercase =HfArgumentParser(__snake_case ) _lowercase =parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric _lowercase =args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing _lowercase ='''false''' if args.num_workers is None: _lowercase =multiprocessing.cpu_count() # Use dataset load to feed to accelerate _lowercase =Accelerator() set_seed(args.seed , device_specific=__snake_case ) # Load model and tokenizer _lowercase =AutoTokenizer.from_pretrained(args.model_ckpt ) _lowercase =tokenizer.eos_token _lowercase =AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings _lowercase ={ '''do_sample''': args.do_sample, '''temperature''': args.temperature, '''max_new_tokens''': args.max_new_tokens, '''top_p''': args.top_p, '''top_k''': args.top_k, '''stopping_criteria''': StoppingCriteriaList([EndOfFunctionCriteria(0 , __snake_case , __snake_case )] ), } # Load evaluation dataset and metric _lowercase =load_dataset('''openai_humaneval''' ) _lowercase =load_metric('''code_eval''' ) _lowercase =args.num_tasks if args.num_tasks is not None else len(human_eval['''test'''] ) _lowercase =args.n_samples // args.batch_size _lowercase =TokenizedDataset(__snake_case , human_eval['''test'''] , n_copies=__snake_case , n_tasks=__snake_case ) # do not confuse args.batch_size, which is actually the num_return_sequences _lowercase =DataLoader(__snake_case , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: _lowercase =code_eval_metric.compute(references=[''''''] , predictions=[['''''']] ) except ValueError as exception: print( '''Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`''' ''' flag to enable code evaluation.''' ) raise exception _lowercase , _lowercase =accelerator.prepare(__snake_case , __snake_case ) _lowercase =complete_code( __snake_case , __snake_case , __snake_case , __snake_case , n_tasks=__snake_case , batch_size=args.batch_size , **__snake_case , ) if accelerator.is_main_process: _lowercase =[] for task in tqdm(range(__snake_case ) ): _lowercase =human_eval['''test'''][task]['''test'''] _lowercase =F"check({human_eval['test'][task]['entry_point']})" references.append('''\n''' + test_func + '''\n''' + entry_point ) # Evaluate completions with "code_eval" metric _lowercase , _lowercase =code_eval_metric.compute( references=__snake_case , predictions=__snake_case , num_workers=args.num_workers ) print(F"Results: {pass_at_k}" ) # Save results to json file with open(args.output_file , '''w''' ) as fp: json.dump(__snake_case , __snake_case ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
5
0
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :str = (PNDMScheduler,) _SCREAMING_SNAKE_CASE :int = (("""num_inference_steps""", 50),) def _a ( self , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**_a ) return config def _a ( self , _a=0 , **_a ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ : List[str] = kwargs.pop("""num_inference_steps""" , _a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE__ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : Tuple = self.get_scheduler_config(**_a ) SCREAMING_SNAKE_CASE__ : List[Any] = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ : Union[str, Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) SCREAMING_SNAKE_CASE__ : Any = scheduler_class.from_pretrained(_a ) new_scheduler.set_timesteps(_a ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__ : List[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ : Dict = scheduler.step_prk(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : Any = new_scheduler.step_prk(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler.step_plms(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : List[str] = new_scheduler.step_plms(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self ) -> Tuple: """simple docstring""" pass def _a ( self , _a=0 , **_a ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ : str = kwargs.pop("""num_inference_steps""" , _a ) SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE__ : int = 0.1 * sample SCREAMING_SNAKE_CASE__ : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__ : List[Any] = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_a ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class.from_pretrained(_a ) # copy over dummy past residuals new_scheduler.set_timesteps(_a ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__ : Union[str, Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.step_prk(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : Optional[Any] = new_scheduler.step_prk(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.step_plms(_a , _a , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : str = new_scheduler.step_plms(_a , _a , _a , **_a ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def _a ( self , **_a ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[str] = self.get_scheduler_config(**_a ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : List[Any] = 10 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_model() SCREAMING_SNAKE_CASE__ : Dict = self.dummy_sample_deter scheduler.set_timesteps(_a ) for i, t in enumerate(scheduler.prk_timesteps ): SCREAMING_SNAKE_CASE__ : int = model(_a , _a ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler.step_prk(_a , _a , _a ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): SCREAMING_SNAKE_CASE__ : Dict = model(_a , _a ) SCREAMING_SNAKE_CASE__ : List[str] = scheduler.step_plms(_a , _a , _a ).prev_sample return sample def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__ : List[str] = kwargs.pop("""num_inference_steps""" , _a ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler_class(**_a ) SCREAMING_SNAKE_CASE__ : int = self.dummy_sample SCREAMING_SNAKE_CASE__ : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(_a , """set_timesteps""" ): scheduler.set_timesteps(_a ) elif num_inference_steps is not None and not hasattr(_a , """set_timesteps""" ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE__ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE__ : int = dummy_past_residuals[:] SCREAMING_SNAKE_CASE__ : str = scheduler.step_prk(_a , 0 , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : int = scheduler.step_prk(_a , 1 , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = scheduler.step_plms(_a , 0 , _a , **_a ).prev_sample SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.step_plms(_a , 1 , _a , **_a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _a ( self ) -> List[Any]: """simple docstring""" for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_a ) SCREAMING_SNAKE_CASE__ : List[Any] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : List[str] = self.get_scheduler_config(steps_offset=1 ) SCREAMING_SNAKE_CASE__ : Tuple = scheduler_class(**_a ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def _a ( self ) -> Optional[int]: """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def _a ( self ) -> List[Any]: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_a ) def _a ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def _a ( self ) -> Optional[Any]: """simple docstring""" for t in [1, 5, 10]: self.check_over_forward(time_step=_a ) def _a ( self ) -> Dict: """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=_a ) def _a ( self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.dummy_sample SCREAMING_SNAKE_CASE__ : str = 0.1 * sample SCREAMING_SNAKE_CASE__ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a ) scheduler.set_timesteps(_a ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): SCREAMING_SNAKE_CASE__ : List[Any] = scheduler.step_prk(_a , _a , _a ).prev_sample def _a ( self ) -> int: """simple docstring""" with self.assertRaises(_a ): SCREAMING_SNAKE_CASE__ : List[str] = self.scheduler_classes[0] SCREAMING_SNAKE_CASE__ : str = self.get_scheduler_config() SCREAMING_SNAKE_CASE__ : int = scheduler_class(**_a ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.full_loop() SCREAMING_SNAKE_CASE__ : List[Any] = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : int = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.full_loop(prediction_type="""v_prediction""" ) SCREAMING_SNAKE_CASE__ : Tuple = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : str = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def _a ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.full_loop(set_alpha_to_one=_a , beta_start=0.01 ) SCREAMING_SNAKE_CASE__ : Tuple = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : Any = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def _a ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.full_loop(set_alpha_to_one=_a , beta_start=0.01 ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.sum(torch.abs(_a ) ) SCREAMING_SNAKE_CASE__ : Tuple = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
56
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a :List[str] = logging.get_logger(__name__) a :Union[str, Any] = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :List[str] = """audio-spectrogram-transformer""" def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-1_2 , _a=16 , _a=True , _a=10 , _a=10 , _a=1_024 , _a=128 , **_a , ) -> List[Any]: """simple docstring""" super().__init__(**_a ) SCREAMING_SNAKE_CASE__ : Dict = hidden_size SCREAMING_SNAKE_CASE__ : Any = num_hidden_layers SCREAMING_SNAKE_CASE__ : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE__ : Dict = hidden_act SCREAMING_SNAKE_CASE__ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : List[Any] = initializer_range SCREAMING_SNAKE_CASE__ : Dict = layer_norm_eps SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : Dict = qkv_bias SCREAMING_SNAKE_CASE__ : Any = frequency_stride SCREAMING_SNAKE_CASE__ : int = time_stride SCREAMING_SNAKE_CASE__ : int = max_length SCREAMING_SNAKE_CASE__ : Union[str, Any] = num_mel_bins
56
1
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig a__ : int = logging.get_logger(__name__) # General docstring a__ : Union[str, Any] = '''ResNetConfig''' # Base docstring a__ : Tuple = '''microsoft/resnet-50''' a__ : str = [1, 2_048, 7, 7] # Image classification docstring a__ : Optional[int] = '''microsoft/resnet-50''' a__ : Optional[int] = '''tiger cat''' a__ : List[Any] = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 3 , _lowerCamelCase = 1 , _lowerCamelCase = "relu" ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : int = nn.Convad( _lowerCamelCase , _lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=kernel_size // 2 , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.BatchNormad(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[activation] if activation is not None else nn.Identity() def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : int = self.convolution(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.normalization(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = ResNetConvLayer( config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 ) SCREAMING_SNAKE_CASE : str = config.num_channels def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : List[Any] = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) SCREAMING_SNAKE_CASE : Any = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = self.pooler(_lowerCamelCase ) return embedding class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 ) ->Dict: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , stride=_lowerCamelCase , bias=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = nn.BatchNormad(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : List[Any] = self.convolution(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = self.normalization(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "relu" ) ->Optional[Any]: super().__init__() SCREAMING_SNAKE_CASE : Any = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : Optional[Any] = ( ResNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , activation=_lowerCamelCase ) , ) SCREAMING_SNAKE_CASE : Any = ACTaFN[activation] def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[str]: SCREAMING_SNAKE_CASE : str = hidden_state SCREAMING_SNAKE_CASE : int = self.layer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.shortcut(_lowerCamelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : Dict = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 , _lowerCamelCase = "relu" , _lowerCamelCase = 4 ) ->Any: super().__init__() SCREAMING_SNAKE_CASE : Tuple = in_channels != out_channels or stride != 1 SCREAMING_SNAKE_CASE : List[Any] = out_channels // reduction SCREAMING_SNAKE_CASE : List[Any] = ( ResNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = nn.Sequential( ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) , ResNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) SCREAMING_SNAKE_CASE : Optional[int] = ACTaFN[activation] def __lowerCAmelCase ( self , _lowerCamelCase ) ->Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_state SCREAMING_SNAKE_CASE : List[Any] = self.layer(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = self.shortcut(_lowerCamelCase ) hidden_state += residual SCREAMING_SNAKE_CASE : List[Any] = self.activation(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 , _lowerCamelCase = 2 , ) ->List[Any]: super().__init__() SCREAMING_SNAKE_CASE : List[str] = ResNetBottleNeckLayer if config.layer_type == '''bottleneck''' else ResNetBasicLayer SCREAMING_SNAKE_CASE : Optional[Any] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , activation=config.hidden_act ) , *[layer(_lowerCamelCase , _lowerCamelCase , activation=config.hidden_act ) for _ in range(depth - 1 )] , ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->Tensor: SCREAMING_SNAKE_CASE : Any = input for layer in self.layers: SCREAMING_SNAKE_CASE : Optional[Any] = layer(_lowerCamelCase ) return hidden_state class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : List[str] = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) SCREAMING_SNAKE_CASE : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase , config.depths[1:] ): self.stages.append(ResNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True ) ->BaseModelOutputWithNoAttention: SCREAMING_SNAKE_CASE : Tuple = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: SCREAMING_SNAKE_CASE : List[str] = hidden_states + (hidden_state,) SCREAMING_SNAKE_CASE : List[Any] = stage_module(_lowerCamelCase ) if output_hidden_states: SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase , ) class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = ResNetConfig __SCREAMING_SNAKE_CASE : Dict = 'resnet' __SCREAMING_SNAKE_CASE : int = 'pixel_values' __SCREAMING_SNAKE_CASE : Dict = True def __lowerCAmelCase ( self , _lowerCamelCase ) ->Union[str, Any]: if isinstance(_lowerCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->Dict: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = value a__ : List[str] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a__ : Any = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'The bare ResNet model outputting raw features without any specific head on top.' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = config SCREAMING_SNAKE_CASE : int = ResNetEmbeddings(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = ResNetEncoder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BaseModelOutputWithPoolingAndNoAttention: SCREAMING_SNAKE_CASE : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : int = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Union[str, Any] = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = encoder_outputs[0] SCREAMING_SNAKE_CASE : Tuple = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a__ , ) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->int: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = config.num_labels SCREAMING_SNAKE_CASE : Optional[Any] = ResNetModel(_lowerCamelCase ) # classification head SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowerCAmelCase ( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , ) ->ImageClassifierOutputWithNoAttention: SCREAMING_SNAKE_CASE : List[str] = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Tuple = self.resnet(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = outputs.pooler_output if return_dict else outputs[1] SCREAMING_SNAKE_CASE : List[str] = self.classifier(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: SCREAMING_SNAKE_CASE : Optional[Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): SCREAMING_SNAKE_CASE : Any = '''single_label_classification''' else: SCREAMING_SNAKE_CASE : Optional[Any] = '''multi_label_classification''' if self.config.problem_type == "regression": SCREAMING_SNAKE_CASE : Any = MSELoss() if self.num_labels == 1: SCREAMING_SNAKE_CASE : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": SCREAMING_SNAKE_CASE : str = CrossEntropyLoss() SCREAMING_SNAKE_CASE : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": SCREAMING_SNAKE_CASE : Optional[Any] = BCEWithLogitsLoss() SCREAMING_SNAKE_CASE : Union[str, Any] = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: SCREAMING_SNAKE_CASE : Dict = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states ) @add_start_docstrings( '\n ResNet backbone, to be used with frameworks like DETR and MaskFormer.\n ' , a__ , ) class a_ ( a__ , a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->Tuple: super().__init__(_lowerCamelCase ) super()._init_backbone(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = [config.embedding_size] + config.hidden_sizes SCREAMING_SNAKE_CASE : Optional[Any] = ResNetEmbeddings(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = ResNetEncoder(_lowerCamelCase ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @replace_return_docstrings(output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None ) ->BackboneOutput: SCREAMING_SNAKE_CASE : Dict = return_dict if return_dict is not None else self.config.use_return_dict SCREAMING_SNAKE_CASE : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) SCREAMING_SNAKE_CASE : List[str] = self.embedder(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = self.encoder(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = outputs.hidden_states SCREAMING_SNAKE_CASE : int = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: SCREAMING_SNAKE_CASE : Optional[Any] = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=_lowerCamelCase , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=_lowerCamelCase , )
313
def UpperCAmelCase_ ( __snake_case , __snake_case ) -> List[Any]: """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) else: return a * actual_power(__snake_case , int(b / 2 ) ) * actual_power(__snake_case , int(b / 2 ) ) def UpperCAmelCase_ ( __snake_case , __snake_case ) -> float: """simple docstring""" if b < 0: return 1 / actual_power(__snake_case , __snake_case ) return actual_power(__snake_case , __snake_case ) if __name__ == "__main__": print(power(-2, -3))
5
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __A : int = { "configuration_swiftformer": [ "SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwiftFormerConfig", "SwiftFormerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = [ "SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "SwiftFormerForImageClassification", "SwiftFormerModel", "SwiftFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
365
'''simple docstring''' import requests def UpperCamelCase_ ( A__ : str , A__ : str ): '''simple docstring''' lowerCAmelCase_ : Optional[Any] = {"""Content-Type""": """application/json"""} lowerCAmelCase_ : Union[str, Any] = requests.post(A__ , json={"""text""": message_body} , headers=A__ ) if response.status_code != 2_00: lowerCAmelCase_ : Dict = ( """Request to slack returned an error """ f'{response.status_code}, the response is:\n{response.text}' ) raise ValueError(A__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("<YOUR MESSAGE BODY>", "<SLACK CHANNEL URL>")
89
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _snake_case : Dict = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : str = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys _snake_case : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
123
from importlib import import_module from .logging import get_logger _snake_case : Optional[int] = get_logger(__name__) class a : """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=None ) -> Any: __snake_case : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) ) __snake_case : int = module._original_module if isinstance(lowerCamelCase , _PatchedModuleObj ) else module class a : """simple docstring""" __UpperCAmelCase : List[Any] = [] def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=None ) -> List[Any]: __snake_case : Union[str, Any] = obj __snake_case : Dict = target __snake_case : Any = new __snake_case : List[str] = target.split("." )[0] __snake_case : Union[str, Any] = {} __snake_case : int = attrs or [] def __enter__( self : List[Any] ) -> Tuple: *__snake_case , __snake_case : int = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(lowerCamelCase ) ): try: __snake_case : Any = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): __snake_case : Union[str, Any] = getattr(self.obj , lowerCamelCase ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): __snake_case : List[Any] = obj_attr # patch at top level setattr(self.obj , lowerCamelCase , _PatchedModuleObj(lowerCamelCase , attrs=self.attrs ) ) __snake_case : Optional[int] = getattr(self.obj , lowerCamelCase ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(lowerCamelCase , lowerCamelCase , _PatchedModuleObj(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , attrs=self.attrs ) ) __snake_case : List[Any] = getattr(lowerCamelCase , lowerCamelCase ) # finally set the target attribute setattr(lowerCamelCase , lowerCamelCase , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: __snake_case : Union[str, Any] = getattr(import_module(".".join(lowerCamelCase ) ) , lowerCamelCase ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , lowerCamelCase ) is attr_value: __snake_case : Tuple = getattr(self.obj , lowerCamelCase ) setattr(self.obj , lowerCamelCase , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" __snake_case : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , lowerCamelCase , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Any , *lowerCamelCase : Any ) -> Optional[int]: for attr in list(self.original ): setattr(self.obj , lowerCamelCase , self.original.pop(lowerCamelCase ) ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: self.__enter__() self._active_patches.append(self ) def __snake_case ( self : Any ) -> List[str]: try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
123
1
'''simple docstring''' import argparse import torch from transformers import ( SpeechTaConfig, SpeechTaFeatureExtractor, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaProcessor, SpeechTaTokenizer, logging, ) from transformers.tokenization_utils import AddedToken logging.set_verbosity_info() _lowerCamelCase = logging.get_logger("""transformers.models.speecht5""") _lowerCamelCase = { '''speech_encoder_prenet.layer_norm''': '''speecht5.encoder.prenet.feature_projection.layer_norm''', '''speech_encoder_prenet.post_extract_proj''': '''speecht5.encoder.prenet.feature_projection.projection''', '''speech_encoder_prenet.pos_conv.0''': '''speecht5.encoder.prenet.pos_conv_embed.conv''', '''speech_encoder_prenet.mask_emb''': '''speecht5.encoder.prenet.masked_spec_embed''', } _lowerCamelCase = { '''text_encoder_prenet.encoder_prenet.0''': '''speecht5.encoder.prenet.embed_tokens''', '''text_encoder_prenet.encoder_prenet.1.alpha''': '''speecht5.encoder.prenet.encode_positions.alpha''', } _lowerCamelCase = { '''speech_decoder_prenet.decoder_prenet.0.0.prenet.0.0''': '''speecht5.decoder.prenet.layers.0''', '''speech_decoder_prenet.decoder_prenet.0.0.prenet.1.0''': '''speecht5.decoder.prenet.layers.1''', '''speech_decoder_prenet.decoder_prenet.0.1''': '''speecht5.decoder.prenet.final_layer''', '''speech_decoder_prenet.decoder_prenet.1.alpha''': '''speecht5.decoder.prenet.encode_positions.alpha''', '''speech_decoder_prenet.spkembs_layer.0''': '''speecht5.decoder.prenet.speaker_embeds_layer''', } _lowerCamelCase = { '''speech_decoder_postnet.feat_out''': '''speech_decoder_postnet.feat_out''', '''speech_decoder_postnet.prob_out''': '''speech_decoder_postnet.prob_out''', '''speech_decoder_postnet.postnet.postnet.0.0''': '''speech_decoder_postnet.layers.0.conv''', '''speech_decoder_postnet.postnet.postnet.0.1''': '''speech_decoder_postnet.layers.0.batch_norm''', '''speech_decoder_postnet.postnet.postnet.1.0''': '''speech_decoder_postnet.layers.1.conv''', '''speech_decoder_postnet.postnet.postnet.1.1''': '''speech_decoder_postnet.layers.1.batch_norm''', '''speech_decoder_postnet.postnet.postnet.2.0''': '''speech_decoder_postnet.layers.2.conv''', '''speech_decoder_postnet.postnet.postnet.2.1''': '''speech_decoder_postnet.layers.2.batch_norm''', '''speech_decoder_postnet.postnet.postnet.3.0''': '''speech_decoder_postnet.layers.3.conv''', '''speech_decoder_postnet.postnet.postnet.3.1''': '''speech_decoder_postnet.layers.3.batch_norm''', '''speech_decoder_postnet.postnet.postnet.4.0''': '''speech_decoder_postnet.layers.4.conv''', '''speech_decoder_postnet.postnet.postnet.4.1''': '''speech_decoder_postnet.layers.4.batch_norm''', } _lowerCamelCase = { '''text_decoder_prenet.embed_tokens''': '''speecht5.decoder.prenet.embed_tokens''', } _lowerCamelCase = { '''text_decoder_postnet.output_projection''': '''text_decoder_postnet.lm_head''', } _lowerCamelCase = { '''encoder.layers.*.self_attn.k_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.k_proj''', '''encoder.layers.*.self_attn.v_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.v_proj''', '''encoder.layers.*.self_attn.q_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.q_proj''', '''encoder.layers.*.self_attn.out_proj''': '''speecht5.encoder.wrapped_encoder.layers.*.attention.out_proj''', '''encoder.layers.*.self_attn_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.layer_norm''', '''encoder.layers.*.fc1''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.intermediate_dense''', '''encoder.layers.*.fc2''': '''speecht5.encoder.wrapped_encoder.layers.*.feed_forward.output_dense''', '''encoder.layers.*.final_layer_norm''': '''speecht5.encoder.wrapped_encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''speecht5.encoder.wrapped_encoder.layer_norm''', '''encoder.pos_emb.pe_k''': '''speecht5.encoder.wrapped_encoder.embed_positions.pe_k''', } _lowerCamelCase = { '''decoder.layers.*.self_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.k_proj''', '''decoder.layers.*.self_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.v_proj''', '''decoder.layers.*.self_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.q_proj''', '''decoder.layers.*.self_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn.out_proj''', '''decoder.layers.*.self_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.self_attn_layer_norm''', '''decoder.layers.*.encoder_attn.k_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.k_proj''', '''decoder.layers.*.encoder_attn.v_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.v_proj''', '''decoder.layers.*.encoder_attn.q_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.q_proj''', '''decoder.layers.*.encoder_attn.out_proj''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn.out_proj''', '''decoder.layers.*.encoder_attn_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.encoder_attn_layer_norm''', '''decoder.layers.*.fc1''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.intermediate_dense''', '''decoder.layers.*.fc2''': '''speecht5.decoder.wrapped_decoder.layers.*.feed_forward.output_dense''', '''decoder.layers.*.final_layer_norm''': '''speecht5.decoder.wrapped_decoder.layers.*.final_layer_norm''', } _lowerCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_TEXT_DECODER_PRENET, **MAPPING_TEXT_DECODER_POSTNET, } _lowerCamelCase = { **MAPPING_TEXT_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCamelCase = { **MAPPING_SPEECH_ENCODER_PRENET, **MAPPING_ENCODER, **MAPPING_DECODER, **MAPPING_SPEECH_DECODER_PRENET, **MAPPING_SPEECH_DECODER_POSTNET, } _lowerCamelCase = [] _lowerCamelCase = [ '''encoder.version''', '''encoder.layers.*.norm_k.weight''', '''encoder.layers.*.norm_k.bias''', '''decoder.version''', '''decoder.layers.*.norm_k.weight''', '''decoder.layers.*.norm_k.bias''', '''decoder.pos_emb.pe_k''', '''speech_encoder_prenet.embed_positions._float_tensor''', '''text_decoder_prenet.embed_positions._float_tensor''', ] _lowerCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''speech_decoder_prenet.*''', '''speech_decoder_postnet.*''', ] _lowerCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''speech_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] _lowerCamelCase = IGNORE_KEYS + [ '''encoder.proj''', '''text_encoder_prenet.*''', '''text_decoder_prenet.*''', '''text_decoder_postnet.*''', ] def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): UpperCAmelCase_ : List[Any] = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: UpperCAmelCase_ : Tuple = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: UpperCAmelCase_ : List[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCAmelCase_ : Dict = value elif weight_type == "weight_g": UpperCAmelCase_ : int = value elif weight_type == "weight_v": UpperCAmelCase_ : str = value elif weight_type == "bias": UpperCAmelCase_ : int = value elif weight_type == "running_mean": UpperCAmelCase_ : str = value elif weight_type == "running_var": UpperCAmelCase_ : Any = value elif weight_type == "num_batches_tracked": UpperCAmelCase_ : str = value else: UpperCAmelCase_ : int = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : int ) -> Union[str, Any]: """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: UpperCAmelCase_ : Tuple = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = [] if task == "s2t": UpperCAmelCase_ : Union[str, Any] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase_ : str = MAPPING_S2T UpperCAmelCase_ : Union[str, Any] = IGNORE_KEYS_S2T elif task == "t2s": UpperCAmelCase_ : Optional[int] = None UpperCAmelCase_ : Dict = MAPPING_T2S UpperCAmelCase_ : Any = IGNORE_KEYS_T2S elif task == "s2s": UpperCAmelCase_ : Optional[int] = hf_model.speechta.encoder.prenet.feature_encoder UpperCAmelCase_ : Dict = MAPPING_S2S UpperCAmelCase_ : List[str] = IGNORE_KEYS_S2S else: raise ValueError(F'''Unsupported task: {task}''' ) for name, value in fairseq_dict.items(): if should_ignore(_lowerCAmelCase , _lowerCAmelCase ): logger.info(F'''{name} was ignored''' ) continue UpperCAmelCase_ : List[Any] = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) UpperCAmelCase_ : Tuple = True else: for key, mapped_key in MAPPING.items(): # mapped_key = "speecht5." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if "*" in key: UpperCAmelCase_ : Optional[Any] = key.split(".*." ) if prefix in name and suffix in name: UpperCAmelCase_ : int = suffix # if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: if key in name: UpperCAmelCase_ : str = True if "*" in mapped_key: UpperCAmelCase_ : List[str] = name.split(_lowerCAmelCase )[0].split("." )[-2] UpperCAmelCase_ : Optional[int] = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: UpperCAmelCase_ : Union[str, Any] = "weight_g" elif "weight_v" in name: UpperCAmelCase_ : List[Any] = "weight_v" elif "bias" in name: UpperCAmelCase_ : Tuple = "bias" elif "weight" in name: UpperCAmelCase_ : List[Any] = "weight" elif "running_mean" in name: UpperCAmelCase_ : Union[str, Any] = "running_mean" elif "running_var" in name: UpperCAmelCase_ : Union[str, Any] = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase_ : List[Any] = "num_batches_tracked" else: UpperCAmelCase_ : Optional[Any] = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(F'''Unused weights: {unused_weights}''' ) def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : int = full_name.split("conv_layers." )[-1] UpperCAmelCase_ : Optional[Any] = name.split("." ) UpperCAmelCase_ : List[Any] = int(items[0] ) UpperCAmelCase_ : int = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCAmelCase_ : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCAmelCase_ : Optional[Any] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCAmelCase_ : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCAmelCase_ : Union[str, Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str=None , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : int=None , ) -> Optional[Any]: """simple docstring""" if config_path is not None: UpperCAmelCase_ : Dict = SpeechTaConfig.from_pretrained(_lowerCAmelCase ) else: UpperCAmelCase_ : Optional[int] = SpeechTaConfig() if task == "s2t": UpperCAmelCase_ : Optional[Any] = config.max_text_positions UpperCAmelCase_ : Optional[int] = SpeechTaForSpeechToText(_lowerCAmelCase ) elif task == "t2s": UpperCAmelCase_ : str = 18_76 UpperCAmelCase_ : List[str] = 6_00 UpperCAmelCase_ : List[str] = config.max_speech_positions UpperCAmelCase_ : Tuple = SpeechTaForTextToSpeech(_lowerCAmelCase ) elif task == "s2s": UpperCAmelCase_ : Optional[int] = 18_76 UpperCAmelCase_ : int = config.max_speech_positions UpperCAmelCase_ : Union[str, Any] = SpeechTaForSpeechToSpeech(_lowerCAmelCase ) else: raise ValueError(F'''Unknown task name: {task}''' ) if vocab_path: UpperCAmelCase_ : int = SpeechTaTokenizer(_lowerCAmelCase , model_max_length=config.max_text_positions ) # Mask token behaves like a normal word, i.e. include the space before it UpperCAmelCase_ : str = AddedToken("<mask>" , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase ) UpperCAmelCase_ : int = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) UpperCAmelCase_ : int = SpeechTaFeatureExtractor() UpperCAmelCase_ : Optional[Any] = SpeechTaProcessor(tokenizer=_lowerCAmelCase , feature_extractor=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) UpperCAmelCase_ : Union[str, Any] = torch.load(_lowerCAmelCase ) recursively_load_weights(fairseq_checkpoint["model"] , _lowerCAmelCase , _lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) if repo_id: print("Pushing to the hub..." ) processor.push_to_hub(_lowerCAmelCase ) model.push_to_hub(_lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--task""", default="""s2t""", type=str, help="""Type of the SpeechT5 model you\'d like to convert. Should be one of \'s2t\', \'t2s\', \'s2s\'.""", ) parser.add_argument("""--checkpoint_path""", required=True, default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--vocab_path""", default=None, type=str, help="""Path to SentencePiece model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--pytorch_dump_folder_path""", required=True, default=None, type=str, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", default=None, type=str, help="""Where to upload the converted model on the 🤗 hub.""" ) _lowerCamelCase = parser.parse_args() convert_speechta_checkpoint( args.task, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.vocab_path, args.push_to_hub, )
353
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
0
"""simple docstring""" import numpy as np from transformers import Pipeline def __UpperCAmelCase ( UpperCAmelCase_ : Dict ) -> Optional[int]: '''simple docstring''' __snake_case : Dict = np.max(UpperCAmelCase_ , axis=-1 , keepdims=UpperCAmelCase_ ) __snake_case : List[str] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): def _lowercase (self : Optional[Any] , **_A : Union[str, Any]) -> Dict: __snake_case : Optional[Any] = {} if "second_text" in kwargs: __snake_case : Any = kwargs['second_text'] return preprocess_kwargs, {}, {} def _lowercase (self : Tuple , _A : str , _A : List[Any]=None) -> Optional[int]: return self.tokenizer(_A , text_pair=_A , return_tensors=self.framework) def _lowercase (self : Tuple , _A : Optional[Any]) -> List[Any]: return self.model(**_A) def _lowercase (self : Tuple , _A : List[str]) -> List[Any]: __snake_case : Any = model_outputs.logits[0].numpy() __snake_case : Dict = softmax(_A) __snake_case : List[Any] = np.argmax(_A) __snake_case : List[Any] = self.model.config.idalabel[best_class] __snake_case : Tuple = probabilities[best_class].item() __snake_case : Optional[int] = logits.tolist() return {"label": label, "score": score, "logits": logits}
172
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCamelCase__( )->Optional[int]: A__ = ArgumentParser( description=( '''PyTorch TPU distributed training launch ''' '''helper utility that will spawn up ''' '''multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=__A , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=__A , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=__A ) return parser.parse_args() def UpperCamelCase__( )->Optional[Any]: A__ = parse_args() # Import training_script as a module. A__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A__ = script_fpath.stem A__ = importlib.import_module(__A ) # Patch sys.argv A__ = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
357
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): # pass variant but use the non-variant filenames A__ = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A__ = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): # pass variant but use the non-variant filenames A__ = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] A__ = '''fp16''' self.assertTrue(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) ) def UpperCamelCase ( self ): A__ = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] A__ = '''fp16''' self.assertFalse(is_safetensors_compatible(__lowerCamelCase,variant=__lowerCamelCase ) )
39
0
'''simple docstring''' from __future__ import annotations def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' snake_case_ = str(__UpperCAmelCase ) return len(__UpperCAmelCase ) == 9 and set(__UpperCAmelCase ) == set('''123456789''' ) def __magic_name__ ( ) -> int | None: '''simple docstring''' for base_num in range(9999, 4999, -1 ): snake_case_ = 10_0002 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate for base_num in range(333, 99, -1 ): snake_case_ = 100_2003 * base_num if is_9_pandigital(__UpperCAmelCase ): return candidate return None if __name__ == "__main__": print(f'''{solution() = }''')
56
'''simple docstring''' import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class a ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): snake_case_ = AutoencoderKL snake_case_ = "sample" snake_case_ = 1e-2 @property def A_ ( self : Dict ): snake_case_ = 4 snake_case_ = 3 snake_case_ = (32, 32) snake_case_ = floats_tensor((batch_size, num_channels) + sizes ).to(lowercase_ ) return {"sample": image} @property def A_ ( self : List[Any] ): return (3, 32, 32) @property def A_ ( self : Dict ): return (3, 32, 32) def A_ ( self : Union[str, Any] ): snake_case_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } snake_case_ = self.dummy_input return init_dict, inputs_dict def A_ ( self : Any ): pass def A_ ( self : str ): pass @unittest.skipIf(torch_device == '''mps''' , '''Gradient checkpointing skipped on MPS''' ) def A_ ( self : Dict ): # enable deterministic behavior for gradient checkpointing snake_case_ ,snake_case_ = self.prepare_init_args_and_inputs_for_common() snake_case_ = self.model_class(**lowercase_ ) model.to(lowercase_ ) assert not model.is_gradient_checkpointing and model.training snake_case_ = model(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() snake_case_ = torch.randn_like(lowercase_ ) snake_case_ = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing snake_case_ = self.model_class(**lowercase_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(lowercase_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training snake_case_ = model_a(**lowercase_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() snake_case_ = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1e-5 ) snake_case_ = dict(model.named_parameters() ) snake_case_ = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5e-5 ) ) def A_ ( self : Tuple ): snake_case_ ,snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(lowercase_ ) snake_case_ = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def A_ ( self : Tuple ): snake_case_ = AutoencoderKL.from_pretrained('''fusing/autoencoder-kl-dummy''' ) snake_case_ = model.to(lowercase_ ) model.eval() if torch_device == "mps": snake_case_ = torch.manual_seed(0 ) else: snake_case_ = torch.Generator(device=lowercase_ ).manual_seed(0 ) snake_case_ = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) snake_case_ = image.to(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , sample_posterior=lowercase_ , generator=lowercase_ ).sample snake_case_ = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": snake_case_ = torch.tensor( [ -4.0_078e-01, -3.8_323e-04, -1.2_681e-01, -1.1_462e-01, 2.0_095e-01, 1.0_893e-01, -8.8_247e-02, -3.0_361e-01, -9.8_644e-03, ] ) elif torch_device == "cpu": snake_case_ = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: snake_case_ = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1e-2 ) ) @slow class a ( unittest.TestCase ): def A_ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(lowercase_ ) for s in shape] )}.npy" def A_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Dict , lowercase_ : List[Any]=0 , lowercase_ : Union[str, Any]=(4, 3, 512, 512) , lowercase_ : Optional[Any]=False ): snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = torch.from_numpy(load_hf_numpy(self.get_file_format(lowercase_ , lowercase_ ) ) ).to(lowercase_ ).to(lowercase_ ) return image def A_ ( self : Any , lowercase_ : Dict="CompVis/stable-diffusion-v1-4" , lowercase_ : List[str]=False ): snake_case_ = '''fp16''' if fpaa else None snake_case_ = torch.floataa if fpaa else torch.floataa snake_case_ = AutoencoderKL.from_pretrained( lowercase_ , subfolder='''vae''' , torch_dtype=lowercase_ , revision=lowercase_ , ) model.to(lowercase_ ).eval() return model def A_ ( self : Any , lowercase_ : int=0 ): if torch_device == "mps": return torch.manual_seed(lowercase_ ) return torch.Generator(device=lowercase_ ).manual_seed(lowercase_ ) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Tuple , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Dict ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , fpaa=lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ , generator=lowercase_ , sample_posterior=lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814], [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085], [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131]], # fmt: on ] ) def A_ ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) with torch.no_grad(): snake_case_ = model(lowercase_ ).sample assert sample.shape == image.shape snake_case_ = sample[-1, -2:, -2:, :2].flatten().float().cpu() snake_case_ = torch.tensor(expected_slice_mps if torch_device == '''mps''' else expected_slice ) assert torch_all_close(lowercase_ , lowercase_ , atol=3e-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Dict , lowercase_ : Tuple , lowercase_ : Optional[int] ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1e-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) @require_torch_gpu def A_ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[Any] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] snake_case_ = sample[-1, -2:, :2, -2:].flatten().float().cpu() snake_case_ = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=5e-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : List[str] ): snake_case_ = self.get_sd_vae_model(fpaa=lowercase_ ) snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) , fpaa=lowercase_ ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='''xformers is not required when using PyTorch 2.0.''' ) def A_ ( self : Optional[Any] , lowercase_ : Any ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): snake_case_ = model.decode(lowercase_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(lowercase_ , lowercase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def A_ ( self : str , lowercase_ : Optional[int] , lowercase_ : Tuple ): snake_case_ = self.get_sd_vae_model() snake_case_ = self.get_sd_image(lowercase_ ) snake_case_ = self.get_generator(lowercase_ ) with torch.no_grad(): snake_case_ = model.encode(lowercase_ ).latent_dist snake_case_ = dist.sample(generator=lowercase_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] snake_case_ = sample[0, -1, -3:, -3:].flatten().cpu() snake_case_ = torch.tensor(lowercase_ ) snake_case_ = 3e-3 if torch_device != '''mps''' else 1e-2 assert torch_all_close(lowercase_ , lowercase_ , atol=lowercase_ )
56
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) __UpperCAmelCase ={ "sample_size": 3_2, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_0_0_0, "block_out_channels": [3_2, 6_4], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __UpperCAmelCase ={ "sample_size": 6_4, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_0_0_0, "block_out_channels": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } __UpperCAmelCase ={ "sample_size": 2_5_6, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } __UpperCAmelCase ={ "num_train_timesteps": 4_0, "sigma_min": 0.002, "sigma_max": 80.0, } __UpperCAmelCase ={ "num_train_timesteps": 2_0_1, "sigma_min": 0.002, "sigma_max": 80.0, } __UpperCAmelCase ={ "num_train_timesteps": 1_5_1, "sigma_min": 0.002, "sigma_max": 80.0, } def __lowerCAmelCase ( UpperCamelCase__ ) -> List[Any]: if isinstance(UpperCamelCase__ , UpperCamelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('''boolean value expected''' ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[int]: __lowerCamelCase = checkpoint[f"""{old_prefix}.in_layers.0.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.in_layers.0.bias"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.in_layers.2.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.in_layers.2.bias"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.emb_layers.1.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.emb_layers.1.bias"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.out_layers.0.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.out_layers.0.bias"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.out_layers.3.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.out_layers.3.bias"""] if has_skip: __lowerCamelCase = checkpoint[f"""{old_prefix}.skip_connection.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.skip_connection.bias"""] return new_checkpoint def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None ) -> Dict: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = checkpoint[f"""{old_prefix}.qkv.weight"""].chunk(3 , dim=0 ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = checkpoint[f"""{old_prefix}.qkv.bias"""].chunk(3 , dim=0 ) __lowerCamelCase = checkpoint[f"""{old_prefix}.norm.weight"""] __lowerCamelCase = checkpoint[f"""{old_prefix}.norm.bias"""] __lowerCamelCase = weight_q.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = bias_q.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = weight_k.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = bias_k.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = weight_v.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = bias_v.squeeze(-1 ).squeeze(-1 ) __lowerCamelCase = ( checkpoint[f"""{old_prefix}.proj_out.weight"""].squeeze(-1 ).squeeze(-1 ) ) __lowerCamelCase = checkpoint[f"""{old_prefix}.proj_out.bias"""].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Any: __lowerCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' ) __lowerCamelCase = {} __lowerCamelCase = checkpoint['''time_embed.0.weight'''] __lowerCamelCase = checkpoint['''time_embed.0.bias'''] __lowerCamelCase = checkpoint['''time_embed.2.weight'''] __lowerCamelCase = checkpoint['''time_embed.2.bias'''] if unet_config["num_class_embeds"] is not None: __lowerCamelCase = checkpoint['''label_emb.weight'''] __lowerCamelCase = checkpoint['''input_blocks.0.0.weight'''] __lowerCamelCase = checkpoint['''input_blocks.0.0.bias'''] __lowerCamelCase = unet_config['''down_block_types'''] __lowerCamelCase = unet_config['''layers_per_block'''] __lowerCamelCase = unet_config['''attention_head_dim'''] __lowerCamelCase = unet_config['''block_out_channels'''] __lowerCamelCase = 1 __lowerCamelCase = channels_list[0] for i, layer_type in enumerate(UpperCamelCase__ ): __lowerCamelCase = channels_list[i] __lowerCamelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase__ ): __lowerCamelCase = f"""down_blocks.{i}.resnets.{j}""" __lowerCamelCase = f"""input_blocks.{current_layer}.0""" __lowerCamelCase = True if j == 0 and downsample_block_has_skip else False __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , has_skip=UpperCamelCase__ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase__ ): __lowerCamelCase = f"""down_blocks.{i}.resnets.{j}""" __lowerCamelCase = f"""input_blocks.{current_layer}.0""" __lowerCamelCase = True if j == 0 and downsample_block_has_skip else False __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , has_skip=UpperCamelCase__ ) __lowerCamelCase = f"""down_blocks.{i}.attentions.{j}""" __lowerCamelCase = f"""input_blocks.{current_layer}.1""" __lowerCamelCase = convert_attention( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) current_layer += 1 if i != len(UpperCamelCase__ ) - 1: __lowerCamelCase = f"""down_blocks.{i}.downsamplers.0""" __lowerCamelCase = f"""input_blocks.{current_layer}.0""" __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) current_layer += 1 __lowerCamelCase = current_channels # hardcoded the mid-block for now __lowerCamelCase = '''mid_block.resnets.0''' __lowerCamelCase = '''middle_block.0''' __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = '''mid_block.attentions.0''' __lowerCamelCase = '''middle_block.1''' __lowerCamelCase = convert_attention(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = '''mid_block.resnets.1''' __lowerCamelCase = '''middle_block.2''' __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = 0 __lowerCamelCase = unet_config['''up_block_types'''] for i, layer_type in enumerate(UpperCamelCase__ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowerCamelCase = f"""up_blocks.{i}.resnets.{j}""" __lowerCamelCase = f"""output_blocks.{current_layer}.0""" __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , has_skip=UpperCamelCase__ ) current_layer += 1 if i != len(UpperCamelCase__ ) - 1: __lowerCamelCase = f"""up_blocks.{i}.upsamplers.0""" __lowerCamelCase = f"""output_blocks.{current_layer-1}.1""" __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowerCamelCase = f"""up_blocks.{i}.resnets.{j}""" __lowerCamelCase = f"""output_blocks.{current_layer}.0""" __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , has_skip=UpperCamelCase__ ) __lowerCamelCase = f"""up_blocks.{i}.attentions.{j}""" __lowerCamelCase = f"""output_blocks.{current_layer}.1""" __lowerCamelCase = convert_attention( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) current_layer += 1 if i != len(UpperCamelCase__ ) - 1: __lowerCamelCase = f"""up_blocks.{i}.upsamplers.0""" __lowerCamelCase = f"""output_blocks.{current_layer-1}.2""" __lowerCamelCase = convert_resnet(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = checkpoint['''out.0.weight'''] __lowerCamelCase = checkpoint['''out.0.bias'''] __lowerCamelCase = checkpoint['''out.2.weight'''] __lowerCamelCase = checkpoint['''out.2.bias'''] return new_checkpoint if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") __UpperCAmelCase =parser.parse_args() __UpperCAmelCase =strabool(args.class_cond) __UpperCAmelCase =os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: __UpperCAmelCase =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCAmelCase =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: __UpperCAmelCase =TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: __UpperCAmelCase =None __UpperCAmelCase =con_pt_to_diffuser(args.unet_path, unet_config) __UpperCAmelCase =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: __UpperCAmelCase =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: __UpperCAmelCase =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): __UpperCAmelCase =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') __UpperCAmelCase =CMStochasticIterativeScheduler(**scheduler_config) __UpperCAmelCase =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
237
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ ) -> str: __lowerCamelCase = [] __lowerCamelCase = set({'''(''', '''[''', '''{'''} ) __lowerCamelCase = set({''')''', ''']''', '''}'''} ) __lowerCamelCase = {'''{''': '''}''', '''[''': ''']''', '''(''': ''')'''} for i in range(len(UpperCamelCase__ ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(UpperCamelCase__ ) == 0 or (len(UpperCamelCase__ ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(UpperCamelCase__ ) == 0 def __lowerCAmelCase ( ) -> Union[str, Any]: __lowerCamelCase = input('''Enter sequence of brackets: ''' ) if is_balanced(UpperCamelCase__ ): print(UpperCamelCase__ , '''is balanced''' ) else: print(UpperCamelCase__ , '''is not balanced''' ) if __name__ == "__main__": main()
237
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class __lowerCamelCase ( _UpperCamelCase): """simple docstring""" UpperCamelCase__ = 'swin2sr' UpperCamelCase__ = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , UpperCAmelCase=64 , UpperCAmelCase=1 , UpperCAmelCase=3 , UpperCAmelCase=180 , UpperCAmelCase=[6, 6, 6, 6, 6, 6] , UpperCAmelCase=[6, 6, 6, 6, 6, 6] , UpperCAmelCase=8 , UpperCAmelCase=2.0 , UpperCAmelCase=True , UpperCAmelCase=0.0 , UpperCAmelCase=0.0 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=False , UpperCAmelCase=0.02 , UpperCAmelCase=1e-5 , UpperCAmelCase=2 , UpperCAmelCase=1.0 , UpperCAmelCase="1conv" , UpperCAmelCase="pixelshuffle" , **UpperCAmelCase , ): """simple docstring""" super().__init__(**_UpperCAmelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(_UpperCAmelCase ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = upscale _UpperCAmelCase = img_range _UpperCAmelCase = resi_connection _UpperCAmelCase = upsampler
39
'''simple docstring''' from typing import Any class __magic_name__ : def __init__( self : List[Any] ,_UpperCAmelCase : Any ): _a : List[Any] = data _a : Union[str, Any] = None def __repr__( self : Any ): return F"""Node({self.data})""" class __magic_name__ : def __init__( self : int ): _a : Tuple = None def __iter__( self : str ): _a : int = self.head while node: yield node.data _a : Union[str, Any] = node.next def __len__( self : Optional[Any] ): return sum(1 for _ in self ) def __repr__( self : str ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __getitem__( self : Tuple ,_UpperCAmelCase : int ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Union[str, Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) _a : Any = self.head for _ in range(_UpperCAmelCase ): _a : Optional[Any] = current.next _a : Optional[int] = data def __lowercase ( self : Optional[int] ,_UpperCAmelCase : Any ): self.insert_nth(len(self ) ,_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ,_UpperCAmelCase : Any ): self.insert_nth(0 ,_UpperCAmelCase ) def __lowercase ( self : str ,_UpperCAmelCase : int ,_UpperCAmelCase : Any ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) _a : int = Node(_UpperCAmelCase ) if self.head is None: _a : str = new_node elif index == 0: _a : List[str] = self.head # link new_node to head _a : Union[str, Any] = new_node else: _a : int = self.head for _ in range(index - 1 ): _a : Union[str, Any] = temp.next _a : List[str] = temp.next _a : Optional[int] = new_node def __lowercase ( self : Optional[int] ): # print every node data print(self ) def __lowercase ( self : str ): return self.delete_nth(0 ) def __lowercase ( self : str ): # delete from tail return self.delete_nth(len(self ) - 1 ) def __lowercase ( self : List[str] ,_UpperCAmelCase : int = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) _a : Optional[Any] = self.head # default first node if index == 0: _a : int = self.head.next else: _a : int = self.head for _ in range(index - 1 ): _a : str = temp.next _a : str = temp.next _a : int = temp.next.next return delete_node.data def __lowercase ( self : List[Any] ): return self.head is None def __lowercase ( self : Tuple ): _a : List[Any] = None _a : Tuple = self.head while current: # Store the current node's next node. _a : Dict = current.next # Make the current node's next point backwards _a : str = prev # Make the previous node be the current node _a : Tuple = current # Make the current node the next node (to progress iteration) _a : Optional[Any] = next_node # Return prev in order to put the head at the end _a : int = prev def __lowerCamelCase ( ) -> None: _a : List[str] = LinkedList() assert linked_list.is_empty() is True assert str(lowerCAmelCase_ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(lowerCAmelCase_ ) == i linked_list.insert_nth(lowerCAmelCase_ , i + 1 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(lowerCAmelCase_ ) == 9 assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _a : Union[str, Any] = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(lowerCAmelCase_ ) == "->".join(str(lowerCAmelCase_ ) for i in range(-8 , 1 ) ) def __lowerCamelCase ( ) -> None: _a : Dict = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.55_555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] _a : List[Any] = LinkedList() for i in test_input: linked_list.insert_tail(lowerCAmelCase_ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(lowerCAmelCase_ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _a : List[str] = linked_list.delete_head() assert result == -9 assert ( str(lowerCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _a : Dict = linked_list.delete_tail() assert result == 12.2 assert ( str(lowerCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _a : Optional[Any] = linked_list.delete_nth(10 ) assert result is None assert ( str(lowerCAmelCase_ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(lowerCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(lowerCAmelCase_ ) assert ( str(lowerCAmelCase_ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(lowerCAmelCase_ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __lowerCamelCase ( ) -> Union[str, Any]: from doctest import testmod testmod() _a : Optional[int] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(lowerCAmelCase_ ) print('\nReading/changing Node data using indexing:' ) print(f"""Element at Position 1: {linked_list[1]}""" ) _a : Optional[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(lowerCAmelCase_ ) print(f"""length of linked_list is : {len(lowerCAmelCase_ )}""" ) if __name__ == "__main__": main()
89
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Optional[int] = logging.get_logger(__name__) _lowercase : str = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = '''ctrl''' lowerCAmelCase_ = ['''past_key_values'''] lowerCAmelCase_ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , __SCREAMING_SNAKE_CASE=24_65_34 , __SCREAMING_SNAKE_CASE=2_56 , __SCREAMING_SNAKE_CASE=12_80 , __SCREAMING_SNAKE_CASE=81_92 , __SCREAMING_SNAKE_CASE=48 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=1E-6 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=True , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Dict = vocab_size lowercase_ : Dict = n_positions lowercase_ : Tuple = n_embd lowercase_ : Dict = n_layer lowercase_ : Any = n_head lowercase_ : str = dff lowercase_ : Dict = resid_pdrop lowercase_ : Optional[Any] = embd_pdrop lowercase_ : Dict = layer_norm_epsilon lowercase_ : Optional[Any] = initializer_range lowercase_ : List[Any] = use_cache super().__init__(**__SCREAMING_SNAKE_CASE )
264
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : str ): """simple docstring""" assert column_title.isupper() lowercase_ : Dict = 0 lowercase_ : Tuple = len(__SCREAMING_SNAKE_CASE ) - 1 lowercase_ : Optional[int] = 0 while index >= 0: lowercase_ : Optional[Any] = (ord(column_title[index] ) - 64) * pow(26 , __SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
264
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Tuple: '''simple docstring''' A__ = b.T A__ = np.sum(np.square(SCREAMING_SNAKE_CASE_ ) , axis=1 ) A__ = np.sum(np.square(SCREAMING_SNAKE_CASE_ ) , axis=0 ) A__ = np.matmul(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Union[str, Any] ) -> Dict: '''simple docstring''' A__ = x.reshape(-1 , 3 ) A__ = squared_euclidean_distance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return np.argmin(SCREAMING_SNAKE_CASE_ , axis=1 ) class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = ['pixel_values'] def __init__( self , lowercase = None , lowercase = True , lowercase = None , lowercase = PILImageResampling.BILINEAR , lowercase = True , lowercase = True , **lowercase , ) -> None: '''simple docstring''' super().__init__(**lowercase ) A__ = size if size is not None else {"height": 256, "width": 256} A__ = get_size_dict(lowercase ) A__ = np.array(lowercase ) if clusters is not None else None A__ = do_resize A__ = size A__ = resample A__ = do_normalize A__ = do_color_quantize def UpperCamelCase ( self , lowercase , lowercase , lowercase = PILImageResampling.BILINEAR , lowercase = None , **lowercase , ) -> np.ndarray: '''simple docstring''' A__ = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}' ) return resize( lowercase , size=(size["height"], size["width"]) , resample=lowercase , data_format=lowercase , **lowercase ) def UpperCamelCase ( self , lowercase , lowercase = None , ) -> np.ndarray: '''simple docstring''' A__ = rescale(image=lowercase , scale=1 / 127.5 , data_format=lowercase ) A__ = image - 1 return image def UpperCamelCase ( self , lowercase , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase = ChannelDimension.FIRST , **lowercase , ) -> PIL.Image.Image: '''simple docstring''' A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(lowercase ) A__ = resample if resample is not None else self.resample A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = do_color_quantize if do_color_quantize is not None else self.do_color_quantize A__ = clusters if clusters is not None else self.clusters A__ = np.array(lowercase ) A__ = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True." ) # All transformations expect numpy arrays. A__ = [to_numpy_array(lowercase ) for image in images] if do_resize: A__ = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_normalize: A__ = [self.normalize(image=lowercase ) for image in images] if do_color_quantize: A__ = [to_channel_dimension_format(lowercase , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) A__ = np.array(lowercase ) A__ = color_quantize(lowercase , lowercase ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) A__ = images.shape[0] A__ = images.reshape(lowercase , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. A__ = list(lowercase ) else: A__ = [to_channel_dimension_format(lowercase , lowercase ) for image in images] A__ = {"input_ids": images} return BatchFeature(data=lowercase , tensor_type=lowercase )
68
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
0
"""simple docstring""" import math def _snake_case ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , 2 ) - a def _snake_case ( lowercase__ ): return 2 * x def _snake_case ( lowercase__ ): _lowerCamelCase : Optional[Any] = 2.0 while start <= a: _lowerCamelCase : List[Any] = math.pow(lowercase__ , 2 ) return start def _snake_case ( lowercase__ , lowercase__ = 9999 , lowercase__ = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): if a < 0: raise ValueError('math domain error' ) _lowerCamelCase : Optional[Any] = get_initial_point(lowercase__ ) for _ in range(lowercase__ ): _lowerCamelCase : Dict = value _lowerCamelCase : Optional[Any] = value - fx(lowercase__ , lowercase__ ) / fx_derivative(lowercase__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
366
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A : str = { 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _a = logging.get_logger(__name__) _a = { '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class __lowerCamelCase ( snake_case__): """simple docstring""" UpperCamelCase__ = "distilbert" UpperCamelCase__ = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , UpperCAmelCase=3_0522 , UpperCAmelCase=512 , UpperCAmelCase=False , UpperCAmelCase=6 , UpperCAmelCase=12 , UpperCAmelCase=768 , UpperCAmelCase=4 * 768 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase="gelu" , UpperCAmelCase=0.02 , UpperCAmelCase=0.1 , UpperCAmelCase=0.2 , UpperCAmelCase=0 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = sinusoidal_pos_embds _UpperCAmelCase = n_layers _UpperCAmelCase = n_heads _UpperCAmelCase = dim _UpperCAmelCase = hidden_dim _UpperCAmelCase = dropout _UpperCAmelCase = attention_dropout _UpperCAmelCase = activation _UpperCAmelCase = initializer_range _UpperCAmelCase = qa_dropout _UpperCAmelCase = seq_classif_dropout super().__init__(**UpperCAmelCase , pad_token_id=UpperCAmelCase ) class __lowerCamelCase ( snake_case__): """simple docstring""" @property def UpperCamelCase ( self ): """simple docstring""" if self.task == "multiple-choice": _UpperCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _UpperCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
39
0
'''simple docstring''' from timeit import timeit def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) lowercase_ : int = 0 while number: number &= number - 1 result += 1 return result def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) lowercase_ : Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def snake_case_ ( ): """simple docstring""" def do_benchmark(__SCREAMING_SNAKE_CASE : int ) -> None: lowercase_ : str = '''import __main__ as z''' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(__SCREAMING_SNAKE_CASE ) = }''' ) lowercase_ : int = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__SCREAMING_SNAKE_CASE ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(__SCREAMING_SNAKE_CASE ) = }''' ) lowercase_ : List[str] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__SCREAMING_SNAKE_CASE , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(__SCREAMING_SNAKE_CASE ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
264
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = (DDPMScheduler,) def _snake_case ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = { '''num_train_timesteps''': 10_00, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def _snake_case ( self ): """simple docstring""" for timesteps in [1, 5, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _snake_case ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" for t in [0, 5_00, 9_99]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.scheduler_classes[0] lowercase_ : int = self.get_scheduler_config() lowercase_ : str = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.00_979 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.02 ) ) < 1E-5 def _snake_case ( self ): """simple docstring""" lowercase_ : Union[str, Any] = self.scheduler_classes[0] lowercase_ : Any = self.get_scheduler_config() lowercase_ : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Any = len(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = self.dummy_model() lowercase_ : Any = self.dummy_sample_deter lowercase_ : List[str] = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowercase_ : Optional[int] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowercase_ : Union[str, Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase_ : List[str] = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1E-2 assert abs(result_mean.item() - 0.3_372 ) < 1E-3 def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : Tuple = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = len(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = self.dummy_model() lowercase_ : int = self.dummy_sample_deter lowercase_ : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowercase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowercase_ : Optional[Any] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowercase_ : int = pred_prev_sample lowercase_ : str = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Tuple = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1E-2 assert abs(result_mean.item() - 0.2_631 ) < 1E-3 def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.scheduler_classes[0] lowercase_ : int = self.get_scheduler_config() lowercase_ : int = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : int = [1_00, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: lowercase_ : str = -1 else: lowercase_ : Any = timesteps[i + 1] lowercase_ : Optional[Any] = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) lowercase_ : int = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = self.scheduler_classes[0] lowercase_ : List[Any] = self.get_scheduler_config() lowercase_ : str = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[int] = [1_00, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = self.scheduler_classes[0] lowercase_ : str = self.get_scheduler_config() lowercase_ : Tuple = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = [1_00, 87, 50, 1, 0] lowercase_ : List[str] = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = self.scheduler_classes[0] lowercase_ : Optional[int] = self.get_scheduler_config() lowercase_ : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : str = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
264
1
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int | float | str ): try: A__ = float(_lowerCamelCase ) except ValueError: raise ValueError("Please enter a valid number" ) A__ = decimal - int(_lowerCamelCase ) if fractional_part == 0: return int(_lowerCamelCase ), 1 else: A__ = len(str(_lowerCamelCase ).split("." )[1] ) A__ = int(decimal * (10**number_of_frac_digits) ) A__ = 10**number_of_frac_digits A__, A__ = denominator, numerator while True: A__ = dividend % divisor if remainder == 0: break A__, A__ = divisor, remainder A__, A__ = numerator / divisor, denominator / divisor return int(_lowerCamelCase ), int(_lowerCamelCase ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction("67") = }""") print(f"""{decimal_to_fraction("45.0") = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction("6.25") = }""") print(f"""{decimal_to_fraction("78td") = }""")
237
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black __lowerCAmelCase : Any =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. __lowerCAmelCase : Optional[int] =" def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :Tuple )-> Union[str, Any]: A__ = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , "models/bert/" ) ) A__ = self.transformer_dir shutil.copy( os.path.join(lowercase_ , "src/transformers/models/bert/modeling_bert.py" ) , os.path.join(self.transformer_dir , "models/bert/modeling_bert.py" ) , ) def UpperCAmelCase_ ( self :Optional[int] )-> Tuple: A__ = "src/transformers" shutil.rmtree(self.transformer_dir ) def UpperCAmelCase_ ( self :List[Any] , lowercase_ :List[str] , lowercase_ :Union[str, Any] , lowercase_ :int , lowercase_ :Tuple=None )-> Optional[Any]: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: A__ = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result A__ = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 ) A__ = black.format_str(lowercase_ , mode=lowercase_ ) A__ = os.path.join(self.transformer_dir , "new_code.py" ) with open(lowercase_ , "w" , newline="\n" ) as f: f.write(lowercase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowercase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowercase_ ) with open(lowercase_ , "r" ) as f: self.assertTrue(f.read() , lowercase_ ) def UpperCAmelCase_ ( self :str )-> Optional[Any]: A__ = check_copies.find_code_in_transformers("models.bert.modeling_bert.BertLMPredictionHead" ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: # Base copy consistency self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , REFERENCE_CODE + "\n" , ) # With no empty line at the end self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead" , "BertLMPredictionHead" , lowercase_ , ) # Copy consistency with rename self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , re.sub("Bert" , "TestModel" , lowercase_ ) , ) # Copy consistency with a really long name A__ = "TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason" self.check_copy_consistency( F"# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}" , F"{long_class_name}LMPredictionHead" , re.sub("Bert" , lowercase_ , lowercase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( "# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel" , "TestModelLMPredictionHead" , lowercase_ , overwrite_result=re.sub("Bert" , "TestModel" , lowercase_ ) , ) def UpperCAmelCase_ ( self :Dict )-> Any: A__ = check_copies.LOCALIZED_READMES["README_zh-hans.md"] A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace)," " released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**" " (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders" " as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang" " Luong, Quoc V. Le, Christopher D. Manning." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1." " **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文" " [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and" " lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same" " method has been applied to compress GPT2 into" " [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into" " [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation)," " Multilingual BERT into" " [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German" " version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自" " Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather" " than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le," " Christopher D. Manning 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) self.assertFalse(lowercase_ ) self.assertEqual(lowercase_ , lowercase_ ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowercase_ ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the" " Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for" " Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong" " Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut." ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and" " the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__ = ( "1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the" " Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of" " Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian" " Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n" ) A__, A__ = check_copies.convert_to_localized_md( lowercase_ , lowercase_ , localized_readme["format_model_list"] ) # Check if the model link is synchronized. self.assertEqual(lowercase_ , lowercase_ )
237
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case__ : List[Any] = {'configuration_xlnet': ['XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = ['XLNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = ['XLNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = [ 'XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLNetForMultipleChoice', 'XLNetForQuestionAnswering', 'XLNetForQuestionAnsweringSimple', 'XLNetForSequenceClassification', 'XLNetForTokenClassification', 'XLNetLMHeadModel', 'XLNetModel', 'XLNetPreTrainedModel', 'load_tf_weights_in_xlnet', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ 'TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLNetForMultipleChoice', 'TFXLNetForQuestionAnsweringSimple', 'TFXLNetForSequenceClassification', 'TFXLNetForTokenClassification', 'TFXLNetLMHeadModel', 'TFXLNetMainLayer', 'TFXLNetModel', 'TFXLNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys snake_case__ : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
250
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Dict = {'vocab_file': 'vocab.txt'} snake_case__ : Dict = { 'vocab_file': { 'openbmb/cpm-ant-10b': 'https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt', }, } snake_case__ : Optional[int] = { 'openbmb/cpm-ant-10b': 1024, } def _a ( lowerCamelCase: List[Any] ) -> Union[str, Any]: '''simple docstring''' __A = collections.OrderedDict() with open(lowerCamelCase , '''r''' , encoding='''utf-8''' ) as reader: __A = reader.readlines() for index, token in enumerate(lowerCamelCase ): __A = token.rstrip('''\n''' ) __A = index return vocab class A_ ( _lowerCamelCase ): def __init__(self :Any , _UpperCamelCase :Dict , _UpperCamelCase :Optional[int]="<unk>" , _UpperCamelCase :List[str]=200 )-> List[str]: __A = vocab __A = unk_token __A = max_input_chars_per_word def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[Any] )-> str: __A = list(_UpperCamelCase ) if len(_UpperCamelCase ) > self.max_input_chars_per_word: return [self.unk_token] __A = 0 __A = [] while start < len(_UpperCamelCase ): __A = len(_UpperCamelCase ) __A = None while start < end: __A = ''''''.join(chars[start:end] ) if substr in self.vocab: __A = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_UpperCamelCase ) __A = end return sub_tokens class A_ ( _lowerCamelCase ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["""input_ids""", """attention_mask"""] lowerCAmelCase__ = False def __init__(self :str , _UpperCamelCase :Union[str, Any] , _UpperCamelCase :Any="<d>" , _UpperCamelCase :List[str]="</d>" , _UpperCamelCase :Dict="<s>" , _UpperCamelCase :Optional[Any]="</s>" , _UpperCamelCase :Optional[int]="<pad>" , _UpperCamelCase :List[str]="<unk>" , _UpperCamelCase :str="</n>" , _UpperCamelCase :Optional[int]="</_>" , _UpperCamelCase :Optional[Any]="left" , **_UpperCamelCase :Any , )-> Union[str, Any]: requires_backends(self , ['''jieba'''] ) super().__init__( bod_token=_UpperCamelCase , eod_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , pad_token=_UpperCamelCase , unk_token=_UpperCamelCase , line_token=_UpperCamelCase , space_token=_UpperCamelCase , padding_side=_UpperCamelCase , **_UpperCamelCase , ) __A = bod_token __A = eod_token __A = load_vocab(_UpperCamelCase ) __A = self.encoder[space_token] __A = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] __A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) __A = {v: k for k, v in self.encoder.items()} __A = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def _lowerCAmelCase (self :Union[str, Any] )-> Dict: return self.encoder[self.bod_token] @property def _lowerCAmelCase (self :Optional[int] )-> Dict: return self.encoder[self.eod_token] @property def _lowerCAmelCase (self :Any )-> List[Any]: return self.encoder["\n"] @property def _lowerCAmelCase (self :List[str] )-> int: return len(self.encoder ) def _lowerCAmelCase (self :List[str] )-> List[Any]: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :Dict )-> Union[str, Any]: __A = [] for x in jieba.cut(_UpperCamelCase , cut_all=_UpperCamelCase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_UpperCamelCase ) ) return output_tokens def _lowerCAmelCase (self :str , _UpperCamelCase :int , **_UpperCamelCase :List[str] )-> Tuple: __A = [i for i in token_ids if i >= 0] __A = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_UpperCamelCase , **_UpperCamelCase ) def _lowerCAmelCase (self :Tuple , _UpperCamelCase :Optional[int] )-> List[str]: return token in self.encoder def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[str] )-> str: return "".join(_UpperCamelCase ) def _lowerCAmelCase (self :Optional[int] , _UpperCamelCase :List[Any] )-> List[Any]: return self.encoder.get(_UpperCamelCase , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase (self :Any , _UpperCamelCase :Tuple )-> int: return self.decoder.get(_UpperCamelCase , self.unk_token ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str , _UpperCamelCase :Optional[str] = None )-> Tuple[str]: if os.path.isdir(_UpperCamelCase ): __A = os.path.join( _UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: __A = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory __A = 0 if " " in self.encoder: __A = self.encoder[''' '''] del self.encoder[" "] if "\n" in self.encoder: __A = self.encoder['''\n'''] del self.encoder["\n"] __A = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _UpperCamelCase : x[1] ) ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) __A = token_index writer.write(token + '''\n''' ) index += 1 return (vocab_file,) def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :List[int] , _UpperCamelCase :List[int] = None )-> List[int]: if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def _lowerCAmelCase (self :List[Any] , _UpperCamelCase :List[int] , _UpperCamelCase :Optional[List[int]] = None , _UpperCamelCase :bool = False )-> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCamelCase , token_ids_a=_UpperCamelCase , already_has_special_tokens=_UpperCamelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCamelCase )) + [1] + ([0] * len(_UpperCamelCase )) return [1] + ([0] * len(_UpperCamelCase ))
250
1
"""simple docstring""" import glob import os import random from string import ascii_lowercase, digits import cva import numpy as np # Parrameters lowercase__ : Dict = (7_20, 12_80) # Height, Width lowercase__ : Optional[Any] = (0.4, 0.6) # if height or width lower than this scale, drop it. lowercase__ : Dict = 1 / 1_00 lowercase__ : List[str] = '''''' lowercase__ : str = '''''' lowercase__ : Optional[int] = '''''' lowercase__ : Tuple = 2_50 def __lowercase ( ): snake_case_, snake_case_ : Optional[int] = get_dataset(_a , _a ) for index in range(_a ): snake_case_ : List[Any] = random.sample(range(len(_a ) ) , 4 ) snake_case_, snake_case_, snake_case_ : List[Any] = update_image_and_anno( _a , _a , _a , _a , _a , filter_scale=_a , ) # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' snake_case_ : Optional[Any] = random_chars(32 ) snake_case_ : List[str] = path.split(os.sep )[-1].rsplit('''.''' , 1 )[0] snake_case_ : Tuple = f"{OUTPUT_DIR}/{file_name}_MOSAIC_{letter_code}" cva.imwrite(f"{file_root}.jpg" , _a , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f"Succeeded {index+1}/{NUMBER_IMAGES} with {file_name}" ) snake_case_ : Tuple = [] for anno in new_annos: snake_case_ : int = anno[3] - anno[1] snake_case_ : Union[str, Any] = anno[4] - anno[2] snake_case_ : Optional[int] = anno[1] + width / 2 snake_case_ : Dict = anno[2] + height / 2 snake_case_ : Tuple = f"{anno[0]} {x_center} {y_center} {width} {height}" annos_list.append(_a ) with open(f"{file_root}.txt" , '''w''' ) as outfile: outfile.write('''\n'''.join(line for line in annos_list ) ) def __lowercase ( _a , _a ): snake_case_ : List[Any] = [] snake_case_ : Union[str, Any] = [] for label_file in glob.glob(os.path.join(_a , '''*.txt''' ) ): snake_case_ : Optional[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0] with open(_a ) as in_file: snake_case_ : Any = in_file.readlines() snake_case_ : Tuple = os.path.join(_a , f"{label_name}.jpg" ) snake_case_ : str = [] for obj_list in obj_lists: snake_case_ : int = obj_list.rstrip('''\n''' ).split(''' ''' ) snake_case_ : Optional[Any] = float(obj[1] ) - float(obj[3] ) / 2 snake_case_ : Tuple = float(obj[2] ) - float(obj[4] ) / 2 snake_case_ : str = float(obj[1] ) + float(obj[3] ) / 2 snake_case_ : int = float(obj[2] ) + float(obj[4] ) / 2 boxes.append([int(obj[0] ), xmin, ymin, xmax, ymax] ) if not boxes: continue img_paths.append(_a ) labels.append(_a ) return img_paths, labels def __lowercase ( _a , _a , _a , _a , _a , _a = 0.0 , ): snake_case_ : Tuple = np.zeros([output_size[0], output_size[1], 3] , dtype=np.uinta ) snake_case_ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ : Any = scale_range[0] + random.random() * (scale_range[1] - scale_range[0]) snake_case_ : Dict = int(scale_x * output_size[1] ) snake_case_ : Optional[Any] = int(scale_y * output_size[0] ) snake_case_ : Optional[int] = [] snake_case_ : List[str] = [] for i, index in enumerate(_a ): snake_case_ : Any = all_img_list[index] path_list.append(_a ) snake_case_ : List[Any] = all_annos[index] snake_case_ : Dict = cva.imread(_a ) if i == 0: # top-left snake_case_ : str = cva.resize(_a , (divid_point_x, divid_point_y) ) snake_case_ : Optional[Any] = img for bbox in img_annos: snake_case_ : Any = bbox[1] * scale_x snake_case_ : Optional[Any] = bbox[2] * scale_y snake_case_ : Optional[Any] = bbox[3] * scale_x snake_case_ : Optional[int] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 1: # top-right snake_case_ : List[Any] = cva.resize(_a , (output_size[1] - divid_point_x, divid_point_y) ) snake_case_ : Tuple = img for bbox in img_annos: snake_case_ : Optional[int] = scale_x + bbox[1] * (1 - scale_x) snake_case_ : Union[str, Any] = bbox[2] * scale_y snake_case_ : List[str] = scale_x + bbox[3] * (1 - scale_x) snake_case_ : Optional[Any] = bbox[4] * scale_y new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) elif i == 2: # bottom-left snake_case_ : Tuple = cva.resize(_a , (divid_point_x, output_size[0] - divid_point_y) ) snake_case_ : Optional[int] = img for bbox in img_annos: snake_case_ : Tuple = bbox[1] * scale_x snake_case_ : Union[str, Any] = scale_y + bbox[2] * (1 - scale_y) snake_case_ : Optional[Any] = bbox[3] * scale_x snake_case_ : Union[str, Any] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) else: # bottom-right snake_case_ : str = cva.resize( _a , (output_size[1] - divid_point_x, output_size[0] - divid_point_y) ) snake_case_ : Optional[int] = img for bbox in img_annos: snake_case_ : int = scale_x + bbox[1] * (1 - scale_x) snake_case_ : int = scale_y + bbox[2] * (1 - scale_y) snake_case_ : Optional[int] = scale_x + bbox[3] * (1 - scale_x) snake_case_ : Optional[int] = scale_y + bbox[4] * (1 - scale_y) new_anno.append([bbox[0], xmin, ymin, xmax, ymax] ) # Remove bounding box small than scale of filter if filter_scale > 0: snake_case_ : Union[str, Any] = [ anno for anno in new_anno if filter_scale < (anno[3] - anno[1]) and filter_scale < (anno[4] - anno[2]) ] return output_img, new_anno, path_list[0] def __lowercase ( _a ): assert number_char > 1, "The number of character should greater than 1" snake_case_ : Any = ascii_lowercase + digits return "".join(random.choice(_a ) for _ in range(_a ) ) if __name__ == "__main__": main() print('''DONE ✅''')
264
"""simple docstring""" import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Dict = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowercase__ : str = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def __lowercase ( _a , _a ): snake_case_ : Optional[int] = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case_ : List[Any] = int(re.match(r'''.*layer_(\d*).*''' , _a )[1] ) layer_number -= 3 return f"h.{layer_number}." + key def __lowercase ( _a ): if dtype == torch.bool: return 1 / 8 snake_case_ : Dict = re.search(r'''[^\d](\d+)$''' , str(_a ) ) if bit_search is None: raise ValueError(f"`dtype` is not a valid dtype: {dtype}." ) snake_case_ : Optional[int] = int(bit_search.groups()[0] ) return bit_size // 8 def __lowercase ( _a , _a , _a , _a , _a ): # Construct model if bloom_config_file == "": snake_case_ : int = BloomConfig() else: snake_case_ : List[str] = BloomConfig.from_json_file(_a ) if shard_model: snake_case_ : List[str] = os.listdir(_a ) snake_case_ : int = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[str] = {'''weight_map''': {}, '''metadata''': {}} snake_case_ : Any = 0 snake_case_ : Union[str, Any] = None snake_case_ : List[str] = BloomConfig() for j, file in enumerate(_a ): print('''Processing file: {}'''.format(_a ) ) snake_case_ : Dict = None for i in range(_a ): # load all TP files snake_case_ : Union[str, Any] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : List[str] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : Any = temp.pop(_a ) if tensors is None: snake_case_ : Any = temp else: for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : List[str] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Any = tensors[key] / pretraining_tp torch.save( _a , os.path.join( _a , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case_ : List[str] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case_ : List[str] = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_a ) ).zfill(5 ) ) snake_case_ : int = BloomConfig() snake_case_ : Any = pytorch_dump_folder_path + '''/''' + CONFIG_NAME snake_case_ : Dict = total_size with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_a , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: snake_case_ : Tuple = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' f.write(_a ) else: snake_case_ : Union[str, Any] = BloomModel(_a ) snake_case_ : List[str] = os.listdir(_a ) snake_case_ : Dict = sorted(filter(lambda _a : s.startswith('''layer''' ) and "model_00" in s , _a ) ) snake_case_ : List[Any] = None for i, file in enumerate(_a ): snake_case_ : Optional[Any] = None for i in range(_a ): # load all TP files snake_case_ : List[str] = file.replace('''model_00''' , f"model_0{i}" ) snake_case_ : Optional[Any] = torch.load(os.path.join(_a , _a ) , map_location='''cpu''' ) # Rename keys in the transformers names snake_case_ : str = list(temp.keys() ) for key in keys: snake_case_ : str = temp.pop(_a ) if tensors is None: snake_case_ : int = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case_ : Tuple = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case_ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=_a ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_a ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case_ : Union[str, Any] = tensors[key] / pretraining_tp snake_case_ : Any = model.load_state_dict(_a , strict=_a ) assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" if missing_keys is None: snake_case_ : Optional[int] = set(other_keys.missing_keys ) else: snake_case_ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, f"The keys {missing_keys} are missing" # Save pytorch-model os.makedirs(_a , exist_ok=_a ) snake_case_ : List[str] = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME snake_case_ : Optional[Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}" ) if config.torch_dtype is not None: snake_case_ : Optional[Any] = model.to(config.torch_dtype ) torch.save(model.state_dict() , _a ) print(f"Save configuration file to {pytorch_config_dump_path}" ) with open(_a , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowercase__ : List[Any] = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
264
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_perceiver""": ["""PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PerceiverConfig""", """PerceiverOnnxConfig"""], """tokenization_perceiver""": ["""PerceiverTokenizer"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""PerceiverFeatureExtractor"""] _A = ["""PerceiverImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST""", """PerceiverForImageClassificationConvProcessing""", """PerceiverForImageClassificationFourier""", """PerceiverForImageClassificationLearned""", """PerceiverForMaskedLM""", """PerceiverForMultimodalAutoencoding""", """PerceiverForOpticalFlow""", """PerceiverForSequenceClassification""", """PerceiverLayer""", """PerceiverModel""", """PerceiverPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
356
"""simple docstring""" import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=30 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=10 , _lowerCamelCase=0.02 , _lowerCamelCase=3 , _lowerCamelCase=None , _lowerCamelCase=2 , ): """simple docstring""" UpperCAmelCase__ : Dict = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : Any = num_channels UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Optional[int] = use_labels UpperCAmelCase__ : List[str] = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : List[str] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Optional[int] = hidden_act UpperCAmelCase__ : Any = hidden_dropout_prob UpperCAmelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : str = scope UpperCAmelCase__ : Optional[Any] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCAmelCase__ : int = (image_size // patch_size) ** 2 UpperCAmelCase__ : Tuple = num_patches + 2 def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = None if self.use_labels: UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def _a (self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = DeiTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DeiTForMaskedImageModeling(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCAmelCase__ : str = 1 UpperCAmelCase__ : List[str] = DeiTForMaskedImageModeling(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = model(_lowerCamelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = self.type_sequence_label_size UpperCAmelCase__ : List[str] = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : str = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase__ : Union[str, Any] = 1 UpperCAmelCase__ : int = DeiTForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Union[str, Any] = model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : Tuple = config_and_inputs UpperCAmelCase__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = DeiTModelTester(self ) UpperCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def _a (self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""DeiT does not use inputs_embeds""" ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_lowerCamelCase ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Union[str, Any] = [*signature.parameters.keys()] UpperCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): """simple docstring""" UpperCAmelCase__ : Optional[int] = super()._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def _a (self ): """simple docstring""" if not self.model_tester.is_training: return UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : List[str] = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_lowerCamelCase ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCAmelCase__ : Dict = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : int = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[Any] = True for model_class in self.all_model_classes: if model_class in get_values(_lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.gradient_checkpointing_enable() model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Union[str, Any] = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) UpperCAmelCase__ : Tuple = model(**_lowerCamelCase ).loss loss.backward() def _a (self ): """simple docstring""" UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = [ {"""title""": """multi_label_classification""", """num_labels""": 2, """dtype""": torch.float}, {"""title""": """single_label_classification""", """num_labels""": 1, """dtype""": torch.long}, {"""title""": """regression""", """num_labels""": 1, """dtype""": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_lowerCamelCase ), *get_values(_lowerCamelCase ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}""" ): UpperCAmelCase__ : List[str] = problem_type["""title"""] UpperCAmelCase__ : List[Any] = problem_type["""num_labels"""] UpperCAmelCase__ : Optional[Any] = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.train() UpperCAmelCase__ : Any = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase , return_labels=_lowerCamelCase ) if problem_type["num_labels"] > 1: UpperCAmelCase__ : Optional[int] = inputs["""labels"""].unsqueeze(1 ).repeat(1 , problem_type["""num_labels"""] ) UpperCAmelCase__ : str = inputs["""labels"""].to(problem_type["""dtype"""] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_lowerCamelCase ) as warning_list: UpperCAmelCase__ : Any = model(**_lowerCamelCase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def _a (self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : int = DeiTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def a__ ( ) -> int: UpperCAmelCase__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _a (self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ) if is_vision_available() else None ) @slow def _a (self ): """simple docstring""" UpperCAmelCase__ : int = DeiTForImageClassificationWithTeacher.from_pretrained("""facebook/deit-base-distilled-patch16-224""" ).to( _lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : Tuple = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**_lowerCamelCase ) # verify the logits UpperCAmelCase__ : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCAmelCase__ : Dict = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = DeiTModel.from_pretrained( """facebook/deit-base-distilled-patch16-224""" , torch_dtype=torch.floataa , device_map="""auto""" ) UpperCAmelCase__ : Union[str, Any] = self.default_image_processor UpperCAmelCase__ : int = prepare_img() UpperCAmelCase__ : str = image_processor(images=_lowerCamelCase , return_tensors="""pt""" ) UpperCAmelCase__ : Dict = inputs.pixel_values.to(_lowerCamelCase ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCAmelCase__ : int = model(_lowerCamelCase )
166
0
'''simple docstring''' _lowerCAmelCase = [ 999, 800, 799, 600, 599, 500, 400, 399, 377, 355, 333, 311, 288, 266, 244, 222, 200, 199, 177, 155, 133, 111, 88, 66, 44, 22, 0, ] _lowerCAmelCase = [ 999, 976, 952, 928, 905, 882, 858, 857, 810, 762, 715, 714, 572, 429, 428, 286, 285, 238, 190, 143, 142, 118, 95, 71, 47, 24, 0, ] _lowerCAmelCase = [ 999, 988, 977, 966, 955, 944, 933, 922, 911, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 350, 300, 299, 266, 233, 200, 199, 179, 159, 140, 120, 100, 99, 88, 77, 66, 55, 44, 33, 22, 11, 0, ] _lowerCAmelCase = [ 999, 995, 992, 989, 985, 981, 978, 975, 971, 967, 964, 961, 957, 956, 951, 947, 942, 937, 933, 928, 923, 919, 914, 913, 908, 903, 897, 892, 887, 881, 876, 871, 870, 864, 858, 852, 846, 840, 834, 828, 827, 820, 813, 806, 799, 792, 785, 784, 777, 770, 763, 756, 749, 742, 741, 733, 724, 716, 707, 699, 698, 688, 677, 666, 656, 655, 645, 634, 623, 613, 612, 598, 584, 570, 569, 555, 541, 527, 526, 505, 484, 483, 462, 440, 439, 396, 395, 352, 351, 308, 307, 264, 263, 220, 219, 176, 132, 88, 44, 0, ] _lowerCAmelCase = [ 999, 997, 995, 992, 990, 988, 986, 984, 981, 979, 977, 975, 972, 970, 968, 966, 964, 961, 959, 957, 956, 954, 951, 949, 946, 944, 941, 939, 936, 934, 931, 929, 926, 924, 921, 919, 916, 914, 913, 910, 907, 905, 902, 899, 896, 893, 891, 888, 885, 882, 879, 877, 874, 871, 870, 867, 864, 861, 858, 855, 852, 849, 846, 843, 840, 837, 834, 831, 828, 827, 824, 821, 817, 814, 811, 808, 804, 801, 798, 795, 791, 788, 785, 784, 780, 777, 774, 770, 766, 763, 760, 756, 752, 749, 746, 742, 741, 737, 733, 730, 726, 722, 718, 714, 710, 707, 703, 699, 698, 694, 690, 685, 681, 677, 673, 669, 664, 660, 656, 655, 650, 646, 641, 636, 632, 627, 622, 618, 613, 612, 607, 602, 596, 591, 586, 580, 575, 570, 569, 563, 557, 551, 545, 539, 533, 527, 526, 519, 512, 505, 498, 491, 484, 483, 474, 466, 457, 449, 440, 439, 428, 418, 407, 396, 395, 381, 366, 352, 351, 330, 308, 307, 286, 264, 263, 242, 220, 219, 176, 175, 132, 131, 88, 44, 0, ] _lowerCAmelCase = [ 999, 991, 982, 974, 966, 958, 950, 941, 933, 925, 916, 908, 900, 899, 874, 850, 825, 800, 799, 700, 600, 500, 400, 300, 200, 100, 0, ] _lowerCAmelCase = [ 999, 992, 985, 978, 971, 964, 957, 949, 942, 935, 928, 921, 914, 907, 900, 899, 879, 859, 840, 820, 800, 799, 766, 733, 700, 699, 650, 600, 599, 500, 499, 400, 399, 300, 299, 200, 199, 100, 99, 0, ] _lowerCAmelCase = [ 999, 996, 992, 989, 985, 982, 979, 975, 972, 968, 965, 961, 958, 955, 951, 948, 944, 941, 938, 934, 931, 927, 924, 920, 917, 914, 910, 907, 903, 900, 899, 891, 884, 876, 869, 861, 853, 846, 838, 830, 823, 815, 808, 800, 799, 788, 777, 766, 755, 744, 733, 722, 711, 700, 699, 688, 677, 666, 655, 644, 633, 622, 611, 600, 599, 585, 571, 557, 542, 528, 514, 500, 499, 485, 471, 457, 442, 428, 414, 400, 399, 379, 359, 340, 320, 300, 299, 279, 259, 240, 220, 200, 199, 166, 133, 100, 99, 66, 33, 0, ]
298
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Any )-> str: snake_case = tempfile.mkdtemp() # fmt: off snake_case = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on snake_case = dict(zip(_a , range(len(_a ) ) ) ) snake_case = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] snake_case = {"""unk_token""": """<unk>"""} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_a ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_a ) ) snake_case = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], """image_std""": [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } snake_case = os.path.join(self.tmpdirname , _a ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(_a , _a ) def lowerCAmelCase ( self : List[Any] , **__snake_case : Any )-> int: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **_a ) def lowerCAmelCase ( self : List[str] , **__snake_case : str )-> Union[str, Any]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **_a ) def lowerCAmelCase ( self : List[Any] , **__snake_case : Any )-> Tuple: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **_a ) def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: shutil.rmtree(self.tmpdirname ) def lowerCAmelCase ( self : str )-> int: snake_case = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] snake_case = [Image.fromarray(np.moveaxis(_a , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase ( self : List[str] )-> Optional[int]: snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = self.get_image_processor() snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) processor_slow.save_pretrained(self.tmpdirname ) snake_case = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=_a ) snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) processor_fast.save_pretrained(self.tmpdirname ) snake_case = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _a ) self.assertIsInstance(processor_fast.tokenizer , _a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _a ) self.assertIsInstance(processor_fast.image_processor , _a ) def lowerCAmelCase ( self : Dict )-> int: snake_case = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) snake_case = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case = self.get_image_processor(do_normalize=_a ) snake_case = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=_a ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _a ) def lowerCAmelCase ( self : Optional[int] )-> Tuple: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) snake_case = self.prepare_image_inputs() snake_case = image_processor(_a , return_tensors="""np""" ) snake_case = processor(images=_a , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) snake_case = """lower newer""" snake_case = processor(text=_a , return_tensors="""np""" ) snake_case = tokenizer(_a , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def lowerCAmelCase ( self : Tuple )-> Tuple: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) snake_case = """lower newer""" snake_case = self.prepare_image_inputs() snake_case = processor(text=_a , images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def lowerCAmelCase ( self : Tuple )-> List[str]: snake_case = """google/owlvit-base-patch32""" snake_case = OwlViTProcessor.from_pretrained(_a ) snake_case = ["""cat""", """nasa badge"""] snake_case = processor(text=_a ) snake_case = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: snake_case = """google/owlvit-base-patch32""" snake_case = OwlViTProcessor.from_pretrained(_a ) snake_case = [["""cat""", """nasa badge"""], ["""person"""]] snake_case = processor(text=_a ) snake_case = 16 snake_case = len(_a ) snake_case = max([len(_a ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def lowerCAmelCase ( self : Dict )-> Any: snake_case = """google/owlvit-base-patch32""" snake_case = OwlViTProcessor.from_pretrained(_a ) snake_case = ["""cat""", """nasa badge"""] snake_case = processor(text=_a ) snake_case = 16 snake_case = inputs["""input_ids"""] snake_case = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def lowerCAmelCase ( self : int )-> Optional[int]: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) snake_case = self.prepare_image_inputs() snake_case = self.prepare_image_inputs() snake_case = processor(images=_a , query_images=_a ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def lowerCAmelCase ( self : Dict )-> int: snake_case = self.get_image_processor() snake_case = self.get_tokenizer() snake_case = OwlViTProcessor(tokenizer=_a , image_processor=_a ) snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] snake_case = processor.batch_decode(_a ) snake_case = tokenizer.batch_decode(_a ) self.assertListEqual(_a , _a )
361
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = "mvp" snake_case_ = ["past_key_values"] snake_case_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , __snake_case : Optional[int]=5_02_67 , __snake_case : List[Any]=10_24 , __snake_case : str=12 , __snake_case : Union[str, Any]=40_96 , __snake_case : List[Any]=16 , __snake_case : Tuple=12 , __snake_case : Tuple=40_96 , __snake_case : Union[str, Any]=16 , __snake_case : Any=0.0 , __snake_case : Dict=0.0 , __snake_case : List[Any]="gelu" , __snake_case : Tuple=10_24 , __snake_case : int=0.1 , __snake_case : Any=0.0 , __snake_case : List[str]=0.0 , __snake_case : Dict=0.02 , __snake_case : Any=0.0 , __snake_case : Optional[int]=False , __snake_case : List[str]=True , __snake_case : Tuple=1 , __snake_case : Tuple=0 , __snake_case : List[str]=2 , __snake_case : Optional[Any]=True , __snake_case : Dict=2 , __snake_case : Any=2 , __snake_case : Any=False , __snake_case : Any=1_00 , __snake_case : Optional[Any]=8_00 , **__snake_case : List[Any] , )-> Optional[int]: snake_case = vocab_size snake_case = max_position_embeddings snake_case = d_model snake_case = encoder_ffn_dim snake_case = encoder_layers snake_case = encoder_attention_heads snake_case = decoder_ffn_dim snake_case = decoder_layers snake_case = decoder_attention_heads snake_case = dropout snake_case = attention_dropout snake_case = activation_dropout snake_case = activation_function snake_case = init_std snake_case = encoder_layerdrop snake_case = decoder_layerdrop snake_case = classifier_dropout snake_case = use_cache snake_case = encoder_layers snake_case = scale_embedding # scale factor will be sqrt(d_model) if True snake_case = use_prompt snake_case = prompt_length snake_case = prompt_mid_dim super().__init__( pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , is_encoder_decoder=__snake_case , decoder_start_token_id=__snake_case , forced_eos_token_id=__snake_case , **__snake_case , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , __snake_case ): snake_case = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
3
0
"""simple docstring""" from __future__ import annotations from typing import Any class _UpperCAmelCase : def __init__( self : str , lowercase_ : int ): snake_case_ : Union[str, Any] = num_of_nodes snake_case_ : list[list[int]] = [] snake_case_ : dict[int, int] = {} def _snake_case ( self : Tuple , lowercase_ : int , lowercase_ : int , lowercase_ : int ): self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self : Union[str, Any] , lowercase_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self : List[Any] , lowercase_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: snake_case_ : List[Any] = self.find_component(lowercase_ ) def _snake_case ( self : Optional[Any] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : int ): if component_size[u_node] <= component_size[v_node]: snake_case_ : int = v_node component_size[v_node] += component_size[u_node] self.set_component(lowercase_ ) elif component_size[u_node] >= component_size[v_node]: snake_case_ : Dict = self.find_component(lowercase_ ) component_size[u_node] += component_size[v_node] self.set_component(lowercase_ ) def _snake_case ( self : Tuple ): snake_case_ : Union[str, Any] = [] snake_case_ : Union[str, Any] = 0 snake_case_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case_ : Optional[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case_, snake_case_, snake_case_ : Any = edge snake_case_ : List[str] = self.m_component[u] snake_case_ : Optional[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(lowercase_ , lowercase_ ): snake_case_, snake_case_, snake_case_ : Dict = edge snake_case_ : Optional[Any] = self.m_component[u] snake_case_ : Optional[int] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(lowercase_ , lowercase_ , lowercase_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 snake_case_ : Any = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __lowercase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
264
"""simple docstring""" import os from datetime import datetime as dt from github import Github lowercase__ : int = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def __lowercase ( ): snake_case_ : Optional[Any] = Github(os.environ['''GITHUB_TOKEN'''] ) snake_case_ : Any = g.get_repo('''huggingface/diffusers''' ) snake_case_ : Any = repo.get_issues(state='''open''' ) for issue in open_issues: snake_case_ : str = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) snake_case_ : Dict = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
264
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __lowerCamelCase = logging.get_logger(__name__) class UpperCamelCase__( __A ): lowerCAmelCase__ : Union[str, Any] = ['pixel_values'] def __init__( self ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = PILImageResampling.BILINEAR ,__UpperCAmelCase = True ,__UpperCAmelCase = 1 / 2_55 ,__UpperCAmelCase = True ,__UpperCAmelCase = None ,__UpperCAmelCase = True ,**__UpperCAmelCase ,) -> None: super().__init__(**__UpperCAmelCase ) A__ = size if size is not None else {'shortest_edge': 2_24} A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else {'height': 2_56, 'width': 2_56} A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) A__ = do_resize A__ = size A__ = resample A__ = do_rescale A__ = rescale_factor A__ = do_center_crop A__ = crop_size A__ = do_flip_channel_order def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = PIL.Image.BILINEAR ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) A__ = get_resize_output_image_size(__UpperCAmelCase ,size=size['shortest_edge'] ,default_to_square=__UpperCAmelCase ) return resize(__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> np.ndarray: A__ = get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(__UpperCAmelCase ,size=(size['height'], size['width']) ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> Optional[Any]: return rescale(__UpperCAmelCase ,scale=__UpperCAmelCase ,data_format=__UpperCAmelCase ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> np.ndarray: return flip_channel_order(__UpperCAmelCase ,data_format=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = ChannelDimension.FIRST ,**__UpperCAmelCase ,) -> PIL.Image.Image: A__ = do_resize if do_resize is not None else self.do_resize A__ = resample if resample is not None else self.resample A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) A__ = size if size is not None else self.size A__ = get_size_dict(__UpperCAmelCase ,default_to_square=__UpperCAmelCase ) A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(__UpperCAmelCase ,param_name='crop_size' ) A__ = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) # All transformations expect numpy arrays. A__ = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: A__ = [self.resize(image=__UpperCAmelCase ,size=__UpperCAmelCase ,resample=__UpperCAmelCase ) for image in images] if do_center_crop: A__ = [self.center_crop(image=__UpperCAmelCase ,size=__UpperCAmelCase ) for image in images] if do_rescale: A__ = [self.rescale(image=__UpperCAmelCase ,scale=__UpperCAmelCase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: A__ = [self.flip_channel_order(image=__UpperCAmelCase ) for image in images] A__ = [to_channel_dimension_format(__UpperCAmelCase ,__UpperCAmelCase ) for image in images] A__ = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase ,tensor_type=__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Union[str, Any]: A__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__UpperCAmelCase ): A__ = target_sizes.numpy() A__ = [] for idx in range(len(__UpperCAmelCase ) ): A__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=__UpperCAmelCase ) A__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: A__ = logits.argmax(dim=1 ) A__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
363
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__( __A , __A , __A , unittest.TestCase ): lowerCAmelCase__ : str = StableUnCLIPPipeline lowerCAmelCase__ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS lowerCAmelCase__ : Optional[Any] = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase__ : int = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false lowerCAmelCase__ : Optional[Any] = False def snake_case__ ( self ) -> List[Any]: A__ = 32 A__ = embedder_hidden_size # prior components torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__UpperCAmelCase ,projection_dim=__UpperCAmelCase ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) ) torch.manual_seed(0 ) A__ = PriorTransformer( num_attention_heads=2 ,attention_head_dim=12 ,embedding_dim=__UpperCAmelCase ,num_layers=1 ,) torch.manual_seed(0 ) A__ = DDPMScheduler( variance_type='fixed_small_log' ,prediction_type='sample' ,num_train_timesteps=10_00 ,clip_sample=__UpperCAmelCase ,clip_sample_range=5.0 ,beta_schedule='squaredcos_cap_v2' ,) # regular denoising components torch.manual_seed(0 ) A__ = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase ) A__ = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) A__ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) A__ = CLIPTextModel( CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=__UpperCAmelCase ,projection_dim=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=10_00 ,) ) torch.manual_seed(0 ) A__ = UNetaDConditionModel( sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') ,up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') ,block_out_channels=(32, 64) ,attention_head_dim=(2, 4) ,class_embed_type='projection' ,projection_class_embeddings_input_dim=embedder_projection_dim * 2 ,cross_attention_dim=__UpperCAmelCase ,layers_per_block=1 ,upcast_attention=__UpperCAmelCase ,use_linear_projection=__UpperCAmelCase ,) torch.manual_seed(0 ) A__ = DDIMScheduler( beta_schedule='scaled_linear' ,beta_start=0.0_0_0_8_5 ,beta_end=0.0_1_2 ,prediction_type='v_prediction' ,set_alpha_to_one=__UpperCAmelCase ,steps_offset=1 ,) torch.manual_seed(0 ) A__ = AutoencoderKL() A__ = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase=0 ) -> str: if str(__UpperCAmelCase ).startswith('mps' ): A__ = torch.manual_seed(__UpperCAmelCase ) else: A__ = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) A__ = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case__ ( self ) -> List[Any]: A__ = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase ) def snake_case__ ( self ) -> int: A__ = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase ) @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def snake_case__ ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> List[Any]: A__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = torch.Generator(device='cpu' ).manual_seed(0 ) A__ = pipe('anime turle' ,generator=__UpperCAmelCase ,output_type='np' ) A__ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__UpperCAmelCase ,__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A__ = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' ,torch_dtype=torch.floataa ) A__ = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() A__ = pipe( 'anime turtle' ,prior_num_inference_steps=2 ,num_inference_steps=2 ,output_type='np' ,) A__ = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
154
0
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a__ ( lowerCamelCase_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : str = ReformerTokenizer _SCREAMING_SNAKE_CASE : List[Any] = ReformerTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = True def _lowerCamelCase ( self ): """simple docstring""" super().setUp() _lowercase : Union[str, Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = "<s>" _lowercase : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCamelCase ) , _UpperCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCamelCase ) , _UpperCamelCase ) def _lowerCamelCase ( self ): """simple docstring""" _lowercase : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(_UpperCamelCase ) , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _lowerCamelCase ( self ): """simple docstring""" if not self.test_rust_tokenizer: return _lowercase : List[str] = self.get_tokenizer() _lowercase : int = self.get_rust_tokenizer() _lowercase : Optional[Any] = "I was born in 92000, and this is falsé." _lowercase : Union[str, Any] = tokenizer.tokenize(_UpperCamelCase ) _lowercase : int = rust_tokenizer.tokenize(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : Tuple = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) _lowercase : List[str] = self.get_rust_tokenizer() _lowercase : Optional[int] = tokenizer.encode(_UpperCamelCase ) _lowercase : Any = rust_tokenizer.encode(_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) def _lowerCamelCase ( self , _UpperCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # Simple input _lowercase : Union[str, Any] = "This is a simple input" _lowercase : Union[str, Any] = ["This is a simple input 1", "This is a simple input 2"] _lowercase : Any = ("This is a simple input", "This is a pair") _lowercase : List[str] = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Simple input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises(_UpperCamelCase , tokenizer_r.encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" ) # Pair input self.assertRaises( _UpperCamelCase , tokenizer_r.batch_encode_plus , _UpperCamelCase , max_length=_UpperCamelCase , padding="max_length" , ) def _lowerCamelCase ( self ): """simple docstring""" pass def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[Any] = ReformerTokenizer(_UpperCamelCase , keep_accents=_UpperCamelCase ) _lowercase : List[str] = tokenizer.tokenize("This is a test" ) self.assertListEqual(_UpperCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_UpperCamelCase ) , [285, 46, 10, 170, 382] , ) _lowercase : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _lowercase : str = tokenizer.convert_tokens_to_ids(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(_UpperCamelCase ) self.assertListEqual( _UpperCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def _lowerCamelCase ( self ): """simple docstring""" return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : int = "Hello World!" _lowercase : Optional[Any] = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Optional[int] = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _lowercase : Dict = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(_UpperCamelCase , self.big_tokenizer.encode(_UpperCamelCase ) ) @require_torch @slow def _lowerCamelCase ( self ): """simple docstring""" import torch from transformers import ReformerConfig, ReformerModel # Build sequence _lowercase : Any = list(self.big_tokenizer.get_vocab().keys() )[:10] _lowercase : Tuple = " ".join(_UpperCamelCase ) _lowercase : str = self.big_tokenizer.encode_plus(_UpperCamelCase , return_tensors="pt" ) _lowercase : List[Any] = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _lowercase : Optional[Any] = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _lowercase : str = encoded_sequence["input_ids"].shape _lowercase : Dict = ReformerModel(_UpperCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_UpperCamelCase ) model(**_UpperCamelCase ) @slow def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Union[str, Any] = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _lowercase : Optional[int] = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=_UpperCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=_UpperCamelCase , sequences=_UpperCamelCase , )
250
'''simple docstring''' from __future__ import annotations def _A ( snake_case ) -> float: _lowercase : Optional[Any] = 0.00 _lowercase : Dict = 0 for resistor in resistors: if resistor <= 0: _lowercase : Union[str, Any] = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(snake_case ) first_sum += 1 / float(snake_case ) index += 1 return 1 / first_sum def _A ( snake_case ) -> float: _lowercase : Dict = 0.00 _lowercase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _lowercase : Dict = F'''Resistor at index {index} has a negative value!''' raise ValueError(snake_case ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
250
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = inspect.getfile(accelerate.test_utils ) UpperCAmelCase_ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_cli.py"] ) UpperCAmelCase_ = ["accelerate", "launch"] UpperCAmelCase_ = Path.home() / ".cache/huggingface/accelerate" UpperCAmelCase_ = "default_config.yaml" UpperCAmelCase_ = config_folder / config_file UpperCAmelCase_ = config_folder / "_default_config.yaml" UpperCAmelCase_ = Path("tests/test_configs" ) @classmethod def A_ ( cls : List[Any] ) -> List[Any]: """simple docstring""" if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def A_ ( cls : Optional[int] ) -> List[str]: """simple docstring""" if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def A_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path], env=os.environ.copy() ) def A_ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" for config in sorted(self.test_config_path.glob("**/*.yaml" ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ["--config_file", str(_UpperCAmelCase ), self.test_file_path], env=os.environ.copy() ) def A_ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" execute_subprocess_async(["accelerate", "test"], env=os.environ.copy() ) class lowerCamelCase (unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = "test-tpu" UpperCAmelCase_ = "us-central1-a" UpperCAmelCase_ = "ls" UpperCAmelCase_ = ["accelerate", "tpu-config"] UpperCAmelCase_ = "cd /usr/share" UpperCAmelCase_ = "tests/test_samples/test_command_file.sh" UpperCAmelCase_ = "Running gcloud compute tpus tpu-vm ssh" def A_ ( self : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ["--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug"], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''', _UpperCAmelCase, ) def A_ ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command", self.command, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''', _UpperCAmelCase, ) def A_ ( self : List[str] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--debug"], return_stdout=_UpperCAmelCase ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''', _UpperCAmelCase, ) def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--debug"], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''', _UpperCAmelCase, ) def A_ ( self : int ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--command", self.command, "--command", "echo \"Hello World\"", "--debug", ], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''', _UpperCAmelCase, ) def A_ ( self : Dict ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--command_file", self.command_file, "--debug"], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''', _UpperCAmelCase, ) def A_ ( self : Tuple ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ "--config_file", "tests/test_configs/0_12_0.yaml", "--command_file", self.command_file, "--tpu_zone", self.tpu_zone, "--tpu_name", self.tpu_name, "--debug", ], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''', _UpperCAmelCase, ) def A_ ( self : int ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ["--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--debug"], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''', _UpperCAmelCase, ) def A_ ( self : List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + [ "--config_file", "tests/test_configs/latest.yaml", "--install_accelerate", "--accelerate_version", "12.0.0", "--debug", ], return_stdout=_UpperCAmelCase, ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''', _UpperCAmelCase, )
191
def _a ( SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("'float' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("'str' object cannot be interpreted as an integer" ) if num == 0: return "0b0" SCREAMING_SNAKE_CASE__ : Union[str, Any] = False if num < 0: SCREAMING_SNAKE_CASE__ : Any = True SCREAMING_SNAKE_CASE__ : Union[str, Any] = -num SCREAMING_SNAKE_CASE__ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE__ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
191
1
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class _snake_case ( __snake_case ): '''simple docstring''' A__ : int = (DDIMParallelScheduler,) A__ : Optional[int] = (("eta", 0.0), ("num_inference_steps", 50)) def A__ ( self: Tuple ,**lowerCamelCase_: Tuple ) -> List[Any]: UpperCAmelCase_ : List[Any] = { """num_train_timesteps""": 1000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """clip_sample""": True, } config.update(**_lowerCAmelCase ) return config def A__ ( self: Optional[Any] ,**lowerCamelCase_: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : List[str] = self.scheduler_classes[0] UpperCAmelCase_ : Union[str, Any] = self.get_scheduler_config(**_lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = scheduler_class(**_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 10, 0.0 UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(_lowerCAmelCase ) for t in scheduler.timesteps: UpperCAmelCase_ : int = model(_lowerCAmelCase ,_lowerCAmelCase ) UpperCAmelCase_ : Tuple = scheduler.step(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ).prev_sample return sample def A__ ( self: str ) -> Dict: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def A__ ( self: Optional[Any] ) -> Optional[Any]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=_lowerCAmelCase ) UpperCAmelCase_ : Any = self.scheduler_classes[0] UpperCAmelCase_ : Dict = self.get_scheduler_config(steps_offset=1 ) UpperCAmelCase_ : List[Any] = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def A__ ( self: List[Any] ) -> List[str]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] ,[0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=_lowerCAmelCase ,beta_end=_lowerCAmelCase ) def A__ ( self: Optional[Any] ) -> Tuple: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowerCAmelCase ) def A__ ( self: Tuple ) -> int: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def A__ ( self: Union[str, Any] ) -> Dict: for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def A__ ( self: Optional[int] ) -> Optional[int]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=_lowerCAmelCase ) def A__ ( self: Dict ) -> Dict: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=_lowerCAmelCase ) def A__ ( self: Tuple ) -> List[str]: self.check_over_configs(thresholding=_lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=_lowerCAmelCase ,prediction_type=_lowerCAmelCase ,sample_max_value=_lowerCAmelCase ,) def A__ ( self: Optional[Any] ) -> Optional[Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=_lowerCAmelCase ) def A__ ( self: int ) -> List[str]: for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=_lowerCAmelCase ,num_inference_steps=_lowerCAmelCase ) def A__ ( self: Any ) -> Optional[int]: for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=_lowerCAmelCase ,eta=_lowerCAmelCase ) def A__ ( self: Union[str, Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.scheduler_classes[0] UpperCAmelCase_ : Tuple = self.get_scheduler_config() UpperCAmelCase_ : str = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_4_7_7_1 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_2_4_6_0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.0_2 ) ) < 1e-5 def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.scheduler_classes[0] UpperCAmelCase_ : Any = self.get_scheduler_config() UpperCAmelCase_ : Tuple = scheduler_class(**_lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = 10, 0.0 scheduler.set_timesteps(_lowerCAmelCase ) UpperCAmelCase_ : List[str] = self.dummy_model() UpperCAmelCase_ : Tuple = self.dummy_sample_deter UpperCAmelCase_ : List[str] = self.dummy_sample_deter + 0.1 UpperCAmelCase_ : Tuple = self.dummy_sample_deter - 0.1 UpperCAmelCase_ : str = samplea.shape[0] UpperCAmelCase_ : Any = torch.stack([samplea, samplea, samplea] ,dim=0 ) UpperCAmelCase_ : Tuple = torch.arange(_lowerCAmelCase )[0:3, None].repeat(1 ,_lowerCAmelCase ) UpperCAmelCase_ : List[str] = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) UpperCAmelCase_ : List[str] = scheduler.batch_step_no_noise(_lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,_lowerCAmelCase ) UpperCAmelCase_ : str = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ : Optional[Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_1_4_7.7_9_0_4 ) < 1e-2 assert abs(result_mean.item() - 0.4_9_8_2 ) < 1e-3 def A__ ( self: Union[str, Any] ) -> Dict: UpperCAmelCase_ : str = self.full_loop() UpperCAmelCase_ : Dict = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ : Any = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_7_2.0_0_6_7 ) < 1e-2 assert abs(result_mean.item() - 0.2_2_3_9_6_7 ) < 1e-3 def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = self.full_loop(prediction_type="""v_prediction""" ) UpperCAmelCase_ : Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ : Dict = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 5_2.5_3_0_2 ) < 1e-2 assert abs(result_mean.item() - 0.0_6_8_4 ) < 1e-3 def A__ ( self: Optional[int] ) -> Tuple: UpperCAmelCase_ : Optional[Any] = self.full_loop(set_alpha_to_one=_lowerCAmelCase ,beta_start=0.0_1 ) UpperCAmelCase_ : Optional[Any] = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ : str = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_4_9.8_2_9_5 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_5_1 ) < 1e-3 def A__ ( self: Tuple ) -> Optional[Any]: UpperCAmelCase_ : Dict = self.full_loop(set_alpha_to_one=_lowerCAmelCase ,beta_start=0.0_1 ) UpperCAmelCase_ : Optional[int] = torch.sum(torch.abs(_lowerCAmelCase ) ) UpperCAmelCase_ : Union[str, Any] = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 1_4_9.0_7_8_4 ) < 1e-2 assert abs(result_mean.item() - 0.1_9_4_1 ) < 1e-3
345
'''simple docstring''' import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" if (ksize % 2) == 0: __lowercase =ksize + 1 __lowercase =np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(_lowerCAmelCase ): for x in range(_lowerCAmelCase ): # distance from center __lowercase =x - ksize // 2 __lowercase =y - ksize // 2 # degree to radiant __lowercase =theta / 180 * np.pi __lowercase =np.cos(_theta ) __lowercase =np.sin(_theta ) # get kernel x __lowercase =cos_theta * px + sin_theta * py # get kernel y __lowercase =-sin_theta * px + cos_theta * py # fill kernel __lowercase =np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCamelCase = imread("""../image_data/lena.jpg""") # turn image in gray scale value lowerCamelCase = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCamelCase = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCamelCase = out / out.max() * 255 lowerCamelCase = out.astype(np.uinta) imshow("""Original""", gray) imshow("""Gabor filter with 20x20 mask and 6 directions""", out) waitKey(0)
166
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCamelCase_ = logging.get_logger(__name__) class a_ ( enum.Enum ): '''simple docstring''' __a: str = 0 __a: Dict = 1 @add_end_docstrings(__UpperCamelCase ) class a_ ( __UpperCamelCase ): '''simple docstring''' __a: List[str] = "generated" def __init__( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def _lowercase ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , **lowercase_ , ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = {} if truncation is not None: lowerCAmelCase_ = truncation lowerCAmelCase_ = generate_kwargs lowerCAmelCase_ = {} if return_tensors is not None and return_type is None: lowerCAmelCase_ = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: lowerCAmelCase_ = return_type if clean_up_tokenization_spaces is not None: lowerCAmelCase_ = clean_up_tokenization_spaces if stop_sequence is not None: lowerCAmelCase_ = self.tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) if len(_lowerCAmelCase ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) lowerCAmelCase_ = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> int: '''simple docstring''' return True def _lowercase ( self , *lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' lowerCAmelCase_ = self.model.config.prefix if self.model.config.prefix is not None else """""" if isinstance(args[0] , _lowerCAmelCase ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) lowerCAmelCase_ = ([prefix + arg for arg in args[0]],) lowerCAmelCase_ = True elif isinstance(args[0] , _lowerCAmelCase ): lowerCAmelCase_ = (prefix + args[0],) lowerCAmelCase_ = False else: raise ValueError( f''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) lowerCAmelCase_ = self.tokenizer(*_lowerCAmelCase , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *lowercase_ , **lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) if ( isinstance(args[0] , _lowerCAmelCase ) and all(isinstance(_lowerCAmelCase , _lowerCAmelCase ) for el in args[0] ) and all(len(_lowerCAmelCase ) == 1 for res in result ) ): return [res[0] for res in result] return result def _lowercase ( self , lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , **lowercase_ ) -> List[str]: '''simple docstring''' lowerCAmelCase_ = self._parse_and_tokenize(_lowerCAmelCase , truncation=_lowerCAmelCase , **_lowerCAmelCase ) return inputs def _lowercase ( self , lowercase_ , **lowercase_ ) -> Optional[int]: '''simple docstring''' if self.framework == "pt": lowerCAmelCase_ = model_inputs["""input_ids"""].shape elif self.framework == "tf": lowerCAmelCase_ = tf.shape(model_inputs['input_ids'] ).numpy() lowerCAmelCase_ = generate_kwargs.get('min_length' , self.model.config.min_length ) lowerCAmelCase_ = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(_lowerCAmelCase , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) lowerCAmelCase_ = self.model.generate(**_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase_ = output_ids.shape[0] if self.framework == "pt": lowerCAmelCase_ = output_ids.reshape(_lowerCAmelCase , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": lowerCAmelCase_ = tf.reshape(_lowerCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def _lowercase ( self , lowercase_ , lowercase_=ReturnType.TEXT , lowercase_=False ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase_ = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: lowerCAmelCase_ = {f'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: lowerCAmelCase_ = { f'''{self.return_name}_text''': self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , clean_up_tokenization_spaces=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records @add_end_docstrings(__UpperCamelCase ) class a_ ( __UpperCamelCase ): '''simple docstring''' __a: int = "summary" def __call__( self , *lowercase_ , **lowercase_ ) -> List[str]: '''simple docstring''' return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase ) def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Any: '''simple docstring''' if max_length < min_length: logger.warning(f'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( f'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' f'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(__UpperCamelCase ) class a_ ( __UpperCamelCase ): '''simple docstring''' __a: Tuple = "translation" def _lowercase ( self , lowercase_ , lowercase_ , lowercase_ ) -> Dict: '''simple docstring''' if input_length > 0.9 * max_length: logger.warning( f'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def _lowercase ( self , *lowercase_ , lowercase_=TruncationStrategy.DO_NOT_TRUNCATE , lowercase_=None , lowercase_=None ) -> Any: '''simple docstring''' if getattr(self.tokenizer , '_build_translation_inputs' , _lowerCAmelCase ): return self.tokenizer._build_translation_inputs( *_lowerCAmelCase , return_tensors=self.framework , truncation=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase ) else: return super()._parse_and_tokenize(*_lowerCAmelCase , truncation=_lowerCAmelCase ) def _lowercase ( self , lowercase_=None , lowercase_=None , **lowercase_ ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase_ = super()._sanitize_parameters(**_lowerCAmelCase ) if src_lang is not None: lowerCAmelCase_ = src_lang if tgt_lang is not None: lowerCAmelCase_ = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. lowerCAmelCase_ = kwargs.get('task' , self.task ) lowerCAmelCase_ = task.split('_' ) if task and len(_lowerCAmelCase ) == 4: # translation, XX, to YY lowerCAmelCase_ = items[1] lowerCAmelCase_ = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *lowercase_ , **lowercase_ ) -> str: '''simple docstring''' return super().__call__(*_lowerCAmelCase , **_lowerCAmelCase )
369
from maths.prime_factors import prime_factors def lowerCamelCase ( a_ ) -> int: if not isinstance(a_ , a_ ): lowerCAmelCase_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(a_ ) if number < 1: raise ValueError('Input must be a positive integer' ) return -1 if len(prime_factors(a_ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
14
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class a ( unittest.TestCase ): def A_ ( self : str , lowercase_ : List[str] ): snake_case_ = 3 snake_case_ = 250 snake_case_ = ids_tensor((batch_size, length) , lowercase_ ) snake_case_ = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def A_ ( self : List[Any] ): snake_case_ ,snake_case_ = self._get_tensors(5 ) snake_case_ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def A_ ( self : str ): snake_case_ = MaxLengthCriteria(max_length=10 ) snake_case_ ,snake_case_ = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def A_ ( self : Optional[Any] ): snake_case_ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) snake_case_ ,snake_case_ = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ ,snake_case_ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) snake_case_ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def A_ ( self : List[Any] ): snake_case_ ,snake_case_ = self._get_tensors(5 ) snake_case_ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) snake_case_ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def A_ ( self : Dict ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) snake_case_ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
56
'''simple docstring''' from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase : Optional[int] = logging.get_logger(__name__) class A ( __snake_case ): __magic_name__ = ['''input_features''', '''attention_mask'''] def __init__( self , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=16000 , SCREAMING_SNAKE_CASE=80 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> int: """simple docstring""" super().__init__(feature_size=SCREAMING_SNAKE_CASE , sampling_rate=SCREAMING_SNAKE_CASE , padding_value=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) A : Optional[int] = num_mel_bins A : Tuple = do_ceptral_normalize A : Dict = normalize_means A : List[Any] = normalize_vars A : List[str] = True def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" A : List[Any] = waveform * (2**15) # Kaldi compliance: 16-bit signed integers A : Any = torch.from_numpy(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) A : Any = ta_kaldi.fbank(SCREAMING_SNAKE_CASE , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate ) return features.numpy() @staticmethod def __lowerCAmelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = 0.0 , ) -> np.ndarray: """simple docstring""" if normalize_means: A : Dict = x[:input_length].mean(axis=0 ) A : Optional[Any] = np.subtract(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if normalize_vars: A : str = x[:input_length].std(axis=0 ) A : int = np.divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if input_length < x.shape[0]: A : List[str] = padding_value # make sure array is in float32 A : Tuple = x.astype(np.floataa ) return x def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[np.ndarray]: """simple docstring""" A : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.normalize_means , self.normalize_vars , self.padding_value ) for x, n in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ] def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) A : List[Any] = isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) A : Tuple = is_batched_numpy or ( isinstance(SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ): A : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A : Any = [raw_speech] # extract fbank features A : List[str] = [self._extract_fbank_features(SCREAMING_SNAKE_CASE ) for waveform in raw_speech] # convert into correct format for padding A : str = BatchFeature({'''input_features''': features} ) A : Union[str, Any] = self.pad( SCREAMING_SNAKE_CASE , padding=SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , pad_to_multiple_of=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) # make sure list is in array format A : List[str] = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , SCREAMING_SNAKE_CASE ): A : str = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_features] A : Union[str, Any] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: A : Union[str, Any] = [np.asarray(SCREAMING_SNAKE_CASE , dtype=np.intaa ) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: A : Dict = ( np.array(SCREAMING_SNAKE_CASE , dtype=np.intaa ) if self._get_padding_strategies(SCREAMING_SNAKE_CASE , max_length=SCREAMING_SNAKE_CASE ) is not PaddingStrategy.DO_NOT_PAD else None ) A : List[Any] = self.normalize( padded_inputs['''input_features'''] , attention_mask=SCREAMING_SNAKE_CASE ) if return_tensors is not None: A : int = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE ) return padded_inputs
3
0
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor __A = logging.get_logger(__name__) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , *lowerCamelCase__ , **lowerCamelCase__ ) -> None: '''simple docstring''' warnings.warn( 'The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use SegformerImageProcessor instead.' , lowerCamelCase__ , ) super().__init__(*lowerCamelCase__ , **lowerCamelCase__ )
358
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) snake_case_ = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) snake_case_ = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def lowercase_ ( self ) -> Dict[str, str]: '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
348
0
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCamelCase__ : Any = logging.get_logger(__name__) class _lowerCAmelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self , _lowerCamelCase=None , **_lowerCamelCase ) -> Optional[int]: warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(args=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
344
import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor __A : Dict = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )-> None: warnings.warn( """The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use DeiTImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
154
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """microsoft/layoutlmv3-base""": """https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : str = """layoutlmv3""" def __init__( self , _A=5_0_2_6_5 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=2 , _A=0.02 , _A=1E-5 , _A=1 , _A=0 , _A=2 , _A=1_0_2_4 , _A=1_2_8 , _A=1_2_8 , _A=True , _A=3_2 , _A=1_2_8 , _A=6_4 , _A=2_5_6 , _A=True , _A=True , _A=True , _A=2_2_4 , _A=3 , _A=1_6 , _A=None , **_A , ): """simple docstring""" super().__init__( vocab_size=_A , hidden_size=_A , num_hidden_layers=_A , num_attention_heads=_A , intermediate_size=_A , hidden_act=_A , hidden_dropout_prob=_A , attention_probs_dropout_prob=_A , max_position_embeddings=_A , type_vocab_size=_A , initializer_range=_A , layer_norm_eps=_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A , ) __lowerCAmelCase = max_ad_position_embeddings __lowerCAmelCase = coordinate_size __lowerCAmelCase = shape_size __lowerCAmelCase = has_relative_attention_bias __lowerCAmelCase = rel_pos_bins __lowerCAmelCase = max_rel_pos __lowerCAmelCase = has_spatial_attention_bias __lowerCAmelCase = rel_ad_pos_bins __lowerCAmelCase = max_rel_ad_pos __lowerCAmelCase = text_embed __lowerCAmelCase = visual_embed __lowerCAmelCase = input_size __lowerCAmelCase = num_channels __lowerCAmelCase = patch_size __lowerCAmelCase = classifier_dropout class a__ ( snake_case__ ): _a : Tuple = version.parse("""1.12""" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) else: return OrderedDict( [ ("input_ids", {0: "batch", 1: "sequence"}), ("bbox", {0: "batch", 1: "sequence"}), ("attention_mask", {0: "batch", 1: "sequence"}), ("pixel_values", {0: "batch", 1: "num_channels"}), ] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1E-5 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1_2 def __SCREAMING_SNAKE_CASE( self , _A , _A = -1 , _A = -1 , _A = False , _A = None , _A = 3 , _A = 4_0 , _A = 4_0 , ): """simple docstring""" setattr(processor.image_processor , "apply_ocr" , _A ) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCAmelCase = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCAmelCase = processor.tokenizer.num_special_tokens_to_add(_A ) __lowerCAmelCase = compute_effective_axis_dimension( _A , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_A ) # Generate dummy inputs according to compute batch and sequence __lowerCAmelCase = [[" ".join([processor.tokenizer.unk_token] ) * seq_length]] * batch_size # Generate dummy bounding boxes __lowerCAmelCase = [[[4_8, 8_4, 7_3, 1_2_8]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) __lowerCAmelCase = self._generate_dummy_images(_A , _A , _A , _A ) __lowerCAmelCase = dict( processor( _A , text=_A , boxes=_A , return_tensors=_A , ) ) return inputs
361
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : Dict = """mgp-str""" def __init__( self , _A=[3_2, 1_2_8] , _A=4 , _A=3 , _A=2_7 , _A=3_8 , _A=5_0_2_5_7 , _A=3_0_5_2_2 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=4.0 , _A=True , _A=False , _A=1E-5 , _A=0.0 , _A=0.0 , _A=0.0 , _A=False , _A=0.02 , **_A , ): """simple docstring""" super().__init__(**_A ) __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = max_token_length __lowerCAmelCase = num_character_labels __lowerCAmelCase = num_bpe_labels __lowerCAmelCase = num_wordpiece_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = mlp_ratio __lowerCAmelCase = distilled __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = drop_rate __lowerCAmelCase = qkv_bias __lowerCAmelCase = attn_drop_rate __lowerCAmelCase = drop_path_rate __lowerCAmelCase = output_aa_attentions __lowerCAmelCase = initializer_range
102
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : int = '''encoder-decoder''' SCREAMING_SNAKE_CASE_ : List[str] = True def __init__( self ,**SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __SCREAMING_SNAKE_CASE :str = kwargs.pop('''encoder''' ) __SCREAMING_SNAKE_CASE :int = encoder_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE :Tuple = kwargs.pop('''decoder''' ) __SCREAMING_SNAKE_CASE :List[Any] = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __SCREAMING_SNAKE_CASE :Union[str, Any] = AutoConfig.for_model(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = AutoConfig.for_model(SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Tuple = True @classmethod def _UpperCamelCase ( cls ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> PretrainedConfig: """simple docstring""" logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __SCREAMING_SNAKE_CASE :int = True __SCREAMING_SNAKE_CASE :Tuple = True return cls(encoder=encoder_config.to_dict() ,decoder=decoder_config.to_dict() ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE :Tuple = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE :Union[str, Any] = self.encoder.to_dict() __SCREAMING_SNAKE_CASE :int = self.decoder.to_dict() __SCREAMING_SNAKE_CASE :str = self.__class__.model_type return output
191
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ) -> Any: __SCREAMING_SNAKE_CASE :Tuple = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=a_ ) __SCREAMING_SNAKE_CASE :str = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=a_ ) env_command_parser(subparsers=a_ ) launch_command_parser(subparsers=a_ ) tpu_command_parser(subparsers=a_ ) test_command_parser(subparsers=a_ ) # Let's go __SCREAMING_SNAKE_CASE :int = parser.parse_args() if not hasattr(a_ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(a_ ) if __name__ == "__main__": main()
191
1
def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase=False ): if isinstance(__lowerCamelCase, __lowerCamelCase ) and isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : str = len(set_a.intersection(__lowerCamelCase ) ) if alternative_union: _SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase ) + len(__lowerCamelCase ) else: _SCREAMING_SNAKE_CASE : Any = len(set_a.union(__lowerCamelCase ) ) return intersection / union if isinstance(__lowerCamelCase, (list, tuple) ) and isinstance(__lowerCamelCase, (list, tuple) ): _SCREAMING_SNAKE_CASE : str = [element for element in set_a if element in set_b] if alternative_union: _SCREAMING_SNAKE_CASE : Optional[int] = len(__lowerCamelCase ) + len(__lowerCamelCase ) return len(__lowerCamelCase ) / union else: _SCREAMING_SNAKE_CASE : Optional[int] = set_a + [element for element in set_b if element not in set_a] return len(__lowerCamelCase ) / len(__lowerCamelCase ) return len(__lowerCamelCase ) / len(__lowerCamelCase ) return None if __name__ == "__main__": UpperCamelCase__ ={'a', 'b', 'c', 'd', 'e'} UpperCamelCase__ ={'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
355
import numpy as np import datasets UpperCamelCase__ ='\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' UpperCamelCase__ ='\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' UpperCamelCase__ ='\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase__( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "X": datasets.Sequence(datasets.Value("float" , id="sequence" ) , id="X" ), } ) , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> int: # convert to numpy arrays _SCREAMING_SNAKE_CASE : Dict = np.array(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.array(__lowerCamelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("Expected `X` to be a 2D vector" ) if len(reference_distribution.shape ) != 2: raise ValueError("Expected `reference_distribution` to be a 2D vector" ) if reference_distribution.shape[0] < 2: raise ValueError( "Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension" ) # Get mahalanobis distance for each prediction _SCREAMING_SNAKE_CASE : Any = X - np.mean(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.cov(reference_distribution.T ) try: _SCREAMING_SNAKE_CASE : Optional[int] = np.linalg.inv(__lowerCamelCase ) except np.linalg.LinAlgError: _SCREAMING_SNAKE_CASE : List[str] = np.linalg.pinv(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = np.dot(__lowerCamelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
325
0
import pytest from datasets.utils.sharding import _distribute_shards, _number_of_shards_in_gen_kwargs, _split_gen_kwargs @pytest.mark.parametrize( """kwargs, expected""" , [ ({"""num_shards""": 0, """max_num_jobs""": 1}, []), ({"""num_shards""": 10, """max_num_jobs""": 1}, [range(10 )]), ({"""num_shards""": 10, """max_num_jobs""": 10}, [range(SCREAMING_SNAKE_CASE__ , i + 1 ) for i in range(10 )]), ({"""num_shards""": 1, """max_num_jobs""": 10}, [range(1 )]), ({"""num_shards""": 10, """max_num_jobs""": 3}, [range(0 , 4 ), range(4 , 7 ), range(7 , 10 )]), ({"""num_shards""": 3, """max_num_jobs""": 10}, [range(0 , 1 ), range(1 , 2 ), range(2 , 3 )]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Tuple = _distribute_shards(**SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, max_num_jobs, expected""" , [ ({"""foo""": 0}, 10, [{"""foo""": 0}]), ({"""shards""": [0, 1, 2, 3]}, 1, [{"""shards""": [0, 1, 2, 3]}]), ({"""shards""": [0, 1, 2, 3]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}, {"""shards""": [2]}, {"""shards""": [3]}]), ({"""shards""": [0, 1]}, 4, [{"""shards""": [0]}, {"""shards""": [1]}]), ({"""shards""": [0, 1, 2, 3]}, 2, [{"""shards""": [0, 1]}, {"""shards""": [2, 3]}]), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Optional[int] = _split_gen_kwargs(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert out == expected @pytest.mark.parametrize( """gen_kwargs, expected""" , [ ({"""foo""": 0}, 1), ({"""shards""": [0]}, 1), ({"""shards""": [0, 1, 2, 3]}, 4), ({"""shards""": [0, 1, 2, 3], """foo""": 0}, 4), ({"""shards""": [0, 1, 2, 3], """other""": (0, 1)}, 4), ({"""shards""": [0, 1, 2, 3], """shards2""": [0, 1]}, RuntimeError), ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if expected is RuntimeError: with pytest.raises(SCREAMING_SNAKE_CASE__ ): _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) else: lowercase : str = _number_of_shards_in_gen_kwargs(SCREAMING_SNAKE_CASE__ ) assert out == expected
20
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = args.log_outputs A__ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric A__ = load_metric('''wer''' ) A__ = load_metric('''cer''' ) # compute metrics A__ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) A__ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results A__ = f"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(f"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: A__ = f"""log_{dataset_id}_predictions.txt""" A__ = f"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ , lowercase_ ): p.write(f"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training A__ = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! A__ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: A__ = ''' '''.join(text.split(lowercase_ ) ) return text def SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[str]: """simple docstring""" A__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor A__ = AutoFeatureExtractor.from_pretrained(args.model_id ) A__ = feature_extractor.sampling_rate # resample audio A__ = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: A__ = 0 if torch.cuda.is_available() else -1 A__ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ ): A__ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) A__ = prediction['''text'''] A__ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples A__ = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( """--model_id""", type=str, required=True, help="""Model identifier. Should be loadable with 🤗 Transformers""" ) parser.add_argument( """--dataset""", type=str, required=True, help="""Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets""", ) parser.add_argument( """--config""", type=str, required=True, help="""Config of the dataset. *E.g.* `'en'` for Common Voice""" ) parser.add_argument("""--split""", type=str, required=True, help="""Split of the dataset. *E.g.* `'test'`""") parser.add_argument( """--chunk_length_s""", type=float, default=None, help="""Chunk length in seconds. Defaults to 5 seconds.""" ) parser.add_argument( """--stride_length_s""", type=float, default=None, help="""Stride of the audio chunks. Defaults to 1 second.""" ) parser.add_argument( """--log_outputs""", action="""store_true""", help="""If defined, write outputs to log file for analysis.""" ) parser.add_argument( """--device""", type=int, default=None, help="""The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.""", ) _lowerCamelCase : str = parser.parse_args() main(args)
14
0
def _snake_case ( lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _snake_case ( ) -> None: '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
359
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
1
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def lowercase_ ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : int , lowerCAmelCase__ : List[str] ): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__lowerCAmelCase , """rb""" ) as fp: __UpperCAmelCase : Optional[int] = pickle.load(__lowerCAmelCase , encoding="""latin1""" ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __UpperCAmelCase : str = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(f'Save vocabulary to {pytorch_vocab_dump_path}' ) __UpperCAmelCase : int = corpus.vocab.__dict__ torch.save(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : Any = corpus.__dict__ corpus_dict_no_vocab.pop("""vocab""" , __lowerCAmelCase ) __UpperCAmelCase : int = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __UpperCAmelCase : List[Any] = os.path.abspath(__lowerCAmelCase ) __UpperCAmelCase : int = os.path.abspath(__lowerCAmelCase ) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __UpperCAmelCase : int = TransfoXLConfig() else: __UpperCAmelCase : Dict = TransfoXLConfig.from_json_file(__lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __UpperCAmelCase : Dict = TransfoXLLMHeadModel(__lowerCAmelCase ) __UpperCAmelCase : Union[str, Any] = load_tf_weights_in_transfo_xl(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # Save pytorch-model __UpperCAmelCase : Dict = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase : Tuple = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) print(f'Save PyTorch model to {os.path.abspath(__lowerCAmelCase )}' ) torch.save(model.state_dict() , __lowerCAmelCase ) print(f'Save configuration file to {os.path.abspath(__lowerCAmelCase )}' ) with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
254
import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __snake_case : def __init__( self , snake_case__ , snake_case__=14 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=4 , snake_case__=4 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : str =parent UpperCAmelCase : Tuple =batch_size UpperCAmelCase : Optional[int] =seq_length UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[Any] =use_token_type_ids UpperCAmelCase : Optional[Any] =use_labels UpperCAmelCase : Union[str, Any] =vocab_size UpperCAmelCase : List[Any] =hidden_size UpperCAmelCase : Optional[int] =rotary_dim UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Dict =intermediate_size UpperCAmelCase : Union[str, Any] =hidden_act UpperCAmelCase : Any =hidden_dropout_prob UpperCAmelCase : Dict =attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] =max_position_embeddings UpperCAmelCase : str =initializer_range UpperCAmelCase : Optional[int] =None UpperCAmelCase : List[Any] =vocab_size - 1 UpperCAmelCase : Optional[Any] =vocab_size - 1 UpperCAmelCase : List[Any] =vocab_size - 1 def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[Any] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Dict =GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=snake_case__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Tuple =self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] =config_and_inputs UpperCAmelCase : Tuple ={'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =20 UpperCAmelCase : Any =model_class_name(snake_case__ ) UpperCAmelCase : str =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : Any =jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : List[str] =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : Optional[Any] =model( input_ids[:, -1:] , attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , position_ids=snake_case__ , ) UpperCAmelCase : List[Any] =model(snake_case__ ) UpperCAmelCase : Any =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict =20 UpperCAmelCase : Dict =model_class_name(snake_case__ ) UpperCAmelCase : Tuple =jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) UpperCAmelCase : Dict =model.init_cache(input_ids.shape[0] , snake_case__ ) UpperCAmelCase : int =jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) UpperCAmelCase : Optional[Any] =model( input_ids[:, :-1] , attention_mask=snake_case__ , past_key_values=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase : str =model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=snake_case__ , position_ids=snake_case__ , ) UpperCAmelCase : Any =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Dict =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f'''Max diff is {diff}''' ) @require_flax class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Tuple = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowerCamelCase : Optional[Any] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Union[str, Any] =FlaxGPTJModelTester(self ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) @tooslow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Tuple =GPTaTokenizer.from_pretrained('''gpt2''' , pad_token='''<|endoftext|>''' , padding_side='''left''' ) UpperCAmelCase : Optional[Any] =tokenizer(['''Hello this is a long string''', '''Hey'''] , return_tensors='''np''' , padding=snake_case__ , truncation=snake_case__ ) UpperCAmelCase : Optional[int] =FlaxGPTJForCausalLM.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : str =False UpperCAmelCase : Union[str, Any] =model.config.eos_token_id UpperCAmelCase : List[Any] =jax.jit(model.generate ) UpperCAmelCase : Dict =jit_generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , pad_token_id=tokenizer.pad_token_id ).sequences UpperCAmelCase : Any =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello this is a long string of text.\n\nI\'m trying to get the text of the''', '''Hey, I\'m a little late to the party. I\'m going to''', ] self.assertListEqual(snake_case__ , snake_case__ ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : Any =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : Any =getattr(snake_case__ , snake_case__ ) UpperCAmelCase , UpperCAmelCase : Union[str, Any] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Tuple =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : int =0 UpperCAmelCase : Optional[int] =1 UpperCAmelCase : Optional[int] =0 UpperCAmelCase : Union[str, Any] =1 UpperCAmelCase : List[str] =pt_model_class(snake_case__ ).eval() UpperCAmelCase : Optional[int] =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Any =convert_pytorch_state_dict_to_flax(pt_model.state_dict() , snake_case__ ) UpperCAmelCase : Union[str, Any] =fx_state with torch.no_grad(): UpperCAmelCase : Any =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : Dict =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(snake_case__ ) UpperCAmelCase : str =model_class.from_pretrained(snake_case__ , from_pt=snake_case__ ) UpperCAmelCase : int =fx_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output_loaded, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @is_pt_flax_cross_test def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs UpperCAmelCase : Union[str, Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] ={k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCAmelCase : int =model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCAmelCase : int =getattr(snake_case__ , snake_case__ ) UpperCAmelCase : Dict =pt_model_class(snake_case__ ).eval() UpperCAmelCase : str =model_class(snake_case__ , dtype=jnp.floataa ) UpperCAmelCase : Optional[Any] =load_flax_weights_in_pytorch_model(snake_case__ , fx_model.params ) UpperCAmelCase , UpperCAmelCase : Optional[int] =pt_inputs['''input_ids'''].shape UpperCAmelCase : Optional[int] =np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(snake_case__ ): UpperCAmelCase : str =0 UpperCAmelCase : Any =1 UpperCAmelCase : List[Any] =0 UpperCAmelCase : Tuple =1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCAmelCase : Optional[Any] =pt_model(**snake_case__ ).to_tuple() UpperCAmelCase : List[Any] =fx_model(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(snake_case__ ) UpperCAmelCase : Tuple =pt_model_class.from_pretrained(snake_case__ , from_flax=snake_case__ ) with torch.no_grad(): UpperCAmelCase : Any =pt_model_loaded(**snake_case__ ).to_tuple() self.assertEqual( len(snake_case__ ) , len(snake_case__ ) , '''Output lengths differ between Flax and PyTorch''' ) for fx_output, pt_output in zip(snake_case__ , snake_case__ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2 ) @tooslow def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : str =model_class_name.from_pretrained('''EleutherAI/gpt-j-6B''' ) UpperCAmelCase : Tuple =model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case__ )
348
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : int = { '''google/vivit-b-16x2-kinetics400''': ( '''https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json''' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class UpperCamelCase_ ( a_ ): _A : Any = 'vivit' def __init__( self , snake_case__=2_24 , snake_case__=32 , snake_case__=[2, 16, 16] , snake_case__=3 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu_fast" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1e-06 , snake_case__=True , **snake_case__ , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = num_frames UpperCAmelCase = tubelet_size UpperCAmelCase = num_channels UpperCAmelCase = qkv_bias super().__init__(**snake_case__ )
248
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCamelCase_ ( a_ ): def __init__( self , *snake_case__ , snake_case__=None , snake_case__=None , **snake_case__ ) -> Optional[Any]: """simple docstring""" super().__init__(*snake_case__ , **snake_case__ ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def UpperCamelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=None , snake_case__ = "eval" ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(snake_case__ ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(snake_case__ ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , snake_case__ ) return metrics def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__=None , snake_case__ = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(snake_case__ ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( snake_case__ , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=snake_case__ , metric_key_prefix=snake_case__ , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( snake_case__ , snake_case__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(snake_case__ , snake_case__ , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(snake_case__ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): UpperCAmelCase = metrics.pop(snake_case__ ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=snake_case__ )
248
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCamelCase__ : Optional[int] = logging.get_logger(__name__) class lowerCamelCase_ ( __snake_case ): '''simple docstring''' lowercase_ = ["input_values", "attention_mask"] def __init__( self : Optional[int] , _lowerCAmelCase : Any = 1 , _lowerCAmelCase : Any = 16_000 , _lowerCAmelCase : Optional[int] = 0.0 , _lowerCAmelCase : Any = False , _lowerCAmelCase : int = 80 , _lowerCAmelCase : Dict = 16 , _lowerCAmelCase : Tuple = 64 , _lowerCAmelCase : List[str] = "hann_window" , _lowerCAmelCase : Any = 1.0 , _lowerCAmelCase : Optional[Any] = 80 , _lowerCAmelCase : int = 7_600 , _lowerCAmelCase : List[Any] = 1E-10 , _lowerCAmelCase : int = 2 , _lowerCAmelCase : int = True , **_lowerCAmelCase : int , ): super().__init__(feature_size=a_ , sampling_rate=a_ , padding_value=a_ , **a_ ) SCREAMING_SNAKE_CASE_ = do_normalize SCREAMING_SNAKE_CASE_ = return_attention_mask SCREAMING_SNAKE_CASE_ = num_mel_bins SCREAMING_SNAKE_CASE_ = hop_length SCREAMING_SNAKE_CASE_ = win_length SCREAMING_SNAKE_CASE_ = win_function SCREAMING_SNAKE_CASE_ = frame_signal_scale SCREAMING_SNAKE_CASE_ = fmin SCREAMING_SNAKE_CASE_ = fmax SCREAMING_SNAKE_CASE_ = mel_floor SCREAMING_SNAKE_CASE_ = reduction_factor SCREAMING_SNAKE_CASE_ = win_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE_ = hop_length * sampling_rate // 1_000 SCREAMING_SNAKE_CASE_ = optimal_fft_length(self.sample_size ) SCREAMING_SNAKE_CASE_ = (self.n_fft // 2) + 1 SCREAMING_SNAKE_CASE_ = window_function(window_length=self.sample_size , name=self.win_function , periodic=a_ ) SCREAMING_SNAKE_CASE_ = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , a_ , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , a_ , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any = 0.0 ): if attention_mask is not None: SCREAMING_SNAKE_CASE_ = np.array(a_ , np.intaa ) SCREAMING_SNAKE_CASE_ = [] for vector, length in zip(a_ , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE_ = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE_ = padding_value normed_input_values.append(a_ ) else: SCREAMING_SNAKE_CASE_ = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Tuple , ): SCREAMING_SNAKE_CASE_ = spectrogram( a_ , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : Tuple , _lowerCAmelCase : str = None , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Tuple = False , _lowerCAmelCase : str = None , _lowerCAmelCase : Tuple = False , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : Tuple = None , _lowerCAmelCase : int = None , _lowerCAmelCase : Optional[int] = None , **_lowerCAmelCase : Any , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: SCREAMING_SNAKE_CASE_ = self._process_audio( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , **a_ , ) else: SCREAMING_SNAKE_CASE_ = None if audio_target is not None: SCREAMING_SNAKE_CASE_ = self._process_audio( a_ , a_ , a_ , a_ , a_ , a_ , a_ , a_ , **a_ , ) if inputs is None: return inputs_target else: SCREAMING_SNAKE_CASE_ = inputs_target['''input_values'''] SCREAMING_SNAKE_CASE_ = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: SCREAMING_SNAKE_CASE_ = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] = False , _lowerCAmelCase : Tuple = False , _lowerCAmelCase : Union[str, Any] = None , _lowerCAmelCase : Union[str, Any] = False , _lowerCAmelCase : Optional[int] = None , _lowerCAmelCase : Any = None , _lowerCAmelCase : List[Any] = None , **_lowerCAmelCase : int , ): SCREAMING_SNAKE_CASE_ = isinstance(a_ , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) SCREAMING_SNAKE_CASE_ = is_batched_numpy or ( isinstance(a_ , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE_ = [np.asarray(a_ , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(a_ , np.ndarray ): SCREAMING_SNAKE_CASE_ = np.asarray(a_ , dtype=np.floataa ) elif isinstance(a_ , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE_ = [speech] # needed to make pad() work on spectrogram inputs SCREAMING_SNAKE_CASE_ = self.feature_size # convert into correct format for padding if is_target: SCREAMING_SNAKE_CASE_ = [self._extract_mel_features(a_ ) for waveform in speech] SCREAMING_SNAKE_CASE_ = BatchFeature({'input_values': features} ) SCREAMING_SNAKE_CASE_ = self.num_mel_bins else: SCREAMING_SNAKE_CASE_ = BatchFeature({'input_values': speech} ) SCREAMING_SNAKE_CASE_ = self.pad( a_ , padding=a_ , max_length=a_ , truncation=a_ , pad_to_multiple_of=a_ , return_attention_mask=a_ , **a_ , ) SCREAMING_SNAKE_CASE_ = feature_size_hack # convert input values to correct format SCREAMING_SNAKE_CASE_ = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): SCREAMING_SNAKE_CASE_ = [np.asarray(a_ , dtype=np.floataa ) for array in input_values] elif ( not isinstance(a_ , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): SCREAMING_SNAKE_CASE_ = [array.astype(np.floataa ) for array in input_values] elif isinstance(a_ , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE_ = input_values.astype(np.floataa ) # convert attention_mask to correct format SCREAMING_SNAKE_CASE_ = padded_inputs.get('attention_mask' ) if attention_mask is not None: SCREAMING_SNAKE_CASE_ = [np.asarray(a_ , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: SCREAMING_SNAKE_CASE_ = ( attention_mask if self._get_padding_strategies(a_ , max_length=a_ ) is not PaddingStrategy.DO_NOT_PAD else None ) SCREAMING_SNAKE_CASE_ = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=a_ , padding_value=self.padding_value ) if return_tensors is not None: SCREAMING_SNAKE_CASE_ = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def lowerCAmelCase_ ( self : Optional[int] ): SCREAMING_SNAKE_CASE_ = super().to_dict() # Don't serialize these as they are derived from the other properties. SCREAMING_SNAKE_CASE_ = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
225
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCAmelCase : '''simple docstring''' def __init__(self , a_ , a_=13 , a_=32 , a_=3 , a_=4 , a_=[10, 20, 30, 40] , a_=[2, 2, 3, 2] , a_=True , a_=True , a_=37 , a_="gelu" , a_=10 , a_=0.02 , a_=["stage2", "stage3", "stage4"] , a_=[2, 3, 4] , a_=None , ): '''simple docstring''' __snake_case : List[str] = parent __snake_case : str = batch_size __snake_case : List[Any] = image_size __snake_case : List[Any] = num_channels __snake_case : str = num_stages __snake_case : Any = hidden_sizes __snake_case : Optional[int] = depths __snake_case : Dict = is_training __snake_case : Tuple = use_labels __snake_case : str = intermediate_size __snake_case : Optional[int] = hidden_act __snake_case : Dict = num_labels __snake_case : Tuple = initializer_range __snake_case : Dict = out_features __snake_case : Optional[int] = out_indices __snake_case : str = scope def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : str = None if self.use_labels: __snake_case : Any = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a_ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Optional[int] = ConvNextVaModel(config=a_ ) model.to(a_ ) model.eval() __snake_case : Any = model(a_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Any = ConvNextVaForImageClassification(a_ ) model.to(a_ ) model.eval() __snake_case : Union[str, Any] = model(a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE (self , a_ , a_ , a_ ): '''simple docstring''' __snake_case : Dict = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __snake_case : str = None __snake_case : Optional[Any] = ConvNextVaBackbone(config=a_ ) model.to(a_ ) model.eval() __snake_case : Tuple = model(a_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Any = {'''pixel_values''': pixel_values} return config, inputs_dict def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case : Union[str, Any] = config_and_inputs __snake_case : Optional[int] = {'''pixel_values''': pixel_values, '''labels''': labels} return config, inputs_dict @require_torch class _UpperCAmelCase ( __snake_case, __snake_case, unittest.TestCase ): '''simple docstring''' lowerCamelCase__ =( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) lowerCamelCase__ =( {'feature-extraction': ConvNextVaModel, 'image-classification': ConvNextVaForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False lowerCamelCase__ =False def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : Dict = ConvNextVaModelTester(self ) __snake_case : Union[str, Any] = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return @unittest.skip(reason='''ConvNextV2 does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass @unittest.skip(reason='''ConvNextV2 does not use feedforward chunking''' ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : int = True if model_class.__name__ in [ *get_values(a_ ), *get_values(a_ ), ]: continue __snake_case : Dict = model_class(a_ ) model.to(a_ ) model.train() __snake_case : Tuple = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : List[str] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __snake_case : Optional[Any] = False __snake_case : Tuple = True if ( model_class.__name__ in [*get_values(a_ ), *get_values(a_ )] or not model_class.supports_gradient_checkpointing ): continue __snake_case : Union[str, Any] = model_class(a_ ) model.to(a_ ) model.gradient_checkpointing_enable() model.train() __snake_case : str = self._prepare_for_class(a_ , a_ , return_labels=a_ ) __snake_case : Union[str, Any] = model(**a_ ).loss loss.backward() def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case , __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : Optional[Any] = model_class(a_ ) __snake_case : int = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : int = [*signature.parameters.keys()] __snake_case : Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' def check_hidden_states_output(a_ , a_ , a_ ): __snake_case : Tuple = model_class(a_ ) model.to(a_ ) model.eval() with torch.no_grad(): __snake_case : Union[str, Any] = model(**self._prepare_for_class(a_ , a_ ) ) __snake_case : Union[str, Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __snake_case : List[Any] = self.model_tester.num_stages self.assertEqual(len(a_ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __snake_case , __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : str = True check_hidden_states_output(a_ , a_ , a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a_ ) @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : str = ConvNextVaModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def lowercase ( ) ->Any: """simple docstring""" __snake_case : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' return AutoImageProcessor.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : str = ConvNextVaForImageClassification.from_pretrained('''facebook/convnextv2-tiny-1k-224''' ).to(a_ ) __snake_case : Dict = self.default_image_processor __snake_case : Tuple = prepare_img() __snake_case : Tuple = preprocessor(images=a_ , return_tensors='''pt''' ).to(a_ ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**a_ ) # verify the logits __snake_case : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , a_ ) __snake_case : Any = torch.tensor([0.9996, 0.1966, -0.4386] ).to(a_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a_ , atol=1E-4 ) )
102
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
364
"""simple docstring""" import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=() , UpperCamelCase_=None , UpperCamelCase_="no" , UpperCamelCase_="29500" ): __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): __SCREAMING_SNAKE_CASE = True elif "IPython" in sys.modules: __SCREAMING_SNAKE_CASE = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: __SCREAMING_SNAKE_CASE = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , UpperCamelCase_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: __SCREAMING_SNAKE_CASE = 8 __SCREAMING_SNAKE_CASE = PrepareForLaunch(UpperCamelCase_ , distributed_type="""TPU""" ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*UpperCamelCase_ ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_ , master_addr="""127.0.01""" , master_port=UpperCamelCase_ , mixed_precision=UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = PrepareForLaunch(UpperCamelCase_ , distributed_type="""MULTI_GPU""" ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __SCREAMING_SNAKE_CASE = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*UpperCamelCase_ ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_=() , UpperCamelCase_=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=UpperCamelCase_ , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): __SCREAMING_SNAKE_CASE = PrepareForLaunch(UpperCamelCase_ , debug=UpperCamelCase_ ) start_processes(UpperCamelCase_ , args=UpperCamelCase_ , nprocs=UpperCamelCase_ , start_method="""fork""" )
255
0
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __lowerCAmelCase : Optional[int] = False class snake_case__ (unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> int: a = VersatileDiffusionTextToImagePipeline.from_pretrained("shi-labs/versatile-diffusion" ) # remove text_unet pipe.remove_unused_weights() pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = "A painting of a squirrel eating a burger " a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) a = VersatileDiffusionTextToImagePipeline.from_pretrained(__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = generator.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type="numpy" ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __UpperCAmelCase ( self : str ) -> List[str]: a = VersatileDiffusionTextToImagePipeline.from_pretrained( "shi-labs/versatile-diffusion" , torch_dtype=torch.floataa ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) a = "A painting of a squirrel eating a burger " a = torch.manual_seed(0 ) a = pipe( prompt=__lowerCamelCase , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type="numpy" ).images a = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) a = np.array([0.3_367, 0.3_169, 0.2_656, 0.3_870, 0.4_790, 0.3_796, 0.4_009, 0.4_878, 0.4_778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
107
import logging import os from .state import PartialState class A__ ( logging.LoggerAdapter ): @staticmethod def a__ ( _UpperCAmelCase : str ) -> Optional[Any]: """simple docstring""" __lowercase = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def a__ ( self : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , *_UpperCAmelCase : Tuple , **_UpperCAmelCase : List[str] ) -> Optional[int]: """simple docstring""" if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) __lowercase = kwargs.pop('main_process_only' , _UpperCAmelCase ) __lowercase = kwargs.pop('in_order' , _UpperCAmelCase ) if self.isEnabledFor(_UpperCAmelCase ): if self._should_log(_UpperCAmelCase ): __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) elif in_order: __lowercase = PartialState() for i in range(state.num_processes ): if i == state.process_index: __lowercase , __lowercase = self.process(_UpperCAmelCase , _UpperCAmelCase ) self.logger.log(_UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase ) state.wait_for_everyone() def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str = None ) -> Optional[Any]: if log_level is None: __lowercase = os.environ.get('ACCELERATE_LOG_LEVEL' , SCREAMING_SNAKE_CASE ) __lowercase = logging.getLogger(SCREAMING_SNAKE_CASE ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(SCREAMING_SNAKE_CASE , {} )
325
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __lowerCamelCase : def __init__( self , lowerCamelCase , lowerCamelCase=2 , lowerCamelCase=32 , lowerCamelCase=16 , lowerCamelCase=3 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=32 , lowerCamelCase=4 , lowerCamelCase=[0, 1, 2, 3] , lowerCamelCase=4 , lowerCamelCase=37 , lowerCamelCase="gelu" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.02 , lowerCamelCase=3 , lowerCamelCase=[1, 384, 24, 24] , lowerCamelCase=True , lowerCamelCase=None , ) -> Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = patch_size snake_case_ = num_channels snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = backbone_out_indices snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = backbone_featmap_shape snake_case_ = scope snake_case_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) snake_case_ = (image_size // patch_size) ** 2 snake_case_ = num_patches + 1 def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [96, 192, 384, 768], """num_groups""": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=lowerCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Union[str, Any]: snake_case_ = DPTModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Dict: snake_case_ = self.num_labels snake_case_ = DPTForDepthEstimation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[Any]: snake_case_ = self.num_labels snake_case_ = DPTForSemanticSegmentation(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() snake_case_ = model(lowerCamelCase , labels=lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self ) -> List[str]: snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowerCamelCase ( __snake_case , __snake_case , unittest.TestCase ): lowerCamelCase_ : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase_ : Tuple = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ : Any = False lowerCamelCase_ : Union[str, Any] = False lowerCamelCase_ : Optional[Any] = False def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = DPTModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def lowerCAmelCase_ ( self ) -> List[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="""DPT does not use inputs_embeds""" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: pass def lowerCAmelCase_ ( self ) -> str: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase , nn.Linear ) ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(lowerCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*lowerCamelCase ) def lowerCAmelCase_ ( self ) -> List[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = True if model_class in get_values(lowerCamelCase ): continue snake_case_ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.train() snake_case_ = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) snake_case_ = model(**lowerCamelCase ).loss loss.backward() def lowerCAmelCase_ ( self ) -> List[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = False snake_case_ = True if model_class in get_values(lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue snake_case_ = model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.gradient_checkpointing_enable() model.train() snake_case_ = self._prepare_for_class(lowerCamelCase , lowerCamelCase , return_labels=lowerCamelCase ) snake_case_ = model(**lowerCamelCase ).loss loss.backward() def lowerCAmelCase_ ( self ) -> Union[str, Any]: snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = _config_zero_init(lowerCamelCase ) for model_class in self.all_model_classes: snake_case_ = model_class(config=lowerCamelCase ) # Skip the check for the backbone snake_case_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": snake_case_ = [f'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def lowerCAmelCase_ ( self ) -> List[Any]: pass @slow def lowerCAmelCase_ ( self ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: snake_case_ = DPTModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = """add""" with self.assertRaises(lowerCamelCase ): snake_case_ = DPTForDepthEstimation(lowerCamelCase ) def UpperCamelCase( ) -> Dict: '''simple docstring''' snake_case_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision @slow class __lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Dict: snake_case_ = DPTImageProcessor.from_pretrained("""Intel/dpt-hybrid-midas""" ) snake_case_ = DPTForDepthEstimation.from_pretrained("""Intel/dpt-hybrid-midas""" ).to(lowerCamelCase ) snake_case_ = prepare_img() snake_case_ = image_processor(images=lowerCamelCase , return_tensors="""pt""" ).to(lowerCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**lowerCamelCase ) snake_case_ = outputs.predicted_depth # verify the predicted depth snake_case_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , lowerCamelCase ) snake_case_ = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , lowerCamelCase , atol=1e-4 ) )
34
from __future__ import annotations def UpperCamelCase( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
34
1
"""simple docstring""" from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def lowerCAmelCase__ ( _UpperCamelCase : Dict , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : List[Any] ) -> List[Any]: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})""" def lowerCAmelCase__ ( _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : str=True ) -> Optional[Any]: """simple docstring""" model.train() snake_case = model(snake_case_ ) snake_case = F.mse_loss(snake_case_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(snake_case_ ) def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any=False ) -> Dict: """simple docstring""" set_seed(4_2 ) snake_case = RegressionModel() snake_case = deepcopy(snake_case_ ) snake_case = RegressionDataset(length=8_0 ) snake_case = DataLoader(snake_case_ , batch_size=1_6 ) model.to(accelerator.device ) if sched: snake_case = AdamW(params=model.parameters() , lr=1e-3 ) snake_case = AdamW(params=ddp_model.parameters() , lr=1e-3 ) snake_case = LambdaLR(snake_case_ , lr_lambda=lambda _UpperCamelCase : epoch**0.65 ) snake_case = LambdaLR(snake_case_ , lr_lambda=lambda _UpperCamelCase : epoch**0.65 ) # Make a copy of `model` if sched: snake_case ,snake_case ,snake_case ,snake_case = accelerator.prepare(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: snake_case ,snake_case = accelerator.prepare(snake_case_ , snake_case_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def lowerCAmelCase__ ( _UpperCamelCase : Any ) -> int: """simple docstring""" snake_case ,snake_case ,snake_case = get_training_setup(snake_case_ ) # Use a single batch snake_case ,snake_case = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case ,snake_case = accelerator.gather((ddp_input, ddp_target) ) snake_case ,snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) snake_case = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase__ ( _UpperCamelCase : Tuple ) -> str: """simple docstring""" snake_case ,snake_case ,snake_case = get_training_setup(snake_case_ ) # Use a single batch snake_case ,snake_case = next(iter(snake_case_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case ,snake_case = accelerator.gather((ddp_input, ddp_target) ) snake_case ,snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: # Sync grads step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) snake_case = ddp_input[torch.randperm(len(snake_case_ ) )] def lowerCAmelCase__ ( _UpperCamelCase : Optional[int]=False , _UpperCamelCase : str=False ) -> List[str]: """simple docstring""" snake_case = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case ,snake_case ,snake_case = get_training_setup(snake_case_ ) for iteration, batch in enumerate(snake_case_ ): snake_case ,snake_case = batch.values() # Gather the distributed inputs and targs for the base model snake_case ,snake_case = accelerator.gather((ddp_input, ddp_target) ) snake_case ,snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(snake_case_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), f"""Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})""" else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), f"""Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})""" # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) snake_case = ddp_input[torch.randperm(len(snake_case_ ) )] GradientState._reset_state() def lowerCAmelCase__ ( _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Tuple=False ) -> Union[str, Any]: """simple docstring""" snake_case = Accelerator( split_batches=snake_case_ , dispatch_batches=snake_case_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case = get_training_setup(snake_case_ , snake_case_ ) for iteration, batch in enumerate(snake_case_ ): snake_case ,snake_case = batch.values() # Gather the distributed inputs and targs for the base model snake_case ,snake_case = accelerator.gather((ddp_input, ddp_target) ) snake_case ,snake_case = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(snake_case_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(snake_case_ ): step_model(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f"""Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n""" snake_case = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(snake_case_ )) if accelerator.num_processes > 1: check_model_parameters(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1_3_3_7 + iteration ) GradientState._reset_state() def lowerCAmelCase__ ( ) -> List[Any]: """simple docstring""" snake_case = Accelerator() snake_case = RegressionDataset(length=8_0 ) snake_case = DataLoader(snake_case_ , batch_size=1_6 ) snake_case = RegressionDataset(length=9_6 ) snake_case = DataLoader(snake_case_ , batch_size=1_6 ) snake_case ,snake_case = accelerator.prepare(snake_case_ , snake_case_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if iteration < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(snake_case_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(snake_case_ ) if batch_num < len(snake_case_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def lowerCAmelCase__ ( ) -> str: """simple docstring""" snake_case = Accelerator() snake_case = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**' ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**' ) test_noop_sync(snake_case_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**' ) test_distributed_sync(snake_case_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation(snake_case_ , snake_case_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0' ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f"""`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**""" , ) test_gradient_accumulation_with_opt_and_scheduler(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( _UpperCamelCase : Dict ) -> int: """simple docstring""" main() if __name__ == "__main__": main()
150
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[int] ,_a : int = 16 ,_a : int = 88 ,_a : Optional[int] = None ,_a : int = 1 ,_a : float = 0.0 ,_a : int = 32 ,_a : Optional[int] = None ,_a : bool = False ,_a : Optional[int] = None ,_a : Optional[int] = None ,_a : str = "geglu" ,_a : Optional[int] = None ,): '''simple docstring''' super().__init__() _a : str = nn.ModuleList( [ TransformeraDModel( num_attention_heads=_a ,attention_head_dim=_a ,in_channels=_a ,num_layers=_a ,dropout=_a ,norm_num_groups=_a ,cross_attention_dim=_a ,attention_bias=_a ,sample_size=_a ,num_vector_embeds=_a ,activation_fn=_a ,num_embeds_ada_norm=_a ,) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _a : Dict = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _a : Optional[Any] = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _a : List[str] = [1, 0] def __lowercase ( self : Dict ,_a : str ,_a : int ,_a : Any=None ,_a : List[str]=None ,_a : str=None ,_a : bool = True ,): '''simple docstring''' _a : List[Any] = hidden_states _a : int = [] _a : List[Any] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _a : Optional[int] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _a : Union[str, Any] = self.transformer_index_for_condition[i] _a : Any = self.transformers[transformer_index]( _a ,encoder_hidden_states=_a ,timestep=_a ,cross_attention_kwargs=_a ,return_dict=_a ,)[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _a : Tuple = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _a : Any = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=_a )
5
'''simple docstring''' def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : List[Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" _a : Optional[int] = '' _a : List[str] = '' # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__a ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring _a, _a : Optional[int] = 0, 0 # length[i] shows the length of palindromic substring with center i _a : Optional[Any] = [1 for i in range(len(__a ) )] # for each character in new_string find corresponding palindromic string _a : Dict = 0 for j in range(len(__a ) ): _a : Dict = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__a ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 _a : Optional[int] = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: _a : str = j - k + 1 # noqa: E741 _a : Any = j + k - 1 # update max_length and start position if max_length < length[j]: _a : Union[str, Any] = length[j] _a : List[str] = j # create that string _a : Tuple = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
5
1
import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def _UpperCAmelCase ( a__): '''simple docstring''' return (data["data"], data["target"]) def _UpperCAmelCase ( a__ , a__ , a__): '''simple docstring''' a_ : Any = XGBRegressor(verbosity=0 , random_state=4_2) xgb.fit(a__ , a__) # Predict target for test data a_ : str = xgb.predict(a__) a_ : str = predictions.reshape(len(a__) , 1) return predictions def _UpperCAmelCase ( ): '''simple docstring''' a_ : Dict = fetch_california_housing() a_ , a_ : Optional[Any] = data_handling(a__) a_ , a_ , a_ , a_ : str = train_test_split( a__ , a__ , test_size=0.25 , random_state=1) a_ : str = xgboost(a__ , a__ , a__) # Error printing print(f'''Mean Absolute Error : {mean_absolute_error(a__ , a__)}''') print(f'''Mean Square Error : {mean_squared_error(a__ , a__)}''') if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
248
__snake_case : Dict = 6_55_21 def _UpperCAmelCase ( a__): '''simple docstring''' a_ : List[str] = 1 a_ : Any = 0 for plain_chr in plain_text: a_ : Tuple = (a + ord(a__)) % MOD_ADLER a_ : Union[str, Any] = (b + a) % MOD_ADLER return (b << 1_6) | a
248
1
"""simple docstring""" from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( "pipelines_utils", "0.22.0", "Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.", standard_warn=False, stacklevel=3, )
363
"""simple docstring""" from collections.abc import Sequence def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase = False ) -> float: '''simple docstring''' if not arr: return 0 lowercase_ = 0 if allow_empty_subarrays else float("""-inf""" ) lowercase_ = 0.0 for num in arr: lowercase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowercase_ = max(__lowerCAmelCase , __lowerCAmelCase ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase : Union[str, Any] = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(F"{max_subarray_sum(nums) = }")
313
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def _snake_case ( lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def _snake_case ( lowerCAmelCase : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', "stage2.cls_token") ) return token def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def _snake_case ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE_ : str = 1_0_0_0 SCREAMING_SNAKE_CASE_ : Optional[int] = 'huggingface/label-files' SCREAMING_SNAKE_CASE_ : Tuple = num_labels SCREAMING_SNAKE_CASE_ : str = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : Optional[Any] = idalabel SCREAMING_SNAKE_CASE_ : Tuple = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ : int = CvtConfig(num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": SCREAMING_SNAKE_CASE_ : List[str] = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": SCREAMING_SNAKE_CASE_ : List[Any] = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: SCREAMING_SNAKE_CASE_ : Optional[int] = [2, 2, 2_0] SCREAMING_SNAKE_CASE_ : Optional[Any] = [3, 1_2, 1_6] SCREAMING_SNAKE_CASE_ : Optional[int] = [1_9_2, 7_6_8, 1_0_2_4] SCREAMING_SNAKE_CASE_ : Optional[Any] = CvtForImageClassification(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) SCREAMING_SNAKE_CASE_ : Tuple = image_size SCREAMING_SNAKE_CASE_ : int = torch.load(_UpperCAmelCase , map_location=torch.device("cpu" ) ) SCREAMING_SNAKE_CASE_ : List[str] = OrderedDict() SCREAMING_SNAKE_CASE_ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: SCREAMING_SNAKE_CASE_ : Any = list_of_state_dict + cls_token(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int = list_of_state_dict + embeddings(_UpperCAmelCase ) for cnt in range(config.depth[idx] ): SCREAMING_SNAKE_CASE_ : Tuple = list_of_state_dict + attention(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ : List[str] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) image_processor.save_pretrained(_UpperCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_84, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowerCamelCase : Optional[Any] = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
18
"""simple docstring""" from scipy.stats import pearsonr import datasets _UpperCamelCase: str = '\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' _UpperCamelCase: Tuple = '\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' _UpperCamelCase: Any = '\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def lowercase ( self : Optional[Any] ) -> List[Any]: return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ), reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'], ) def lowercase ( self : Tuple, lowerCAmelCase : Any, lowerCAmelCase : str, lowerCAmelCase : List[str]=False ) -> int: if return_pvalue: lowercase : Optional[int] = pearsonr(lowerCAmelCase, lowerCAmelCase ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase, lowerCAmelCase )[0] )}
255
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Union[str, Any] = { "configuration_mobilebert": [ "MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileBertConfig", "MobileBertOnnxConfig", ], "tokenization_mobilebert": ["MobileBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = ["MobileBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileBertForMaskedLM", "MobileBertForMultipleChoice", "MobileBertForNextSentencePrediction", "MobileBertForPreTraining", "MobileBertForQuestionAnswering", "MobileBertForSequenceClassification", "MobileBertForTokenClassification", "MobileBertLayer", "MobileBertModel", "MobileBertPreTrainedModel", "load_tf_weights_in_mobilebert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : str = [ "TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileBertForMaskedLM", "TFMobileBertForMultipleChoice", "TFMobileBertForNextSentencePrediction", "TFMobileBertForPreTraining", "TFMobileBertForQuestionAnswering", "TFMobileBertForSequenceClassification", "TFMobileBertForTokenClassification", "TFMobileBertMainLayer", "TFMobileBertModel", "TFMobileBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class __lowercase ( pl.LightningModule ): """simple docstring""" def __init__( self , A ) -> Any: '''simple docstring''' super().__init__() lowerCamelCase = model lowerCamelCase = 2 lowerCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __A ( self ) -> int: '''simple docstring''' pass def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = LongformerModel.from_pretrained(lowerCamelCase__ ) lowerCamelCase = LightningModel(lowerCamelCase__ ) lowerCamelCase = torch.load(lowerCamelCase__ , map_location=torch.device("""cpu""" ) ) lightning_model.load_state_dict(ckpt["""state_dict"""] ) # init longformer question answering model lowerCamelCase = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f'Conversion successful. Model saved under {pytorch_dump_folder_path}' ) if __name__ == "__main__": UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--longformer_model", default=None, type=str, required=True, help="model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.", ) parser.add_argument( "--longformer_question_answering_ckpt_path", default=None, type=str, required=True, help="Path the official PyTorch Lightning Checkpoint.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCAmelCase : Optional[int] = parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
66
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A ={ 'configuration_pix2struct': [ 'PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Pix2StructConfig', 'Pix2StructTextConfig', 'Pix2StructVisionConfig', ], 'processing_pix2struct': ['Pix2StructProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =['Pix2StructImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A =[ 'PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Pix2StructPreTrainedModel', 'Pix2StructForConditionalGeneration', 'Pix2StructVisionModel', 'Pix2StructTextModel', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys A =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
34
'''simple docstring''' from __future__ import annotations def snake_case_ (_a : Dict , _a : str , _a : Optional[Any] , _a : List[str] ): # noqa: E741 while r - l > 1: UpperCAmelCase = (l + r) // 2 if v[m] >= key: UpperCAmelCase = m else: UpperCAmelCase = m # noqa: E741 return r def snake_case_ (_a : list[int] ): if len(_a ) == 0: return 0 UpperCAmelCase = [0] * len(_a ) UpperCAmelCase = 1 UpperCAmelCase = v[0] for i in range(1 , len(_a ) ): if v[i] < tail[0]: UpperCAmelCase = v[i] elif v[i] > tail[length - 1]: UpperCAmelCase = v[i] length += 1 else: UpperCAmelCase = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
34
1
import argparse import copy def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = {} with open(SCREAMING_SNAKE_CASE ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __UpperCamelCase :Optional[Any] = [] _list.append([line.split()[1], line.split()[2]] ) __UpperCamelCase :Tuple = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __UpperCamelCase :List[Any] = [] _list.append([line.split()[0], line.split()[2]] ) __UpperCamelCase :List[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE ) as f: __UpperCamelCase :Union[str, Any] = f.read(1 ) __UpperCamelCase :Optional[Any] = start_node __UpperCamelCase :Dict = [] __UpperCamelCase :List[str] = start_node __UpperCamelCase :Any = 0 while visiting not in first_solution: __UpperCamelCase :Tuple = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(SCREAMING_SNAKE_CASE ) and k[0] not in first_solution: __UpperCamelCase :Optional[Any] = k[1] __UpperCamelCase :str = k[0] first_solution.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = distance_of_first_solution + int(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = best_node first_solution.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __UpperCamelCase :List[Any] = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 10_000 ) return first_solution, distance_of_first_solution def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Optional[Any] = [] for n in solution[1:-1]: __UpperCamelCase :Optional[Any] = solution.index(SCREAMING_SNAKE_CASE ) for kn in solution[1:-1]: __UpperCamelCase :Union[str, Any] = solution.index(SCREAMING_SNAKE_CASE ) if n == kn: continue __UpperCamelCase :Tuple = copy.deepcopy(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[str] = kn __UpperCamelCase :Dict = n __UpperCamelCase :Optional[Any] = 0 for k in _tmp[:-1]: __UpperCamelCase :Any = _tmp[_tmp.index(SCREAMING_SNAKE_CASE ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __UpperCamelCase :Optional[int] = distance + int(i[1] ) _tmp.append(SCREAMING_SNAKE_CASE ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __UpperCamelCase :Tuple = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda SCREAMING_SNAKE_CASE : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = 1 __UpperCamelCase :Union[str, Any] = first_solution __UpperCamelCase :Any = [] __UpperCamelCase :List[str] = distance_of_first_solution __UpperCamelCase :Any = solution while count <= iters: __UpperCamelCase :List[Any] = find_neighborhood(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :str = 0 __UpperCamelCase :Tuple = neighborhood[index_of_best_solution] __UpperCamelCase :List[str] = len(SCREAMING_SNAKE_CASE ) - 1 __UpperCamelCase :Optional[Any] = False while not found: __UpperCamelCase :Optional[Any] = 0 while i < len(SCREAMING_SNAKE_CASE ): if best_solution[i] != solution[i]: __UpperCamelCase :Any = best_solution[i] __UpperCamelCase :List[str] = solution[i] break __UpperCamelCase :str = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __UpperCamelCase :Any = True __UpperCamelCase :Optional[Any] = best_solution[:-1] __UpperCamelCase :List[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __UpperCamelCase :str = cost __UpperCamelCase :List[str] = solution else: __UpperCamelCase :str = index_of_best_solution + 1 __UpperCamelCase :int = neighborhood[index_of_best_solution] if len(SCREAMING_SNAKE_CASE ) >= size: tabu_list.pop(0 ) __UpperCamelCase :Tuple = count + 1 return best_solution_ever, best_cost def lowerCamelCase ( SCREAMING_SNAKE_CASE=None ): '''simple docstring''' __UpperCamelCase :Union[str, Any] = generate_neighbours(args.File ) __UpperCamelCase , __UpperCamelCase :Any = generate_first_solution( args.File , SCREAMING_SNAKE_CASE ) __UpperCamelCase , __UpperCamelCase :List[Any] = tabu_search( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , args.Iterations , args.Size , ) print(f"""Best solution: {best_sol}, with total distance: {best_cost}.""" ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser(description='''Tabu Search''') parser.add_argument( '''-f''', '''--File''', type=str, help='''Path to the file containing the data''', required=True, ) parser.add_argument( '''-i''', '''--Iterations''', type=int, help='''How many iterations the algorithm should perform''', required=True, ) parser.add_argument( '''-s''', '''--Size''', type=int, help='''Size of the tabu list''', required=True ) # Pass the arguments to main method main(parser.parse_args())
105
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> int: __UpperCamelCase :str = 0 def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''') self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Dict = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Union[str, Any] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :str = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Union[str, Any] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = CLIPConfig() # Create a dummy config file with image_proceesor_type __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :Optional[Any] = Path(__lowercase) / '''config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained(__lowercase).to_dict() config_dict.pop('''image_processor_type''') __UpperCamelCase :List[str] = CLIPImageProcessor(**__lowercase) # save in new folder model_config.save_pretrained(__lowercase) config.save_pretrained(__lowercase) __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained(__lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :Union[str, Any] = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> List[str]: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Tuple = Path(__lowercase) / '''preprocessor_config.json''' json.dump( {'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) def UpperCamelCase__ ( self) -> Optional[int]: with self.assertRaisesRegex( __lowercase , '''clip-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''clip-base''') def UpperCamelCase__ ( self) -> List[Any]: with self.assertRaisesRegex( __lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :str = AutoImageProcessor.from_pretrained(__lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> List[str]: with self.assertRaisesRegex( __lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> str: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase): __UpperCamelCase :Dict = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase): __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :List[Any] = AutoImageProcessor.from_pretrained(__lowercase , trust_remote_code=__lowercase) self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''') def UpperCamelCase__ ( self) -> Optional[Any]: try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase): AutoImageProcessor.register(__lowercase , __lowercase) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :int = Path(__lowercase) / '''preprocessor_config.json''' __UpperCamelCase :List[str] = Path(__lowercase) / '''config.json''' json.dump( {'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(__lowercase , '''w''') , ) json.dump({'''model_type''': '''clip'''} , open(__lowercase , '''w''')) __UpperCamelCase :int = CustomImageProcessor.from_pretrained(__lowercase) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(__lowercase) __UpperCamelCase :int = AutoImageProcessor.from_pretrained(__lowercase) self.assertIsInstance(__lowercase , __lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[Any]: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = True try: AutoConfig.register('''custom''' , __lowercase) AutoImageProcessor.register(__lowercase , __lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :str = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''') self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :Optional[Any] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :List[str] = AutoImageProcessor.from_pretrained( '''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=__lowercase) self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''') self.assertTrue(not hasattr(__lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
105
1
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class lowerCamelCase__ ( nn.Module): def __init__(self , UpperCAmelCase = 1_6 , UpperCAmelCase = 8_8 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = 0.0 , UpperCAmelCase = 3_2 , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = "geglu" , UpperCAmelCase = None , ) -> Any: super().__init__() _lowercase =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCAmelCase , attention_head_dim=UpperCAmelCase , in_channels=UpperCAmelCase , num_layers=UpperCAmelCase , dropout=UpperCAmelCase , norm_num_groups=UpperCAmelCase , cross_attention_dim=UpperCAmelCase , attention_bias=UpperCAmelCase , sample_size=UpperCAmelCase , num_vector_embeds=UpperCAmelCase , activation_fn=UpperCAmelCase , num_embeds_ada_norm=UpperCAmelCase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _lowercase =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _lowercase =[7_7, 2_5_7] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _lowercase =[1, 0] def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase = True , ) -> str: _lowercase =hidden_states _lowercase =[] _lowercase =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _lowercase =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _lowercase =self.transformer_index_for_condition[i] _lowercase =self.transformers[transformer_index]( UpperCAmelCase , encoder_hidden_states=UpperCAmelCase , timestep=UpperCAmelCase , cross_attention_kwargs=UpperCAmelCase , return_dict=UpperCAmelCase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _lowercase =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _lowercase =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCAmelCase )
5
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) # TODO Update this UpperCAmelCase__ = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowerCamelCase__ ( lowerCAmelCase): SCREAMING_SNAKE_CASE__ = '''esm''' def __init__(self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=7_6_8 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_6 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=False , UpperCAmelCase=False , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase , ) -> Tuple: super().__init__(pad_token_id=UpperCAmelCase , mask_token_id=UpperCAmelCase , **UpperCAmelCase ) _lowercase =vocab_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =initializer_range _lowercase =layer_norm_eps _lowercase =position_embedding_type _lowercase =use_cache _lowercase =emb_layer_norm_before _lowercase =token_dropout _lowercase =is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) _lowercase =EsmFoldConfig() elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =EsmFoldConfig(**UpperCAmelCase ) _lowercase =esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) _lowercase =get_default_vocab_list() else: _lowercase =vocab_list else: _lowercase =None _lowercase =None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCAmelCase ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __A (self ) -> List[str]: _lowercase =super().to_dict() if isinstance(self.esmfold_config , UpperCAmelCase ): _lowercase =self.esmfold_config.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> Union[str, Any]: if self.trunk is None: _lowercase =TrunkConfig() elif isinstance(self.trunk , UpperCAmelCase ): _lowercase =TrunkConfig(**self.trunk ) def __A (self ) -> Tuple: _lowercase =asdict(self ) _lowercase =self.trunk.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 48 SCREAMING_SNAKE_CASE__ = 1024 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 32 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = None def __A (self ) -> List[str]: if self.structure_module is None: _lowercase =StructureModuleConfig() elif isinstance(self.structure_module , UpperCAmelCase ): _lowercase =StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) _lowercase =self.sequence_state_dim // self.sequence_head_width _lowercase =self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(f"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __A (self ) -> Dict: _lowercase =asdict(self ) _lowercase =self.structure_module.to_dict() return output @dataclass class lowerCamelCase__ : SCREAMING_SNAKE_CASE__ = 384 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 16 SCREAMING_SNAKE_CASE__ = 128 SCREAMING_SNAKE_CASE__ = 12 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 0.1 SCREAMING_SNAKE_CASE__ = 8 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = 7 SCREAMING_SNAKE_CASE__ = 10 SCREAMING_SNAKE_CASE__ = 1E-8 SCREAMING_SNAKE_CASE__ = 1E5 def __A (self ) -> List[Any]: return asdict(self ) def UpperCAmelCase_ ( ) -> Tuple: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
5
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase: Union[str, Any] = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): if isinstance(__UpperCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__UpperCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__UpperCAmelCase ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class UpperCamelCase ( snake_case ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = ["pixel_values"] def __init__( self ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = True ,UpperCAmelCase_ = 1 / 2_55 ,UpperCAmelCase_ = True ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): super().__init__(**UpperCAmelCase_ ) _lowercase : Optional[Any] = size if size is not None else {"""shortest_edge""": 2_56} _lowercase : Optional[Any] = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ ) _lowercase : Dict = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} _lowercase : List[Any] = get_size_dict(UpperCAmelCase_ ,param_name="""crop_size""" ) _lowercase : str = do_resize _lowercase : Optional[Any] = size _lowercase : Tuple = do_center_crop _lowercase : List[str] = crop_size _lowercase : Tuple = resample _lowercase : Optional[int] = do_rescale _lowercase : List[str] = rescale_factor _lowercase : List[Any] = offset _lowercase : Union[str, Any] = do_normalize _lowercase : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Optional[int] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = PILImageResampling.BILINEAR ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Optional[int] = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ ) if "shortest_edge" in size: _lowercase : str = get_resize_output_image_size(UpperCAmelCase_ ,size["""shortest_edge"""] ,default_to_square=UpperCAmelCase_ ) elif "height" in size and "width" in size: _lowercase : Dict = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Any = get_size_dict(UpperCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(UpperCAmelCase_ ,size=(size["""height"""], size["""width"""]) ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = True ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): _lowercase : Tuple = image.astype(np.floataa ) if offset: _lowercase : Optional[int] = image - (scale / 2) return rescale(UpperCAmelCase_ ,scale=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,**UpperCAmelCase_ ,): return normalize(UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. _lowercase : Optional[int] = to_numpy_array(UpperCAmelCase_ ) if do_resize: _lowercase : Union[str, Any] = self.resize(image=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ) if do_center_crop: _lowercase : Any = self.center_crop(UpperCAmelCase_ ,size=UpperCAmelCase_ ) if do_rescale: _lowercase : Any = self.rescale(image=UpperCAmelCase_ ,scale=UpperCAmelCase_ ,offset=UpperCAmelCase_ ) if do_normalize: _lowercase : Union[str, Any] = self.normalize(image=UpperCAmelCase_ ,mean=UpperCAmelCase_ ,std=UpperCAmelCase_ ) _lowercase : Optional[int] = to_channel_dimension_format(UpperCAmelCase_ ,UpperCAmelCase_ ) return image def lowerCamelCase__ ( self ,UpperCAmelCase_ ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = None ,UpperCAmelCase_ = ChannelDimension.FIRST ,**UpperCAmelCase_ ,): _lowercase : List[str] = do_resize if do_resize is not None else self.do_resize _lowercase : Optional[int] = resample if resample is not None else self.resample _lowercase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : str = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : Optional[int] = offset if offset is not None else self.offset _lowercase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize _lowercase : List[Any] = image_mean if image_mean is not None else self.image_mean _lowercase : Tuple = image_std if image_std is not None else self.image_std _lowercase : Any = size if size is not None else self.size _lowercase : Tuple = get_size_dict(UpperCAmelCase_ ,default_to_square=UpperCAmelCase_ ) _lowercase : int = crop_size if crop_size is not None else self.crop_size _lowercase : Any = get_size_dict(UpperCAmelCase_ ,param_name="""crop_size""" ) if not valid_images(UpperCAmelCase_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) _lowercase : Optional[int] = make_batched(UpperCAmelCase_ ) _lowercase : Optional[Any] = [ [ self._preprocess_image( image=UpperCAmelCase_ ,do_resize=UpperCAmelCase_ ,size=UpperCAmelCase_ ,resample=UpperCAmelCase_ ,do_center_crop=UpperCAmelCase_ ,crop_size=UpperCAmelCase_ ,do_rescale=UpperCAmelCase_ ,rescale_factor=UpperCAmelCase_ ,offset=UpperCAmelCase_ ,do_normalize=UpperCAmelCase_ ,image_mean=UpperCAmelCase_ ,image_std=UpperCAmelCase_ ,data_format=UpperCAmelCase_ ,) for img in video ] for video in videos ] _lowercase : Dict = {"""pixel_values""": videos} return BatchFeature(data=UpperCAmelCase_ ,tensor_type=UpperCAmelCase_ )
336
"""simple docstring""" import argparse from collections import defaultdict def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Any = f.readlines() _lowercase : Optional[int] = F"""class {class_name}(""" _lowercase : List[str] = F"""{4 * " "}def {test_name}(""" _lowercase : List[Any] = F"""{8 * " "}{correct_line.split()[0]}""" _lowercase : int = F"""{16 * " "}{correct_line.split()[0]}""" _lowercase : str = False _lowercase : Optional[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : int = 0 _lowercase : Tuple = 0 _lowercase : Union[str, Any] = [] for line in lines: if line.startswith(__UpperCAmelCase ): _lowercase : List[str] = True elif in_class and line.startswith(__UpperCAmelCase ): _lowercase : str = True elif in_class and in_func and (line.startswith(__UpperCAmelCase ) or line.startswith(__UpperCAmelCase )): _lowercase : Union[str, Any] = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : Optional[int] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Optional[Any] = True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) _lowercase : Union[str, Any] = False else: new_lines.append(__UpperCAmelCase ) with open(__UpperCAmelCase , """w""" ) as f: for line in new_lines: f.write(__UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase=None ): if fail is not None: with open(__UpperCAmelCase , """r""" ) as f: _lowercase : Dict = {l.strip() for l in f.readlines()} else: _lowercase : int = None with open(__UpperCAmelCase , """r""" ) as f: _lowercase : int = f.readlines() _lowercase : int = defaultdict(__UpperCAmelCase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : int = line.split(""";""" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": UpperCAmelCase: List[Any] = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) UpperCAmelCase: Any = parser.parse_args() main(args.correct_filename, args.fail_filename)
336
1
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase__ = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } lowerCamelCase__ = { '''allenai/led-base-16384''': 1_6384, } class A__ ( a__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = LEDTokenizer lowercase = ['input_ids', 'attention_mask'] def __init__( self : List[str] , a : List[str]=None , a : Optional[Any]=None , a : List[Any]=None , a : Optional[Any]="replace" , a : List[str]="<s>" , a : Optional[Any]="</s>" , a : int="</s>" , a : List[str]="<s>" , a : str="<unk>" , a : Optional[Any]="<pad>" , a : Optional[Any]="<mask>" , a : Optional[Any]=False , a : List[Any]=True , **a : str , ): '''simple docstring''' super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) lowerCAmelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _lowerCamelCase ) != add_prefix_space: lowerCAmelCase__ : str = getattr(_lowerCamelCase , pre_tok_state.pop('type' ) ) lowerCAmelCase__ : Optional[int] = add_prefix_space lowerCAmelCase__ : str = pre_tok_class(**_lowerCamelCase ) lowerCAmelCase__ : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCAmelCase__ : List[Any] = '''post_processor''' lowerCAmelCase__ : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: lowerCAmelCase__ : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCAmelCase__ : Optional[int] = tuple(state['sep'] ) if "cls" in state: lowerCAmelCase__ : Optional[Any] = tuple(state['cls'] ) lowerCAmelCase__ : Any = False if state.get('add_prefix_space' , _lowerCamelCase ) != add_prefix_space: lowerCAmelCase__ : Union[str, Any] = add_prefix_space lowerCAmelCase__ : Union[str, Any] = True if state.get('trim_offsets' , _lowerCamelCase ) != trim_offsets: lowerCAmelCase__ : List[Any] = trim_offsets lowerCAmelCase__ : Union[str, Any] = True if changes_to_apply: lowerCAmelCase__ : List[str] = getattr(_lowerCamelCase , state.pop('type' ) ) lowerCAmelCase__ : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def _lowerCamelCase ( self : int ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def _lowerCamelCase ( self : Dict , a : Tuple ): '''simple docstring''' lowerCAmelCase__ : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value lowerCAmelCase__ : List[Any] = value def _lowerCamelCase ( self : Dict , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = kwargs.get('is_split_into_words' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def _lowerCamelCase ( self : Optional[Any] , *a : List[Any] , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = kwargs.get('is_split_into_words' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def _lowerCamelCase ( self : Any , a : Union[str, Any] , a : int = None ): '''simple docstring''' lowerCAmelCase__ : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def _lowerCamelCase ( self : str , a : Union[str, Any] , a : List[str]=None ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _lowerCamelCase ( self : Union[str, Any] , a : Optional[int] , a : Dict = None ): '''simple docstring''' lowerCAmelCase__ : Any = [self.sep_token_id] lowerCAmelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Optional[Any] , a : List[str] , a : int = None , a : Union[str, Any] = PaddingStrategy.DO_NOT_PAD , a : Tuple = None , a : int = None , ): '''simple docstring''' lowerCAmelCase__ : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCAmelCase__ : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCAmelCase__ : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCAmelCase__ : Tuple = len(encoded_inputs['global_attention_mask'] ) != len(_lowerCamelCase ) if needs_to_be_padded: lowerCAmelCase__ : int = len(_lowerCamelCase ) - len(encoded_inputs['global_attention_mask'] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCAmelCase__ : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": lowerCAmelCase__ : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side ) ) return encoded_inputs
212
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a_ ( a__ , a__ , a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = StableUnCLIPImgaImgPipeline __SCREAMING_SNAKE_CASE : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : Any = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __SCREAMING_SNAKE_CASE : Tuple = frozenset([] ) def __lowerCAmelCase ( self ) ->Union[str, Any]: SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Tuple = embedder_hidden_size # image encoding components SCREAMING_SNAKE_CASE : int = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=_lowerCamelCase , projection_dim=_lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : int = StableUnCLIPImageNormalizer(embedding_dim=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_lowerCamelCase , layers_per_block=1 , upcast_attention=_lowerCamelCase , use_linear_projection=_lowerCamelCase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , prediction_type='''v_prediction''' , set_alpha_to_one=_lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Dict = AutoencoderKL() SCREAMING_SNAKE_CASE : Optional[Any] = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 , _lowerCamelCase=True ) ->Optional[int]: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : Optional[int] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_lowerCamelCase ) ).to(_lowerCamelCase ) if pil_image: SCREAMING_SNAKE_CASE : Any = input_image * 0.5 + 0.5 SCREAMING_SNAKE_CASE : int = input_image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE : List[str] = DiffusionPipeline.numpy_to_pil(_lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Tuple = StableUnCLIPImgaImgPipeline(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = sd_pipe.to(_lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_inputs(_lowerCamelCase ) inputs.update({'''image_embeds''': None} ) SCREAMING_SNAKE_CASE : Optional[int] = sd_pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.3_8_7_2, 0.7_2_2_4, 0.5_6_0_1, 0.4_7_4_1, 0.6_8_7_2, 0.5_8_1_4, 0.4_6_3_6, 0.3_8_6_7, 0.5_0_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : str = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=_lowerCamelCase ) def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_lowerCamelCase ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __lowerCAmelCase ( self ) ->Optional[int]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=_lowerCamelCase ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) ->Tuple: SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[Any] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-l-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Optional[Any]: SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) SCREAMING_SNAKE_CASE : Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy''' ) SCREAMING_SNAKE_CASE : List[str] = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = pipe(_lowerCamelCase , '''anime turle''' , generator=_lowerCamelCase , output_type='''np''' ) SCREAMING_SNAKE_CASE : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_lowerCamelCase , _lowerCamelCase ) def __lowerCAmelCase ( self ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png''' ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() SCREAMING_SNAKE_CASE : str = StableUnCLIPImgaImgPipeline.from_pretrained( '''fusing/stable-unclip-2-1-h-img2img''' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Dict = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() SCREAMING_SNAKE_CASE : Dict = pipe( _lowerCamelCase , '''anime turtle''' , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE : Any = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
313
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _a : Tuple = logging.get_logger(__name__) class _UpperCAmelCase ( lowerCAmelCase_ ): def __init__( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' warnings.warn( """The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use FlavaImageProcessor instead.""",__SCREAMING_SNAKE_CASE,) super().__init__(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
353
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[int] = """▁""" _a : Any = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _a : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
0
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel __a = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } __a = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def A_ ( _lowercase, _lowercase=False ): '''simple docstring''' snake_case_, snake_case_ :int = create_model( """HTSAT-tiny""", """roberta""", _lowercase, precision="""fp32""", device="""cuda:0""" if torch.cuda.is_available() else """cpu""", enable_fusion=_lowercase, fusion_type="""aff_2d""" if enable_fusion else None, ) return model, model_cfg def A_ ( _lowercase ): '''simple docstring''' snake_case_ :str = {} snake_case_ :Optional[int] = r""".*sequential.(\d+).*""" snake_case_ :Union[str, Any] = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: snake_case_ :Tuple = key.replace(_lowercase, _lowercase ) if re.match(_lowercase, _lowercase ): # replace sequential layers with list snake_case_ :Union[str, Any] = re.match(_lowercase, _lowercase ).group(1 ) snake_case_ :Optional[int] = key.replace(f"""sequential.{sequential_layer}.""", f"""layers.{int(_lowercase )//3}.linear.""" ) elif re.match(_lowercase, _lowercase ): snake_case_ :List[Any] = int(re.match(_lowercase, _lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... snake_case_ :List[Any] = 1 if projecton_layer == 0 else 2 snake_case_ :Optional[Any] = key.replace(f"""_projection.{projecton_layer}.""", f"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value snake_case_ :Dict = value snake_case_ :str = mixed_qkv.size(0 ) // 3 snake_case_ :List[Any] = mixed_qkv[:qkv_dim] snake_case_ :List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] snake_case_ :Dict = mixed_qkv[qkv_dim * 2 :] snake_case_ :Tuple = query_layer snake_case_ :Optional[Any] = key_layer snake_case_ :Any = value_layer else: snake_case_ :Any = value return model_state_dict def A_ ( _lowercase, _lowercase, _lowercase, _lowercase=False ): '''simple docstring''' snake_case_, snake_case_ :Union[str, Any] = init_clap(_lowercase, enable_fusion=_lowercase ) clap_model.eval() snake_case_ :Any = clap_model.state_dict() snake_case_ :Dict = rename_state_dict(_lowercase ) snake_case_ :Optional[int] = ClapConfig() snake_case_ :Optional[int] = enable_fusion snake_case_ :Dict = ClapModel(_lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowercase, strict=_lowercase ) model.save_pretrained(_lowercase ) transformers_config.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") __a = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
66
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __a = {"configuration_reformer": ["REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "ReformerConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ["ReformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "ReformerAttention", "ReformerForMaskedLM", "ReformerForQuestionAnswering", "ReformerForSequenceClassification", "ReformerLayer", "ReformerModel", "ReformerModelWithLMHead", "ReformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=5_12, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def __lowerCamelCase ( lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f'could not parse string as bool {string}' ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) UpperCAmelCase : Union[str, Any] = parser.parse_args() UpperCAmelCase : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
66
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = tempfile.mkdtemp() lowerCamelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCamelCase = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A , A ) def __A ( self , **A ) -> Optional[Any]: '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> List[Any]: '''simple docstring''' return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __A ( self , **A ) -> Optional[int]: '''simple docstring''' return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def __A ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCamelCase = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.get_tokenizer() lowerCamelCase = self.get_rust_tokenizer() lowerCamelCase = self.get_image_processor() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) lowerCamelCase = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = image_processor(A , return_tensors="""np""" ) lowerCamelCase = processor(images=A , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = processor(text=A ) lowerCamelCase = tokenizer(A , padding="""max_length""" , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase = processor.batch_decode(A ) lowerCamelCase = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.get_image_processor() lowerCamelCase = self.get_tokenizer() lowerCamelCase = AlignProcessor(tokenizer=A , image_processor=A ) lowerCamelCase = """lower newer""" lowerCamelCase = self.prepare_image_inputs() lowerCamelCase = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
66
1
"""simple docstring""" from __future__ import annotations class __UpperCamelCase : def __init__( self , lowerCAmelCase__ ) -> None: a : str = order # a_{0} ... a_{k} a : int = [1.0] + [0.0] * order # b_{0} ... b_{k} a : Union[str, Any] = [1.0] + [0.0] * order # x[n-1] ... x[n-k] a : Any = [0.0] * self.order # y[n-1] ... y[n-k] a : Tuple = [0.0] * self.order def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if len(lowerCAmelCase__ ) < self.order: a : Dict = [1.0, *a_coeffs] if len(lowerCAmelCase__ ) != self.order + 1: a : Optional[int] = ( f"""Expected a_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) != self.order + 1: a : Optional[Any] = ( f"""Expected b_coeffs to have {self.order + 1} elements """ f"""for {self.order}-order filter, got {len(lowerCAmelCase__ )}""" ) raise ValueError(lowerCAmelCase__ ) a : Any = a_coeffs a : int = b_coeffs def __a ( self , lowerCAmelCase__ ) -> float: a : List[str] = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) a : Optional[int] = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] a : Optional[Any] = self.input_history[:-1] a : str = self.output_history[:-1] a : int = sample a : List[Any] = result return result
105
"""simple docstring""" from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch("socket.socket" ) @patch("builtins.open" ) def _SCREAMING_SNAKE_CASE ( _lowercase : List[Any] , _lowercase : int ) ->str: '''simple docstring''' a : Optional[Any] = Mock() a : Dict = conn, Mock() a : Union[str, Any] = iter([1, None] ) a : Optional[int] = lambda _lowercase : next(_lowercase ) # ===== invoke ===== send_file(filename="mytext.txt" , testing=_lowercase ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
105
1
from collections.abc import Callable import numpy as np def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE : Any = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE : Union[str, Any] = ya SCREAMING_SNAKE_CASE : Dict = xa for k in range(a__ ): SCREAMING_SNAKE_CASE : Tuple = y[k] + step_size * ode_func(a__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
import torch from torch import nn from transformers import CLIPPreTrainedModel, CLIPVisionModel from ...models.attention import BasicTransformerBlock from ...utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=768 ) ->List[Any]: super().__init__(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = proj_size SCREAMING_SNAKE_CASE : Any = CLIPVisionModel(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = PaintByExampleMapper(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = nn.LayerNorm(config.hidden_size ) SCREAMING_SNAKE_CASE : int = nn.Linear(config.hidden_size , self.proj_size ) # uncondition for scaling SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.randn((1, 1, self.proj_size) ) ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=False ) ->int: SCREAMING_SNAKE_CASE : Optional[Any] = self.model(pixel_values=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = clip_output.pooler_output SCREAMING_SNAKE_CASE : Optional[Any] = self.mapper(latent_states[:, None] ) SCREAMING_SNAKE_CASE : Tuple = self.final_layer_norm(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.proj_out(_lowerCamelCase ) if return_uncond_vector: return latent_states, self.uncond_vector return latent_states class a_ ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->List[str]: super().__init__() SCREAMING_SNAKE_CASE : str = (config.num_hidden_layers + 1) // 5 SCREAMING_SNAKE_CASE : List[Any] = config.hidden_size SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList( [ BasicTransformerBlock(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , activation_fn='''gelu''' , attention_bias=_lowerCamelCase ) for _ in range(_lowerCamelCase ) ] ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: for block in self.blocks: SCREAMING_SNAKE_CASE : Optional[int] = block(_lowerCamelCase ) return hidden_states
19
1
import math def a__ ( UpperCAmelCase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a__ ( UpperCAmelCase : int = 10_001 ) -> int: try: UpperCAmelCase : Any = int(UpperCAmelCase ) except (TypeError, ValueError): raise TypeError('''Parameter nth must be int or castable to int.''' ) from None if nth <= 0: raise ValueError('''Parameter nth must be greater than or equal to one.''' ) UpperCAmelCase : list[int] = [] UpperCAmelCase : int = 2 while len(UpperCAmelCase ) < nth: if is_prime(UpperCAmelCase ): primes.append(UpperCAmelCase ) num += 1 else: num += 1 return primes[len(UpperCAmelCase ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
336
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file _lowerCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def a__ ( UpperCAmelCase : Dict=None ) -> Optional[int]: if subparsers is not None: UpperCAmelCase : Tuple = subparsers.add_parser('''tpu-config''' , description=_description ) else: UpperCAmelCase : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments UpperCAmelCase : Optional[int] = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=UpperCAmelCase , default=UpperCAmelCase , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=UpperCAmelCase , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=UpperCAmelCase , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) UpperCAmelCase : Union[str, Any] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=UpperCAmelCase , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase ) return parser def a__ ( UpperCAmelCase : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(UpperCAmelCase ): UpperCAmelCase : Union[str, Any] = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: UpperCAmelCase : List[Any] = defaults.command_file if not args.command and defaults.commands is not None: UpperCAmelCase : List[str] = defaults.commands if not args.tpu_name: UpperCAmelCase : Tuple = defaults.tpu_name if not args.tpu_zone: UpperCAmelCase : int = defaults.tpu_zone if args.accelerate_version == "dev": UpperCAmelCase : Tuple = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": UpperCAmelCase : Dict = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , UpperCAmelCase ): UpperCAmelCase : Optional[int] = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: UpperCAmelCase : int = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , UpperCAmelCase ): UpperCAmelCase : int = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate UpperCAmelCase : Optional[int] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command UpperCAmelCase : int = '''; '''.join(UpperCAmelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess UpperCAmelCase : Any = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(UpperCAmelCase )}''' ) return subprocess.run(UpperCAmelCase ) print('''Successfully setup pod.''' ) def a__ ( ) -> Any: UpperCAmelCase : Any = tpu_command_parser() UpperCAmelCase : Tuple = parser.parse_args() tpu_command_launcher(UpperCAmelCase )
336
1
'''simple docstring''' __lowerCAmelCase : Optional[int] = [ """VerificationMode""", """Version""", """disable_progress_bar""", """enable_progress_bar""", """is_progress_bar_enabled""", """experimental""", ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
354
'''simple docstring''' import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCAmelCase_ (__a : Optional[Any] ): """simple docstring""" _a : int = FileLock(str(tmpdir / 'foo.lock' ) ) _a : List[Any] = FileLock(str(tmpdir / 'foo.lock' ) ) _a : Any = 0.01 with locka.acquire(): with pytest.raises(__a ): _a : int = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCAmelCase_ (__a : str ): """simple docstring""" _a : Dict = 'a' * 1_0_0_0 + '.lock' _a : int = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('.lock' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 2_5_5 _a : Dict = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
5
0
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Union[str, Any] = int(SCREAMING_SNAKE_CASE ) A_ , A_ , A_ : Union[str, Any] = t // 3_600, (t // 60) % 60, t % 60 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=300 ): return f'''\n <div>\n {prefix}\n <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress>\n {label}\n </div>\n ''' def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : List[str] = '''<table border=\"1\" class=\"dataframe\">\n''' html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: A_ : List[Any] = f'''{elt:.6f}''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else str(SCREAMING_SNAKE_CASE ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class _lowerCamelCase : """simple docstring""" snake_case = 5 snake_case = 0.2 def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 300 , )->List[Any]: '''simple docstring''' A_ : Tuple = total A_ : List[Any] = '''''' if prefix is None else prefix A_ : List[Any] = leave A_ : str = parent A_ : List[Any] = width A_ : Any = None A_ : Any = None A_ : Union[str, Any] = None def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None )->Optional[int]: '''simple docstring''' A_ : Any = value if comment is not None: A_ : Optional[Any] = comment if self.last_value is None: A_ : List[str] = time.time() A_ : Union[str, Any] = value A_ : Optional[int] = None A_ : Union[str, Any] = self.warmup A_ : Any = 1 self.update_bar(_SCREAMING_SNAKE_CASE ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 A_ : Optional[int] = time.time() A_ : Optional[int] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: A_ : str = self.elapsed_time / (value - self.start_value) else: A_ : str = None if value >= self.total: A_ : List[Any] = self.total A_ : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: A_ : int = self.average_time_per_item * (self.total - value) self.update_bar(_SCREAMING_SNAKE_CASE ) A_ : List[Any] = value A_ : Dict = current_time if self.average_time_per_item is None: A_ : List[str] = 1 else: A_ : Any = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )->Dict: '''simple docstring''' A_ : str = ''' ''' * (len(str(self.total ) ) - len(str(_SCREAMING_SNAKE_CASE ) )) + str(_SCREAMING_SNAKE_CASE ) if self.elapsed_time is None: A_ : List[Any] = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: A_ : Dict = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: A_ : List[str] = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' F''' {format_time(self.predicted_remaining )}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else F''', {self.comment}]''' self.display() def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : int = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: A_ : Any = disp.display(disp.HTML(self.html_code ) , display_id=_SCREAMING_SNAKE_CASE ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self )->Dict: '''simple docstring''' if self.parent is None and self.output is not None: self.output.update(disp.HTML('''''' ) ) class _lowerCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None )->List[str]: '''simple docstring''' super().__init__(_SCREAMING_SNAKE_CASE ) A_ : str = None if column_names is None else [column_names] A_ : str = None def _snake_case ( self )->Any: '''simple docstring''' A_ : Union[str, Any] = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: A_ : Union[str, Any] = disp.display(disp.HTML(self.html_code ) , display_id=_SCREAMING_SNAKE_CASE ) else: self.output.update(disp.HTML(self.html_code ) ) def _snake_case ( self , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if self.inner_table is None: A_ : Optional[int] = [list(values.keys() ), list(values.values() )] else: A_ : Optional[int] = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_SCREAMING_SNAKE_CASE ) A_ : Dict = columns self.inner_table.append([values[c] for c in columns] ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=300 )->List[Any]: '''simple docstring''' A_ : int = NotebookProgressBar(_SCREAMING_SNAKE_CASE , prefix=_SCREAMING_SNAKE_CASE , parent=self , width=_SCREAMING_SNAKE_CASE ) return self.child_bar def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = None self.display() class _lowerCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self )->Union[str, Any]: '''simple docstring''' A_ : str = None A_ : List[Any] = None A_ : Optional[Any] = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' A_ : Optional[Any] = '''Epoch''' if args.evaluation_strategy == IntervalStrategy.EPOCH else '''Step''' A_ : Dict = 0 A_ : Dict = 0 A_ : Tuple = [self.first_column] + ['''Training Loss'''] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append('''Validation Loss''' ) A_ : Dict = NotebookTrainingTracker(state.max_steps , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' A_ : Optional[int] = int(state.epoch ) if int(state.epoch ) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) A_ : Dict = False def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' if not has_length(_SCREAMING_SNAKE_CASE ): return if self.prediction_bar is None: if self.training_tracker is not None: A_ : Union[str, Any] = self.training_tracker.add_child(len(_SCREAMING_SNAKE_CASE ) ) else: A_ : List[str] = NotebookProgressBar(len(_SCREAMING_SNAKE_CASE ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->Dict: '''simple docstring''' if self.prediction_bar is not None: self.prediction_bar.close() A_ : Union[str, Any] = None def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: A_ : Union[str, Any] = {'''Training Loss''': logs['''loss''']} # First column is necessarily Step sine we're not in epoch eval strategy A_ : Dict = state.global_step self.training_tracker.write_line(_SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' if self.training_tracker is not None: A_ : Any = {'''Training Loss''': '''No log''', '''Validation Loss''': '''No log'''} for log in reversed(state.log_history ): if "loss" in log: A_ : str = log['''loss'''] break if self.first_column == "Epoch": A_ : List[Any] = int(state.epoch ) else: A_ : Optional[int] = state.global_step A_ : Optional[Any] = '''eval''' for k in metrics: if k.endswith('''_loss''' ): A_ : Tuple = re.sub(R'''\_loss$''' , '''''' , _SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = metrics.pop('''total_flos''' , _SCREAMING_SNAKE_CASE ) A_ : Tuple = metrics.pop('''epoch''' , _SCREAMING_SNAKE_CASE ) A_ : Tuple = metrics.pop(F'''{metric_key_prefix}_runtime''' , _SCREAMING_SNAKE_CASE ) A_ : Tuple = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _SCREAMING_SNAKE_CASE ) A_ : Any = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _SCREAMING_SNAKE_CASE ) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': A_ : Tuple = v else: A_ : Any = k.split('''_''' ) A_ : Any = ''' '''.join([part.capitalize() for part in splits[1:]] ) A_ : Union[str, Any] = v self.training_tracker.write_line(_SCREAMING_SNAKE_CASE ) self.training_tracker.remove_child() A_ : Optional[int] = None # Evaluation takes a long time so we should force the next update. A_ : str = True def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = None
186
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : def __init__( self , lowercase , ) -> Optional[int]: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def _snake_case ( self ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertModel(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCAmelCase = TFDistilBertForMaskedLM(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertForQuestionAnswering(config=lowercase ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForSequenceClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFDistilBertForMultipleChoice(lowercase ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForTokenClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Dict: lowerCAmelCase = TFDistilBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , dim=37 ) def _snake_case ( self ) -> str: self.config_tester.run_common_tests() def _snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def _snake_case ( self ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Any: lowerCAmelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , lowercase ) lowerCAmelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 )
46
0
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" while second != 0: UpperCAmelCase_ : Dict = first & second first ^= second UpperCAmelCase_ : Dict = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase = int(input("""Enter the first number: """).strip()) _lowerCamelCase = int(input("""Enter the second number: """).strip()) print(f"""{add(first, second) = }""")
354
'''simple docstring''' from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def a__ ( ) -> tuple[list[int], int]: """simple docstring""" UpperCAmelCase_ : Tuple = [randint(-10_00 , 10_00 ) for i in range(10 )] UpperCAmelCase_ : str = randint(-50_00 , 50_00 ) return (arr, r) _lowerCamelCase = make_dataset() def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> tuple[int, ...]: """simple docstring""" for triplet in permutations(_SCREAMING_SNAKE_CASE , 3 ): if sum(_SCREAMING_SNAKE_CASE ) == target: return tuple(sorted(_SCREAMING_SNAKE_CASE ) ) return (0, 0, 0) def a__ ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int ) -> tuple[int, int, int]: """simple docstring""" arr.sort() UpperCAmelCase_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) for i in range(n - 1 ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def a__ ( ) -> tuple[float, float]: """simple docstring""" UpperCAmelCase_ : Tuple = "\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n" UpperCAmelCase_ : Optional[Any] = "\ntriplet_sum1(*dataset)\n" UpperCAmelCase_ : str = "\ntriplet_sum2(*dataset)\n" UpperCAmelCase_ : Dict = repeat(setup=_SCREAMING_SNAKE_CASE , stmt=_SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) UpperCAmelCase_ : Dict = repeat(setup=_SCREAMING_SNAKE_CASE , stmt=_SCREAMING_SNAKE_CASE , repeat=5 , number=1_00_00 ) return (min(_SCREAMING_SNAKE_CASE ), min(_SCREAMING_SNAKE_CASE )) if __name__ == "__main__": from doctest import testmod testmod() _lowerCamelCase = solution_times() print(f"""The time for naive implementation is {times[0]}.""") print(f"""The time for optimized implementation is {times[1]}.""")
67
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging __a = logging.get_logger(__name__) __a = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Optional[Any] = """mctct""" def __init__( self: Optional[Any] , snake_case: List[str]=8_065 , snake_case: Optional[Any]=1_536 , snake_case: str=36 , snake_case: Optional[int]=6_144 , snake_case: Any=4 , snake_case: Any=384 , snake_case: Optional[Any]=920 , snake_case: Dict=1E-5 , snake_case: Any=0.3 , snake_case: Optional[Any]="relu" , snake_case: Tuple=0.0_2 , snake_case: int=0.3 , snake_case: Dict=0.3 , snake_case: Optional[int]=1 , snake_case: Dict=0 , snake_case: Optional[Any]=2 , snake_case: str=1 , snake_case: Union[str, Any]=0.3 , snake_case: List[str]=1 , snake_case: Tuple=(7,) , snake_case: Optional[Any]=(3,) , snake_case: int=80 , snake_case: List[str]=1 , snake_case: Any=None , snake_case: Union[str, Any]="sum" , snake_case: Any=False , **snake_case: List[Any] , ) -> Dict: super().__init__(**snake_case , pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case ) snake_case_ :int = vocab_size snake_case_ :List[Any] = hidden_size snake_case_ :str = num_hidden_layers snake_case_ :Tuple = intermediate_size snake_case_ :Optional[Any] = num_attention_heads snake_case_ :Dict = attention_head_dim snake_case_ :Optional[int] = max_position_embeddings snake_case_ :str = layer_norm_eps snake_case_ :Tuple = layerdrop snake_case_ :Any = hidden_act snake_case_ :Optional[int] = initializer_range snake_case_ :List[str] = hidden_dropout_prob snake_case_ :int = attention_probs_dropout_prob snake_case_ :int = pad_token_id snake_case_ :Optional[int] = bos_token_id snake_case_ :int = eos_token_id snake_case_ :Tuple = conv_glu_dim snake_case_ :List[str] = conv_dropout snake_case_ :List[str] = num_conv_layers snake_case_ :int = input_feat_per_channel snake_case_ :List[str] = input_channels snake_case_ :Tuple = conv_channels snake_case_ :Dict = ctc_loss_reduction snake_case_ :Any = ctc_zero_infinity # prevents config testing fail with exporting to json snake_case_ :Any = list(snake_case ) snake_case_ :str = list(snake_case ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f"""but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" )
66
"""simple docstring""" import math class lowerCamelCase : '''simple docstring''' def lowerCAmelCase_ ( self: Tuple , snake_case: list[list[float]] , snake_case: list[int] ) -> int: snake_case_ :Any = 0.0 snake_case_ :Tuple = 0.0 for i in range(len(snake_case ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowerCAmelCase_ ( self: Optional[int] , snake_case: list[list[int | float]] , snake_case: list[int] , snake_case: int , snake_case: float ) -> list[list[int | float]]: for i in range(len(snake_case ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def A_ ( ): '''simple docstring''' snake_case_ :Dict = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) snake_case_ :List[Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training snake_case_ :Optional[Any] = SelfOrganizingMap() snake_case_ :Dict = 3 snake_case_ :Dict = 0.5 for _ in range(_lowercase ): for j in range(len(_lowercase ) ): # training sample snake_case_ :List[Any] = training_samples[j] # Compute the winning vector snake_case_ :Optional[int] = self_organizing_map.get_winner(_lowercase, _lowercase ) # Update the winning vector snake_case_ :List[str] = self_organizing_map.update(_lowercase, _lowercase, _lowercase, _lowercase ) # classify test sample snake_case_ :str = [0, 0, 0, 1] snake_case_ :List[Any] = self_organizing_map.get_winner(_lowercase, _lowercase ) # results print(f"""Clusters that the test sample belongs to : {winner}""" ) print(f"""Weights that have been trained : {weights}""" ) # running the main() function if __name__ == "__main__": main()
66
1
from math import factorial def A_ ( _lowerCAmelCase = 20 ) -> int: UpperCamelCase : Any = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... UpperCamelCase : Optional[int] = n // 2 return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: __lowerCamelCase : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number.""")
140
import math def A_ ( _lowerCAmelCase ) -> list: UpperCamelCase : str = [True] * n UpperCamelCase : Optional[int] = False UpperCamelCase : str = False UpperCamelCase : List[Any] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase : int = i * 2 while index < n: UpperCamelCase : Optional[Any] = False UpperCamelCase : Optional[Any] = index + i UpperCamelCase : Optional[Any] = [2] for i in range(3 , _lowerCAmelCase , 2 ): if is_prime[i]: primes.append(_lowerCAmelCase ) return primes def A_ ( _lowerCAmelCase = 9999_6666_3333 ) -> int: UpperCamelCase : Tuple = math.floor(math.sqrt(_lowerCAmelCase ) ) + 100 UpperCamelCase : Dict = prime_sieve(_lowerCAmelCase ) UpperCamelCase : Optional[Any] = 0 UpperCamelCase : Tuple = 0 UpperCamelCase : List[str] = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase : Dict = primes[prime_index + 1] UpperCamelCase : Any = last_prime**2 UpperCamelCase : Union[str, Any] = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase : Dict = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase : List[str] = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase : Dict = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase : str = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
140
1
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset __A ='''bert-base-cased''' __A ='''google/pegasus-xsum''' __A =[''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] __A =['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] __A ='''patrickvonplaten/t5-tiny-random''' __A ='''sshleifer/bart-tiny-random''' __A ='''sshleifer/tiny-mbart''' __A ='''sshleifer/tiny-marian-en-de''' def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase_ = "\n".join(lowerCamelCase__ ) Path(lowerCamelCase__ ).open("w" ).writelines(lowerCamelCase__ ) def lowerCamelCase_ ( lowerCamelCase__ ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCamelCase__ , F'{split}.source' ) , lowerCamelCase__ ) _dump_articles(os.path.join(lowerCamelCase__ , F'{split}.target' ) , lowerCamelCase__ ) return tmp_dir class _SCREAMING_SNAKE_CASE ( snake_case_ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) lowerCamelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase_ = max(len(tokenizer.encode(lowercase ) ) for a in ARTICLES ) lowerCamelCase_ = max(len(tokenizer.encode(lowercase ) ) for a in SUMMARIES ) lowerCamelCase_ = 4 lowerCamelCase_ = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCamelCase_ , lowerCamelCase_ = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowerCamelCase_ = SeqaSeqDataset( lowercase , data_dir=lowercase , type_path="train" , max_source_length=lowercase , max_target_length=lowercase , src_lang=lowercase , tgt_lang=lowercase , ) lowerCamelCase_ = DataLoader(lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase , lowercase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCamelCase_ = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> str: lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) lowerCamelCase_ = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase_ = max(len(tokenizer.encode(lowercase ) ) for a in ARTICLES ) lowerCamelCase_ = max(len(tokenizer.encode(lowercase ) ) for a in SUMMARIES ) lowerCamelCase_ = 4 lowerCamelCase_ = LegacySeqaSeqDataset( lowercase , data_dir=lowercase , type_path="train" , max_source_length=20 , max_target_length=lowercase , ) lowerCamelCase_ = DataLoader(lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowerCamelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCamelCase_ = tmp_dir.joinpath("train.source" ).open().readlines() lowerCamelCase_ = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase , lowercase , 128 , lowercase ) lowerCamelCase_ = {x.name for x in tmp_dir.iterdir()} lowerCamelCase_ = {x.name for x in save_dir.iterdir()} lowerCamelCase_ = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase ) < len(lowercase ) assert len(lowercase ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: if not FAIRSEQ_AVAILABLE: return lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_dataset(max_len=64 ) lowerCamelCase_ = 64 lowerCamelCase_ = ds.make_dynamic_sampler(lowercase , required_batch_size_multiple=lowercase ) lowerCamelCase_ = [len(lowercase ) for x in batch_sampler] assert len(set(lowercase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase ) == len(lowercase ) # no dropped or added examples lowerCamelCase_ = DataLoader(lowercase , batch_sampler=lowercase , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase_ = [] lowerCamelCase_ = [] for batch in data_loader: lowerCamelCase_ = batch["input_ids"].shape lowerCamelCase_ = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCamelCase_ = np.product(batch["input_ids"].shape ) num_src_per_batch.append(lowercase ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase ) assert num_src_per_batch[0] == max(lowercase ) if failures: raise AssertionError(f'too many tokens in {len(lowercase )} batches' ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_dataset(max_len=512 ) lowerCamelCase_ = 2 lowerCamelCase_ = ds.make_sortish_sampler(lowercase , shuffle=lowercase ) lowerCamelCase_ = DataLoader(lowercase , batch_size=lowercase , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase_ = DataLoader(lowercase , batch_size=lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase ) lowerCamelCase_ = tokenizer.pad_token_id def count_pad_tokens(lowercase , lowercase="input_ids" ): return [batch[k].eq(lowercase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase , k="labels" ) ) < sum(count_pad_tokens(lowercase , k="labels" ) ) assert sum(count_pad_tokens(lowercase ) ) < sum(count_pad_tokens(lowercase ) ) assert len(lowercase ) == len(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase=1000 , lowercase=128 ) -> str: if os.getenv("USE_REAL_DATA" , lowercase ): lowerCamelCase_ = "examples/seq2seq/wmt_en_ro" lowerCamelCase_ = max_len * 2 * 64 if not Path(lowercase ).joinpath("train.len" ).exists(): save_len_file(lowercase , lowercase ) else: lowerCamelCase_ = "examples/seq2seq/test_data/wmt_en_ro" lowerCamelCase_ = max_len * 4 save_len_file(lowercase , lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) lowerCamelCase_ = SeqaSeqDataset( lowercase , data_dir=lowercase , type_path="train" , max_source_length=lowercase , max_target_length=lowercase , n_obs=lowercase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = self._get_dataset() lowerCamelCase_ = set(DistributedSortishSampler(lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowercase ) ) lowerCamelCase_ = set(DistributedSortishSampler(lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowercase ) ) assert idsa.intersection(lowercase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase , use_fast=lowercase ) if tok_name == MBART_TINY: lowerCamelCase_ = SeqaSeqDataset( lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowerCamelCase_ = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCamelCase_ = SeqaSeqDataset( lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowerCamelCase_ = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase ) == 1 if tok_name == BART_TINY else len(lowercase ) == 0
19
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing the experiment tracking capability, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __A =1_6 __A =3_2 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ = 1_6 ): lowerCamelCase_ = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCamelCase_ = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase_ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase_ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase_ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase_ = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase_ = 1_6 elif accelerator.mixed_precision != "no": lowerCamelCase_ = 8 else: lowerCamelCase_ = None return tokenizer.pad( lowerCamelCase__ , padding="longest" , max_length=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. lowerCamelCase_ = DataLoader( tokenized_datasets["train"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) lowerCamelCase_ = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=lowerCamelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __A =mocked_dataloaders # noqa: F811 def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCamelCase__ ) == "1": lowerCamelCase_ = 2 # Initialize Accelerator # New Code # # We pass in "all" to `log_with` to grab all available trackers in the environment # Note: If using a custom `Tracker` class, should be passed in here such as: # >>> log_with = ["all", MyCustomTrackerClassInstance()] if args.with_tracking: lowerCamelCase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with="all" , project_dir=args.project_dir ) else: lowerCamelCase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase_ = config["lr"] lowerCamelCase_ = int(config["num_epochs"] ) lowerCamelCase_ = int(config["seed"] ) lowerCamelCase_ = int(config["batch_size"] ) set_seed(lowerCamelCase__ ) lowerCamelCase_ , lowerCamelCase_ = get_dataloaders(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ = evaluate.load("glue" , "mrpc" ) # If the batch size is too big we use gradient accumulation lowerCamelCase_ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCamelCase_ = batch_size // MAX_GPU_BATCH_SIZE lowerCamelCase_ = MAX_GPU_BATCH_SIZE # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase_ = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCamelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase_ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase_ = AdamW(params=model.parameters() , lr=lowerCamelCase__ ) # Instantiate scheduler lowerCamelCase_ = get_linear_schedule_with_warmup( optimizer=lowerCamelCase__ , num_warmup_steps=1_0_0 , num_training_steps=(len(lowerCamelCase__ ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = accelerator.prepare( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # New Code # # We need to initialize the trackers we use. Overall configurations can also be stored if args.with_tracking: lowerCamelCase_ = os.path.split(lowerCamelCase__ )[-1].split("." )[0] accelerator.init_trackers(lowerCamelCase__ , lowerCamelCase__ ) # Now we train the model for epoch in range(lowerCamelCase__ ): model.train() # New Code # # For our tracking example, we will log the total loss of each epoch if args.with_tracking: lowerCamelCase_ = 0 for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.loss # New Code # if args.with_tracking: total_loss += loss.detach().float() lowerCamelCase_ = loss / gradient_accumulation_steps accelerator.backward(lowerCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCamelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True` (the default). batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase_ = model(**lowerCamelCase__ ) lowerCamelCase_ = outputs.logits.argmax(dim=-1 ) lowerCamelCase_ , lowerCamelCase_ = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCamelCase__ , references=lowerCamelCase__ , ) lowerCamelCase_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , lowerCamelCase__ ) # New Code # # To actually log, we call `Accelerator.log` # The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int` if args.with_tracking: accelerator.log( { "accuracy": eval_metric["accuracy"], "f1": eval_metric["f1"], "train_loss": total_loss.item() / len(lowerCamelCase__ ), "epoch": epoch, } , step=lowerCamelCase__ , ) # New Code # # When a run is finished, you should call `accelerator.end_training()` # to close all of the open trackers if args.with_tracking: accelerator.end_training() def lowerCamelCase_ ( ): lowerCamelCase_ = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCamelCase__ , default=lowerCamelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) parser.add_argument( "--with_tracking" , action="store_true" , help="Whether to load in all available experiment trackers from the environment and use them for logging." , ) parser.add_argument( "--project_dir" , type=lowerCamelCase__ , default="logs" , help="Location on where to store experiment tracking logs` and relevent project information" , ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = {"lr": 2e-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(lowerCamelCase__ , lowerCamelCase__ ) if __name__ == "__main__": main()
19
1
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def UpperCAmelCase_ (_lowerCAmelCase : List[Any] ): assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase_ (): assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def UpperCAmelCase_ (): __UpperCamelCase : Any = "mock-s3-bucket" __UpperCamelCase : str = F'''s3://{mock_bucket}''' __UpperCamelCase : str = extract_path_from_uri(_lowerCAmelCase ) assert dataset_path.startswith("s3://" ) is False __UpperCamelCase : int = "./local/path" __UpperCamelCase : Union[str, Any] = extract_path_from_uri(_lowerCAmelCase ) assert dataset_path == new_dataset_path def UpperCAmelCase_ (_lowerCAmelCase : Tuple ): __UpperCamelCase : Tuple = is_remote_filesystem(_lowerCAmelCase ) assert is_remote is True __UpperCamelCase : int = fsspec.filesystem("file" ) __UpperCamelCase : List[Any] = is_remote_filesystem(_lowerCAmelCase ) assert is_remote is False @pytest.mark.parametrize("compression_fs_class" , _lowerCAmelCase ) def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Any ): __UpperCamelCase : Optional[Any] = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_file, "bz2": bza_file, "lz4": lza_file} __UpperCamelCase : Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: __UpperCamelCase : Any = F'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(_lowerCAmelCase ) __UpperCamelCase : Optional[int] = fsspec.filesystem(compression_fs_class.protocol , fo=_lowerCAmelCase ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : List[str] = os.path.basename(_lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = expected_filename[: expected_filename.rindex("." )] assert fs.glob("*" ) == [expected_filename] with fs.open(_lowerCAmelCase , "r" , encoding="utf-8" ) as f, open(_lowerCAmelCase , encoding="utf-8" ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize("protocol" , ["zip", "gzip"] ) def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Any ): __UpperCamelCase : Optional[int] = {"zip": zip_jsonl_path, "gzip": jsonl_gz_path} __UpperCamelCase : str = compressed_file_paths[protocol] __UpperCamelCase : Tuple = "dataset.jsonl" __UpperCamelCase : List[Any] = F'''{protocol}://{member_file_path}::{compressed_file_path}''' __UpperCamelCase : List[str] = fsspec.get_fs_token_paths(_lowerCAmelCase ) assert fs.isfile(_lowerCAmelCase ) assert not fs.isfile("non_existing_" + member_file_path ) @pytest.mark.integration def UpperCAmelCase_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): __UpperCamelCase : str = hf_api.dataset_info(_lowerCAmelCase , token=_lowerCAmelCase ) __UpperCamelCase : Optional[int] = HfFileSystem(repo_info=_lowerCAmelCase , token=_lowerCAmelCase ) assert sorted(hffs.glob("*" ) ) == [".gitattributes", "data"] assert hffs.isdir("data" ) assert hffs.isfile(".gitattributes" ) and hffs.isfile("data/text_data.txt" ) with open(_lowerCAmelCase ) as f: assert hffs.open("data/text_data.txt" , "r" ).read() == f.read() def UpperCAmelCase_ (): __UpperCamelCase : List[str] = "bz2" # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(_lowerCAmelCase , _lowerCAmelCase , clobber=_lowerCAmelCase ) with pytest.warns(_lowerCAmelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(_lowerCAmelCase ) == 1 assert ( str(warning_info[0].message ) == F'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
368
def UpperCAmelCase_ (_lowerCAmelCase : int = 1_00 ): __UpperCamelCase : Tuple = n * (n + 1) * (2 * n + 1) / 6 __UpperCamelCase : List[str] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F"""{solution() = }""")
171
0
from typing import Any import numpy as np def A (__A : Any ) -> bool: """simple docstring""" return np.array_equal(__snake_case , matrix.conjugate().T ) def A (__A : Tuple , __A : Optional[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ = v.conjugate().T UpperCAmelCase_ = v_star.dot(__snake_case ) assert isinstance(__snake_case , np.ndarray ) return (v_star_dot.dot(__snake_case )) / (v_star.dot(__snake_case )) def A () -> None: """simple docstring""" UpperCAmelCase_ = np.array([[2, 2 + 1j, 4], [2 - 1j, 3, 1j], [4, -1j, 1]] ) UpperCAmelCase_ = np.array([[1], [2], [3]] ) assert is_hermitian(__snake_case ), F"""{a} is not hermitian.""" print(rayleigh_quotient(__snake_case , __snake_case ) ) UpperCAmelCase_ = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(__snake_case ), F"""{a} is not hermitian.""" assert rayleigh_quotient(__snake_case , __snake_case ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
51
from math import isqrt def UpperCAmelCase_ ( __snake_case ) -> list[int]: """simple docstring""" _lowercase =[True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __snake_case , __snake_case ): _lowercase =False return [i for i in range(2 , __snake_case ) if is_prime[i]] def UpperCAmelCase_ ( __snake_case = 10**8 ) -> int: """simple docstring""" _lowercase =calculate_prime_numbers(max_number // 2 ) _lowercase =0 _lowercase =0 _lowercase =len(__snake_case ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
5
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor __A = logging.get_logger(__name__) class lowercase_ ( __lowercase ): def __init__( self : Optional[Any] , *A__ : List[Any] , **A__ : int ) -> None: warnings.warn( '''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use DeformableDetrImageProcessor instead.''' , A__ , ) super().__init__(*A__ , **A__ )
365
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A = random.Random() def snake_case_(_UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: """simple docstring""" if rng is None: _snake_case = global_rng _snake_case = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowercase_ ( unittest.TestCase ): def __init__( self : List[Any] , A__ : List[Any] , A__ : int=7 , A__ : Tuple=400 , A__ : int=2000 , A__ : Any=2048 , A__ : List[Any]=128 , A__ : Optional[int]=1 , A__ : Optional[Any]=512 , A__ : Any=30 , A__ : Any=44100 , ) -> int: _snake_case = parent _snake_case = batch_size _snake_case = min_seq_length _snake_case = max_seq_length _snake_case = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case = spectrogram_length _snake_case = feature_size _snake_case = num_audio_channels _snake_case = hop_length _snake_case = chunk_length _snake_case = sampling_rate def UpperCamelCase_ ( self : str ) -> Optional[int]: return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def UpperCamelCase_ ( self : Any , A__ : Any=False , A__ : List[str]=False ) -> Tuple: def _flatten(A__ : List[str] ): return list(itertools.chain(*A__ ) ) if equal_length: _snake_case = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case = [np.asarray(A__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = TvltFeatureExtractor def UpperCamelCase_ ( self : Dict ) -> List[str]: _snake_case = TvltFeatureExtractionTester(self ) def UpperCamelCase_ ( self : int ) -> Optional[int]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(A__ , '''spectrogram_length''' ) ) self.assertTrue(hasattr(A__ , '''feature_size''' ) ) self.assertTrue(hasattr(A__ , '''num_audio_channels''' ) ) self.assertTrue(hasattr(A__ , '''hop_length''' ) ) self.assertTrue(hasattr(A__ , '''chunk_length''' ) ) self.assertTrue(hasattr(A__ , '''sampling_rate''' ) ) def UpperCamelCase_ ( self : Any ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = feat_extract_first.save_pretrained(A__ )[0] check_json_file_has_correct_format(A__ ) _snake_case = self.feature_extraction_class.from_pretrained(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : int ) -> Union[str, Any]: _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case = os.path.join(A__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(A__ ) _snake_case = self.feature_extraction_class.from_json_file(A__ ) _snake_case = feat_extract_first.to_dict() _snake_case = feat_extract_second.to_dict() _snake_case = dict_first.pop('''mel_filters''' ) _snake_case = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(A__ , A__ ) ) self.assertEqual(A__ , A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> Any: # Initialize feature_extractor _snake_case = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _snake_case = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _snake_case = [np.asarray(A__ ) for speech_input in speech_inputs] # Test not batched input _snake_case = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _snake_case = feature_extractor( A__ , return_tensors='''np''' , sampling_rate=44100 , mask_audio=A__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _snake_case = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case = np.asarray(A__ ) _snake_case = feature_extractor(A__ , return_tensors='''np''' , sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def UpperCamelCase_ ( self : Optional[Any] , A__ : Any ) -> Optional[int]: _snake_case = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _snake_case = ds.sort('''id''' ).select(range(A__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def UpperCamelCase_ ( self : List[str] ) -> Optional[Any]: _snake_case = self._load_datasamples(1 ) _snake_case = TvltFeatureExtractor() _snake_case = feature_extractor(A__ , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _snake_case = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , A__ , atol=1e-4 ) )
278
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } _SCREAMING_SNAKE_CASE = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } _SCREAMING_SNAKE_CASE = """▁""" class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase__ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ["input_ids", "attention_mask"] __lowerCAmelCase = BarthezTokenizer def __init__( self : Optional[Any] , lowerCamelCase_ : Dict=None , lowerCamelCase_ : str=None , lowerCamelCase_ : List[Any]="<s>" , lowerCamelCase_ : Optional[int]="</s>" , lowerCamelCase_ : List[str]="</s>" , lowerCamelCase_ : Tuple="<s>" , lowerCamelCase_ : str="<unk>" , lowerCamelCase_ : Any="<pad>" , lowerCamelCase_ : Union[str, Any]="<mask>" , **lowerCamelCase_ : Union[str, Any] , ): """simple docstring""" UpperCamelCase = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token super().__init__( lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def lowerCamelCase_ ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase_ ( self : Tuple , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(lowerCamelCase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase = os.path.join( lowerCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ): copyfile(self.vocab_file , lowerCamelCase_ ) return (out_vocab_file,)
343
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
67
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowerCAmelCase__ = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : Tuple=None , ): '''simple docstring''' if attention_mask is None: lowerCAmelCase : List[str] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCAmelCase : Optional[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCAmelCase : str = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase : Tuple = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=False , snake_case__=99 , snake_case__=16 , snake_case__=2 , snake_case__=4 , snake_case__=4 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=32 , snake_case__=2 , snake_case__=1 , snake_case__=0 , snake_case__=0.02 , ): """simple docstring""" lowerCAmelCase : str = parent lowerCAmelCase : str = batch_size lowerCAmelCase : Optional[int] = seq_length lowerCAmelCase : int = is_training lowerCAmelCase : str = use_labels lowerCAmelCase : Dict = vocab_size lowerCAmelCase : Union[str, Any] = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Any = hidden_act lowerCAmelCase : Optional[int] = hidden_dropout_prob lowerCAmelCase : Optional[int] = attention_probs_dropout_prob lowerCAmelCase : Union[str, Any] = max_position_embeddings lowerCAmelCase : Tuple = eos_token_id lowerCAmelCase : Any = pad_token_id lowerCAmelCase : Dict = bos_token_id lowerCAmelCase : int = initializer_range def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCAmelCase : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCAmelCase : Optional[Any] = shift_tokens_right(snake_case__ , 1 , 2 ) lowerCAmelCase : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=snake_case__ , ) lowerCAmelCase : Union[str, Any] = prepare_blenderbot_inputs_dict(snake_case__ , snake_case__ , snake_case__ ) return config, inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : int = self.prepare_config_and_inputs() return config, inputs_dict def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = 20 lowerCAmelCase : List[Any] = model_class_name(snake_case__ ) lowerCAmelCase : Optional[Any] = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase : List[str] = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) lowerCAmelCase : int = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) lowerCAmelCase : Tuple = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase : Tuple = model.decode( decoder_input_ids[:, -1:] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=snake_case__ , ) lowerCAmelCase : Optional[int] = model.decode(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = 20 lowerCAmelCase : Optional[Any] = model_class_name(snake_case__ ) lowerCAmelCase : Tuple = model.encode(inputs_dict["input_ids"] ) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCAmelCase : int = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCAmelCase : Optional[Any] = model.init_cache(decoder_input_ids.shape[0] , snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCAmelCase : Dict = model.decode( decoder_input_ids[:, :-1] , snake_case__ , decoder_attention_mask=snake_case__ , past_key_values=snake_case__ , decoder_position_ids=snake_case__ , ) lowerCAmelCase : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCAmelCase : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , snake_case__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=snake_case__ , decoder_position_ids=snake_case__ , ) lowerCAmelCase : Dict = model.decode(snake_case__ , snake_case__ , decoder_attention_mask=snake_case__ ) lowerCAmelCase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Tuple =99 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCAmelCase : int = input_ids.shape[0] lowerCAmelCase : Any = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[str] = self._get_config_and_data() lowerCAmelCase : Dict = FlaxBlenderbotSmallForConditionalGeneration(snake_case__ ) lowerCAmelCase : Tuple = lm_model(input_ids=snake_case__ ) lowerCAmelCase : Optional[int] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCAmelCase : List[Any] = FlaxBlenderbotSmallForConditionalGeneration(snake_case__ ) lowerCAmelCase : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCAmelCase : Dict = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCAmelCase : Any = lm_model(input_ids=snake_case__ , decoder_input_ids=snake_case__ ) lowerCAmelCase : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCAmelCase : Optional[int] = shift_tokens_right(snake_case__ , 1 , 2 ) lowerCAmelCase : Tuple = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() lowerCAmelCase : Any = np.equal(snake_case__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(snake_case__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase , lowercase ): """simple docstring""" a : List[str] =True a : Any =( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) a : Dict =(FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = FlaxBlenderbotSmallModelTester(self ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(snake_case__ , snake_case__ , snake_case__ ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : Tuple = self._prepare_for_class(snake_case__ , snake_case__ ) lowerCAmelCase : str = model_class(snake_case__ ) @jax.jit def encode_jitted(snake_case__ , snake_case__=None , **snake_case__ ): return model.encode(input_ids=snake_case__ , attention_mask=snake_case__ ) with self.subTest("JIT Enabled" ): lowerCAmelCase : Dict = encode_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase : Union[str, Any] = encode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase , lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCAmelCase : str = model_class(snake_case__ ) lowerCAmelCase : List[str] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCAmelCase : Tuple = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(snake_case__ , snake_case__ , snake_case__ ): return model.decode( decoder_input_ids=snake_case__ , decoder_attention_mask=snake_case__ , encoder_outputs=snake_case__ , ) with self.subTest("JIT Enabled" ): lowerCAmelCase : int = decode_jitted(**snake_case__ ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCAmelCase : Optional[Any] = decode_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowercase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase : Tuple = model_class_name.from_pretrained("facebook/blenderbot_small-90M" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCAmelCase : Dict = np.ones((1, 1) ) * model.config.eos_token_id lowerCAmelCase : Union[str, Any] = model(snake_case__ ) self.assertIsNotNone(snake_case__ )
133
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =(DEISMultistepScheduler,) a : str =(("num_inference_steps", 25),) def lowercase__ ( self , **snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__ ) return config def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : str = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : Optional[int] = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Any = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : int = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self , snake_case__=None , **snake_case__ ): """simple docstring""" if scheduler is None: lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Any = scheduler_class(**snake_case__ ) lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = 10 lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Any = model(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowerCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase : int = scheduler.timesteps[5] lowerCAmelCase : str = scheduler.timesteps[6] lowerCAmelCase : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase : Dict = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 lowerCAmelCase : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="deis" , solver_order=snake_case__ , solver_type=snake_case__ , ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) lowerCAmelCase : Any = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def lowercase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = 10 lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Union[str, Any] = model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
133
1
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ = '''Pix2StructImageProcessor''' lowerCamelCase_ = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , lowercase , lowercase ): """simple docstring""" A_ : List[str] = False super().__init__(lowercase , lowercase ) def __call__( self , lowercase=None , lowercase = None , lowercase = True , lowercase = False , lowercase = None , lowercase = None , lowercase = 2_0_4_8 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = False , lowercase = True , lowercase = None , **lowercase , ): """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None and not self.image_processor.is_vqa: A_ : str = self.tokenizer A_ : Union[str, Any] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values A_ : Any = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , **lowercase ) else: # add pixel_values and bbox A_ : int = self.image_processor( lowercase , return_tensors=lowercase , max_patches=lowercase , header_text=lowercase , **lowercase ) if text is not None and not self.image_processor.is_vqa: A_ : Union[str, Any] = self.tokenizer( text=lowercase , add_special_tokens=lowercase , padding=lowercase , truncation=lowercase , max_length=lowercase , stride=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=lowercase , return_overflowing_tokens=lowercase , return_special_tokens_mask=lowercase , return_offsets_mapping=lowercase , return_token_type_ids=lowercase , return_length=lowercase , verbose=lowercase , return_tensors=lowercase , **lowercase , ) if "attention_mask" in text_encoding: A_ : str = text_encoding.pop('attention_mask' ) if "input_ids" in text_encoding: A_ : Dict = text_encoding.pop('input_ids' ) else: A_ : int = None if text_encoding is not None: encoding_image_processor.update(lowercase ) return encoding_image_processor def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.batch_decode(*lowercase , **lowercase ) def lowerCAmelCase_ ( self , *lowercase , **lowercase ): """simple docstring""" return self.tokenizer.decode(*lowercase , **lowercase ) @property def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = self.tokenizer.model_input_names A_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
140
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version _UpperCAmelCase = version.parse(importlib_metadata.version("""nltk""")) if NLTK_VERSION >= version.Version("""3.6.4"""): from nltk import word_tokenize _UpperCAmelCase = """\ @inproceedings{banarjee2005, title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments}, author = {Banerjee, Satanjeev and Lavie, Alon}, booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization}, month = jun, year = {2005}, address = {Ann Arbor, Michigan}, publisher = {Association for Computational Linguistics}, url = {https://www.aclweb.org/anthology/W05-0909}, pages = {65--72}, } """ _UpperCAmelCase = """\ METEOR, an automatic metric for machine translation evaluation that is based on a generalized concept of unigram matching between the machine-produced translation and human-produced reference translations. Unigrams can be matched based on their surface forms, stemmed forms, and meanings; furthermore, METEOR can be easily extended to include more advanced matching strategies. Once all generalized unigram matches between the two strings have been found, METEOR computes a score for this matching using a combination of unigram-precision, unigram-recall, and a measure of fragmentation that is designed to directly capture how well-ordered the matched words in the machine translation are in relation to the reference. METEOR gets an R correlation value of 0.347 with human evaluation on the Arabic data and 0.331 on the Chinese data. This is shown to be an improvement on using simply unigram-precision, unigram-recall and their harmonic F1 combination. """ _UpperCAmelCase = """ Computes METEOR score of translated segments against one or more references. Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. alpha: Parameter for controlling relative weights of precision and recall. default: 0.9 beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3 gamma: Relative weight assigned to fragmentation penalty. default: 0.5 Returns: 'meteor': meteor score. Examples: >>> meteor = datasets.load_metric('meteor') >>> predictions = [\"It is a guide to action which ensures that the military always obeys the commands of the party\"] >>> references = [\"It is a guide to action that ensures that the military will forever heed Party commands\"] >>> results = meteor.compute(predictions=predictions, references=references) >>> print(round(results[\"meteor\"], 4)) 0.6944 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def lowerCAmelCase_ ( self , lowercase , lowercase , lowercase=0.9 , lowercase=3 , lowercase=0.5 ): """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): A_ : List[Any] = [ meteor_score.single_meteor_score( word_tokenize(lowercase ) , word_tokenize(lowercase ) , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] else: A_ : Optional[Any] = [ meteor_score.single_meteor_score(lowercase , lowercase , alpha=lowercase , beta=lowercase , gamma=lowercase ) for ref, pred in zip(lowercase , lowercase ) ] return {"meteor": np.mean(lowercase )}
140
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : int = 3 , lowerCAmelCase__ : int = 7 , lowerCAmelCase__ : int = 1000000 ): """simple docstring""" __UpperCAmelCase : Dict = 0 __UpperCAmelCase : int = 1 for current_denominator in range(1 , limit + 1 ): __UpperCAmelCase : Tuple = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __UpperCAmelCase : Union[str, Any] = current_numerator __UpperCAmelCase : Union[str, Any] = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=100_0000))
362
'''simple docstring''' from __future__ import annotations from typing import Any class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0 ) -> None: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = row, column __UpperCAmelCase : Union[str, Any] = [[default_value for c in range(__UpperCAmelCase )] for r in range(__UpperCAmelCase )] def __str__( self ) -> str: '''simple docstring''' __UpperCAmelCase : Dict = f'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier __UpperCAmelCase : Optional[Any] = 0 for row_vector in self.array: for obj in row_vector: __UpperCAmelCase : Union[str, Any] = max(__UpperCAmelCase , len(str(__UpperCAmelCase ) ) ) __UpperCAmelCase : Optional[int] = f'%{max_element_length}s' # Make string and return def single_line(__UpperCAmelCase ) -> str: nonlocal string_format_identifier __UpperCAmelCase : Any = """[""" line += ", ".join(string_format_identifier % (obj,) for obj in row_vector ) line += "]" return line s += "\n".join(single_line(__UpperCAmelCase ) for row_vector in self.array ) return s def __repr__( self ) -> str: '''simple docstring''' return str(self ) def __A ( self , __UpperCAmelCase ) -> bool: '''simple docstring''' if not (isinstance(__UpperCAmelCase , (list, tuple) ) and len(__UpperCAmelCase ) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) return self.array[loc[0]][loc[1]] def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ) -> None: '''simple docstring''' assert self.validate_indicies(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = value def __add__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == another.row and self.column == another.column # Add __UpperCAmelCase : Dict = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] + another[r, c] return result def __neg__( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : Dict = -self[r, c] return result def __sub__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' return self + (-another) def __mul__( self , __UpperCAmelCase ) -> Matrix: '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): # Scalar multiplication __UpperCAmelCase : Optional[int] = Matrix(self.row , self.column ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[Any] = self[r, c] * another return result elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): # Matrix multiplication assert self.column == another.row __UpperCAmelCase : Dict = Matrix(self.row , another.column ) for r in range(self.row ): for c in range(another.column ): for i in range(self.column ): result[r, c] += self[r, i] * another[i, c] return result else: __UpperCAmelCase : List[Any] = f'Unsupported type given for another ({type(__UpperCAmelCase )})' raise TypeError(__UpperCAmelCase ) def __A ( self ) -> Matrix: '''simple docstring''' __UpperCAmelCase : Dict = Matrix(self.column , self.row ) for r in range(self.row ): for c in range(self.column ): __UpperCAmelCase : List[str] = self[r, c] return result def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' assert isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(__UpperCAmelCase , __UpperCAmelCase ) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate __UpperCAmelCase : Optional[Any] = v.transpose() __UpperCAmelCase : List[Any] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def lowercase_ ( ): """simple docstring""" __UpperCAmelCase : Dict = Matrix(3 , 3 , 0 ) for i in range(3 ): __UpperCAmelCase : Tuple = 1 print(f'a^(-1) is {ainv}' ) # u, v __UpperCAmelCase : Dict = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = 1, 2, -3 __UpperCAmelCase : Union[str, Any] = Matrix(3 , 1 , 0 ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : int = 4, -2, 5 print(f'u is {u}' ) print(f'v is {v}' ) print(f'uv^T is {u * v.transpose()}' ) # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCAmelCase__ , lowerCAmelCase__ )}' ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() testa()
16
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class a : def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int=13 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : Dict=24 , lowerCAmelCase : int=16 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : List[Any]=32 , lowerCAmelCase : List[Any]=5 , lowerCAmelCase : int=4 , lowerCAmelCase : Union[str, Any]=37 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[Any]=10 , lowerCAmelCase : Dict=0.0_2 , lowerCAmelCase : List[Any]=None , lowerCAmelCase : List[str]=2 , lowerCAmelCase : List[Any]=2 , ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =parent SCREAMING_SNAKE_CASE_: str =batch_size SCREAMING_SNAKE_CASE_: Union[str, Any] =patch_size SCREAMING_SNAKE_CASE_: Any =max_length SCREAMING_SNAKE_CASE_: Tuple =num_mel_bins SCREAMING_SNAKE_CASE_: int =is_training SCREAMING_SNAKE_CASE_: List[str] =use_labels SCREAMING_SNAKE_CASE_: str =hidden_size SCREAMING_SNAKE_CASE_: Optional[int] =num_hidden_layers SCREAMING_SNAKE_CASE_: Dict =num_attention_heads SCREAMING_SNAKE_CASE_: int =intermediate_size SCREAMING_SNAKE_CASE_: Optional[Any] =hidden_act SCREAMING_SNAKE_CASE_: Tuple =hidden_dropout_prob SCREAMING_SNAKE_CASE_: str =attention_probs_dropout_prob SCREAMING_SNAKE_CASE_: List[Any] =type_sequence_label_size SCREAMING_SNAKE_CASE_: Optional[int] =initializer_range SCREAMING_SNAKE_CASE_: Optional[Any] =scope SCREAMING_SNAKE_CASE_: int =frequency_stride SCREAMING_SNAKE_CASE_: int =time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE_: Dict =(self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 SCREAMING_SNAKE_CASE_: int =(self.max_length - self.patch_size) // self.time_stride + 1 SCREAMING_SNAKE_CASE_: Optional[Any] =frequency_out_dimension * time_out_dimension SCREAMING_SNAKE_CASE_: Tuple =num_patches + 2 def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[int] =floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) SCREAMING_SNAKE_CASE_: Tuple =None if self.use_labels: SCREAMING_SNAKE_CASE_: Any =ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_: Union[str, Any] =self.get_config() return config, input_values, labels def lowerCamelCase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def lowerCamelCase__ ( self : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: str =ASTModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() SCREAMING_SNAKE_CASE_: List[str] =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE_ ): Any =config_and_inputs SCREAMING_SNAKE_CASE_: int ={"""input_values""": input_values} return config, inputs_dict @require_torch class a ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): UpperCamelCase : int = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) UpperCamelCase : List[Any] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) UpperCamelCase : int = False UpperCamelCase : int = False UpperCamelCase : Dict = False UpperCamelCase : List[str] = False def lowerCamelCase__ ( self : int , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str ) -> str: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def lowerCamelCase__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE_: int =ASTModelTester(self ) SCREAMING_SNAKE_CASE_: Optional[Any] =ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""AST does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' pass def lowerCamelCase__ ( self : Any ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Union[str, Any] =model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE_: Tuple =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE_: Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_: Tuple =model_class(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: Tuple =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_: Optional[int] =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE_: Dict =["""input_values"""] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE_: List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) @slow def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_: str =ASTModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def __magic_name__ ( ): SCREAMING_SNAKE_CASE_: List[str] =hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" ) SCREAMING_SNAKE_CASE_: List[Any] =torchaudio.load(lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class a ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : List[Any] ) -> int: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ) if is_torchaudio_available() else None ) @slow def lowerCamelCase__ ( self : str ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE_: Tuple =self.default_feature_extractor SCREAMING_SNAKE_CASE_: Union[str, Any] =ASTForAudioClassification.from_pretrained("""MIT/ast-finetuned-audioset-10-10-0.4593""" ).to(_lowerCamelCase ) SCREAMING_SNAKE_CASE_: str =self.default_feature_extractor SCREAMING_SNAKE_CASE_: List[Any] =prepare_audio() SCREAMING_SNAKE_CASE_: Tuple =audio.squeeze().numpy() SCREAMING_SNAKE_CASE_: int =feature_extractor(_lowerCamelCase , sampling_rate=_lowerCamelCase , return_tensors="""pt""" ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any =model(**_lowerCamelCase ) # verify the logits SCREAMING_SNAKE_CASE_: Tuple =torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) SCREAMING_SNAKE_CASE_: Union[str, Any] =torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
173
"""simple docstring""" def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Any = len(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): UpperCAmelCase__ : int = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): UpperCAmelCase__ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: UpperCAmelCase__ : str = subset[i - 1][j] if arr[i - 1] <= j: UpperCAmelCase__ : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
171
0
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> Tuple[int, int]: def constraint_to_multiple_of(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase=0 , __UpperCamelCase=None ): UpperCamelCase = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase = math.ceil(val / multiple ) * multiple return x UpperCamelCase = (output_size, output_size) if isinstance(__UpperCamelCase , __UpperCamelCase ) else output_size UpperCamelCase ,UpperCamelCase = get_image_size(__UpperCamelCase ) UpperCamelCase ,UpperCamelCase = output_size # determine new height and width UpperCamelCase = output_height / input_height UpperCamelCase = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase = scale_width else: # fit height UpperCamelCase = scale_height UpperCamelCase = constraint_to_multiple_of(scale_height * input_height , multiple=__UpperCamelCase ) UpperCamelCase = constraint_to_multiple_of(scale_width * input_width , multiple=__UpperCamelCase ) return (new_height, new_width) class a_ ( lowerCamelCase ): lowercase = ["""pixel_values"""] def __init__( self , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = 1 / 255 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" super().__init__(**_SCREAMING_SNAKE_CASE ) UpperCamelCase = size if size is not None else {"""height""": 384, """width""": 384} UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = keep_aspect_ratio UpperCamelCase = ensure_multiple_of UpperCamelCase = resample UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" ) UpperCamelCase = get_resize_output_image_size( _SCREAMING_SNAKE_CASE , output_size=(size["""height"""], size["""width"""]) , keep_aspect_ratio=_SCREAMING_SNAKE_CASE , multiple=_SCREAMING_SNAKE_CASE , ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> str: """simple docstring""" return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> np.ndarray: """simple docstring""" return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **_SCREAMING_SNAKE_CASE , ) -> PIL.Image.Image: """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) UpperCamelCase = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(_SCREAMING_SNAKE_CASE ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(_SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = [to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(_SCREAMING_SNAKE_CASE ) != len(_SCREAMING_SNAKE_CASE ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(_SCREAMING_SNAKE_CASE ): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=_SCREAMING_SNAKE_CASE ) UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(_SCREAMING_SNAKE_CASE ) else: UpperCamelCase = logits.argmax(dim=1 ) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
370
'''simple docstring''' from PIL import Image def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> Image: def brightness(__UpperCamelCase ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 SCREAMING_SNAKE_CASE__ = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
183
0
"""simple docstring""" __A = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __A = [{"type": "code", "content": INSTALL_CONTENT}] __A = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
177
import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def __UpperCamelCase ( _A , _A ): lowerCAmelCase_ = args.log_outputs lowerCAmelCase_ = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowerCAmelCase_ = load_metric('''wer''' ) lowerCAmelCase_ = load_metric('''cer''' ) # compute metrics lowerCAmelCase_ = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowerCAmelCase_ = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowerCAmelCase_ = f"WER: {wer_result}\nCER: {cer_result}" print(_A ) with open(f"{dataset_id}_eval_results.txt" , '''w''' ) as f: f.write(_A ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowerCAmelCase_ = f"log_{dataset_id}_predictions.txt" lowerCAmelCase_ = f"log_{dataset_id}_targets.txt" with open(_A , '''w''' ) as p, open(_A , '''w''' ) as t: # mapping function to write output def write_to_file(_A , _A ): p.write(f"{i}" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(f"{i}" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(_A , with_indices=_A ) def __UpperCamelCase ( _A ): lowerCAmelCase_ = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowerCAmelCase_ = re.sub(_A , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowerCAmelCase_ = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowerCAmelCase_ = ''' '''.join(text.split(_A ) ) return text def __UpperCamelCase ( _A ): # load dataset lowerCAmelCase_ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=_A ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(args.model_id ) lowerCAmelCase_ = feature_extractor.sampling_rate # resample audio lowerCAmelCase_ = dataset.cast_column('''audio''' , Audio(sampling_rate=_A ) ) # load eval pipeline if args.device is None: lowerCAmelCase_ = 0 if torch.cuda.is_available() else -1 lowerCAmelCase_ = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(_A ): lowerCAmelCase_ = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowerCAmelCase_ = prediction['''text'''] lowerCAmelCase_ = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowerCAmelCase_ = dataset.map(_A , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(_A , _A ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) _A = parser.parse_args() main(args)
278
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: __SCREAMING_SNAKE_CASE : List[str] = None __SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[Any] = '▁' __SCREAMING_SNAKE_CASE : Optional[Any] = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __SCREAMING_SNAKE_CASE : List[Any] = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } __SCREAMING_SNAKE_CASE : Any = { 'google/pegasus-xsum': 5_1_2, } class lowercase_ ( __snake_case ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PegasusTokenizer _lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self , lowercase_=None , lowercase_=None , lowercase_="<pad>" , lowercase_="</s>" , lowercase_="<unk>" , lowercase_="<mask_2>" , lowercase_="<mask_1>" , lowercase_=None , lowercase_=103 , **lowercase_ , ): _snake_case : str = offset if additional_special_tokens is not None: if not isinstance(lowercase_ , lowercase_ ): raise TypeError( f"""additional_special_tokens should be of type {type(lowercase_ )}, but is""" f""" {type(lowercase_ )}""" ) _snake_case : Dict = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(lowercase_ ) , self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) _snake_case : Optional[Any] = additional_special_tokens_extended else: _snake_case : Optional[Any] = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( lowercase_ , tokenizer_file=lowercase_ , pad_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , mask_token=lowercase_ , mask_token_sent=lowercase_ , offset=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) _snake_case : Dict = vocab_file _snake_case : Optional[Any] = False if not self.vocab_file else True def UpperCamelCase ( self , lowercase_ ): _snake_case : Tuple = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def UpperCamelCase ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def UpperCamelCase ( self , lowercase_ , lowercase_=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def UpperCamelCase ( self , lowercase_ , lowercase_ = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _snake_case : int = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
369
import shutil import tempfile import unittest from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast from transformers.testing_utils import require_sentencepiece, require_torchaudio from .test_feature_extraction_clap import floats_list @require_torchaudio @require_sentencepiece class lowercase_ ( unittest.TestCase ): def UpperCamelCase ( self ): _snake_case : str = "laion/clap-htsat-unfused" _snake_case : Dict = tempfile.mkdtemp() def UpperCamelCase ( self , **lowercase_ ): return RobertaTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase ( self , **lowercase_ ): return ClapFeatureExtractor.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): _snake_case : Optional[int] = self.get_tokenizer() _snake_case : List[Any] = self.get_feature_extractor() _snake_case : Optional[Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) processor.save_pretrained(self.tmpdirname ) _snake_case : Tuple = ClapProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Any = ClapProcessor(tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() ) processor.save_pretrained(self.tmpdirname ) _snake_case : Any = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _snake_case : List[Any] = self.get_feature_extractor(do_normalize=lowercase_ , padding_value=1.0 ) _snake_case : List[Any] = ClapProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.feature_extractor , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Tuple = self.get_feature_extractor() _snake_case : Union[str, Any] = self.get_tokenizer() _snake_case : Optional[Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) _snake_case : List[str] = floats_list((3, 1_000) ) _snake_case : Union[str, Any] = feature_extractor(lowercase_ , return_tensors="np" ) _snake_case : Any = processor(audios=lowercase_ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCamelCase ( self ): _snake_case : str = self.get_feature_extractor() _snake_case : Optional[Any] = self.get_tokenizer() _snake_case : Dict = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) _snake_case : Any = "This is a test string" _snake_case : Optional[Any] = processor(text=lowercase_ ) _snake_case : Optional[Any] = tokenizer(lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCamelCase ( self ): _snake_case : Dict = self.get_feature_extractor() _snake_case : Dict = self.get_tokenizer() _snake_case : List[Any] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) _snake_case : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case : List[Any] = processor.batch_decode(lowercase_ ) _snake_case : Optional[int] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self ): _snake_case : List[str] = self.get_feature_extractor() _snake_case : str = self.get_tokenizer() _snake_case : Optional[int] = ClapProcessor(tokenizer=lowercase_ , feature_extractor=lowercase_ ) self.assertListEqual( processor.model_input_names[2:] , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
284
0
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def __SCREAMING_SNAKE_CASE ( snake_case_ = "" ): '''simple docstring''' _UpperCAmelCase = url or "https://www.imdb.com/chart/top/?ref_=nv_mv_250" _UpperCAmelCase = BeautifulSoup(requests.get(snake_case_ ).text , "html.parser" ) _UpperCAmelCase = soup.find_all("td" , attrs="titleColumn" ) _UpperCAmelCase = soup.find_all("td" , class_="ratingColumn imdbRating" ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(snake_case_ , snake_case_ ) } def __SCREAMING_SNAKE_CASE ( snake_case_ = "IMDb_Top_250_Movies.csv" ): '''simple docstring''' _UpperCAmelCase = get_imdb_top_aaa_movies() with open(snake_case_ , "w" , newline="" ) as out_file: _UpperCAmelCase = csv.writer(snake_case_ ) writer.writerow(["Movie title", "IMDb rating"] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
133
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True , snake_case_="pt" ): '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="max_length" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' _UpperCAmelCase = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str]="train" , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]="" , ): """simple docstring""" super().__init__() _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ : Dict = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , "git_log.json" ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=4 , **snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=snake_case_ ) _UpperCAmelCase = { "repo_id": str(snake_case_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return list(map(snake_case_ , snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "wb" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def remove_articles(snake_case_ ): return re.sub(R"\b(a|an|the)\b" , " " , snake_case_ ) def white_space_fix(snake_case_ ): return " ".join(text.split() ) def remove_punc(snake_case_ ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = Counter(snake_case_ ) & Counter(snake_case_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return model_prefix.startswith("rag" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue _UpperCAmelCase = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
133
1
"""simple docstring""" import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy __SCREAMING_SNAKE_CASE : Tuple = logging.getLogger(__name__) __SCREAMING_SNAKE_CASE : Any = 'pytorch_model.bin' @dataclasses.dataclass class lowercase_ : _lowerCamelCase = dataclasses.field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models.'} ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co.'} , ) @dataclasses.dataclass class lowercase_ : _lowerCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the training data.'} ) _lowerCamelCase = dataclasses.field(metadata={'help': 'A csv or a json file containing the data to predict on.'} ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'A csv or a json file containing the validation data.'} ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'The name of the task to train on.'} , ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'The list of labels for the task.'} ) @dataclasses.dataclass class lowercase_ : _lowerCamelCase = dataclasses.field( metadata={'help': 'The output directory where the model predictions and checkpoints will be written.'} ) _lowerCamelCase = dataclasses.field( default='accuracy' , metadata={'help': 'The evaluation metric used for the task.'} ) _lowerCamelCase = dataclasses.field( default='no' , metadata={ 'help': 'The evaluation strategy to adopt during training. Possible values are: ["no", "step", "epoch]' } , ) _lowerCamelCase = dataclasses.field( default=10 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _lowerCamelCase = dataclasses.field( default=0.0 , metadata={ 'help': 'How much the specified evaluation metric must improve to satisfy early stopping conditions.' } , ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'Whether to filter the pseudo-labeled data based on the confidence score.'} , ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'Whether to filter the pseudo-labeled data based on the validation performance.'} , ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'Whether to fine-tune on labeled data after pseudo training.'} , ) _lowerCamelCase = dataclasses.field( default=0.0 , metadata={'help': 'Confidence threshold for pseudo-labeled data filtering.'} , ) _lowerCamelCase = dataclasses.field( default=100 , metadata={'help': 'Number of evaluation calls with no improvement after which training will be stopped.'} , ) _lowerCamelCase = dataclasses.field( default=__snake_case , metadata={'help': 'Random seed for initialization.'} , ) def snake_case (__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: '''simple docstring''' _snake_case : List[Any] = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: _snake_case : int = dataset.filter(lambda __lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 _snake_case : List[str] = int(eval_result * len(__lowercase ) ) print(__lowercase ) _snake_case : Dict = dataset.sort("probability" , reverse=__lowercase ) _snake_case : List[str] = dataset.select(range(__lowercase ) ) _snake_case : int = dataset.remove_columns(["label", "probability"] ) _snake_case : List[str] = dataset.rename_column("prediction" , "label" ) _snake_case : Optional[Any] = dataset.map(lambda __lowercase : {"label": idalabel[example["label"]]} ) _snake_case : List[Any] = dataset.shuffle(seed=args.seed ) _snake_case : List[Any] = os.path.join(__lowercase , F"""train_pseudo.{args.data_file_extension}""" ) if args.data_file_extension == "csv": dataset.to_csv(__lowercase , index=__lowercase ) else: dataset.to_json(__lowercase ) def snake_case (__lowercase , __lowercase , __lowercase , __lowercase , **__lowercase ) -> Optional[int]: '''simple docstring''' _snake_case : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() _snake_case : Tuple = STModelArguments(model_name_or_path=__lowercase ) _snake_case : Optional[int] = STDataArguments(train_file=__lowercase , infer_file=__lowercase ) _snake_case : List[str] = STTrainingArguments(output_dir=__lowercase ) _snake_case : str = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(__lowercase ).items(): setattr(__lowercase , __lowercase , __lowercase ) for key, value in kwargs.items(): if hasattr(__lowercase , __lowercase ): setattr(__lowercase , __lowercase , __lowercase ) # Sanity checks _snake_case : Optional[Any] = {} _snake_case : Any = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None _snake_case : Dict = args.train_file _snake_case : Dict = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None _snake_case : Dict = args.eval_file for key in data_files: _snake_case : List[Any] = data_files[key].split("." )[-1] assert extension in ["csv", "json"], F"""`{key}_file` should be a csv or a json file.""" if args.data_file_extension is None: _snake_case : Optional[int] = extension else: assert extension == args.data_file_extension, F"""`{key}_file` should be a {args.data_file_extension} file`.""" assert ( args.eval_metric in datasets.list_metrics() ), F"""{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.""" # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info("Creating the initial data directory for self-training..." ) _snake_case : List[str] = F"""{args.output_dir}/self-train_iter-{{}}""".format _snake_case : int = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=__lowercase ) os.makedirs(__lowercase , exist_ok=__lowercase ) accelerator.wait_for_everyone() _snake_case : str = None _snake_case : List[str] = None _snake_case : Dict = 0 _snake_case : int = False # Show the progress bar _snake_case : Dict = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): _snake_case : List[Any] = data_dir_format(__lowercase ) assert os.path.exists(__lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 _snake_case : int = os.path.join(__lowercase , "stage-1" ) _snake_case : Optional[int] = { "accelerator": accelerator, "model_name_or_path": args.model_name_or_path, "cache_dir": args.cache_dir, "do_train": True, "train_file": data_files["train"] if iteration == 0 else data_files["train_pseudo"], "do_eval": True if args.eval_file is not None else False, "eval_file": data_files["eval"], "do_predict": True, "infer_file": data_files["infer"], "task_name": args.task_name, "label_list": args.label_list, "output_dir": current_output_dir, "eval_metric": args.eval_metric, "evaluation_strategy": args.evaluation_strategy, "early_stopping_patience": args.early_stopping_patience, "early_stopping_threshold": args.early_stopping_threshold, "seed": args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(__lowercase , __lowercase ): arguments_dict.update({key: value} ) _snake_case : Union[str, Any] = os.path.join(__lowercase , "best-checkpoint" , __lowercase ) if os.path.exists(__lowercase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1." , __lowercase , __lowercase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 1 *****" , __lowercase ) finetune(**__lowercase ) accelerator.wait_for_everyone() assert os.path.exists(__lowercase ) logger.info("Self-training job completed: iteration: %d, stage: 1." , __lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data _snake_case : Optional[int] = os.path.join(__lowercase , "best-checkpoint" ) _snake_case : str = os.path.join(__lowercase , "stage-2" ) # Update arguments_dict _snake_case : Optional[Any] = model_path _snake_case : str = data_files["train"] _snake_case : List[Any] = current_output_dir _snake_case : Dict = os.path.join(__lowercase , "best-checkpoint" , __lowercase ) if os.path.exists(__lowercase ): logger.info( "Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2." , __lowercase , __lowercase , ) else: logger.info("***** Running self-training: iteration: %d, stage: 2 *****" , __lowercase ) finetune(**__lowercase ) accelerator.wait_for_everyone() assert os.path.exists(__lowercase ) logger.info("Self-training job completed: iteration: %d, stage: 2." , __lowercase ) _snake_case : int = iteration _snake_case : Union[str, Any] = data_dir_format(iteration + 1 ) _snake_case : Union[str, Any] = AutoConfig.from_pretrained(os.path.join(__lowercase , "best-checkpoint" ) ) _snake_case : List[Any] = config.idalabel _snake_case : List[str] = os.path.join(__lowercase , "eval_results_best-checkpoint.json" ) _snake_case : List[Any] = os.path.join(__lowercase , "test_results_best-checkpoint.json" ) assert os.path.exists(__lowercase ) with open(__lowercase , "r" ) as f: _snake_case : List[Any] = float(json.load(__lowercase )[args.eval_metric] ) _snake_case : Union[str, Any] = os.path.join(__lowercase , "infer_output_best-checkpoint.csv" ) assert os.path.exists(__lowercase ) # Loading the dataset from local csv or json files. _snake_case : Optional[Any] = load_dataset(args.data_file_extension , data_files={"data": data_files["infer"]} )["data"] _snake_case : str = load_dataset("csv" , data_files={"data": infer_output_file} )["data"] if accelerator.is_main_process: os.makedirs(__lowercase , exist_ok=__lowercase ) shutil.copy(__lowercase , os.path.join(__lowercase , F"""eval_results_iter-{iteration}.json""" ) ) if os.path.exists(__lowercase ): shutil.copy(__lowercase , os.path.join(__lowercase , F"""test_results_iter-{iteration}.json""" ) ) create_pseudo_labeled_data(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) accelerator.wait_for_everyone() _snake_case : Optional[Any] = os.path.join(__lowercase , F"""train_pseudo.{args.data_file_extension}""" ) if args.evaluation_strategy != IntervalStrategy.NO.value: _snake_case : Dict = eval_result if best_iteration is None: _snake_case : Tuple = new_iteration _snake_case : Optional[Any] = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: _snake_case : Dict = new_iteration _snake_case : Tuple = new_eval_result _snake_case : Tuple = 0 else: if new_eval_result == best_eval_result: _snake_case : List[Any] = new_iteration _snake_case : List[str] = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: _snake_case : str = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info("Best iteration: %d" , __lowercase ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowercase , F"""eval_results_iter-{iteration}.json""" ) , os.path.join(__lowercase , "eval_results_best-iteration.json" ) , ) else: # Assume that the last iteration is the best logger.info("Best iteration: %d" , args.max_selftrain_iterations - 1 ) logger.info("Best evaluation result: %s = %f" , args.eval_metric , __lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(__lowercase , F"""eval_results_iter-{args.max_selftrain_iterations - 1}.json""" ) , os.path.join(__lowercase , "eval_results_best-iteration.json" ) , )
357
import os import pytest from attr import dataclass __SCREAMING_SNAKE_CASE : int = 'us-east-1' # defaults region @dataclass class lowercase_ : _lowerCamelCase = 42 _lowerCamelCase = 'arn:aws:iam::558105141721:role/sagemaker_execution_role' _lowerCamelCase = { 'task_name': 'mnli', 'per_device_train_batch_size': 16, 'per_device_eval_batch_size': 16, 'do_train': True, 'do_eval': True, 'do_predict': True, 'output_dir': '/opt/ml/model', 'overwrite_output_dir': True, 'max_steps': 500, 'save_steps': 5_500, } _lowerCamelCase = {**hyperparameters, 'max_steps': 1_000} @property def UpperCamelCase ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def UpperCamelCase ( self ): return f"""{self.framework}-transfromers-test""" @property def UpperCamelCase ( self ): return f"""./tests/sagemaker/scripts/{self.framework}""" @property def UpperCamelCase ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
284
0
'''simple docstring''' from PIL import Image def __lowercase ( __lowercase ) -> Image: '''simple docstring''' _A , _A = image.size _A = 0 _A = image.load() for i in range(__lowercase ): for j in range(__lowercase ): _A = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowercase ): for i in range(__lowercase ): _A = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": lowerCamelCase_ = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
79
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __lowerCamelCase ) -> Any: lowercase__ : Optional[int] = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Dict: lowercase__ : str = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __lowerCamelCase ) -> Tuple: lowercase__ : List[str] = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Optional[int]: lowercase__ : List[str] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: lowercase__ : List[Any] = '''imagenet-1k-id2label.json''' lowercase__ : Optional[Any] = 10_00 lowercase__ : Optional[Any] = '''huggingface/label-files''' lowercase__ : Dict = num_labels lowercase__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type='''dataset''' ) ) , '''r''' ) ) lowercase__ : int = {int(__lowerCamelCase ): v for k, v in idalabel.items()} lowercase__ : Optional[Any] = idalabel lowercase__ : str = {v: k for k, v in idalabel.items()} lowercase__ : Any = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": lowercase__ : int = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": lowercase__ : int = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: lowercase__ : List[Any] = [2, 2, 20] lowercase__ : Any = [3, 12, 16] lowercase__ : Tuple = [1_92, 7_68, 10_24] lowercase__ : List[Any] = CvtForImageClassification(__lowerCamelCase ) lowercase__ : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) lowercase__ : List[str] = image_size lowercase__ : Union[str, Any] = torch.load(__lowerCamelCase , map_location=torch.device('''cpu''' ) ) lowercase__ : int = OrderedDict() lowercase__ : List[Any] = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: lowercase__ : Any = list_of_state_dict + cls_token(__lowerCamelCase ) lowercase__ : Any = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): lowercase__ : Tuple = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) lowercase__ : List[Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): lowercase__ : Optional[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=R'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowerCAmelCase_ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
16
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=13 , a=10 , a=3 , a=2 , a=2 , a=2 , a=True , a=True , a=32 , a=5 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=10 , a=0.02 , a=0.9 , a=None , ): lowercase__ : Tuple = parent lowercase__ : int = batch_size lowercase__ : Any = image_size lowercase__ : Optional[int] = num_channels lowercase__ : str = patch_size lowercase__ : Any = tubelet_size lowercase__ : Optional[int] = num_frames lowercase__ : str = is_training lowercase__ : Dict = use_labels lowercase__ : str = hidden_size lowercase__ : Dict = num_hidden_layers lowercase__ : Any = num_attention_heads lowercase__ : int = intermediate_size lowercase__ : str = hidden_act lowercase__ : Any = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : Optional[Any] = type_sequence_label_size lowercase__ : Optional[int] = initializer_range lowercase__ : Tuple = mask_ratio lowercase__ : int = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame lowercase__ : int = (image_size // patch_size) ** 2 lowercase__ : List[Any] = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos lowercase__ : Tuple = int(mask_ratio * self.seq_length) def snake_case_ ( self): lowercase__ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) lowercase__ : Tuple = None if self.use_labels: lowercase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ : str = self.get_config() return config, pixel_values, labels def snake_case_ ( self): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a , initializer_range=self.initializer_range , ) def snake_case_ ( self , a , a , a): lowercase__ : Dict = VideoMAEModel(config=a) model.to(a) model.eval() lowercase__ : List[str] = model(a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def snake_case_ ( self , a , a , a): lowercase__ : str = VideoMAEForPreTraining(a) model.to(a) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : Optional[int] = torch.ones((self.num_masks,)) lowercase__ : Optional[int] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) lowercase__ : Any = mask.expand(self.batch_size , -1).bool() lowercase__ : Any = model(a , a) # model only returns predictions for masked patches lowercase__ : List[Any] = mask.sum().item() lowercase__ : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def snake_case_ ( self): lowercase__ : Tuple = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : Union[str, Any] = config_and_inputs lowercase__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ): __lowerCamelCase : List[str] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __lowerCamelCase : Tuple = ( {"""feature-extraction""": VideoMAEModel, """video-classification""": VideoMAEForVideoClassification} if is_torch_available() else {} ) __lowerCamelCase : Optional[int] = False __lowerCamelCase : str = False __lowerCamelCase : List[Any] = False __lowerCamelCase : Union[str, Any] = False def snake_case_ ( self): lowercase__ : Dict = VideoMAEModelTester(self) lowercase__ : int = ConfigTester(self , config_class=a , has_text_modality=a , hidden_size=37) def snake_case_ ( self , a , a , a=False): lowercase__ : List[Any] = copy.deepcopy(a) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch lowercase__ : int = torch.ones((self.model_tester.num_masks,)) lowercase__ : Tuple = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) lowercase__ : Any = mask.expand(self.model_tester.batch_size , -1).bool() lowercase__ : List[Any] = bool_masked_pos.to(a) if return_labels: if model_class in [ *get_values(a), ]: lowercase__ : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a) return inputs_dict def snake_case_ ( self): self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds') def snake_case_ ( self): pass def snake_case_ ( self): lowercase__ , lowercase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowercase__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a , nn.Linear)) def snake_case_ ( self): lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : int = model_class(a) lowercase__ : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : List[str] = [*signature.parameters.keys()] lowercase__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , a) def snake_case_ ( self): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a) def snake_case_ ( self): lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a) @slow def snake_case_ ( self): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = VideoMAEModel.from_pretrained(a) self.assertIsNotNone(a) def snake_case_ ( self): if not self.has_attentions: pass else: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : List[str] = True for model_class in self.all_model_classes: lowercase__ : List[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : List[str] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) lowercase__ : List[str] = True lowercase__ : List[Any] = False lowercase__ : str = True lowercase__ : Union[str, Any] = model_class(a) model.to(a) model.eval() with torch.no_grad(): lowercase__ : Optional[int] = model(**self._prepare_for_class(a , a)) lowercase__ : Union[str, Any] = outputs.attentions self.assertEqual(len(a) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : str = True lowercase__ : str = model_class(a) model.to(a) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(a , a)) lowercase__ : Union[str, Any] = outputs.attentions self.assertEqual(len(a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowercase__ : Any = len(a) # Check attention is always last and order is fine lowercase__ : Optional[Any] = True lowercase__ : List[str] = True lowercase__ : Tuple = model_class(a) model.to(a) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a)) self.assertEqual(out_len + 1 , len(a)) lowercase__ : Tuple = outputs.attentions self.assertEqual(len(a) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def snake_case_ ( self): def check_hidden_states_output(a , a , a): lowercase__ : int = model_class(a) model.to(a) model.eval() with torch.no_grad(): lowercase__ : int = model(**self._prepare_for_class(a , a)) lowercase__ : int = outputs.hidden_states lowercase__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a) , a) lowercase__ : List[Any] = self.model_tester.seq_length - self.model_tester.num_masks lowercase__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = True check_hidden_states_output(a , a , a) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : str = True check_hidden_states_output(a , a , a) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def snake_case_ ( self): pass def snake_case__ ( ): '''simple docstring''' lowercase__ : Union[str, Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) lowercase__ : str = np.load(SCREAMING_SNAKE_CASE_ ) return list(SCREAMING_SNAKE_CASE_ ) @require_torch @require_vision class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @cached_property def snake_case_ ( self): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def snake_case_ ( self): lowercase__ : Optional[int] = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to( a) lowercase__ : Tuple = self.default_image_processor lowercase__ : Any = prepare_video() lowercase__ : Optional[int] = image_processor(a , return_tensors='pt').to(a) # forward pass with torch.no_grad(): lowercase__ : List[Any] = model(**a) # verify the logits lowercase__ : Any = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape , a) lowercase__ : str = torch.tensor([0.3_669, -0.0_688, -0.2_421]).to(a) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a , atol=1e-4)) @slow def snake_case_ ( self): lowercase__ : str = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(a) lowercase__ : List[Any] = self.default_image_processor lowercase__ : Optional[int] = prepare_video() lowercase__ : Any = image_processor(a , return_tensors='pt').to(a) # add boolean mask, indicating which patches to mask lowercase__ : Optional[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt') lowercase__ : int = torch.load(a) # forward pass with torch.no_grad(): lowercase__ : str = model(**a) # verify the logits lowercase__ : List[Any] = torch.Size([1, 1408, 1536]) lowercase__ : Tuple = torch.tensor( [[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=a) self.assertEqual(outputs.logits.shape , a) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) lowercase__ : Union[str, Any] = torch.tensor([0.5_142] , device=a) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) lowercase__ : List[Any] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=a).to( a) with torch.no_grad(): lowercase__ : Any = model(**a) lowercase__ : Optional[int] = torch.tensor(torch.tensor([0.6_469]) , device=a) self.assertTrue(torch.allclose(outputs.loss , a , atol=1e-4))
216
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer snake_case_ = logging.get_logger(__name__) snake_case_ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ = { '''vocab_file''': { '''junnyu/roformer_chinese_small''': '''https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_base''': '''https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt''', '''junnyu/roformer_chinese_char_small''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt''' ), '''junnyu/roformer_chinese_char_base''': ( '''https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_discriminator''': ( '''https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt''' ), '''junnyu/roformer_small_generator''': ( '''https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt''' ), } } snake_case_ = { '''junnyu/roformer_chinese_small''': 1_536, '''junnyu/roformer_chinese_base''': 1_536, '''junnyu/roformer_chinese_char_small''': 512, '''junnyu/roformer_chinese_char_base''': 512, '''junnyu/roformer_small_discriminator''': 128, '''junnyu/roformer_small_generator''': 128, } snake_case_ = { '''junnyu/roformer_chinese_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_base''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_small''': {'''do_lower_case''': True}, '''junnyu/roformer_chinese_char_base''': {'''do_lower_case''': True}, '''junnyu/roformer_small_discriminator''': {'''do_lower_case''': True}, '''junnyu/roformer_small_generator''': {'''do_lower_case''': True}, } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Union[str, Any] = VOCAB_FILES_NAMES __lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : int = PRETRAINED_INIT_CONFIGURATION __lowerCamelCase : Tuple = RoFormerTokenizer def __init__( self , a=None , a=None , a=True , a="[UNK]" , a="[SEP]" , a="[PAD]" , a="[CLS]" , a="[MASK]" , a=True , a=None , **a , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) lowercase__ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( pre_tok_state.get('lowercase' , a) != do_lower_case or pre_tok_state.get('strip_accents' , a) != strip_accents ): lowercase__ : Optional[int] = getattr(a , pre_tok_state.pop('type')) lowercase__ : str = do_lower_case lowercase__ : Union[str, Any] = strip_accents lowercase__ : int = pre_tok_class(**a) lowercase__ : Optional[int] = do_lower_case def __getstate__( self): lowercase__ : str = self.__dict__.copy() lowercase__ : Any = BertPreTokenizer() return state def __setstate__( self , a): lowercase__ : Union[str, Any] = d lowercase__ : int = self.__dict__['_tokenizer'].get_vocab() lowercase__ : List[str] = PreTokenizer.custom(JiebaPreTokenizer(a)) def snake_case_ ( self , a , a=None): lowercase__ : Union[str, Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a , a = None): lowercase__ : Tuple = [self.sep_token_id] lowercase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , a , a = None): lowercase__ : Optional[Any] = self._tokenizer.model.save(a , name=a) return tuple(a) def snake_case_ ( self , a , a=None , a=None , a=False , **a , ): lowercase__ : List[str] = BertPreTokenizer() return super().save_pretrained(a , a , a , a , **a)
216
1
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowercase_ ( _UpperCAmelCase = "laptop" ): """simple docstring""" A_ : Any = f"""https://www.amazon.in/laptop/s?k={product}""" A_ : Optional[int] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A_ : Any = BeautifulSoup(requests.get(_lowerCamelCase , headers=_lowerCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A_ : Dict = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A_ : Union[str, Any] = item.ha.text A_ : List[Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A_ : List[str] = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A_ : Any = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A_ : List[Any] = '''Not available''' try: A_ : Dict = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A_ : List[Any] = '''''' try: A_ : Union[str, Any] = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: A_ : Any = float('''nan''' ) except AttributeError: pass A_ : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A_ : Any = ''' ''' A_ : str = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": _lowerCamelCase : Any = '''headphones''' get_amazon_product_data(product).to_csv(f'Amazon Product Data for {product}.csv')
167
"""simple docstring""" import string def lowerCamelCase__ ( _lowerCamelCase : str ) -> None: for key in range(len(string.ascii_uppercase ) ): lowerCamelCase_ = '' for symbol in message: if symbol in string.ascii_uppercase: lowerCamelCase_ = string.ascii_uppercase.find(_lowerCamelCase ) lowerCamelCase_ = num - key if num < 0: lowerCamelCase_ = num + len(string.ascii_uppercase ) lowerCamelCase_ = translated + string.ascii_uppercase[num] else: lowerCamelCase_ = translated + symbol print(F'''Decryption using Key #{key}: {translated}''' ) def lowerCamelCase__ ( ) -> None: lowerCamelCase_ = input('Encrypted message: ' ) lowerCamelCase_ = message.upper() decrypt(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() main()
183
0
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase , __lowerCamelCase=12 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=99 , __lowerCamelCase=32 , __lowerCamelCase=32 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=37 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=512 , __lowerCamelCase=0.0_2 , __lowerCamelCase=0 , __lowerCamelCase=None , ): '''simple docstring''' __A : List[Any] = parent __A : Union[str, Any] = batch_size __A : Optional[int] = seq_length __A : Union[str, Any] = is_training __A : str = use_input_mask __A : List[Any] = use_labels __A : Any = vocab_size __A : Optional[Any] = hidden_size __A : List[Any] = projection_dim __A : Dict = num_hidden_layers __A : Optional[int] = num_attention_heads __A : Any = intermediate_size __A : Optional[Any] = dropout __A : Any = attention_dropout __A : List[Any] = max_position_embeddings __A : Any = initializer_range __A : Dict = scope __A : Dict = bos_token_id def UpperCamelCase__( self ): '''simple docstring''' __A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : int = None if self.use_input_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: __A : str = input_mask.numpy() __A : Dict = input_mask.shape __A : int = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__lowerCamelCase ): __A : Any = 1 __A : Tuple = 0 __A : Union[str, Any] = self.get_config() return config, input_ids, tf.convert_to_tensor(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): '''simple docstring''' __A : List[str] = TFBlipTextModel(config=__lowerCamelCase ) __A : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , training=__lowerCamelCase ) __A : Dict = model(__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = self.prepare_config_and_inputs() __A : Any = config_and_inputs __A : Dict = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = (TFBlipTextModel,) if is_tf_available() else () _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = BlipTextModelTester(self ) __A : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def UpperCamelCase__( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' pass def UpperCamelCase__( self ): '''simple docstring''' pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase__( self ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase__( self ): '''simple docstring''' pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase__( self ): '''simple docstring''' pass @slow def UpperCamelCase__( self ): '''simple docstring''' for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : List[str] = TFBlipTextModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def UpperCamelCase__( self , __lowerCamelCase=True ): '''simple docstring''' super().test_pt_tf_model_equivalence(allow_missing_keys=__lowerCamelCase )
354
"""simple docstring""" import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __snake_case ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" _lowerCamelCase = BarthezTokenizer _lowerCamelCase = BarthezTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def UpperCamelCase__( self ): '''simple docstring''' super().setUp() __A : List[Any] = BarthezTokenizerFast.from_pretrained('''moussaKam/mbarthez''' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) __A : Any = tokenizer def UpperCamelCase__( self ): '''simple docstring''' __A : Any = '''<pad>''' __A : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' __A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCamelCase ) , 10_1122 ) def UpperCamelCase__( self ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_1122 ) @require_torch def UpperCamelCase__( self ): '''simple docstring''' __A : List[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __A : Any = [0, 57, 3018, 7_0307, 91, 2] __A : List[Any] = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors='''pt''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __A : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' if not self.test_rust_tokenizer: return __A : Tuple = self.get_tokenizer() __A : Dict = self.get_rust_tokenizer() __A : Union[str, Any] = '''I was born in 92000, and this is falsé.''' __A : List[Any] = tokenizer.tokenize(__lowerCamelCase ) __A : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __A : Union[str, Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) __A : str = self.get_rust_tokenizer() __A : Optional[int] = tokenizer.encode(__lowerCamelCase ) __A : Any = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def UpperCamelCase__( self ): '''simple docstring''' __A : List[str] = {'''input_ids''': [[0, 490, 1_4328, 4507, 354, 47, 4_3669, 95, 25, 7_8117, 2_0215, 1_9779, 190, 22, 400, 4, 3_5343, 8_0310, 603, 86, 2_4937, 105, 3_3438, 9_4762, 196, 3_9642, 7, 15, 1_5933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 1_0534, 87, 25, 66, 3358, 196, 5_5289, 8, 8_2961, 81, 2204, 7_5203, 7, 15, 763, 1_2956, 216, 178, 1_4328, 9595, 1377, 6_9693, 7, 448, 7_1021, 196, 1_8106, 1437, 1_3974, 108, 9083, 4, 4_9315, 7, 39, 86, 1326, 2793, 4_6333, 4, 448, 196, 7_4588, 7, 4_9315, 7, 39, 21, 822, 3_8470, 74, 21, 6_6723, 6_2480, 8, 2_2050, 5, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __A : Union[str, Any] = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name='''moussaKam/mbarthez''' , revision='''c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6''' , sequences=__lowerCamelCase , )
291
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class A__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Union[str, Any] = StableUnCLIPImgaImgPipeline UpperCamelCase_ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase_ : Union[str, Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : Optional[Any] = frozenset([] ) def _lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" _UpperCAmelCase : str = 3_2 _UpperCAmelCase : Any = embedder_hidden_size # image encoding components _UpperCAmelCase : Dict = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) torch.manual_seed(0 ) _UpperCAmelCase : List[str] = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCAmelCase_ , projection_dim=lowerCAmelCase_ , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) _UpperCAmelCase : Tuple = StableUnCLIPImageNormalizer(embedding_dim=lowerCAmelCase_ ) _UpperCAmelCase : List[str] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCAmelCase_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCAmelCase_ , layers_per_block=1 , upcast_attention=lowerCAmelCase_ , use_linear_projection=lowerCAmelCase_ , ) torch.manual_seed(0 ) _UpperCAmelCase : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="v_prediction" , set_alpha_to_one=lowerCAmelCase_ , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCAmelCase : int = AutoencoderKL() _UpperCAmelCase : List[Any] = { # image encoding components "feature_extractor": feature_extractor, "image_encoder": image_encoder.eval(), # image noising components "image_normalizer": image_normalizer.eval(), "image_noising_scheduler": image_noising_scheduler, # regular denoising components "tokenizer": tokenizer, "text_encoder": text_encoder.eval(), "unet": unet.eval(), "scheduler": scheduler, "vae": vae.eval(), } return components def _lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : List[str]=True ) -> Optional[Any]: """simple docstring""" if str(lowerCAmelCase_ ).startswith("mps" ): _UpperCAmelCase : str = torch.manual_seed(lowerCAmelCase_ ) else: _UpperCAmelCase : Tuple = torch.Generator(device=lowerCAmelCase_ ).manual_seed(lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase_ ) ).to(lowerCAmelCase_ ) if pil_image: _UpperCAmelCase : List[str] = input_image * 0.5 + 0.5 _UpperCAmelCase : Any = input_image.clamp(0 , 1 ) _UpperCAmelCase : Optional[int] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _UpperCAmelCase : int = DiffusionPipeline.numpy_to_pil(lowerCAmelCase_ )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def _lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" _UpperCAmelCase : int = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Optional[Any] = self.get_dummy_components() _UpperCAmelCase : Optional[Any] = StableUnCLIPImgaImgPipeline(**lowerCAmelCase_ ) _UpperCAmelCase : List[str] = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) _UpperCAmelCase : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase_ ) inputs.update({"image_embeds": None} ) _UpperCAmelCase : Tuple = sd_pipe(**lowerCAmelCase_ ).images _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Optional[Any] = np.array([0.3872, 0.7224, 0.5601, 0.4741, 0.6872, 0.5814, 0.4636, 0.3867, 0.5078] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def _lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = torch_device in ["cpu", "mps"] self._test_attention_slicing_forward_pass(test_max_difference=lowerCAmelCase_ ) def _lowerCAmelCase ( self : int ) -> int: """simple docstring""" _UpperCAmelCase : List[Any] = torch_device in ["cpu", "mps"] self._test_inference_batch_single_identical(test_max_difference=lowerCAmelCase_ ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def _lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCAmelCase_ ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): """simple docstring""" def _lowerCAmelCase ( self : int ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _UpperCAmelCase : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) _UpperCAmelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) _UpperCAmelCase : Dict = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase : List[str] = pipe(lowerCAmelCase_ , "anime turle" , generator=lowerCAmelCase_ , output_type="np" ) _UpperCAmelCase : Optional[Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _UpperCAmelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) _UpperCAmelCase : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) _UpperCAmelCase : str = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : int = torch.Generator(device="cpu" ).manual_seed(0 ) _UpperCAmelCase : Optional[int] = pipe(lowerCAmelCase_ , "anime turle" , generator=lowerCAmelCase_ , output_type="np" ) _UpperCAmelCase : Tuple = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase_ , lowerCAmelCase_ ) def _lowerCAmelCase ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCAmelCase : Any = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) _UpperCAmelCase : int = pipe.to(lowerCAmelCase_ ) pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCAmelCase : int = pipe( lowerCAmelCase_ , "anime turtle" , num_inference_steps=2 , output_type="np" , ) _UpperCAmelCase : int = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
145
import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = BertJapaneseTokenizer a_ = False a_ = True def lowercase ( self : Optional[Any] ) -> List[str]: super().setUp() __lowerCAmelCase = [ '[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは', '世界', '##世界', '、', '##、', '。', '##。', ] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase ( self : List[Any] , lowerCAmelCase_ : Tuple ) -> str: __lowerCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。' __lowerCAmelCase = 'こんにちは 、 世界 。 こんばんは 、 世界 。' return input_text, output_text def lowercase ( self : List[Any] , lowerCAmelCase_ : str ) -> Dict: __lowerCAmelCase , __lowerCAmelCase = self.get_input_output_texts(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) return text, ids def lowercase ( self : List[str] ) -> Optional[int]: pass # TODO add if relevant def lowercase ( self : Optional[Any] ) -> Optional[Any]: pass # TODO add if relevant def lowercase ( self : Union[str, Any] ) -> Any: pass # TODO add if relevant def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = self.tokenizer_class(self.vocab_file ) __lowerCAmelCase = tokenizer.tokenize('こんにちは、世界。\nこんばんは、世界。' ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='mecab' ) self.assertIsNotNone(lowerCAmelCase_ ) __lowerCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowerCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = MecabTokenizer(mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : List[Any] ) -> int: try: __lowerCAmelCase = MecabTokenizer(mecab_dic='unidic_lite' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : Tuple ) -> Optional[Any]: try: __lowerCAmelCase = MecabTokenizer(mecab_dic='unidic' ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = MecabTokenizer(do_lower_case=lowerCAmelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iphone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) def lowercase ( self : Union[str, Any] ) -> Optional[Any]: try: __lowerCAmelCase = MecabTokenizer( do_lower_case=lowerCAmelCase_ , normalize_text=lowerCAmelCase_ , mecab_option='-d /usr/local/lib/mecab/dic/jumandic' ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '\u3000', '。'] , ) def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = MecabTokenizer(normalize_text=lowerCAmelCase_ , mecab_dic='ipadic' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップルストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', ' ', '。'] , ) @require_sudachi def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='sudachi' ) self.assertIsNotNone(lowerCAmelCase_ ) __lowerCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowerCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_sudachi def lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase ( self : Tuple ) -> Optional[Any]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='A' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国', '人', '参政', '権'] ) @require_sudachi def lowercase ( self : Tuple ) -> List[Any]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='B' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人', '参政権'] ) @require_sudachi def lowercase ( self : List[str] ) -> Union[str, Any]: __lowerCAmelCase = SudachiTokenizer(sudachi_dict_type='core' , sudachi_split_mode='C' ) self.assertListEqual(tokenizer.tokenize('外国人参政権' ) , ['外国人参政権'] ) @require_sudachi def lowercase ( self : Dict ) -> List[str]: __lowerCAmelCase = SudachiTokenizer(do_lower_case=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iphone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', ' ', '。', ' ', ' '] , ) @require_sudachi def lowercase ( self : Union[str, Any] ) -> List[Any]: __lowerCAmelCase = SudachiTokenizer(normalize_text=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , [' ', '\t', 'アップル', 'ストア', 'で', 'iPhone', '8', ' ', 'が', ' ', ' ', '\n ', '発売', 'さ', 'れ', 'た', '\u3000', '。', ' ', ' '] , ) @require_sudachi def lowercase ( self : int ) -> str: __lowerCAmelCase = SudachiTokenizer(trim_whitespace=lowerCAmelCase_ , sudachi_dict_type='core' ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れ', 'た', '。'] , ) @require_jumanpp def lowercase ( self : Union[str, Any] ) -> Any: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , word_tokenizer_type='jumanpp' ) self.assertIsNotNone(lowerCAmelCase_ ) __lowerCAmelCase = 'こんにちは、世界。\nこんばんは、世界。' __lowerCAmelCase = tokenizer.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , ['こんにちは', '、', '世界', '。', 'こん', '##ばんは', '、', '世界', '。'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4] ) __lowerCAmelCase = os.path.join(self.tmpdirname , 'tokenizer.bin' ) with open(lowerCAmelCase_ , 'wb' ) as handle: pickle.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(lowerCAmelCase_ , 'rb' ) as handle: __lowerCAmelCase = pickle.load(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_new.tokenize(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_jumanpp def lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase ( self : Any ) -> Union[str, Any]: __lowerCAmelCase = JumanppTokenizer(do_lower_case=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iphone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = JumanppTokenizer(normalize_text=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['ア', 'ッ', 'フ', '゚', 'ル', 'ストア', 'で', 'iPhone', '8', '\u3000', 'が', '\u3000', '\u3000', '\u3000', '発売', 'さ', 'れた', '\u3000', '。'] , ) @require_jumanpp def lowercase ( self : List[str] ) -> List[str]: __lowerCAmelCase = JumanppTokenizer(trim_whitespace=lowerCAmelCase_ ) self.assertListEqual( tokenizer.tokenize(' \tアップルストアでiPhone8 が \n 発売された 。 ' ) , ['アップル', 'ストア', 'で', 'iPhone', '8', 'が', '発売', 'さ', 'れた', '。'] , ) @require_jumanpp def lowercase ( self : Any ) -> Any: __lowerCAmelCase = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize('ありがとうございますm(_ _)m見つけるのが大変です。' ) , ['ありがとう', 'ございます', 'm(_ _)m', '見つける', 'の', 'が', '大変です', '。'] , ) def lowercase ( self : Any ) -> str: __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こんにちは', 'こん', 'にちは', 'ばんは', '##こん', '##にちは', '##ばんは'] __lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = i __lowerCAmelCase = WordpieceTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こんにちは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは' ) , ['こん', '##ばんは'] ) self.assertListEqual(tokenizer.tokenize('こんばんは こんばんにちは こんにちは' ) , ['こん', '##ばんは', '[UNK]', 'こんにちは'] ) def lowercase ( self : List[Any] ) -> Tuple: __lowerCAmelCase = BertJapaneseTokenizer.from_pretrained('nlp-waseda/roberta-base-japanese-with-auto-jumanpp' ) __lowerCAmelCase = tokenizer.subword_tokenizer __lowerCAmelCase = subword_tokenizer.tokenize('国境 の 長い トンネル を 抜ける と 雪国 であった 。' ) self.assertListEqual(lowerCAmelCase_ , ['▁国境', '▁の', '▁長い', '▁トンネル', '▁を', '▁抜ける', '▁と', '▁雪', '国', '▁であった', '▁。'] ) __lowerCAmelCase = subword_tokenizer.tokenize('こんばんは こんばん にち は こんにちは' ) self.assertListEqual(lowerCAmelCase_ , ['▁こん', 'ばん', 'は', '▁こん', 'ばん', '▁に', 'ち', '▁は', '▁こんにちは'] ) def lowercase ( self : int ) -> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese' ) __lowerCAmelCase = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = BertJapaneseTokenizer a_ = False def lowercase ( self : Optional[Any] ) -> Tuple: super().setUp() __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def lowercase ( self : str , **lowerCAmelCase_ : Tuple ) -> Union[str, Any]: return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type='character' , **lowerCAmelCase_ ) def lowercase ( self : Tuple , lowerCAmelCase_ : Tuple ) -> Optional[int]: __lowerCAmelCase = 'こんにちは、世界。 \nこんばんは、世界。' __lowerCAmelCase = 'こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。' return input_text, output_text def lowercase ( self : Dict ) -> str: pass # TODO add if relevant def lowercase ( self : Any ) -> str: pass # TODO add if relevant def lowercase ( self : List[Any] ) -> int: pass # TODO add if relevant def lowercase ( self : str ) -> str: __lowerCAmelCase = self.tokenizer_class(self.vocab_file , subword_tokenizer_type='character' ) __lowerCAmelCase = tokenizer.tokenize('こんにちは、世界。 \nこんばんは、世界。' ) self.assertListEqual( lowerCAmelCase_ , ['こ', 'ん', 'に', 'ち', 'は', '、', '世', '界', '。', 'こ', 'ん', 'ば', 'ん', 'は', '、', '世', '界', '。'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2] ) def lowercase ( self : str ) -> Optional[int]: __lowerCAmelCase = ['[UNK]', '[CLS]', '[SEP]', 'こ', 'ん', 'に', 'ち', 'は', 'ば', '世', '界', '、', '。'] __lowerCAmelCase = {} for i, token in enumerate(lowerCAmelCase_ ): __lowerCAmelCase = i __lowerCAmelCase = CharacterTokenizer(vocab=lowerCAmelCase_ , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('こんにちは' ) , ['こ', 'ん', 'に', 'ち', 'は'] ) self.assertListEqual(tokenizer.tokenize('こんにちほ' ) , ['こ', 'ん', 'に', 'ち', '[UNK]'] ) def lowercase ( self : int ) -> str: __lowerCAmelCase = self.tokenizer_class.from_pretrained('cl-tohoku/bert-base-japanese-char' ) __lowerCAmelCase = tokenizer.encode('ありがとう。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.encode('どういたしまして。' , add_special_tokens=lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase_ , lowerCAmelCase_ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : str ) -> Union[str, Any]: __lowerCAmelCase = 'cl-tohoku/bert-base-japanese' __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = 'cl-tohoku/bert-base-japanese' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) ) __lowerCAmelCase = 'bert-base-cased' with self.assertLogs('transformers' , level='WARNING' ) as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertTrue( cm.records[0].message.startswith( 'The tokenizer class you load from this checkpoint is not the same type as the class this function' ' is called from.' ) )
284
0
import os import sys lowerCAmelCase__ :Optional[Any] = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) lowerCAmelCase__ :Dict = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def lowerCAmelCase__ ( *a__: int , **a__: List[Any] ) -> List[Any]: '''simple docstring''' return AutoConfig.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def lowerCAmelCase__ ( *a__: List[str] , **a__: Optional[Any] ) -> List[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModel.__doc__ ) def lowerCAmelCase__ ( *a__: Tuple , **a__: Dict ) -> Optional[int]: '''simple docstring''' return AutoModel.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def lowerCAmelCase__ ( *a__: Union[str, Any] , **a__: List[Any] ) -> Union[str, Any]: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def lowerCAmelCase__ ( *a__: Any , **a__: List[str] ) -> Optional[Any]: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def lowerCAmelCase__ ( *a__: Dict , **a__: str ) -> int: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*a__ , **a__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def lowerCAmelCase__ ( *a__: Union[str, Any] , **a__: List[Any] ) -> List[str]: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*a__ , **a__ )
354
import math import random def lowerCAmelCase__ ( a__: float , a__: bool = False ) -> float: '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value lowerCAmelCase__ :Optional[Any] = 0.02 def lowerCAmelCase__ ( a__: int , a__: int ) -> float: '''simple docstring''' _UpperCAmelCase = float(2 * (random.randint(1 , 1_0_0 )) - 1 ) for _ in range(a__ ): # Forward propagation _UpperCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _UpperCAmelCase = (expected / 1_0_0) - layer_a # Error delta _UpperCAmelCase = layer_1_error * sigmoid_function(a__ , a__ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_0_0 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ :List[Any] = int(input('''Expected value: ''')) lowerCAmelCase__ :Any = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
185
0
def lowerCAmelCase__ ( lowerCamelCase_ : int = 2000000): '''simple docstring''' lowerCAmelCase__ : List[str] = [0 for i in range(n + 1)] lowerCAmelCase__ : int = 1 lowerCAmelCase__ : str = 1 for i in range(2 ,int(n**0.5) + 1): if primality_list[i] == 0: for j in range(i * i ,n + 1 ,lowerCAmelCase_): lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List[Any] = 0 for i in range(lowerCAmelCase_): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f"""{solution() = }""")
129
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _snake_case : Union[str, Any] = { 'configuration_layoutlmv3': [ 'LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv3Config', 'LayoutLMv3OnnxConfig', ], 'processing_layoutlmv3': ['LayoutLMv3Processor'], 'tokenization_layoutlmv3': ['LayoutLMv3Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Union[str, Any] = ['LayoutLMv3TokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : List[str] = [ 'LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv3ForQuestionAnswering', 'LayoutLMv3ForSequenceClassification', 'LayoutLMv3ForTokenClassification', 'LayoutLMv3Model', 'LayoutLMv3PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[Any] = [ 'TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLayoutLMv3ForQuestionAnswering', 'TFLayoutLMv3ForSequenceClassification', 'TFLayoutLMv3ForTokenClassification', 'TFLayoutLMv3Model', 'TFLayoutLMv3PreTrainedModel', ] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Tuple = ['LayoutLMv3FeatureExtractor'] _snake_case : str = ['LayoutLMv3ImageProcessor'] if TYPE_CHECKING: from .configuration_layoutlmva import ( LAYOUTLMV3_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig, LayoutLMvaOnnxConfig, ) from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_layoutlmva import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, TFLayoutLMvaPreTrainedModel, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor from .image_processing_layoutlmva import LayoutLMvaImageProcessor else: import sys _snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
284
0
def A_ ( A__ , A__ ) -> int: return number | (1 << position) def A_ ( A__ , A__ ) -> int: return number & ~(1 << position) def A_ ( A__ , A__ ) -> int: return number ^ (1 << position) def A_ ( A__ , A__ ) -> bool: return ((number >> position) & 1) == 1 def A_ ( A__ , A__ ) -> int: return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
225
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' self.assertEqual(len(lowercase) , len(lowercase)) for a, b in zip(lowercase , lowercase): self.assertAlmostEqual(lowercase , lowercase , delta=lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : Tuple = GradientAccumulator() accumulator([tf.constant([1.0, 2.0])]) accumulator([tf.constant([-2.0, 1.0])]) accumulator([tf.constant([-1.0, 2.0])]) with self.assertRaises(lowercase): accumulator([tf.constant([1.0, 1.0]), tf.constant([2.0, 2.0])]) self.assertEqual(accumulator.step , 3) self.assertEqual(len(accumulator.gradients) , 1) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1e-2) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Tuple = None ops.enable_eager_execution_internal() a__ : Optional[int] = tf.config.list_physical_devices('CPU') if len(lowercase) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()]) a__ : int = tf.config.list_logical_devices(device_type='CPU') a__ : Union[str, Any] = tf.distribute.MirroredStrategy(devices=devices[:2]) with strategy.scope(): a__ : str = GradientAccumulator() a__ : Tuple = tf.Variable([4.0, 3.0]) a__ , a__ : Tuple = create_optimizer(5e-5 , 10 , 5) a__ : Tuple = tf.Variable([0.0, 0.0] , trainable=lowercase) def accumulate_on_replica(lowercase): accumulator([gradient]) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable]))) @tf.function def accumulate(lowercase , lowercase): with strategy.scope(): a__ : Union[str, Any] = strategy.experimental_local_results(lowercase) local_variables[0].assign(lowercase) local_variables[1].assign(lowercase) strategy.run(lowercase , args=(gradient_placeholder,)) @tf.function def apply_grad(): with strategy.scope(): strategy.run(lowercase) def _check_local_values(lowercase , lowercase): a__ : Union[str, Any] = strategy.experimental_local_results(accumulator._gradients[0]) self.assertListAlmostEqual(values[0].value() , lowercase , tol=1e-2) self.assertListAlmostEqual(values[1].value() , lowercase , tol=1e-2) accumulate([1.0, 2.0] , [-1.0, 1.0]) accumulate([3.0, -1.0] , [-1.0, -1.0]) accumulate([-2.0, 2.0] , [3.0, -2.0]) self.assertEqual(accumulator.step , 3) _check_local_values([2.0, 3.0] , [1.0, -2.0]) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1e-2) accumulator.reset() self.assertEqual(accumulator.step , 0) _check_local_values([0.0, 0.0] , [0.0, 0.0])
225
1
import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=() , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]="no" , lowerCAmelCase__ : int="29500" ): __a : List[str] = False __a : Optional[Any] = False if any(key.startswith('''KAGGLE''' ) for key in os.environ.keys() ): __a : int = True elif "IPython" in sys.modules: __a : List[Any] = '''google.colab''' in str(sys.modules['''IPython'''].get_ipython() ) try: __a : Dict = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( f"Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}." ) if (in_colab or in_kaggle) and (os.environ.get('''TPU_NAME''' , lowerCAmelCase__ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside ''' '''your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if num_processes is None: __a : List[Any] = 8 __a : Optional[int] = PrepareForLaunch(lowerCAmelCase__ , distributed_type='''TPU''' ) print(f"Launching a training on {num_processes} TPU cores." ) xmp.spawn(lowerCAmelCase__ , args=lowerCAmelCase__ , nprocs=lowerCAmelCase__ , start_method='''fork''' ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on one CPU.''' ) function(*lowerCAmelCase__ ) else: if num_processes is None: raise ValueError( '''You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.''' ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( '''To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized ''' '''inside your training function. Restart your notebook and make sure no cells initializes an ''' '''`Accelerator`.''' ) if torch.cuda.is_initialized(): raise ValueError( '''To launch a multi-GPU training from your notebook, you need to avoid running any instruction ''' '''using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA ''' '''function.''' ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase__ , master_addr='''127.0.01''' , master_port=lowerCAmelCase__ , mixed_precision=lowerCAmelCase__ ): __a : Dict = PrepareForLaunch(lowerCAmelCase__ , distributed_type='''MULTI_GPU''' ) print(f"Launching training on {num_processes} GPUs." ) try: start_processes(lowerCAmelCase__ , args=lowerCAmelCase__ , nprocs=lowerCAmelCase__ , start_method='''fork''' ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( '''CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. ''' '''This likely stems from an outside import causing issues once the `notebook_launcher()` is called. ''' '''Please review your imports and test them when running the `notebook_launcher()` to identify ''' '''which one is problematic.''' ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): __a : Optional[int] = '''1''' print('''Launching training on MPS.''' ) elif torch.cuda.is_available(): print('''Launching training on one GPU.''' ) else: print('''Launching training on CPU.''' ) function(*lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple=() , lowerCAmelCase__ : Optional[Any]=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=lowerCAmelCase__ , master_addr='''127.0.01''' , master_port='''29500''' , accelerate_mixed_precision='''no''' , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu='''yes''' , ): __a : Dict = PrepareForLaunch(lowerCAmelCase__ , debug=lowerCAmelCase__ ) start_processes(lowerCAmelCase__ , args=lowerCAmelCase__ , nprocs=lowerCAmelCase__ , start_method='''fork''' )
216
from __future__ import annotations from typing import Any class UpperCamelCase__ : def __init__(self : Union[str, Any] , snake_case_ : int ): __a : Dict = num_of_nodes __a : list[list[int]] = [] __a : dict[int, int] = {} def lowerCAmelCase (self : Optional[Any] , snake_case_ : int , snake_case_ : int , snake_case_ : int ): self.m_edges.append([u_node, v_node, weight] ) def lowerCAmelCase (self : Any , snake_case_ : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCAmelCase (self : str , snake_case_ : int ): if self.m_component[u_node] != u_node: for k in self.m_component: __a : Optional[int] = self.find_component(snake_case_ ) def lowerCAmelCase (self : Any , snake_case_ : list[int] , snake_case_ : int , snake_case_ : int ): if component_size[u_node] <= component_size[v_node]: __a : List[str] = v_node component_size[v_node] += component_size[u_node] self.set_component(snake_case_ ) elif component_size[u_node] >= component_size[v_node]: __a : Optional[int] = self.find_component(snake_case_ ) component_size[u_node] += component_size[v_node] self.set_component(snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : str = [] __a : int = 0 __a : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) __a : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: __a , __a , __a : Optional[Any] = edge __a : List[str] = self.m_component[u] __a : List[Any] = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): __a : str = [u, v, w] for edge in minimum_weight_edge: if isinstance(snake_case_ , snake_case_ ): __a , __a , __a : str = edge __a : Any = self.m_component[u] __a : Any = self.m_component[v] if u_component != v_component: mst_weight += w self.union(snake_case_ , snake_case_ , snake_case_ ) print(f"Added edge [{u} - {v}]\nAdded weight: {w}\n" ) num_of_components -= 1 __a : Optional[int] = [-1] * self.m_num_of_nodes print(f"The total weight of the minimal spanning tree is: {mst_weight}" ) def __UpperCamelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
216
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __a ( UpperCAmelCase ) ->str: """simple docstring""" A = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __UpperCAmelCase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = StableDiffusionLatentUpscalePipeline __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } __lowerCAmelCase = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} __lowerCAmelCase = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowerCAmelCase = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __lowerCAmelCase = frozenset([] ) __lowerCAmelCase = True @property def A (self : Dict ): A = 1 A = 4 A = (16, 16) A = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCAmelCase ) return image def A (self : Tuple ): torch.manual_seed(0 ) A = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=_lowerCAmelCase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=_lowerCAmelCase , only_cross_attention=_lowerCAmelCase , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) A = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) A = EulerDiscreteScheduler(prediction_type="""sample""" ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) A = CLIPTextModel(_lowerCAmelCase ) A = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) A = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def A (self : str , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any]=0 ): if str(_lowerCAmelCase ).startswith("""mps""" ): A = torch.manual_seed(_lowerCAmelCase ) else: A = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) A = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def A (self : Union[str, Any] ): A = """cpu""" A = self.get_dummy_components() A = self.pipeline_class(**_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = self.get_dummy_inputs(_lowerCAmelCase ) A = pipe(**_lowerCAmelCase ).images A = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) A = np.array( [0.47_222_412, 0.41_921_633, 0.44_717_434, 0.46_874_192, 0.42_588_258, 0.46_150_726, 0.4_677_534, 0.45_583_832, 0.48_579_055] ) A = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCAmelCase , 1e-3 ) def A (self : int ): super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def A (self : List[Any] ): super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def A (self : Optional[int] ): super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def A (self : List[Any] ): super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def A (self : int ): super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def A (self : Tuple ): super().test_save_load_local(expected_max_difference=3e-3 ) def A (self : Union[str, Any] ): super().test_save_load_optional_components(expected_max_difference=3e-3 ) def A (self : Tuple ): A = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] A = self.get_dummy_components() A = self.pipeline_class(**_lowerCAmelCase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowerCAmelCase ) pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) A = self.get_dummy_inputs(_lowerCAmelCase ) A = 2 A = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A = getattr(_lowerCAmelCase , scheduler_enum.name ) A = scheduler_cls.from_config(pipe.scheduler.config ) A = pipe(**_lowerCAmelCase )[0] outputs.append(_lowerCAmelCase ) assert check_same_shape(_lowerCAmelCase ) @require_torch_gpu @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def A (self : str ): A = torch.manual_seed(33 ) A = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) A = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" A = pipe(_lowerCAmelCase , generator=_lowerCAmelCase , output_type="""latent""" ).images A = upscaler( prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type="""np""" , ).images[0] A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5e-2 def A (self : List[str] ): A = torch.manual_seed(33 ) A = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) A = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" A = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) A = upscaler( prompt=_lowerCAmelCase , image=_lowerCAmelCase , num_inference_steps=20 , guidance_scale=0 , generator=_lowerCAmelCase , output_type="""np""" , ).images[0] A = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5e-2
337
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def A (self : Optional[Any] ): A = torch.nn.Linear(10 , 10 ) A = torch.optim.SGD(model.parameters() , 0.1 ) A = Accelerator() A = accelerator.prepare(_lowerCAmelCase ) try: pickle.loads(pickle.dumps(_lowerCAmelCase ) ) except Exception as e: self.fail(F"""Accelerated optimizer pickling failed with {e}""" ) AcceleratorState._reset_state()
337
1
import cmath import math def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> complex: _snake_case : Any = math.radians(snake_case__ ) _snake_case : Optional[Any] = math.radians(snake_case__ ) # Convert voltage and current to rectangular form _snake_case : Tuple = cmath.rect(snake_case__ , snake_case__ ) _snake_case : Any = cmath.rect(snake_case__ , snake_case__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
317
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging lowerCAmelCase : List[str] = logging.get_logger(__name__) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = ["audio_values", "audio_mask"] def __init__( self , _a=2_048 , _a=1 , _a=[16, 16] , _a=128 , _a=44_100 , _a=86 , _a=2_048 , _a=0.0 , **_a , ): """simple docstring""" super().__init__( feature_size=_a , sampling_rate=_a , padding_value=_a , **_a , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_a , min_frequency=0.0 , max_frequency=22_050.0 , sampling_rate=_a , norm="""slaney""" , mel_scale="""slaney""" , ).T def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = spectrogram( _a , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , _a , _a = None , _a = True , _a = None , _a = False , _a = False , **_a , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" f' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' f' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(_a , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(_a , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_a , np.ndarray ): lowerCamelCase = np.asarray(_a , dtype=np.floataa ) elif isinstance(_a , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , _a ): lowerCamelCase = [np.asarray(_a , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(_a ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(_a ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(_a ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=_a , tensor_type=_a ) return encoded_inputs
291
0
def __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" if length <= 0 or not isinstance(lowercase_ , lowercase_ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(lowercase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
356
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('>=', '4.25.0')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
57
0
'''simple docstring''' import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Optional[int] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' lowercase_ : Union[str, Any] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_ ).raw ).convert('''RGB''' ) lowercase_ : int = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073) , (0.26862954, 0.26130258, 0.27577711) ), ] ) lowercase_ : int = transform(UpperCAmelCase_ ).unsqueeze(0 ).to(UpperCAmelCase_ ) return image def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if "visual_encoder" in key: lowercase_ : List[str] = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , UpperCAmelCase_ ) if "blocks" in key: lowercase_ : Optional[int] = re.sub(R'''blocks''' , '''layers''' , UpperCAmelCase_ ) if "attn" in key: lowercase_ : Tuple = re.sub(R'''attn''' , '''self_attn''' , UpperCAmelCase_ ) if "norm1" in key: lowercase_ : Optional[int] = re.sub(R'''norm1''' , '''layer_norm1''' , UpperCAmelCase_ ) if "norm2" in key: lowercase_ : List[str] = re.sub(R'''norm2''' , '''layer_norm2''' , UpperCAmelCase_ ) if "encoder.norm" in key: lowercase_ : Tuple = re.sub(R'''encoder.norm''' , '''post_layernorm''' , UpperCAmelCase_ ) if "encoder.patch_embed.proj" in key: lowercase_ : List[str] = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , UpperCAmelCase_ ) if "encoder.pos_embed" in key: lowercase_ : Dict = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , UpperCAmelCase_ ) if "encoder.cls_token" in key: lowercase_ : List[str] = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , UpperCAmelCase_ ) if "self_attn" in key: lowercase_ : Union[str, Any] = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , UpperCAmelCase_ ) return key @torch.no_grad() def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[Any]=None ): """simple docstring""" if config_path is not None: lowercase_ : List[str] = BlipConfig.from_pretrained(UpperCAmelCase_ ) else: lowercase_ : List[str] = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) lowercase_ : Optional[int] = BlipForConditionalGeneration(UpperCAmelCase_ ).eval() lowercase_ : Any = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' lowercase_ : Union[str, Any] = blip_decoder(pretrained=UpperCAmelCase_ , image_size=384 , vit='''base''' ) lowercase_ : Union[str, Any] = pt_model.eval() lowercase_ : Tuple = pt_model.state_dict() for key in modified_state_dict.copy(): lowercase_ : List[str] = modified_state_dict.pop(UpperCAmelCase_ ) lowercase_ : Optional[int] = rename_key(UpperCAmelCase_ ) lowercase_ : int = value hf_model.load_state_dict(UpperCAmelCase_ ) lowercase_ : Optional[int] = 384 lowercase_ : List[str] = load_demo_image(image_size=UpperCAmelCase_ , device='''cpu''' ) lowercase_ : Any = BertTokenizer.from_pretrained('''bert-base-uncased''' ) lowercase_ : Tuple = tokenizer(['''a picture of'''] ).input_ids lowercase_ : Optional[Any] = hf_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) assert out[0].tolist() == [30522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] lowercase_ : List[str] = hf_model.generate(UpperCAmelCase_ ) assert out[0].tolist() == [30522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(UpperCAmelCase_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' lowercase_ : Optional[int] = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) lowercase_ : Dict = blip_vqa(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='''base''' ) vqa_model.eval() lowercase_ : int = vqa_model.state_dict() for key in modified_state_dict.copy(): lowercase_ : List[Any] = modified_state_dict.pop(UpperCAmelCase_ ) lowercase_ : Optional[Any] = rename_key(UpperCAmelCase_ ) lowercase_ : Any = value lowercase_ : Tuple = BlipForQuestionAnswering(UpperCAmelCase_ ) hf_vqa_model.load_state_dict(UpperCAmelCase_ ) lowercase_ : List[str] = ['How many dogs are in this image?'] lowercase_ : Any = tokenizer(UpperCAmelCase_ , return_tensors='''pt''' ).input_ids lowercase_ : str = hf_vqa_model.generate(UpperCAmelCase_ , UpperCAmelCase_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) lowercase_ : Optional[Any] = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' lowercase_ : Optional[Any] = blip_itm(pretrained=UpperCAmelCase_ , image_size=UpperCAmelCase_ , vit='''base''' ) itm_model.eval() lowercase_ : Optional[int] = itm_model.state_dict() for key in modified_state_dict.copy(): lowercase_ : List[Any] = modified_state_dict.pop(UpperCAmelCase_ ) lowercase_ : Dict = rename_key(UpperCAmelCase_ ) lowercase_ : Optional[Any] = value lowercase_ : int = BlipForImageTextRetrieval(UpperCAmelCase_ ) lowercase_ : Any = ['A picture of a woman with a dog sitting in a beach'] lowercase_ : Tuple = tokenizer( UpperCAmelCase_ , return_tensors='''pt''' , padding='''max_length''' , truncation=UpperCAmelCase_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(UpperCAmelCase_ ) hf_itm_model.eval() lowercase_ : Tuple = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) lowercase_ : int = hf_itm_model(UpperCAmelCase_ , UpperCAmelCase_ , use_itm_head=UpperCAmelCase_ ) assert out[0].item() == 0.2110687494277954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45698845386505127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") _lowercase : int = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
93
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Any = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) __lowerCamelCase : Tuple = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(SCREAMING_SNAKE_CASE_ ) from datasets import load_dataset __lowerCamelCase : str = load_dataset('nielsr/rvlcdip-demo' ) __lowerCamelCase : List[Any] = dataset['train'][0]['image'].convert('RGB' ) __lowerCamelCase : str = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): __lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : int = outputs.logits __lowerCamelCase : List[Any] = torch.Size((1, 16) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Optional[Any] = torch.tensor( [-0.4_1_5_8, -0.4_0_9_2, -0.4_3_4_7] , device=SCREAMING_SNAKE_CASE_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
185
0
from ....configuration_utils import PretrainedConfig from ....utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'CarlCochet/trajectory-transformer-halfcheetah-medium-v2': ( 'https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json' ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class lowerCamelCase__( __lowerCamelCase): UpperCAmelCase__ : Union[str, Any] = 'trajectory_transformer' UpperCAmelCase__ : int = ['past_key_values'] UpperCAmelCase__ : Tuple = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: Optional[Any] , UpperCamelCase_: str=1_00 , UpperCamelCase_: List[Any]=5 , UpperCamelCase_: int=1 , UpperCamelCase_: Optional[Any]=1 , UpperCamelCase_: Union[str, Any]=2_49 , UpperCamelCase_: Union[str, Any]=6 , UpperCamelCase_: Dict=17 , UpperCamelCase_: str=25 , UpperCamelCase_: str=4 , UpperCamelCase_: List[str]=4 , UpperCamelCase_: List[str]=1_28 , UpperCamelCase_: Optional[int]=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: List[Any]=0.0006 , UpperCamelCase_: int=5_12 , UpperCamelCase_: str=0.02 , UpperCamelCase_: str=1E-12 , UpperCamelCase_: int=1 , UpperCamelCase_: int=True , UpperCamelCase_: int=1 , UpperCamelCase_: List[str]=5_02_56 , UpperCamelCase_: List[Any]=5_02_56 , **UpperCamelCase_: str , ): __lowerCamelCase = vocab_size __lowerCamelCase = action_weight __lowerCamelCase = reward_weight __lowerCamelCase = value_weight __lowerCamelCase = max_position_embeddings __lowerCamelCase = block_size __lowerCamelCase = action_dim __lowerCamelCase = observation_dim __lowerCamelCase = transition_dim __lowerCamelCase = learning_rate __lowerCamelCase = n_layer __lowerCamelCase = n_head __lowerCamelCase = n_embd __lowerCamelCase = embd_pdrop __lowerCamelCase = attn_pdrop __lowerCamelCase = resid_pdrop __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = kaiming_initializer_range __lowerCamelCase = use_cache super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
29
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase) class lowerCamelCase__( __lowerCamelCase): def __init__( self: List[Any] , *UpperCamelCase_: Dict , **UpperCamelCase_: Dict ): super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) self.check_model_type(UpperCamelCase_ ) def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str=None , UpperCamelCase_: Optional[int]=None , UpperCamelCase_: Optional[int]=None , **UpperCamelCase_: List[Any] ): __lowerCamelCase, __lowerCamelCase = {}, {} if padding is not None: __lowerCamelCase = padding if truncation is not None: __lowerCamelCase = truncation if top_k is not None: __lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self: Optional[Any] , UpperCamelCase_: Union["Image.Image", str] , UpperCamelCase_: str = None , **UpperCamelCase_: List[str] ): if isinstance(UpperCamelCase_ , (Image.Image, str) ) and isinstance(UpperCamelCase_ , UpperCamelCase_ ): __lowerCamelCase = {"""image""": image, """question""": question} else: __lowerCamelCase = image __lowerCamelCase = super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) return results def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: str , UpperCamelCase_: Any=False , UpperCamelCase_: Optional[int]=False ): __lowerCamelCase = load_image(inputs["""image"""] ) __lowerCamelCase = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=UpperCamelCase_ , truncation=UpperCamelCase_ ) __lowerCamelCase = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) return model_inputs def lowerCAmelCase__ ( self: Optional[int] , UpperCamelCase_: Tuple ): __lowerCamelCase = self.model(**UpperCamelCase_ ) return model_outputs def lowerCAmelCase__ ( self: List[str] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Optional[Any]=5 ): if top_k > self.model.config.num_labels: __lowerCamelCase = self.model.config.num_labels if self.framework == "pt": __lowerCamelCase = model_outputs.logits.sigmoid()[0] __lowerCamelCase, __lowerCamelCase = probs.topk(UpperCamelCase_ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) __lowerCamelCase = scores.tolist() __lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
29
1
lowerCamelCase__ : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_9344, "knot": 1.852, } lowerCamelCase__ : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_7777_7778, "mph": 0.6_2137_1192, "knot": 0.5_3995_6803, } def UpperCAmelCase_ ( __UpperCAmelCase : float , __UpperCAmelCase : str , __UpperCAmelCase : str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: SCREAMING_SNAKE_CASE_ = ( f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n" f"Valid values are: {', '.join(__UpperCAmelCase )}" ) raise ValueError(__UpperCAmelCase ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
225
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : Any="pt" ) -> List[str]: SCREAMING_SNAKE_CASE_ = {'add_prefix_space': True} if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE_ = padding_side return tokenizer( [line] , max_length=__UpperCAmelCase , padding='max_length' if pad_to_max_length else None , truncation=__UpperCAmelCase , return_tensors=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = input_ids.ne(__UpperCAmelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any]="train" , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[int]="" , ): super().__init__() SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE_ = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE_ = max_source_length SCREAMING_SNAKE_CASE_ = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" SCREAMING_SNAKE_CASE_ = tokenizer SCREAMING_SNAKE_CASE_ = prefix if n_obs is not None: SCREAMING_SNAKE_CASE_ = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE_ = src_lang SCREAMING_SNAKE_CASE_ = tgt_lang def __len__( self : Tuple ): return len(self.src_lens ) def __getitem__( self : List[str] , _lowerCAmelCase : Any ): SCREAMING_SNAKE_CASE_ = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE_ = self.prefix + linecache.getline(str(self.src_file ) , _lowerCAmelCase ).rstrip('\n' ) SCREAMING_SNAKE_CASE_ = linecache.getline(str(self.tgt_file ) , _lowerCAmelCase ).rstrip('\n' ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowerCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer ) SCREAMING_SNAKE_CASE_ = self.tokenizer.generator if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer SCREAMING_SNAKE_CASE_ = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE_ = encode_line(_lowerCAmelCase , _lowerCAmelCase , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE_ = source_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ = target_inputs['input_ids'].squeeze() SCREAMING_SNAKE_CASE_ = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase_ ( _lowerCAmelCase : Optional[int] ): return [len(_lowerCAmelCase ) for x in Path(_lowerCAmelCase ).open().readlines()] def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[int] ): SCREAMING_SNAKE_CASE_ = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE_ = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowerCAmelCase ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE_ = trim_batch(_lowerCAmelCase , _lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = trim_batch(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch lowerCamelCase__ : List[str] = getLogger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : List[List] ) -> Tuple: return list(itertools.chain.from_iterable(__UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str ) -> None: SCREAMING_SNAKE_CASE_ = get_git_info() save_json(__UpperCAmelCase , os.path.join(__UpperCAmelCase , 'git_log.json' ) ) def UpperCAmelCase_ ( __UpperCAmelCase : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int]=4 , **__UpperCAmelCase : Tuple ) -> str: with open(__UpperCAmelCase , 'w' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase , indent=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] ) -> int: with open(__UpperCAmelCase ) as f: return json.load(__UpperCAmelCase ) def UpperCAmelCase_ ( ) -> Tuple: SCREAMING_SNAKE_CASE_ = git.Repo(search_parent_directories=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = { 'repo_id': str(__UpperCAmelCase ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def UpperCAmelCase_ ( __UpperCAmelCase : Callable , __UpperCAmelCase : Iterable ) -> List: return list(map(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Dict ) -> Dict: with open(__UpperCAmelCase , 'wb' ) as f: return pickle.dump(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[Any] ) -> Any: def remove_articles(__UpperCAmelCase : Any ): return re.sub(r'\b(a|an|the)\b' , ' ' , __UpperCAmelCase ) def white_space_fix(__UpperCAmelCase : List[str] ): return " ".join(text.split() ) def remove_punc(__UpperCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCAmelCase : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase ) ) ) ) def UpperCAmelCase_ ( __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> List[str]: SCREAMING_SNAKE_CASE_ = normalize_answer(__UpperCAmelCase ).split() SCREAMING_SNAKE_CASE_ = normalize_answer(__UpperCAmelCase ).split() SCREAMING_SNAKE_CASE_ = Counter(__UpperCAmelCase ) & Counter(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 1.0 * num_same / len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = (2 * precision * recall) / (precision + recall) return fa def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Any: return normalize_answer(__UpperCAmelCase ) == normalize_answer(__UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : List[str] , __UpperCAmelCase : List[str] ) -> Dict: assert len(__UpperCAmelCase ) == len(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = 0 for hypo, pred in zip(__UpperCAmelCase , __UpperCAmelCase ): em += exact_match_score(__UpperCAmelCase , __UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: em /= len(__UpperCAmelCase ) return {"em": em} def UpperCAmelCase_ ( __UpperCAmelCase : Union[str, Any] ) -> Dict: return model_prefix.startswith('rag' ) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[str] ) -> Tuple: SCREAMING_SNAKE_CASE_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE_ = 'dropout_rate' for p in extra_params: if getattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if not hasattr(__UpperCAmelCase , __UpperCAmelCase ) and not hasattr(__UpperCAmelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(__UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) continue SCREAMING_SNAKE_CASE_ = p if hasattr(__UpperCAmelCase , __UpperCAmelCase ) else equivalent_param[p] setattr(__UpperCAmelCase , __UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) delattr(__UpperCAmelCase , __UpperCAmelCase ) return hparams, config
225
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class a_ ( _snake_case ): UpperCamelCase__ : Any ="Wav2Vec2FeatureExtractor" UpperCamelCase__ : Optional[Any] ="AutoTokenizer" def __init__( self :Dict , _lowercase :Any , _lowercase :Optional[Any]) -> Any: super().__init__(_lowercase , _lowercase) UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False @classmethod def __a ( cls :List[str] , _lowercase :str , **_lowercase :List[str]) -> List[Any]: try: return super().from_pretrained(_lowercase , **_lowercase) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" ''' include a `tokenizer_class` attribute is deprecated and will be ''' '''removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`''' ''' attribute to either your `config.json` or `tokenizer_config.json` ''' '''file to suppress this warning: ''' , _lowercase , ) UpperCAmelCase_ = WavaVecaFeatureExtractor.from_pretrained(_lowercase , **_lowercase) UpperCAmelCase_ = WavaVecaCTCTokenizer.from_pretrained(_lowercase , **_lowercase) return cls(feature_extractor=_lowercase , tokenizer=_lowercase) def __call__( self :Tuple , *_lowercase :Optional[Any] , **_lowercase :Optional[int]) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowercase , **_lowercase) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''') UpperCAmelCase_ = kwargs.pop('''raw_speech''') else: UpperCAmelCase_ = kwargs.pop('''audio''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''sampling_rate''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''text''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: UpperCAmelCase_ = self.feature_extractor(_lowercase , *_lowercase , sampling_rate=_lowercase , **_lowercase) if text is not None: UpperCAmelCase_ = self.tokenizer(_lowercase , **_lowercase) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase_ = encodings['''input_ids'''] return inputs def __a ( self :int , *_lowercase :Tuple , **_lowercase :int) -> Tuple: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*_lowercase , **_lowercase) UpperCAmelCase_ = kwargs.pop('''input_features''' , _lowercase) UpperCAmelCase_ = kwargs.pop('''labels''' , _lowercase) if len(_lowercase) > 0: UpperCAmelCase_ = args[0] UpperCAmelCase_ = args[1:] if input_features is not None: UpperCAmelCase_ = self.feature_extractor.pad(_lowercase , *_lowercase , **_lowercase) if labels is not None: UpperCAmelCase_ = self.tokenizer.pad(_lowercase , **_lowercase) if labels is None: return input_features elif input_features is None: return labels else: UpperCAmelCase_ = labels['''input_ids'''] return input_features def __a ( self :Union[str, Any] , *_lowercase :Optional[int] , **_lowercase :List[Any]) -> Tuple: return self.tokenizer.batch_decode(*_lowercase , **_lowercase) def __a ( self :Dict , *_lowercase :int , **_lowercase :Optional[Any]) -> Any: return self.tokenizer.decode(*_lowercase , **_lowercase) @contextmanager def __a ( self :Any) -> Tuple: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''') UpperCAmelCase_ = True UpperCAmelCase_ = self.tokenizer yield UpperCAmelCase_ = self.feature_extractor UpperCAmelCase_ = False
354
from typing import Dict import numpy as np import torch from . import residue_constants as rc from .tensor_utils import tensor_tree_map, tree_map def A ( __UpperCAmelCase ) -> Dict[str, torch.Tensor]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] UpperCAmelCase_ = [] for rt in rc.restypes: UpperCAmelCase_ = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]] restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] ) UpperCAmelCase_ = {name: i for i, name in enumerate(__UpperCAmelCase )} restype_atomaa_to_atomaa_list.append( [(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] ) restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] ) # Add dummy mapping for restype 'UNK' restype_atomaa_to_atomaa_list.append([0] * 14 ) restype_atomaa_to_atomaa_list.append([0] * 37 ) restype_atomaa_mask_list.append([0.0] * 14 ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.intaa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = torch.tensor( __UpperCAmelCase , dtype=torch.floataa , device=protein['''aatype'''].device , ) UpperCAmelCase_ = protein['''aatype'''].to(torch.long ) # create the mapping for (residx, atom14) --> atom37, i.e. an array # with shape (num_res, 14) containing the atom37 indices for this protein UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the gather indices for mapping back UpperCAmelCase_ = restype_atomaa_to_atomaa[protein_aatype] UpperCAmelCase_ = residx_atomaa_to_atomaa.long() # create the corresponding mask UpperCAmelCase_ = torch.zeros([21, 37] , dtype=torch.floataa , device=protein['''aatype'''].device ) for restype, restype_letter in enumerate(rc.restypes ): UpperCAmelCase_ = rc.restype_atoa[restype_letter] UpperCAmelCase_ = rc.residue_atoms[restype_name] for atom_name in atom_names: UpperCAmelCase_ = rc.atom_order[atom_name] UpperCAmelCase_ = 1 UpperCAmelCase_ = restype_atomaa_mask[protein_aatype] UpperCAmelCase_ = residx_atomaa_mask return protein def A ( __UpperCAmelCase ) -> Dict[str, np.ndarray]: '''simple docstring''' UpperCAmelCase_ = tree_map(lambda __UpperCAmelCase : torch.tensor(__UpperCAmelCase , device=batch['''aatype'''].device ) , __UpperCAmelCase , np.ndarray ) UpperCAmelCase_ = tensor_tree_map(lambda __UpperCAmelCase : np.array(__UpperCAmelCase ) , make_atomaa_masks(__UpperCAmelCase ) ) return out
344
0
from collections.abc import Generator from math import sin def __lowercase ( _UpperCamelCase ) ->bytes: """simple docstring""" if len(_UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) lowercase : Any = B'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __lowercase ( _UpperCamelCase ) ->bytes: """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) lowercase : Any = format(_UpperCamelCase, '''08x''' )[-8:] lowercase : Optional[int] = B'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __lowercase ( _UpperCamelCase ) ->bytes: """simple docstring""" lowercase : Optional[int] = B'''''' for char in message: bit_string += format(_UpperCamelCase, '''08b''' ).encode('''utf-8''' ) lowercase : Any = format(len(_UpperCamelCase ), '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCamelCase ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __lowercase ( _UpperCamelCase ) ->Generator[list[int], None, None]: """simple docstring""" if len(_UpperCamelCase ) % 512 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0, len(_UpperCamelCase ), 512 ): lowercase : Union[str, Any] = bit_string[pos : pos + 512] lowercase : Dict = [] for i in range(0, 512, 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ), 2 ) ) yield block_words def __lowercase ( _UpperCamelCase ) ->int: """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) lowercase : Dict = format(_UpperCamelCase, '''032b''' ) lowercase : Tuple = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCamelCase, 2 ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" return (a + b) % 2**32 def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->int: """simple docstring""" if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __lowercase ( _UpperCamelCase ) ->bytes: """simple docstring""" lowercase : Optional[int] = preprocess(_UpperCamelCase ) lowercase : List[Any] = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states lowercase : Tuple = 0X67_452_301 lowercase : Tuple = 0Xef_cda_b89 lowercase : Tuple = 0X98_bad_cfe lowercase : Optional[int] = 0X10_325_476 lowercase : List[Any] = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCamelCase ): lowercase : Tuple = aa lowercase : List[Any] = ba lowercase : Dict = ca lowercase : Dict = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f lowercase : int = d ^ (b & (c ^ d)) lowercase : Optional[Any] = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f lowercase : List[str] = c ^ (d & (b ^ c)) lowercase : List[str] = (5 * i + 1) % 16 elif i <= 47: lowercase : str = b ^ c ^ d lowercase : Optional[int] = (3 * i + 5) % 16 else: lowercase : Tuple = c ^ (b | not_aa(_UpperCamelCase )) lowercase : str = (7 * i) % 16 lowercase : Optional[int] = (f + a + added_consts[i] + block_words[g]) % 2**32 lowercase : Optional[Any] = d lowercase : Union[str, Any] = c lowercase : List[str] = b lowercase : str = sum_aa(_UpperCamelCase, left_rotate_aa(_UpperCamelCase, shift_amounts[i] ) ) # Add hashed chunk to running total lowercase : List[Any] = sum_aa(_UpperCamelCase, _UpperCamelCase ) lowercase : Tuple = sum_aa(_UpperCamelCase, _UpperCamelCase ) lowercase : str = sum_aa(_UpperCamelCase, _UpperCamelCase ) lowercase : Any = sum_aa(_UpperCamelCase, _UpperCamelCase ) lowercase : List[Any] = reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
337
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __lowercase ( _UpperCamelCase = 8 ) ->str: """simple docstring""" lowercase : List[str] = ascii_letters + digits + punctuation return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" i -= len(_UpperCamelCase ) lowercase : Dict = i // 3 lowercase : List[str] = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowercase : Union[str, Any] = ( chars_incl + random(_UpperCamelCase, quotient + remainder ) + random(_UpperCamelCase, _UpperCamelCase ) + random(_UpperCamelCase, _UpperCamelCase ) ) lowercase : Union[str, Any] = list(_UpperCamelCase ) shuffle(_UpperCamelCase ) return "".join(_UpperCamelCase ) # random is a generalised function for letters, characters and numbers def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->str: """simple docstring""" return "".join(secrets.choice(_UpperCamelCase ) for _ in range(_UpperCamelCase ) ) def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Dict: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->List[Any]: """simple docstring""" pass # Put your code here... def __lowercase ( _UpperCamelCase, _UpperCamelCase = 8 ) ->bool: """simple docstring""" if len(_UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowercase : str = any(char in ascii_uppercase for char in password ) lowercase : List[str] = any(char in ascii_lowercase for char in password ) lowercase : Dict = any(char in digits for char in password ) lowercase : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __lowercase ( ) ->Dict: """simple docstring""" lowercase : Union[str, Any] = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowercase : Optional[Any] = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''', password_generator(_UpperCamelCase ) ) print( '''Alternative Password generated:''', alternative_password_generator(_UpperCamelCase, _UpperCamelCase ), ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
337
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( _snake_case ): UpperCamelCase__ : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , _snake_case , _snake_case ): UpperCamelCase__ : int =32 UpperCamelCase__ : int =4 UpperCamelCase__ : int =4 UpperCamelCase__ : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) UpperCamelCase__ : Tuple[str] =("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") UpperCamelCase__ : Union[bool, Tuple[bool]] =False UpperCamelCase__ : Tuple[int] =(3_20, 6_40, 12_80, 12_80) UpperCamelCase__ : int =2 UpperCamelCase__ : Union[int, Tuple[int]] =8 UpperCamelCase__ : Optional[Union[int, Tuple[int]]] =None UpperCamelCase__ : int =12_80 UpperCamelCase__ : float =0.0 UpperCamelCase__ : bool =False UpperCamelCase__ : jnp.dtype =jnp.floataa UpperCamelCase__ : bool =True UpperCamelCase__ : int =0 UpperCamelCase__ : bool =False def __a ( self :int , _lowercase :jax.random.KeyArray) -> FrozenDict: # init input tensors UpperCAmelCase_ = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ = jnp.zeros(_lowercase , dtype=jnp.floataa) UpperCAmelCase_ = jnp.ones((1,) , dtype=jnp.intaa) UpperCAmelCase_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa) UpperCAmelCase_ , UpperCAmelCase_ = jax.random.split(_lowercase) UpperCAmelCase_ = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowercase , _lowercase , _lowercase , _lowercase)["params"] def __a ( self :Optional[int]) -> str: UpperCAmelCase_ = self.block_out_channels UpperCAmelCase_ = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''') # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time UpperCAmelCase_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift) UpperCAmelCase_ = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype) UpperCAmelCase_ = self.only_cross_attention if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (only_cross_attention,) * len(self.down_block_types) if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = (num_attention_heads,) * len(self.down_block_types) # down UpperCAmelCase_ = [] UpperCAmelCase_ = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = block_out_channels[i] UpperCAmelCase_ = i == len(_lowercase) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ = FlaxCrossAttnDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxDownBlockaD( in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowercase) UpperCAmelCase_ = down_blocks # mid UpperCAmelCase_ = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up UpperCAmelCase_ = [] UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = list(reversed(_lowercase)) UpperCAmelCase_ = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types): UpperCAmelCase_ = output_channel UpperCAmelCase_ = reversed_block_out_channels[i] UpperCAmelCase_ = reversed_block_out_channels[min(i + 1 , len(_lowercase) - 1)] UpperCAmelCase_ = i == len(_lowercase) - 1 if up_block_type == "CrossAttnUpBlock2D": UpperCAmelCase_ = FlaxCrossAttnUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: UpperCAmelCase_ = FlaxUpBlockaD( in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowercase) UpperCAmelCase_ = output_channel UpperCAmelCase_ = up_blocks # out UpperCAmelCase_ = nn.GroupNorm(num_groups=32 , epsilon=1E-5) UpperCAmelCase_ = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self :Any , _lowercase :Optional[int] , _lowercase :Optional[int] , _lowercase :Tuple , _lowercase :List[str]=None , _lowercase :Union[str, Any]=None , _lowercase :bool = True , _lowercase :bool = False , ) -> Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowercase , jnp.ndarray): UpperCAmelCase_ = jnp.array([timesteps] , dtype=jnp.intaa) elif isinstance(_lowercase , jnp.ndarray) and len(timesteps.shape) == 0: UpperCAmelCase_ = timesteps.astype(dtype=jnp.floataa) UpperCAmelCase_ = jnp.expand_dims(_lowercase , 0) UpperCAmelCase_ = self.time_proj(_lowercase) UpperCAmelCase_ = self.time_embedding(_lowercase) # 2. pre-process UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 2, 3, 1)) UpperCAmelCase_ = self.conv_in(_lowercase) # 3. down UpperCAmelCase_ = (sample,) for down_block in self.down_blocks: if isinstance(_lowercase , _lowercase): UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train) else: UpperCAmelCase_ , UpperCAmelCase_ = down_block(_lowercase , _lowercase , deterministic=not train) down_block_res_samples += res_samples if down_block_additional_residuals is not None: UpperCAmelCase_ = () for down_block_res_sample, down_block_additional_residual in zip( _lowercase , _lowercase): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ = new_down_block_res_samples # 4. mid UpperCAmelCase_ = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: UpperCAmelCase_ = down_block_res_samples[-(self.layers_per_block + 1) :] UpperCAmelCase_ = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowercase , _lowercase): UpperCAmelCase_ = up_block( _lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , ) else: UpperCAmelCase_ = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train) # 6. post-process UpperCAmelCase_ = self.conv_norm_out(_lowercase) UpperCAmelCase_ = nn.silu(_lowercase) UpperCAmelCase_ = self.conv_out(_lowercase) UpperCAmelCase_ = jnp.transpose(_lowercase , (0, 3, 1, 2)) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowercase)
344
def A ( __UpperCAmelCase = 100_0000 ) -> int: '''simple docstring''' UpperCAmelCase_ = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , __UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
344
1